Processing 3D shaped transparent brittle substrate

Information

  • Patent Grant
  • 9815730
  • Patent Number
    9,815,730
  • Date Filed
    Friday, October 31, 2014
    10 years ago
  • Date Issued
    Tuesday, November 14, 2017
    7 years ago
Abstract
Methods are provided for laser processing arbitrary shapes of molded 3D thin transparent brittle parts from substrates with particular interest in substrates formed from strengthened or non-strengthened Corning Gorilla® glass (all codes). The developed laser methods can be tailored for manual separation of the parts from the panel or full laser separation by thermal stressing the desired profile. Methods can be used to form 3D surfaces with small radii of curvature. The method involves the utilization of an ultra-short pulse laser that may be optionally followed by a CO2 laser for fully automated separation.
Description
BACKGROUND

The next wave of consumer electronics products is incorporating not only software and hardware innovations, but also changes that have design and functional appeal. New products are being announced and released on a regular basis with some form of three dimensional (3D) glass part incorporated in them. Some examples include curved LCD TV screens, curved smart-phones and wearable gadgets (wrist phones, watches, etc.) that are either flexible or have a curved shape. Other elements of design in these types of devices are the back covers that have gone from the traditional flat glass cover plates to three dimensional curved surfaces of different styles. These innovations bring new challenges to the manufacturing processes of these 3D parts that are made of glass, which invariably need to be scratch- and impact-resistant.


The difficulty to form the different shapes has increased significantly as most of production lines were designed to handle flat two-dimensional parts. In general, these 3D parts are hot stamped and formed into the desired shape and one of the big challenges is to release the part from the hot molded oversized part to the final and finished product. Depending on the technology deployed in the existing production lines, the first step to adapt them to processing 3D shapes is to retrofit them with the necessary capability. CNC machining, for example, may need 5-axis tool movement to enable processing more complex shapes. Likewise, other technologies, such as laser, abrasive water jet, scribing and breaking, etc., will all need to be adapted to cut, mill, drill and finish some of the features on the three dimensional piece.


Other changes that add to the complexity of transitioning from 2D to 3D processing come from the material perspective. In 3D parts, the curves, bends and turns become sources of mechanical stress accumulation, which can greatly impact processing the part after it is hot formed. For example, if the part is hot stamped from an oversized glass plate, cutting and release from the matrix will be necessary, and depending on its shape, the residual stress accumulated on the curved parts can easily induce shattering of the part upon tool contact.


There are as many different methods to cut and separate glass as there are edge shapes. Glass can be cut mechanically (CNC machining, abrasive water jet, scribing and breaking, etc.), using electro-magnetic radiation (lasers, electrical discharges, gyrotron, etc) and many other methods. The more traditional and common methods (scribe and break or CNC machining) create edges that are populated with different types and sizes of defects. It is also common to find that the edges are not perfectly perpendicular to the surfaces. In order to eliminate the defects and give the edges a more even surface with improved strength, they are usually ground. The grinding process involves abrasive removal of edge material that can give it the desired finishing and also shape its form (bull nosed, chamfered, pencil shape, etc.) In order to enable the grinding and polishing steps, it is necessary to cut parts that are larger than the final desired dimensions.


The area of laser processing of materials encompasses a wide variety of applications that involve cutting, drilling, milling, welding, melting, etc. and different types of materials. Among these applications, one that is of particular interest is cutting or separating different types of substrates. However, not all of the existing laser techniques and tools lend themselves to precision cutting and finishing. Many are too abrasive, such as ablative processes, and leave a lot of defects and micro-cracks. As discussed above, defects and micro-cracks lead to weaker edges and parts and require oversized substrates to account for grinding and polishing steps until the part is finished to the desired dimensions. As a consequence, there is a great interest to have a faster, cleaner, cheaper, more repeatable and more reliable method of 3D glass shape cutting and extraction than what is currently practiced in the market today.


SUMMARY

The present application describes a process for cutting and separating arbitrary shapes of molded 3D thin transparent brittle substrates with particular interest in strengthened or non-strengthened glass. The method allows cutting and extracting the 3D part to its final size with no required post process finishing steps. The method can be applied to 3D parts that are strengthened (for example, chemically ion-exchanged, or thermally tempered) or non-strengthened (raw glass).


The process separates parts in a controllable fashion with negligible debris, minimum defects, and low subsurface damage to the edges that preserves part strength. The present laser method is well suited for materials that are transparent to the selected laser wavelength. Demonstrations of the method have been made using 0.55 mm thick sheets of glass, e.g., molded Corning Gorilla® glass, for example glass code 2319.


In the process, an ultra-short pulsed laser is used to create a vertical defect line in the substrate material. A series of defect lines create a fault line that delineates the desired contour of the shape and establishes a path of least resistance for crack propagation and along which separation and detachment of the shape from its substrate matrix occurs. The laser separation method can be tuned and configured to enable manual separation, partial separation or total separation of the 3D shapes out of the original substrate.


In the first step, the object to be processed (substrate) is irradiated with an ultra-short pulsed laser beam that has been condensed into a high aspect ratio line focus with high energy density that penetrates through the thickness of the substrate. Within this volume of high energy density, the material is modified via nonlinear effects. The nonlinear effects provide a mechanism of transferring energy from the laser beam to the substrate to enable formation of the defect line. It is important to note that without this high optical intensity nonlinear absorption is not triggered. Below the intensity threshold for nonlinear effects, the material is transparent to the laser radiation and remains in its original state. By scanning the laser over a desired line or path, a narrow fault line (a plurality of vertical defect lines a few microns wide) defines the perimeter or shape of the part to be separated from the substrate.


In some embodiments, the pulse duration can be in a range of between greater than about 1 picoseconds and less than about 100 picoseconds, such as greater than about 5 picoseconds and less than about 20 picoseconds, and the repetition rate can be in a range of between about 1 kHz and 4 MHz, such as in a range of between about 10 kHz and 650 kHz. In addition to a single pulse at the aforementioned repetition rates, the pulses can be produced in bursts of two pulses or more (such as 3 pulses, 4, pulses, 5 pulses, 10 pulses, 15 pulses, 20 pulses, or more) separated by a duration in a range of between about 1 nsec and about 50 nsec, for example, 10 nsec to 30 nsec, such as about 20 nsec, and the burst repetition frequency can be in a range of between about 1 kHz and about 200 kHz. The pulsed laser beam can have a wavelength selected such that the material is substantially transparent at this wavelength. The average laser power measured at the material can be greater than 40 microJoules per mm thickness of material, for example between 40 microJoules/mm thickness of material and 1000 microJoules/mm thickness of material, or between 100 and 650 microJoules/mm thickness of material.


The laser beam focal line can have a length in a range of between about 0.1 mm and about 10 mm, such as about 1 mm, about 2 mm, about 3 mm, about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, or about 9 mm, or a length in a range of between about 0.1 mm and about 1 mm, and an average spot diameter in a range of between about 0.1 micron and about 5 microns. The holes or defect lines each can have a diameter between 0.1 microns and 100 microns, for example, 0.25 to 5 microns.


Once the fault line with vertical defects is created, separation can occur via: 1) manual or mechanical stress on or around the fault line; the stress or pressure should create tension that pulls both sides of the fault line apart and breaks the areas that are still bonded together; 2) using a heat source, to create a stress zone around the fault line to put the vertical defect lines in tension and induce partial or total self-separation. In both cases, separation depends on process parameters such as laser scan speed, laser power, parameters of lenses, pulse width, repetition rate, etc.


The present disclosure extends to:


A method of laser processing a glass workpiece having a 3D surface, the method comprising:

    • focusing a pulsed laser beam into a laser beam focal line oriented along the beam propagation direction and directed toward a contour defining a part to be separated from the workpiece;
    • in one or more passes:
    • translating the workpiece and the laser beam relative to each other along the contour, the laser beam focal line generating an induced absorption within the workpiece at locations along the contour where the laser beam focal line extends into the workpiece, and the induced absorption producing a defect line along the laser beam focal line within the workpiece at each location; and
    • translating the workpiece and the laser beam relative to each other; the one or more passes selected such that the defect lines produced along the contour of the part in the workpiece are of sufficient number and depth to facilitate separation of the part from the workpiece.


The present disclosure extends to:


A method of laser processing a flat non-strengthened glass workpiece, the method comprising:

    • focusing a pulsed laser beam into a laser beam focal line oriented along the beam propagation direction and directed into the workpiece along the contour, the laser beam focal line generating an induced absorption within the workpiece, the induced absorption producing a defect line along the laser beam focal line within the workpiece;
    • translating the workpiece and the laser beam relative to each other along a contour, thereby laser forming a plurality of defect lines along the contour within the workpiece, the contour defining a part to be separated from the workpiece; and
    • molding the workpiece containing the defined part to have a 3D surface.


The present disclosure extends to:


A method of laser processing a molded non-strengthened glass workpiece, the method comprising:

    • vacuum flattening the molded glass workpiece;
    • focusing a pulsed laser beam into a laser beam focal line oriented along the beam propagation direction and directed into the vacuum flattened workpiece along a contour, the laser beam focal line generating an induced absorption within the workpiece, the induced absorption producing a defect line along the laser beam focal line within the workpiece;
    • translating the vacuum flattened workpiece and the laser beam relative to each other along the contour, thereby laser forming a plurality of defect lines along the contour within the workpiece the contour defining a part to be separated from the workpiece; and
    • releasing vacuum on the vacuum flattened workpiece containing the defined part.


The present disclosure extends to:


A glass article having a 3D surface, the glass article having at least one edge having a plurality of defect lines extending at least 250 microns, the defect lines each having a diameter less than or equal to about 5 microns.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more particular description of example embodiments, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon the illustrated embodiments.



FIGS. 1A-1C are illustrations of a fault line with equally spaced defect lines of modified glass. FIG. 1A is an illustration of a laser creating a fault line through the sample. FIG. 1B is an illustration of an edge with defect lines after separation. FIG. 1C is a photograph of a separated edge.



FIGS. 2A and 2B are illustrations of positioning of the laser beam focal line, i.e., the processing of a material transparent for the laser wavelength due to the induced absorption along the focal line.



FIG. 3A is an illustration of an optical assembly for laser processing according to one embodiment.



FIG. 3B-1-3B-4 is an illustration of various possibilities to process the substrate by differently positioning the laser beam focal line relative to the substrate.



FIG. 4 is an illustration of a second embodiment of an optical assembly for laser processing.



FIGS. 5A and 5B are illustrations of a third embodiment of an optical assembly for laser processing.



FIG. 6 is a schematic illustration of a fourth embodiment of an optical assembly for laser processing.



FIGS. 7A-7C illustrate different laser intensity regimes for laser processing of materials. FIG. 7A illustrates an unfocused laser beam, FIG. 7B illustrates a condensed laser beam with a spherical lens, and FIG. 7C illustrates a condensed laser beam with an axicon or diffractive Fresnel lens.



FIGS. 8A-B depicts laser emission as a function of time for a picosecond laser. Each emission is characterized by a pulse “burst” which may contain one or more sub-pulses. Times corresponding to pulse duration, separation between pulses, and separation between bursts are illustrated



FIG. 8C illustrates processing flat glass panels into 3D shaped parts according to an embodiment method.



FIG. 9 illustrates a finished part made from sagged unstrengthened Gorilla® 2319 according to an embodiment method.



FIG. 10A illustrates a process to generate defect lines following a traced path. At each relative position between the 3D glass surface and the line-focus, the rectangular shape with rounded corners is traced all around. Then the relative position is stepped down by 200 microns and the same shape is traced again. The process is repeated until the defect lines are completely defined in the curved glass panel.



FIG. 10B is an exaggerated illustration of how defect lines are created only at zones where the glass thickness is within the extension of the line focus. In this case, line focus extension (or length) was about 1 mm and the steps were about 100 microns. There is overlap between adjacent step scans of the rectangle.



FIG. 11 illustrates individual parts being formed and extracted from an oversized glass part (top row) and a method to scale up the process using the same laser method (bottom row).



FIG. 12 illustrates extraction of multiple parts using a disclosed method.



FIG. 13 illustrates an alternative process to form and extract 3D parts from a thermally sagged glass panel.



FIG. 14 illustrates another alternative process to form, strengthen, and extract 3D parts from a thermally sagged glass panel.



FIG. 15A is an illustration of a preform sheet laser perforated according to embodiment methods to facilitate molding of glass parts with small radii of curvature.



FIG. 15B is an illustration of one singulated preform separated from the sheet illustrated in FIG. 15A.



FIGS. 16A-B are side section views of the singulated preform of FIG. 15B before and after forming a 3D surface with a radius enabled by a laser perforation (defect line).



FIGS. 16C-D are corner section views of the singulated preform of FIG. 15B before and after forming a surface with a small corner radius enabled by multiple laser perforations (defect lines).





DETAILED DESCRIPTION OF THE DISCLOSURE

A description of example embodiments follows.


The present application provides processes for precision cutting and separation of arbitrary shapes of molded 3D thin transparent brittle substrates, with particular interest in strengthened or non-strengthened glasses. In one embodiment, the glass is Gorilla® glass (all codes, available from Corning, Inc.). Embodiment methods allow cutting and extracting one or more 3D parts, or parts with a 3D surface, to their final size with no required post-process finishing steps. The method can be applied to 3D parts that are strengthened (for example, chemically ion-exchanged) or unstrengthened (raw glass).


Cutting of a transparent material with a laser in accordance with the present disclosure may also be referred to herein as drilling or laser drilling or laser processing.


The processes permit parts to be separated in a controllable fashion with negligible debris, minimum defects, and low subsurface damage to the edges, preserving strength of the part or workpiece. The workpiece is the material or object subjected to the laser methods disclosed herein and may also be referred to herein as a material, a substrate or substrate material. One or more parts or articles can be separated from the workpieces. The parts or articles can include, for example, a glass cover for a phone that has a curved surface or automotive glass.


The present laser methods are well suited for materials that are transparent or substantially transparent to the selected laser wavelength in the linear intensity regime. Within the context of the present disclosure, a material or article is substantially transparent to the laser wavelength when the absorption of the material at the laser wavelength is less than about 10% per mm of material depth, or less than about 5% per mm of material depth, or less than about 2% per mm of material depth, or less than about 1% per mm of material depth. The present laser methods can take advantage of transparency of the substrate material to the laser wavelength in the linear regime of power (low laser intensity (energy density)). Transparency in the linear intensity regime reduces or prevents damage to the surface of the substrate as well as subsurface damage away from the region of high intensity defined by the focused laser beam.


As used herein, subsurface damage refers to the maximum size (e.g. length, width, diameter) of structural imperfections in the perimeter surface of the part separated from the substrate or material subjected to laser processing in accordance with the present disclosure. Since the structural imperfections extend from the perimeter surface, subsurface damage may also be regarded as the maximum depth from the perimeter surface in which damage from laser processing in accordance with the present disclosure occurs. The perimeter surface of the separated part may be referred to herein as the edge or the edge surface of the separated part. The structural imperfections may be cracks or voids and represent points of mechanical weakness that promote fracture or failure of the part separated from the substrate or material. By minimizing the size of subsurface damage, the present method improves the structural integrity and mechanical strength of separated parts.


In accordance with methods described below, in a single pass, a laser can be used to create highly controlled full or partial perforations through the material, with extremely little (<75 μm, often <50 μm) subsurface damage and debris generation. Sub-surface damage may be limited to the order of 100 μm in depth or less, or 75 μm in depth or less, or 60 μm in depth or less, or 50 μm in depth or less, and the cuts may produce only low debris. This is in contrast to the typical use of spot-focused laser to ablate material, where multiple passes are often necessary to completely perforate the glass thickness, large amounts of debris are formed from the ablation process, and more extensive sub-surface damage (>100 μm) and edge chipping occur.


Thus, with the present methods, it is possible to create microscopic (i.e., <2 μm and >100 nm in diameter, and in some embodiments <0.5 μm and >100 nm in diameter) elongated defect lines (also referred to herein as perforations, holes, or damage tracks) in transparent materials using one or more high energy pulses or one or more bursts of high energy pulses. The perforations represent regions of the substrate material modified by the laser. The laser-induced modifications disrupt the structure of the substrate material and constitute sites of mechanical weakness. Structural disruptions include compaction, melting, dislodging of material, rearrangements, and bond scission. The perforations extend into the interior of the substrate material and have a cross-sectional shape consistent with the cross-sectional shape of the laser (generally circular). The average diameter of the perforations may be in the range from 0.1 μm to 50 μm, or in the range from 1 μm to 20 μm, or in the range from 2 μm to 10 μm, or in the range from 0.1 μm to 5 μm. In some embodiments, the perforation is a “through hole”, which is a hole or an open channel that extends from the top to the bottom of the substrate material. In some embodiments, the perforation may not be a continuously open channel and may include sections of solid material dislodged from the substrate material by the laser. The dislodged material blocks or partially blocks the space defined by the perforation. One or more open channels (unblocked regions) may be dispersed between sections of dislodged material. The diameter of the open channels is may be <1000 nm, or <500 nm, or <400 nm, or <300 nm or in the range from 10 nm to 750 nm, or in the range from 100 nm to 500 nm. The disrupted or modified area (e.g., compacted, melted, or otherwise changed) of the material surrounding the holes in the embodiments disclosed herein, preferably has diameter of <50 μm (e.g., <10 μm).


The individual perforations can be created at rates of several hundred kilohertz (several hundred thousand perforations per second, for example). Thus, with relative motion between the laser source and the material these perforations can be placed adjacent to one another with spatial separations varying from sub-micron to several or even tens of microns as desired. Distance between adjacent defect lines along the direction of the fault lines can, for example, be in range from 0.25 μm to 50 μm, or in the range from 0.50 μm to about 20 ρm, or in the range from 0.50 μm to about 15 μm, or in the range from 0.50 μm to 10 μm, or in the range from 0.50 μm to 3.0 μm or in the range from 3.0 μm to 10 μm. The spatial separation is selected in order to facilitate cutting.


In addition to transparency of the substrate material in the linear intensity regime, selection of the laser source is further predicated on the ability to induce multi-photon absorption (MPA) in the transparent material. MPA is the simultaneous absorption of multiple photons of identical or different frequencies in order to excite a material from a lower energy state (usually the ground state) to a higher energy state (excited state). The excited state may be an excited electronic state or an ionized state. The energy difference between the higher and lower energy states of the material is equal to the sum of the energies of the two or more photons. MPA is a nonlinear process that is generally several orders of magnitude weaker than linear absorption. It differs from linear absorption in that the strength of MPA depends on the square or higher power of the light intensity, thus making it a nonlinear optical process. At ordinary light intensities, MPA is negligible. If the light intensity (energy density) is extremely high, such as in the region of focus of a laser source (particularly a pulsed laser source), MPA becomes appreciable and leads to measurable effects in the material within the region where the energy density of the light source is sufficiently high. Within the focal region, the energy density may be sufficiently high to result in ionization.


At the atomic level, the ionization of individual atoms has discrete energy requirements. Several elements commonly used in glass (e.g., Si, Na, K) have relatively low ionization energies (˜5 eV). Without the phenomenon of MPA, a wavelength of about 248 nm would be required to create linear ionization at ˜5 eV. With MPA, ionization or excitation between states separated in energy by ˜5 eV can be accomplished with wavelengths longer than 248 nm. For example, photons with a wavelength of 532 nm have an energy of ˜2.33 eV, so two photons with wavelength 532 nm can induce a transition between states separated in energy by ˜4.66 eV in two-photon absorption (TPA), for example. Thus, atoms and bonds can be selectively excited or ionized in the regions of a material where the energy density of the laser beam is sufficiently high to induce nonlinear TPA of a laser wavelength having half the required excitation energy, for example.


MPA can result in a local reconfiguration and separation of the excited atoms or bonds from adjacent atoms or bonds. The resulting modification in the bonding or configuration can result in non-thermal ablation and removal of matter from the region of the material in which MPA occurs. This removal of matter creates a structural defect (the defect line, damage line, or perforation referred to hereinabove) that mechanically weakens the material and renders it more susceptible to cracking or fracturing upon application of mechanical or thermal stress. By controlling the placement of perforations, a contour or path along which cracking occurs can be precisely defined and precise micromachining of the material can be accomplished. The contour defined by a series of perforations may be regarded as a fault line and corresponds to a region of structural weakness in the material. The fault line defines the preferred contour for separation of a part from the material and controls the shape of the separated part. In one embodiment, micromachining includes separation of a part from the material processed by the laser, where the part has a precisely defined shape or perimeter determined by a fault line defining a closed contour of perforations formed through MPA effects induced by the laser. As used herein, the term closed contour refers to a perforation path formed by the laser line, where the path intersects with itself at some location. An internal contour is a path formed where the resulting shape is entirely surrounded by an outer portion of material.


The preferred laser is an ultrashort pulsed laser (pulse durations on the order of 100 picoseconds or shorter) and can be operated in pulse mode or burst mode. In pulse mode, a series of nominally identical single pulses is emitted from the laser and directed to the workpiece. In pulse mode, the repetition rate of the laser is determined by the spacing in time between the pulses. In burst mode, bursts of pulses are emitted from the laser, where each burst includes two or more pulses (of equal or different amplitude). In burst mode, pulses within a burst are separated by a first time interval (which defines a pulse repetition rate for the burst) and the bursts are separated by a second time interval (which defines a burst repetition rate), where the second time interval is typically much longer than the first time interval. As used herein (whether in the context of pulse mode or burst mode), time interval refers to the time difference between corresponding parts of a pulse or burst (e.g. leading edge-to-leading edge, peak-to-peak, or trailing edge-to-trailing edge). Pulse and burst repetition rates are controlled by the design of the laser and can typically be adjusted, within limits, by adjusting operating conditions of the laser. Typical pulse and burst repetition rates are in the kHz to MHz range.


The laser pulse duration (in pulse mode or for pulses within a burst in burst mode) may be 10−10 s or less, or 10−11 s or less, or 10−12 s or less, or 10−13 s or less. In the exemplary embodiments described herein, the laser pulse duration is greater than 10−15.


One feature of embodiment processes is the high aspect ratio of defect lines created by an ultra-short pulsed laser. The high aspect ratio allows creation of a defect line that extends from the top surface to the bottom surface of the substrate material. The present methods also permit formation of defect lines that extend to a controlled depth within the substrate material. The defect line can be created by a single pulse or single burst of pulses, and, if desired, additional pulses or bursts can be used to increase the extension of the affected area (e.g., depth and width).


The generation of a line focus may be performed by sending a Gaussian laser beam into an axicon lens, in which case a beam profile known as a Gauss-Bessel beam is created. Such a beam diffracts much more slowly (e.g. may maintain single micron spot sizes for ranges of hundreds of microns or millimeters as opposed to few tens of microns or less) than a Gaussian beam. Hence the depth of focus or length of intense interaction with the material may be much larger than when using a Gaussian beam only. Other forms or slowly diffracting or non-diffracting beams may also be used, such as Airy beams.


As illustrated in FIGS. 1A-1C, methods to cut thin glass plates 110 is based on creating a fault line or contour 110 formed of a plurality of vertical defect lines 120 in the substrate material 130 with an ultra-short pulsed laser beam 140. Depending on the material properties (absorption, coefficient of thermal expansion (CTE), stress, composition, etc.) and laser parameters chosen for processing the material 130, the creation of a fault line 110 alone can be enough to induce self-separation. In this case, no secondary separation processes, such as tension/bending forces, heating or CO2 laser, are necessary.



FIG. 1B illustrates an edge of a workpiece after separating the workpiece along the contour or fault line 110 defined by the multiple vertical defect lines 120. The induced absorption creating the defect lines can produce particles on the separated edge or surface with an average diameter of less than 3 microns, resulting in a very clean cutting process. FIG. 1C is a picture showing an edge of a part separated using the laser process illustrated in FIG. 1A and further described hereinafter.


In some cases, the created fault line is not enough to separate the part from the substrate material spontaneously, and a secondary step may be necessary. If desired, a second laser can be used to create thermal stress to separate it, for example. In the case of 0.55 mm thick Gorilla® 2319, separation can be achieved after the creation of a defect line, for example, by application of mechanical force or by using a thermal source (e.g., an infrared laser, for example a CO2 laser) to create thermal stress and force separation of the part from the substrate material along the fault line. Another option is to use an infrared laser to initiate the separation, and then finish the separation manually. The optional infrared laser separation can be achieved with a focused continuous wave (cw) laser emitting at 10.6 microns and with power adjusted by controlling its duty cycle. Focus change (i.e., extent of defocusing up to and including focused spot size) is used to vary the induced thermal stress by varying the spot size. Defocused laser beams include those laser beams that produce a spot size larger than a minimum, diffraction-limited spot size on the order of the size of the laser wavelength. For example, defocused spot sizes (1/e2 diameter) of 2 mm to 20 mm, or 2 mm to 12 mm, or about 7 mm, or about 2 mm and or about 20 mm can be used for CO2 lasers, for example, whose diffraction-limited spot size is much smaller given the emission wavelength of 10.6 microns.


There are several methods to create the defect line. The optical method of forming the focal line or line focus can take multiple forms, using donut shaped laser beams and spherical lenses, axicon lenses, diffractive elements, or other methods to form the linear region of high intensity. The type of laser (picosecond, femtosecond, etc.) and wavelength (IR, green, UV, etc.) can also be varied, as long as sufficient optical intensities are reached to create breakdown of the substrate or workpiece material in the region of focus to create breakdown of the substrate material through nonlinear optical effects (e.g., nonlinear absorption, multi-photon absorption).


In the present application, an ultra-short pulsed laser is used to create a high aspect ratio vertical defect line in a consistent, controllable and repeatable manner. The details of the optical setup that enables the creation of this vertical defect line are described below and in U.S. application Ser. No. 14/154,525 filed on Jan. 14, 2014, the entire contents of which are incorporated by reference as if fully set forth herein. The essence of this concept is to use an axicon lens element in an optical lens assembly to create a region of high aspect ratio taper-free microchannels using ultra-short (picoseconds or femtosecond duration) Bessel beams. In other words, the axicon condenses the laser beam into a high intensity region of cylindrical shape and high aspect ratio (long length and small diameter) in the substrate material. Due to the high intensity created with the condensed laser beam, nonlinear interaction of the electromagnetic field of the laser and the substrate material occurs and the laser energy is transferred to the substrate to effect formation of defects that become constituents of the fault line. However, it is important to realize that in the areas of the substrate where the laser energy intensity is not high (e.g., substrate surface, volume of substrate surrounding the central convergence line), the substrate is transparent to the laser and there is no mechanism for transferring energy from the laser to the substrate. As a result, nothing happens to the substrate when the laser intensity is below the nonlinear threshold.


Turning to FIGS. 2A and 2B, a method of laser processing a material includes focusing a pulsed laser beam 2 into a laser beam focal line 2b, viewed along the beam propagation direction. Laser beam focal line 2b can be created by several ways, for example, Bessel beams, Airy beams, Weber beams and Mathieu beams (i.e., non-diffractive beams), whose field profiles are typically given by special functions that decay more slowly in the transverse direction (i.e. direction of propagation) than the Gaussian function. As shown in FIG. 3A, laser 3 (not shown) emits laser beam 2, which has a portion 2a incident to optical assembly 6. The optical assembly 6 turns the incident laser beam into laser beam focal line 2b on the output side over a defined expansion range along the beam direction (length l of the focal line). The planar substrate 1 (material to be processed) is positioned in the beam path to at least partially overlap the laser beam focal line 2b of laser beam 2. Reference 1a designates the surface of the planar substrate facing the optical assembly 6 or the laser, respectively, and reference 1b designates the reverse (remote) surface of substrate 1. The substrate thickness (measured perpendicularly to the planes 1a and 1b, i.e., to the substrate plane) is labeled with d.


As FIG. 2A depicts, substrate 1 is aligned substantially perpendicularly to the longitudinal beam axis and thus behind the same focal line 2b produced by the optical assembly 6 (the substrate is perpendicular to the plane of the drawing) Viewed along the beam direction, the substrate is positioned relative to the focal line 2b in such a way that the focal line 2b starts before the surface 1a of the substrate and stops before the surface 1b of the substrate, i.e. focal line 2b terminates within the substrate and does not extend beyond surface 1b. In the overlapping area of the laser beam focal line 2b with substrate 1, i.e. in the substrate material covered by focal line 2b, the laser beam focal line 2b generates (assuming suitable laser intensity along the laser beam focal line 2b, which intensity is ensured by the focusing of laser beam 2 on a section of length l (i.e. a line focus of length l)), which defines a section 2c (aligned along the longitudinal beam direction) along which an induced nonlinear absorption is generated in the substrate material. The induced absorption induces defect line formation in the substrate material along section 2c. The formation of defect lines is not only local, but extends over the entire length of the section 2c of the induced absorption. The length of section 2c (which corresponds to the length of the overlapping of laser beam focal line 2b with substrate 1) is labeled with reference L. The average diameter or the average dimension (extent (e.g. length or other relevant linear dimension)) of the section of the induced absorption 2c (or the sections in the material of substrate 1 undergoing formation of defect lines) is labeled with reference D. The average dimension D basically corresponds to the average diameter δ of the laser beam focal line 2b, that is, an average spot diameter in a range of between about 0.1 microns and about 5 microns.


As FIG. 2A shows, the substrate material (which is transparent to the wavelength λ of laser beam 2) is locally heated due to the induced absorption along the focal line 2b. This wavelength may be, for example, 1064, 532, 355 or 266 nanometers. The induced absorption arises from the nonlinear effects (e.g. two-photon absorption, multi-photon absorption) associated with the high intensity of the laser beam within focal line 2b. FIG. 2B illustrates that the heated substrate material will eventually expand so that a correspondingly induced tension leads to micro-cracking and defect line formation, with the tension being the highest at surface 1a.


Representative optical assemblies 6, which can be applied to generate the focal line 2b, as well as a representative optical setup, in which these optical assemblies can be applied, are described below. All assemblies or setups are based on the description above so that identical references are used for identical components or features or those which are equal in their function. Therefore only the differences are described below.


To ensure high quality (regarding breaking strength, geometric precision, roughness and avoidance of re-machining requirements) of the surface of the separated part along which separation occurs, the individual focal lines positioned on the substrate surface along the line of separation or detachment (fault line) should be generated using the optical assembly described below (hereinafter, the optical assembly is alternatively also referred to as laser optics). The roughness of the separated surface (or cut edge) is determined primarily from the spot size or the spot diameter of the focal line. Roughness of a surface can be characterized, for example, by an Ra surface roughness parameter defined by the ASME B46.1 standard. As described in ASME B46.1, Ra is the arithmetic average of the absolute values of the surface profile height deviations from the mean line, recorded within the evaluation length. In alternative terms, Ra is the average of a set of absolute height deviations of individual features (peaks and valleys) of the surface relative to the mean.


In order to achieve a small spot size of, for example, 0.5 microns to 2 microns for a given wavelength λ of the laser 3 that interacts with the material of substrate 1, certain requirements must usually be imposed on the numerical aperture of laser optics 6. These requirements are met by laser optics 6 described below. In order to achieve the required numerical aperture, the optics must, on the one hand, dispose of the required opening for a given focal length, according to the known Abbé formulae (N.A.=n sin (theta), n: refractive index of the material or workpiece to be processed, theta: half the aperture angle; and theta=arctan (DL/2f); DL: aperture diameter, f: focal length). On the other hand, the laser beam must illuminate the optics up to the required aperture, which is typically achieved by means of beam widening using widening telescopes between the laser and focusing optics.


The spot size should not vary too strongly for the purpose of a uniform interaction along the focal line. This can, for example, be ensured (see the embodiment below) by illuminating the focusing optics only in a small, circular area so that the beam opening and thus the percentage of the numerical aperture only vary slightly.


According to FIG. 3A (section perpendicular to the substrate plane at the level of the central beam in the laser beam bundle of laser radiation 2; here, too, laser beam 2 is perpendicularly incident to the substrate plane (before entering optical assembly 6), i.e. incidence angle θ is 0° so that the focal line 2b or the section of the induced absorption 2c is parallel to the substrate normal), the laser radiation 2a emitted by laser 3 is first directed onto a circular aperture 8 which is completely opaque to the laser radiation used. Aperture 8 is oriented perpendicular to the longitudinal beam axis and is centered on the central beam of the depicted beam bundle 2a. The diameter of aperture 8 is selected in such a way that the beam bundles near the center of beam bundle 2a or the central beam (here labeled with 2aZ) hit the aperture and are completely absorbed by it. Only the beams in the outer perimeter range of beam bundle 2a (marginal rays, here labeled with 2aR) are not absorbed due to the reduced aperture size compared to the beam diameter, but pass aperture 8 laterally and hit the marginal areas of the focusing optic elements of the optical assembly 6, which, in this embodiment, is designed as a spherically cut, bi-convex lens 7.


As illustrated in FIG. 3A, the laser beam focal line 2b is not only a single focal point for the laser beam, but rather a series of focal points for different rays in the laser beam. The series of focal points form an elongated focal line of a defined length, shown in FIG. 3A as the length l of the laser beam focal line 2b. Lens 7 is centered on the central beam and is designed as a non-corrected, bi-convex focusing lens in the form of a common, spherically cut lens. The spherical aberration of such a lens may be advantageous. As an alternative, aspheres or multi-lens systems deviating from ideally corrected systems, which do not form an ideal focal point but a distinct, elongated focal line of a defined length, can also be used (i.e., lenses or systems which do not have a single focal point). The zones of the lens thus focus along a focal line 2b, subject to the distance from the lens center. The diameter of aperture 8 across the beam direction is approximately 90% of the diameter of the beam bundle (defined by the distance required for the intensity of the beam to decrease to 1/e2 of the peak intensity) and approximately 75% of the diameter of the lens 7 of the optical assembly 6. The focal line 2b of a non-aberration-corrected spherical lens 7 generated by blocking out the beam bundles in the center is thus used. FIG. 3A shows the section in one plane through the central beam, and the complete three-dimensional bundle can be seen when the depicted beams are rotated around the focal line 2b.


One potential disadvantage of the type of a focal line formed by lens 7 and the system shown in FIG. 3A is that the conditions (spot size, laser intensity) may vary along the focal line (and thus along the desired depth in the material) and therefore the desired type of interaction (no melting, induced absorption, thermal-plastic deformation up to crack formation) may possibly occur only in selected portions of the focal line. This means, in turn, that possibly only a part of the incident laser light is absorbed by the substrate material in the desired way. In this way, the efficiency of the process (required average laser power for the desired separation speed) may be impaired, and the laser light may also be transmitted into undesired regions (e.g. parts or layers adherent to the substrate or the substrate holding fixture) and interact with them in an undesirable way (e.g., heating, diffusion, absorption, unwanted modification).



FIG. 3B-1-4 show (not only for the optical assembly in FIG. 3A, but also for any other applicable optical assembly 6) that the position of laser beam focal line 2b can be controlled by suitably positioning and/or aligning the optical assembly 6 relative to substrate 1 as well as by suitably selecting the parameters of the optical assembly 6. As FIG. 3B-1 illustrates, the length l of the focal line 2b can be adjusted in such a way that it exceeds the substrate thickness d (here by factor 2). If substrate 1 is placed (viewed in longitudinal beam direction) centrally to focal line 2b, the section of induced absorption 2c is generated over the entire substrate thickness. The laser beam focal line 2b can have a length l in a range of between about 0.01 mm and about 100 mm, in a range of between about 0.1 mm and about 10 mm, or in a range of between about 0.1 mm and 1 mm, for example. Various embodiments can be configured to have length l of about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.7 mm, 1 mm, 2 mm, 3 mm or 5 mm, for example.


In the case shown in FIG. 3B-2, a focal line 2b of length l is generated which corresponds more or less to the substrate thickness d. Since substrate 1 is positioned relative to line 2b in such a way that line 2b starts at a point outside the substrate, the length L of the section of induced absorption 2c (which extends here from the substrate surface to a defined substrate depth, but not to the reverse (remote) surface 1b) is smaller than the length l of focal line 2b. FIG. 3B-3 shows the case in which the substrate 1 (viewed along a direction perpendicular to the beam direction) is positioned above the starting point of focal line 2b so that the length l of line 2b is greater than the length L of the section of induced absorption 2c in substrate 1. The focal line thus starts within the substrate and extends beyond the reverse surface 1b. FIG. 3B-4 shows the case in which the focal line length l is smaller than the substrate thickness d so that—in the case of a central positioning of the substrate relative to the focal line viewed in the direction of incidence—the focal line starts near the surface 1a within the substrate and ends near the surface 1b within the substrate (e.g. 1=0.75·d).


It is particularly advantageous to position the focal line 2b in such a way that at least one of surfaces 1a, 1b is covered by the focal line, so that the section of induced absorption 2c starts at least on one surface of the substrate. In this way it is possible to achieve virtually ideal cuts while avoiding ablation, feathering and particulation at the surface.



FIG. 4 depicts another applicable optical assembly 6. The basic construction follows the one described in FIG. 3A so that only the differences are described below. The depicted optical assembly is based the use of optics with a non-spherical free surface in order to generate the focal line 2b, which is shaped in such a way that a focal line of defined length l is formed. For this purpose, aspheres can be used as optic elements of the optical assembly 6. In FIG. 4, for example, a so-called conical prism, also often referred to as axicon, is used. An axicon is a special, conically cut lens which forms a spot source on a line along the optical axis (or transforms a laser beam into a ring). The layout of such an axicon is generally known to one skilled in the art; the cone angle in the example is 10°. The apex of the axicon labeled here with reference 9 is directed towards the incidence direction and centered on the beam center. Since the focal line 2b produced by the axicon 9 starts within its interior, substrate 1 (here aligned perpendicularly to the main beam axis) can be positioned in the beam path directly behind axicon 9. As FIG. 4 shows, it is also possible to shift substrate 1 along the beam direction due to the optical characteristics of the axicon while remaining within the range of focal line 2b. The section of the induced absorption 2c in the material of substrate 1 therefore extends over the entire substrate depth d.


However, the depicted layout is subject to the following restrictions: Since the region of focal line 2b formed by axicon 9 begins within axicon 9, a significant part of the laser energy is not focused into the section of induced absorption 2c of focal line 2b, which is located within the material, in the situation where there is a separation between axicon 9 and the substrate material or workpiece. Furthermore, length l of focal line 2b is related to the beam diameter through the refractive indices and cone angles of axicon 9. This is why, in the case of relatively thin materials (several millimeters), the total focal line is much longer than the substrate thickness, having the effect that much of the laser energy is not focused into the material.


For this reason, it may be desirable to use an optical assembly 6 that includes both an axicon and a focusing lens. FIG. 5A depicts such an optical assembly 6 in which a first optical element with a non-spherical free surface designed to form an laser beam focal line 2b is positioned in the beam path of laser 3. In the case shown in FIG. 5A, this first optical element is an axicon 10 with a cone angle of 5°, which is positioned perpendicularly to the beam direction and centered on laser beam 3. The apex of the axicon is oriented towards the beam direction. A second, focusing optical element, here the plano-convex lens 11 (the curvature of which is oriented towards the axicon), is positioned in the beam direction at a distance Z1 from the axicon 10. The distance Z1, in this case approximately 300 mm, is selected in such a way that the laser radiation formed by axicon 10 circularly incident on the outer radial portion of lens 11. Lens 11 focuses the circular radiation on the output side at a distance Z2, in this case approximately 20 mm from lens 11, on a focal line 2b of a defined length, in this case 1.5 mm. The effective focal length of lens 11 is 25 mm in this embodiment. The circular transformation of the laser beam by axicon 10 is labeled with the reference SR.



FIG. 5B depicts the formation of the focal line 2b or the induced absorption 2c in the material of substrate 1 according to FIG. 5A in detail. The optical characteristics of both elements 10, 11 as well as the positioning of them is selected in such a way that the length l of the focal line 2b in beam direction is exactly identical with the thickness d of substrate 1. Consequently, an exact positioning of substrate 1 along the beam direction is required in order to position the focal line 2b exactly between the two surfaces 1a and 1b of substrate 1, as shown in FIG. 5B.


It is therefore advantageous if the focal line is formed at a certain distance from the laser optics, and if the greater part of the laser radiation is focused up to a desired end of the focal line. As described, this can be achieved by illuminating a primarily focusing element 11 (lens) only circularly (annularly) over a particular outer radial region, which, on the one hand, serves to realize the required numerical aperture and thus the required spot size, and on the other hand, however, the circle of diffusion diminishes in intensity after the required focal line 2b over a very short distance in the center of the spot, as a basically circular spot is formed. In this way, the defect line formation is stopped within a short distance in the required substrate depth. A combination of axicon 10 and focusing lens 11 meets this requirement. The axicon acts in two different ways: due to the axicon 10, a usually round laser spot is sent to the focusing lens 11 in the form of a ring, and the asphericity of axicon 10 has the effect that a focal line is formed beyond the focal plane of the lens instead of a focal point in the focal plane. The length l of focal line 2b can be adjusted via the beam diameter on the axicon. The numerical aperture along the focal line, on the other hand, can be adjusted via the distance Z1 (axicon-lens separation) and via the cone angle of the axicon. In this way, the entire laser energy can be concentrated in the focal line.


If the defect line formation is intended to continue to the back side of the substrate, the circular (annular) illumination still has the advantage that (1) the laser power is used optimally in the sense that most of the laser light remains concentrated in the required length of the focal line and (2) it is possible to achieve a uniform spot size along the focal line—and thus a uniform separation of part from substrate along the focal line—due to the circularly illuminated zone in conjunction with the desired aberration set by means of the other optical functions.


Instead of the plano-convex lens depicted in FIG. 5A, it is also possible to use a focusing meniscus lens or another higher corrected focusing lens (asphere, multi-lens system).


In order to generate very short focal lines 2b using the combination of an axicon and a lens depicted in FIG. 5A, it would be necessary to select a very small beam diameter of the laser beam incident on the axicon. This has the practical disadvantage that the centering of the beam onto the apex of the axicon must be very precise and that the result is very sensitive to directional variations of the laser (beam drift stability). Furthermore, a tightly collimated laser beam is very divergent, i.e. due to the light deflection the beam bundle becomes blurred over short distances.


As shown in FIG. 6, both effects can be avoided by including another lens, a collimating lens 12 in the optical assembly 6. The additional positive lens 12 serves to adjust the circular illumination of focusing lens 11 very tightly. The focal length f′ of collimating lens 12 is selected in such a way that the desired circle diameter dr results from distance Z1a from the axicon to the collimating lens 12, which is equal to f′. The desired width br of the ring can be adjusted via the distance Z1b (collimating lens 12 to focusing lens 11). As a matter of pure geometry, the small width of the circular illumination leads to a short focal line. A minimum can be achieved at distance f′.


The optical assembly 6 depicted in FIG. 6 is thus based on the one depicted in FIG. 5A so that only the differences are described below. The collimating lens 12, here also designed as a plano-convex lens (with its curvature towards the beam direction) is additionally placed centrally in the beam path between axicon 10 (with its apex towards the beam direction), on the one side, and the plano-convex lens 11, on the other side. The distance of collimating lens 12 from axicon 10 is referred to as Z1a, the distance of focusing lens 11 from collimating lens 12 as Z1b, and the distance of the focal line 2b from the focusing lens 11 as Z2 (always viewed in beam direction). As shown in FIG. 6, the circular radiation SR formed by axicon 10, which is incident divergently and under the circle diameter dr on the collimating lens 12, is adjusted to the required circle width br along the distance Z1b for an at least approximately constant circle diameter dr at the focusing lens 11. In the case shown, a very short focal line 2b is intended to be generated so that the circle width br of approximately 4 mm at lens 12 is reduced to approximately 0.5 mm at lens 11 due to the focusing properties of lens 12 (circle diameter dr is 22 mm in the example).


In the depicted example, it is possible to achieve a length of the focal line 1 of less than 0.5 mm using a typical laser beam diameter of 2 mm, a focusing lens 11 with a focal length f=25 mm, a collimating lens with a focal length f′=150 mm, and choosing distances Z1a=Z1b=140 mm and Z2=15 mm.



FIGS. 7A-7C illustrate the laser-matter interaction at different laser intensity regimes. In the first case, shown in FIG. 7A, the unfocused laser beam 710 goes through a transparent substrate 720 without introducing any modification to it. In this particular case, the nonlinear effect is not present because the laser energy density (or laser energy per unit area illuminated by the beam) is below the threshold necessary to induce nonlinear effects. The higher the energy density, the higher is the intensity of the electromagnetic field. Therefore, as shown in FIG. 7B when the laser beam is focused by spherical lens 730 to a smaller spot size, the illuminated area is reduced and the energy density increases, triggering the nonlinear effect that will modify the material to permit formation of a fault line only in the volume where that condition is satisfied. In this way, if the beam waist of the focused laser is positioned at the surface of the substrate, modification of the surface will occur. In contrast, if the beam waist of the focused laser is positioned below the surface of the substrate, nothing happens at the surface when the energy density is below the threshold of the nonlinear optical effect. But at the focus 740, positioned in the bulk of the substrate 720, the laser intensity is high enough to trigger multi-photon non-linear effects, thus inducing damage to the material.


Finally, in the case of an axicon, as shown in FIG. 7C, the diffraction pattern of an axicon lens 750, or alternatively a Fresnel axicon, creates interference that generates a Bessel-shaped intensity distribution (cylinder of high intensity 760) and only in that volume is the intensity high enough to create nonlinear absorption and modification to the material 720. The diameter of cylinder 760, in which Bessel-shaped intensity distribution is high enough to create nonlinear absorption and modification to the material, is also the spot diameter of the laser beam focal line, as referred to herein. Spot diameter D of a Bessel beam can be expressed as D=(2.4048λ)/(2πB), where λ is the laser beam wavelength and B is a function of the axicon angle. Calculated or measured spot diameters can be averaged, and average spot diameters in embodiments described herein can be in a range of between about 0.1 micron and about 5 microns, for example.


Laser and Optical System:


For the purpose of cutting and extracting parts from a 3D molded Gorilla® glass part or other 3D workpiece in a representative demonstration, a process was developed that uses a 1064 nm picosecond pulsed laser in combination with line-focus beam forming optics to create lines of damage (also referred to herein as defect lines, damage tracks, or fault lines) in a Gorilla® glass substrate.


As illustrated in FIG. 8A and FIG. 8B, according to selected embodiments described herein, the picosecond laser creates a “burst” 500 of pulses 500A, sometimes also called a “burst pulse”. Bursting is a type of laser operation where the emission of pulses is not in a uniform and steady stream but rather in tight clusters of pulses. Each “burst” 500 may contain multiple pulses 500A (such as 2 pulses, 3 pulses, 4 pulses, 5 pulses, 10, 15, 20, or more) of very short duration Td up to 100 psec (for example, 0.1 psec, 5 psec, 10 psec, 15 psec, 18 psec, 20 psec, 22 psec, 25 psec, 30 psec, 50 psec, 75 psec, or therebetween). The pulse duration is generally in a range from about 1 psec to about 1000 psec, or in a range from about 1 psec to about 100 psec, or in a range from about 2 psec to about 50 psec, or in a range from about 5 psec to about 20 psec. These individual pulses 500A within a single burst 500 can also be termed “sub-pulses,” which simply denotes the fact that they occur within a single burst of pulses. The energy or intensity of each laser pulse 500A within the burst may not be equal to that of other pulses within the burst, and the intensity distribution of the multiple pulses within a burst 500 may follow an exponential decay in time governed by the laser design. Preferably, each pulse 500A within the burst 500 of the exemplary embodiments described herein are separated in time from the subsequent pulse in the burst by a duration Tp from 1 nsec to 50 nsec (e.g. 10-50 nsec, or 10-40 nsec, or 10-30 nsec, with the time often governed by the laser cavity design. For a given laser, the time separation Tp between each pulses (pulse-to-pulse separation) within a burst 500 is relatively uniform (±10%). For example, in some embodiments, each pulse is separated in time from the subsequent pulse by approximately 20 nsec (50 MHz pulse repetition frequency). For example, for a laser that produces pulse-to-pulse separation Tp of about 20 nsec, the pulse-to-pulse separation Tp within a burst is maintained within about ±10%, or is about ±2 nsec. The time between each “burst” (i.e., time separation Tb between bursts) will be much longer (e.g., 0.25≦Tb≦1000 microseconds, for example 1-10 microseconds, or 3-8 microseconds,) For example in some of the exemplary embodiments of the laser described herein it is around 5 microseconds for a laser repetition rate or frequency of about 200 kHz. The laser repetition rate is also referred to as burst repetition frequency or burst repetition rate herein, and is defined as the time between the first pulse in a burst to the first pulse in the subsequent burst. In other embodiments, the burst repetition frequency is in a range of between about 1 kHz and about 4 MHz, or in a range between about 1 kHz and about 2 MHz, or in a range of between about 1 kHz and about 650 kHz, or in a range of between about 10 kHz and about 650 kHz. The time Tb between the first pulse in each burst to the first pulse in the subsequent burst may be 0.25 microsecond (4 MHz burst repetition rate) to 1000 microseconds (1 kHz burst repetition rate), for example 0.5 microseconds (2 MHz burst repetition rate) to 40 microseconds (25 kHz burst repetition rate), or 2 microseconds (500 kHz burst repetition rate) to 20 microseconds (50 kHz burst repetition rate). The exact timings, pulse durations, and repetition rates can vary depending on the laser design and user-controllable operating parameters. Short pulses (Td<20 psec and preferably Td≦15 psec) of high intensity have been shown to work well.


The required energy to modify the material can be described in terms of the burst energy—the energy contained within a burst (each burst 500 contains a series of pulses 500A), or in terms of the energy contained within a single laser pulse (many of which may comprise a burst). For these applications, the energy per burst (per millimeter of the material to be cut) can be from 10-2500 μJ, or from 20-1500 μJ, or from 25-750 μJ, or from 40-2500 μJ, or from 100-1500 μJ, or from 200-1250 μJ, or from 250-1500 μJ, or from 250-750 μJ. The energy of an individual pulse within the burst will be less, and the exact individual laser pulse energy will depend on the number of pulses 500A within the burst 500 and the rate of decay (e.g., exponential decay rate) of the laser pulses with time as shown in FIG. 8A and FIG. 8B. For example, for a constant energy/burst, if a pulse burst contains 10 individual laser pulses 500A, then each individual laser pulse 500A will contain less energy than if the same burst pulse 500 had only 2 individual laser pulses.


The use of lasers capable of generating such pulse bursts is advantageous for cutting or modifying transparent materials, for example glass. In contrast with the use of single pulses spaced apart in time by the repetition rate of a single-pulsed laser, the use of a burst pulse sequence that spreads the laser energy over a rapid sequence of pulses within burst 500 allows access to larger timescales of high intensity interaction with the material than is possible with single-pulse lasers. While a single-pulse can be expanded in time, conservation of energy dictates that as this is done, the intensity within the pulse must drop as roughly one over the pulse width. Hence if a 10 psec single pulse is expanded to a 10 nsec pulse, the intensity drops by roughly three orders of magnitude. Such a reduction can reduce the optical intensity to the point where non-linear absorption is no longer significant and the light-material interaction is no longer strong enough to allow for cutting. In contrast, with a burst pulse laser, the intensity during each pulse or sub-pulse 500A within the burst 500 can remain very high—for example three pulses 500A with pulse duration Td 10 psec that are spaced apart in time by a separation Tp of approximately 10 nsec still allows the intensity within each pulse to be approximately three times higher than that of a single 10 psec pulse, while the laser is allowed to interact with the material over a timescale that is three orders of magnitude larger. This adjustment of multiple pulses 500A within a burst thus allows manipulation of timescale of the laser-material interaction in ways that can facilitate greater or lesser light interaction with a pre-existing plasma plume, greater or lesser light-material interaction with atoms and molecules that have been pre-excited by an initial or previous laser pulse, and greater or lesser heating effects within the material that can promote the controlled growth of defect lines (perforations). The amount of burst energy required to modify the material will depend on the substrate material composition and the length of the line focus used to interact with the substrate. The longer the interaction region, the more the energy is spread out, and the higher the burst energy that will be required.)


A defect line or a hole is formed in the material when a single burst of pulses strikes essentially the same location on the glass. That is, multiple laser pulses within a single burst can produce a single defect line or a hole location in the glass. Of course, if the glass is translated (for example by a constantly moving stage) or the beam is moved relative to the glass, the individual pulses within the burst cannot be at exactly the same spatial location on the glass. However, they are well within 1 μm of one another—i.e., they strike the glass at essentially the same location. For example, they may strike the glass at a spacing sp where 0<sp≦500 nm from one another. For example, when a glass location is hit with a burst of 20 pulses the individual pulses within the burst strike the glass within 250 nm of each other. Thus, in some embodiments 1 nm<sp<250 nm. In some embodiments 1 nm<sp<100 nm.


In one embodiment, a Corning glass code 2319 Gorilla® glass substrate with 0.55 mm thickness was positioned so that it was within the region of the focal line produced by the optical system. with a focal line of about 1 mm in length, and a picosecond laser that produces output power of about 40 W or greater at a burst repetition rate or frequency of 200 kHz (about 200 microJoules/burst measured at the material), the optical intensities (energy densities) in the focal line region can easily be high enough to create non-linear absorption in the substrate material. A region of damaged, ablated, vaporized, or otherwise modified material within the substrate was created in the glass that approximately followed the linear region of high intensity.


Hole or Damage Track Formation:


If the substrate has sufficient stress (e.g., with ion exchanged glass), then the part will spontaneously separate from the substrate along the path of perforated damage (fault line or contour) traced out by the laser process. However, if there is not a lot of stress inherent to the substrate, then the picosecond laser will simply form damage tracks (defect lines) in the substrate. These damage tracks generally take the form of holes with interior dimensions (e.g. diameters) in the range of about 0.2 microns to 2 microns, for example 0.5-1.5 microns Preferably the holes are very small (single microns or less) in dimension.


The defect lines may or may not perforate the entire thickness of the material, and may or may not be a continuous opening throughout the depth of the material. FIG. 1C shows an example of such tracks or defect lines perforating the entire thickness of a workpiece of 700 microns thick Gorilla® glass substrate. The perforations or damage tracks are observed through the side of a cleaved edge. The tracks through the material are not necessarily through holes. There are often regions of glass that plug the holes, but they are generally small in size, on the order of microns, for example.


Note that upon separation of the part, fracture occurs along the defect lines to provide a part having a perimeter surface (edge) with features derived from the defect lines. Before separation, the defect lines are generally cylindrical in shape. Upon separation of the part, the defect lines fracture and remnants of the defect lines are evident in the contours of the perimeter surface of the separated part. In an ideal model, the defect lines are cleaved in half upon separation so that the perimeter surface of the separated part includes serrations corresponding to half-cylinders. In practice, separation may deviate from an ideal model and the serrations of the perimeter surface may be an arbitrary fraction of the shape of the original defect line. Irrespective of the particular form, features of the perimeter surface will be referred to as defect lines to indicate the origin of their existence.


It is also possible to perforate stacked sheets of glass or other materials. In this case the focal line length needs to be longer than the stack height.


The lateral spacing (pitch) between the defect lines is determined by the pulse rate of the laser as the substrate is translated underneath the focused laser beam. Only a single picosecond laser pulse or burst is usually necessary to form an entire hole, but multiple pulses or bursts may be used if desired. To form holes at different pitches or defect line separations, the laser can be triggered to fire at longer or shorter intervals. For cutting operations, the laser triggering generally is synchronized with the stage driven motion of the substrate beneath the beam, so laser pulses are triggered at a fixed interval, such as every 1 microns, or every 5 microns. The exact spacing between adjacent defect lines is determined by the material properties that facilitate crack propagation from perforated hole to perforated hole, given the stress level in the substrate. However, in contrast to cutting a substrate, it is also possible to use the same method to only perforate the material. In this case, the holes (or damage tracks, or perforations) may be separated by larger spacings (e.g., a 7 micron pitch or greater).


The laser power and lens focal length (which determines the focal line length and hence power density) are particularly important parameters to ensure full penetration of the glass and low surface and sub-surface damage.


In general, the higher the available laser power, the faster the material can be cut with the above process. The process(s) disclosed herein can cut glass at a cutting speed of 0.25 m/sec, or faster. A cut speed (or cutting speed) is the rate the laser beam moves relative to the surface of the substrate material (e.g., glass) while creating multiple defect lines holes. High cut speeds, such as, for example 400 mm/sec, 500 mm/sec, 750 mm/sec, 1 m/sec, 1.2 m/sec, 1.5 m/sec, or 2 m/sec, or even 3.4 m/sec to 4 m/sec are often desired in order to minimize capital investment for manufacturing, and to optimize equipment utilization rate. The laser power is equal to the burst energy multiplied by the burst repetition frequency (rate) of the laser. In general, to cut glass materials at high cutting speeds, the defect lines are typically spaced apart by 1-25 μm, in some embodiments the spacing is preferably 3 μm or larger—for example 3-12 μm, or for example 5-10 μm.


For example, to achieve a linear cutting speed of 300 mm/sec, 3 μm hole pitch corresponds to a pulse burst laser with at least 100 kHz burst repetition rate. For a 600 mm/sec cutting speed, a 3 μm pitch corresponds to a burst-pulsed laser with at least 200 kHz burst repetition rate. A pulse burst laser that produces at least 40 μJ/burst at 200 kHz, and cuts at a 600 mm/s cutting speed needs to have a laser power of at least 8 Watts. Higher cut speeds require accordingly higher laser powers.


For example, a 0.4 m/sec cut speed at 3 μm pitch and 40 μJ/burst would require at least a 5 W laser, a 0.5 m/sec cut speed at 3 μm pitch and 40 μJ/burst would require at least a 6 laser. Thus, preferably the laser power of the pulse burst picosecond laser is 6 W or higher, more preferably at least 8 W or higher, and even more preferably at least 10 W or higher. For example, in order to achieve a 0.4 m/sec cut speed at 4 μm pitch (defect line spacing, or damage tracks spacing) and 100 μJ/burst, one would require at least a 10 W laser, and to achieve a 0.5 m/sec cut speed at 4 μm pitch and 100 μJ/burst, one would require at least a 12 W laser. For example, a to achieve a cut speed of 1 m/sec at 3 μm pitch and 40 μJ/burst, one would require at least a 13 W laser. Also, for example, 1 m/sec cut speed at 4 μm pitch and 400 μJ/burst would require at least a 100 W laser.


The optimal pitch between defect lines (damage tracks) and the exact burst energy is material dependent and can be determined empirically. However, it should be noted that raising the laser pulse energy or making the damage tracks at a closer pitch are not conditions that always make the substrate material separate better or with improved edge quality. A pitch that is too small (for example <0.1 micron, or in some exemplary embodiments <1 μm, or in other embodiments <2 μm) between defect lines (damage tracks) can sometimes inhibit the formation of nearby subsequent defect lines (damage tracks), and often can inhibit the separation of the material around the perforated contour. An increase in unwanted micro cracking within the glass may also result if the pitch is too small. A pitch that is too long (e.g. >50 μm, and in some glasses >25 μm or even >20 μm) may result in “uncontrolled microcracking”—i.e., where instead of propagating from defect line to defect line along the intended contour, the microcracks propagate along a different path, and cause the glass to crack in a different (undesirable) direction away from the intended contour. This may ultimately lower the strength of the separated part since the residual microcracks constitute flaws that weaken the glass. A burst energy for forming defect lines that is too high (e.g., >2500 μJ/burst, and in some embodiments >500 μJ/burst) can cause “healing” or re-melting of previously formed defect lines, which may inhibit separation of the glass. Accordingly, it is preferred that the burst energy be <2500 μJ/burst, for example, ≦500 μJ/burst. Also, using a burst energy that is too high can cause formation of microcracks that are extremely large and create structural imperfections that can reduce the edge strength of the part after separation. A burst energy that is too low (e.g. <40 μJ/burst) may result in no appreciable formation of defect lines within the glass, and hence may necessitate especially high separation force or result in a complete inability to separate along the perforated contour.


Typical exemplary cutting rates (speeds) enabled by this process are, for example, 0.25 m/sec and higher. In some embodiments, the cutting rates are at least 300 mm/sec. In some embodiments, the cutting rates are at least 400 mm/sec, for example, 500 mm/sec to 2000 mm/sec, or higher. In some embodiments the picosecond (ps) laser utilizes pulse bursts to produce defect lines with periodicity between 0.5 μm and 13 μm, e.g. between 0.5 and 3 μm. In some embodiments, the pulsed laser has laser power of 10 W-100 W and the material and/or the laser beam are translated relative to one another at a rate of at least 0.25 m/sec; for example, at the rate of 0.25 m/sec to 0.35 m/sec, or 0.4 m/sec to 5 m/sec. Preferably, each pulse burst of the pulsed laser beam has an average laser energy measured at the workpiece greater than 40 μJ per burst per mm thickness of workpiece. Preferably, each pulse burst of the pulsed laser beam has an average laser energy measured at the workpiece greater of less than 2500 μJ per burst per mm thickness of workpiece, and preferably lass than about 2000 μJ per burst per mm thickness of workpiece, and in some embodiments less than 1500 μJ per burst per mm thickness of workpiece; for example, not more than 500 μJ per burst per mm thickness of workpiece.


We discovered that much higher (5 to 10 times higher) volumetric pulse energy density (μJ/μm3) is required for perforating alkaline earth boroaluminosilicate glasses with low or no alkali content. This can be achieved, for example, by utilizing pulse burst lasers, preferably with at least 2 pulses per burst and providing volumetric energy densities within the alkaline earth boroaluminosilicate glasses (with low or no alkali) of about 0.05 μJ/μm3 or higher, e.g., at least 0.1 μJ/μm3, for example 0.1-0.5 μJ/μm3.


Accordingly, it is preferable that the laser produces pulse bursts with at least 2 pulses per burst. For example, in some embodiments the pulsed laser has a power of 10 W-150 W (e.g., 10 W-100 W) and produces pulse bursts with at least 2 pulses per burst (e.g., 2-25 pulses per burst). In some embodiments the pulsed laser has a power of 25 W-60 W, and produces pulse bursts with at least 2-25 pulses per burst, and periodicity or distance between the adjacent defect lines produced by the laser bursts is 2-10 μm. In some embodiments, the pulsed laser has a power of 10 W-100 W, produces pulse bursts with at least 2 pulses per burst, and the workpiece and the laser beam are translated relative to one another at a rate of at least 0.25 m/sec. In some embodiments the workpiece and/or the laser beam are translated relative to one another at a rate of at least 0.4 m/sec.


For example, for cutting 0.7 mm thick non-ion exchanged Corning code 2319 or code 2320 Gorilla® glass, it is observed that pitches of 3-7 μm can work well, with pulse burst energies of about 150-250 μJ/burst, and burst pulse numbers that range from 2-15, and preferably with pitches of 3-5 μm and burst pulse numbers (number of pulses per burst) of 2-5.


At 1 m/sec cut speeds, the cutting of Eagle XG® glass or 2320 Gorilla®, glass typically requires utilization of laser powers of 15-84 W, with 30-45 W often being sufficient. In general, across a variety of glass and other transparent materials, applicants discovered that laser powers between 10 W and 100 W are preferred to achieve cutting speeds from 0.2-1 m/sec, with laser powers of 25-60 W being sufficient (or optimum) for many glasses. For cutting speeds of 0.4 m/sec to 5 m/sec, laser powers should preferably be 10 W-150 W, with burst energy of 40-750 μJ/burst, 2-25 bursts per pulse (depending on the material that is cut), and defect line separation (pitch) of 3 to 15 μm, or 3-10 μm. The use of picosecond pulse burst lasers would be preferable for these cutting speeds because they generate high power and the required number of pulses per burst. Thus, according to some exemplary embodiments, the pulsed laser produces 10 W-100 W of power, for example 25 W to 60 W, and produces pulse bursts at least 2-25 pulses per burst and the distance between the defect lines is 2-15 μm; and the laser beam and/or workpiece are translated relative to one another at a rate of at least 0.25 m/sec, in some embodiments at least 0.4 m/sec, for example 0.5 m/sec to 5 m/sec, or faster.


Cutting and Extracting 3D Molded Shapes:



FIG. 8C illustrates a process for cutting and extracting a 3D shape out of large pre-formed panel workpiece of 0.55 mm thick Corning code 2319 Gorilla® glass. A large, preformed cut glass sheet is formed into a 3D shaped, large-radius curved panel by sagging it using a template. This 3D shape is placed under the laser beam, and defect lines as described herein were created on the curved glass by gradually tracing the same shape described hereinafter in conjunction with FIG. 9, while stepping down the relative distance between the surface of the glass shape and the line-focus (focal line). The stepping down of the relative distance between the surface and the focal line is further described hereinafter in conjunction with FIGS. 10A and 10B. On each pass, only a small portion of the glass overlapped with the line-focus of the laser and therefore created the defect line. After each complete tracing of a rectangular shape with rounded corners (rounding radius R2=12 mm), the distance was changed or stepped by 200 microns. When the complete shape was imprinted with defect lines on the curved glass shape, extraction of the final part was achieved by breaking it apart manually by using release lines (not shown in the drawing). The part has a length L, a width W, and a thickness or height h. The value R1 is a radius of curvature for the formed part that, together with the length L, determines the thickness h.



FIG. 9 illustrates a finished part processed, according to the processing stages previously described in conjunction with FIG. 8, from sagged, unstrengthened Gorilla® 2319.



FIG. 10A illustrates a process to generate defect lines following a traced path at several relative distances between the glass and laser focal line. At each relative distance or separation between the 3D glass surface and the laser focal line, the rectangular shape with rounded corners is traced all around. Then the relative separation is stepped down by 200 microns, and the same shape is traced again. The process is repeated until the defect lines are completely defined in the curved glass panel. The step scans can also be referred to as passes. Thus, in one or more passes, the workpiece and laser beam can be translated relative to each other, the laser beam focal line intersecting with the workpiece along the contour path illustrated in the top of FIG. 10A in four different planes. When the laser beam and workpiece are stepped, or translated with respect to one another in a direction perpendicular to one of the four planes, for example, the laser beam focal plane intersects with another of the planes in the workpiece at the contour path. When as sufficient number of defect lines are produced in each plane around the contour in one or more passes, a part defined by the contour can be separated from the workpiece. The number of defect lines is sufficient when separation is facilitated—whether it is separation as a result of the laser beam focal line alone or whether separation further involves mechanical force or applying a separate infrared laser beam or other steps.



FIG. 10B is a higher magnification illustration of how defect lines are created only at zones where the glass thickness is within the extension of the line focus, or focal line, for scan in a given plane. It should be noted that in some cases, there can be overlap between scans in different planes. For example, in one example case, the line focus extension (or focal line length) was about 1 mm, and the steps were about 100 microns. Thus, the laser beam focal line in later step scans (or passes) had overlap with the defect line created in previous step scans (or passes).



FIG. 11 illustrates how a cutting and extraction process can be scaled up to create multiple parts. The top row of FIG. 11 illustrates stages of forming and extracting an individual part from an oversized glass part or workpiece, as described above in conjunction with FIGS. 8-10B. The top row also illustrates strengthening the glass part or workpiece following extraction. The bottom row of FIG. 11 illustrates, in parallel, corresponding stages for forming, extracting, and strengthening multiple glass parts using methods similar to those illustrated in the top row of FIG. 11.



FIG. 12 illustrates two formed and separated parts or workpieces similar to the part illustrated in FIG. 9, but in the instance of FIG. 12, two rectangular shapes were traced simultaneously. The traced rectangles and the respective release lines in FIG. 12 also traced with defect lines by the laser and used to separate the desired rounded-corner rectangular parts from the substrate panel. Sagged, 0.55 mm thick Corning code 2319 Gorilla® glass shaped into curved glass with radius of 500 mm was also used for the demonstration illustrated in FIG. 12. The two rectangles have the same 3D curved shape and the corner radii of 12 mm that were used for the part of FIG. 9.


The laser conditions and speed used for the demonstrations described above are summarized below for reference. To separate the parts from the glass matrix, forces were manually applied at the release lines. The forces caused breaks at the perforation lines (defect lines) and propagation of cracks along the fault line that eventually separated the shapes from the glass matrix.


Input beam diameter to axicon lens ˜2 mm


Axicon angle=10 degrees


Initial collimating lens focal length=125 mm


Final objective lens focal length=40 mm


incident beam convergence angle=12.75 degrees


Focus set between zero and 10 mm, varying in steps of 200 microns each tracing.


Laser power at 75% of full power (˜30 Watts)


Pulse repetition rate of the laser=200 kHz.


3 pulses/burst


Pitch=6 microns


Multiple passes of the same trace shown in FIG. 9.


Motion stage speed=12 m/min=200 mm/s


As an alternative to the process just described, another embodiment utilizing a defocused CO2 laser to aid in releasing the parts has been demonstrated. The defocused CO2 laser follows the picosecond laser as it traces the desired contour (fault line) to effect separation of the part from the surrounding substrate matrix. The thermal stress induced by the defocused CO2 laser is enough to initiate and propagate cracks that lead to separation of the part along the desired contour defined by the fault line, thereby releasing the shaped part from the substrate panel. For this case, the best results were found for the following optics and laser parameters:


Picosecond laser


Input beam diameter to axicon lens ˜2 mm


Axicon angle=10 degrees


Initial collimating lens focal length=125 mm


Final objective lens focal length=40 mm


Incident beam convergence angle=12.75 degrees


Focus set between zero and 10 mm, varying in steps of 200 microns each tracing.


Laser power at 75% of full power (˜30 Watts)


Pulse repetition rate of the laser=200 kHz.


3 pulses/burst


Pitch=6 microns


Multiple pass of same trace shown in FIG. 9.


Motion stage speed=12 m/min=200 mm/s


CO2 laser


Laser translation speed: 130 mm/s


Laser power=100%


Pulse duration 13 microseconds (95% duty cycle)


Laser modulation frequency 20 kHz


Laser beam defocus is 21 mm


Single pass


Alternative process to form and extract 3D parts from a thermally sagged glass panel.



FIG. 13 illustrates stages in an alternative method of extracting the 3D shapes. The defect lines are created (laser traced) on the flat glass substrate panel before it is sagged and pre-formed. After the thermal sagging process, residual stress around the defect lines creates tension (tensile forces) that helps to propagate a crack until the shapes are released.



FIG. 14 illustrates an embodiment process to form, strengthen, and extract 3D parts from a thermally sagged glass panel. As illustrated in FIG. 14, methods such as those described above also work quite well for separating a variety of flat strengthened Corning code 2319 Gorilla® glass with different levels of ion-exchanging and compressive stress. The 3D parts can be directly created and released from an oversized substrate or a full panel that has already been strengthened by ion-exchange. The fact that the glass is pre-strengthened can facilitate release of the part from the substrate without the need of an infrared laser such as a CO2 laser.


Cover glasses with 3D surfaces are being developed for handheld products such as cell phones, for example. However, forming a 3D part from thin LCD glass, for example, becomes more difficult where curvature radii are smaller. A radius of curvature of 10 mm is relatively easy to achieve with thin LCD glass, for example. However, 3D dish-shaped parts with smaller radii such as 5 mm or 2 mm, for example, are more difficult to produce with existing methods, because the glass is typically so hot in existing methods that to achieve good 2 mm corner radii, surface defects occur. Vacuum and pressure can even be required to force the glass into such tight features of molds. Further, to scale up production sizes and volumes, large formed sheets of thin glass are typically used for cost effectiveness, and creating tight corner radii over an array of parts can be even more challenging. Embodiment methods disclosed herein can facilitate production of glass parts with 3D surfaces having small radii of curvature, as further described in conjunction with FIGS. 15A-B and FIGS. 16A-D.



FIG. 15A is an illustration of a preform sheet 1550 of multiple parts 1551. The sheet 1550 is laser perforated (defect lines are created) according to embodiment methods to facilitate molding of glass parts with small radii of curvature. In particular, release lines 1554 are laser perforated according to methods disclosed above to facilitate singulation of individual part preforms 1551 with individual parts. Part outlines 1552 are also laser perforated to facilitate subsequent removal of parts from singulated preforms following molding of the glass parts 1552 to have 3D curved surfaces. It should be noted that in other embodiments, molding occurs with the entire preform sheet 1550 intact.



FIG. 15B is an illustration of one singulated preform separated from the sheet illustrated in FIG. 15A. Also illustrated in FIG. 15B are the corners 1556 of the part, which are laser perforated multiple times to facilitate molding the corners with small radii of curvature, as further described hereinafter in connection with the corner section view of FIGS. 16C-D. Not shown in FIG. 15B are other laser perforations that facilitate molding further 3D curvature on the surface of the glass part 1552 as further described hereinafter in connection with the side section view of FIGS. 16A-B.



FIGS. 16A-B are side section views of the singulated preform of FIG. 15B before and after, respectively, forming a 3D surface with a radius enabled by a laser perforation. FIG. 16A illustrates the mold 1558, which has a 3D curved surface that defines 3D curvature to be applied to the surface of the part in the singulated preform 1551. The preform 1551 includes a laser perforation 1560 that facilitates bending of the preform while inducing fewer or no surface defects. FIG. 16B illustrates the same mold 1558 and preform 1551 following molding, and it can be seen that the perforation 1560 relieves bending stresses in the glass. Such laser perforations can reduce or eliminate the need for vacuum or pressure application to the preform 1551 to complete the molding.



FIGS. 16C-D are corner section views of the singulated preform of FIG. 15B before and after, respectively, forming a surface with a small corner radius enabled by multiple laser perforations 1560. As illustrated in FIGS. 16C-D, particularly small radii of surface curvature, such as 5 mm or 2 mm or less, for example, can be enabled by multiple perforations. The multiple or higher-density perforations result in stress relief during molding, diminished need for vacuum or pressure application during molding, and reduced surface defects.


The methods described above provide the following benefits that may translate to enhanced laser processing capabilities and cost savings, and, thus, to lower cost manufacturing. Embodiments described above offer:


Full separation and extraction of 3D molded Gorilla® glass parts at the final size—Methods permit complete cutting and extracting of arbitrary shapes (individual or multiple) of molded 3D Gorilla® glass parts as produced by the fusion process (unstrengthened) or after the Gorilla® glass substrate has undergone chemical strengthening in a clean and controlled fashion. Full cut and separation of parts to their final size has been attained from a substrate that was pre-molded in a large radius shape by stepping down the relative position of the surface of the substrate with respect to the laser line-focus (focal line) while tracing the contour of the shape of the parts.


Reduced subsurface damage: due to the ultra-short pulse interaction between laser and material, there is little thermal interaction and thus a minimal heat affected zone that can result in undesirable stress and micro-cracking at the surface and in the subsurface region. In addition, for example, the optics that condense the laser beam into the 3D glass shape create defect lines that are typically 2 to 5 microns in diameter on the surface of the substrate.


After separation, the subsurface damage is limited to distances from the surface <75 microns in depth, for example <50 microns in depth, or even <30 microns in depth. This has great impact on the edge strength of the separated part as strength is governed by the number of defects, and their statistical distribution in terms of size and depth. The higher these numbers are, the weaker the edges of the part are and the more prone the separated part is to failure. The process enabled by the embodiments disclosed hereby can provide subsurface damage of an as-cut edge of less than 75 microns in depth, for example, less than 50 microns in depth, less than 30 microns in depth, or even 20 microns or lower in depth.


Subsurface damage, or the small microcracks and material modification caused by any cutting process and which are oriented roughly perpendicular to a cut surface, is a concern for the edge strength of glass or other brittle materials. The depth of subsurface damage can be measured by using a confocal microscope to look at the cut surface, the microscope having an optical resolution of a few nm. Surface reflections are ignored, while cracks are sought out down into the material, the cracks showing up as bright lines. The microscope is then focused into the material until there are no more “sparks”, collecting images at regular intervals. The images are then manually processed by looking for cracks and tracing them through the depth of the glass to get a maximum depth (typically measured in microns) of subsurface damage. There are typically many thousands of microcracks, so typically only the largest microcracks are measured. This process is typically repeated on about 5 locations of a cut edge. Although the microcracks are roughly perpendicular to the cut surface, any cracks that are directly perpendicular to the cut surface may not be detected by this method.


Process cleanliness—The methods described above are capable of separating/cutting 3D glass shape in a clean and controlled fashion. It is very challenging to use conventional ablative or thermal laser processes because they tend to trigger heat affected zones that induce micro-cracks and fragmentation of the glass or other substrate into several smaller pieces. The characteristics of the laser pulses and the induced interactions with the material of the disclosed methods can avoid all of these issues because they occurs in a very short time scale and because the transparency of the substrate material to the laser radiation minimizes induced thermal effects. Since the defect line is created within the object or workpiece, the presence of debris and particulate matter during the cutting step is virtually eliminated. If there are any particulates resulting from the created defect line, they are well contained until the part is separated. Particles on surfaces cut and separated by the laser-based methods described herein can have an average diameter less than about 3 microns, for example.


Cutting Complex Profiles and Shapes in Different Sizes


The present laser processing method allows for cutting/separation of glass and other substrates or workpieces following many forms and shapes, which is a limitation in other competing technologies. Tight radii (e.g., <2 mm or <5 mm) may be cut using the methods described herein, allowing curved edges. Also, since the defect lines strongly control the location of any crack propagation, this method gives great control to the spatial location of a cut, and allows for cutting and separation of structures and features as small as a few hundred microns.


Elimination of Process Steps


The process to fabricate parts (e.g., arbitrarily shaped glass plates from the incoming glass panel) to the final size and shape involves several steps that encompass cutting the panel, cutting to size, finishing and edge shaping, thinning the parts down to their target thickness, polishing, and even chemically strengthening in some cases. Elimination of any of these steps will improve manufacturing cost in terms of process time and capital expense. The presented methods can reduce the number of steps by, for example, reducing generation of debris and edge defects, potentially eliminating the need for washing and drying stations. Furthermore, the number of steps can be reduced by, for example, cutting the sample directly to its final size, shape and thickness, eliminating a need for finishing lines.


Cutting Stacks:


The process is also capable of creating vertical defect lines in stacked glass panels. There is a limitation to the height of the stack, but it is possible to increase productivity by simultaneously processing multiple stacked plates. It requires that the material be substantially transparent to the laser wavelength, which is the case for 3D glass shapes at the laser wavelength used here (1064 nm).


The relevant teachings of all patents, published applications and references cited herein are incorporated by reference in their entirety.


While exemplary embodiments have been disclosed herein, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims
  • 1. A method of laser processing a glass workpiece having a 3D surface, the method comprising: focusing a pulsed laser beam into a laser beam focal line oriented along the beam propagation direction and directed toward a contour defining a part to be separated from the workpiece;in one or more passes:translating the workpiece and the laser beam relative to each other along the contour, the laser beam focal line generating an induced absorption within the workpiece at locations along the contour where the laser beam focal line extends into the workpiece, and the induced absorption producing a defect line along the laser beam focal line within the workpiece at each location; andtranslating the workpiece and the laser beam relative to each other;the one or more passes selected such that the defect lines produced along the contour of the part in the workpiece are of sufficient number and depth to facilitate separation of the part from the workpiece.
  • 2. The method of claim 1, wherein the pulsed laser has a power of 10 W-100 W and produces bursts of pulses containing at least 2 pulses per burst.
  • 3. The method of claim 2, wherein the pulsed laser has a power of 10 W-100 W and produces bursts of pulses containing 2-25 pulses per burst.
  • 4. The method of claim 2, wherein the pulsed laser has a power of 25 W-60 W, and produces bursts of pulses containing 2-25 pulses per burst and the distance between the defect lines is 2-10 microns.
  • 5. The method of claim 2, wherein the pulsed laser has a power of 10 W-100 W and the workpiece and laser beam are translated relative to one another at a rate of at least 0.4 m/sec.
  • 6. The method of claim 1, further comprising separating the part from the workpiece along the contour.
  • 7. The method of claim 6, wherein separating the part from the workpiece along the contour includes applying a mechanical force to the part.
  • 8. The method of claim 6, wherein separating the part from the workpiece along the contour includes directing an infrared laser beam into the workpiece along or near the contour.
  • 9. The method of claim 1, wherein the workpiece is a molded glass panel.
  • 10. The method of claim 1, wherein the workpiece is a sagged glass panel.
  • 11. The method of claim 1, wherein a length of the laser beam focal line is greater than a thickness of the workpiece.
  • 12. The method of claim 1, wherein the contour defines more than one part to be separated from the workpiece.
  • 13. The method of claim 1, further comprising rotating the workpiece relative to the laser beam in the one or more passes.
  • 14. The method of claim 1, wherein the induced absorption produces subsurface damage up to a depth less than or equal to about 75 microns within the workpiece.
  • 15. The method of claim 1, wherein the induced absorption produces an Ra surface roughness less than or equal to about 0.5 microns.
  • 16. The method of claim 1, wherein the workpiece has a thickness in a range of between about 100 microns and about 8 mm.
  • 17. The method of claim 1, wherein the workpiece and pulsed laser beam are translated relative to each other along the contour at a speed in a range of between about 1 mm/sec and about 3400 mm/sec.
  • 18. The method of claim 1, wherein a pulse duration of the pulsed laser beam is in a range of between greater than about 1 picosecond and less than about 100 picoseconds.
  • 19. The method of claim 18, wherein the pulse duration is in a range of between greater than about 5 picoseconds and less than about 20 picoseconds.
  • 20. The method of claim 1, wherein a repetition rate of the pulsed laser beam is in a range of between about 1 kHz and 2 MHz.
  • 21. The method of claim 20, wherein the repetition rate is in a range of between about 10 kHz and 650 kHz.
  • 22. The method of claim 1, wherein the pulsed laser beam has an average laser burst energy measured at the workpiece greater than 40 microJoules per mm thickness of the workpiece.
  • 23. The method of claim 1, wherein the pulses are produced in bursts of at least two pulses separated by a duration in a range of between about 1 nsec and about 50 nsec, and a burst repetition frequency of the bursts is in a range of between about 1 kHz and about 650 kHz.
  • 24. The method of claim 23, wherein the pulses are separated by a duration of about 10-50 nsec.
  • 25. The method of claim 1, wherein the pulsed laser beam has a wavelength and the workpiece is substantially transparent at the wavelength.
  • 26. The method of claim 1, wherein the laser beam focal line has a length in a range of between about 0.01 mm and about 100 mm.
  • 27. The method of claim 26, wherein the laser beam focal line has a length in a range of between about 0.1 mm and about 10 mm.
  • 28. The method of claim 26, wherein the laser beam focal line has a length in a range of between about 0.1 mm and about 1 mm.
  • 29. The method of claim 1, wherein the laser beam focal line has an average spot diameter in a range of between about 0.1 micron and about 5 microns.
  • 30. The method of claim 1, wherein the workpiece comprises chemically strengthened glass.
  • 31. The method of claim 1, wherein the workpiece comprises non-strengthened glass.
  • 32. A method of laser processing a flat non-strengthened glass workpiece, the method comprising: focusing a pulsed laser beam into a laser beam focal line oriented along the beam propagation direction and directed into the workpiece along the contour, the laser beam focal line generating an induced absorption within the workpiece, the induced absorption producing a defect line along the laser beam focal line within the workpiece;translating the workpiece and the laser beam relative to each other along a contour, thereby laser forming a plurality of defect lines along the contour within the workpiece, the contour defining a part to be separated from the workpiece; andmolding the workpiece containing the defined part to have a 3D surface.
  • 33. The method of claim 32, further comprising separating the part from the workpiece along the contour.
  • 34. The method of claim 33, wherein separating the part from the workpiece along the contour includes applying a mechanical force to the part to facilitate the separating along the contour.
  • 35. The method of claim 33, wherein separating the part from the workpiece along the contour includes directing an infrared laser beam into the workpiece along or near the contour to facilitate the separating.
  • 36. The method of claim 32, wherein the contour defines more than one part to be separated from the workpiece.
  • 37. The method of claim 32, further comprising, prior to molding the workpiece, directing the laser beam focal line into a section of the workpiece intended to have a surface curvature upon molding to produce one or more defect lines in the section to facilitate molding the workpiece.
  • 38. The method of claim 37, wherein a radius of the surface curvature upon molding is less than about 5 mm.
  • 39. The method of claim 38, wherein a radius of the surface curvature upon molding is less than about 2 mm.
  • 40. A method of laser processing a molded non-strengthened glass workpiece, the method comprising: vacuum flattening the molded glass workpiece;focusing a pulsed laser beam into a laser beam focal line oriented along the beam propagation direction and directed into the vacuum flattened workpiece along a contour, the laser beam focal line generating an induced absorption within the workpiece, the induced absorption producing a defect line along the laser beam focal line within the workpiece;translating the vacuum flattened workpiece and the laser beam relative to each other along the contour, thereby laser forming a plurality of defect lines along the contour within the workpiece the contour defining a part to be separated from the workpiece; andreleasing vacuum on the vacuum flattened workpiece containing the defined part.
  • 41. The method of claim 40, further comprising separating the part from the workpiece along the contour.
  • 42. The method of claim 41, wherein separating the part from the workpiece along the contour includes applying a mechanical force to the part to facilitate separation along the contour.
  • 43. The method of claim 41, wherein separating the part from the workpiece along the contour includes directing an infrared laser beam into the workpiece along or near the contour to facilitate separation along the contour.
  • 44. The method of claim 40, wherein the contour defines more than one part to be separated from the workpiece.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/917,127 filed on Dec. 17, 2013, U.S. Provisional Application No. 62/024,581 filed on Jul. 15, 2014, and U.S. Provisional Application No. 62/046,360 filed on Sep. 5, 2014; the entire disclosures of which are incorporated herein by reference.

US Referenced Citations (283)
Number Name Date Kind
1790397 Woods et al. Jan 1931 A
2682134 Stookey Jun 1954 A
2749794 O'Leary Jun 1956 A
3647410 Heaton et al. Mar 1972 A
3695497 Dear Oct 1972 A
3695498 Dear Oct 1972 A
3729302 Heaton Apr 1973 A
3775084 Heaton Nov 1973 A
4226607 Domken Oct 1980 A
4441008 Chan Apr 1984 A
4546231 Gresser et al. Oct 1985 A
4646308 Kafka et al. Feb 1987 A
4764930 Bille et al. Aug 1988 A
4891054 Bricker et al. Jan 1990 A
4907586 Bille et al. Mar 1990 A
4918751 Pessot et al. Apr 1990 A
4929065 Hagerty et al. May 1990 A
5035918 Vyas Jul 1991 A
5040182 Spinelli et al. Aug 1991 A
5104210 Tokas Apr 1992 A
5108857 Kitayama et al. Apr 1992 A
5112722 Tsujino et al. May 1992 A
5114834 Nachshon May 1992 A
5265107 Delfyett, Jr. Nov 1993 A
5400350 Galvanauskas Mar 1995 A
5434875 Rieger et al. Jul 1995 A
5436925 Lin et al. Jul 1995 A
5553093 Ramaswamy et al. Sep 1996 A
5574597 Kataoka et al. Nov 1996 A
5586138 Yokoyama Dec 1996 A
5696782 Harter et al. Dec 1997 A
5736709 Neiheisel Apr 1998 A
5776220 Allaire et al. Jul 1998 A
6016223 Suzuki et al. Jan 2000 A
6016324 Rieger et al. Jan 2000 A
6038055 Hänsch et al. Mar 2000 A
6055829 Witzmann et al. May 2000 A
6078599 Everage et al. Jun 2000 A
6156030 Neev Dec 2000 A
6160835 Kwon Dec 2000 A
6186384 Sawada Feb 2001 B1
6210401 Lai Apr 2001 B1
6256328 Delfyett et al. Jul 2001 B1
6259151 Morrison Jul 2001 B1
6259512 Mizouchi Jul 2001 B1
6272156 Reed et al. Aug 2001 B1
6301932 Allen et al. Oct 2001 B1
6322958 Hayashi Nov 2001 B1
6339208 Rockstroh et al. Jan 2002 B1
6373565 Kafka et al. Apr 2002 B1
6381391 Islam et al. Apr 2002 B1
6396856 Sucha et al. May 2002 B1
6407360 Choo et al. Jun 2002 B1
6438996 Cuvelier Aug 2002 B1
6445491 Sucha et al. Sep 2002 B2
6449301 Wu et al. Sep 2002 B1
6484052 Visuri et al. Nov 2002 B1
6489589 Alexander Dec 2002 B1
6501578 Bernstein et al. Dec 2002 B1
6552301 Herman et al. Apr 2003 B2
6573026 Aitken et al. Jun 2003 B1
6592703 Habeck et al. Jul 2003 B1
6635849 Okawa et al. Oct 2003 B1
6635850 Amako et al. Oct 2003 B2
6720519 Liu et al. Apr 2004 B2
6729161 Miura et al. May 2004 B1
6800237 Yamamoto et al. Oct 2004 B1
6800831 Hoetzel Oct 2004 B1
6958094 Ohmi et al. Oct 2005 B2
6992026 Fukuyo et al. Jan 2006 B2
7009138 Amako et al. Mar 2006 B2
7353829 Wachter et al. Apr 2008 B1
7511886 Schultz et al. Mar 2009 B2
7535634 Savchenkov et al. May 2009 B1
7633033 Thomas et al. Dec 2009 B2
7642483 You et al. Jan 2010 B2
7726532 Gonoe Jun 2010 B2
8104385 Hayashi et al. Jan 2012 B2
8118971 Hori et al. Feb 2012 B2
8132427 Brown et al. Mar 2012 B2
8168514 Garner et al. May 2012 B2
8245539 Lu et al. Aug 2012 B2
8245540 Abramov et al. Aug 2012 B2
8269138 Garner et al. Sep 2012 B2
8283595 Fukuyo et al. Oct 2012 B2
8292141 Cox et al. Oct 2012 B2
8296066 Zhao et al. Oct 2012 B2
8327666 Harvey et al. Dec 2012 B2
8341976 Dejneka et al. Jan 2013 B2
8347651 Abramov et al. Jan 2013 B2
8358888 Ramachandran Jan 2013 B2
8444906 Lee et al. May 2013 B2
8448471 Kumatani et al. May 2013 B2
8518280 Hsu et al. Aug 2013 B2
8549881 Brown et al. Oct 2013 B2
8584354 Cornejo et al. Nov 2013 B2
8584490 Garner et al. Nov 2013 B2
8592716 Abramov et al. Nov 2013 B2
8604380 Howerton et al. Dec 2013 B2
8607590 Glaesemann et al. Dec 2013 B2
8616024 Cornejo et al. Dec 2013 B2
8635887 Black et al. Jan 2014 B2
8680489 Martinez et al. Mar 2014 B2
8685838 Fukuyo et al. Apr 2014 B2
8697228 Carre et al. Apr 2014 B2
8720228 Li May 2014 B2
8826696 Brown et al. Sep 2014 B2
8852698 Fukumitsu Oct 2014 B2
8887529 Lu et al. Nov 2014 B2
8916798 Plüss Dec 2014 B2
8943855 Gomez et al. Feb 2015 B2
8971053 Kariya et al. Mar 2015 B2
9138913 Arai et al. Sep 2015 B2
9227868 Matsumoto et al. Jan 2016 B2
9290407 Barefoot et al. Mar 2016 B2
9296066 Hosseini et al. Mar 2016 B2
9324791 Tamemoto Apr 2016 B2
9327381 Lee et al. May 2016 B2
9446590 Chen et al. Sep 2016 B2
9481598 Bergh et al. Nov 2016 B2
20020046997 Nam et al. Apr 2002 A1
20020082466 Han Jun 2002 A1
20020097486 Yamaguchi et al. Jul 2002 A1
20020110639 Bruns Aug 2002 A1
20030006221 Hong et al. Jan 2003 A1
20030150549 Lutrario Aug 2003 A1
20050024743 Camy-Peyret Feb 2005 A1
20050098548 Kobayashi et al. May 2005 A1
20050115938 Sawaki et al. Jun 2005 A1
20050274702 Deshi Dec 2005 A1
20060011593 Fukuyo Jan 2006 A1
20060109874 Shiozaki et al. May 2006 A1
20060127679 Gulati et al. Jun 2006 A1
20060227440 Gluckstad Oct 2006 A1
20060289410 Morita et al. Dec 2006 A1
20070111390 Komura et al. May 2007 A1
20070111480 Maruyama et al. May 2007 A1
20070119831 Kandt May 2007 A1
20070132977 Komatsuda Jun 2007 A1
20070138151 Tanaka et al. Jun 2007 A1
20070177116 Amako Aug 2007 A1
20070202619 Tamura et al. Aug 2007 A1
20070298529 Maeda Dec 2007 A1
20080000884 Sugiura et al. Jan 2008 A1
20080099444 Misawa et al. May 2008 A1
20090013724 Koyo et al. Jan 2009 A1
20090176034 Ruuttu et al. Jul 2009 A1
20090183764 Meyer Jul 2009 A1
20090250446 Sakamoto Oct 2009 A1
20090294419 Abramov et al. Dec 2009 A1
20090294422 Lubatschowski Dec 2009 A1
20090324899 Feinstein et al. Dec 2009 A1
20100025387 Arai et al. Feb 2010 A1
20100029460 Shojiya et al. Feb 2010 A1
20100032087 Takahashi et al. Feb 2010 A1
20100086741 Bovatsek et al. Apr 2010 A1
20100089631 Sakaguchi et al. Apr 2010 A1
20100089882 Tamura Apr 2010 A1
20100102042 Garner et al. Apr 2010 A1
20100129603 Blick et al. May 2010 A1
20100147813 Lei et al. Jun 2010 A1
20100252540 Lei et al. Oct 2010 A1
20100252959 Lei et al. Oct 2010 A1
20100276505 Smith Nov 2010 A1
20100279067 Sabia et al. Nov 2010 A1
20100287991 Brown et al. Nov 2010 A1
20100326138 Kumatani et al. Dec 2010 A1
20110049765 Li et al. Mar 2011 A1
20110088324 Wessel Apr 2011 A1
20110100401 Fiorentini May 2011 A1
20110126588 Malach Jun 2011 A1
20110132881 Liu Jun 2011 A1
20110183116 Hung et al. Jul 2011 A1
20110240611 Sandström et al. Oct 2011 A1
20110265517 Keebler Nov 2011 A1
20110277507 Lu et al. Nov 2011 A1
20110318555 Bookbinder et al. Dec 2011 A1
20120017642 Teranishi et al. Jan 2012 A1
20120047951 Dannoux et al. Mar 2012 A1
20120048604 Cornejo et al. Mar 2012 A1
20120061440 Roell Mar 2012 A1
20120064306 Kang et al. Mar 2012 A1
20120103018 Lu et al. May 2012 A1
20120131962 Mitsugi et al. May 2012 A1
20120135607 Shimoi et al. May 2012 A1
20120135608 Shimoi et al. May 2012 A1
20120145331 Gomez et al. Jun 2012 A1
20120196071 Cornejo et al. Aug 2012 A1
20120234049 Bolton Sep 2012 A1
20120234807 Sercel et al. Sep 2012 A1
20120255935 Kakui et al. Oct 2012 A1
20120299219 Shimoi et al. Nov 2012 A1
20120302139 Darcangelo et al. Nov 2012 A1
20130019637 Sol et al. Jan 2013 A1
20130034688 Koike et al. Feb 2013 A1
20130044371 Rupp et al. Feb 2013 A1
20130068736 Mielke et al. Mar 2013 A1
20130075480 Yokogi et al. Mar 2013 A1
20130091897 Fugii et al. Apr 2013 A1
20130122264 Fujii et al. May 2013 A1
20130125588 Kladias May 2013 A1
20130126573 Hosseini et al. May 2013 A1
20130129947 Harvey et al. May 2013 A1
20130133367 Abramov et al. May 2013 A1
20130143416 Norval Jun 2013 A1
20130149434 Oh et al. Jun 2013 A1
20130149494 Koike et al. Jun 2013 A1
20130167590 Teranishi et al. Jul 2013 A1
20130174607 Wootton et al. Jul 2013 A1
20130174610 Teranishi et al. Jul 2013 A1
20130180285 Kariya Jul 2013 A1
20130189806 Hoshino Jul 2013 A1
20130192305 Black et al. Aug 2013 A1
20130209731 Nattermann et al. Aug 2013 A1
20130220982 Thomas et al. Aug 2013 A1
20130221053 Zhang Aug 2013 A1
20130224439 Zhang et al. Aug 2013 A1
20130228918 Chen et al. Sep 2013 A1
20130236666 Bookbinder Sep 2013 A1
20130247615 Boek Sep 2013 A1
20130260154 Allan Oct 2013 A1
20130266757 Giron et al. Oct 2013 A1
20130270240 Kondo Oct 2013 A1
20130280495 Matsumoto Oct 2013 A1
20130288010 Akarapu et al. Oct 2013 A1
20130291598 Saito et al. Nov 2013 A1
20130312460 Kunishi et al. Nov 2013 A1
20130323444 Ehemann Dec 2013 A1
20130323469 Abramov et al. Dec 2013 A1
20130334185 Nomaru Dec 2013 A1
20130340480 Nattermann et al. Dec 2013 A1
20140027951 Srinivas et al. Jan 2014 A1
20140034730 Lee Feb 2014 A1
20140042202 Lee Feb 2014 A1
20140047957 Wu Feb 2014 A1
20140102146 Saito et al. Apr 2014 A1
20140110040 Cok Apr 2014 A1
20140113797 Yamada et al. Apr 2014 A1
20140133119 Kariya et al. May 2014 A1
20140141217 Gulati et al. May 2014 A1
20140147623 Shorey et al. May 2014 A1
20140147624 Streltsov May 2014 A1
20140165652 Saito Jun 2014 A1
20140174131 Saito et al. Jun 2014 A1
20140199519 Schillinger et al. Jul 2014 A1
20140216108 Weigel et al. Aug 2014 A1
20140290310 Green Oct 2014 A1
20140320947 Egerton et al. Oct 2014 A1
20140333929 Sung et al. Nov 2014 A1
20140361463 DeSimone et al. Dec 2014 A1
20150038313 Hosseini Feb 2015 A1
20150075221 Kawaguchi et al. Mar 2015 A1
20150075222 Mader Mar 2015 A1
20150110442 Zimmel et al. Apr 2015 A1
20150118522 Hosseini Apr 2015 A1
20150136743 Hosseini May 2015 A1
20150140241 Hosseini May 2015 A1
20150140735 Hosseini May 2015 A1
20150151380 Hosseini Jun 2015 A1
20150158120 Courvoisier et al. Jun 2015 A1
20150165548 Marjanovic et al. Jun 2015 A1
20150165560 Hackert et al. Jun 2015 A1
20150165562 Marjanovic et al. Jun 2015 A1
20150165563 Manley et al. Jun 2015 A1
20150166391 Marjanovic et al. Jun 2015 A1
20150166393 Marjanovic et al. Jun 2015 A1
20150166394 Marjanovic et al. Jun 2015 A1
20150166395 Marjanovic et al. Jun 2015 A1
20150166396 Marjanovic et al. Jun 2015 A1
20150166397 Marjanovic et al. Jun 2015 A1
20150183679 Saito Jul 2015 A1
20150232369 Marjanovic et al. Aug 2015 A1
20150299018 Bhuyan et al. Oct 2015 A1
20150360991 Grundmueller et al. Dec 2015 A1
20150367442 Bovatsek et al. Dec 2015 A1
20160008927 Grundmueller et al. Jan 2016 A1
20160009066 Nieber et al. Jan 2016 A1
20160023922 Addiego et al. Jan 2016 A1
20160031745 Ortner et al. Feb 2016 A1
20160060156 Krueger et al. Mar 2016 A1
20160280580 Bohme Sep 2016 A1
20160290791 Buono et al. Oct 2016 A1
20160311717 Nieber et al. Oct 2016 A1
Foreign Referenced Citations (151)
Number Date Country
2388062 Jul 2000 CN
1283409 Nov 2006 CN
101502914 Aug 2009 CN
201357287 Dec 2009 CN
101637849 Feb 2010 CN
201471092 May 2010 CN
102672355 Sep 2012 CN
102898014 Jan 2013 CN
102923939 Feb 2013 CN
103013374 Apr 2013 CN
103143841 Jun 2013 CN
203021443 Jun 2013 CN
103273195 Sep 2013 CN
103316990 Sep 2013 CN
103359947 Oct 2013 CN
103359948 Oct 2013 CN
103531414 Jan 2014 CN
103746027 Apr 2014 CN
203509350 Apr 2014 CN
104344202 Feb 2015 CN
102672355 May 2015 CN
2231330 Jan 1974 DE
102006035555 Jan 2008 DE
102012010635 Nov 2013 DE
102012110971 May 2014 DE
102013223637 May 2015 DE
270897 Feb 1992 EP
0609978 Aug 1994 EP
656241 Dec 1998 EP
938946 Sep 1999 EP
949541 Oct 1999 EP
1159104 Aug 2004 EP
1609559 Dec 2005 EP
1043110 Aug 2006 EP
2133170 Dec 2009 EP
2202545 Jun 2010 EP
2574983 Apr 2013 EP
2754524 Jul 2014 EP
2781296 Sep 2014 EP
2783784 Oct 2014 EP
2859984 Apr 2015 EP
2989294 Oct 2013 FR
1242172 Aug 1971 GB
2481190 Jan 2015 GB
1179770 Jul 1989 JP
5318756 Nov 1994 JP
1994318756 Nov 1994 JP
9106243 Apr 1997 JP
H1179770 Mar 1999 JP
11197498 Jul 1999 JP
1999197498 Jul 1999 JP
11269683 Oct 1999 JP
1999269683 Oct 1999 JP
11330597 Nov 1999 JP
1999330597 Nov 1999 JP
11347758 Dec 1999 JP
1999347758 Dec 1999 JP
2001138083 May 2001 JP
2002210730 Jul 2002 JP
2002228818 Aug 2002 JP
2003025085 Jan 2003 JP
2003114400 Apr 2003 JP
2003154517 May 2003 JP
2003181668 Jul 2003 JP
2003238178 Aug 2003 JP
2004209675 Jul 2004 JP
2004209675 Jul 2004 JP
2005104819 Apr 2005 JP
2005205440 Aug 2005 JP
2005288503 Oct 2005 JP
2005288503 Oct 2005 JP
3775250 May 2006 JP
3775410 May 2006 JP
2006130691 May 2006 JP
2006248885 Sep 2006 JP
2007021548 Feb 2007 JP
2007196277 Aug 2007 JP
2007253203 Oct 2007 JP
4592855 Dec 2010 JP
2011049398 Mar 2011 JP
4672689 Apr 2011 JP
2011517299 Jun 2011 JP
4880820 Feb 2012 JP
2012024782 Feb 2012 JP
2012031018 Feb 2012 JP
2012159749 Aug 2012 JP
2013007842 Jan 2013 JP
2013043808 Mar 2013 JP
2013075802 Apr 2013 JP
2013091578 May 2013 JP
5274085 Aug 2013 JP
5300544 Sep 2013 JP
2013187247 Sep 2013 JP
2013203630 Oct 2013 JP
2013203631 Oct 2013 JP
2013223886 Oct 2013 JP
2012015366 Feb 2002 KR
2009057161 Jun 2009 KR
1020621 Mar 2011 KR
1120471 Mar 2012 KR
2012074508 Jul 2012 KR
2013031380 Mar 2013 KR
1269474 May 2013 KR
2013124646 Nov 2013 KR
1344368 Dec 2013 KR
2014022980 Feb 2014 KR
2014022981 Feb 2014 KR
2014064220 May 2014 KR
201226345 Jul 2012 TW
9929243 Jul 1999 WO
9963900 Dec 1999 WO
2004110693 Dec 2004 WO
2006073098 Jul 2006 WO
2006073098 Jul 2006 WO
2007094160 Aug 2007 WO
2008080182 Jul 2008 WO
2008128612 Oct 2008 WO
2009114375 Sep 2009 WO
2010035736 Apr 2010 WO
2010111609 Sep 2010 WO
2010129459 Nov 2010 WO
2011025908 Mar 2011 WO
2011025908 Mar 2011 WO
2011056781 May 2011 WO
2012006736 Jan 2012 WO
2012075072 Jun 2012 WO
2012108052 Aug 2012 WO
2012166753 Dec 2012 WO
2013022148 Feb 2013 WO
2013043173 Mar 2013 WO
2013138802 Sep 2013 WO
2013150990 Oct 2013 WO
2013153195 Oct 2013 WO
2014028022 Feb 2014 WO
2014079478 May 2014 WO
2014079570 May 2014 WO
2014064492 May 2014 WO
2014079478 May 2014 WO
2014079570 May 2014 WO
2014085663 Jun 2014 WO
2014085663 Jun 2014 WO
2014111385 Jul 2014 WO
2014111794 Jul 2014 WO
2014161534 Oct 2014 WO
2014161535 Oct 2014 WO
2015077113 May 2015 WO
2015095088 Jun 2015 WO
2015095090 Jun 2015 WO
2015095146 Jun 2015 WO
2015127583 Sep 2015 WO
2016010954 Jan 2016 WO
Non-Patent Literature Citations (101)
Entry
Bagchi, “Fast Ion Beams From Intense, Femtosecond Laser Irradiated Nanostructured Surfaces.” Appl. Phys. B88: 167-173(2007).
Bhuyan, “Laser micro and nanostructuring using femtosecond Bessel beams.” Eur. Phys. J Special Topics 199: 101-110 (2011).
Bhuyan. “Ultrafast Bessel beams for high aspect ratio taper free micromachining of glass.” Nonlinear Optics and Applications IV, Proc of SPIE vol. 7728:72281 V-1-72281V-8 (2010.).
Bhuyan, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams.” Applied Physics Letters 10-4, 021107-1-021107-4 (2014).
Courvoisier, “Applications of femtosecond Bessel beams to laser ablation.” Appl Phys A, 112:29-34, (2013).
Courvoisier, “Surface nanoprocessing with nondiffracting femtosecond Bessel beams.” Optics Letters, vol. 34, No. 20, 3163-3165, Oct. 15, 2009.
Stoian, “Spatial and temporal laser pulse design for material processing on ultrafast scales.” Appl. Phys. A, 114:119-127, (2014).
Velpula, “Ultrafast imaging of free carriers: controlled excitation with chirped ultrafast laser Bessel beams.” Prof of SPIE vol. 8967, 896711-1-896711-8, (2014.).
International Search Report, issued in connection with corresponding PCT application No. PCT/US2014/070234, Aug. 10, 2015.
http://www.gtat.com/Collateral/Documents/English-US/Sapphire/12-21-12—GT—TouchScreen—V3—web.pdf.
E. Vanagas et al., “Glass Cutting by Femtosecond Pulsed Radiation”, J. Microlith., Microfa., Microsyst., 3(2) 358-363, 2004.
M. K. Bhuyan, et al., High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams, Jan. 18, 2010 / vol. 18, No. 2 / Optics Express 566.
Design of Diffractivephase Axicon Illuminated by a Gaussian-Profile Beam, Zhangg Uo-Qing, D Ongb I-Zhen,Y Angg Uo-Zhen, and Gu Ben-Yuan, vol. 6, No. 5 Acta Physica Sinica May 1996, pp. 354.
High-resolution optical coherence tomography over a large depth range with an axicon lens, Zhihua Ding, Hongwu Ren, Yonghua Zhao, J. Stuart Nelson, and Zhongping Chem Feb. 15, 2002 / vol. 27, No. 4 / Optics Letters 243.
Ilya Golub, Fresnel axicon, 1890 Optics Letters / vol. 31, No. 12 / Jun. 15, 2006.
M. K. Bhuyan, et al., High aspect ratio nanochannel machining using single shot femtosecond Bessel beams, Appl. Phys. Lett. 97, 081102.
Rieko Arimoto, et al., Imaging properties of axicon in a scanning optical system; Nov. 1, 1992 / vol. 31, No. 31 / Applied Optics 6653.
D. Zeng, et al., Characteristic analysis of a refractive axicon system for optical trepanning; Optical Engineering 45(9), 094302 Sep. 2006.
Pavel Polynkin, et al., Extended filamentation with temporally chirped femtosecond Bessel-Gauss beams in air, Jan. 19, 2009 / vol. 17, No. 2 / Optics Express 575.
O.G. Kosareva, et al. Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse, Quantum Electronics, 35(11), 1013-1014 (2005).
Kruger, et al., “Laser micromachining of barium aluminum borosilicate glass with pulse durations between 20 fs and 3 ps,”, Applied Surface Science, 127-129(1998), 892-898.
Perry, et al., “Ultrashort-Pulse Laser Machining,” submitted to ICA of Lasers and Electro-Optics, Preprint Nov. 16-19, 1998, Pub. Jan. 22, 1999, International Congress on Applications of Lasers and Electro-Optics.
Herman, et al., “Laser Micromachining of ‘transparent’ fused silica with 1ps pulses and pulse trains”, SPIE Conference, San Jose, CA, Jan. 1999, vol. 3616-0277-786X/99.
Yoshino, et al., “Mieromachining with a High Repetition Rate Femtosecond Fiber Laser,” Journal of laser Micro/Nanoengineering vol. 3, No. 3, 2008.
Abramov et al., “Laser separation of chemically strengthened glass”, Physics Procedia, 5 (2010), 285-290.
Abramov et al., “Laser separation of chemically strengthened glass”; Physics Procedia 5 (2010) 285-290, Elsevier.; doi: 10.1016/j.phpro.2010.08.054.
Arimoto et al., “Imaging properties of axicon in a scanning optical system”; Applied Optics, Nov. 1, 1992, vol. 31, No. 31, pp. 6653-6657.
“TruMicro 5000” Product Manual, Trumpf Laser GmbH+Co. KG, pp. 1-4, Aug. 2011.
Bhuyan et al., “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams”; Applied Physics Letters 97, 081102 (2010); doi: 10.1063/1.3479419.
Bhuyan et al., “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams”; Optics Express (2010) vol. 18, No. 2, pp. 566-574.
Cubeddu et al., “A compact time-resolved reflectance system for dual-wavelength multichannel assessment of tissue absorption and scattering”; Part of the SPIE Conference on Optical Tomography and Spectroscopy of Tissue III, San Jose, CA (Jan. 1999), SPIE vol. 3597, 0277-786X/99, pp. 450-455.
Cubeddu et al., “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance”; Applied Optics, vol. 38, No. 16, Jun. 1, 1999, pp. 3670-3680.
Ding et al., “High-resolution optical coherence tomography over a large depth range with an axicon lens”; Optic Letters, vol. 27, No. 4, pp. 243-245, Feb. 15, 2002, Optical Society of America.
“EagleEtch” Product Brochure, EuropeTec USA Inc., pp. 1-8, Aug. 1, 2014.
Girkin et al., “Macroscopic multiphoton biomedical imaging using semiconductor saturable Bragg reflector modelocked Lasers”; Part of the SPIE Conference on Commercial and Biomedical Applications of Ultrafast Lasers, San Jose, CA (Jan. 1999), SPIE vol. 3616, 0277-786X/99, pp. 92-98.
Glezer et al., “Ultrafast-laser driven micro-explosions in transparent materials”; Applied Physics Letters, vol. 71 (1997), pp. 882-884.
Golub, I., “Fresnel axicon”; Optic Letters, vol. 31, No. 12, Jun. 15, 2006, Optical Society of America, pp. 1890-1892.
Herman et al., “Laser micromachining of ‘transparent’ fused silica with 1-ps pulses and pulse trains”; Part of the SPIE conference on Commercial and Biomedical Applications of Ultrafast Lasers, San Jose, CA (Jan. 1999), SPIE vol. 3616, 0277-786X/99, pp. 148-155.
Kosareva et al., “Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse”; Quantum Electronics 35 (11) 1013-1014 (2005), Kvantovaya Elektronika and Turpion Ltd.; doi: 10.1070/QE2005v035n11ABEH013031.
Krüger et al., “Femtosecond-pulse visible laser processing of transparent materials”; Applied Surface Science 96-98 (1996) 430-438.
Krüger et al., “Laser micromachining of barium aluminium borosilicate glass with pluse durations between 20 fs and 3 ps”; Applied Surface Science 127-129 (1998) 892-898.
Krüger et al., “Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs and 3 ps”; SPIE vol. 2991, 0277-786X/97, pp. 40-47.
Lapczyna et al., “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses”; Applied Physics A 69 [Suppl.], 5883-5886, Springer-Verlag (1999); doi: 10.1007/s003399900300.
Perry et al., “Ultrashort-pulse laser machining”; UCRL-JC-132159 Rev 1., Jan. 22, 1999, pp. 1-24.
Perry et al., “Ultrashort-pulse laser machining”; UCRL-ID-132159, Sep. 1998, pp. 1-38.
Perry et al., “Ultrashort-pulse laser machining of dielectric materials”; Journal of Applied Physics, vol. 85, No. 9, May 1, 1999, American Institute of Physics, pp. 6803-6810.
Polynkin et al., “Extended filamentation with temporally chirped femtosecond Bessel-Gauss beams in air”; Optics Express, vol. 17, No. 2, Jan. 19, 2009, OSA, pp. 575-584.
Serafetinides et al., “Ultra-short pulsed laser ablation of polymers”; Applied Surface Science 180 (2001) 42-56.
Sundaram et al., “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses”; Nature Miracles, vol. 1, Dec. 2002, Nature Publishing Group (2002), pp. 217-224.
Vanagas et al., “Glass cutting by femtosecond pulsed irradiation”; J. Micro/Nanolith. MEMS MOEMS. 3(2), 358-363 (Apr. 1, 2004); doi: 10.1117/1.1668274.
Varel et al., “Micromachining of quartz with ultrashort laser pulses”; Applied Physics A 65, 367-373, Springer-Verlag (1997).
Yoshino et al., “Micromachining with a high repetition rate femtosecond fiber laser”; JLMN—Journal of Laser Micro/Nanoengineering vol. 3, No. 3 (2008), pp. 157-162.
Zeng et al. “Characteristic analysis of a refractive axicon system for optical trepanning”; Optical Engineering 45(9), 094302 (Sep. 2006), pp. 094302-1-094302-10.
Zhang et al., “Design of diffractive-phase axicon illuminated by a Gaussian-profile beam”; Acta Physica Sinica (overseas edition), vol. 5, No. 5 (May 1996) Chin. Phys. Soc., 1004-423X/96/05050354-11, pp. 354-364.
Abakians, H. et al.; Evaporative Cutting of a Semitransparent Body With a Moving CW Laser; Journal of Heat Transfer; Nov. 1988; pp. 924-930; vol. 110; ASME.
Ahmed, F. et al.; Display glass cutting by femtosecond laser induced single shot periodic void array; Applied Physics A Material Science & Processing; Jun. 3, 2008; pp. 189-192; vol. 93; Springer-Verlag.
Bagchi, S. et al.; Fast ion beams from intense, femtosecond laser irradiated nanostructured surfaces; Applied Physics B Lasers and Optics; Jun. 27, 2007; pp. 167-173; vol. 88; Springer-Verlag.
Bhuyan, M.K. et al.; Femtosecond non-diffracting Bessel beams and controlled nanoscale ablation; ResearchGate Conference Paper; Sep. 2011; pp. 1-4.
Bhuyan, M.K. et al.; Laser micro- and nanostructuring using femtosecond Bessel beams; The European Physical Journal Special Topics; Dec. 7, 2011; pp. 101-110; vol. 1999; EDP Sciences, Springer-Verlag.
Bhuyan, M.K. et al.; Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams; Applied Physics Letters; Jan. 14, 2014; pp. 021107-1-021107-4; vol. 104; AIP Publishing LLC.
Bhuyan, M.K. et al.; Ultrafast Bessel beams for high aspect ratio taper free micromachining of glass; Nonlinear Optics and Applications Iv; 2010; pp. 77281V-1-77281V-8; vol. 7728; SPIE.
Case Design Guidelines for Apple Devices; Sep. 13, 2013; pp. 1-58; Apple Inc.
Chiao, R. Y. et al.; Self-Trapping of Optical Beams; Physical Review Letters; Oct. 12, 1964; pp. 479-482; vol. 13, No. 15.
Corning Eagle AMLCD Glass Substrates Material Information; Apr. 2005; pp. MIE 201-1-MIE 201-3; Corning Incorporated.
Corning 1737 AMLCD Glass Substrates Material Information; Aug. 2002; pp. MIE 101-1-MIE 101-3; Corning Incorporated.
Couairon, A. et al.; Femtosecond filamentation in transparent media; ScienceDirect Physical Reports; Feb. 6, 2007; pp. 47-189; vol. 441; Elsevier B.V.
Courvoisier, F. et al.; Applications of femtosecond Bessel beams to laser ablation; Applied Physics A Materials Science & Processing; Sep. 6, 2012; pp. 29-34; vol. 112; Springer-Verlag.
Courvoisier, F. et al.; Surface nanoprocessing with nondiffracting femtosecond Bessel beams; Optics Letters; Oct. 15, 2009; pp. 3163-3165; vol. 34, No. 20; Optical Society of America.
Dong, M. et al.; On-axis irradiance distribution of axicons illuminated by spherical wave; ScienceDirect Optics & Laser Technology; Sep. 2007; pp. 1258-1261; vol. 39; Elsevier Ltd.
Duocastella, M. et al.; Bessel and annular beams for materials processing; Laser & Photonics Reviews; 2012; pp. 607-621; vol. 6, No. 5.
Durnin, J.; Exact solutions for nondiffracting beams. I. The scalar theory; J. Opt. Soc. Am. A; Apr. 1987; pp. 551-654; vol. 4, No. 4; Optical Society of America.
Eaton, S. et al.; Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate; Optics Express; Jun. 13, 2005; pp. 4708-4716; vol. 13, No. 12; Optical Society of America.
Gattass, R. et al.; Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates; Optics Express; Jun. 12, 2006; pp. 5279-5284; vol. 14, No. 12; Optical Society of America.
Gori, F. et al.; Analytical derivation of the optimum triplicator; Optics Communications; Dec. 1, 1998; pp. 13-16; vol. 157; Elsevier B.V.
Honda, M. et al.; A Novel Polymer Film that Controls Light Transmission; Progress in Pacific Polymer Science 3; 1994; pp. 159-169; Springer-Verlag Berlin Heidelberg.
Hu, Z. et al.; 5-Axis Laser Culling Interference Detection and Correction Based on STL Model; Chinese Journal of Lasers; Dec. 2009; pp. 3313-3317; vol. 36, No. 12.
Huang, Z. et al.; Laser etching of glass substrates by 1064 nm laser irradiation; Applied Physics A Materials Science & Processing; Jun. 6, 2008; pp. 159-163; vol. 93; Springer-Verlag.
Juodkazis, S. et al.; Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures; Physical Review Letters; Apr. 28, 2006; pp. 166101-1-166101-4; vol. 96; The American Physical Society.
Karlsson, S. et al.; The Technology of Chemical Glass Strengthening—A Review; Glass Technology—European Journal of Glass Science and Technology Part A; Apr. 2010; pp. 41-54; vol. 51, No. 2.
Levy, U, et al.; Design, fabrication, and characterization of circular Dammann gratings based on grayscale lithography; Optics Letters; Mar. 15, 2010; pp. 880-882; vol. 35, No. 6; Optical Society of America.
Liu, X. et al.; Laser Ablation and Micromachining with Ultrashort Laser Pulses; IEEE Journal of Quantum Electronics; Oct. 1997; p. 1706-1716; vol. 33, No. 10; IEEE.
Maeda, K et al.; Optical performance of angle dependent light control glass; Optical Materials Technology for Energy Efficiency and Solar Energy Conversion X; 1991; pp. 138-148; vol. 1536; SPIE.
Mbise, G. et al.; Angular selective window coatings; theory and experiments; J. Phys. D: Appl. Phys.; 1997; pp. 2103-2122; vol. 30; IOP Publishing Ltd.
McGloin, D. et al.; Bessel beams: diffraction in a new light; Contemporary Physics; Jan.-Feb. 2005; pp. 15-28; vol. 46; Taylor & Francis Ltd.
Merola, F. et al.; Characterization of Bessel beams generated by polymeric microaxicons; Measurement Science and Technology; May 15, 2012; pp. 1-10; vol. 23; IOP Publishing Ltd.
Mirkhalaf, M. et al.; Overcoming the brittleness of glass through bio-inspiration and micro-architecture; Nature communications; Jan. 28, 2014; pp. 1-9; Macmillan Publishers Limited.
Romero, L. et al.; Theory of optimal beam splitting by phase gratings. II. Square and hexagonal gratings; J. Opt. Soc. Am. A; Aug. 2007; pp. 2296-2312; vol. 24, No. 8; Optical Society of America.
Salleo, A. et al.; Machining of transparent materials using an IR and UV nanosecond pulsed laser; Applied Physics A Materials Science & Processing; Sep. 20, 2000; pp. 601-608; vol. 71; Springer-Verlag.
Serafetinides, A. et al.; Polymer Ablation by Ultra-Short Pulsed Lasers; Proceedings of SPIE; 2000; pp. 409-415.
Shah, L. et al.; Micromachining with a High Repetition Rate Femtosecond Fiber Laser; JLMN-Journal of Laser Micro/Nanoengineering; Nov. 2008; pp. 157-162; vol. 3, No. 3.
Shealy, D. et al.; Geometric optics-based design of laser beam shapers; Opt. Eng.; Nov. 2003; pp. 3123-3138; vol. 42, No. 11; Society of Photo-Optical Instrumentation Engineers.
Stoian, R. et al.; Spatial and temporal laser pulse design for material processing on ultrafast scales; Applied Physics A Materials Science & Processing; Jan. 1, 2014; pp. 119-127; vol. 114; Springer-Verlag Berlin Heidelberg.
Thiele, E.; Relation between Catalytic Activity and Size of Particle; Industrial and Engineering Chemistry; Jul. 1939; pp. 916-920; vol. 31, No. 7.
Toytman, I. et al.; Optical breakdown in transparent media with adjustable axial length and location; Optic Express; Nov. 22, 2010; pp. 24688-24698; vol. 18, No. 24; Optical Society of America.
Velpula, P. et al.; Ultrafast imaging of free carriers: controlled excitation with chirped ultrafast laser Besse! beams; Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XIX; Proc. Of SPIE; 2014; pp. 396711-1-896711-8; vol. 8967; SPIE.
Wang, Z. Z et al.; Investigation on CO2 laser irradiation inducing glass strip peeling for microchannel formation; . Biomicrofluidics; Mar. 12, 2012; pp. 012820-1-012820-12; vol. 6; American Institute of Physics.
Ra & RMS: Calculating Surface Roughness; Harrison Eelectropolishing; 2012.
Wu, W. et al.; Optimal Orientation of the Cutting Head for Enhancing Smoothness Movement in Three-Dimensional Laser Cutting; Chinese Journal of Lasers; Jan. 2013; pp. 0103005-1-0103005-7, vol. 10, No. 1.
GT ASF Grown Sapphire Cover and Touch Screen Material; www.gtat.com; 2012; pp.. 1-2; GTAT Corporation.
Ku, H. et al.; Optimization of 3D laser cutting head orientation based on minimum energy consumption; Int J ADV Vlanuf Technol; Jun. 28 2014; pp. 1283-1291; vol. 74; Springer-Verlag London.
Yan, Y. et al.; Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes; Optics Letters; Aug. 15, 2012; pp. 3294-3296; vol. 37, No. 16; Optical Society of America.
Related Publications (1)
Number Date Country
20150166394 A1 Jun 2015 US
Provisional Applications (3)
Number Date Country
61917127 Dec 2013 US
62024581 Jul 2014 US
62046360 Sep 2014 US