PRODUCTS AND COMPOSITIONS

Abstract
Nucleic acid products are provided that modulate, interfere with or inhibit PCSK9 gene expression. The products include compounds that comprise at least a first region of linked nucleosides having at least a first nucleobase sequence that is at least partially complementary to at least a portion of RNA transcribed from a PCSK9 gene, wherein the first nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 1 to 250 or 501 to 543.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Oct. 4, 2022, is named 4690_0049 C_SequenceListing and is 288 kilobytes in size.


FIELD

Compositions are provided that modulate, interfere with, or inhibit, proprotein convertase subtilkisin/kexin type 9 (PCSK9) gene expression, together with methods of using the compositions for the treatment, prevention or amelioration of PCSK9-associated disorders such as dyslipidemia, including hypercholesterolemia.


BACKGROUND

Cholesterol has multiple vital functions, including the maintenance of integrity and fluidity of cell membranes. It furthermore serves a precursor for biosynthetic pathways, including those leading to steroid hormones and vitamin D. Cholesterol is present in the blood, where it occurs mainly in two forms: as component in high density lipoproteins (HDL) and in low density lipoproteins (LDL). Often the HDL cholesterol is referred as “good” or beneficial, while LDL cholesterol, in particular when present in elevated levels, presents a health risk and lead to disease.


Regulation of LDL Cholesterol


Proprotein convertase subtilkisin/kexin type 9 (PCSK9) is a serine protease involved in lipid metabolism. PCSK9 reduces the number of LDL receptors on the surface of liver cells. As a consequence, elevated amounts and/or activity of PCSK9 result in higher blood levels of “bad” LDL cholesterol. This molecular and cellular function of PCSK9 has led to its recognition as a therapeutic target molecule.


Disease


Abnormal amounts of circulating cholesterol, in particular of LDL cholesterol, also referred to as hypercholesterolemia, is a recognized disorder in itself which is inter alia owed to the fact that such abnormal amounts, in particular if they persist over extended periods of time, may result in disorder of the cardiovascular system. More specifically, excess amounts of cholesterol may be deposited on the inner walls of blood vessel which in turn may lead to clogging, wherein the clinical manifestations of such clogging include myocardial infarction, stroke and peripheral artery disease.


Treatment


Established treatments for hypercholestorolemia include the administration of statins. Statins may, however, cause side effects, and certain patients are statin-intolerant. Compounds, methods, and pharmaceutical compositions for the treatment of dyslipidemia are provided.


Double-stranded RNA (dsRNA) able to complementarily bind expressed mRNA has been shown to be able to block gene expression (Fire et al., 1998, Nature. 1998 Feb. 19;391 (6669):806-1 1 and Elbashir et al., 2001, Nature. 2001 May 24;41 1 (6836):494-8) by a mechanism that has been termed RNA interference (RNAi). Short dsRNAs direct gene-specific, post-transcriptional silencing in many organisms, including vertebrates, and have become a useful tool for studying gene function. RNAi is mediated by the RNA-induced silencing complex (RISC), a sequence-specific, multi-component nuclease that destroys messenger RNAs homologous to the silencing trigger loaded into the RISC complex. Interfering RNA (iRNA) such as siRNAs, antisense RNA, and micro-RNA are oligonucleotides that prevent the formation of proteins by gene-silencing i.e. inhibiting gene translation of the protein through degradation of mRNA molecules. Gene-silencing agents are becoming increasingly important for therapeutic applications in medicine.


According to Watts and Corey in the Journal of Pathology (2012; Vol 226, p 365-379) algorithms may be used to design nucleic acid silencing triggers, but these suffer from severe limitations. Further experimentation is needed to identify potent siRNAs, since algorithms do not take into account factors such as tertiary structure of the target mRNA or the involvement of RNA binding proteins. Accordingly, discovery of a potent nucleic acid silencing trigger with minimal off-target effects is a complex process. For the pharmaceutical development of these highly charged molecules it is necessary that they be synthesised economically, distributed to and taken up by target tissues, enter cells and function within acceptable limits of toxicity. We provide herein compounds, methods, and pharmaceutical compositions for the treatment of thromboembolic diseases as described herein, which compounds, methods and compositions comprise oligomeric compounds that modulate, in particular inhibit, gene expression by RNAi.


SUMMARY

Nucleic acid products are provided that modulate and, in particular, interfere with or inhibit, proprotein convertase subtilkisin/kexin type 9 (PCSK9) gene expression, and associated therapeutic uses. Specific oligomeric compounds and sequences according to the disclosed embodiments are described herein. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to determine the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

PCSK9-targeting constructs are labelled as P, p, PCS or PCSK9, followed by a two- or three-digit construct number, wherein numbering adheres to the numbering of the nucleobase sequences shown in the sequence listing as follows: SEQ ID NO of the nucleobase sequence of the antisense region=construct number; SEQ ID NO of the nucleobase sequence of the sense region=250+ construct number. In certain instances, such designation of PCSK9-targeting constructs is followed by information in brackets about the architecture of the construct (dsRNA vs. mxRNA; lengths of regions).



FIG. 1 shows PCSK9 knockdown as compared to negative control in a hepatoma cell line. Nucleobase sequences together with backbone (sugar, phosphate) modifications are given in Tables 1a and 1 b. No ligand attached.



FIG. 2 shows IC5O concentrations for PCSK9 knockdown. Nucleobase sequences together with backbone (sugar, phosphate) modifications are shown in Tables 1a and 1 b. No ligand is attached.



FIG. 3 shows the concentration dependency of PCSK9 knockdown by particularly advantageous double-stranded constructs (antisense strand: 19 nt; sense strand: 14 nt) carrying a GaINAc ligand. The nucleobase sequence of the 14 nt sense strand differs from that given in the sequence listing (15 nt) in that the 5′-terminal nucleotides is removed. Backbone (sugar, phosphate) modifications are as given in Table 5. M4K4 and TMPRSS6 are negative controls (unrelated targets).



FIG. 4 shows a comparison of two types of double-stranded constructs as described herein. Antisense strand: 19 nt; sense strand: 15 nt when indicated (“(15)”; nucleobase sequence as given in the sequence listing), otherwise 14 nt. Backbone (sugar, phosphate) modifications as given in Table 5. PC1a: positive control. An inclisiran-type molecule has been used which differs from inclisiran in that the ligand is 3xGaINAc. This is for reasons of consistency with constructs as described herein which carry a 3xGaINAc ligand. M4K4 is a negative control.



FIG. 5 shows the concentration dependency of PCSK9 knockdown by selected hairpin molecules (mxRNAs) as described herein. “14-5-14” stands for a 19 nt antisense region connected to a 14 nt sense region (shortened by 1 nt as for FIG. 3), wherein the 5 3′-terminal nucleotides of the antisense region for the loop of the hairpin and the molecules contains a 14 bp duplex region formed by base pairing between the 14 5′-terminal nucleotides of the antisense region with a nucleotides of the sense region. Corresponding nucleobase sequences of the entire hairpin molecules are those set forth in SEQ ID NO: 587 to 590. Backbone (sugar, phosphate) modifications are as given in Table 6. TMPRSS6 is a negative control.





DETAILED DESCRIPTION AND EMBODIMENTS

The following aspects are non-limiting.


Aspect 1. An oligomeric compound capable of inhibiting expression of PCSK9, wherein this compound comprises at least a first region of linked nucleosides having at least a first nucleobase sequence that is at least partially complementary to at least a portion of RNA transcribed from a PCSK9 gene, wherein the first nucleobase sequence is selected from the following sequences, or a portion thereof: sequences of Table 2a (SEQ ID NOs 1 to 250), or sequences of Table 3a (SEQ ID NOs 501 to 543), wherein the portion advantageously has a length of at least 18 nucleotides.


Particularly advantageous embodiments relate to dsRNAs on the one hand and mxRNAs on the other hand; for further details see the embodiments and their discussion further below. In addition, the antisense and sense regions disclosed herein may serve as building blocks for compounds (muRNAs) which are directed to multiple targets. The general architecture of such compounds is described in WO 2020/065602.


Aspect 2. A composition comprising an oligomeric compound according to aspect 1, and a physiologically acceptable excipient.


Aspect 3. A pharmaceutical composition comprising an oligomeric compound according to aspect 1.


Aspect 4. An oligomeric compound according to aspect 1, for use in human or veterinary medicine or therapy.


Aspect 5. An oligomeric compound according to aspect 1, for use in a method of treating a disease or disorder.


Aspect 6. A method of treating a disease or disorder comprising administration of an oligomeric compound according to aspect 1, to an individual in need of treatment.


Aspect 7. Use of an oligomeric compound according to aspect 1, for use in research as a gene function analysis tool.


Further embodiments (items) are described below by way of example only. These examples represent ways in which the disclosed compositions and methods are put into practice but the skilled artisan will recognize that they are not the only ways in which this could be achieved. It will be understood that the benefits and advantages described herein may relate to one embodiment or may relate to several embodiments. The embodiments are not limited to those that solve any or all of the stated problems or those that have any or all of the stated benefits and advantages.


Features of different aspects and embodiments may be combined as appropriate, as would be apparent to a skilled person, and may be combined with any of the aspects as described herein.


Definitions

In many instances, the definitions, in addition to the respective definition as such, provide non-exhaustive listings of possible implementations which amount to specific embodiments. Unless specific definitions are provided, the nomenclature used in connection with, and the procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques may be used for chemical synthesis, and chemical analysis. Certain such techniques and procedures may be found for example in “Carbohydrate Modifications in Antisense Research” Edited by Sangvi and Cook, American Chemical Society, Washington D.C., 1994; “Remington's Pharmaceutical Sciences,” Mack Publishing Co., Easton, Pa., 21st edition, 2005; and “Antisense Drug Technology, Principles, Strategies, and Applications” Edited by Stanley T. Crooke, CRC Press, Boca Raton, Fla.; and Sambrook et al., “Molecular Cloning, A laboratory Manual,” 2nd Edition, Cold Spring Harbor Laboratory Press, 1989.


Unless otherwise indicated, the following terms have the following meanings: As used herein, “excipient” means any compound or mixture of compounds that is added to a composition as provided herein that is suitable for delivery of an oligomeric compound.


As used herein, “nucleoside” means a compound comprising a nucleobase moiety and a sugar moiety. Nucleosides include, but are not limited to, naturally occurring nucleosides (as found in DNA and RNA) and modified nucleosides. Nucleosides may be linked to a phosphate moiety, phosphate-linked nucleosides also being referred to as “nucleotides”.


As used herein, “chemical modification” or “chemically modified” means a chemical difference in a compound when compared to a naturally occurring counterpart. Chemical modifications of oligonucleotides include nucleoside modifications (including sugar moiety modifications and nucleobase modifications) and internucleoside linkage modifications. In reference to an oligonucleotide, chemical modification does not include differences only in nucleobase sequence.


As used herein, “furanosyl” means a structure comprising a 5-membered ring comprising four carbon atoms and one oxygen atom.


As used herein, “naturally occurring sugar moiety” means a ribofuranosyl as found in naturally occurring RNA or a deoxyribofuranosyl as found in naturally occurring DNA. A “naturally occurring sugar moiety” as referred to herein is also termed as an “unmodified sugar moiety”. In particular, such a “naturally occurring sugar moiety” or an “unmodified sugar moiety” as referred to herein has a —H (DNA sugar moiety) or —OH (RNA sugar moiety) at the 2′-position of the sugar moiety, especially a —H (DNA sugar moiety) at the 2′-position of the sugar moiety.


As used herein, “sugar moiety” means a naturally occurring sugar moiety or a modified sugar moiety of a nucleoside. As used herein, “modified sugar moiety” means a substituted sugar moiety or a sugar surrogate.


As used herein, “substituted sugar moiety” means a furanosyl that has been substituted. Substituted sugar moieties include, but are not limited to furanosyls comprising substituents at the 2′-position, the 3′-position, the 5′-position and/or the 4′-position. Certain substituted sugar moieties are bicyclic sugar moieties.


As used herein, “2′-substituted sugar moiety” means a furanosyl comprising a substituent at the 2′-position other than H or OH. Unless otherwise indicated, a 2′-substituted sugar moiety is not a bicyclic sugar moiety (i.e., the 2′-substituent of a 2′-substituted sugar moiety does not form a bridge to another atom of the furanosyl ring).


As used herein, “MOE” means —OCH2CH2OCH3.


As used herein, “2′-F nucleoside” refers to a nucleoside comprising a sugar comprising fluorine at the 2′ position. Unless otherwise indicated, the fluorine in a 2′-F nucleoside is in the ribo position (replacing the OH of a natural ribose). Duplexes of uniformly modified 2′-fluorinated (ribo) oligonucleotides hybridized to RNA strands are not RNase H substrates while the ara analogs retain RNase H activity.


As used herein the term “sugar surrogate” means a structure that does not comprise a furanosyl and that is capable of replacing the naturally occurring sugar moiety of a nucleoside, such that the resulting nucleoside sub-units are capable of linking together and/or linking to other nucleosides to form an oligomeric compound which is capable of hybridizing to a complementary oligomeric compound. Such structures include rings comprising a different number of atoms than furanosyl (e.g., 4, 6, or 7-membered rings); replacement of the oxygen of a furanosyl with a non-oxygen atom (e.g., carbon, sulfur, or nitrogen); or both a change in the number of atoms and a replacement of the oxygen. Such structures may also comprise substitutions corresponding to those described for substituted sugar moieties (e.g., 6-membered carbocyclic bicyclic sugar surrogates optionally comprising additional substituents). Sugar surrogates also include more complex sugar replacements (e.g., the non-ring systems of peptide nucleic acid). Sugar surrogates include without limitation morpholinos, cyclohexenyls and cyclohexitols.


As used herein, “bicyclic sugar moiety” means a modified sugar moiety comprising a 4 to 7 membered ring (including but not limited to a furanosyl) comprising a bridge connecting two atoms of the 4 to 7 membered ring to form a second ring, resulting in a bicyclic structure. In certain embodiments, the 4 to 7 membered ring is a sugar ring. In certain embodiments the 4 to 7 membered ring is a furanosyl. In certain such embodiments, the bridge connects the 2 ‘-carbon and the 4’-carbon of the furanosyl.


As used herein, “nucleotide” means a nucleoside further comprising a phosphate linking group. As used herein, “linked nucleosides” may or may not be linked by phosphate linkages and thus includes, but is not limited to “linked nucleotides.” As used herein, “linked nucleosides” are nucleosides that are connected in a continuous sequence (i.e. no additional nucleosides are present between those that are linked).


As used herein, “nucleobase” means a group of atoms that can be linked to a sugar moiety to create a nucleoside that is capable of incorporation into an oligonucleotide, and wherein the group of atoms is capable of bonding, more specifically hydrogen bonding, with a complementary naturally occurring nucleobase of another oligonucleotide or nucleic acid. Nucleobases may be naturally occurring or may be modified.


As used herein the terms, “unmodified nucleobase” or “naturally occurring nucleobase” means the naturally occurring heterocyclic nucleobases of RNA or DNA: the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) (including 5-methyl C), and uracil (U).


As used herein, “modified nucleobase” means any nucleobase that is not a naturally occurring nucleobase.


As used herein, “modified nucleoside” means a nucleoside comprising at least one chemical modification compared to naturally occurring RNA or DNA nucleosides. Modified nucleosides can comprise a modified sugar moiety and/or a modified nucleobase.


As used herein, “bicyclic nucleoside” or “BNA” means a nucleoside comprising a bicyclic sugar moiety.


As used herein, “locked nucleic acid nucleoside” or “LNA” means a nucleoside comprising a bicyclic sugar moiety comprising a 4′-CH2—O-2′bridge.


As used herein, “2 ‘-substituted nucleoside” means a nucleoside comprising a substituent at the 2’-position of the sugar moiety other than H or OH. Unless otherwise indicated, a 2 ‘-substituted nucleoside is not a bicyclic nucleoside.


As used herein, “deoxynucleoside” means a nucleoside comprising 2’—H furanosyl sugar moiety, as found in naturally occurring deoxyribonucleosides (DNA). In certain embodiments, a 2′-deoxynucleoside may comprise a modified nucleobase or may comprise an RNA nucleobase (e.g., uracil).


As used herein, “oligonucleotide” means a compound comprising a plurality of linked nucleosides. In certain embodiments, an oligonucleotide comprises one or more un-modified ribonucleosides (RNA) and/or unmodified deoxyribonucleosides (DNA) and/or one or more modified nucleosides.


As used herein, “modified oligonucleotide” means an oligonucleotide comprising at least one modified nucleoside and/or at least one modified internucleoside linkage.


Advantageous modified internucleoside linkages are those which confer increased stability as compared to the naturally occurring phosphodiesters. “Stability” refers in particular to stability against hydrolysis including enzyme-catalyzed hydrolysis, enzymes including exonucleases and endonucleases.


Advantageous positions for such modified internucleoside linkages include the termini and the hairpin loop of single-stranded oligomeric compounds as described herein. For example, the internucleoside linkages connecting first and second nucleoside and second and third nucleoside counting from the 5′ terminus, and/or the internucleoside linkages connecting first and second nucleoside and second and third nucleoside counting from the 3′ terminus are modified. In addition, a linkage connecting the terminal nucleoside of the 3′ terminus with a ligand, such as GaINAc, may be modified.


As discussed above, advantageous positions are in the hairpin loop of the single-stranded oligomeric compounds. In particular, all linkages, all but one linkages or the majority of linkages in the hairpin loop are modified. As used herein, “linkages in the hairpin loop” designates the linkages between nucleosides which are not engaged in base pairing. For example, in a hairpin loop consisting of five nucleosides, there are four linkages between nucleosides which are not engaged in base pairing. Advantageously, the term “linkages in the hairpin loop” also extends to the linkages connecting the stem to the loop, i.e., those linkages which connect a base-paired nucleoside to a non-based paired nucleoside. Generally, there are two such positions in hairpins and mxRNAs as described herein.


Most advantageous is that modified internucleoside linkages are at both termini and in the hairpin loop.


As used herein, “linkage” or “linking group” means a group of atoms that link together two or more other groups of atoms.


As used herein “internucleoside linkage” means a covalent linkage between adjacent nucleosides in an oligonucleotide.


As used herein “naturally occurring internucleoside linkage” means a 3′ to 5′ phosphodiester linkage. As used herein, “modified internucleoside linkage” means any internucleoside linkage other than a naturally occurring internucleoside linkage. In particular, a “modified internucleoside linkage” as referred to herein can include a modified phosphorous linking group such as a phosphorothioate or phosphorodithioate internucleoside linkage.


As used herein, “terminal internucleoside linkage” means the linkage between the last two nucleosides of an oligonucleotide or defined region thereof.


As used herein, “phosphorus linking group” means a linking group comprising a phosphorus atom and can include naturally occurring phosphorous linking groups as present in naturally occurring RNA or DNA, such as phosphodiester linking groups, or modified phosphorous linking groups that are not generally present in naturally occurring RNA or DNA, such as phosphorothioate or phosphorodithioate linking groups. Phosphorus linking groups can therefore include without limitation, phosphodiester, phosphorothioate, phosphorodithioate, phosphonate, methylphosphonate, phosphoramidate, phosphorothioamidate, thionoalkylphosphonate, phosphotriesters, thionoalkylphosphotriester and boranophosphate.


As used herein, “internucleoside phosphorus linking group” means a phosphorus linking group that directly links two nucleosides.


As used herein, “oligomeric compound” means a polymeric structure comprising two or more substructures. In certain embodiments, an oligomeric compound comprises an oligonucleotide, such as a modified oligonucletide. In certain embodiments, an oligomeric compound further comprises one or more conjugate groups and/or terminal groups and/or ligands. In certain embodiments, an oligomeric compound consists of an oligonucleotide. In certain embodiments, an oligomeric compound comprises a backbone of one or more linked monomeric sugar moieties, where each linked monomeric sugar moiety is directly or indirectly attached to a heterocyclic base moiety. In certain embodiments, oligomeric compounds may also include monomeric sugar moieties that are not linked to a heterocyclic base moiety, thereby providing abasic sites. Oligomeric compounds may be defined in terms of a nucleobase sequence only, i.e., by specifying the sequence of A, G, C, U (or T). In such a case, the structure of the sugar-phosphate backbone is not partictularly limited and may or may not comprise modified sugars and/or modified phosphates. On the other hand, oligomeric compounds may be more comprehensively defined, i.e, by specifying not only the nucleobase sequence, but also the structure of the backbone, in particular the modification status of the sugars (unmodified, 2′-OMe modified, 2′-F modified etc.) and/or of the phosphates.


As used herein, “terminal group” means one or more atom attached to either, or both, the 3′ end or the 5′ end of an oligonucleotide. In certain embodiments, a terminal group comprises one or more terminal group nucleosides.


As used herein, “conjugate” or “conjugate group” means an atom or group of atoms bound to an oligonucleotide or oligomeric compound. In certain embodiments, a conjugate group links a ligand to a modified oligonucleotide or oligomeric compound. In general, conjugate groups can modify one or more properties of the compound to which they are attached, including, but not limited to pharmacodynamic, pharmacokinetic, binding, absorption, cellular distribution, cellular uptake, charge and/or clearance properties.


As used herein, “conjugate linker” or “linker” in the context of a conjugate group means a portion of a conjugate group comprising any atom or group of atoms and which covalently link an oligonucleotide to another portion of the conjugate group. In certain embodiments, the point of attachment on the oligomeric compound is the 3 ‘-oxygen atom of the 3’-hydroxyl group of the 3′ terminal nucleoside of the oligonucleotide. In certain embodiments the point of attachment on the oligomeric compound is the 5′-oxygen atom of the 5′-hydroxyl group of the 5′ terminal nucleoside of the oligonucleotide. In certain embodiments, the bond for forming attachment to the oligomeric compound is a cleavable bond. In certain such embodiments, such cleavable bond constitutes all or part of a cleavable moiety.


In certain embodiments, conjugate groups comprise a cleavable moiety (e.g., a cleavable bond or cleavable nucleoside) and ligand portion that can comprise one or more ligands, such as a carbohydrate cluster portion, such as an N-Acetyl-Galactosamine, also referred to as “GaINAc”, cluster portion. In certain embodiments, the carbohydrate cluster portion is identified by the number and identity of the ligand. For example, in certain embodiments, the carbohydrate cluster portion comprises 2 GaINAc groups. For example, in certain embodiments, the carbohydrate cluster portion comprises 3 GaINAc groups and this is particularly advantageous. In certain embodiments, the carbohydrate cluster portion comprises 4 GaINAc groups. Such ligand portions are attached to an oligomeric compound via a cleavable moiety, such as a cleavable bond or cleavable nucleoside. The ligands can be arranged in a linear or branched configuration, such as a biantennary or triantennary configurations. A particular carbohydrate cluster has the following formula:




embedded image


wherein in this structural formula one, two, or three phosphodiester linkages can also be substituted by phosphothionate linkages.


As used herein, “cleavable moiety” means a bond or group that is capable of being cleaved under physiological conditions. In certain embodiments, a cleavable moiety is cleaved inside a cell or sub-cellular compartments, such as an endosome or lysosome. In certain embodiments, a cleavable moiety is cleaved by endogenous enzymes, such as nucleases. In certain embodiments, a cleavable moiety comprises a group of atoms having one, two, three, four, or more than four cleavable bonds. In certain embodiments, a cleavable moiety is a phosphodiester linkage.


As used herein, “cleavable bond” means any chemical bond capable of being broken.


As used herein, “carbohydrate cluster” means a compound having one or more carbohydrate residues attached to a linker group.


As used herein, “modified carbohydrate” means any carbohydrate having one or more chemical modifications relative to naturally occurring carbohydrates.


As used herein, “carbohydrate derivative” means any compound which may be synthesized using a carbohydrate as a starting material or intermediate.


As used herein, “carbohydrate” means a naturally occurring carbohydrate, a modified carbohydrate, or a carbohydrate derivative. A carbohydrate is a biomolecule including carbon (C), hydrogen (H) and oxygen (O) atoms. Carbohydrates can include monosaccharide, disaccharides, trisaccharides, tetrasaccharides, oligosaccharides or polysaccharides, such as one or more galactose moieties, one or more lactose moieties, one or more N-Acetyl-Galactosamine moieties, and/or one or more mannose moieties. A particularly advantageous carbohydrate is N-Acetyl-Galactosamine.


As used herein, “strand” means an oligomeric compound comprising linked nucleosides.


As used herein, “single strand” or “single-stranded” means an oligomeric compound comprising linked nucleosides that are connected in a continuous sequence without a break therebetween. Such single strands may include regions of sufficient self-complementarity so as to be capable of forming a stable self-duplex in a hairpin structure.


As used herein, “hairpin” means a single stranded oligomeric compound that includes a duplex formed by base pairing between sequences in the strand that are self-complementary and opposite in directionality.


As used herein, “hairpin loop” means an unpaired loop of linked nucleosides in a hairpin that is created as a result of hybridization of the self-complementary sequences. The resulting structure looks like a loop or a U-shape.


As used herein, “directionality” means the end-to-end chemical orientation of an oligonucleotide based on the chemical convention of numbering of carbon atoms in the sugar moiety meaning that there will be a 5′-end defined by the 5′ carbon of the sugar moiety, and a 3′-end defined by the 3′ carbon of the sugar moiety. In a duplex or double stranded oligonucleotide, the respective strands run in opposite 5′ to 3′ directions to permit base pairing between them.


As used herein, “duplex” means two or more complementary strand regions, or strands, of an oligonucleotide or oligonucleotides, hybridized together by way of non-covalent, sequence-specific interaction therebetween. Most commonly, the hybridization in the duplex will be between nucleobases adenine (A) and thymine (T), and/or (A) adenine and uracil (U), and/or guanine (G) and cytosine (C). The duplex may be part of a single stranded structure, wherein self-complementarity leads to hybridization, or as a result of hybridization between respective strands in a double stranded construct.


As used herein, “double strand” or “double stranded” means a pair of oligomeric compounds that are hybridized to one another. In certain embodiments, a double-stranded oligomeric compound comprises a first and a second oligomeric compound.


As used herein, “expression” means the process by which a gene ultimately results in a protein. Expression includes, but is not limited to, transcription, post-transcriptional modification (e.g., splicing, polyadenlyation, addition of 5′-cap), and translation.


As used herein, “transcription” or “transcribed” refers to the first of several steps of DNA based gene expression in which a target sequence of DNA is copied into RNA (especially mRNA) by the enzyme RNA polymerase. During transcription, a DNA sequence is read by an RNA polymerase, which produces a complementary, antiparallel RNA sequence called a primary transcript.


As used herein, “target sequence” means a sequence to which an oligomeric compound is intended to hybridize to result in a desired activity with respect to PCSK9 expression. Oligonucleotides have sufficient complementarity to their target sequences to allow hybridization under physiological conditions.


As used herein, “nucleobase complementarity” or “complementarity” when in reference to nucleobases means a nucleobase that is capable of base pairing with another nucleobase. For example, in DNA, adenine (A) is complementary to thymine (T). For example, in RNA, adenine (A) is complementary to uracil (U). In both DNA and RNA, guanine (G) is complementary to cytosine (C). In certain embodiments, complementary nucleobase means a nucleobase of an oligomeric compound that is capable of base pairing with a nucleobase of its target sequence. For example, if a nucleobase at a certain position of an oligomeric compound is capable of hydrogen bonding with a nucleobase at a certain position of a target sequence, then the position of hydrogen bonding between the oligomeric compound and the target sequence is considered to be complementary at that nucleobase pair. Nucleobases comprising certain modifications may maintain the ability to pair with a counterpart nucleobase and thus, are still capable of nucleobase complementarity.


As used herein, “non-complementary” in reference to nucleobases means a pair of nucleobases that do not form hydrogen bonds with one another.


As used herein, “complementary” in reference to oligomeric compounds (e.g., linked nucleosides, oligonucleotides) means the capacity of such oligomeric compounds or regions thereof to hybridize to a target sequence, or to a region of the oligomeric compound itself, through nucleobase complementarity.


Complementary oligomeric compounds need not have nucleobase complementarity at each nucleoside. Rather, some mismatches are tolerated. In certain embodiments, complementary oligomeric compounds or regions are complementary at 70% of the nucleobases (70% complementary). In certain embodiments, complementary oligomeric compounds or regions are 80%> complementary. In certain embodiments, complementary oligomeric compounds or regions are 90%> complementary. In certain embodiments, complementary oligomeric compounds or regions are at least 95% complementary. In certain embodiments, complementary oligomeric compounds or regions are 100% complementary.


As used herein, “self-complementarity” in reference to oligomeric compounds means a compound that may fold back on itself, creating a duplex as a result of nucleobase hybridization of internal complementary strand regions. Depending on how close together and/or how long the strand regions are, then the compound may form hairpin loops, junctions, bulges or internal loops.


As used herein, “mismatch” means a nucleobase of an oligomeric compound that is not capable of pairing with a nucleobase at a corresponding position of a target sequence, or at a corresponding position of the oligomeric compound itself when the oligomeric compound hybridizes as a result of self-complementarity, when the oligomeric compound and the target sequence and/or self-complementary regions of the oligomeric compound, are aligned. As used herein, “hybridization” means the pairing of complementary oligomeric compounds (e.g., an oligomeric compound and its target sequence). While not limited to a particular mechanism, the most common mechanism of pairing involves hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleobases.


As used herein, “specifically hybridizes” means the ability of an oligomeric compound to hybridize to one nucleic acid site with greater affinity than it hybridizes to another nucleic acid site.


As used herein, “fully complementary” in reference to an oligomeric compound or region thereof means that each nucleobase of the oligomeric compound or region thereof is capable of pairing with a nucleobase of a complementary nucleic acid target sequence or a self-complementary region of the oligomeric compound. Thus, a fully complementary oligomeric compound or region thereof comprises no mismatches or unhybridized nucleobases with respect to its target sequence or a self-complementary region of the oligomeric compound.


As used herein, “percent complementarity” means the percentage of nucleobases of an oligomeric compound that are complementary to an equal-length portion of a target nucleic acid. Percent complementarity is calculated by dividing the number of nucleobases of the oligomeric compound that are complementary to nucleobases at corresponding positions in the target nucleic acid by the total length of the oligomeric compound.


As used herein, “percent identity” means the number of nucleobases in a first nucleic acid that are the same type (independent of chemical modification) as nucleobases at corresponding positions in a second nucleic acid, divided by the total number of nucleobases in the first nucleic acid.


As used herein, “modulation” means a change of amount or quality of a molecule, function, or activity when compared to the amount or quality of a molecule, function, or activity prior to modulation. For example, modulation includes the change, either an increase (stimulation or induction) or a decrease (inhibition or reduction) in gene expression.


As used herein, “type of modification” in reference to a nucleoside or a nucleoside of a “type” means the chemical modification of a nucleoside and includes modified and un-modified nucleosides. Accordingly, unless otherwise indicated, a “nucleoside having a modification of a first type” may be an unmodified nucleoside.


As used herein, “differently modified” mean chemical modifications or chemical substituents that are different from one another, including absence of modifications. Thus, for example, a MOE nucleoside and an unmodified naturally occurring RNA nucleoside are “differently modified,” even though the naturally occurring nucleoside is unmodified. Likewise, DNA and RNA oligonucleotides are “differently modified,” even though both are naturally-occurring unmodified nucleosides. Nucleosides that are the same but for comprising different nucleobases are not differently modified. For example, a nucleoside comprising a 2′-OMe modified sugar moiety and an unmodified adenine nucleobase and a nucleoside comprising a 2′-OMe modified sugar moiety and an unmodified thymine nucleobase are not differently modified.


As used herein, “the same type of modifications” refers to modifications that are the same as one another, including absence of modifications. Thus, for example, two unmodified RNA nucleosides have “the same type of modification,” even though the RNA nucleosides are unmodified. Such nucleosides having the same type modification may comprise different nucleobases.


As used herein, “region” or “regions”, or “portion” or “portions”, mean a plurality of linked nucleosides that have a function or character as defined herein, in particular with reference to the claims and definitions as provided herein. Typically such regions or portions comprise at least 10, at least 11, at least 12 or at least 13 linked nucleosides. For example, such regions can comprise 13 to 20 linked nucleosides, such as 13 to 16 or 18 to 20 linked nucleosides. Typically a first region as defined herein consists essentially of 18 to 20 nucleosides and a second region as defined herein consists essentially of 13 to 16 linked nucleosides.


As used herein, “pharmaceutically acceptable carrier or diluent” means any substance suitable for use in administering to an animal. In certain embodiments, a pharmaceutically acceptable carrier or diluent is sterile saline. In certain embodiments, such sterile saline is pharmaceutical grade saline.


As used herein, “substituent” and “substituent group,” means an atom or group that replaces the atom or group of a named parent compound. For example a substituent of a modified nucleoside is any atom or group that differs from the atom or group found in a naturally occurring nucleoside (e.g., a modified 2′-substituent is any atom or group at the 2 ′-position of a nucleoside other than H or OH). Substituent groups can be protected or unprotected. In certain embodiments, compounds of the present disclosure have substituents at one or at more than one position of the parent compound. Substituents may also be further substituted with other substituent groups and may be attached directly or via a linking group such as oxygen or an alkyl or hydrocarbyl group to a parent compound.


Such substituents can be present as the modification on the sugar moiety, in particular a substituent present at the 2′-position of the sugar moiety. Unless otherwise indicated, groups amenable for use as substituents include without limitation, one or more of halo, hydroxyl, alkyl, alkenyl, alkynyl, acyl, carboxyl, alkoxy, alkoxyalkylene and amino substituents. Certain substituents as described herein can represent modifications directly attached to a ring of a sugar moiety (such as a halo, such as fluoro, directly attached to a sugar ring), or a modification indirectly linked to a ring of a sugar moiety by way of an oxygen linking atom that itself is directly linked to the sugar moiety (such as an alkoxyalkylene, such as methoxyethylene, linked to an oxygen atom, overall providing an MOE substituent as described herein attached to the 2′-position of the sugar moiety).


As used herein, “alkyl,” as used herein, means a saturated straight or branched monovalent C1-6 hydrocarbon radical, with methyl being a most advantageous alkyl as a substituent at the 2′-position of the sugar moiety. The alkyl group typically attaches to an oxygen linking atom at the 2′poisition of the sugar, therefore, overall providing a —Oalkyl substituent, such as an —OCH3 substituent, on a sugar moiety of an oligomeric compound as described herein. This will be well understood be a person skilled in the art.


As used herein, “alkylene” means a saturated straight or branched divalent hydrocarbon radical of the general formula —CnH2n— where n is 1-6. Advantageously the alkylenes are methylene or ethylene.


As used herein, “alkenyl” means a straight or branched unsaturated monovalent C2-6 hydrocarbon radical, with ethenyl or propenyl being most advantageous alkenyls as a substituent at the 2′-position of the sugar moiety. As will be well understood in the art, the degree of unsaturation that is present in an alkenyl radical is the presence of at least one carbon to carbon double bond. The alkenyl group typically attaches to an oxygen linking atom at the 2′-position of the sugar, therefore, overall providing a —Oalkenyl substituent, such as an —OCH2CH═CH2 substituent, on a sugar moiety of an oligomeric compound as described herein. This will be well understood be a person skilled in the art.


As used herein, “alkynyl” means a straight or branched unsaturated C2-6 hydrocarbon radical, with ethynyl being a most advantageous alkynyl as a substituent at the 2′-position of the sugar moiety. As will be well understood in the art, the degree of unsaturation that is present in an alkynyl radical is the presence of at least one carbon to carbon triple bond. The alkynyl group typically attaches to an oxygen linking atom at the 2′-position of the sugar, therefore, overall providing a —Oalkynyl substituent on a sugar moiety of an oligomeric compound as described herein. This will be well understood be a person skilled in the art.


As used herein, “carboxyl” is a radical having a general formula —CO2H.


As used herein, “acyl” means a radical formed by removal of a hydroxyl group from a carboxyl radical as defined herein and has the general Formula —C(O)—X where X is typically C1-6 alkyl. As used herein, “alkoxy” means a radical formed between an alkyl group, such as a C1-6 alkyl group, and an oxygen atom wherein the oxygen atom is used to attach the alkoxy group either to a parent molecule (such as at the 2′-position of a sugar moiety), or to another group such as an alkylene group as defined herein. Examples of alkoxy groups include without limitation, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, sec-butoxy and tert-butoxy. Alkoxy groups as used herein may optionally include further substituent groups.


As used herein, alkoxyalkylene means an alkoxy group as defined herein that is attached to an alkylene group also as defined herein, and wherein the oxygen atom of the alkoxy group attaches to the alkylene group and the alkylene attaches to a parent molecule. The alkylene group typically attaches to an oxygen linking atom at the 2′-position of the sugar, therefore, overall providing a —Oalkylenealkoxy substituent, such as an —OCH2CH2OCH3 substituent, on a sugar moiety of an oligomeric compound as described herein. This will be well understood by a person skilled in the art and is generally referred to as an MOE substituent as defined herein and as known in the art.


As used herein, “amino” includes primary, secondary and tertiary amino groups.


As used herein, “halo” and “halogen,” mean an atom selected from fluorine, chlorine, bromine and iodine.


As used herein, the term “mxRNA” is in particular understood as defined in WO 2020/044186 A2 which is incorporated by reference herein in its entirety.


It will also be understood that oligomeric compounds as described herein may have one or more non-hybridizing nucleosides at one or both ends of one or both strands (overhangs) and/or one or more internal non-hybridizing nucleosides (mismatches) provided there is sufficient complementarity to maintain hybridization under physiologically relevant conditions.


Alternatively, oligomeric compounds as described herein may be blunt ended at at least one end.


The term “comprising” is used herein to mean including the method steps or elements identified, but that such steps or elements do not comprise an exclusive list and as such there may be present additional steps or elements.


Further, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.


The following items are provided:


1. An oligomeric compound capable of inhibiting expression of PCSK9, wherein the compound comprises at least a first region of linked nucleosides having at least a first nucleobase sequence that is at least partially complementary to at least a portion of RNA transcribed from a PCSK9 gene, wherein the first nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 1 to 250, or SEQ ID NOs 501 to 543, wherein the portion advantageously has a length of at least 18 nucleotides.


The first region is also referred to as antisense region, and the second region is also referred to as sense region. As disclosed in specific embodiments below, the two regions may be located on the same strand, advantageously in an adjacent manner. This gives rise to hairpin molecules, also referred to as mxRNAs. On the other hand, the two regions may be located on separate strands which gives rise to double-stranded RNAs (dsRNAs), wherein advantageously each strand consists of the respective region.


Moreover, the regions may serve as building blocks for muRNAs (see above). In other words, the first and the second region as defined herein may be used, in accordance with the following definition of muRNAs, as first and third regions, respectively:


A nucleic acid construct (muRNA) comprising at least:

    • (a) a first nucleic acid portion that is at least partially complementary to at least a first portion of an RNA which is transcribed from a PCSK9 gene;
    • (b) a second nucleic acid portion that is at least partially complementary to at least a second portion of an RNA which is transcribed from another gene;
    • (c) a third nucleic acid portion that is at least partially complementary to the first nucleic acid portion of (a), so as to form a first nucleic acid duplex region therewith;
    • (d) a fourth nucleic acid portion that is at least partially complementary to the second nucleic acid portion of (b), so as to form a second nucleic acid duplex region therewith.


Specific embodiments of and further aspects relating to muRNAs are disclosed in WO 2020/065602.


2. The oligomeric compound according to item 1, which further comprises at least a second region of linked nucleosides having at least a second nucleobase sequence that is at least partially complementary to the first nucleobase sequence and is selected from the following sequences, or a portion thereof: SEQ ID NOs 251 to 500, or SEQ ID NOs 544 to 586, wherein the portion advantageously has a length of at least 11 nucleotides.


3. The oligomeric compound according to item 1 or 2, wherein the first nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 13, 31, 76, 127, 55, 29, 28, 53, 44, 49, 58, 94, 52, 57, 43, 36, 21, 35, 232, 87, 48, 139, 46, 233, 34, 100, and 77.


4. The oligomeric compound according to item 3, wherein the second nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 263, 281, 326, 377, 305, 279, 278, 303, 294, 299, 308, 344, 302, 307, 293, 286, 271, 285, 482, 337, 298, 389, 296, 483, 284, 350, and 327, and wherein the portion is advantageously 14 nucleosides long and lacks the 5′-terminal nucleobase as set forth in the SEQ ID NOs.


5. The oligomeric compound according to any of items 1 to 4, wherein the first nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 29, 44, 46, 52, 53, 55, and 57; advantageously SEQ ID NOs: 29, 44, 53 and 57, more advantageously SEQ ID NO: 29.


This embodiments defines antisense nucleobase sequences which provide for surprisingly outstanding performance. For evidence, reference is made to the Examples.


6. The oligomeric compound according to item 5, wherein the second nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 279, 294, 296, 302, 303, 305, and 307, advantageously SEQ ID NOs: 279, 294, 303 and 307, more advantageously SEQ ID NO: 279, and wherein the portion is advantageously 14 nucleosides long and lacks the 5′-terminal nucleobase as set forth in the SEQ ID NOs.


7. The oligomeric compound according to any of items 1 to 6, wherein the first region of linked nucleosides consists essentially of 18 to 35, advantageously 18 to 20, more advantageously 18 or 19, and yet more advantageously 19 linked nucleosides.


8. The oligomeric compound according to any of items 2 to 7, wherein the second region of linked nucleosides consists essentially of 11 to 35, advantageously 11 to 20, more advantageously 13 to 16, and yet more advantageously 14 or 15, most advantageously 14 linked nucleosides.


9. The oligomeric compound according to any of items 2 to 8, which comprises at least one complementary duplex region that comprises at least a portion of the first nucleoside region directly or indirectly linked to at least a portion of the second nucleoside region, wherein advantageously the duplex region has a length of 11 to 19, more advantageously 14 to 19, and yet more advantageously 14 or 15 base pairs, most advantageously 14 base pairs, wherein optionally there is one mismatch within the duplex region.


10. The oligomeric compound according to item 9, wherein each of the first and second nucleoside regions has a 5′ to 3′ directionality thereby defining 5′ and 3′ regions respectively thereof.


11. The oligomeric compound according to item 10, wherein the 5′ region of the first nucleoside region is directly or indirectly linked to the 3′ region of the second nucleoside region, for example by complementary base pairing, and/or wherein the 3′ region of the first nucleoside region is directly or indirectly linked to the 5′ region of the second nucleoside region, wherein advantageously the 5′ terminal nucleoside of the first nucleoside region base pairs with the 3′ terminal nucleoside of the second nucleoside region.


12. The oligomeric compound according to any of items 1 to 11, which further comprises one or more ligands.


13. The oligomeric compound according to item 12, wherein the one or more ligands are conjugated to the second nucleoside region and/or the first nucleoside region.


14. The oligomeric compound according to item 13, as dependent on item 10, wherein the one or more ligands are conjugated at the 3′ region, advantageously to the 3′ end of the second nucleoside region and/or of the first nucleoside region, and/or to the 5′ end of the second nucleoside region.


15. The oligomeric compound according to any of items 12 to 14, wherein the one or more ligands are any cell directing moiety, such as lipids, carbohydrates, aptamers, vitamins and/or peptides that bind cellular membrane or a specific target on cellular surface.


16. The oligomeric compound according to item 15, wherein the one or more ligands comprise one or more carbohydrates.


17. The oligomeric compound according to item 16, wherein the one or more carbohydrates can be a monosaccharide, disaccharide, trisaccharide, tetrasaccharide, oligosaccharide or polysaccharide.


18. The oligomeric compound according to item 17, wherein the one or more carbohydrates comprise or consist of one or more hexose moieties.


19. The oligomeric compound according to item 18, wherein the one or more hexose moieties are one or more galactose moieties, one or more lactose moieties, one or more N-Acetyl-Galactosamine moieties, and/or one or more mannose moieties.


20. The oligomeric compound according to item 19, wherein the one or more carbohydrates comprise one or more N-Acetyl-Galactosamine moieties.


21. The oligomeric compound according to item 20, which comprises two or three N-Acetyl-Galactosamine moieties, advantageously three.


22. The oligomeric compound according to any of items 12 to 21, wherein the one or more ligands are attached to the oligomeric compound, advantageously to the second nucleoside region thereof, in a linear configuration, or in a branched configuration.


23. The oligomeric compound according to item 22, wherein the one or more ligands are attached to the oligomeric compound as a biantennary or triantennary configuration.


24. The oligomeric compound according to any one of items 1 to 23, wherein the compound consists of the first region of linked nucleosides and the second region of linked nucleosides. Each of the regions may constitute a separate strand, thereby giving rise to a double-stranded RNA (dsRNA). Particularly advantageous dsRNAs are those with a length of the first strand of 19 nucleosides and a length of the second region of 14 or 15, advantageously 14 nucleosides. When used for defining the length of a region or strand, the terms “nucleoside” and “nucleotide” (sometimes abbreviated “nt”) are used equivalently.


25. The oligomeric compound according to any one of items 9 to 24, wherein the oligomeric compound comprises a single strand comprising the first and second nucleoside regions, wherein the single strand dimerises whereby at least a portion of the first nucleoside region is directly or indirectly linked to at least a portion of the second nucleoside region so as to form the at least partially complementary duplex region.


The term “dimerise” in relation to the embodiment above refers to the formation of intramolecular base pairs between first and second region.


26. The oligomeric compound according to item 25, wherein the first nucleoside region has a greater number of linked nucleosides compared to the second nucleoside region, whereby the additional number of linked nucleosides of the first nucleoside region form a hairpin loop linking the first and second nucleoside regions.


Such compounds are also referred to as hairpins or mxRNAs herein.


27. The oligomeric compound according to item 26, as dependent on claim 10, whereby the hairpin loop is present at the 3′ region of the first nucleoside region, and/or wherein the hairpin loop comprises 4 or 5 linked nucleosides.


Particularly advantageous is a length of the first region of 19 nucleosides, of the second region of 14 nucleotides, and of the hairpin loop of 5 nucleotides, wherein the 5 nucleotides in the hairpin are the 5 3′-terminal nucleosides of the first region. Such molecular architecture of a hairpin or mxRNA is also designated “14-5-14” herein.


28. The oligomeric compound according to item 26 or 27, the compound has a nucleobase sequence selected from SEQ ID NOs: 587 to 590, and advantageously is selected from Table 6.


29. The oligomeric compound according to any of items 1 to 28, which comprises internucleoside linkages and wherein at least one internucleoside linkage is a modified internucleoside linkage.


Specific modified internucleoside linkages are the subject of the specific embodiments which follow. Certain modified internucleoside linkages are known in the art and described in, for example, Hu et al., Signal Transduction and Targeted Therapy (2020)5:101.


30. The oligomeric compound according to item 29, wherein the modified inter-nucleoside linkage is a phosphorothioate or phosphorodithioate internucleoside linkage.


31. The oligomeric compound according to item 30, which comprises 1 to 15 phosphorothioate or phosphorodithioate internucleoside linkages.


32. The oligomeric compound according to item 31, which comprises 7, 8, 9 or 10 phosphorothioate or phosphorodithioate internucleoside linkages.


33. The oligomeric compound according to any of items 30 to 32, as dependent on item 10, which comprises one or more phosphorothioate or phosphorodithioate internucleoside linkages at the 5′ region of the first nucleoside region.


34. The oligomeric compound according to any of items 30 to 33, as dependent on item 10, which comprises one or more phosphorothioate or phosphorodithioate internucleoside linkages at the 5′ region of the second nucleoside region.


35. The oligomeric compound according to any of items 30 to 34, as dependent on item 26, which comprises phosphorothioate or phosphorodithioate internucleoside linkages between at least two, advantageously at least three, advantageously at least four, advantageously at least five, adjacent nucleosides of the hairpin loop, dependent on the number of nucleotides present in the hairpin loop.


36. The oligomeric compound according to item 35, which comprises a phosphorothioate or phosphorodithioate internucleoside linkage between each adjacent nucleoside that is present in the hairpin loop.


37. The oligomeric compound according to any of items 1 to 36, wherein at least one nucleoside comprises a modified sugar.


Specific modified sugars are subject of the embodiments which follow. Certain modified sugars are known in the art and described in, for example, Hu et al., Signal Transduction and Targeted Therapy (2020)5:101.


38. The oligomeric compound according to item 37, wherein the modified sugar is selected from 2′ modified sugars, locked nucleic acid (LNA) sugar, (S)-constrained ethyl bicyclic nucleic acid sugar, tricyclo-DNA sugar, morpholino, unlocked nucleic acid (UNA) sugar, and glycol nucleic acid (GNA) sugar.


39. The oligomeric compound according to item 38, wherein the 2′ modified sugar is selected from 2′-O-methyl modified sugar, 2′-O-methoxyethyl modified sugar, 2′-F modified sugar, 2′-arabino-fluoro modified sugar, 2′-O-benzyl modified sugar, and 2′-O-methyl-4-pyridine modified sugar.


40. The oligomeric compound according to item 39, wherein at least one modified sugar is a 2′-O-methyl modified sugar.


41. The oligomeric compound according to item 39 or 40, wherein at least one modified sugar is a 2′-F modified sugar.


42. The oligomeric compound of item 40 or 41, wherein the sugar is ribose.


43. The oligomeric compound according to any of items 40 to 42, as dependent on item 10, wherein sugars of the nucleosides at any of positions 2 and 14 downstream from the first nucleoside of the 5′ region of the first nucleoside region, do not contain 2′-O-methyl modifications.


44. The oligomeric compound according to any of items 40 to 43, as dependent on item 10, wherein sugars of the nucleosides of the second nucleoside region, that correspond in position to any of the nucleosides of the first nucleoside region at any of positions 9 to 11 downstream from the first nucleotide of the 5′ region of the first nucleoside region, do not contain 2′-O-methyl modifications.


45. The oligomeric compound of any one of items 40 to 44, wherein the 3′ terminal position of the second nucleoside region does not contain a 2′-O-methyl modification.


46. The oligomeric compound according to item 44 or 45, wherein sugars of the nucleosides at any of positions 2 and 14 downstream from the first nucleoside of the 5′ region of the first nucleoside region, contain 2′-F modifications.


47. The oligomeric compound according to any of items 44 to 46, wherein sugars of the nucleosides of the second nucleoside region, that correspond in position to any of the nucleosides of the first nucleoside region at any of positions 9 to 11 downstream from the first nucleoside of the 5′ region of the first nucleoside region, contain 2′-F modifications.


48. The oligomeric compound of item 46 or 47, wherein the 3′ terminal position of the second nucleoside region contains a 2′-F modification.


49. The oligomeric compound according to any of items 42 to 48, as dependent on item 10, wherein one or more of the odd numbered nucleosides starting from the 5′ region of the first nucleoside region are modified, and/or wherein one or more of the even numbered nucleotides starting from the 5′ region of the first nucleoside region are modified, wherein typically the modification of the even numbered nucleotides is a second modification that is different from the modification of odd numbered nucleotides.


50. The oligomeric compound according to item 49, wherein one or more of the odd numbered nucleosides starting from the 3′ region of the second nucleoside region are modified by a modification that is different from the modification of odd numbered nucleosides of the first nucleoside region.


51. The oligomeric compound according to item 49 or 50, wherein one or more of the even numbered nucleosides starting from the 3′ region of the second nucleoside region are modified by a modification that is different from the modification of even numbered nucleosides of the first nucleoside region according to item 53.


52. The oligomeric compound according to any of items 49 to 51, wherein at least one or more of the modified even numbered nucleosides of the first nucleoside region is adjacent to at least one or more of the differently modified odd numbered nucleosides of the first nucleoside region.


53. The oligomeric compound according to any of items 49 to 52, wherein at least one or more of the modified even numbered nucleosides of the second nucleoside region is adjacent to at least one or more of the differently modified odd numbered nucleosides of the second nucleoside region.


54. The oligomeric compound according to any of items 49 to 53, wherein sugars of one or more of the odd numbered nucleosides starting from the 5′ region of the first nucleoside region are 2′-O-methyl modified sugars.


55. The oligomeric compound according to any of items 49 to 54, wherein one or more of the even numbered nucleosides starting from the 5′ region of the first nucleoside region are 2′-F modified sugars.


56. The oligomeric compound according to any of items 49 to 55, wherein sugars of one or more of the odd numbered nucleosides starting from the 3′ region of the second nucleoside region are 2′-F modified sugars.


57. The oligomeric compound according to any of items 49 to 56, wherein one or more of the even numbered nucleosides starting from the 3′ region of the second nucleoside region are 2′-O-methyl modified sugars.


58. The oligomeric compound according to any of items 37 to 57, wherein sugars of a plurality of adjacent nucleosides of the first nucleoside region are modified by a common modification.


59. The oligomeric compound according to any of items 37 to 58, wherein sugars of a plurality of adjacent nucleosides of the second nucleoside region are modified by a common modification.


60. The oligomeric compound according to any of items 49 to 59, as dependent on item 26, wherein sugars of a plurality of adjacent nucleosides of the hairpin loop are modified by a common modification.


61. The oligomeric compound according to any of items 58 to 60, wherein the common modification is a 2′-F modified sugar.


62. The oligomeric compound according to any of items 58 to 60, wherein the common modification is a 2′-O-methyl modified sugar.


63. The oligomeric compound according to item 62, wherein the plurality of adjacent 2′-O-methyl modified sugars are present in at least eight adjacent nucleosides of the first and/or second nucleoside regions.


64. The oligomeric compound according to item 62, wherein the plurality of adjacent 2′-O-methyl modified sugars are present in three or four adjacent nucleosides of the hairpin loop.


65. The oligomeric compound according to item 37, as dependent on item 26, wherein the hairpin loop comprises at least one nucleoside having a modified sugar.


66. The oligomeric compound according to item 66, wherein the at least one nucleoside is adjacent a nucleoside with a differently modified sugar.


67. The oligomeric compound according to item 66, wherein the modified sugar is a 2′-O-methyl modified sugar, and the differently modified sugar is a 2′-F modified sugar.


68. The oligomeric compound according to any of items 1 to 67, which comprises one or more nucleosides having an un-modified sugar moiety.


69. The oligomeric compound according to item 68, wherein the unmodified sugar is present in the 5′ region of the second nucleoside region.


70. The oligomeric compound according to item 68 or 69, as dependent on item 26, wherein the unmodified sugar is present in the hairpin loop.


71. The oligomeric compound according to any of items 1 to 70, wherein one or more nucleosides of the first nucleoside region and/or the second nucleoside region is an inverted nucleoside and is attached to an adjacent nucleoside via the 3′ carbon of its sugar and the 3′ carbon of the sugar of the adjacent nucleoside, and/or one or more nucleosides of the first nucleoside region and/or the second nucleoside region is an inverted nucleoside and is attached to an adjacent nucleoside via the 5′ carbon of its sugar and the 5′ carbon of the sugar of the adjacent nucleoside.


72. The oligomeric compound according to any of items 1 to 71, which is blunt ended.


73. The oligomeric compound according to any of items 1 to 71, wherein either the first or second nucleoside region has an overhang.


74. The oligomeric compound according to any one of the preceding items, wherein the first region of linked nucleotides is selected from Table 2b or Table 3b, advantageously from Table 1a, more advantageously from Table 5.


75. The oligomeric compound according to any one of the preceding items, wherein the second region of linked nucleotides is selected from Table 2d or Table 3d, advantageously from Table 1 b, more advantageously from Table 5.


76. A composition comprising an oligomeric compound according to any of items 1 to 75, and a physiologically acceptable excipient.


77. A pharmaceutical composition comprising an oligomeric compound according to any of items 1 to 75.


78. The pharmaceutical composition of item 77, further comprising a pharmaceutically acceptable excipient, diluent, antioxidant, and/or preservative.


79. The pharmaceutical composition of item 77 or 78, wherein the oligomeric compound is the only pharmaceutically active agent.


80. The pharmaceutical composition of item 79, wherein the pharmaceutical composition is to be administered to patients or individuals which are statin-intolerant and/or for whom statins are contraindicated.


81. The pharmaceutical composition of item 77 or 78, wherein the pharmaceutical composition furthermore comprises one or more further pharmaceutically active agents.


82. The pharmaceutical composition of item 81, wherein the further pharmaceutically active agent(s) is/are a further oligomeric compound which is directed to a target different from PCSK9 and/or a lipid-lowering agent distinct from the oligomeric compound, wherein the lipid-lowering agent is advantageously a statin or ezetimib.


83. The pharmaceutical composition of item 81 or 82, wherein the oligomeric compound and the further pharmaceutically active agent(s) are to be administered concomitantly or in any order.


84. An oligomeric compound according to any of items 1 to 75, for use in human or veterinary medicine or therapy.


85. An oligomeric compound according to any of items 1 to 75, for use in a method of treating a disease or disorder.


86. The compound for use of item 85, wherein the disease or disorder is a PCSK9-associated disease or disorder, or a disease or disorder requiring reduction of low-density lipoprotein (LDL) cholesterol, the disease or disorder advantageously being selected from dyslipidemia including mixed dyslipidemia, hypercholesterolemia, heterozygous familial hypercholesterolemia, non-familial hypercholesterolemia; atherosclerosis; and atherosclerotic cardiovascular disease (ASCVD) including myocardial infarction, stroke and peripheral arterial disease.


87. A method of treating a disease or disorder comprising administration of an oligomeric compound according to any of items 1 to 75, to an individual in need of treatment.


88. The method according to item 87, wherein the oligomeric compound is administered subcutaneously or intravenously to the individual.


89. Use of an oligomeric compound according to any of items 1 to 75, for use in research as a gene function analysis tool.


The following Tables show nucleobase sequences of antisense and sense strands of oligomeric compounds as described herein, and definitions of antisense and sense strands of modified oligomeric compounds (the notation including nucleobase sequence, sugar modifications, and, where applicable, modified phosphates).


The notation used is common in the art and as the following meaning:


A represents adenine;


U represents uracil;


C represents cytosine;


G represents guanine.


P represents a terminal phosphate group;


m represents a methyl modification at the 2′ position of the sugar of the underlying nucleoside;


f represents a fluoro modification at the 2′ position of the sugar of the underlying nucleoside.


r indicates an unmodified (2′-OH) ribonucleotide;


(ps) or # or * represents a phosphorothioate inter-nucleoside linkage;


i represents an inverted inter-nucleoside linkage, which can be either 3′-3′, or 5′-5′;


vp represents vinyl phosphonate;


mvp represents methyl vinyl phosphonate;


3xGaINAc or Mono-Galnac-PAHMono-Galnac-PAHMono-Galnac-PA/ represents a trivalent GaINAc, advantageously a “toothbrush” moiety as disclosed herein.


Sometimes, nucleoside are in square brackets for better reading. They do not indicate structural elements or modifications.


To the extent displayed, the presence of a 5′-terminal phosphate (“P”) is optional. On the other hand, to the extent a 5′-terminal phosphate is not displayed, its presence is optional as well. Generally, there is no requirement for a 5′-terminal phosphate in compounds to be administered to mammalian cells, since a mammalian kinase would add a 5′-terminal phosphate in case of its absence.


In Example 2, the nucleobase sequences of antisense and sense strands of 27 specific oligomeric compounds as described herein are given. These are also the subject of specific embodiments disclosed further above. For antisense sequences, the construct number coincides with the SEQ ID NO in the attached sequence listing. For sense sequences, the number of the corresponding entry in the sequence listing is construct number ±250.


Tables 1a and 1 b below shows the sugar-phosphate backbone modifications of the antisense and sense strands of the 27 constructs.











TABLE 1a






SEQ




ID



ID
NO:
Antisense strand modified







P44as
591
[mU][#][mC][#][mU][mU][mC][mA][mA][mG][mU][mU][mA][mC][mA][fA][#]mA[#]mA[#]mG[#]mC[#]rA





P46as
592
[mU][#][mA][#][mA][mA][mA][mG][mC][mA][mA][mA][mA][mC][mA][fG][#]mG[#]mU[#]mC[#]mU[#]rA





P53as
593
[mU][#][mA][#][mC][mA][mA][mA][mA][mG][mC][mA][mA][mA][mA][fC][#]mA[#]mG[#]mG[#]mU[#]rC





P29as
594
[mU][#][mG][#][mC][mA][mA][mA][mA][mC][mA][mG][mG][mU][mC][fU][#]mA[#]mG[#]mA[#]mA[#]rA





P57as
595
[mU][#][mC][#][mA][mA][mA][mA][mG][mC][mA][mA][mA][mA][mC][fA][#]mG[#]mG[#]mU[#]mC[#]rU





P52as
596
[mU][#][mA][#][mG][mA][mA][mU][mA][mA][mA][mU][mA][mU][mC][fU][#]mU[#]mC[#]mA[#]mA[#]rG





P55as
597
[mU][#][mA][#][mA][mA][mG][mC][mA][mA][mA][mA][mC][mA][mG][fG][#]mU[#]mC[#]mU[#]mA[#]rG





P232as
598
[mU][#][mU][#][mC][mU][mU][mC][mA][mA][mG][mU][mU][mA][mC][fA][#]mA[#]mA[#]mA[#]mG[#]rC





P58as
599
[mU][#][mC][#][mA][mA][mG][mU][mU][mA][mC][mA][mA][mA][mA][fG][#]mC[#]mA[#]mA[#]mA[#]rA





P36as
600
[mU][#][mC][#][mA][mA][mA][mA][mC][mA][mG][mG][mU][mC][mU][fA][#]mG[#]mA[#]mA[#]mA[#]rA





P49as
601
[mU][#][mA][#][mU][mA][mA][mA][mU][mA][mU][mC][mU][mU][mC][fA][#]mA[#]mG[#]mU[#]mU[#]rA





P233as
602
[mU][#][mU][#][mU][mA][mC][mA][mA][mA][mA][mG][mC][mA][mA][fA][#]mA[#]mC[#]mA[#]mG[#]rG





P48as
603
[mU][#][mG][#][mU][mG][mA][mC][mA][mC][mA][mA][mA][mG][mC][fA][#]mG[#]mG[#]mU[#]mG[#]rC





P28as
604
[mU][#][mU][#][mU][mC][mA][mA][mG][mU][mU][mA][mC][mA][mA][fA][#]mA[#]mG[#]mC[#]mA[#]rA





P34as
605
[mU][#][mA][#][mA][mA][mU][mA][mU][mC][mU][mU][mC][mA][mA][fG][#]mU[#]mU[#]mA[#]mC[#]rA





P31as
606
[mU][#][mA][#][mU][mA][mA][mA][mU][mG][mU][mC][mU][mG][mC][fU][#]mU[#]mG[#]mC[#]mU[#]rU





P13as
607
[mU][#][mC][#][mC][mG][mA][mA][mU][mA][mA][mA][mC][mU][mC][fC][#]mA[#]mG[#]mG[#]mC[#]rC





P35as
608
[mU][#][mG][#][mG][mA][mA][mC][mC][mA][mU][mU][mU][mU][mA][fA][#]mA[#]mG[#]mC[#]mU[#]rC





P43as
609
[mU][#][mC][#][mC][mA][mG][mA][mA][mU][mA][mA][mA][mU][mA][fU][#]mC[#]mU[#]mU[#]mC[#]rA





P127as
610
[mU][#][mA][#][mU][mA][mU][mC][mU][mU][mC][mA][mA][mG][mU][fU][#]mA[#]mC[#]mA[#]mA[#]rA





P100as
611
[mU][#][mC][#][mU][mC][mA][mG][mU][mU][mC][mC][mU][mG][mC][fU][#]mG[#]mU[#]mG[#]mU[#]rG





P76as
612
[mU][#][mC][#][mU][mA][mC][mA][mA][mA][mA][mC][mC][mC][mA][fG][#]mA[#]mA[#]mU[#]mA[#]rA





P139as
613
[mU][#][mC][#][mA][mA][mA][mA][mG][mA][mU][mA][mA][mA][mU][fG][#]mU[#]mC[#]mU[#]mG[#]rC





P21as
614
[mU][#][mU][#][mU][mC][mC][mG][mA][mA][mU][mA][mA][mA][mC][fU][#]mC[#]mC[#]mA[#]mG[#]rG





P87as
615
[mU][#][mC][#][mU][mG][mG][mC][mU][mC][mA][mG][mU][mU][mC][fC][#]mU[#]mG[#]mC[#]mU[#]rG





P77as
616
[mU][#][mC][#][mA][mG][mA][mC][mA][mG][mC][mA][mU][mC][mA][fU][#]mG[#]mG[#]mC[#]mU[#]rG





P94as
617
[mU][#][mG][#][mG][mG][mA][mU][mU][mC][mC][mA][mU][mG][mC][fU][#]mC[#]mC[#]mU[#]mU[#]rG


















TABLE 1b






SEQ



ID
ID NO:
Sense strand modified







P44s
618
[mu][#][fU][#][fG][fU][mA][mA][mC][mu][mu][mG][mA][mA][#][mG][#][mA][#][3XGalNac]





P46s
619
[mc][#][fU][#][fG][fU][mu][mu][mu][mG][mC][mu][mu][mU][#][mU][#][mA][#][3XGalNac]





P53s
620
[mG][#][fU][#][fU][fU][mu][mG][mC][mu][mu][mu][mu][mG][#][mU][#][mA][#][3XGalNac]





P29s
621
[mA][#][fG][#][fA][fC][mC][mu][mG][mu][mu][mu][mu][mG][#][mC][#][mA][#][3XGalNac]





P57s
622
[mu][#][fG][#][fU][fU][mu][mu][mG][mC][mu][mu][mu][mU][#][mG][#][mA][#][3XGalNac]





P52s
623
[mA][#][fG][#][fA][fU][mA][mu][mu][mu][mA][mu][mu][mC][#][mU][#][mA][#][3XGalNac]





P55s
624
[mc][#][fc][#][fU][fG][mu][mu][mu][mu][mG][mC][mu][mU][#][mU][#][mA][#][3XGalNac]





P232s
625
[mu][#][fG][#][fU][fA][mA][mC][mu][mu][mG][mA][mA][mG][#][mA][#][mA][#][3XGalNac]





P58s
626
[mc][#][fU][#][fU][fU][mu][mG][mu][mA][mA][mC][mu][mU][#][mG][#][mA][#][3XGalNac]





P36s
627
[mu][#][fA][#][fG][fA][mC][mC][mu][mG][mu][mu][mu][mU][#][mG][#][mA][#][3XGalNac]





P49s
628
[mu][#][fG][#][fA][fA][mG][mA][mu][mA][mu][mu][mu][mA][#][mU][#][mA][#][3XGalNac]





P233s
629
[mu][#][fU][#][fU][fG][mC][mu][mu][mu][mu][mG][mu][mA][#][mA][#][mA][#][3XGalNac]





P48s
630
[mu][#][fG][#][fC][fU][mu][mu][mG][mu][mG][mu][mC][mA][#][mC][#][mA][#][3XGalNac]





P28s
631
[mu][#][fU][#][fU][fG][mu][mA][mA][mC][mu][mu][mG][mA][#][mA][#][mA][#][3XGalNac]





P34s
632
[mc][#][fU][#][fU][fG][mA][mA][mG][mA][mu][mA][mu][mU][#][mU][#][mA][#][3XGalNac]





P31s
633
[mA][#][fG][#][fC][fA][mG][mA][mC][mA][mu][mu][mu][mA][#][mU][#][mA][#][3XGalNac]





P13s
634
[mG][#][fG][#][fA][fG][mu][mu][mu][mA][mu][mu][mC][mG][#][mG][#][mA][#][3XGalNac]





P35s
635
[mu][#][fU][#][fA][fA][mA][mA][mu][mG][mG][mu][mu][mC][#][mC][#][mA][#][3XGalNac]





P43s
636
[mA][#][fU][#][fA][fU][mu][mu][mA][mu][mu][mC][mu][mG][#][mG][#][mA][#][3XGalNac]





P127s
637
[mA][#][fA][#][fC][fU][mu][mG][mA][mA][mG][mA][mu][mA][#][mU][#][mA][#][3XGalNac]





P100s
638
[mA][#][fG][#][fC][fA][mG][mG][mA][mA][mC][mu][mG][mA][#][mG][#][mA][#][3XGalNac]





P76s
639
[mc][#][fU][#][fG][fG][mG][mu][mu][mu][mu][mG][mu][mA][#][mG][#][mA][#][3XGalNac]





P139s
640
[mc][#][fA][#][fU][fU][mu][mA][mu][mC][mu][mu][mu][mU][#][mG][#][mA][#][3XGalNac]





P21s
641
[mA][#][fG][#][fU][fU][mu][mA][mu][mu][mC][mG][mG][mA][#][mA][#][mA][#][3XGalNac]





P87s
642
[mG][#][fG][#][fA][fA][mC][mu][mG][mA][mG][mC][mC][mA][#][mG][#][mA][#][3XGalNac]





P77s
643
[mA][#][fU][#][fG][fA][mu][mG][mC][mu][mG][mu][mC][mU][#][mG][#][mA][#][3XGalNac]





P94s
644
[mA][#][fG][#][fC][fA][mu][mG][mG][mA][mA][mu][mC][mC][#][mC][#][mA][#][3XGalNac]









Tables 2a to 2d below show nucleobase sequences and sugar-phosphate backbone modifications of antisense and sense strands of the 250 constructs selected in accordance with Example 1. The above-disclosed 27 oligomeric compounds have been selected from these 250 constructs. The numbering in Table 2a coincides with the number of the corresponding entry in the sequence listing. For Table 2c the following applies: entry number in the sequence listing=entry number in the Table+250.










TABLE 2a





SEQ



ID NO:
250 antisense nucleobase sequences
















1
UGGCCUAUGAGGGUGCCGC





2
UGAAUAAACUCCAGGCCUA





3
UUAAACUCCAGGCCUAUGA





4
UCGAAUAAACUCCAGGCCU





5
UUCCGGCAGCAGAUGGCAA





6
UACUCCAGGCCUAUGAGGG





7
UCCUAUGAGGGUGCCGCUA





8
UAGGCCUAUGAGGGUGCCG





9
UUCCAGGCCUAUGAGGGUG





10
UGCUGGUCCUCAGGGAACC





11
UAAUAAACUCCAGGCCUAU





12
UCUGGAGCAGCUCAGCAGC





13
UCCGAAUAAACUCCAGGCC





14
UGGUCCUCAGGGAACCAGG





15
UUGGUCCUCAGGGAACCAG





16
UAUAAACUCCAGGCCUAUG





17
UCUCCAGGCCUAUGAGGGU





18
UCAGGCCUAUGAGGGUGCC





19
UGUCCUCAGGGAACCAGGC





20
UGCCUAUGAGGGUGCCGCU





21
UUUCCGAAUAAACUCCAGG





22
UGCAUGGCAGCAGGAAGCG





23
UGCUCCGGCAGCAGAUGGC





24
UGCCGGCUCCGGCAGCAGA





25
UUCCUCAGGGAACCAGGCC





26
UCUCCGGCAGCAGAUGGCA





27
UGCCACGUGGGCAGCAGCC





28
UUUCAAGUUACAAAAGCAA





29
UGCAAAACAGGUCUAGAAA





30
UACCCAGAAUAAAUAUCUU





31
UAUAAAUGUCUGCUUGCUU





32
UUCAAGUUACAAAAGCAAA





33
UAACAGAGAGGACAGACCC





34
UAAAUAUCUUCAAGUUACA





35
UGGAACCAUUUUAAAGCUC





36
UCAAAACAGGUCUAGAAAA





37
UAAAUGCUACAAAACCCAG





38
UCCAAAAGAUAAAUGUCUG





39
UAGCACCUGGCAAUGGCGU





40
UAGAAUCCUGCCUCCUUGG





41
UUGGAUCAGUCUCUGCCUC





42
UCCCAGAAUAAAUAUCUUC





43
UCCAGAAUAAAUAUCUUCA





44
UCUUCAAGUUACAAAAGCA





45
UAUGCUACAAAACCCAGAA





46
UAAAAGCAAAACAGGUCUA





47
UAAUAUCUUCAAGUUACAA





48
UGUGACACAAAGCAGGUGC





49
UAUAAAUAUCUUCAAGUUA





50
UAAUGCUACAAAACCCAGA





51
UCAAAGCAGGUGCUGCAGU





52
UAGAAUAAAUAUCUUCAAG





53
UACAAAAGCAAAACAGGUC





54
UACAAAACCCAGAAUAAAU





55
UAAAGCAAAACAGGUCUAG





56
UCGAAGUCGGUGACCAUGA





57
UCAAAAGCAAAACAGGUCU





58
UCAAGUUACAAAAGCAAAA





59
UCCUUGACUUUGCAUUCCA





60
UAAGCGUGGAUGCUGGCCU





61
UUAAAUGUCUGCUUGCUUG





62
UAACCAUUUUAAAGCUCAG





63
UACCAGGCCUCAUUGAUGA





64
UAAACCCAGAAUAAAUAUC





65
UGAACCAUUUUAAAGCUCA





66
UGAAUAAAUAUCUUCAAGU





67
UAAGAGGCUUGGCUUCAGA





68
UGAACCAGGCCUCAUUGAU





69
UCAGAAUAAAUAUCUUCAA





70
UAAGAAUCCUGCCUCCUUG





71
UAAAACAGGUCUAGAAAAG





72
UAGGAAGCGUGGAUGCUGG





73
UCACUGGUUGGGCUGACCU





74
UAGACAUGCAGGAUCUUGG





75
UCUAGGAGAUACACCUCCA





76
UCUACAAAACCCAGAAUAA





77
UCAGACAGCAUCAUGGCUG





78
UUAUGCUGGUGUCUAGGAG





79
UGAAACUGGAGCAGCUCAG





80
UAGGACAGACCCAAAAGAU





81
UCAAUGGCGUAGACACCCU





82
UCAGGUGCUGCAGUCGCUG





83
UCUGCCUCCUUGGUGGAGA





84
UAGUCGGUGACCAUGACCC





85
UCAGCCUGGCAUAGAGCAG





86
UCAGAGAGGACAGACCCAA





87
UCUGGCUCAGUUCCUGCUG





88
UGAGCUUCCUGGUCUGUGU





89
UAGGUGCUGCAGUCGCUGG





90
UCUGGCCUGUCUGUGGAAG





91
UACCGCCUGGAGCUGACGG





92
UCAAAAGCGUUGUGGGCCC





93
UCACAGCCUGGCAUAGAGC





94
UGGGAUUCCAUGCUCCUUG





95
UGUGACCAUGACCCUGCCC





96
UAGCAAAACAGGUCUAGAA





97
UCUGGCUCACUCCUCCAGG





98
UGAAGUGGAUCAGUCUCUG





99
UAUGCUGGUGUCUAGGAGA





100
UCUCAGUUCCUGCUGUGUG





101
UUACACCUCCACCAGGCUG





102
UAUCAUGGCUGCAAUGCCA





103
UACAGAGAGGACAGACCCA





104
UGAAGAGGCUUGGCUUCAG





105
UCCCUGCCCUCGAUUUCCC





106
UACCAGGAAGCCAGGAAGA





107
UGAGGGAGCUUCCUGGCAC





108
UACCAUUUUAAAGCUCAGC





109
UCACUUGCUGGCCUGUCUG





110
UGCCACUCAUCUUCACCAG





111
UUUGGCAGAGAAGUGGAUC





112
UAGUCCUCCUCGAUGUAGU





113
UCCUCUGGCUAGAUGCCAU





114
UGGAGCUGUGUGGACGCUG





115
UGAGAAGUGGAUCAGUCUC





116
UAGCAGAUGGCAACGGCUG





117
UAGGCCUCAUUGAUGACAU





118
UUGCAGUCGCUGGAGGCAC





119
UUGGGUCUCCUCCUUCAGC





120
UCGGCUCGGCAGACAGCAU





121
UUGACAUCUUUGGCAGAGA





122
UGAACGCAAGGCUAGCACC





123
UAUCUUUGGCAGAGAAGUG





124
UGGCAGGCAUCGUCCCGGA





125
UGGAACGCAAGGCUAGCAC





126
UGACACAAAGCAGGUGCUG





127
UAUAUCUUCAAGUUACAAA





128
UGUGCCCUUCCCUUGGCAG





129
UCAAUGCCAGCCACGUGGG





130
UGAGGCUUGGCUUCAGAGC





131
UGGAUCUUGGUGAGGUAUC





132
UCAACUGUGAUGACCUCGG





133
UAAAUGUCUGCUUGCUUGG





134
UAAACAGGUCUAGAAAAGU





135
UAAAGCGUUGUGGGCCCGG





136
UCAACAGAGAGGACAGACC





137
UCUCCACGGAUCCUUGGCG





138
UAGGACUGUGCAGGAGCUG





139
UCAAAAGAUAAAUGUCUGC





140
UAUCCUGCCUCCUUGGUGG





141
UCACAGCGGCCAAAGUUGG





142
UCAGUUCCUGCUGUGUGAG





143
UCUGGCAUAGAGCAGAGUA





144
UCCUCAUUGAUGACAUCUU





145
UAGUCGCCGUCCUCGUCCU





146
UUGGGAAGAAUCCUGCCUC





147
UGUGGGUGCUUGACGCCUG





148
UACACAAAGCAGGUGCUGC





149
UAGCAGGAAGCGUGGAUGC





150
UAUCAGUCUCUGCCUCAAC





151
UAGACAGCAUCAUGGCUGC





152
UUCAUGGCUGCAAUGCCAG





153
UACAGCCUGGCAUAGAGCA





154
UGGCAUAGAGCAGAGUAAA





155
UCUGGUUGGGCUGACCUCG





156
UAGACCCAAAAGAUAAAUG





157
UGGUCCACACAGCGGCCAA





158
UCCUCCACCAGGCUGCCUC





159
UAAAACAGCUGCCAACCUG





160
UGAGGACAGACCCAAAAGA





161
UUGUCUGCUUGCUUGGGUG





162
UAAGGCAACAGAGAGGACA





163
UGUGUCUAGGAGAUACACC





164
UGUGGAUCAGUCUCUGCCU





165
UAAACAGCUGCCAACCUGC





166
UCAGGCGGCUUGUGGGUGC





167
UGGAACCAGGCCUCAUUGA





168
UCUGCCUGGCUCACUCCUC





169
UAGAUGAGGGCCAUCAGCA





170
UCUUCCUGGUCUGUGUUCC





171
UACUUUGCAUUCCAGACCU





172
UUGGCUAGAUGCCAUCCAG





173
UUGGCUGCAAUGCCAGCCA





174
UGGGUGUGGGUGCUUGACG





175
UAAAAGCGUUGUGGGCCCG





176
UCACCAGGAAGCCAGGAAG





177
UGCCGGGAUUCCAUGCUCC





178
UCCAGCUCCUCGUAGUCGC





179
UCCCGCUGGUCCUCAGGGA





180
UUGCAAUGCCAGCCACGUG





181
UUGAUGACAUCUUUGGCAG





182
UGAGAUACACCUCCACCAG





183
UGGUGUGGGUGCUUGACGC





184
UCUGCCUCAACUCGGCCAG





185
UGAAGUCGGUGACCAUGAC





186
UGUCCUCGUCCUCCUGCGC





187
UCCAGCCUCACUGUUACCC





188
UGCUUUUCCGAAUAAACUC





189
UUGUGAGCUUGGCAGGCAC





190
UAGCGUGGAUGCUGGCCUC





191
UAAGACAGAGGAGUCCUCC





192
UGUCUGCUUGCUUGGGUGG





193
UGUAGCAGGCAGCACCUGG





194
UUGGAUGCUGGCCUCCCUG





195
UAAAAGAUAAAUGUCUGCU





196
UAGUCCUGCAAAACAGCUG





197
UCAGGAUCUUGGUGAGGUA





198
UAGCGGUGGAAGGUGGCUG





199
UUGGCAAUGGCGUAGACAC





200
UCAGAGGAGUCCUCCUCGA





201
UGGAGCAGCUCAGCAGCUC





202
UGUGUGAGCUUGGCAGGCA





203
UCAGCACCUGGCAAUGGCG





204
UUCCCAGCCUCACUGUUAC





205
UGAGAAACUGGAGCAGCUC





206
UAGAGAAGUGGAUCAGUCU





207
UGGUCGCCACUCAUCUUCA





208
UGACCAGCUGGCUUUUCCG





209
UCAUGCAGGAUCUUGGUGA





210
UAGCGGCCAAAGUUGGUCC





211
UCAGCCUGUGAGGACGUGG





212
UGAGCUGUGUGGACGCUGC





213
UGGUAGCAGGCAGCACCUG





214
UUGAGCUCCGGCUCGGCAG





215
UGUCUAGGAGAUACACCUC





216
UGGAAGCGGGUCCCGUCCU





217
UGCUGUGUGAGCUUGGCAG





218
UACCAGCUGGCUUUUCCGA





219
UGCAAAGAGGUCCACACAG





220
UAGGAGACCUAGAGGCCGU





221
UGUCCUGCAAAACAGCUGC





222
UGCACCACCACGUAGGUGC





223
UACUCAAGGGCCAGGCCAG





224
UCCAUUUUAAAGCUCAGCC





225
UAGCGUUGUGGGCCCGGCA





226
UGGCAGAGAAGUGGAUCAG





227
UGAAACCUUCUAGGGUGUG





228
UAGCGGUGACCAGCACGAC





229
UGCAGUCGCUGGAGGCACC





230
UAAAACCCAGAAUAAAUAU





231
UAAUGGCGUAGACACCCUC





232
UUCUUCAAGUUACAAAAGC





233
UUUACAAAAGCAAAACAGG





234
UAUCUUCAAGUUACAAAAG





235
UCUGGUGUCUAGGAGAUAC





236
UAGUGCGCUCUGACUGCGA





237
UUGUCACACUUGCUGGCCU





238
UACAGAGGAGUCCUCCUCG





239
UGUUACAAAAGCAAAACAG





240
UAAUCCUGCCUCCUUGGUG





241
UGUGGAAGGUGGCUGUGGU





242
UGGAGCGGGUUGGCUGAGA





243
UUCGCCACUCAUCUUCACC





244
UAGAGGAGUCCUCCUCGAU





245
UGAGCUCCGGCUCGGCAGA





246
UAACUGUGAUGACCUCGGG





247
UGAUACACCUCCACCAGGC





248
UUGGCAUAGAGCAGAGUAA





249
UGCAGCUCAGCAGCUCCUC





250
UAUUGAUGACAUCUUUGGC


















TABLE 2b






SEQ ID



#
NO:
250 modified antisense strands

















1
645
PmU.fG.mG.fC.mC.fU.mA.fU.mG.fA.mG.fG.mG.fU.mG.fC.mC.fG.mC





2
646
PmU.fG.mA.fA.mU.fA.mA.fA.mC.fU.mC.fC.mA.fG.mG.fC.mC.fU.mA





3
647
PmU.fU.mA.fA.mA.fC.mU.fC.mC.fA.mG.fG.mC.fC.mU.fA.mU.fG.mA





4
648
PmU.fC.mG.fA.mA.fU.mA.fA.mA.fC.mU.fC.mC.fA.mG.fG.mC.fC.mU





5
649
PmU.fU.mC.fC.mG.fG.mC.fA.mG.fC.mA.fG.mA.fU.mG.fG.mC.fA.mA





6
650
PmU.fA.mC.fU.mC.fC.mA.fG.mG.fC.mC.fU.mA.fU.mG.fA.mG.fG.mG





7
651
PmU.fC.mC.fU.mA.fU.mG.fA.mG.fG.mG.fU.mG.fC.mC.fG.mC.fU.mA





8
652
PmU.fA.mG.fG.mC.fC.mU.fA.mU.fG.mA.fG.mG.fG.mU.fG.mC.fC.mG





9
653
PmU.fU.mC.fC.mA.fG.mG.fC.mC.fU.mA.fU.mG.fA.mG.fG.mG.fU.mG





10
654
PmU.fG.mC.fU.mG.fG.mU.fC.mC.fU.mC.fA.mG.fG.mG.fA.mA.fC.mC





11
655
PmU.fA.mA.fU.mA.fA.mA.fC.mU.fC.mC.fA.mG.fG.mC.fC.mU.fA.mU





12
656
PmU.fC.mU.fG.mG.fA.mG.fC.mA.fG.mC.fU.mC.fA.mG.fC.mA.fG.mC





13
657
PmU.fC.mC.fG.mA.fA.mU.fA.mA.fA.mC.fU.mC.fC.mA.fG.mG.fC.mC





14
658
PmU.fG.mG.fU.mC.fC.mU.fC.mA.fG.mG.fG.mA.fA.mC.fC.mA.fG.mG





15
659
PmU.fU.mG.fG.mU.fC.mC.fU.mC.fA.mG.fG.mG.fA.mA.fC.mC.fA.mG





16
660
PmU.fA.mU.fA.mA.fA.mC.fU.mC.fC.mA.fG.mG.fC.mC.fU.mA.fU.mG





17
661
PmU.fC.mU.fC.mC.fA.mG.fG.mC.fC.mU.fA.mU.fG.mA.fG.mG.fG.mU





18
662
PmU.fC.mA.fG.mG.fC.mC.fU.mA.fU.mG.fA.mG.fG.mG.fU.mG.fC.mC





19
663
PmU.fG.mU.fC.mC.fU.mC.fA.mG.fG.mG.fA.mA.fC.mC.fA.mG.fG.mC





20
664
PmU.fG.mC.fC.mU.fA.mU.fG.mA.fG.mG.fG.mU.fG.mC.fC.mG.fC.mU





21
665
PmU.fU.mU.fC.mC.fG.mA.fA.mU.fA.mA.fA.mC.fU.mC.fC.mA.fG.mG





22
666
PmU.fG.mC.fA.mU.fG.mG.fC.mA.fG.mC.fA.mG.fG.mA.fA.mG.fC.mG





23
667
PmU.fG.mC.fU.mC.fC.mG.fG.mC.fA.mG.fC.mA.fG.mA.fU.mG.fG.mC





24
668
PmU.fG.mC.fC.mG.fG.mC.fU.mC.fC.mG.fG.mC.fA.mG.fC.mA.fG.mA





25
669
PmU.fU.mC.fC.mU.fC.mA.fG.mG.fG.mA.fA.mC.fC.mA.fG.mG.fC.mC





26
670
PmU.fC.mU.fC.mC.fG.mG.fC.mA.fG.mC.fA.mG.fA.mU.fG.mG.fC.mA





27
671
PmU.fG.mC.fC.mA.fC.mG.fU.mG.fG.mG.fC.mA.fG.mC.fA.mG.fC.mC





28
672
PmU.fU.mU.fC.mA.fA.mG.fU.mU.fA.mC.fA.mA.fA.mA.fG.mC.fA.mA





29
673
PmU.fG.mC.fA.mA.fA.mA.fC.mA.fG.mG.fU.mC.fU.mA.fG.mA.fA.mA





30
674
PmU.fA.mC.fC.mC.fA.mG.fA.mA.fU.mA.fA.mA.fU.mA.fU.mC.fU.mU





31
675
PmU.fA.mU.fA.mA.fA.mU.fG.mU.fC.mU.fG.mC.fU.mU.fG.mC.fU.mU





32
676
PmU.fU.mC.fA.mA.fG.mU.fU.mA.fC.mA.fA.mA.fA.mG.fC.mA.fA.mA





33
677
PmU.fA.mA.fC.mA.fG.mA.fG.mA.fG.mG.fA.mC.fA.mG.fA.mC.fC.mC





34
678
PmU.fA.mA.fA.mU.fA.mU.fC.mU.fU.mC.fA.mA.fG.mU.fU.mA.fC.mA





35
679
PmU.fG.mG.fA.mA.fC.mC.fA.mU.fU.mU.fU.mA.fA.mA.fG.mC.fU.mC





36
680
PmU.fC.mA.fA.mA.fA.mC.fA.mG.fG.mU.fC.mU.fA.mG.fA.mA.fA.mA





37
681
PmU.fA.mA.fA.mU.fG.mC.fU.mA.fC.mA.fA.mA.fA.mC.fC.mC.fA.mG





38
682
PmU.fC.mC.fA.mA.fA.mA.fG.mA.fU.mA.fA.mA.fU.mG.fU.mC.fU.mG





39
683
PmU.fA.mG.fC.mA.fC.mC.fU.mG.fG.mC.fA.mA.fU.mG.fG.mC.fG.mU





40
684
PmU.fA.mG.fA.mA.fU.mC.fC.mU.fG.mC.fC.mU.fC.mC.fU.mU.fG.mG





41
685
PmU.fU.mG.fG.mA.fU.mC.fA.mG.fU.mC.fU.mC.fU.mG.fC.mC.fU.mC





42
686
PmU.fC.mC.fC.mA.fG.mA.fA.mU.fA.mA.fA.mU.fA.mU.fC.mU.fU.mC





43
687
PmU.fC.mC.fA.mG.fA.mA.fU.mA.fA.mA.fU.mA.fU.mC.fU.mU.fC.mA





44
688
PmU.fC.mU.fU.mC.fA.mA.fG.mU.fU.mA.fC.mA.fA.mA.fA.mG.fC.mA





45
689
PmU.fA.mU.fG.mC.fU.mA.fC.mA.fA.mA.fA.mC.fC.mC.fA.mG.fA.mA





46
690
PmU.fA.mA.fA.mA.fG.mC.fA.mA.fA.mA.fC.mA.fG.mG.fU.mC.fU.mA





47
691
PmU.fA.mA.fU.mA.fU.mC.fU.mU.fC.mA.fA.mG.fU.mU.fA.mC.fA.mA





48
692
PmU.fG.mU.fG.mA.fC.mA.fC.mA.fA.mA.fG.mC.fA.mG.fG.mU.fG.mC





49
693
PmU.fA.mU.fA.mA.fA.mU.fA.mU.fC.mU.fU.mC.fA.mA.fG.mU.fU.mA





50
694
PmU.fA.mA.fU.mG.fC.mU.fA.mC.fA.mA.fA.mA.fC.mC.fC.mA.fG.mA





51
695
PmU.fC.mA.fA.mA.fG.mC.fA.mG.fG.mU.fG.mC.fU.mG.fC.mA.fG.mU





52
696
PmU.fA.mG.fA.mA.fU.mA.fA.mA.fU.mA.fU.mC.fU.mU.fC.mA.fA.mG





53
697
PmU.fA.mC.fA.mA.fA.mA.fG.mC.fA.mA.fA.mA.fC.mA.fG.mG.fU.mC





54
698
PmU.fA.mC.fA.mA.fA.mA.fC.mC.fC.mA.fG.mA.fA.mU.fA.mA.fA.mU





55
699
PmU.fA.mA.fA.mG.fC.mA.fA.mA.fA.mC.fA.mG.fG.mU.fC.mU.fA.mG





56
700
PmU.fC.mG.fA.mA.fG.mU.fC.mG.fG.mU.fG.mA.fC.mC.fA.mU.fG.mA





57
701
PmU.fC.mA.fA.mA.fA.mG.fC.mA.fA.mA.fA.mC.fA.mG.fG.mU.fC.mU





58
702
PmU.fC.mA.fA.mG.fU.mU.fA.mC.fA.mA.fA.mA.fG.mC.fA.mA.fA.mA





59
703
PmU.fC.mC.fU.mU.fG.mA.fC.mU.fU.mU.fG.mC.fA.mU.fU.mC.fC.mA





60
704
PmU.fA.mA.fG.mC.fG.mU.fG.mG.fA.mU.fG.mC.fU.mG.fG.mC.fC.mU





61
705
PmU.fU.mA.fA.mA.fU.mG.fU.mC.fU.mG.fC.mU.fU.mG.fC.mU.fU.mG





62
706
PmU.fA.mA.fC.mC.fA.mU.fU.mU.fU.mA.fA.mA.fG.mC.fU.mC.fA.mG





63
707
PmU.fA.mC.fC.mA.fG.mG.fC.mC.fU.mC.fA.mU.fU.mG.fA.mU.fG.mA





64
708
PmU.fA.mA.fA.mC.fC.mC.fA.mG.fA.mA.fU.mA.fA.mA.fU.mA.fU.mC





65
709
PmU.fG.mA.fA.mC.fC.mA.fU.mU.fU.mU.fA.mA.fA.mG.fC.mU.fC.mA





66
710
PmU.fG.mA.fA.mU.fA.mA.fA.mU.fA.mU.fC.mU.fU.mC.fA.mA.fG.mU





67
711
PmU.fA.mA.fG.mA.fG.mG.fC.mU.fU.mG.fG.mC.fU.mU.fC.mA.fG.mA





68
712
PmU.fG.mA.fA.mC.fC.mA.fG.mG.fC.mC.fU.mC.fA.mU.fU.mG.fA.mU





69
713
PmU.fC.mA.fG.mA.fA.mU.fA.mA.fA.mU.fA.mU.fC.mU.fU.mC.fA.mA





70
714
PmU.fA.mA.fG.mA.fA.mU.fC.mC.fU.mG.fC.mC.fU.mC.fC.mU.fU.mG





71
715
PmU.fA.mA.fA.mA.fC.mA.fG.mG.fU.mC.fU.mA.fG.mA.fA.mA.fA.mG





72
716
PmU.fA.mG.fG.mA.fA.mG.fC.mG.fU.mG.fG.mA.fU.mG.fC.mU.fG.mG





73
717
PmU.fC.mA.fC.mU.fG.mG.fU.mU.fG.mG.fG.mC.fU.mG.fA.mC.fC.mU





74
718
PmU.fA.mG.fA.mC.fA.mU.fG.mC.fA.mG.fG.mA.fU.mC.fU.mU.fG.mG





75
719
PmU.fC.mU.fA.mG.fG.mA.fG.mA.fU.mA.fC.mA.fC.mC.fU.mC.fC.mA





76
720
PmU.fC.mU.fA.mC.fA.mA.fA.mA.fC.mC.fC.mA.fG.mA.fA.mU.fA.mA





77
721
PmU.fC.mA.fG.mA.fC.mA.fG.mC.fA.mU.fC.mA.fU.mG.fG.mC.fU.mG





78
722
PmU.fU.mA.fU.mG.fC.mU.fG.mG.fU.mG.fU.mC.fU.mA.fG.mG.fA.mG





79
723
PmU.fG.mA.fA.mA.fC.mU.fG.mG.fA.mG.fC.mA.fG.mC.fU.mC.fA.mG





80
724
PmU.fA.mG.fG.mA.fC.mA.fG.mA.fC.mC.fC.mA.fA.mA.fA.mG.fA.mU





81
725
PmU.fC.mA.fA.mU.fG.mG.fC.mG.fU.mA.fG.mA.fC.mA.fC.mC.fC.mU





82
726
PmU.fC.mA.fG.mG.fU.mG.fC.mU.fG.mC.fA.mG.fU.mC.fG.mC.fU.mG





83
727
PmU.fC.mU.fG.mC.fC.mU.fC.mC.fU.mU.fG.mG.fU.mG.fG.mA.fG.mA





84
728
PmU.fA.mG.fU.mC.fG.mG.fU.mG.fA.mC.fC.mA.fU.mG.fA.mC.fC.mC





85
729
PmU.fC.mA.fG.mC.fC.mU.fG.mG.fC.mA.fU.mA.fG.mA.fG.mC.fA.mG





86
730
PmU.fC.mA.fG.mA.fG.mA.fG.mG.fA.mC.fA.mG.fA.mC.fC.mC.fA.mA





87
731
PmU.fC.mU.fG.mG.fC.mU.fC.mA.fG.mU.fU.mC.fC.mU.fG.mC.fU.mG





88
732
PmU.fG.mA.fG.mC.fU.mU.fC.mC.fU.mG.fG.mU.fC.mU.fG.mU.fG.mU





89
733
PmU.fA.mG.fG.mU.fG.mC.fU.mG.fC.mA.fG.mU.fC.mG.fC.mU.fG.mG





90
734
PmU.fC.mU.fG.mG.fC.mC.fU.mG.fU.mC.fU.mG.fU.mG.fG.mA.fA.mG





91
735
PmU.fA.mC.fC.mG.fC.mC.fU.mG.fG.mA.fG.mC.fU.mG.fA.mC.fG.mG





92
736
PmU.fC.mA.fA.mA.fA.mG.fC.mG.fU.mU.fG.mU.fG.mG.fG.mC.fC.mC





93
737
PmU.fC.mA.fC.mA.fG.mC.fC.mU.fG.mG.fC.mA.fU.mA.fG.mA.fG.mC





94
738
PmU.fG.mG.fG.mA.fU.mU.fC.mC.fA.mU.fG.mC.fU.mC.fC.mU.fU.mG





95
739
PmU.fG.mU.fG.mA.fC.mC.fA.mU.fG.mA.fC.mC.fC.mU.fG.mC.fC.mC





96
740
PmU.fA.mG.fC.mA.fA.mA.fA.mC.fA.mG.fG.mU.fC.mU.fA.mG.fA.mA





97
741
PmU.fC.mU.fG.mG.fC.mU.fC.mA.fC.mU.fC.mC.fU.mC.fC.mA.fG.mG





98
742
PmU.fG.mA.fA.mG.fU.mG.fG.mA.fU.mC.fA.mG.fU.mC.fU.mC.fU.mG





99
743
PmU.fA.mU.fG.mC.fU.mG.fG.mU.fG.mU.fC.mU.fA.mG.fG.mA.fG.mA





100
744
PmU.fC.mU.fC.mA.fG.mU.fU.mC.fC.mU.fG.mC.fU.mG.fU.mG.fU.mG





101
745
PmU.fU.mA.fC.mA.fC.mC.fU.mC.fC.mA.fC.mC.fA.mG.fG.mC.fU.mG





102
746
PmU.fA.mU.fC.mA.fU.mG.fG.mC.fU.mG.fC.mA.fA.mU.fG.mC.fC.mA





103
747
PmU.fA.mC.fA.mG.fA.mG.fA.mG.fG.mA.fC.mA.fG.mA.fC.mC.fC.mA





104
748
PmU.fG.mA.fA.mG.fA.mG.fG.mC.fU.mU.fG.mG.fC.mU.fU.mC.fA.mG





105
749
PmU.fC.mC.fC.mU.fG.mC.fC.mC.fU.mC.fG.mA.fU.mU.fU.mC.fC.mC





106
750
PmU.fA.mC.fC.mA.fG.mG.fA.mA.fG.mC.fC.mA.fG.mG.fA.mA.fG.mA





107
751
PmU.fG.mA.fG.mG.fG.mA.fG.mC.fU.mU.fC.mC.fU.mG.fG.mC.fA.mC





108
752
PmU.fA.mC.fC.mA.fU.mU.fU.mU.fA.mA.fA.mG.fC.mU.fC.mA.fG.mC





109
753
PmU.fC.mA.fC.mU.fU.mG.fC.mU.fG.mG.fC.mC.fU.mG.fU.mC.fU.mG





110
754
PmU.fG.mC.fC.mA.fC.mU.fC.mA.fU.mC.fU.mU.fC.mA.fC.mC.fA.mG





111
755
PmU.fU.mU.fG.mG.fC.mA.fG.mA.fG.mA.fA.mG.fU.mG.fG.mA.fU.mC





112
756
PmU.fA.mG.fU.mC.fC.mU.fC.mC.fU.mC.fG.mA.fU.mG.fU.mA.fG.mU





113
757
PmU.fC.mC.fU.mC.fU.mG.fG.mC.fU.mA.fG.mA.fU.mG.fC.mC.fA.mU





114
758
PmU.fG.mG.fA.mG.fC.mU.fG.mU.fG.mU.fG.mG.fA.mC.fG.mC.fU.mG





115
759
PmU.fG.mA.fG.mA.fA.mG.fU.mG.fG.mA.fU.mC.fA.mG.fU.mC.fU.mC





116
760
PmU.fA.mG.fC.mA.fG.mA.fU.mG.fG.mC.fA.mA.fC.mG.fG.mC.fU.mG





117
761
PmU.fA.mG.fG.mC.fC.mU.fC.mA.fU.mU.fG.mA.fU.mG.fA.mC.fA.mU





118
762
PmU.fU.mG.fC.mA.fG.mU.fC.mG.fC.mU.fG.mG.fA.mG.fG.mC.fA.mC





119
763
PmU.fU.mG.fG.mG.fU.mC.fU.mC.fC.mU.fC.mC.fU.mU.fC.mA.fG.mC





120
764
PmU.fC.mG.fG.mC.fU.mC.fG.mG.fC.mA.fG.mA.fC.mA.fG.mC.fA.mU





121
765
PmU.fU.mG.fA.mC.fA.mU.fC.mU.fU.mU.fG.mG.fC.mA.fG.mA.fG.mA





122
766
PmU.fG.mA.fA.mC.fG.mC.fA.mA.fG.mG.fC.mU.fA.mG.fC.mA.fC.mC





123
767
PmU.fA.mU.fC.mU.fU.mU.fG.mG.fC.mA.fG.mA.fG.mA.fA.mG.fU.mG





124
768
PmU.fG.mG.fC.mA.fG.mG.fC.mA.fU.mC.fG.mU.fC.mC.fC.mG.fG.mA





125
769
PmU.fG.mG.fA.mA.fC.mG.fC.mA.fA.mG.fG.mC.fU.mA.fG.mC.fA.mC





126
770
PmU.fG.mA.fC.mA.fC.mA.fA.mA.fG.mC.fA.mG.fG.mU.fG.mC.fU.mG





127
771
PmU.fA.mU.fA.mU.fC.mU.fU.mC.fA.mA.fG.mU.fU.mA.fC.mA.fA.mA





128
772
PmU.fG.mU.fG.mC.fC.mC.fU.mU.fC.mC.fC.mU.fU.mG.fG.mC.fA.mG





129
773
PmU.fC.mA.fA.mU.fG.mC.fC.mA.fG.mC.fC.mA.fC.mG.fU.mG.fG.mG





130
774
PmU.fG.mA.fG.mG.fC.mU.fU.mG.fG.mC.fU.mU.fC.mA.fG.mA.fG.mC





131
775
PmU.fG.mG.fA.mU.fC.mU.fU.mG.fG.mU.fG.mA.fG.mG.fU.mA.fU.mC





132
776
PmU.fC.mA.fA.mC.fU.mG.fU.mG.fA.mU.fG.mA.fC.mC.fU.mC.fG.mG





133
777
PmU.fA.mA.fA.mU.fG.mU.fC.mU.fG.mC.fU.mU.fG.mC.fU.mU.fG.mG





134
778
PmU.fA.mA.fA.mC.fA.mG.fG.mU.fC.mU.fA.mG.fA.mA.fA.mA.fG.mU





135
779
PmU.fA.mA.fA.mG.fC.mG.fU.mU.fG.mU.fG.mG.fG.mC.fC.mC.fG.mG





136
780
PmU.fC.mA.fA.mC.fA.mG.fA.mG.fA.mG.fG.mA.fC.mA.fG.mA.fC.mC





137
781
PmU.fC.mU.fC.mC.fA.mC.fG.mG.fA.mU.fC.mC.fU.mU.fG.mG.fC.mG





138
782
PmU.fA.mG.fG.mA.fC.mU.fG.mU.fG.mC.fA.mG.fG.mA.fG.mC.fU.mG





139
783
PmU.fC.mA.fA.mA.fA.mG.fA.mU.fA.mA.fA.mU.fG.mU.fC.mU.fG.mC





140
784
PmU.fA.mU.fC.mC.fU.mG.fC.mC.fU.mC.fC.mU.fU.mG.fG.mU.fG.mG





141
785
PmU.fC.mA.fC.mA.fG.mC.fG.mG.fC.mC.fA.mA.fA.mG.fU.mU.fG.mG





142
786
PmU.fC.mA.fG.mU.fU.mC.fC.mU.fG.mC.fU.mG.fU.mG.fU.mG.fA.mG





143
787
PmU.fC.mU.fG.mG.fC.mA.fU.mA.fG.mA.fG.mC.fA.mG.fA.mG.fU.mA





144
788
PmU.fC.mC.fU.mC.fA.mU.fU.mG.fA.mU.fG.mA.fC.mA.fU.mC.fU.mU





145
789
PmU.fA.mG.fU.mC.fG.mC.fC.mG.fU.mC.fC.mU.fC.mG.fU.mC.fC.mU





146
790
PmU.fU.mG.fG.mG.fA.mA.fG.mA.fA.mU.fC.mC.fU.mG.fC.mC.fU.mC





147
791
PmU.fG.mU.fG.mG.fG.mU.fG.mC.fU.mU.fG.mA.fC.mG.fC.mC.fU.mG





148
792
PmU.fA.mC.fA.mC.fA.mA.fA.mG.fC.mA.fG.mG.fU.mG.fC.mU.fG.mC





149
793
PmU.fA.mG.fC.mA.fG.mG.fA.mA.fG.mC.fG.mU.fG.mG.fA.mU.fG.mC





150
794
PmU.fA.mU.fC.mA.fG.mU.fC.mU.fC.mU.fG.mC.fC.mU.fC.mA.fA.mC





151
795
PmU.fA.mG.fA.mC.fA.mG.fC.mA.fU.mC.fA.mU.fG.mG.fC.mU.fG.mC





152
796
PmU.fU.mC.fA.mU.fG.mG.fC.mU.fG.mC.fA.mA.fU.mG.fC.mC.fA.mG





153
797
PmU.fA.mC.fA.mG.fC.mC.fU.mG.fG.mC.fA.mU.fA.mG.fA.mG.fC.mA





154
798
PmU.fG.mG.fC.mA.fU.mA.fG.mA.fG.mC.fA.mG.fA.mG.fU.mA.fA.mA





155
799
PmU.fC.mU.fG.mG.fU.mU.fG.mG.fG.mC.fU.mG.fA.mC.fC.mU.fC.mG





156
800
PmU.fA.mG.fA.mC.fC.mC.fA.mA.fA.mA.fG.mA.fU.mA.fA.mA.fU.mG





157
801
PmU.fG.mG.fU.mC.fC.mA.fC.mA.fC.mA.fG.mC.fG.mG.fC.mC.fA.mA





158
802
PmU.fC.mC.fU.mC.fC.mA.fC.mC.fA.mG.fG.mC.fU.mG.fC.mC.fU.mC





159
803
PmU.fA.mA.fA.mA.fC.mA.fG.mC.fU.mG.fC.mC.fA.mA.fC.mC.fU.mG





160
804
PmU.fG.mA.fG.mG.fA.mC.fA.mG.fA.mC.fC.mC.fA.mA.fA.mA.fG.mA





161
805
PmU.fU.mG.fU.mC.fU.mG.fC.mU.fU.mG.fC.mU.fU.mG.fG.mG.fU.mG





162
806
PmU.fA.mA.fG.mG.fC.mA.fA.mC.fA.mG.fA.mG.fA.mG.fG.mA.fC.mA





163
807
PmU.fG.mU.fG.mU.fC.mU.fA.mG.fG.mA.fG.mA.fU.mA.fC.mA.fC.mC





164
808
PmU.fG.mU.fG.mG.fA.mU.fC.mA.fG.mU.fC.mU.fC.mU.fG.mC.fC.mU





165
809
PmU.fA.mA.fA.mC.fA.mG.fC.mU.fG.mC.fC.mA.fA.mC.fC.mU.fG.mC





166
810
PmU.fC.mA.fG.mG.fC.mG.fG.mC.fU.mU.fG.mU.fG.mG.fG.mU.fG.mC





167
811
PmU.fG.mG.fA.mA.fC.mC.fA.mG.fG.mC.fC.mU.fC.mA.fU.mU.fG.mA





168
812
PmU.fC.mU.fG.mC.fC.mU.fG.mG.fC.mU.fC.mA.fC.mU.fC.mC.fU.mC





169
813
PmU.fA.mG.fA.mU.fG.mA.fG.mG.fG.mC.fC.mA.fU.mC.fA.mG.fC.mA





170
814
PmU.fC.mU.fU.mC.fC.mU.fG.mG.fU.mC.fU.mG.fU.mG.fU.mU.fC.mC





171
815
PmU.fA.mC.fU.mU.fU.mG.fC.mA.fU.mU.fC.mC.fA.mG.fA.mC.fC.mU





172
816
PmU.fU.mG.fG.mC.fU.mA.fG.mA.fU.mG.fC.mC.fA.mU.fC.mC.fA.mG





173
817
PmU.fU.mG.fG.mC.fU.mG.fC.mA.fA.mU.fG.mC.fC.mA.fG.mC.fC.mA





174
818
PmU.fG.mG.fG.mU.fG.mU.fG.mG.fG.mU.fG.mC.fU.mU.fG.mA.fC.mG





175
819
PmU.fA.mA.fA.mA.fG.mC.fG.mU.fU.mG.fU.mG.fG.mG.fC.mC.fC.mG





176
820
PmU.fC.mA.fC.mC.fA.mG.fG.mA.fA.mG.fC.mC.fA.mG.fG.mA.fA.mG





177
821
PmU.fG.mC.fC.mG.fG.mG.fA.mU.fU.mC.fC.mA.fU.mG.fC.mU.fC.mC





178
822
PmU.fC.mC.fA.mG.fC.mU.fC.mC.fU.mC.fG.mU.fA.mG.fU.mC.fG.mC





179
823
PmU.fC.mC.fC.mG.fC.mU.fG.mG.fU.mC.fC.mU.fC.mA.fG.mG.fG.mA





180
824
PmU.fU.mG.fC.mA.fA.mU.fG.mC.fC.mA.fG.mC.fC.mA.fC.mG.fU.mG





181
825
PmU.fU.mG.fA.mU.fG.mA.fC.mA.fU.mC.fU.mU.fU.mG.fG.mC.fA.mG





182
826
PmU.fG.mA.fG.mA.fU.mA.fC.mA.fC.mC.fU.mC.fC.mA.fC.mC.fA.mG





183
827
PmU.fG.mG.fU.mG.fU.mG.fG.mG.fU.mG.fC.mU.fU.mG.fA.mC.fG.mC





184
828
PmU.fC.mU.fG.mC.fC.mU.fC.mA.fA.mC.fU.mC.fG.mG.fC.mC.fA.mG





185
829
PmU.fG.mA.fA.mG.fU.mC.fG.mG.fU.mG.fA.mC.fC.mA.fU.mG.fA.mC





186
830
PmU.fG.mU.fC.mC.fU.mC.fG.mU.fC.mC.fU.mC.fC.mU.fG.mC.fG.mC





187
831
PmU.fC.mC.fA.mG.fC.mC.fU.mC.fA.mC.fU.mG.fU.mU.fA.mC.fC.mC





188
832
PmU.fG.mC.fU.mU.fU.mU.fC.mC.fG.mA.fA.mU.fA.mA.fA.mC.fU.mC





189
833
PmU.fU.mG.fU.mG.fA.mG.fC.mU.fU.mG.fG.mC.fA.mG.fG.mC.fA.mC





190
834
PmU.fA.mG.fC.mG.fU.mG.fG.mA.fU.mG.fC.mU.fG.mG.fC.mC.fU.mC





191
835
PmU.fA.mA.fG.mA.fC.mA.fG.mA.fG.mG.fA.mG.fU.mC.fC.mU.fC.mC





192
836
PmU.fG.mU.fC.mU.fG.mC.fU.mU.fG.mC.fU.mU.fG.mG.fG.mU.fG.mG





193
837
PmU.fG.mU.fA.mG.fC.mA.fG.mG.fC.mA.fG.mC.fA.mC.fC.mU.fG.mG





194
838
PmU.fU.mG.fG.mA.fU.mG.fC.mU.fG.mG.fC.mC.fU.mC.fC.mC.fU.mG





195
839
PmU.fA.mA.fA.mA.fG.mA.fU.mA.fA.mA.fU.mG.fU.mC.fU.mG.fC.mU





196
840
PmU.fA.mG.fU.mC.fC.mU.fG.mC.fA.mA.fA.mA.fC.mA.fG.mC.fU.mG





197
841
PmU.fC.mA.fG.mG.fA.mU.fC.mU.fU.mG.fG.mU.fG.mA.fG.mG.fU.mA





198
842
PmU.fA.mG.fC.mG.fG.mU.fG.mG.fA.mA.fG.mG.fU.mG.fG.mC.fU.mG





199
843
PmU.fU.mG.fG.mC.fA.mA.fU.mG.fG.mC.fG.mU.fA.mG.fA.mC.fA.mC





200
844
PmU.fC.mA.fG.mA.fG.mG.fA.mG.fU.mC.fC.mU.fC.mC.fU.mC.fG.mA





201
845
PmU.fG.mG.fA.mG.fC.mA.fG.mC.fU.mC.fA.mG.fC.mA.fG.mC.fU.mC





202
846
PmU.fG.mU.fG.mU.fG.mA.fG.mC.fU.mU.fG.mG.fC.mA.fG.mG.fC.mA





203
847
PmU.fC.mA.fG.mC.fA.mC.fC.mU.fG.mG.fC.mA.fA.mU.fG.mG.fC.mG





204
848
PmU.fU.mC.fC.mC.fA.mG.fC.mC.fU.mC.fA.mC.fU.mG.fU.mU.fA.mC





205
849
PmU.fG.mA.fG.mA.fA.mA.fC.mU.fG.mG.fA.mG.fC.mA.fG.mC.fU.mC





206
850
PmU.fA.mG.fA.mG.fA.mA.fG.mU.fG.mG.fA.mU.fC.mA.fG.mU.fC.mU





207
851
PmU.fG.mG.fU.mC.fG.mC.fC.mA.fC.mU.fC.mA.fU.mC.fU.mU.fC.mA





208
852
PmU.fG.mA.fC.mC.fA.mG.fC.mU.fG.mG.fC.mU.fU.mU.fU.mC.fC.mG





209
853
PmU.fC.mA.fU.mG.fC.mA.fG.mG.fA.mU.fC.mU.fU.mG.fG.mU.fG.mA





210
854
PmU.fA.mG.fC.mG.fG.mC.fC.mA.fA.mA.fG.mU.fU.mG.fG.mU.fC.mC





211
855
PmU.fC.mA.fG.mC.fC.mU.fG.mU.fG.mA.fG.mG.fA.mC.fG.mU.fG.mG





212
856
PmU.fG.mA.fG.mC.fU.mG.fU.mG.fU.mG.fG.mA.fC.mG.fC.mU.fG.mC





213
857
PmU.fG.mG.fU.mA.fG.mC.fA.mG.fG.mC.fA.mG.fC.mA.fC.mC.fU.mG





214
858
PmU.fU.mG.fA.mG.fC.mU.fC.mC.fG.mG.fC.mU.fC.mG.fG.mC.fA.mG





215
859
PmU.fG.mU.fC.mU.fA.mG.fG.mA.fG.mA.fU.mA.fC.mA.fC.mC.fU.mC





216
860
PmU.fG.mG.fA.mA.fG.mC.fG.mG.fG.mU.fC.mC.fC.mG.fU.mC.fC.mU





217
861
PmU.fG.mC.fU.mG.fU.mG.fU.mG.fA.mG.fC.mU.fU.mG.fG.mC.fA.mG





218
862
PmU.fA.mC.fC.mA.fG.mC.fU.mG.fG.mC.fU.mU.fU.mU.fC.mC.fG.mA





219
863
PmU.fG.mC.fA.mA.fA.mG.fA.mG.fG.mU.fC.mC.fA.mC.fA.mC.fA.mG





220
864
PmU.fA.mG.fG.mA.fG.mA.fC.mC.fU.mA.fG.mA.fG.mG.fC.mC.fG.mU





221
865
PmU.fG.mU.fC.mC.fU.mG.fC.mA.fA.mA.fA.mC.fA.mG.fC.mU.fG.mC





222
866
PmU.fG.mC.fA.mC.fC.mA.fC.mC.fA.mC.fG.mU.fA.mG.fG.mU.fG.mC





223
867
PmU.fA.mC.fU.mC.fA.mA.fG.mG.fG.mC.fC.mA.fG.mG.fC.mC.fA.mG





224
868
PmU.fC.mC.fA.mU.fU.mU.fU.mA.fA.mA.fG.mC.fU.mC.fA.mG.fC.mC





225
869
PmU.fA.mG.fC.mG.fU.mU.fG.mU.fG.mG.fG.mC.fC.mC.fG.mG.fC.mA





226
870
PmU.fG.mG.fC.mA.fG.mA.fG.mA.fA.mG.fU.mG.fG.mA.fU.mC.fA.mG





227
871
PmU.fG.mA.fA.mA.fC.mC.fU.mU.fC.mU.fA.mG.fG.mG.fU.mG.fU.mG





228
872
PmU.fA.mG.fC.mG.fG.mU.fG.mA.fC.mC.fA.mG.fC.mA.fC.mG.fA.mC





229
873
PmU.fG.mC.fA.mG.fU.mC.fG.mC.fU.mG.fG.mA.fG.mG.fC.mA.fC.mC





230
874
PmU.fA.mA.fA.mA.fC.mC.fC.mA.fG.mA.fA.mU.fA.mA.fA.mU.fA.mU





231
875
PmU.fA.mA.fU.mG.fG.mC.fG.mU.fA.mG.fA.mC.fA.mC.fC.mC.fU.mC





232
876
PmU.fU.mC.fU.mU.fC.mA.fA.mG.fU.mU.fA.mC.fA.mA.fA.mA.fG.mC





233
877
PmU.fU.mU.fA.mC.fA.mA.fA.mA.fG.mC.fA.mA.fA.mA.fC.mA.fG.mG





234
878
PmU.fA.mU.fC.mU.fU.mC.fA.mA.fG.mU.fU.mA.fC.mA.fA.mA.fA.mG





235
879
PmU.fC.mU.fG.mG.fU.mG.fU.mC.fU.mA.fG.mG.fA.mG.fA.mU.fA.mC





236
880
PmU.fA.mG.fU.mG.fC.mG.fC.mU.fC.mU.fG.mA.fC.mU.fG.mC.fG.mA





237
881
PmU.fU.mG.fU.mC.fA.mC.fA.mC.fU.mU.fG.mC.fU.mG.fG.mC.fC.mU





238
882
PmU.fA.mC.fA.mG.fA.mG.fG.mA.fG.mU.fC.mC.fU.mC.fC.mU.fC.mG





239
883
PmU.fG.mU.fU.mA.fC.mA.fA.mA.fA.mG.fC.mA.fA.mA.fA.mC.fA.mG





240
884
PmU.fA.mA.fU.mC.fC.mU.fG.mC.fC.mU.fC.mC.fU.mU.fG.mG.fU.mG





241
885
PmU.fG.mU.fG.mG.fA.mA.fG.mG.fU.mG.fG.mC.fU.mG.fU.mG.fG.mU





242
886
PmU.fG.mG.fA.mG.fC.mG.fG.mG.fU.mU.fG.mG.fC.mU.fG.mA.fG.mA





243
887
PmU.fU.mC.fG.mC.fC.mA.fC.mU.fC.mA.fU.mC.fU.mU.fC.mA.fC.mC





244
888
PmU.fA.mG.fA.mG.fG.mA.fG.mU.fC.mC.fU.mC.fC.mU.fC.mG.fA.mU





245
889
PmU.fG.mA.fG.mC.fU.mC.fC.mG.fG.mC.fU.mC.fG.mG.fC.mA.fG.mA





246
890
PmU.fA.mA.fC.mU.fG.mU.fG.mA.fU.mG.fA.mC.fC.mU.fC.mG.fG.mG





247
891
PmU.fG.mA.fU.mA.fC.mA.fC.mC.fU.mC.fC.mA.fC.mC.fA.mG.fG.mC





248
892
PmU.fU.mG.fG.mC.fA.mU.fA.mG.fA.mG.fC.mA.fG.mA.fG.mU.fA.mA





249
893
PmU.fG.mC.fA.mG.fC.mU.fC.mA.fG.mC.fA.mG.fC.mU.fC.mC.fU.mC





250
894
PmU.fA.mU.fU.mG.fA.mU.fG.mA.fC.mA.fU.mC.fU.mU.fU.mG.fG.mC


















TABLE 2c






SEQ ID



#
NO:
250 sense nucleobase sequences

















1
251
CACCCUCAUAGGCCA





2
252
CCUGGAGUUUAUUCA





3
253
AGGCCUGGAGUUUAA





4
254
CUGGAGUUUAUUCGA





5
255
CAUCUGCUGCCGGAA





6
256
CAUAGGCCUGGAGUA





7
257
GGCACCCUCAUAGGA





8
258
ACCCUCAUAGGCCUA





9
259
CUCAUAGGCCUGGAA





10
260
CCCUGAGGACCAGCA





11
261
GCCUGGAGUUUAUUA





12
262
CUGAGCUGCUCCAGA





13
263
UGGAGUUUAUUCGGA





14
264
GUUCCCUGAGGACCA





15
265
UUCCCUGAGGACCAA





16
266
GGCCUGGAGUUUAUA





17
267
UCAUAGGCCUGGAGA





18
268
CCCUCAUAGGCCUGA





19
269
GGUUCCCUGAGGACA





20
270
GCACCCUCAUAGGCA





21
271
GAGUUUAUUCGGAAA





22
272
UCCUGCUGCCAUGCA





23
273
UCUGCUGCCGGAGCA





24
274
CUGCCGGAGCCGGCA





25
275
UGGUUCCCUGAGGAA





26
276
AUCUGCUGCCGGAGA





27
277
GCUGCCCACGUGGCA





28
278
UUUUGUAACUUGAAA





29
279
UAGACCUGUUUUGCA





30
280
UAUUUAUUCUGGGUA





31
281
AAGCAGACAUUUAUA





32
282
CUUUUGUAACUUGAA





33
283
CUGUCCUCUCUGUUA





34
284
ACUUGAAGAUAUUUA





35
285
UUUAAAAUGGUUCCA





36
286
CUAGACCUGUUUUGA





37
287
GUUUUGUAGCAUUUA





38
288
CAUUUAUCUUUUGGA





39
289
CAUUGCCAGGUGCUA





40
290
GGAGGCAGGAUUCUA





41
291
CAGAGACUGAUCCAA





42
292
AUAUUUAUUCUGGGA





43
293
GAUAUUUAUUCUGGA





44
294
UUUGUAACUUGAAGA





45
295
GGGUUUUGUAGCAUA





46
296
CCUGUUUUGCUUUUA





47
297
AACUUGAAGAUAUUA





48
298
CUGCUUUGUGUCACA





49
299
UUGAAGAUAUUUAUA





50
300
GGUUUUGUAGCAUUA





51
301
CAGCACCUGCUUUGA





52
302
AAGAUAUUUAUUCUA





53
303
UGUUUUGCUUUUGUA





54
304
AUUCUGGGUUUUGUA





55
305
ACCUGUUUUGCUUUA





56
306
GGUCACCGACUUCGA





57
307
CUGUUUUGCUUUUGA





58
308
GCUUUUGUAACUUGA





59
309
AUGCAAAGUCAAGGA





60
310
CAGCAUCCACGCUUA





61
311
CAAGCAGACAUUUAA





62
312
GCUUUAAAAUGGUUA





63
313
CAAUGAGGCCUGGUA





64
314
UUUAUUCUGGGUUUA





65
315
CUUUAAAAUGGUUCA





66
316
GAAGAUAUUUAUUCA





67
317
AAGCCAAGCCUCUUA





68
318
AUGAGGCCUGGUUCA





69
319
AGAUAUUUAUUCUGA





70
320
GAGGCAGGAUUCUUA





71
321
UCUAGACCUGUUUUA





72
322
CAUCCACGCUUCCUA





73
323
CAGCCCAACCAGUGA





74
324
GAUCCUGCAUGUCUA





75
325
GGUGUAUCUCCUAGA





76
326
UCUGGGUUUUGUAGA





77
327
CAUGAUGCUGUCUGA





78
328
UAGACACCAGCAUAA





79
329
GCUGCUCCAGUUUCA





80
330
UUUGGGUCUGUCCUA





81
331
UGUCUACGCCAUUGA





82
332
GACUGCAGCACCUGA





83
333
CACCAAGGAGGCAGA





84
334
CAUGGUCACCGACUA





85
335
UCUAUGCCAGGCUGA





86
336
GUCUGUCCUCUCUGA





87
337
AGGAACUGAGCCAGA





88
338
AGACCAGGAAGCUCA





89
339
CGACUGCAGCACCUA





90
340
CACAGACAGGCCAGA





91
341
CAGCUCCAGGCGGUA





92
342
CCACAACGCUUUUGA





93
343
UAUGCCAGGCUGUGA





94
344
GAGCAUGGAAUCCCA





95
345
AGGGUCAUGGUCACA





96
346
AGACCUGUUUUGCUA





97
347
GAGGAGUGAGCCAGA





98
348
GACUGAUCCACUUCA





99
349
CUAGACACCAGCAUA





100
350
CAGCAGGAACUGAGA





101
351
CUGGUGGAGGUGUAA





102
352
AUUGCAGCCAUGAUA





103
353
UCUGUCCUCUCUGUA





104
354
AGCCAAGCCUCUUCA





105
355
AAUCGAGGGCAGGGA





106
356
CCUGGCUUCCUGGUA





107
357
CAGGAAGCUCCCUCA





108
358
AGCUUUAAAAUGGUA





109
359
CAGGCCAGCAAGUGA





110
360
UGAAGAUGAGUGGCA





111
361
CACUUCUCUGCCAAA





112
362
CAUCGAGGAGGACUA





113
363
CAUCUAGCCAGAGGA





114
364
GUCCACACAGCUCCA





115
365
CUGAUCCACUUCUCA





116
366
CGUUGCCAUCUGCUA





117
367
CAUCAAUGAGGCCUA





118
368
CUCCAGCGACUGCAA





119
369
AAGGAGGAGACCCAA





120
370
UGUCUGCCGAGCCGA





121
371
UGCCAAAGAUGUCAA





122
372
CUAGCCUUGCGUUCA





123
373
UCUCUGCCAAAGAUA





124
374
GGACGAUGCCUGCCA





125
375
UAGCCUUGCGUUCCA





126
376
ACCUGCUUUGUGUCA





127
377
UAACUUGAAGAUAUA





128
378
CAAGGGAAGGGCACA





129
379
CGUGGCUGGCAUUGA





130
380
UGAAGCCAAGCCUCA





131
381
CCUCACCAAGAUCCA





132
382
GGUCAUCACAGUUGA





133
383
GCAAGCAGACAUUUA





134
384
UUCUAGACCUGUUUA





135
385
GCCCACAACGCUUUA





136
386
UGUCCUCUCUGUUGA





137
387
AAGGAUCCGUGGAGA





138
388
UCCUGCACAGUCCUA





139
389
ACAUUUAUCUUUUGA





140
390
CAAGGAGGCAGGAUA





141
391
CUUUGGCCGCUGUGA





142
392
CACAGCAGGAACUGA





143
393
CUGCUCUAUGCCAGA





144
394
UGUCAUCAAUGAGGA





145
395
CGAGGACGGCGACUA





146
396
CAGGAUUCUUCCCAA





147
397
CGUCAAGCACCCACA





148
398
CACCUGCUUUGUGUA





149
399
CCACGCUUCCUGCUA





150
400
AGGCAGAGACUGAUA





151
401
CCAUGAUGCUGUCUA





152
402
CAUUGCAGCCAUGAA





153
403
CUAUGCCAGGCUGUA





154
404
CUCUGCUCUAUGCCA





155
405
GUCAGCCCAACCAGA





156
406
UAUCUUUUGGGUCUA





157
407
CCGCUGUGUGGACCA





158
408
CAGCCUGGUGGAGGA





159
409
UUGGCAGCUGUUUUA





160
410
UUGGGUCUGUCCUCA





161
411
CAAGCAAGCAGACAA





162
412
CUCUCUGUUGCCUUA





163
413
UAUCUCCUAGACACA





164
414
AGAGACUGAUCCACA





165
415
GUUGGCAGCUGUUUA





166
416
CCACAAGCCGCCUGA





167
417
UGAGGCCUGGUUCCA





168
418
AGUGAGCCAGGCAGA





169
419
GAUGGCCCUCAUCUA





170
420
CACAGACCAGGAAGA





171
421
CUGGAAUGCAAAGUA





172
422
AUGGCAUCUAGCCAA





173
423
UGGCAUUGCAGCCAA





174
424
AAGCACCCACACCCA





175
425
CCCACAACGCUUUUA





176
426
CUGGCUUCCUGGUGA





177
427
CAUGGAAUCCCGGCA





178
428
CUACGAGGAGCUGGA





179
429
UGAGGACCAGCGGGA





180
430
UGGCUGGCAUUGCAA





181
431
CAAAGAUGUCAUCAA





182
432
UGGAGGUGUAUCUCA





183
433
CAAGCACCCACACCA





184
434
CCGAGUUGAGGCAGA





185
435
UGGUCACCGACUUCA





186
436
AGGAGGACGAGGACA





187
437
AACAGUGAGGCUGGA





188
438
UUAUUCGGAAAAGCA





189
439
CUGCCAAGCUCACAA





190
440
CCAGCAUCCACGCUA





191
441
GACUCCUCUGUCUUA





192
442
CCAAGCAAGCAGACA





193
443
GUGCUGCCUGCUACA





194
444
GAGGCCAGCAUCCAA





195
445
GACAUUUAUCUUUUA





196
446
UGUUUUGCAGGACUA





197
447
UCACCAAGAUCCUGA





198
448
CACCUUCCACCGCUA





199
449
CUACGCCAUUGCCAA





200
450
GGAGGACUCCUCUGA





201
451
UGCUGAGCUGCUCCA





202
452
UGCCAAGCUCACACA





203
453
AUUGCCAGGUGCUGA





204
454
CAGUGAGGCUGGGAA





205
455
UGCUCCAGUUUCUCA





206
456
UGAUCCACUUCUCUA





207
457
GAUGAGUGGCGACCA





208
458
AAAGCCAGCUGGUCA





209
459
CAAGAUCCUGCAUGA





210
460
CAACUUUGGCCGCUA





211
461
GUCCUCACAGGCUGA





212
462
CGUCCACACAGCUCA





213
463
UGCUGCCUGCUACCA





214
464
CGAGCCGGAGCUCAA





215
465
UGUAUCUCCUAGACA





216
466
CGGGACCCGCUUCCA





217
467
CAAGCUCACACAGCA





218
468
AAAAGCCAGCUGGUA





219
469
GUGGACCUCUUUGCA





220
470
CCUCUAGGUCUCCUA





221
471
CUGUUUUGCAGGACA





222
472
CUACGUGGUGGUGCA





223
473
CCUGGCCCUUGAGUA





224
474
GAGCUUUAAAAUGGA





225
475
GGGCCCACAACGCUA





226
476
UCCACUUCUCUGCCA





227
477
CCCUAGAAGGUUUCA





228
478
UGCUGGUCACCGCUA





229
479
CCUCCAGCGACUGCA





230
480
UUAUUCUGGGUUUUA





231
481
GUGUCUACGCCAUUA





232
482
UUGUAACUUGAAGAA





233
483
UUUUGCUUUUGUAAA





234
484
UGUAACUUGAAGAUA





235
485
CUCCUAGACACCAGA





236
486
AGUCAGAGCGCACUA





237
487
CAGCAAGUGUGACAA





238
488
GAGGACUCCUCUGUA





239
489
UUUGCUUUUGUAACA





240
490
AAGGAGGCAGGAUUA





241
491
CAGCCACCUUCCACA





242
492
AGCCAACCCGCUCCA





243
493
AAGAUGAGUGGCGAA





244
494
AGGAGGACUCCUCUA





245
495
CCGAGCCGGAGCUCA





246
496
AGGUCAUCACAGUUA





247
497
GGUGGAGGUGUAUCA





248
498
UCUGCUCUAUGCCAA





249
499
AGCUGCUGAGCUGCA





250
500
AAGAUGUCAUCAAUA


















TABLE 2d






SEQ ID



#
NO:
250 modified sense strands

















1
895
fC.mA.fC.mC.fC.mU.fC.mA.fU.mA.fG.mG.fC.mC.fA





2
896
fC.mC.fU.mG.fG.mA.fG.mU.fU.mU.fA.mU.fU.mC.fA





3
897
fA.mG.fG.mC.fC.mU.fG.mG.fA.mG.fU.mU.fU.mA.fA





4
898
fC.mU.fG.mG.fA.mG.fU.mU.fU.mA.fU.mU.fC.mG.fA





5
899
fC.mA.fU.mC.fU.mG.fC.mU.fG.mC.fC.mG.fG.mA.fA





6
900
f.mA.fU.mA.fG.mG.fC.mC.fU.mG.fG.mA.fG.mU.fA





7
901
fG.mG.fC.mA.fC.mC.fC.mU.fC.mA.fU.mA.fG.mG.fA





8
902
fA.mC.fC.mC.fU.mC.fA.mU.fA.mG.fG.mC.fC.mU.fA





9
903
fC.mU.fC.mA.fU.mA.fG.mG.fC.mC.fU.mG.fG.mA.fA





10
904
fC.mC.fC.mU.fG.mA.fG.mG.fA.mC.fC.mA.fG.mC.fA





11
905
fG.mC.fC.mU.fG.mG.fA.mG.fU.mU.fU.mA.fU.mU.fA





12
906
fC.mU.fG.mA.fG.mC.fU.mG.fC.mU.fC.mC.fA.mG.fA





13
907
fU.mG.fG.mA.fG.mU.fU.mU.fA.mU.fU.mC.fG.mG.fA





14
908
fG.mU.fU.mC.fC.mC.fU.mG.fA.mG.fG.mA.fC.mC.fA





15
909
fU.mU.fC.mC.fC.mU.fG.mA.fG.mG.fA.mC.fC.mA.fA





16
910
fG.mG.fC.mC.fU.mG.fG.mA.fG.mU.fU.mU.fA.mU.fA





17
911
fU.mC.fA.mU.fA.mG.fG.mC.fC.mU.fG.mG.fA.mG.fA





18
912
fC.mC.fC.mU.fC.mA.fU.mA.fG.mG.fC.mC.fU.mG.fA





19
913
fG.mG.fU.mU.fC.mC.fC.mU.fG.mA.fG.mG.fA.mC.fA





20
914
fG.mC.fA.mC.fC.mC.fU.mC.fA.mU.fA.mG.fG.mC.fA





21
915
fG.mA.fG.mU.fU.mU.fA.mU.fU.mC.fG.mG.fA.mA.fA





22
916
fU.mC.fC.mU.fG.mC.fU.mG.fC.mC.fA.mU.fG.mC.fA





23
917
fU.mC.fU.mG.fC.mU.fG.mC.fC.mG.fG.mA.fG.mC.fA





24
918
fC.mU.fG.mC.fC.mG.fG.mA.fG.mC.fC.mG.fG.mC.fA





25
919
fU.mG.fG.mU.fU.mC.fC.mC.fU.mG.fA.mG.fG.mA.fA





26
920
fA.mU.fC.mU.fG.mC.fU.mG.fC.mC.fG.mG.fA.mG.fA





27
921
fG.mC.fU.mG.fC.mC.fC.mA.fC.mG.fU.mG.fG.mC.fA





28
922
fU.mU.fU.mU.fG.mU.fA.mA.fC.mU.fU.mG.fA.mA.fA





29
923
fU.mA.fG.mA.fC.mC.fU.mG.fU.mU.fU.mU.fG.mC.fA





30
924
fU.mA.fU.mU.fU.mA.fU.mU.fC.mU.fG.mG.fG.mU.fA





31
925
fA.mA.fG.mC.fA.mG.fA.mC.fA.mU.fU.mU.fA.mU.fA





32
926
fC.mU.fU.mU.fU.mG.fU.mA.fA.mC.fU.mU.fG.mA.fA





33
927
fC.mU.fG.mU.fC.mC.fU.mC.fU.mC.fU.mG.fU.mU.fA





34
928
fA.mC.fU.mU.fG.mA.fA.mG.fA.mU.fA.mU.fU.mU.fA





35
929
fU.mU.fU.mA.fA.mA.fA.mU.fG.mG.fU.mU.fC.mC.fA





36
930
fC.mU.fA.mG.fA.mC.fC.mU.fG.mU.fU.mU.fU.mG.fA





37
931
fG.mU.fU.mU.fU.mG.fU.mA.fG.mC.fA.mU.fU.mU.fA





38
932
fC.mA.fU.mU.fU.mA.fU.mC.fU.mU.fU.mU.fG.mG.fA





39
933
fC.mA.fU.mU.fG.mC.fC.mA.fG.mG.fU.mG.fC.mU.fA





40
934
fG.mG.fA.mG.fG.mC.fA.mG.fG.mA.fU.mU.fC.mU.fA





41
935
fC.mA.fG.mA.fG.mA.fC.mU.fG.mA.fU.mC.fC.mA.fA





42
936
fA.mU.fA.mU.fU.mU.fA.mU.fU.mC.fU.mG.fG.mG.fA





43
937
fG.mA.fU.mA.fU.mU.fU.mA.fU.mU.fC.mU.fG.mG.fA





44
938
fU.mU.fU.mG.fU.mA.fA.mC.fU.mU.fG.mA.fA.mG.fA





45
939
fG.mG.fG.mU.fU.mU.fU.mG.fU.mA.fG.mC.fA.mU.fA





46
940
fC.mC.fU.mG.fU.mU.fU.mU.fG.mC.fU.mU.fU.mU.fA





47
941
fA.mA.fC.mU.fU.mG.fA.mA.fG.mA.fU.mA.fU.mU.fA





48
942
fC.mU.fG.mC.fU.mU.fU.mG.fU.mG.fU.mC.fA.mC.fA





49
943
fU.mU.fG.mA.fA.mG.fA.mU.fA.mU.fU.mU.fA.mU.fA





50
944
fG.mG.fU.mU.fU.mU.fG.mU.fA.mG.fC.mA.fU.mU.fA





51
945
fC.mA.fG.mC.fA.mC.fC.mU.fG.mC.fU.mU.fU.mG.fA





52
946
fA.mA.fG.mA.fU.mA.fU.mU.fU.mA.fU.mU.fC.mU.fA





53
947
fU.mG.fU.mU.fU.mU.fG.mC.fU.mU.fU.mU.fG.mU.fA





54
948
fA.mU.fU.mC.fU.mG.fG.mG.fU.mU.fU.mU.fG.mU.fA





55
949
fA.mC.fC.mU.fG.mU.fU.mU.fU.mG.fC.mU.fU.mU.fA





56
950
fG.mG.fU.mC.fA.mC.fC.mG.fA.mC.fU.mU.fC.mG.fA





57
951
fC.mU.fG.mU.fU.mU.fU.mG.fC.mU.fU.mU.fU.mG.fA





58
952
fG.mC.fU.mU.fU.mU.fG.mU.fA.mA.fC.mU.fU.mG.fA





59
953
fA.mU.fG.mC.fA.mA.fA.mG.fU.mC.fA.mA.fG.mG.fA





60
954
fC.mA.fG.mC.fA.mU.fC.mC.fA.mC.fG.mC.fU.mU.fA





61
955
fC.mA.fA.mG.fC.mA.fG.mA.fC.mA.fU.mU.fU.mA.fA





62
956
fG.mC.fU.mU.fU.mA.fA.mA.fA.mU.fG.mG.fU.mU.fA





63
957
fC.mA.fA.mU.fG.mA.fG.mG.fC.mC.fU.mG.fG.mU.fA





64
958
fU.mU.fU.mA.fU.mU.fC.mU.fG.mG.fG.mU.fU.mU.fA





65
959
fC.mU.fU.mU.fA.mA.fA.mA.fU.mG.fG.mU.fU.mC.fA





66
960
fG.mA.fA.mG.fA.mU.fA.mU.fU.mU.fA.mU.fU.mC.fA





67
961
fA.mA.fG.mC.fC.mA.fA.mG.fC.mC.fU.mC.fU.mU.fA





68
962
fA.mU.fG.mA.fG.mG.fC.mC.fU.mG.fG.mU.fU.mC.fA





69
963
fA.mG.fA.mU.fA.mU.fU.mU.fA.mU.fU.mC.fU.mG.fA





70
964
fG.mA.fG.mG.fC.mA.fG.mG.fA.mU.fU.mC.fU.mU.fA





71
965
fU.mC.fU.mA.fG.mA.fC.mC.fU.mG.fU.mU.fU.mU.fA





72
966
fC.mA.fU.mC.fC.mA.fC.mG.fC.mU.fU.mC.fC.mU.fA





73
967
fC.mA.fG.mC.fC.mC.fA.mA.fC.mC.fA.mG.fU.mG.fA





74
968
fG.mA.fU.mC.fC.mU.fG.mC.fA.mU.fG.mU.fC.mU.fA





75
969
fG.mG.fU.mG.fU.mA.fU.mC.fU.mC.fC.mU.fA.mG.fA





76
970
fU.mC.fU.mG.fG.mG.fU.mU.fU.mU.fG.mU.fA.mG.fA





77
971
fC.mA.fU.mG.fA.mU.fG.mC.fU.mG.fU.mC.fU.mG.fA





78
972
fU.mA.fG.mA.fC.mA.fC.mC.fA.mG.fC.mA.fU.mA.fA





79
973
fG.mC.fU.mG.fC.mU.fC.mC.fA.mG.fU.mU.fU.mC.fA





80
974
fU.mU.fU.mG.fG.mG.fU.mC.fU.mG.fU.mC.fC.mU.fA





81
975
fU.mG.fU.mC.fU.mA.fC.mG.fC.mC.fA.mU.fU.mG.fA





82
976
fG.mA.fC.mU.fG.mC.fA.mG.fC.mA.fC.mC.fU.mG.fA





83
977
fC.mA.fC.mC.fA.mA.fG.mG.fA.mG.fG.mC.fA.mG.fA





84
978
fC.mA.fU.mG.fG.mU.fC.mA.fC.mC.fG.mA.fC.mU.fA





85
979
fU.mC.fU.mA.fU.mG.fC.mC.fA.mG.fG.mC.fU.mG.fA





86
980
fG.mU.fC.mU.fG.mU.fC.mC.fU.mC.fU.mC.fU.mG.fA





87
981
fA.mG.fG.mA.fA.mC.fU.mG.fA.mG.fC.mC.fA.mG.fA





88
982
fA.mG.fA.mC.fC.mA.fG.mG.fA.mA.fG.mC.fU.mC.fA





89
983
fC.mG.fA.mC.fU.mG.fC.mA.fG.mC.fA.mC.fC.mU.fA





90
984
fC.mA.fC.mA.fG.mA.fC.mA.fG.mG.fC.mC.fA.mG.fA





91
985
fC.mA.fG.mC.fU.mC.fC.mA.fG.mG.fC.mG.fG.mU.fA





92
986
fC.mC.fA.mC.fA.mA.fC.mG.fC.mU.fU.mU.fU.mG.fA





93
987
fU.mA.fU.mG.fC.mC.fA.mG.fG.mC.fU.mG.fU.mG.fA





94
988
fG.mA.fG.mC.fA.mU.fG.mG.fA.mA.fU.mC.fC.mC.fA





95
989
fA.mG.fG.mG.fU.mC.fA.mU.fG.mG.fU.mC.fA.mC.fA





96
990
fA.mG.fA.mC.fC.mU.fG.mU.fU.mU.fU.mG.fC.mU.fA





97
991
fG.mA.fG.mG.fA.mG.fU.mG.fA.mG.fC.mC.fA.mG.fA





98
992
fG.mA.fC.mU.fG.mA.fU.mC.fC.mA.fC.mU.fU.mC.fA





99
993
fC.mU.fA.mG.fA.mC.fA.mC.fC.mA.fG.mC.fA.mU.fA





100
994
fC.mA.fG.mC.fA.mG.fG.mA.fA.mC.fU.mG.fA.mG.fA





101
995
fC.mU.fG.mG.fU.mG.fG.mA.fG.mG.fU.mG.fU.mA.fA





102
996
fA.mU.fU.mG.fC.mA.fG.mC.fC.mA.fU.mG.fA.mU.fA





103
997
fU.mC.fU.mG.fU.mC.fC.mU.fC.mU.fC.mU.fG.mU.fA





104
998
fA.mG.fC.mC.fA.mA.fG.mC.fC.mU.fC.mU.fU.mC.fA





105
999
fA.mA.fU.mC.fG.mA.fG.mG.fG.mC.fA.mG.fG.mG.fA





106
1000
fC.mC.fU.mG.fG.mC.fU.mU.fC.mC.fU.mG.fG.mU.fA





107
1001
fC.mA.fG.mG.fA.mA.fG.mC fU.mC.fC.mC fU.mC.fA





108
1002
fA.mG.fC.mU.fU.mU.fA.mA.fA.mA.fU.mG.fG.mU.fA





109
1003
fC.mA.fG.mG.fC.mC.fA.mG.fC.mA.fA.mG.fU.mG.fA





110
1004
fU.mG.fA.mA.fG.mA.fU.mG.fA.mG.fU.mG.fG.mC.fA





111
1005
fC.mA.fC.mU.fU.mC.fU.mC.fU.mG.fC.mC.fA.mA.fA





112
1006
fC.mA.fU.mC.fG.mA.fG.mG.fA.mG.fG.mA.fC.mU.fA





113
1007
fC.mA.fU.mC.fU.mA.fG.mC.fC.mA.fG.mA.fG.mG.fA





114
1008
fG.mU.fC.mC.fA.mC.fA.mC.fA.mG.fC.mU.fC.mC.fA





115
1009
fC.mU.fG.mA.fU.mC.fC.mA.fC.mU.fU.mC.fU.mC.fA





116
1010
fC.mG.fU.mU.fG.mC.fC.mA.fU.mC.fU.mG.fC.mU.fA





117
1011
fC.mA.fU.mC.fA.mA.fU.mG.fA.mG.fG.mC.fC.mU.fA





118
1012
fC.mU.fC.mC.fA.mG.fC.mG.fA.mC.fU.mG.fC.mA.fA





119
1013
fA.mA.fG.mG.fA.mG.fG.mA.fG.mA.fC.mC.fC.mA.fA





120
1014
fU.mG.fU.mC.fU.mG.fC.mC.fG.mA.fG.mC.fC.mG.fA





121
1015
fU.mG.fC.mC.fA.mA.fA.mG.fA.mU.fG.mU.fC.mA.fA





122
1016
fC.mU.fA.mG.fC.mC.fU.mU.fG.mC.fG.mU.fU.mC.fA





123
1017
fU.mC.fU.mC.fU.mG.fC.mC.fA.mA.fA.mG.fA.mU.fA





124
1018
fG.mG.fA.mC.fG.mA.fU.mG.fC.mC.fU.mG.fC.mC.fA





125
1019
fU.mA.fG.mC.fC.mU.fU.mG.fC.mG.fU.mU.fC.mC.fA





126
1020
fA.mC.fC.mU.fG.mC.fU.mU.fU.mG.fU.mG.fU.mC.fA





127
1021
fU.mA.fA.mC.fU.mU.fG.mA.fA.mG.fA.mU.fA.mU.fA





128
1022
fC.mA.fA.mG.fG.mG.fA.mA.fG.mG.fG.mC.fA.mC.fA





129
1023
fC.mG.fU.mG.fG.mC.fU.mG.fG.mC.fA.mU.fU.mG.fA





130
1024
fU.mG.fA.mA.fG.mC.fC.mA.fA.mG.fC.mC.fU.mC.fA





131
1025
fC.mC.fU.mC.fA.mC.fC.mA.fA.mG.fA.mU.fC.mC.fA





132
1026
fG.mG.fU.mC.fA.mU.fC.mA.fC.mA.fG.mU.fU.mG.fA





133
1027
fG.mC.fA.mA.fG.mC.fA.mG.fA.mC.fA.mU.fU.mU.fA





134
1028
fU.mU.fC.mU.fA.mG.fA.mC.fC.mU.fG.mU.fU.mU.fA





135
1029
fG.mC.fC.mC.fA.mC.fA.mA.fC.mG.fC.mU.fU.mU.fA





136
1030
fU.mG.fU.mC.fC.mU.fC.mU.fC.mU.fG.mU.fU.mG.fA





137
1031
fA.mA.fG.mG.fA.mU.fC.mC.fG.mU.fG.mG.fA.mG.fA





138
1032
fU.mC.fC.mU.fG.mC.fA.mC.fA.mG.fU.mC.fC.mU.fA





139
1033
fA.mC.fA.mU.fU.mU.fA.mU.fC.mU.fU.mU.fU.mG.fA





140
1034
fC.mA.fA.mG.fG.mA.fG.mG.fC.mA.fG.mG.fA.mU.fA





141
1035
fC.mU.fU.mU.fG.mG.fC.mC.fG.mC.fU.mG.fU.mG.fA





142
1036
fC.mA.fC.mA.fG.mC.fA.mG.fG.mA.fA.mC.fU.mG.fA





143
1037
fC.mU.fG.mC.fU.mC.fU.mA.fU.mG.fC.mC.fA.mG.fA





144
1038
fU.mG.fU.mC.fA.mU.fC.mA.fA.mU.fG.mA.fG.mG.fA





145
1039
f.mG.fA.mG.fG.mA.fC.mG.fG.mC.fG.mA.fC.mU.fA





146
1040
fC.mA.fG.mG.fA.mU.fU.mC.fU.mU.fC.mC.fC.mA.fA





147
1041
fC.mG.fU.mC.fA.mA.fG.mC.fA.mC.fC.mC.fA.mC.fA





148
1042
fC.mA.fC.mC.fU.mG.fC.mU.fU.mU.fG.mU.fG.mU.fA





149
1043
fC.mC.fA.mC.fG.mC.fU.mU.fC.mC.fU.mG.fC.mU.fA





150
1044
fA.mG.fG.mC.fA.mG.fA.mG.fA.mC.fU.mG.fA.mU.fA





151
1045
fC.mC.fA.mU.fG.mA.fU.mG.fC.mU.fG.mU.fC.mU.fA





152
1046
fC.mA.fU.mU.fG.mC.fA.mG.fC.mC.fA.mU.fG.mA.fA





153
1047
fC.mU.fA.mU.fG.mC.fC.mA.fG.mG.fC.mU.fG.mU.fA





154
1048
fC.mU.fC.mU.fG.mC.fU.mC.fU.mA.fU.mG.fC.mC.fA





155
1049
fG.mU.fC.mA.fG.mC.fC.mC.fA.mA.fC.mC.fA.mG.fA





156
1050
fU.mA.fU.mC.fU.mU.fU.mU.fG.mG.fG.mU.fC.mU.fA





157
1051
fC.mC.fG.mC.fU.mG.fU.mG.fU.mG.fG.mA.fC.mC.fA





158
1052
fC.mA.fG.mC.fC.mU.fG.mG.fU.mG.fG.mA.fG.mG.fA





159
1053
fU.mU.fG.mG.fC.mA.fG.mC.fU.mG.fU.mU.fU.mU.fA





160
1054
fU.mU.fG.mG.fG.mU.fC.mU.fG.mU.fC.mC.fU.mC.fA





161
1055
fC.mA.fA.mG.fC.mA.fA.mG.fC.mA.fG.mA.fC.mA.fA





162
1056
fC.mU.fC.mU.fC.mU.fG.mU.fU.mG.fC.mC.fU.mU.fA





163
1057
fU.mA.fU.mC.fU.mC.fC.mU.fA.mG.fA.mC.fA.mC.fA





164
1058
fA.mG.fA.mG.fA.mC.fU.mG.fA.mU.fC.mC.fA.mC.fA





165
1059
fG.mU.fU.mG.fG.mC.fA.mG.fC.mU.fG.mU.fU.mU.fA





166
1060
fC.mC.fA.mC.fA.mA.fG.mC.fC.mG.fC.mC.fU.mG.fA





167
1061
fU.mG.fA.mG.fG.mC.fC.mU.fG.mG.fU.mU.fC.mC.fA





168
1062
fA.mG.fU.mG.fA.mG.fC.mC.fA.mG.fG.mC.fA.mG.fA





169
1063
fG.mA.fU.mG.fG.mC.fC.mC.fU.mC.fA.mU.fC.mU.fA





170
1064
fC.mA.fC.mA.fG.mA.fC.mC.fA.mG.fG.mA.fA.mG.fA





171
1065
fC.mU.fG.mG.fA.mA.fU.mG.fC.mA.fA.mA.fG.mU.fA





172
1066
fA.mU.fG.mG.fC.mA.fU.mC.fU.mA.fG.mC.fC.mA.fA





173
1067
fU.mG.fG.mC.fA.mU.fU.mG.fC.mA.fG.mC.fC.mA.fA





174
1068
fA.mA.fG.mC.fA.mC.fC.mC.fA.mC.fA.mC.fC.mC.fA





175
1069
fC.mC.fC.mA.fC.mA.fA.mC.fG.mC.fU.mU.fU.mU.fA





176
1070
fC.mU.fG.mG.fC.mU.fU.mC.fC.mU.fG.mG.fU.mG.fA





177
1071
fC.mA.fU.mG.fG.mA.fA.mU.fC.mC.fC.mG.fG.mC.fA





178
1072
fC.mU.fA.mC.fG.mA.fG.mG.fA.mG.fC.mU.fG.mG.fA





179
1073
fU.mG.fA.mG.fG.mA.fC.mC.fA.mG.fC.mG.fG.mG.fA





180
1074
fU.mG.fG.mC.fU.mG.fG.mC.fA.mU.fU.mG.fC.mA.fA





181
1075
fC.mA.fA.mA.fG.mA.fU.mG.fU.mC.fA.mU.fC.mA.fA





182
1076
fU.mG.fG.mA.fG.mG.fU.mG.fU.mA.fU.mC.fU.mC.fA





183
1077
fC.mA.fA.mG.fC.mA.fC.mC.fC.mA.fC.mA.fC.mC.fA





184
1078
fC.mC.fG.mA.fG.mU.fU.mG.fA.mG.fG.mC.fA.mG.fA





185
1079
fU.mG.fG.mU.fC.mA.fC.mC.fG.mA.fC.mU.fU.mC.fA





186
1080
fA.mG.fG.mA.fG.mG.fA.mC.fG.mA.fG.mG.fA.mC.fA





187
1081
fA.mA.fC.mA.fG.mU.fG.mA.fG.mG.fC.mU.fG.mG.fA





188
1082
fU.mU.fA.mU.fU.mC.fG.mG.fA.mA.fA.mA.fG.mC.fA





189
1083
fC.mU.fG.mC.fC.mA.fA.mG.fC.mU.fC.mA.fC.mA.fA





190
1084
fC.mC.fA.mG.fC.mA.fU.mC.fC.mA.fC.mG.fC.mU.fA





191
1085
fG.mA.fC.mU.fC.mC.fU.mC.fU.mG.fU.mC.fU.mU.fA





192
1086
fC.mC.fA.mA.fG.mC.fA.mA.fG.mC.fA.mG.fA.mC.fA





193
1087
fG.mU.fG.mC.fU.mG.fC.mC.fU.mG.fC.mU.fA.mC.fA





194
1088
fG.mA.fG.mG.fC.mC.fA.mG.fC.mA.fU.mC.fC.mA.fA





195
1089
fG.mA.fC.mA.fU.mU.fU.mA.fU.mC.fU.mU.fU.mU.fA





196
1090
fU.mG.fU.mU.fU.mU.fG.mC.fA.mG.fG.mA.fC.mU.fA





197
1091
fU.mC.fA.mC.fC.mA.fA.mG.fA.mU.fC.mC.fU.mG.fA





198
1092
fC.mA.fC.mC.fU.mU.fC.mC.fA.mC.fC.mG.fC.mU.fA





199
1093
fC.mU.fA.mC.fG.mC.fC.mA.fU.mU.fG.mC.fC.mA.fA





200
1094
fG.mG.fA.mG.fG.mA.fC.mU.fC.mC.fU.mC.fU.mG.fA





201
1095
fU.mG.fC.mU.fG.mA.fG.mC.fU.mG.fC.mU.fC.mC.fA





202
1096
fU.mG.fC.mC.fA.mA.fG.mC.fU.mC.fA.mC.fA.mC.fA





203
1097
fA.mU.fU.mG.fC.mC.fA.mG.fG.mU.fG.mC.fU.mG.fA





204
1098
fC.mA.fG.mU.fG.mA.fG.mG.fC.mU.fG.mG.fG.mA.fA





205
1099
fU.mG.fC.mU.fC.mC.fA.mG.fU.mU.fU.mC.fU.mC.fA





206
1100
fU.mG.fA.mU.fC.mC.fA.mC.fU.mU.fC.mU.fC.mU.fA





207
1101
fG.mA.fU.mG.fA.mG.fU.mG.fG.mC.fG.mA.fC.mC.fA





208
1102
fA.mA.fA.mG.fC.mC.fA.mG.fC.mU.fG.mG.fU.mC.fA





209
1103
fC.mA.fA.mG.fA.mU.fC.mC.fU.mG.fC.mA.fU.mG.fA





210
1104
fC.mA.fA.mC.fU.mU.fU.mG.fG.mC.fC.mG.fC.mU.fA





211
1105
fG.mU.fC.mC.fU.mC.fA.mC.fA.mG.fG.mC.fU.mG.fA





212
1106
fC.mG.fU.mC.fC.mA.fC.mA.fC.mA.fG.mC.fU.mC.fA





213
1107
fU.mG.fC.mU.fG.mC.fC.mU.fG.mC.fU.mA.fC.mC.fA





214
1108
fC.mG.fA.mG.fC.mC.fG.mG.fA.mG.fC.mU.fC.mA.fA





215
1109
fU.mG.fU.mA.fU.mC.fU.mC.fC.mU.fA.mG.fA.mC.fA





216
1110
fC.mG.fG.mG.fA.mC.fC.mC.fG.mC.fU.mU.fC.mC.fA





217
1111
fC.mA.fA.mG.fC.mU.fC.mA.fC.mA.fC.mA.fG.mC.fA





218
1112
fA.mA.fA.mA.fG.mC.fC.mA.fG.mC.fU.mG.fG.mU.fA





219
1113
fG.mU.fG.mG.fA.mC.fC.mU.fC.mU.fU.mU.fG.mC.fA





220
1114
fC.mC.fU.mC.fU.mA.fG.mG.fU.mC.fU.mC.fC.mU.fA





221
1115
fC.mU.fG.mU.fU.mU.fU.mG.fC.mA.fG.mG.fA.mC.fA





222
1116
fC.mU.fA.mC.fG.mU.fG.mG.fU.mG.fG.mU.fG.mC.fA





223
1117
fC.mC.fU.mG.fG.mC.fC.mC.fU.mU.fG.mA.fG.mU.fA





224
1118
fG.mA.fG.mC.fU.mU.fU.mA.fA.mA.fA.mU.fG.mG.fA





225
1119
fG.mG.fG.mC.fC.mC.fA.mC.fA.mA.fC.mG.fC.mU.fA





226
1120
fU.mC.fC.mA.fC.mU.fU.mC.fU.mC.fU.mG.fC.mC.fA





227
1121
fC.mC.fC.mU.fA.mG.fA.mA.fG.mG.fU.mU.fU.mC.fA





228
1122
fU.mG.fC.mU.fG.mG.fU.mC.fA.mC.fC.mG.fC.mU.fA





229
1123
fC.mC.fU.mC.fC.mA.fG.mC.fG.mA.fC.mU.fG.mC.fA





230
1124
fU.mU.fA.mU.fU.mC.fU.mG.fG.mG.fU.mU.fU.mU.fA





231
1125
fG.mU.fG.mU.fC.mU.fA.mC.fG.mC.fC.mA.fU.mU.fA





232
1126
fU.mU.fG.mU.fA.mA.fC.mU.fU.mG.fA.mA.fG.mA.fA





233
1127
fU.mU.fU.mU.fG.mC.fU.mU.fU.mU.fG.mU.fA.mA.fA





234
1128
fU.mG.fU.mA.fA.mC.fU.mU.fG.mA.fA.mG.fA.mU.fA





235
1129
fC.mU.fC.mC.fU.mA.fG.mA.fC.mA.fC.mC.fA.mG.fA





236
1130
fA.mG.fU.mC.fA.mG.fA.mG.fC.mG.fC.mA.fC.mU.fA





237
1131
fC.mA.fG.mC.fA.mA.fG.mU.fG.mU.fG.mA.fC.mA.fA





238
1132
fG.mA.fG.mG.fA.mC.fU.mC.fC.mU.fC.mU.fG.mU.fA





239
1133
fU.mU.fU.mG.fC.mU.fU.mU.fU.mG.fU.mA.fA.mC.fA





240
1134
fA.mA.fG.mG.fA.mG.fG.mC.fA.mG.fG.mA.fU.mU.fA





241
1135
fC.mA.fG.mC.fC.mA.fC.mC.fU.mU.fC.mC.fA.mC.fA





242
1136
fA.mG.fC.mC.fA.mA.fC.mC.fC.mG.fC.mU.fC.mC.fA





243
1137
fA.mA.fG.mA.fU.mG.fA.mG.fU.mG.fG.mC.fG.mA.fA





244
1138
fA.mG.fG.mA.fG.mG.fA.mC.fU.mC.fC.mU.fC.mU.fA





245
1139
fC.mC.fG.mA.fG.mC.fC.mG.fG.mA.fG.mC.fU.mC.fA





246
1140
fA.mG.fG.mU.fC.mA.fU.mC.fA.mC.fA.mG.fU.mU.fA





247
1141
fG.mG.fU.mG.fG.mA.fG.mG.fU.mG.fU.mA.fU.mC.fA





248
1142
fU.mC.fU.mG.fC.mU.fC.mU.fA.mU.fG.mC.fC.mA.fA





249
1143
fA.mG.fC.mU.fG.mC.fU.mG.fA.mG.fC.mU.fG.mC.fA





250
1144
fA.mA.fG.mA.fU.mG.fU.mC.fA.mU.fC.mA.fA.mU.fA









Tables 3a to 3d below show nucleobase sequences and sugar-phosphate backbone modifications of antisense and sense strands of further 43 constructs as described herein. For corresponding entries in the sequence listing, the following applies: entry number in Table 3a+500=entry number in the sequence listing; entry number in Table 3c+543=entry number in the sequence listing.













TABLE 3a








SEQ ID




#
NO:
43 antisense nucleobase sequences




















1
501
UUCUUUGGCAGAGAAGUGG







2
502
UCAUGCAGGAUCUUGGUGA







3
503
UUAAACUCCAGGCCUAUGA







4
504
UGCAAUGCCAGCCACGUGG







5
505
UGACUUUGCAUUCCAGACC







6
506
UAACCGUGCCCUUCCCUUG







7
507
UAGUGGAUCAGUCUCUGCC







8
508
UCAUUCUCGAAGUCGGUGA







9
509
UAACUCCAGGCCUAUGAGG







10
510
UAACUUCAAGGCCAGCUCC







11
511
UAAUGGCGUAGACACCCUC







12
512
UUAGAGGCAGGCAUCGUCC







13
513
UACCUCCACGGAUCCUUGG







14
514
UCAGUCUCUGCCUCAACUC







15
515
UUCUUGGUGAGGUAUCCCC







16
516
UAGAUGGCAACGGCUGUCA







17
517
UACACCUCCACCAGGCUGC







18
518
UUGGAAGACAUGCAGGAUC







19
519
UAUGAGGGUGCCGCUAACC







20
520
UUUCUCGAAGUCGGUGACC







21
521
UAAGUGGAUCAGUCUCUGC







22
522
UCACUCUGUAUGCUGGUGU







23
523
UGUGUGGACGCUGCAGUUG







24
524
UGUAGAGGCAGGCAUCGUC







25
525
UCUGUAUGCUGGUGUCUAG







26
526
UUCAAGGCCAGCUCCAGCA







27
527
UAAGUCGGUGACCAUGACC







28
528
UCACACUUGCUGGCCUGUC







29
529
UGUCUGUGGAAGCGGGUCC







30
530
UUUGGCAGAGAAGUGGAUC







31
531
UAGAAGGCCAUGGAAGACA







32
532
UUUGAGGACGCGGCUGUAC







33
533
UUUCCCGGUGGUCACUCUG







34
534
UAUGCUGGUGUCUAGGAGA







35
535
UGGAAGGUGGCUGUGGUUC







36
536
UAAACUCCAGGCCUAUGAG







37
537
UUCCACGGGAUGCUCUGGG







38
538
UUCCGCUCCAGGUUCCACG







39
539
UUCAGCACCACCACGUAGG







40
540
UCCUCCUCGGGCACAUUCU







41
541
UUUCCGAAUAAACUCCAGG







42
542
UUUCCAUGCUCCUUGACUU







43
543
UGCUCCUUGACUUUGCAUU



















TABLE 3b






SEQ




ID



#
NO:
43 modified antisense strands

















1
1145
[mU][#][fU][#][mC][fU][mU][fU][mG][fG][mC][fA][mG][fA][mG]




[fA][#][mA][#][fG][#][mU][#][fG][#][rG]





2
1146
[mU][#][fC][#][mA][fU][mG][fC][mA][fG][mG][fA][mU][fC][mU]




[fU][#][mG][#][fG][#][mU][#][fG][#][rA]





3
1147
[mU][#][fU][#][mA][fA][mA][fC][mU][fC][mC][fA][mG][fG][mC]




[fC][#][mU][#][fA][#][mU][#][fG][#][rA]





4
1148
[mU][#][fG][#][mC][fA][mA][fU][mG][fC][mC][fA][mG][fC][mC]




[fA][#][mC][#][fG][#][mU][#][fG][#][rG]





5
1149
[mU][#][fG][#][mA][fC][mU][fU][mU][fG][mC][fA][mU][fU][mC]




[fC][#][mA][#][fG][#][mA][#][fC][#][rC]





6
1150
[mU][#][fA][#][mA][fC][mC][fG][mU][fG][mC][fC][mC][fU][mU]




[fC][#][mC][#][fC][#][mU][#][fU][#][rG]





7
1151
[mU][#][fA][#][mG][fU][mG][fG][mA][fU][mC][fA][mG][fU][mC]




[fU][#][mC][#][fU][#][mG][#][fC][#][rC]





8
1152
[mU][#][fC][#][mA][fU][mU][fC][mU][fC][mG][fA][mA][fG][mU]




[fC][#][mG][#][fG][#][mU][#][fG][#][rA]





9
1153
[mU][#][fA][#][mA][fC][mU][fC][mC][fA][mG][fG][mC][fC][mU]




[fA][#][mU][#][fG][#][mA][#][fG][#][rG]





10
1154
[mU][#][fA][#][mA][fC][mU][fU][mC][fA][mA][fG][mG][fC][mC]




[fA][#][mG][#][fC][#][mU][#][fC][#][rC]





11
1155
[mU][#][fA][#][mA][fU][mG][fG][mC][fG][mU][fA][mG][fA][mC]




[fA][#][mC][#][fC][#][mC][#][fU][#][rC]





12
1156
[mU][#][fU][#][mA][fG][mA][fG][mG][fC][mA][fG][mG][fC][mA]




[fU][#][mC][#][fG][#][mU][#][fC][#][rC]





13
1157
[mU][#][fA][#][mC][fC][mU][fC][mC][fA][mC][fG][mG][fA][mU]




[fC][#][mC][#][fU][#][mU][#][fG][#][rG]





14
1158
[mU][#][fC][#][mA][fG][mU][fC][mU][fC][mU][fG][mC][fC][mU]




[fC][#][mA][#][fA][#][mC][#][fU][#][rC]





15
1159
[mU][#][fU][#][mC][fU][mU][fG][mG][fU][mG][fA][mG][fG][mU]




[fA][#][mU][#][fC][#][mC][#][fC][#][rC]





16
1160
[mU][#][fA][#][mG][fA][mU][fG][mG][fC][mA][fA][mC][fG][mG][fC][#][mU][#][fG][#][mU][#][fC][#][rA]





17
1161
[mU][#][fA][#][mC][fA][mC][fC][mU][fC][mC][fA][mC][fC][mA][fG][#][mG][#][fC][#][mU][#][fG][#][rC]





18
1162
[mU][#][fU][#][mG][fG][mA][fA][mG][fA][mC][fA][mU][fG][mC][fA][#][mG][#][fG][#][mA][#][fU][#][rC]





19
1163
[mU][#][fA][#][mU][fG][mA][fG][mG][fG][mU][fG][mC][fC][mG][fC][#][mU][#][fA][#][mA][#][fC][#][rC]





20
1164
[mU][#][fU][#][mU][fC][mU][fC][mG][fA][mA][fG][mU][fC][mG][fG][#][mU][#][fG][#][mA][#][fC][#][rC]





21
1165
[mU][#][fA][#][mA][fG][mU][fG][mG][fA][mU][fC][mA][fG][mU][fC][#][mU][#][fC][#][mU][#][fG][#][rC]





22
1166
[mU][#][fC][#][mA][fC][mU][fC][mU][fG][mU][fA][mU][fG][mC][fU][#][mG][#][fG][#][mU][#][fG][#][rU]





23
1167
[mU][#][fG][#][mU][fG][mU][fG][mG][fA][mC][fG][mC][fU][mG][fC][#][mA][#][fG][#][mU][#][fU][#][rG]





24
1168
[mU][#][fG][#][mU][fA][mG][fA][mG][fG][mC][fA][mG][fG][mC][fA][#][mU][#][fC][#][mG][#][fU][#][rC]





25
1169
[mU][#][fC][#][mU][fG][mU][fA][mU][fG][mC][fU][mG][fG][mU][fG][#][mU][#][fC][#][mU][#][fA][#][rG]





26
1170
[mU][#][fU][#][mC][fA][mA][fG][mG][fC][mC][fA][mG][fC][mU][fC][#][mC][#][fA][#][mG][#][fC][#][rA]





27
1171
[mU][#][fA][#][mA][fG][mU][fC][mG][fG][mU][fG][mA][fC][mC][fA][#][mU][#][fG][#][mA][#][fC][#][rC]





28
1172
[mU][#][fC][#][mA][fC][mA][fC][mU][fU][mG][fC][mU][fG][mG][fC][#][mC][#][fU][#][mG][#][fU][#][rC]





29
1173
[mU][#][fG][#][mU][fC][mU][fG][mU][fG][mG][fA][mA][fG][mC][fG][#][mG][#][fG][#][mU][#][fC][#][rC]





30
1174
[mU][#][fU][#][mU][fG][mG][fC][mA][fG][mA][fG][mA][fA][mG][fU][#][mG][#][fG][#][mA][#][fU][#][rC]





31
1175
[mU][#][fA][#][mG][fA][mA][fG][mG][fC][mC][fA][mU][fG][mG][fA][#][mA][#][fG][#][mA][#][fC][#][rA]





32
1176
[mU][#][fU][#][mU][fG][mA][fG][mG][fA][mC][fG][mC][fG][mG][fC][#][mU][#][fG][#][mU][#][fA][#][rC]





33
1177
[mU][#][fU][#][mU][fC][mC][fC][mG][fG][mU][fG][mG][fU][mC][fA][#][mC][#][fU][#][mC][#][fU][#][rG]





34
1178
[mU][#][fA][#][mU][fG][mC][fU][mG][fG][mU][fG][mU][fC][mU][fA][#][mG][#][fG][#][mA][#][fG][#][rA]





35
1179
[mU][#][fG][#][mG][fA][mA][fG][mG][fU][mG][fG][mC][fU][mG][fU][#][mG][#][fG][#][mU][#][fU][#][rC]





36
1180
[mU][#][fA][#][mA][fA][mC][fU][mC][fC][mA][fG][mG][fC][mC][fU][#][mA][#][fU][#][mG][#][fA][#][rG]





37
1181
[mU][#][fU][#][mC][fC][mA][fC][mG][fG][mG][fA][mU][fG][mC][fU][#][mC][#][fU][#][mG][#][fG][#][rG]





38
1182
[mU][#][fU][#][mC][fC][mG][fC][mU][fC][mC][fA][mG][fG][mU][fU][#][mC][#][fC][#][mA][#][fC][#][rG]





39
1183
[mU][#][fU][#][mC][fA][mG][fC][mA][fC][mC][fA][mC][fC][mA][fC][#][mG][#][fU][#][mA][#][fG][#][rG]





40
1184
[mU][#][fC][#][mC][fU][mC][fC][mU][fC][mG][fG][mG][fC][mA][fC][#][mA][#][fU][#][mU][#][fC][#][rU]





41
1185
[mU][#][fU][#][mU][fC][mC][fG][mA][fA][mU][fA][mA][fA][mC]




[fU][#][mC][#][fC][#][mA][#][fG][#][rG]





42
1186
[mU][#][fU][#][mU][fC][mC][fA][mU][fG][mC][fU][mC][fC][mU]




[fU][#][mG][#][fA][#][mC][#][fU][#][rU]





43
1187
[mU][#][fG][#][mC][fU][mC][fC][mU][fU][mG][fA][mC][fU][mU]




[fU][#][mG][#][fC][#][mA][#][fU][#][rU]




















TABLE 3c








SEQ
43 sense nucleobase



#
ID NO:
 sequences




















1
544
UCUCUGCCAAAGAA







2
545
AAGAUCCUGCAUGA







3
546
GGCCUGGAGUUUAA







4
547
UGGCUGGCAUUGCA







5
548
GGAAUGCAAAGUCA







6
549
GAAGGGCACGGUUA







7
550
AGACUGAUCCACUA







8
551
GACUUCGAGAAUGA







9
552
UAGGCCUGGAGUUA







10
553
UGGCCUUGAAGUUA







11
554
UGUCUACGCCAUUA







12
555
AUGCCUGCCUCUAA







13
556
GAUCCGUGGAGGUA







14
557
GAGGCAGAGACUGA







15
558
UACCUCACCAAGAA







16
559
GCCGUUGCCAUCUA







17
560
CUGGUGGAGGUGUA







18
561
UGCAUGUCUUCCAA







19
562
GCGGCACCCUCAUA







20
563
CCGACUUCGAGAAA







21
564
GACUGAUCCACUUA







22
565
AGCAUACAGAGUGA







23
566
GCAGCGUCCACACA







24
567
UGCCUGCCUCUACA







25
568
CACCAGCAUACAGA







26
569
GAGCUGGCCUUGAA







27
570
UGGUCACCGACUUA







28
571
GCCAGCAAGUGUGA







29
572
CGCUUCCACAGACA







30
573
ACUUCUCUGCCAAA







31
574
UCCAUGGCCUUCUA







32
575
GCCGCGUCCUCAAA







33
576
UGACCACCGGGAAA







34
577
UAGACACCAGCAUA







35
578
ACAGCCACCUUCCA







36
579
AGGCCUGGAGUUUA







37
580
AGCAUCCCGUGGAA







38
581
AACCUGGAGCGGAA







39
582
GUGGUGGUGCUGAA







40
583
GUGCCCGAGGAGGA







41
584
AGUUUAUUCGGAAA







42
585
AAGGAGCAUGGAAA







43
586
AAAGUCAAGGAGCA



















TABLE 3d






SEQ




ID



#
NO:
43 modified sense strands

















1
1188
[mU][#][fC][#][mU][fC][mU][fG][mC][fC][mA][fA][mA][fG][#][mA][#][fA][#][3XGalNac]





2
1189
[mA][#][fA][#][mG][fA][mU][fC][mC][fU][mG][fC][mA][fU][#][mG][#][fA][#][3XGalNac]





3
1190
[mG][#][fG][#][mC][fC][mU][fG][mG][fA][mG][fU][mU][fU][#][mA][#][fA][#][3XGalNac]





4
1191
[mU][#][fG][#][mG][fC][mU][fG][mG][fC][mA][fU][mU][fG][#][mC][#][fA][#][3XGalNac]





5
1192
[mG][#][fG][#][mA][fA][mU][fG][mC][fA][mA][fA][mG][fU][#][mC][#][fA][#][3XGalNac]





6
1193
[mG][#][fA][#][mA][fG][mG][fG][mC][fA][mC][fG][mG][fU][#][mU][#][fA][#][3XGalNac]





7
1194
[mA][#][fG][#][mA][fC][mU][fG][mA][fU][mC][fC][mA][fC][#][mU][#][fA][#][3XGalNac]





8
1195
[mG][#][fA][#][mC][fU][mU][fC][mG][fA][mG][fA][mA][fU][#][mG][#][fA][#][3XGalNac]





9
1196
[mU][#][fA][#][mG][fG][mC][fC][mU][fG][mG][fA][mG][fU][#][mU][#][fA][#][3XGalNac]





10
1197
[mU][#][fG][#][mG][fC][mC][fU][mU][fG][mA][fA][mG][fU][#][mU][#][fA][#][3XGalNac]





11
1198
[mU][#][fG][#][mU][fC][mU][fA][mC][fG][mC][fC][mA][fU][#][mU][#][fA][#][3XGalNac]





12
1199
[mA][#][fU][#][mG][fC][mC][fU][mG][fC][mC][fU][mC][fU][#][mA][#][fA][#][3XGalNac]





13
1200
[mG][#][fA][#][mU][fC][mC][fG][mU][fG][mG][fA][mG][fG][#][mU][#][fA][#][3XGalNac]





14
1201
[mG][#][fA][#][mG][fG][mC][fA][mG][fA][mG][fA][mC][fU][#][mG][#][fA][#][3XGalNac]





15
1202
[mU][#][fA][#][mC][fC][mU][fC][mA][fC][mC][fA][mA][fG][#][mA][#][fA][#][3XGalNac]





16
1203
[mG][#][fC][#][mC][fG][mU][fU][mG][fC][mC][fA][mU][fC][#][mU][#][fA][#][3XGalNac]





17
1204
[mC][#][fU][#][mG][fG][mU][fG][mG][fA][mG][fG][mU][fG][#][mU][#][fA][#][3XGalNac]





18
1205
[mU][#][fG][#][mC][fA][mU][fG][mU][fC][mU][fU][mC][fC][#][mA][#][fA][#][3XGalNac]





19
1206
[mG][#][fC][#][mG][fG][mC][fA][mC][fC][mC][fU][mC][fA][#][mU][#][fA][#][3XGalNac]





20
1207
[mC][#][fC][#][mG][fA][mC][fU][mU][fC][mG][fA][mG][fA][#][mA][#][fA][#][3XGalNac]





21
1208
[mG][#][fA][#][mC][fU][mG][fA][mU][fC][mC][fA][mC][fU][#][mU][#][fA][#][3XGalNac]





22
1209
[mA][#][fG][#][mC][fA][mU][fA][mC][fA][mG][fA][mG][fU][#][mG][#][fA][#][3XGalNac]





23
1210
[mG][#][fC][#][mA][fG][mC][fG][mU][fC][mC][fA][mC][fA][#][mC][#][fA][#][3XGalNac]





24
1211
[mU][#][fG][#][mC][fC][mU][fG][mC][fC][mU][fC][mU][fA][#][mC][#][fA][#][3XGalNac]





25
1212
[mC][#][fA][#][mC][fC][mA][fG][mC][fA][mU][fA][mC][fA][#][mG][#][fA][#][3XGalNac]





26
1213
[mG][#][fA][#][mG][fC][mU][fG][mG][fC][mC][fU][mU][fG][#][mA][#][fA][#][3XGalNac]





27
1214
[mU][#][fG][#][mG][fU][mC][fA][mC][fC][mG][fA][mC][fU][#][mU][#][fA][#][3XGalNac]





28
1215
[mG][#][fC][#][mC][fA][mG][fC][mA][fA][mG][fU][mG][fU][#][mG][#][fA][#][3XGalNac]





29
1216
[mC][#][fG][#][mC][fU][mU][fC][mC][fA][mC][fA][mG][fA][#][mC][#][fA][#][3XGalNac]





30
1217
[mA][#][fC][#][mU][fU][mC][fU][mC][fU][mG][fC][mC][fA][#][mA][#][fA][#][3XGalNac]





31
1218
[mU][#][fC][#][mC][fA][mU][fG][mG][fC][mC][fU][mU][fC][#][mU][#][fA][#][3XGalNac]





32
1219
[mG][#][fC][#][mC][fG][mC][fG][mU][fC][mC][fU][mC][fA][#][mA][#][fA][#][3XGalNac]





33
1220
[mU][#][fG][#][mA][fC][mC][fA][mC][fC][mG][fG][mG][fA][#][mA][#][fA][#][3XGalNac]





34
1221
[mU][#][fA][#][mG][fA][mC][fA][mC][fC][mA][fG][mC][fA][#][mU][#][fA][#][3XGalNac]





35
1222
[mA][#][fC][#][mA][fG][mC][fC][mA][fC][mC][fU][mU][fC][#][mC][#][fA][#][3XGalNac]





36
1223
[mA][#][fG][#][mG][fC][mC][fU][mG][fG][mA][fG][mU][fU][#][mU][#][fA][#][3XGalNac]





37
1224
[mA][#][fG][#][mC][fA][mU][fC][mC][fC][mG][fU][mG][fG][#][mA][#][fA][#][3XGalNac]





38
1225
[mA][#][fA][#][mC][fC][mU][fG][mG][fA][mG][fC][mG][fG][#][mA][#][fA][#][3XGalNac]





39
1226
[mG][#][fU][#][mG][fG][mU][fG][mG][fU][mG][fC][mU][fG][#][mA][#][fA][#][3XGalNac]





40
1227
[mG][#][fU][#][mG][fC][mC][fC][mG][fA][mG][fG][mA][fG][#][mG][#][fA][#][3XGalNac]





41
1228
[mA][#][fG][#][mU][fU][mU][fA][mU][fU][mC][fG][mG][fA][#][mA][#][fA][#][3XGalNac]





42
1229
[mA][#][fA][#][mG][fG][mA][fG][mC][fA][mU][fG][mG][fA][#][mA][#][fA][#][3XGalNac]





43
1230
[mA][#][fA][#][mA][fG][mU][fC][mA][fA][mG][fG][mA][fG][#][mC][#][fA][#][3XGalNac]









It should also be noted that the scope of the disclosed embodiments extends to sequences that correspond to those in the Tables above, and wherein the 5′ nucleoside of the antisense (guide) strand (first region as defined in the claims herein) can include any nucleobase that can be present in an RNA molecule, in other words can be any of adenine (A), uracil (U), guanine (G) or cytosine (C). Additionally, the scope of the present embodiments extends to sequences that correspond to those in Table 1a or Table 1 b, and wherein the 3′ nucleoside of the sense (passenger) strand (second region as defined in the claims herein) can include any nucleobase that can be present in an RNA molecule, in other words can be any of adenine (A), uracil (U), guanine (G) or cytosine (C), advantageously however a nucleobase that is complementary to the 5′ nucleobase of the antisense (guide) strand (first region as defined in the claims herein). While the methods are shown and described as being a series of acts that are performed in a particular sequence, it is to be understood and appreciated that the methods are not limited by the order of the sequence. For example, some acts can occur in a different order than what is described herein. In addition, an act can occur concurrently with another act. Further, in some instances, not all acts may be required to implement a method described herein.


The order of the steps of the methods described herein is exemplary, but the steps may be carried out in any suitable order, or simultaneously where appropriate. Additionally, steps may be added or substituted in, or individual steps may be deleted from any of the methods without departing from the scope of the subject matter described herein. Aspects of any of the Examples described above may be combined with aspects of any of the other Examples described to form further Examples.


It will be understood that the above description of a particular embodiment is given by way of example only and that various modifications may be made by those skilled in the art. What has been described above includes Examples of one or more embodiments. It is, of course, not possible to describe every conceivable modification and alteration of the above compounds, compositions or methods for purposes of describing the aforementioned aspects, but one of ordinary skill in the art can recognize that many further modifications and permutations of various aspects are possible. Accordingly, the described aspects are intended to embrace all such alterations, modifications, and variations that fall within the scope of the appended claims.


EXAMPLES

The following Examples illustrate certain embodiments of the present disclosure and are not limiting. Moreover, where specific embodiments are provided, the inventors have contemplated generic application of those specific embodiments. For example, disclosure of an oligonucleotide having a particular motif or modification patterns provides reasonable support for additional oligonucleotides having the same or similar motif or modification patterns.


Example 1

Materials and Methods


Cell Culture:


HepG2 (ATCC cat. 85011430) cells were maintained by biweekly passing in EMEM supplemented with 10% FBS, 20 mM L-glutamine, 10 mM HEPES pH 7.2, 1 mM sodium pyruvate, 1xMEM non-essential amino acids, and 1xPen/Strep (EMEM complete).


PCSK9 Target identification and duplex preparation:


Targets to PCSK9 were identified by bioinformatic analysis on human PCSK9 mRNA sequence (refseq NM_174936.3). 250 targets were selected for synthesis as asymmetric duplexes (15 sense, 19 antisense). Compounds were dissolved to 50 uM in molecular biology grade water and annealed by heating at 95 C for 5 minutes followed by gradual cooling to room temperature.


PCSK9-Primary Screen:


On the day of transfection, HepG2 cells were collected by trypsinization, counted, and seeded in 96 well tissue culture treated plates at 10,000 cells per well in 50 uL complete EMEM with 20% FBS. Cells were allowed to rest for 4 hours before transfection with 2 pmoles of each respective PCSK9 duplex in triplicate via RNAiMax (ThermoFisher). In brief, 8 pmoles of each duplex were diluted in 100 uL OptiMEM and mixed gently with 0.8 uL of RNAiMax in 100 uL OptiMEM to make 200 uL total complex. 50 uL of each RNAiMax complexed duplex was added to each respective triplicate well of HepG2 cells for a final mixture of 20 nM duplex in a volume of 100 uL, 50/50 EMEM/OptiMEM at 10% FBS.


72 hours post transfection, cells were harvested and RNA isolated using the PureLink Pro 96 total RNA Purification Kit (ThermoFisher, 12173011A) according to the manufacturer protocol. Harvested RNA was assayed for PCSK9 expression via Taqman qPCR using the Luna Universal Probe One-Step RT-qPCR Kit (NEB, E3006). Two separate qPCR assays were performed for each sample using two separate PCSK9 Taqman probe sets (Hs00545399_m1-FAM and Hs03037355_m1-FAM) multiplexed with a common GAPDH VIC probe (ThermoFisher, 4326317E). Thermocycling and data acquisition was performed with an Applied Biosystems QuantStudio 3 Real-Time PCR System.


PCSK9-Secondary Screen:


Based on data from the primary screen, the best performing 27 PCSK9 duplexes were tested in dose curves and IC50 values have been determined. As before, HepG2 cells were collected by trypsinization and seeded in 96 well tissue culture plates at 10,000 cells per well in 50 uL complete EMEM with 20% FBS and allowed to rest for 4 hours. Transfection complexes were formed by gently mixing 36 pmoles of each duplex in 180 uL OptiMEM with 2.16 uL RNAiMax in 180 uL OptiMEM to make 360 uL total complex. A two fold dilution series was then performed with basal OptiMEM. 50 uL of each dilution was added to respective triplicates of HepG2 cells to make a final dilution series of 50 nM down to 0.32 nM in a volume of 100 uL, 50/50 EMEM/OptiMEM at 10% FBS.


72 hours post transfection, cells were harvested and RNA isolated using the PureLink Pro 96 total RNA Purification Kit (ThermoFisher, 12173011A) according to the manufacturer protocol. Harvested RNA was assayed for PCSK9 expression via Taqman qPCR using the Luna Universal Probe One-Step RT-qPCR Kit (NEB, E3006). A single qPCR assay was performed for each sample using PCSK9 Taqman probe set Hs00545399_m1-FAM multiplexed with a common GAPDH VIC probe (ThermoFisher, 4326317E). Thermocycling and data acquisition was performed with an Applied Biosystems QuantStudio 3 Real-Time PCR System.


Example 2

Results obtained by performing methods of Example 1



FIG. 1 shows the results (% knockdown) of the primary screen.


Table 4 below and FIG. 2 show IC50 values (in nM) for the 27 constructs selected in accordance with Example 1. Table discloses SEQ ID NOS 44, 294, 46, 296, 53, 303, 29, 279, 57, 307, 52, 302, 55, 305, 232, 482, 58, 308, 36, 286, 49, 299, 233, 483, 48, 298, 28, 278, 34, 284, 31, 281, 13, 263, 35, 285, 43, 293, 127, 377, 100, 350, 76, 326, 139, 389, 21, 271, 87, 337, 77, 327, 94, and 344, respectively, in order of appearance.



















% k/d at



Sequence
Anti-Sense 
SS Sequence 
the highest



ID
Sequence (5′ to 3′)
(5′ to 3′)
cone
IC50



















PCS44
UCUUCAAGUUACAAAAGCA
UUUGUAACUUGAAGA
86.65
6.62





PCS46
UAAAAGCAAAACAGGUCUA
CCJGUUUUGCUUUUA
79.14
10.59





PCS53
UACAAAAGCAAAACAGGUC
UGUUOUGCUUUUGUA
86.08
11 50





PCS29
UGCAAAACAGGUCUAGAAA
UAGACCUGUUUUGCA
80.50
13.54





PCS57
UCAAAAGCAAAACAGGUCU
CUGUUUUGCUUUUGA
83.24
11.91





PCS52
UAGAAUAAAUAUCUUCAAG
AAGAUAUUUAUUCUA
83.30
12.25





PCS55
UAAAGCAAAACAGGULUAG
ACCUGUUUUGCUUUA
72.99
12.25





PCS232
uucuUCAAGUUACAAAAGC
UUGUAACUUGAAGAA
71.48
12.70





PCS55
UCAAGUUACAAAAGCAAAA
GCUUOUGUAACUUGA
79.06
12.32





PCS36
UCAAAACAGGUCUAGAAAA
CUAGACCUGUUUUGA
78.57
13.75





PCS49
UAUAAAUAUCUUCAAGUUA
UUGAAGAUAUUUAUA
79.11
14.02





PCS233
UUUACAAAAGCAAAACAGG
UUUUSCUUUGUAAA
72.52
14.07





PCS48
UGUGACACAAAGCAGGUGC
CUGCUUUGUGUCACA
76.03
14 $2





PCS28
UUUCAAGUUACAAAAGCAA
UUUUGUAACUUGAAA
77.64
14.76





PCS34
UAAAUAUCUUCAAGUUACA
ACUUGAAGAUAUUUA
80.55
16.03





PCS51
UAUAAAUGUCUGCUUGCUU
AAGCAGACAUUUAUA
72.48
17.25





PCS13
UCCGAAUAAACUCCAGGCC
UGGAGUUUAUUCGGA
71.05
19.35





PCS35
UGGAACCAUUUUAAAGCUC
UUUAAAAUGGUUCCA
67.12
20.37





PCS43
UCCAGAAUAAAUAUCUUCA
GAUAUUVAUUCUSGA
68.11
22.67





PCS127
UAUAUCUUCAAGUUACAAA
UAACUUGAAGAUAUA
70.81
23.73





PCS100
UCUCAGUUCCUGCUGUGUG
CAGCAGGAACUGAGA
74.42
24.71





PCS76
UCUACAAAACCCAGAAUAA
UCUGGGUUUUGUAGA
68.90
27 SI





PCS139
UCAAAAGAUAAAUGUCUGC
ACAUUUAUCUUUUGA
58.47
37.81





PCS21
UUUCCGAAUAAACUCCAGG
GAGUUUAUUCGGAAA
51.24
40 99





PCS87
UCUGGCUUCAGUUCCGCUG
AGGAACUGAGCCAGA
64.33
42.26





PCS77
UCAGACAGCAUCAUGGCUG
CAUGAUGCUGUCOGA
51.63
49.45





PCS94
UGGGAUUCCAUCCUUCUUG
GAGCAUGGAAUCCCA
45.66
58.07









The IC50 data in the single- to double-digit nanomolar range demonstrate outstanding performance of numerous constructs as described herein.


Example 3

Optimized Double Stranded Constructs


Full definitions of the constructs are given in Table 5 below. AS=antisense strand (also referred as first region herein); SS=sense strand (also referred to as second region herein).


Notations are explained further above.
















P29
AS
5′ mU*fG*mCfAmAfAmAfCmAfGmGfU*mC*fU*mA*fG*mA*fA* 




rA (SEQ ID NO: 1231)



SS
5′ mA*fG*mAfCmCfUmGfUmUfUmUfG*mC*fA*/Mono-Galnac-PA/




/Mono-Galnac-PA//Mono-Galnac-PA/ (SEQ ID NO: 1232)





P57
AS
5′ mU*fC*mAfAmAfAmGfCmAfAmAfA*mC*fA*mG*fG*mU*fC* 




rU (SEQ ID NO: 1233)



SS
5′ mU*fG*mUfUmUfUmGfCmUfUmUfU*mG*fA*/Mono-Galnac-PA//




Mono-Galnac-PA//Mono-Galnac-PA/ (SEQ ID NO: 1234)





P53
AS
5′ mU*fA*mCfAmAfAmAfGmCfAmAfA*mA*fC*mA*fG*mG*fU* 




rC (SEQ ID NO: 1235)



SS
5′ mG*fU*mUfUmUfGmCfUmUfUmUfG*mU*fA*/Mono-Galnac-PA//




Mono-Galnac-PA//Mono-Galnac-PA/ (SEQ ID NO: 1236)





P44
AS
5′ mU*fC*mUfUmCfAmAfGmUfUmAfC*mA*fA*mA*fA*mG*fC* 




rA (SEQ ID NO: 1237)



SS
5′ mU*fU*mGfUmAfAmCfUmUfGmAfA*mG*fA*/Mono-Galnac-PA//




Mono-Galnac-PA//Mono-Galnac-PA/ (SEQ ID NO: 1238)





P29
AS
[mU][#][fG][#][mC][fA][mA][fA][mA][fC][mA][fG][mG]


(15)

[fU][mC][fU][mA][#][fG][#][mA][#][fA][#][rA]




(SEQ ID NO: 1239)



SS
[fU][#][mA][#][fG][mA][fC][mC][fU][mG][fU][mU][fU]




[mU][mG][#][mC][#][mA][#][3XGalNAc SEQ ID NO: 1240)









Performance data are shown in FIGS. 3 and 4. Comparison with an inclisiran-type molecule (FIG. 3) shows outstanding performance of the constructs as described herein. Indeed, performance of two constructs as described herein is very similar to a 3xGaINAc (toothbrush) derivative of inclisiran.


Example 4

Optimized hairpin molecules (mxRNAs)


Full definitions of the molecules are given in Table 6 below.













Compound name
Structural definition







PCS29 
[mU][#][fG][#][mC][fA][mA][fA][mA][fC][mA][fG]


(14-5-14)
[mG][fU][mC][fU][#][mA][#][fG][#][mA][#][fA][#]



[mA][#][mA][fG][mA][fC][mC][fU][mG][fU][mU][fU]



[mU][fG][#][mC][#][fA][#][3xGalNAc] 



(SEQ ID NO: 587)





PCS44 
[mU][#][fC][#][mU][fU][mC][fA][mA][fG][mU][fU]


(14-5-14)
[mA][fC][mA][fA][#][mA][#][fA][#][mG][#][fC][#]



[mA][#][mU][fU][mG][fU][mA][fA][mC][fU][mU][fG]



[mA][fA][#][mG][#][fA][#][3xGalNAc] 



(SEQ ID NO: 588)





PCS53 
[mU][#][fA][#][mC][fA][mA][fA][mA][fG][mC][fA]


(14-5-14)
[mA][fA][mA][fC][#][mA][#][fG][#][mG][#][fU][#]



[mC][#][mG][fU][mU][fU][mU][fG][mC][fU][mU][fU]



[mU][fG][#][mU][#][fA][#][3xGalNAc] 



(SEQ ID NO: 589)





PCS53 
[dT][#][fA][#][mC][fA][mA][fA][mA][fG][mC][fA]


(14-5-14) dT
[mA][fA][mA][fC][#][mA][#][fG][#][mG][#][dT][#]



[mC][#][mG][fU][mU][fU][mU][fG][mC][fU][mU][fU]



[mU][fG][#][mU][#][fA][#][3xGalNAc] 



(SEQ ID NO: 590)









Performance data are shown in FIG. 5.

Claims
  • 1. An oligomeric compound capable of inhibiting expression of PCSK9, wherein said compound comprises at least a first region of linked nucleosides having at least a first nucleobase sequence that is at least partially complementary to at least a portion of RNA transcribed from a PCSK9 gene, wherein said first nucleobase sequence is selected from the following sequences, or a portion thereof: sequences of (SEQ ID NOs 1 to 250), or sequences of (SEQ ID NOs 501 to 543), wherein said portion optionally has a length of at least 18 nucleotides.
  • 2. The oligomeric compound according to claim 1, which further comprises at least a second region of linked nucleosides having at least a second nucleobase sequence that is at least partially complementary to said first nucleobase sequence and is selected from the following sequences, or a portion thereof: sequences of (SEQ ID NOs 251 to 500), or sequences of (SEQ ID NOs 544 to 586), wherein said portion optionally has a length of at least 11 nucleotides.
  • 3. The oligomeric compound according to claim 1, wherein said first nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 13, 31, 76, 127, 55, 29, 28, 53, 44, 49, 58, 94, 52, 57, 43, 36, 21, 35, 232, 87, 48, 139, 46, 233, 34, 100, and 77.
  • 4. The oligomeric compound according to claim 3, wherein said second nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 263, 281, 326, 377, 305, 279, 278, 303, 294, 299, 308, 344, 302, 307, 293, 286, 271, 285, 482, 337, 298, 389, 296, 483, 284, 350, and 327, and wherein said portion is advantageously 14 nucleosides long and lacks the 5′-terminal nucleobase as set forth in said SEQ ID NOs.
  • 5. The oligomeric compound according claim 1, wherein said first nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 29, 44, 46, 52, 53, 55, and 57.
  • 6. The oligomeric compound according to claim 5, wherein said second nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 279, 294, 296, 302, 303, 305, and 307, and wherein said portion is optionally 14 nucleosides long and lacks the 5′-terminal nucleobase as set forth in said SEQ ID NOs.
  • 7. The oligomeric compound according to claim 1, wherein said first region of linked nucleosides consists essentially of 18 to 35, 18 to 20, 18 or 19, or 19 linked nucleosides.
  • 8. The oligomeric compound according to claim 2, wherein said second region of linked nucleosides consists essentially of 11 to 35, 11 to 20, 13 to 16, 14 or 15, or 14 linked nucleosides.
  • 9. The oligomeric compound according to claim 2, which comprises at least one complementary duplex region that comprises at least a portion of said first nucleoside region directly or indirectly linked to at least a portion of said second nucleoside region, wherein advantageously said duplex region has a length of 11 to 19, 14 to 19, 14 or 15, or 14 base pairs, wherein optionally there is one mismatch within said duplex region.
  • 10. (canceled)
  • 11. The oligomeric compound according to claim 9, wherein the 5′ region of said first nucleoside region is directly or indirectly linked to the 3′ region of said second nucleoside region, and/or wherein the 3′ region of said first nucleoside region is directly or indirectly linked to the 5′ region of said second nucleoside region, wherein optionally the 5′ terminal nucleoside of said first nucleoside region base pairs with the 3′ terminal nucleoside of said second nucleoside region.
  • 12. The oligomeric compound according to claim 1, which further comprises one or more ligands, wherein said ligand optionally comprises at least one carbohydrate.
  • 13-19. (canceled)
  • 20. The oligomeric compound according to claim 12, wherein said ligand comprises one or more N-Acetyl-Galactosamine moieties.
  • 21-24. (canceled)
  • 25. The oligomeric compound according to claim 9, wherein said oligomeric compound comprises a single strand comprising said first and second nucleoside regions, wherein said single strand dimerises whereby at least a portion of said first nucleoside region is directly or indirectly linked to at least a portion of said second nucleoside region so as to form said at least partially complementary duplex region.
  • 26-27. (canceled)
  • 28. The oligomeric compound according to claim 25, having a nucleobase sequence selected from SEQ ID NOs: 587 to 590.
  • 29. The oligomeric compound according to claim 1, which comprises at least one modified internucleoside linkage.
  • 30-42. (canceled)
  • 43. The oligomeric compound according to claim 1, wherein sugars of the nucleosides at any of positions 2 and 14 downstream from the first nucleoside of the 5′ region of the first nucleoside region, do not contain 2′-O-methyl modifications.
  • 44. The oligomeric compound according to claim 2, wherein sugars of the nucleosides of the second nucleoside region, that correspond in position to any of the nucleosides of the first nucleoside region at any of positions 9 to 11 downstream from the first nucleotide of the 5′ region of the first nucleoside region, do not contain 2′-O-methyl modifications.
  • 45-73. (canceled)
  • 74. The oligomeric compound according to claim 1, wherein the first region of linked nucleotides is selected from the group consisting of Table 2b, Table 3b, Table 1a, and Table 5.
  • 75. The oligomeric compound according to claim 74, wherein the second region of linked nucleotides is selected from the group consisting of Table 2d, Table 3d, Table 1b, and Table 5.
  • 76. A pharmaceutical composition comprising an oligomeric compound according to claim 2, and a physiologically acceptable excipient.
  • 77-81. (canceled)
  • 82. The pharmaceutical composition of claim 76, further comprising a further oligomeric compound which is directed to a target different from PCSK9 and/or a lipid-lowering agent distinct from said oligomeric compound, wherein said lipid-lowering agent optionally is a statin or ezetimib.
  • 83-86. (canceled)
  • 87. A method of treating a disease or disorder comprising administration of an oligomeric compound according to claim 1, to an individual in need of treatment, wherein said disease or disorder is a PCSK9-associated disease or disorder, or a disease or disorder requiring reduction of low-density lipoprotein (LDL) cholesterol, wherein said disease or disorder optionally is selected from the group consisting of dyslipidemia, mixed dyslipidemia, hypercholesterolemia, heterozygous familial hypercholesterolemia, non-familial hypercholesterolemia, atherosclerosis, atherosclerotic cardiovascular disease (ASCVD), myocardial infarction, stroke and peripheral arterial disease.
  • 88-89. (canceled)
PRODUCTS AND COMPOSITIONS

This application claims priority to U.S. Provisional application Ser. No. 63/211,861, filed Jun. 17, 2021, the contents of which are hereby incorporated by reference in their entirety.

Provisional Applications (1)
Number Date Country
63211861 Jun 2021 US