This application claims priority to German Patent Application 10 2004 007 678.2, which was filed Feb. 16, 2004, and is incorporated herein by reference.
The invention relates to a process for producing a mask, and, in one example, includes a semiconductor layout that is fractionated in the form of control data for a pattern generator and then transferred to the pattern generator, which carries out a first exposure.
During the production and development of masks for producing semiconductor components, CAD systems are employed. These systems are capable of calculating individual exposure planes which can be transferred to a pattern generator for the purpose of mask production, from a semiconductor layout present in terms of data.
Then, with the aid of an electron beam, the pattern generator exposes the given structures onto a mask. One problem in this case is, however, that, because of its resolution, the pattern generator can expose only predefined structures, preferably rectangular structures, in a specific surface extent. For this reason, before the exposure, the mask layout has to be fractionated into individual rectangles, before it can be transferred to the pattern generator in the form of control data.
In this case, it proves to be a problem that, as a result of the rectangular conversion of complex geometric forms into rectangles, rectangles are also necessarily produced whose surfaces are so small that they cannot be processed by the pattern generator. These are called slivers.
According to the prior art, the slivers are ignored during the exposure of the mask. However, this procedure has an extremely detrimental effect on the critical structure size and, under certain circumstances, prevents the processing of particularly small or dimensionally stable structures. Furthermore, the unexposed slivers reduce the structure quality of the mask and can thus also have a detrimental effect on the quality of the end product.
In one aspect, the invention specifies a process with which problems arising as a result of the slivers are eliminated and a fault-free production process is made possible.
According to the preferred embodiment of the invention, the problem is achieved in that, following the fractionation of the mask layout, the slivers are localized and enlarged by data-handling means.
After the first exposure, the enlarged slivers are transferred to the pattern generator in the form of control data and a second exposure is carried out with a low, concentrated radiation dose.
In this case, use is made of the phenomenon that the size of a structure produced by the irradiation depends on the exposure dose. In this way, the result of the exposure of a small area with a large dose is equal to the result of a large area with a small dose.
By means of the enlarged structure and the lower dose, even a small structure like the slivers can thus be implemented. It is therefore ensured that the mask is exposed uniformly and in accordance with the layout and meets the requirements of the further production process.
In a beneficial refinement, provision is made for a critical sliver width (a1) to be converted into an enlarged sliver width (a2) in the second control data with an enlargement factor (n) according to a2=n·a1. Here, the exposure dose (D2) in the second exposure step is carried out reduced by an attenuation factor (d) with D2=d·D1 with respect to the exposure dose (D1) in the first exposure step, where d=f(n).
In this case, the function f(n) is selected depending on the type and reaction capability of the lacquer. Nonlinear functions can also be used here.
In a beneficial variant of the process, provision is made for the attenuation factor d=f(n) to be calculated from a linear function
where 1<x≦2. A linear function of this type ch the requirements of most lacquers in a straightforward manner.
has proven to be a preferred order of magnitude of the enlargement factor.
In particular, it is beneficial here for the enlargement factor to be
The invention is to be explained in more detail in the following text by using an exemplary embodiment. In the associated drawings:
The following list of reference symbols can be used in conjunction with the figures
The control data of the rectangles 2 illustrated in
From the control data of the individual rectangles 2 illustrated in
The control data of the slivers 5 that have now been enlarged are used for a renewed exposure with the pattern generator, but which in this case takes place with a dose D2 that is lower by the attenuation factor d, in this case with half the dose, since the function
is sufficient in the lacquer used. Therefore, the enlarged slivers 5 are reproduced in the mask in the original size with the sliver width a1, so that the structural width as has been calculated by the CAD system can also actually be produced.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 007 678.2 | Feb 2004 | DE | national |