PRODUCTS AND COMPOSITIONS

Abstract
Products, compositions, and their uses are provided. In particular, nucleic acid products that modulate, in particular interfere with or inhibit, Factor XI (FXI) gene expression are provided. The products can be oligomeric compounds that comprise at least a first region of linked nucleosides having at least a first nucleobase sequence that is at least partially complementary to at least a portion of RNA transcribed from an FXI gene, wherein said first nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 1 to 250.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on May 27, 2022, is named 4690_0046C_SL.txt and is 650.004 bytes in size.


FIELD

Nucleic acid products are provided that modulate, interfere with, or inhibit, Factor XI (FXI) gene expression. Methods, compounds, and compositions are provided for reducing expression of FXI mRNA and protein in an animal. Such methods, compounds, and compositions are useful to treat, prevent, or ameliorate thromboembolic diseases, such as deep vein thrombosis, venous or arterial thrombosis, pulmonary embolism, myocardial infarction, stroke, thrombosis associated with chronic kidney disease or end-stage renal disease (ESRD), including thrombosis associated with dialysis, or other procoagulant condition.


BACKGROUND

The circulatory system requires mechanisms that prevent blood loss, as well as those that counteract inappropriate intravascular obstructions. Generally, coagulation comprises a cascade of reactions culminating in the conversion of soluble fibrinogen to an insoluble fibrin gel. The steps of the cascade involve the conversion of an inactive zymogen to an activated enzyme. The active enzyme then catalyzes the next step in the cascade.


Coagulation Cascade


The coagulation cascade may be initiated through two branches, the tissue factor pathway (also “extrinsic pathway”), which is the primary pathway, and the contact activation pathway (also “intrinsic pathway”).


The tissue factor pathway is initiated by the cell surface receptor tissue factor (TF, also referred to as Factor III), which is expressed constitutively by extravascular cells (pericytes, cardiomyocytes, smooth muscle cells, and keratinocytes) and expressed by vascular monocytes and endothelial cells upon induction by inflammatory cytokines or endotoxin. (Drake et al., Am J Pathol 1989, 134: 1087-1097). TF is the high affinity cellular receptor for coagulation Factor Vila, a serine protease. In the absence of TF, Vila has very low catalytic activity, and binding to TF is necessary to render Vila functional through an allosteric mechanism (Drake et al., Am J Pathol 1989, 134: 1087-1097). The TF-VIIa complex activates Factor X to Xa. Xa in turn associates with its co-factor Factor Va into a prothrombinase complex which in turn activates prothrombin, (also known as Factor II or Factor 2) to thrombin (also known as Factor IIa, or Factor 2a).


Thrombin activates platelets, converts fibrinogen to fibrin and promotes fibrin cross-linking by activating Factor XIII, thus forming a stable plug at sites where TF is exposed on extravascular cells. In addition, thrombin reinforces the coagulation cascade response by activating Factors V and VIII.


The contact activation pathway is triggered by activation of Factor XII to XIIa. Factor XIIa converts XI to XIa, and XIa converts IX to IXa. IXa associates with its cofactor Villa to convert X to Xa. The two pathways converge at this point as Factor Xa associates with Factor Va to activate prothrombin (Factor II) to thrombin (Factor IIa). Factor XI enhances both the formation and stability of clots in vitro, but is not thought to be involved in the initiation of clotting. Rather, Factor XI is important in the propagation phase of clot growth (von de Borne, et al., Blood Coagulation and Fibrinolysis, 2006, 17:251-257). Additionally, Factor XI-dependent amplification of thrombin formation leads to activation of TAFI (thrombin activatable fibrinolysis inhibitor), which renders clots less sensitive to fibrinolysis (Bouma et al, J Thromb Haemost 1999; 82: 1703-1708).


Inhibition of Coagulation


At least three mechanisms keep the coagulation cascade in check, namely the action of activated protein C, antithrombin, and tissue factor pathway inhibitor. Activated protein C is a serine protease that degrades cofactors Va and Villa. Protein C is activated by thrombin with thrombomodulin, and requires coenzyme Protein S to function. Antithrombin is a serine protease inhibitor (serpin) that inhibits serine proteases: thrombin, Xa, XIIa, XIa and IXa. Tissue factor pathway inhibitor inhibits the action of Xa and the TF-VIIa complex. (Schwartz A L et al., Trends Cardiovasc Med. 1997; 7:234-239.)


Disease


Thrombosis is the pathological development of blood clots, and an embolism occurs when a blood clot migrates to another part of the body and interferes with organ function. Thromboembolism may cause conditions such as deep vein thrombosis, pulmonary embolism, myocardial infarction, and stroke. While most cases of thrombosis are due to acquired extrinsic problems, for example, surgery, cancer, immobility, some cases are due to a genetic predisposition, for example, antiphospholipid syndrome and the autosomal dominant condition, Factor V Leiden. (Bertina R M et al. Nature 1994; 369:64-67.)


Treatment


The most commonly used anticoagulants, warfarin, heparin, low molecular weight heparin (LMWH), and newer direct oral anticoagulants (DOAC), all possess significant drawbacks. Warfarin is typically used to treat patients suffering from atrial fibrillation. The drug interacts with vitamin K-dependent coagulation factors which include Factors II, VII, IX and X. Anticoagulant proteins C and S are also inhibited by warfarin. Drug therapy using warfarin is further complicated by the fact that warfarin interacts with other medications, including drugs used to treat atrial fibrillation, such as amiodarone.


Because therapy with warfarin is difficult to predict, patients must be carefully monitored in order to detect any signs of anomalous bleeding.


Heparin functions by activating antithrombin which inhibits both thrombin and Factor X (Bjork I, Lindahl U. Mol Cell Biochem. 1982 48: 161-182). Treatment with heparin may cause an immunological reaction that makes platelets aggregate within blood vessels that can lead to thrombosis. This side effect is known as heparin-induced thrombocytopenia (HIT) resulting in increased bleeding and requires patient monitoring. Prolonged treatment with heparin may also lead to osteoporosis. LMWH can also inhibit Factor II, but to a lesser degree than unfractioned heparin (UFH). LMWH has been implicated in the development of HIT.


Several direct oral anticoagulants have been FDA-approved for the treatment of thrombotic disease, including four Factor Xa inhibitors Betrixaban, Apixaban, Rivaroxaban and Edoxaban and one direct thrombin inhibitor Dabigatran. (Smith, M., Surg Clin N Am 2018 98:219-238). Rivaroxaban, Dabigatran and Edoxaban all exhibit increased bleeding, especially increased GI bleeding risk compared to warfarin.


There therefore remains a need for therapies to treat thromboembolic diseases without risk of increased bleeding. We, therefore, aim to provide compounds, methods, and pharmaceutical compositions for the treatment of such diseases.


Double-stranded RNA (dsRNA) able to complementarily bind expressed mRNA has been shown to be able to block gene expression (Fire et a.l, 1998, Nature. 1998 Feb. 19; 391 (6669):806-1 1 and Elbashir et at., 2001, Nature. 2001 May 24; 41 1 (6836):494-8) by a mechanism that has been termed RNA interference (RNAi). Short dsRNAs direct gene-specific, post-transcriptional silencing in many organisms, including vertebrates, and have become a useful tool for studying gene function. RNAi is mediated by the RNA-induced silencing complex (RISC), a sequence-specific, multi-component nuclease that destroys messenger RNAs homologous to the silencing trigger loaded into the RISC complex. Interfering RNA (iRNA) such as siRNAs, antisense RNA, and micro-RNA are oligonucleotides that prevent the formation of proteins by gene-silencing i.e. inhibiting gene translation of the protein through degradation of mRNA molecules. Gene-silencing agents are becoming increasingly important for therapeutic applications in medicine.


According to Watts and Corey in the Journal of Pathology (2012; Vol 226, p 365-379) there are algorithms that can be used to design nucleic acid silencing triggers, but all of these have severe limitations. It may take various experimental methods to identify potent siRNAs, as algorithms do not take into account factors such as tertiary structure of the target mRNA or the involvement of RNA binding proteins. Therefore the discovery of a potent nucleic acid silencing trigger with minimal off-target effects is a complex process. For the pharmaceutical development of these highly charged molecules it is necessary that they can be synthesised economically, distributed to target tissues, enter cells and function within acceptable limits of toxicity. An aim is to, therefore, provide compounds, methods, and pharmaceutical compositions for the treatment of thromboembolic diseases as described herein, which comprise oligomeric compounds that modulate and inhibit, gene expression by RNAi.


SUMMARY

Nucleic acid products are provided that modulate, interfere with, or inhibit, Factor XI (FXI) gene expression, and associated therapeutic uses. Specific oligomeric compounds and sequences are described herein. This summary is not intended to identify key features or essential features of the subject matter as described herein, nor is it intended to be used to determine the scope of that subject matter.


DETAILED DESCRIPTION AND EMBODIMENTS

The embodiments described below are exemplary but the skilled artisan will recognize that additional embodiments may be achieved.


It will be understood that the benefits and advantages described herein may relate to one embodiment or may relate to several embodiments. The embodiments are not limited to those that solve any or all of the stated problems or those that have any or all of the stated benefits and advantages.


Features of different aspects and embodiments may be combined as appropriate, as would be apparent to a skilled person, and may be combined with any of the aspects as described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments described below are by way of example only and with reference to the following non-limiting drawings, in which:



FIGS. 1a-1zvi illustrate the stability of 250 duplexes: Table 1a displays the nucleobase sequences of 250 antisense sequences (SEQ ID NOs: 1 to 250) and of 250 corresponding sense sequences (SEQ ID NOs: 251 to 500). Table 1b displays the corresponding modified constructs (constructs 501 to 750 being the modified counterparts of SEQ ID NOs: 1 to 250; and constructs 751 to 1000 being the modified counterparts of SEQ ID NOs: 251 to 500). Owing to complementarity, construct 501 base pairs with construct 751, construct 502 base pairs with construct 752 and so forth, giving rise to duplexes (double-stranded molecules). These duplexes are numbered according to the SEQ ID NO of the antisense nucleobase sequence they comprise, e.g. the duplex formed from constructs 501 and 751 is referred to as duplex 1, the duplex formed from constructs 502 and 752 is referred to duplex 2, and so forth. Based on this numbering scheme, the parts of FIG. 1 illustrate the following:



FIG. 1a illustrates the stability of duplexes 1 to 8.



FIG. 1b illustrates the stability of duplexes 9 to 16.



FIG. 1c illustrates the stability of duplexes 17 to 24.



FIG. 1d illustrates the stability of duplexes 25 to 32.



FIG. 1e illustrates the stability of duplexes 33 to 40.



FIG. 1f illustrates the stability of duplexes 41 to 48.



FIG. 1g illustrates the stability of duplexes 49 to 56.



FIG. 1h illustrates the stability of duplexes 57 to 64.



FIG. 1i illustrates the stability of duplexes 65 70 72.



FIG. 1j illustrates the stability of duplexes 73 to 80.



FIG. 1k illustrates the stability of duplexes 81 to 88.



FIG. 1l illustrates the stability of duplexes 89 to 96.



FIG. 1m illustrates the stability of duplexes 97 to 104.



FIG. 1n illustrates the stability of duplexes 105 to 112.



FIG. 1o illustrates the stability of duplexes 113 to 120.



FIG. 1p illustrates the stability of duplexes 121 to 128.



FIG. 1q illustrates the stability of duplexes 129 to 136.



FIG. 1r illustrates the stability of duplexes 137 to 144.



FIG. 1s illustrates the stability of duplexes 145 to 152.



FIG. 1t illustrates the stability of duplexes 153 to 160.



FIG. 1u illustrates the stability of duplexes 161 to 168.



FIG. 1v illustrates the stability of duplexes 169 to 176.



FIG. 1w illustrates the stability of duplexes 177 to 184.



FIG. 1x illustrates the stability of duplexes 185 to 192.



FIG. 1y illustrates the stability of duplexes 193 to 200.



FIG. 1z illustrates the stability of duplexes 201 to 208.



FIG. 1
zi illustrates the stability of duplexes 209 to 216.



FIG. 1
zii illustrates the stability of duplexes 217 to 224.



FIG. 1
ziii illustrates the stability of duplexes 225 to 232.



FIG. 1
ziv illustrates the stability of duplexes 233 to 241.



FIG. 1
zv illustrates the stability of duplexes 242 to 248.



FIG. 1
zvi illustrates the stability of duplexes 249 and 250.



FIG. 2 illustrates the linear dose response of the two independent F11 qPCR assays as described in Example 2.



FIGS. 3 to 12 show the screening results for FXI gene expression as a percentage of gene expression in non-treated cells for oligomeric compounds including oligonucleotides of Table 1a/1b of Example 1.



FIG. 13 provides dose response curves for the 26 FXI lead compounds as identified in Example 2.



FIG. 14 provides dose response curves for the 5 FXI lead compounds as identified further to the results of FIG. 13.



FIGS. 15 to 17 show the overall sequences for oligomeric compounds F11-91, F11-46, F11-152.



FIGS. 18a-18p illustrate compounds selected for medicinal chemistry:



FIG. 18a illustrates a generic duplex.



FIG. 18b illustrates a duplex containing 5′ vinyl phosphonate.



FIG. 18c illustrates a duplex containing an iR loop stabilizer.



FIG. 18d illustrates a duplex containing an iR end stabilizer and seed de-stabilizer.



FIG. 18e illustrates a duplex containing an iR seed de-stabilizer.



FIG. 18f illustrates a duplex containing a minimum 2′-F.



FIG. 18g illustrates a duplex containing internal GalNAc.



FIG. 18h illustrates a duplex containing internal GalNAc and iR 3′-end stabilizer.



FIG. 18i illustrates a duplex containing 5′ bi-methyl vinyl-phosphonate.



FIG. 18j illustrates a duplex containing iR 5′-end stabilizer.



FIG. 18k illustrates a duplex containing 3×TEG-linker GalNAc.



FIG. 18l illustrates a generic duplex with matching 5′ nucleotide.



FIG. 18m illustrates a duplex containing iR 5′-end stabilizer.



FIG. 18n illustrates a duplex containing iR 3′-end stabilizer.



FIG. 18o illustrates a duplex containing iR 3′-end stabilizer.



FIG. 18p illustrates a duplex with canonical control.



FIGS. 19a-19c illustrate the performance of compounds shown in FIGS. 18a-18p:



FIG. 19a is a table showing percent k/d at the highest concentration and IC50 values for 91A to 910 and 91 Control constructs of FIGS. 18a-18p.



FIG. 19b illustrates gene expression as a percent of NT for a variety of constructs (91A-91F, 91I).



FIG. 19c illustrates gene expression as a percent of NT for a variety of constructs (91J-91O).



FIGS. 20a-20h depict several constructs.



FIG. 20a illustrates a duplex containing an iR loop stabilizer.



FIG. 20b illustrates a duplex containing 5′ bi-methyl vinyl-phosphonate.



FIG. 20c illustrates a conventional duplex (34mer).



FIG. 20d illustrates a duplex containing an iR 3′-end stabilizer.



FIG. 20e illustrates a duplex containing vinyl-phosphonate.



FIG. 20f illustrates a conventional duplex (31 mer).



FIG. 20g illustrates a conventional duplex (33mer).



FIG. 20h provides the sequences of seven constructs.



FIG. 21 shows data for the compounds displayed in FIG. 20.



FIG. 22 shows the structure of compounds tested in humanized mice.



FIG. 23 shows the data obtained from testing in humanized mice.



FIG. 24 shows the design of an in vivo study with compound 91-Conv-31.



FIG. 25 shows performance of a compound in an in vivo study in terms of Factor XI activity knock-down.



FIG. 26 shows the molecular mechanism underlying the tests for targeting specificity as performed in the course of an in vivo study.



FIGS. 27a-27b provides the read-out of the results of the tests performed in FIG. 26:



FIG. 27a shows the time (sec) for activated partial thromboplastin (APTT) based on concentrations between 1 and 10 mg/kg.



FIG. 27b shows the time (sec) for prothrombin (PT) based on concentrations between 1 and 10 mg/kg.



FIG. 28 presents data demonstrating a lack of side effects.





DEFINITIONS

Unless specific definitions are provided, the nomenclature used in connection with, and the procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques may be used for chemical synthesis, and chemical analysis. Certain such techniques and procedures may be found for example in “Carbohydrate Modifications in Antisense Research” Edited by Sangvi and Cook, American Chemical Society, Washington D.C., 1994; “Remington's Pharmaceutical Sciences,” Mack Publishing Co., Easton, Pa., 21st edition, 2005; and “Antisense Drug Technology, Principles, Strategies, and Applications” Edited by Stanley T. Crooke, CRC Press, Boca Raton, Fla.; and Sambrook et al., “Molecular Cloning, A laboratory Manual,” 2nd Edition, Cold Spring Harbor Laboratory Press, 1989, which are hereby incorporated by reference for any purpose. Where permitted, all patents, applications, published applications and other publications and other data referred to throughout in the disclosure are incorporated by reference herein in their entirety.


Unless otherwise indicated, the following terms have the following meanings:


As used herein, “excipient” means any compound or mixture of compounds that is added to a composition as provided herein that is suitable for delivery of an oligomeric compound.


As used herein, “nucleoside” means a compound comprising a nucleobase moiety and a sugar moiety. Nucleosides include, but are not limited to, naturally occurring nucleosides (as found in DNA and RNA) and modified nucleosides. Nucleosides may be linked to a phosphate moiety, phosphate-linked nucleosides also being referred to as “nucleotides”.


As used herein, “chemical modification” or “chemically modified” means a chemical difference in a compound when compared to a naturally occurring counterpart. Chemical modifications of oligonucleotides include nucleoside modifications (including sugar moiety modifications and nucleobase modifications) and internucleoside linkage modifications. In reference to an oligonucleotide, chemical modification does not include differences only in nucleobase sequence.


As used herein, “furanosyl” means a structure comprising a 5-membered ring comprising four carbon atoms and one oxygen atom.


As used herein, “naturally occurring sugar moiety” means a ribofuranosyl as found in naturally occurring RNA or a deoxyribofuranosyl as found in naturally occurring DNA. A “naturally occurring sugar moiety” as referred to herein is also termed as an “unmodified sugar moiety”. In particular, such a “naturally occurring sugar moiety” or an “unmodified sugar moiety” as referred to herein has a —H (DNA sugar moiety) or —OH (RNA sugar moiety) at the 2′-position of the sugar moiety, especially a —H (DNA sugar moiety) at the 2′-position of the sugar moiety.


As used herein, “sugar moiety” means a naturally occurring sugar moiety or a modified sugar moiety of a nucleoside. As used herein, “modified sugar moiety” means a substituted sugar moiety or a sugar surrogate.


As used herein, “substituted sugar moiety” means a furanosyl that has been substituted. Substituted sugar moieties include, but are not limited to furanosyls comprising substituents at the 2′-position, the 3′-position, the 5′-position and/or the 4′-position. Certain substituted sugar moieties are bicyclic sugar moieties.


As used herein, “2′-substituted sugar moiety” means a furanosyl comprising a substituent at the 2′-position other than H or OH. Unless otherwise indicated, a 2′-substituted sugar moiety is not a bicyclic sugar moiety (i.e., the 2′-substituent of a 2′-substituted sugar moiety does not form a bridge to another atom of the furanosyl ring).


As used herein, “MOE” means —OCH2CH2OCH3.


As used herein, “2′-F nucleoside” refers to a nucleoside comprising a sugar comprising fluorine at the 2′ position. Unless otherwise indicated, the fluorine in a 2′-F nucleoside is in the ribo position (replacing the OH of a natural ribose). Duplexes of uniformly modified 2′-fluorinated (ribo) oligonucleotides hybridized to RNA strands are not RNase H substrates while the ara analogs retain RNase H activity.


As used herein the term “sugar surrogate” means a structure that does not comprise a furanosyl and that is capable of replacing the naturally occurring sugar moiety of a nucleoside, such that the resulting nucleoside sub-units are capable of linking together and/or linking to other nucleosides to form an oligomeric compound which is capable of hybridizing to a complementary oligomeric compound. Such structures include rings comprising a different number of atoms than furanosyl (e.g., 4, 6, or 7-membered rings); replacement of the oxygen of a furanosyl with a non-oxygen atom (e.g., carbon, sulfur, or nitrogen); or both a change in the number of atoms and a replacement of the oxygen. Such structures may also comprise substitutions corresponding to those described for substituted sugar moieties (e.g., 6-membered carbocyclic bicyclic sugar surrogates optionally comprising additional substituents). Sugar surrogates also include more complex sugar replacements (e.g., the non-ring systems of peptide nucleic acid). Sugar surrogates include without limitation morpholinos, cyclohexenyls and cyclohexitols.


As used herein, “bicyclic sugar moiety” means a modified sugar moiety comprising a 4 to 7 membered ring (including but not limited to a furanosyl) comprising a bridge connecting two atoms of the 4 to 7 membered ring to form a second ring, resulting in a bicyclic structure. In certain embodiments, the 4 to 7 membered ring is a sugar ring. In certain embodiments the 4 to 7 membered ring is a furanosyl. In certain such embodiments, the bridge connects the 2 ‘-carbon and the 4’-carbon of the furanosyl.


As used herein, “nucleotide” means a nucleoside further comprising a phosphate linking group. As used herein, “linked nucleosides” may or may not be linked by phosphate linkages and thus includes, but is not limited to “linked nucleotides.” As used herein, “linked nucleosides” are nucleosides that are connected in a continuous sequence (i.e. no additional nucleosides are present between those that are linked).


As used herein, “nucleobase” means a group of atoms that can be linked to a sugar moiety to create a nucleoside that is capable of incorporation into an oligonucleotide, and wherein the group of atoms is capable of bonding with a complementary naturally occurring nucleobase of another oligonucleotide or nucleic acid. Nucleobases may be naturally occurring or may be modified.


As used herein the terms, “unmodified nucleobase” or “naturally occurring nucleobase” means the naturally occurring heterocyclic nucleobases of RNA or DNA: the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) (including 5-methyl C), and uracil (U).


As used herein, “modified nucleobase” means any nucleobase that is not a naturally occurring nucleobase.


As used herein, “modified nucleoside” means a nucleoside comprising at least one chemical modification compared to naturally occurring RNA or DNA nucleosides. Modified nucleosides can comprise a modified sugar moiety and/or a modified nucleobase.


As used herein, “bicyclic nucleoside” or “BNA” means a nucleoside comprising a bicyclic sugar moiety.


As used herein, “locked nucleic acid nucleoside” or “LNA” means a nucleoside comprising a bicyclic sugar moiety comprising a 4′-CH2—O-2′ bridge.


As used herein, “2′-substituted nucleoside” means a nucleoside comprising a substituent at the 2′-position of the sugar moiety other than H or OH. Unless otherwise indicated, a 2′-substituted nucleoside is not a bicyclic nucleoside.


As used herein, “deoxynucleoside” means a nucleoside comprising 2′-H furanosyl sugar moiety, as found in naturally occurring deoxyribonucleosides (DNA). In certain embodiments, a 2′-deoxynucleoside may comprise a modified nucleobase or may comprise an RNA nucleobase (e.g., uracil).


As used herein, “oligonucleotide” means a compound comprising a plurality of linked nucleosides. In certain embodiments, an oligonucleotide comprises one or more unmodified ribonucleosides (RNA) and/or unmodified deoxyribonucleosides (DNA) and/or one or more modified nucleosides.


As used herein, “modified oligonucleotide” means an oligonucleotide comprising at least one modified nucleoside and/or at least one modified internucleoside linkage.


As used herein, “linkage” or “linking group” means a group of atoms that link together two or more other groups of atoms.


As used herein “internucleoside linkage” means a covalent linkage between adjacent nucleosides in an oligonucleotide.


As used herein “naturally occurring internucleoside linkage” means a 3′ to 5′ phosphodiester linkage.


As used herein, “modified internucleoside linkage” means any internucleoside linkage other than a naturally occurring internucleoside linkage. In particular, a “modified internucleoside linkage” as referred to herein can include a modified phosphorous linking group such as a phosphorothioate or phosphorodithioate internucleoside linkage.


As used herein, “terminal internucleoside linkage” means the linkage between the last two nucleosides of an oligonucleotide or defined region thereof.


As used herein, “phosphorus linking group” means a linking group comprising a phosphorus atom and can include naturally occurring phosphorous linking groups as present in naturally occurring RNA or DNA, such as phosphodiester linking groups, or modified phosphorous linking groups that are not generally present in naturally occurring RNA or DNA, such as phosphorothioate or phosphorodithioate linking groups. Phosphorus linking groups can therefore include without limitation, phosphodiester, phosphorothioate, phosphorodithioate, phosphonate, methylphosphonate, phosphoramidate, phosphorothioamidate, thionoalkylphosphonate, phosphotriesters, thionoalkylphosphotriester and boranophosphate.


As used herein, “internucleoside phosphorus linking group” means a phosphorus linking group that directly links two nucleosides.


As used herein, “oligomeric compound” means a polymeric structure comprising two or more substructures. In certain embodiments, an oligomeric compound comprises an oligonucleotide, such as a modified oligonucleotide. In certain embodiments, an oligomeric compound further comprises one or more conjugate groups and/or terminal groups and/or ligands. In certain embodiments, an oligomeric compound consists of an oligonucleotide. In certain embodiments, an oligomeric compound comprises a backbone of one or more linked monomeric sugar moieties, where each linked monomeric sugar moiety is directly or indirectly attached to a heterocyclic base moiety. In certain embodiments, oligomeric compounds may also include monomeric sugar moieties that are not linked to a heterocyclic base moiety, thereby providing abasic sites. Oligomeric compounds may be defined in terms of a nucleobase sequence only, i.e., by specifying the sequence of A, G, C, U (or T). In such a case, the structure of the sugar-phosphate backbone is not particularly limited and may or may not comprise modified sugars and/or modified phosphates. On the other hand, oligomeric compounds may be more comprehensively defined, i.e, by specifying not only the nucleobase sequence, but also the structure of the backbone, in particular the modification status of the sugars (unmodified, 2′-OMe modified, 2′-F modified etc.) and/or of the phosphates.


As used herein, “terminal group” means one or more atom attached to either, or both, the 3′ end or the 5′ end of an oligonucleotide. In certain embodiments, a terminal group comprises one or more terminal group nucleosides.


As used herein, “conjugate” or “conjugate group” means an atom or group of atoms bound to an oligonucleotide or oligomeric compound. In certain embodiments, a conjugate group links a ligand to a modified oligonucleotide or oligomeric compound. In general, conjugate groups can modify one or more properties of the compound to which they are attached, including, but not limited to pharmacodynamic, pharmacokinetic, binding, absorption, cellular distribution, cellular uptake, charge and/or clearance properties.


As used herein, “conjugate linker” or “linker” in the context of a conjugate group means a portion of a conjugate group comprising any atom or group of atoms and which covalently link an oligonucleotide to another portion of the conjugate group. In certain embodiments, the point of attachment on the oligomeric compound is the 3 ‘-oxygen atom of the 3’-hydroxyl group of the 3′ terminal nucleoside of the oligonucleotide. In certain embodiments the point of attachment on the oligomeric compound is the 5′-oxygen atom of the 5′-hydroxyl group of the 5′ terminal nucleoside of the oligonucleotide. In certain embodiments, the bond for forming attachment to the oligomeric compound is a cleavable bond. In certain such embodiments, such cleavable bond constitutes all or part of a cleavable moiety.


In certain embodiments, conjugate groups comprise a cleavable moiety (e.g., a cleavable bond or cleavable nucleoside) and ligand portion that can comprise one or more ligands, such as a carbohydrate cluster portion, such as an N-Acetyl-Galactosamine, also referred to as “GalNAc”, cluster portion. In certain embodiments, the carbohydrate cluster portion is identified by the number and identity of the ligand. For example, in certain embodiments, the carbohydrate cluster portion comprises 2 GalNAc groups. For example, in certain embodiments, the carbohydrate cluster portion comprises 3 GalNAc groups and this is particularly preferred. In certain embodiments, the carbohydrate cluster portion comprises 4 GalNAc groups. Such ligand portions are attached to an oligomeric compound via a cleavable moiety, such as a cleavable bond or cleavable nucleoside. The ligands can be arranged in a linear or branched configuration, such as a biantennary or triantennary configurations.


As used herein, “cleavable moiety” means a bond or group that is capable of being cleaved under physiological conditions. In certain embodiments, a cleavable moiety is cleaved inside a cell or sub-cellular compartments, such as an endosome or lysosome. In certain embodiments, a cleavable moiety is cleaved by endogenous enzymes, such as nucleases. In certain embodiments, a cleavable moiety comprises a group of atoms having one, two, three, four, or more than four cleavable bonds.


In certain embodiments, a cleavable moiety is a phosphodiester linkage.


As used herein, “cleavable bond” means any chemical bond capable of being broken.


As used herein, “carbohydrate cluster” means a compound having one or more carbohydrate residues attached to a linker group.


As used herein, “modified carbohydrate” means any carbohydrate having one or more chemical modifications relative to naturally occurring carbohydrates.


As used herein, “carbohydrate derivative” means any compound which may be synthesized using a carbohydrate as a starting material or intermediate.


As used herein, “carbohydrate” means a naturally occurring carbohydrate, a modified carbohydrate, or a carbohydrate derivative. A carbohydrate is a biomolecule including carbon (C), hydrogen (H) and oxygen (O) atoms. Carbohydrates can include monosaccharide, disaccharides, trisaccharides, tetrasaccharides, oligosaccharides or polysaccharides, such as one or more galactose moieties, one or more lactose moieties, one or more N-Acetyl-Galactosamine moieties, and/or one or more mannose moieties. A particularly preferred carbohydrate is N-Acetyl-Galactosamine moieties.


As used herein, “strand” means an oligomeric compound comprising linked nucleosides. The linker is not particularly limited, but includes phosphodiesters and variants thereof as disclosed herein. A strand may also be viewed as a plurality of linked nucleotides in which case the linker would be a covalent bond.


The term “construct” means a region of linked nucleosides which is defined in terms of nucleobase sequence and sugar modifications. A construct may coincide with a strand or compound, but may also be part thereof.


As used herein, “single strand” or “single-stranded” means an oligomeric compound comprising linked nucleosides that are connected in a continuous sequence without a break therebetween. Such single strands may include regions of sufficient self-complementarity so as to be capable of forming a stable self-duplex in a hairpin structure.


As used herein, “hairpin” means a single stranded oligomeric compound that includes a duplex formed by base pairing between sequences in the strand that are self-complementary and opposite in directionality.


As used herein, “hairpin loop” means an unpaired loop of linked nucleosides in a hairpin that is created as a result of hybridization of the self-complementary sequences. The resulting structure looks like a loop or a U-shape.


In particular, short hairpin RNA, also denoted as shRNA, comprises a duplex region and a loop connecting the regions forming the duplex. The end of the duplex region which does not carry the loop may be blunt-ended or carry (a) 3′ and/or (a) 5′ overhang(s). Advantageously, the construct is blunt-ended. Such molecules are also referred to as “mxRNAs”. As used herein, the term “mxRNA” is in particular understood as defined in WO 2020/044186 A2 which is incorporated by reference herein in its entirety. Particularly preferred hairpin RNAs in accordance with the invention are those shown in Tables 6 and 7 and FIGS. 15 to 18, 20 and 22.


As used herein, “directionality” means the end-to-end chemical orientation of an oligonucleotide based on the chemical convention of numbering of carbon atoms in the sugar moiety meaning that there will be a 5′-end defined by the 5′ carbon of the sugar moiety, and a 3′-end defined by the 3′ carbon of the sugar moiety. In a duplex or double stranded oligonucleotide, the respective strands run in opposite 5′ to 3′ directions to permit base pairing between them.


As used herein, “duplex”, also abbreviated as “dup”, means two or more complementary strand regions, or strands, of an oligonucleotide or oligonucleotides, hybridized together by way of non-covalent, sequence-specific interaction therebetween. Most commonly, the hybridization in the duplex will be between nucleobases adenine (A) and thymine (T), and/or (A) adenine and uracil (U), and/or guanine (G) and cytosine (C). The duplex may be part of a single stranded structure, wherein self-complementarity leads to hybridization, or as a result of hybridization between respective strands in a double stranded molecule.


As used herein, “double strand” or “double stranded” means a pair of oligomeric compounds that are hybridized to one another. In certain embodiments, a double-stranded oligomeric compound comprises a first and a second oligomeric compound.


As used herein, “expression” means the process by which a gene ultimately results in a protein.


Expression includes, but is not limited to, transcription, post-transcriptional modification (e.g., splicing, polyadenlyation, addition of 5′-cap), and translation.


As used herein, “transcription” or “transcribed” refers to the first of several steps of DNA based gene expression in which a target sequence of DNA is copied into RNA (especially mRNA) by the enzyme RNA polymerase. During transcription, a DNA sequence is read by an RNA polymerase, which produces a complementary, antiparallel RNA sequence called a primary transcript.


As used herein, “target sequence” means a sequence to which an oligomeric compound is intended to hybridize to result in a desired activity with respect to Factor XI expression. Oligonucleotides have sufficient complementarity to their target sequences to allow hybridization under physiological conditions.


As used herein, “nucleobase complementarity” or “complementarity” when in reference to nucleobases means a nucleobase that is capable of base pairing with another nucleobase. For example, in DNA, adenine (A) is complementary to thymine (T). For example, in RNA, adenine (A) is complementary to uracil (U). In both DNA and RNA, guanine (G) is complementary to cytosine (C). In certain embodiments, complementary nucleobase means a nucleobase of an oligomeric compound that is capable of base pairing with a nucleobase of its target sequence. For example, if a nucleobase at a certain position of an oligomeric compound is capable of hydrogen bonding with a nucleobase at a certain position of a target sequence, then the position of hydrogen bonding between the oligomeric compound and the target sequence is considered to be complementary at that nucleobase pair. Nucleobases comprising certain modifications may maintain the ability to pair with a counterpart nucleobase and thus, are still capable of nucleobase complementarity.


As used herein, “non-complementary” in reference to nucleobases means a pair of nucleobases that do not form hydrogen bonds with one another.


As used herein, “complementary” in reference to oligomeric compounds (e.g., linked nucleosides, oligonucleotides) means the capacity of such oligomeric compounds or regions thereof to hybridize to a target sequence, or to a region of the oligomeric compound itself, through nucleobase complementarity.


Complementary oligomeric compounds need not have nucleobase complementarity at each nucleoside. Rather, some mismatches are tolerated. In certain embodiments, complementary oligomeric compounds or regions are complementary at 70% of the nucleobases (70% complementary). In certain embodiments, complementary oligomeric compounds or regions are 80%> complementary. In certain embodiments, complementary oligomeric compounds or regions are 90%> complementary. In certain embodiments, complementary oligomeric compounds or regions are 95% complementary. In certain embodiments, complementary oligomeric compounds or regions are 100% complementary.


As used herein, “self-complementarity” in reference to oligomeric compounds means a compound that may fold back on itself, creating a duplex as a result of nucleobase hybridization of internal complementary strand regions. Depending on how close together and/or how long the strand regions are, then the compound may form hairpin loops, junctions, bulges or internal loops.


As used herein, “mismatch” means a nucleobase of an oligomeric compound that is not capable of pairing with a nucleobase at a corresponding position of a target sequence, or at a corresponding position of the oligomeric compound itself when the oligomeric compound hybridizes as a result of self-complementarity, when the oligomeric compound and the target sequence and/or self-complementary regions of the oligomeric compound, are aligned.


As used herein, “hybridization” means the pairing of complementary oligomeric compounds (e.g., an oligomeric compound and its target sequence). While not limited to a particular mechanism, the most common mechanism of pairing involves hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleobases.


As used herein, “specifically hybridizes” means the ability of an oligomeric compound to hybridize to one nucleic acid site with greater affinity than it hybridizes to another nucleic acid site.


As used herein, “fully complementary” in reference to an oligomeric compound or region thereof means that each nucleobase of the oligomeric compound or region thereof is capable of pairing with a nucleobase of a complementary nucleic acid target sequence or a self-complementary region of the oligomeric compound. Thus, a fully complementary oligomeric compound or region thereof comprises no mismatches or unhybridized nucleobases with respect to its target sequence or a self-complementary region of the oligomeric compound.


As used herein, “percent complementarity” means the percentage of nucleobases of an oligomeric compound that are complementary to an equal-length portion of a target nucleic acid. Percent complementarity is calculated by dividing the number of nucleobases of the oligomeric compound that are complementary to nucleobases at corresponding positions in the target nucleic acid by the total length of the oligomeric compound.


As used herein, “percent identity” means the number of nucleobases in a first nucleic acid that are the same type (independent of chemical modification) as nucleobases at corresponding positions in a second nucleic acid, divided by the total number of nucleobases in the first nucleic acid.


As used herein, “modulation” means a change of amount or quality of a molecule, function, or activity when compared to the amount or quality of a molecule, function, or activity prior to modulation. For example, modulation includes the change, either an increase (stimulation or induction) or a decrease (inhibition or reduction) in gene expression.


As used herein, “type of modification” in reference to a nucleoside or a nucleoside of a “type” means the chemical modification of a nucleoside and includes modified and unmodified nucleosides.


Accordingly, unless otherwise indicated, a “nucleoside having a modification of a first type” may be an unmodified nucleoside.


As used herein, “differently modified” mean chemical modifications or chemical substituents that are different from one another, including absence of modifications. Thus, for example, a MOE nucleoside and an unmodified naturally occurring RNA nucleoside are “differently modified,” even though the naturally occurring nucleoside is unmodified. Likewise, DNA and RNA oligonucleotides are “differently modified,” even though both are naturally-occurring unmodified nucleosides. Nucleosides that are the same but for comprising different nucleobases are not differently modified. For example, a nucleoside comprising a 2′-OMe modified sugar moiety and an unmodified adenine nucleobase and a nucleoside comprising a 2′-OMe modified sugar moiety and an unmodified thymine nucleobase are not differently modified.


As used herein, “the same type of modifications” refers to modifications that are the same as one another, including absence of modifications. Thus, for example, two unmodified RNA nucleosides have “the same type of modification,” even though the RNA nucleosides are unmodified. Such nucleosides having the same type modification may comprise different nucleobases.


As used herein, “region” or “regions”, or “portion” or “portions”, mean a plurality of linked nucleosides that have a function or character as defined herein, in particular with reference to the subject-matter and definitions described herein. Typically such regions or portions comprise at least 10, at least 11, at least 12 or at least 13 linked nucleosides. For example, such regions can comprise 13 to 20 linked nucleosides, such as 13 to 16 or 18 to 20 linked nucleosides. Typically a first region as defined herein consists essentially of 18 to 20 nucleosides and a second region as defined herein consists essentially of 13 to 16 linked nucleosides.


As used herein, “pharmaceutically acceptable carrier or diluent” means any substance suitable for use in administering to an animal. In certain embodiments, a pharmaceutically acceptable carrier or diluent is sterile saline. In certain embodiments, such sterile saline is pharmaceutical grade saline.


As used herein, “substituent” and “substituent group,” means an atom or group that replaces the atom or group of a named parent compound. For example a substituent of a modified nucleoside is any atom or group that differs from the atom or group found in a naturally occurring nucleoside (e.g., a modified 2′-substituent is any atom or group at the 2′-position of a nucleoside other than H or OH). Substituent groups can be protected or unprotected. In certain embodiments, compounds of the present disclosure have substituents at one or at more than one position of the parent compound. Substituents may also be further substituted with other substituent groups and may be attached directly or via a linking group such as oxygen or an alkyl or hydrocarbyl group to a parent compound.


Such substituents can be present as the modification on the sugar moiety, in particular a substituent present at the 2′-position of the sugar moiety. Unless otherwise indicated, groups amenable for use as substituents include without limitation, one or more of halo, hydroxyl, alkyl, alkenyl, alkynyl, acyl, carboxyl, alkoxy, alkoxyalkylene and amino substituents. Certain substituents as described herein can represent modifications directly attached to a ring of a sugar moiety (such as a halo, such as fluoro, directly attached to a sugar ring), or a modification indirectly linked to a ring of a sugar moiety by way of an oxygen linking atom that itself is directly linked to the sugar moiety (such as an alkoxyalkylene, such as methoxyethylene, linked to an oxygen atom, overall providing an MOE substituent as described herein attached to the 2′-position of the sugar moiety).


As used herein, “alkyl,” as used herein, means a saturated straight or branched monovalent C1-6 hydrocarbon radical, with methyl being a most preferred alkyl as a substituent at the 2′-position of the sugar moiety. The alkyl group typically attaches to an oxygen linking atom at the 2′ position of the sugar, therefore, overall providing an —O-alkyl substituent, such as an —OCH3 substituent, on a sugar moiety of an oligomeric compound as described herein. This will be well understood be a person skilled in the art.


As used herein, “alkylene” means a saturated straight or branched divalent hydrocarbon radical of the general formula —CnH2n— where n is 1-6. Methylene or ethylene are preferred alkylenes.


As used herein, “alkenyl” means a straight or branched unsaturated monovalent C2-6 hydrocarbon radical, with ethenyl or propenyl being most preferred alkenyls as a substituent at the 2′-position of the sugar moiety. As will be well understood in the art, the degree of unsaturation that is present in an alkenyl radical is the presence of at least one carbon to carbon double bond. The alkenyl group typically attaches to an oxygen linking atom at the 2′-position of the sugar, therefore, overall providing a —Oalkenyl substituent, such as an —OCH2CH═CH2 substituent, on a sugar moiety of an oligomeric compound as described herein. This will be well understood be a person skilled in the art.


As used herein, “alkynyl” means a straight or branched unsaturated C2-6 hydrocarbon radical, with ethynyl being a most preferred alkynyl as a substituent at the 2′-position of the sugar moiety. As will be well understood in the art, the degree of unsaturation that is present in an alkynyl radical is the presence of at least one carbon to carbon triple bond. The alkynyl group typically attaches to an oxygen linking atom at the 2′-position of the sugar, therefore, overall providing a —Oalkynyl substituent on a sugar moiety of an oligomeric compound as described herein. This will be well understood be a person skilled in the art.


As used herein, “carboxyl” is a radical having a general formula —CO2H.


As used herein, “acyl” means a radical formed by removal of a hydroxyl group from a carboxyl radical as defined herein and has the general Formula —C(O)—X where X is typically C1-6 alkyl.


As used herein, “alkoxy” means a radical formed between an alkyl group, such as a C1-6 alkyl group, and an oxygen atom wherein the oxygen atom is used to attach the alkoxy group either to a parent molecule (such as at the 2′-position of a sugar moiety), or to another group such as an alkylene group as defined herein. Examples of alkoxy groups include without limitation, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, sec-butoxy and tert-butoxy. Alkoxy groups as used herein may optionally include further substituent groups.


As used herein, alkoxyalkylene means an alkoxy group as defined herein that is attached to an alkylene group also as defined herein, and wherein the oxygen atom of the alkoxy group attaches to the alkylene group and the alkylene attaches to a parent molecule. The alkylene group typically attaches to an oxygen linking atom at the 2′-position of the sugar, therefore, overall providing a —Oalkylenealkoxy substituent, such as an —OCH2CH2OCH3 substituent, on a sugar moiety of an oligomeric compound as described herein. This will be well understood by a person skilled in the art and is generally referred to as an MOE substituent as defined herein and as known in the art.


As used herein, “amino” includes primary, secondary and tertiary amino groups.


As used herein, “halo” and “halogen,” mean an atom selected from fluorine, chlorine, bromine and iodine.


It will also be understood that oligomeric compounds as described herein may have one or more non-hybridizing nucleosides at one or both ends of one or both strands (overhangs) and/or one or more internal non-hybridizing nucleosides (mismatches) provided there is sufficient complementarity to maintain hybridization under physiologically relevant conditions. Alternatively, oligomeric compounds as described herein may be blunt ended at at least one end.


The term “comprising” is used herein to mean including the method steps or elements identified, but that such steps or elements do not comprise an exclusive list and as such there may be present additional steps or elements.


Further, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.


Each of the constructs of the invention may or may not have a phosphate modification at the 5′ end group. Furthermore, and independently, each of the above constructs may or may not have a “3× GalNAc” coupled to the 3′ end group. Advantageously, a construct bears a 3× GalNAc ligand, such as a “toothbrush” moiety as disclosed herein. Particularly preferred are constructs which in addition have a 5′ phosphate, even though this is not a strict requirement, given that in the absence thereof, mammalian cells will add such phosphate in case it is absent from the molecule as administered.


The following are aspects of the present embodiments.


Aspect 1. An oligomeric compound capable of modulating, preferably inhibiting, expression of FXI, wherein the compound comprises at least a first region of linked nucleosides having at least a first nucleobase sequence that is at least partially complementary to at least a portion of RNA transcribed from an FXI gene, wherein the first nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 1 to 250, or SEQ ID NOs 1251 to 1500.


Aspect 2. An oligomeric compound according to aspect 1, which further comprises at least a second region of linked nucleosides having at least a second nucleobase sequence that is at least partially complementary to the first nucleobase sequence and is selected from the following sequences, or a portion thereof: SEQ ID NOs 251 to 500, or SEQ ID NOs 1501 to 1750.


Aspect 3. An oligomeric compound according to aspect 1 or 2, wherein the first nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 8, 13, 27, 39, 46, 91, 98, 103, 105, 109, 120, 140, 146, 151, 152, 163, 182, 183, 199, 207, 210, 218, 220, 223, 224, 238, or SEQ ID NOs 1258, 1263, 1277, 1289, 1296, 1341, 1348, 1353, 1355, 1359, 1370, 1390, 1396, 1401, 1402, 1413, 1432, 1433, 1449, 1457, 1460, 1468, 1470, 1473, 1474, 1488.


Aspect 4. An oligomeric compound according to aspect 3, wherein the second nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 258, 263, 277, 289, 296, 341, 348, 353, 355, 359, 370, 390, 396, 401, 402, 413, 432, 433, 449, 457, 460, 468, 470, 473, 474, 488, or SEQ ID NOs 1508, 1513, 1527, 1539, 1546, 1591, 1598, 1603, 1605, 1609, 1620, 1640, 1646, 1651, 1652, 1663, 1682, 1683, 1699, 1707, 1710, 1718, 1720, 1723, 1724, 1738.


Aspect 5. An oligomeric compound according to any of aspects 1 to 4, wherein the first nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 8, 46, 91, 146, 152, 207, or SEQ ID NOs 1258, 1296, 1341, 1396, 1402, 1457.


Aspect 6. An oligomeric compound according to aspect 5, wherein the second nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 258, 296, 341, 396, 402, 457, or SEQ ID NOs 1508, 1546, 1591, 1646, 1652, 1707.


Aspect 7. An oligomeric compound according to any of aspects 1 to 6, wherein the first nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 46, 91, 152, or SEQ ID NOs 1296, 1341, 1402.


Aspect 8. An oligomeric compound according to aspect 7, wherein the second nucleobase sequence is selected from the following sequences, or a portion thereof: SEQ ID NOs 296, 341, 402, or SEQ ID NOs 1546, 1591, 1652.


Aspect 9. An oligomeric compound according to any of aspects 1 to 8, wherein the first nucleobase sequence is at least partially complementary to any of the following sequences, or a portion thereof: SEQ ID NOs 1001 to 1250.


Aspect 10. An oligomeric compound according to aspect 3 and/or 4, wherein the first nucleobase sequence is at least partially complementary to any of the following sequences, or a portion thereof: SEQ ID NOs 1008, 1013, 1027, 1039, 1046, 1091, 1098, 1103, 1105, 1109, 1120, 1140, 1146, 1151, 1152, 1163, 1182, 1183, 1199, 1207, 1210, 1218, 1220, 1223, 1224, 1238.


Aspect 11. An oligomeric compound according to aspect 5 and/or 6, wherein the first nucleobase sequence is at least partially complementary to any of the following sequences, or a portion thereof: SEQ ID NOs 1008, 1046, 1091, 1146, 1152, 1207.


Aspect 12. An oligomeric compound according to aspect 7 and/or 8, wherein the first nucleobase sequence is at least partially complementary to any of the following sequences, or a portion thereof: SEQ ID NOs 1046, 1091, 1152.


Aspect 13. An oligomeric compound capable of modulating, preferably inhibiting, expression of FXI, which compound comprises at least a first region of linked nucleosides having at least a first nucleobase sequence that is at least partially complementary to at least a portion of RNA transcribed from an FXI gene, wherein the RNA is selected from the following sequences, or a portion thereof: SEQ ID NOs 1001 to 1250.


Aspect 14. An oligomeric compound according to aspect 13, wherein the RNA is selected from the following sequences, or a portion thereof: SEQ ID NOs 1008, 1013, 1027, 1039, 1046, 1091, 1098, 1103, 1105, 1109, 1120, 1140, 1146, 1151, 1152, 1163, 1182, 1183, 1199, 1207, 1210, 1218, 1220, 1223, 1224, 1238.


Aspect 15. An oligomeric compound according to aspect 13 or 14, wherein the RNA is selected from the following sequences, or a portion thereof: SEQ ID NOs 1008, 1046, 1091, 1146, 1152, 1207.


Aspect 16. An oligomeric compound according to any of aspects 13 to 15, wherein the RNA is selected from the following sequences, or a portion thereof: SEQ ID NOs 1046, 1091, 1152.


Aspect 17. An oligomeric compound according to any of aspects 1 to 16, wherein the first region of linked nucleosides consists essentially of 18 to 20 linked nucleosides.


Aspect 18. An oligomeric compound according to any of aspects 2 to 17, wherein the second region of linked nucleosides consists essentially of 11 to 16, advantageously 12 to 15 or 13 to 16 linked nucleosides.


Aspect 19. An oligomeric compound according to any of aspects 2 to 18, which comprises at least one complementary duplex region that comprises at least a portion of the first nucleoside region directly or indirectly linked to at least a portion of the second nucleoside region.


Aspect 20. An oligomeric compound according to aspect 19, wherein each of the first and second nucleoside regions has a 5′ to 3′ directionality thereby defining 5′ and 3′ regions respectively thereof.


Aspect 21. An oligomeric compound according to aspect 20, wherein the 5′ region of the first nucleoside region is directly or indirectly linked to the 3′ region of the second nucleoside region, for example by complementary base pairing, and/or wherein the 3′ region of the first nucleoside region is directly or indirectly linked to the 5′ region of the second nucleoside region.


Aspect 22. An oligomeric compound according to any of aspects 1 to 21, which further comprises one or more ligands.


Aspect 23. An oligomeric compound according to aspect 21, wherein the one or more ligands are conjugated to the second nucleoside region.


Aspect 24. An oligomeric compound according to aspect 23, as dependent on aspect 20, wherein the one or more ligands are conjugated at the 3′ region of the second nucleoside region.


Aspect 25. An oligomeric compound according to any of aspects 22 to 24, wherein the one or more ligands are any cell directing moiety, such as lipids, carbohydrates, aptamers, vitamins and/or peptides that bind cellular membrane or a specific target on cellular surface.


Aspect 26. An oligomeric compound according to aspect 25, wherein the one or more ligands comprise one or more carbohydrates.


Aspect 27. An oligomeric compound according to aspect 26, wherein the one or more carbohydrates can be a monosaccharide, disaccharide, trisaccharide, tetrasaccharide, oligosaccharide or polysaccharide.


Aspect 28. An oligomeric compound according to aspect 27, wherein the one or more carbohydrates comprise one or more galactose moieties, one or more lactose moieties, one or more N-Acetyl-Galactosamine moieties, and/or one or more mannose moieties.


Aspect 29. An oligomeric compound according to aspect 28, wherein the one or more carbohydrates comprise one or more N-Acetyl-Galactosamine moieties.


Aspect 30. An oligomeric compound according to aspect 29, which comprises two or three N-Acetyl-Galactosamine moieties, preferably three.


Aspect 31. An oligomeric compound according to any of aspects 22 to 30, wherein the one or more ligands are attached to the oligomeric compound, preferably to the second nucleoside region thereof, in a linear configuration, or in a branched configuration.


Preferred is that the ligand has the following structure, also referred to as “toothbrush” herein:




embedded image


A particularly preferred embodiment of “GalNAc” (as used herein) is the above structure.


Aspect 32. An oligomeric compound according to aspect 31, wherein the one or more ligands are attached to the oligomeric compound as a biantennary or triantennary configuration.


Aspect 33. An oligomeric compound according to aspect 19, wherein the oligomeric compound comprises a single strand comprising the first and second nucleoside regions, wherein the single strand dimerises whereby at least a portion of the first nucleoside region is directly or indirectly linked to at least a portion of the second nucleoside region so as to form the at least partially complementary duplex region.


Aspect 34. An oligomeric compound according to aspect 33, wherein the first nucleoside region has a greater number of linked nucleosides compared to the second nucleoside region, whereby the additional number of linked nucleosides of the first nucleoside region form a hairpin loop linking the first and second nucleoside regions.


Aspect 35. An oligomeric compound according to aspect 34, as dependent on aspect 20, whereby the hairpin loop is present at the 3′ region of the first nucleoside region.


Aspect 36. An oligomeric compound according to aspect 34 or 35, wherein the hairpin loop comprises 4 or 5 linked nucleosides.


Aspect 37. An oligomeric compound according to any of aspects 1 to 36, which comprises internucleoside linkages and wherein at least one internucleoside linkage is a modified internucleoside linkage.


Aspect 38. An oligomeric compound according to aspect 37, wherein the modified internucleoside linkage is a phosphorothioate or phosphorodithioate internucleoside linkage.


Aspect 39. An oligomeric compound according to aspect 38, which comprises 1 to 15 phosphorothioate or phosphorodithioate internucleoside linkages.


Aspect 40. An oligomeric compound according to aspect 39, which comprises 7, 8, 9 or 10 phosphorothioate or phosphorodithioate internucleoside linkages.


Aspect 41. An oligomeric compound according to any of aspects 38 to 40, as dependent on aspect 20, which comprises one or more phosphorothioate or phosphorodithioate internucleoside linkages at the 5′ region of the first nucleoside region.


Aspect 42. An oligomeric compound according to any of aspects 38 to 41, as dependent on aspect 20, which comprises one or more phosphorothioate or phosphorodithioate internucleoside linkages at the 5′ region of the second nucleoside region.


Aspect 43. An oligomeric compound according to any of aspects 38 to 42, as dependent on aspect 34, which comprises phosphorothioate or phosphorodithioate internucleoside linkages between at least two, preferably at least three, preferably at least four, preferably at least five, adjacent nucleosides of the hairpin loop, dependent on the number of nucleotides present in the hairpin loop.


Aspect 44. An oligomeric compound according to aspect 43, which comprises a phosphorothioate or phosphorodithioate internucleoside linkage between each adjacent nucleoside that is present in the hairpin loop.


Aspect 45. An oligomeric compound according to any of aspects 1 to 44, wherein at least one nucleoside comprises a modified sugar.


Aspect 46. An oligomeric compound according to aspect 45, wherein the modified sugar is selected from 2′ modified sugars; conformationally restricted nucleotides (CRN) sugar such as locked nucleic acid (LNA), (S)-constrained ethyl bicyclic nucleic acid, and constrained ethyl (cEt), tricyclo-DNA; morpholino, unlocked nucleic acid (UNA), glycol nucleic acid (GNA), D-hexitol nucleic acid (HNA), and cyclohexene nucleic acid (CeNA), and preferably is a 2′-O-methyl modified sugar.


Further 2′ modified sugars include 2′-O-alkyl modified sugar, 2′-O-methoxyethyl modified sugar, 2′-O-allyl modified sugar, 2′-C-allyl modified sugar, 2′-deoxy modified sugar such as 2′-deoxy ribose, 2′-F modified sugar, 2′-arabino-fluoro modified sugar, 2′-O-benzyl modified sugar, 2′-amino modified sugar, and 2′-O-methyl-4-pyridine modified sugar.


Aspect 47. An oligomeric compound according to aspect 45 or 46, wherein the modified sugar is a 2′-F modified sugar.


Aspect 48. An oligomeric compound according to any of aspects 45 to 47, as dependent on aspect 20, wherein sugars of the nucleosides at any of positions 2 and 14 downstream from the first nucleoside of the 5′ region of the first nucleoside region, do not contain 2′-O-methyl modifications.


Aspect 49. An oligomeric compound according to any of aspects 45 to 48, as dependent on aspect 20, wherein sugars of the nucleosides of the second nucleoside region, that correspond in position to any of the nucleosides of the first nucleoside region at any of positions 9 to 11 downstream from the first nucleotide of the 5′ region of the first nucleoside region, do not contain 2′-O-methyl modifications.


Aspect 50. An oligomeric compound according to aspect 48 or 49, wherein sugars of the nucleosides at any of positions 2 and 14 downstream from the first nucleoside of the 5′ region of the first nucleoside region, contain 2′-F modifications.


Aspect 51. An oligomeric compound according to any of aspects 48 to 50, wherein sugars of the nucleosides of the second nucleoside region, that correspond in position to any of the nucleosides of the first nucleoside region at any of positions 9 to 11 downstream from the first nucleoside of the 5′ region of the first nucleoside region, contain 2′-F modifications.


Aspect 52. An oligomeric compound according to any of aspects 45 to 51, as dependent on aspect 20, wherein one or more of the odd numbered nucleosides starting from the 5′ region of the first nucleoside region are modified, and/or wherein one or more of the even numbered nucleotides starting from the 5′ region of the first nucleoside region are modified, wherein typically the modification of the even numbered nucleotides is a second modification that is different from the modification of odd numbered nucleotides.


Aspect 53. An oligomeric compound according to aspect 52, wherein one or more of the odd numbered nucleosides starting from the 3′ region of the second nucleoside region are modified by a modification that is different from the modification of odd numbered nucleosides of the first nucleoside region.


Aspect 54. An oligomeric compound according to aspect 52 or 53, wherein one or more of the even numbered nucleosides starting from the 3′ region of the second nucleoside region are modified by a modification that is different from the modification of even numbered nucleosides of the first nucleoside region according to aspect 53.


Aspect 55. An oligomeric compound according to any of aspects 52 to 54, wherein at least one or more of the modified even numbered nucleosides of the first nucleoside region is adjacent to at least one or more of the differently modified odd numbered nucleosides of the first nucleoside region.


Aspect 56. An oligomeric compound according to any of aspects 52 to 55, wherein at least one or more of the modified even numbered nucleosides of the second nucleoside region is adjacent to at least one or more of the differently modified odd numbered nucleosides of the second nucleoside region.


Aspect 57. An oligomeric compound according to any of aspects 52 to 56, wherein sugars of one or more of the odd numbered nucleosides starting from the 5′ region of the first nucleoside region are 2′-O-methyl modified sugars.


Aspect 58. An oligomeric compound according to any of aspects 52 to 57, wherein one or more of the even numbered nucleosides starting from the 5′ region of the first nucleoside region are 2′-F modified sugars.


Aspect 59. An oligomeric compound according to any of aspects 52 to 58, wherein sugars of one or more of the odd numbered nucleosides starting from the 3′ region of the second nucleoside region are 2′-F modified sugars.


Aspect 60. An oligomeric compound according to any of aspects 52 to 59, wherein one or more of the even numbered nucleosides starting from the 3′ region of the second nucleoside region are 2′-O-methyl modified sugars.


Aspect 61. An oligomeric compound according to any of aspects 45 to 60, wherein sugars of a plurality of adjacent nucleosides of the first nucleoside region are modified by a common modification.


Aspect 62. An oligomeric compound according to any of aspects 45 to 61, wherein sugars of a plurality of adjacent nucleosides of the second nucleoside region are modified by a common modification.


Aspect 63. An oligomeric compound according to any of aspects 52 to 62, as dependent on aspect 34, wherein sugars of a plurality of adjacent nucleosides of the hairpin loop are modified by a common modification.


Aspect 64. An oligomeric compound according to any of aspects 61 to 63, wherein the common modification is a 2′-F modified sugar.


Aspect 65. An oligomeric compound according to any of aspects 61 to 63, wherein the common modification is a 2′-O-methyl modified sugar.


Aspect 66. An oligomeric compound according to aspect 65, wherein the plurality of adjacent 2′-O-methyl modified sugars are present in at least eight adjacent nucleosides of the first and/or second nucleoside regions.


Aspect 67. An oligomeric compound according to aspect 65, wherein the plurality of adjacent 2′-O-methyl modified sugars are present in three or four adjacent nucleosides of the hairpin loop.


Aspect 68. An oligomeric compound according to aspect 45, as dependent on aspect 34, wherein the hairpin loop comprises at least one nucleoside having a modified sugar.


Aspect 69. An oligomeric compound according to aspect 68, wherein the at least one nucleoside is adjacent a nucleoside with a differently modified sugar.


Aspect 70. An oligomeric compound according to aspect 69, wherein the modified sugar is a 2′-O-methyl modified sugar, and the differently modifies sugar is a 2′-F modified sugar.


Aspect 71. An oligomeric compound according to any of aspects 1 to 70, which comprises one or more nucleosides having an un-modified sugar moiety.


Aspect 72. An oligomeric compound according to aspect 71, wherein the unmodified sugar is present in the 5′ region of the second nucleoside region.


Aspect 73. An oligomeric compound according to aspect 71 or 72, as dependent on aspect 34, wherein the unmodified sugar is present in the hairpin loop.


Aspect 74. An oligomeric compound according to any of aspects 1 to 73, wherein one or more nucleosides of the first nucleoside region and/or the second nucleoside region is an inverted nucleoside and is attached to an adjacent nucleoside via the 3′ carbon of its sugar and the 3′ carbon of the sugar of the adjacent nucleoside, and/or one or more nucleosides of the first nucleoside region and/or the second nucleoside region is an inverted nucleoside and is attached to an adjacent nucleoside via the 5′ carbon of its sugar and the 5′ carbon of the sugar of the adjacent nucleoside.


Aspect 75. An oligomeric compound according to any of aspects 1 to 74, which is blunt ended.


Aspect 76. An oligomeric compound according to any of aspects 1 to 74, wherein either the first or second nucleoside region has an overhang.


Aspect 77. An oligomeric compound capable of modulating, preferably inhibiting, expression of FXI, wherein the compound comprises at least a first region of linked nucleosides having at least a first nucleobase sequence that is at least partially complementary to at least a portion of RNA transcribed from an FXI gene, wherein the first nucleobase sequence is a modified sequence and is selected from the following sequences, or a portion thereof: construct NOs 501 to 750, or construct NOs 1751 to 2000.


Aspect 78. An oligomeric compound according to aspect 77, which further comprises at least a second region of linked nucleosides having at least a second nucleobase sequence that is at least partially complementary to the first nucleobase sequence, wherein the second nucleobase sequence is a modified sequence and is selected from the following sequences, or a portion thereof: construct NOs 751 to 1000, or construct NOs 2001 to 2250.


Aspect 79. An oligomeric compound according to aspect 77 or 78, wherein the first nucleobase sequence is selected from the following sequences, or a portion thereof: construct NOs 508, 513, 527, 539, 546, 591, 598, 603, 605, 609, 620, 640, 646, 651, 652, 663, 682, 683, 699, 707, 710, 718, 720, 723, 724, 738, or construct NOs 1758, 1763, 1777, 1789, 1796, 1841, 1848, 1853, 1855, 1859, 1870, 1890, 1896, 1901, 1902, 1913, 1932, 1933, 1949, 1957, 1960, 1968, 1970, 1973, 1974, 1988.


Aspect 80. An oligomeric compound according to aspect 79, wherein the second nucleobase sequence is selected from the following sequences, or a portion thereof: construct NOs 758, 763, 777, 789, 796, 841, 848, 853, 855, 859, 870, 890, 896, 901, 902, 913, 932, 933, 949, 957, 960, 968, 970, 973, 974, 988, or construct NOs 2008, 2013, 2027, 2039, 2046, 2091, 2098, 2103, 2105, 2109, 2120, 2140, 2146, 2151, 2152, 2163, 2182, 2183, 2199, 2207, 2210, 2218, 2220, 2223, 2224, 2238.


Aspect 81. An oligomeric compound according to any of aspects 77 to 80, wherein the first nucleobase sequence is selected from the following sequences, or a portion thereof: construct NOs 508, 546, 591, 646, 652, 707, or construct NOs 1758, 1796, 1841, 1896, 1902, 1957.


Aspect 82. An oligomeric compound according to aspect 81, wherein the second nucleobase sequence is selected from the following sequences, or a portion thereof: construct NOs 758, 796, 841, 896, 902, 957, or construct NOs 2008, 2046, 2091, 2146, 2152, 2207.


Aspect 83. An oligomeric compound according to any of aspects 77 to 82, wherein the first nucleobase sequence is selected from the following sequences, or a portion thereof: construct NOs 546, 591, 652, or construct NOs 1796, 1841, 1902.


Aspect 84. An oligomeric compound according to aspect 83, wherein the second nucleobase sequence is selected from the following sequences, or a portion thereof: construct NOs 796, 841, 902, or construct NOs 2046, 2091, 2152.


Aspect 85. An oligomeric compound according to any of aspects 77 to 84, which is further characterised according to any of aspects 17 to 44, or 74 to 76.


Aspect 86. An oligomeric compound capable of modulating, preferably inhibiting, expression of FXI, which is selected from the following sequences: SEQ ID NOs 2251 to 2253, or SEQ ID NOs 2284 to 2288, preferably SEQ ID NO: 2287.


Aspect 87. An oligomeric compound capable of modulating, preferably inhibiting, expression of FXI, which is selected from the following sequences: construct NOs 2254 to 2283.


Aspect 88. An oligomeric compound according to aspect 86 or 87, which further comprises one or more ligands.


Aspect 89. An oligomeric compound according to aspect 88, wherein the one or more ligands are conjugated at the 3 ‘ region of the sequences, preferably at the 3’ terminal nucleoside.


Aspect 90. An oligomeric compound according to aspect 88, wherein the one or more ligands are conjugated at non-terminal positions.


Aspect 91. An oligomeric compound according to any of aspects 88 to 90, wherein the one or more ligands are any cell directing moiety, such as lipids, carbohydrates, aptamers, vitamins and/or peptides that bind cellular membrane or a specific target on cellular surface.


Aspect 92. An oligomeric compound according to aspect 91, wherein the one or more ligands comprise one or more carbohydrates.


Aspect 93. An oligomeric compound according to aspect 92, wherein the one or more carbohydrates can be a monosaccharide, disaccharide, trisaccharide, tetrasaccharide, oligosaccharide or polysaccharide.


A preferred monosaccharide is hexose.


Aspect 94. An oligomeric compound according to aspect 93, wherein the one or more carbohydrates comprise one or more galactose moieties, one or more lactose moieties, one or more N-Acetyl-Galactosamine moieties, and/or one or more mannose moieties.


Aspect 95. An oligomeric compound according to aspect 94, wherein the one or more carbohydrates comprise one or more N-Acetyl-Galactosamine moieties.


Aspect 96. An oligomeric compound according to aspect 95, which comprises two or three N-Acetyl-Galactosamine moieties, preferably three.


Aspect 97. An oligomeric compound according to any of aspects 88 to 96, wherein the one or more ligands are attached to the oligomeric compound in a linear configuration, or in a branched configuration.


Aspect 98. An oligomeric compound according to aspect 97, wherein the one or more ligands are attached to the oligomeric compound as a biantennary or triantennary configuration.


Aspect 99. An oligomeric compound according to any of aspects 86 to aspect 98, wherein the sequences self dimerise so as to form an at least partially complementary duplex region.


Aspect 100. An oligomeric compound according to aspect 99, having a nucleobase sequence and structure as shown in any of FIGS. 15 to 17 or 18 to 20, construct NOs: 2290 to 2292 being preferred, construct NO: 2290 being particularly preferred.


Aspect 101. A composition comprising an oligomeric compound according to any of aspects 1 to 100, and a physiologically acceptable excipient.


Aspect 102. An oligomeric compound according to any of aspects 1 to 100, for use in therapy.


Aspect 103. An oligomeric compound according to any of aspects 1 to 100, for use in the treatment of a disease or disorder.


Aspect 104. A method of treating a disease or disorder comprising administration of an oligomeric compound according to any of aspects 1 to 100, to an individual in need of treatment.


Aspect 105. A method according to aspect 104, wherein the oligomeric compound is administered subcutaneously or intravenously to the individual.


Aspect 106. Use of an oligomeric compound according to any of aspects 1 to 100, for use in research as a gene function analysis tool.


Aspect 107. Use according to aspect 103, or a method according to aspect 104, wherein the disease or disorder is a thromboembolic disease.


Aspect 108. Use or method according to aspect 107, wherein the thromboembolic disease is selected from the group consisting of deep vein thrombosis, venous or arterial thrombosis, pulmonary embolism, myocardial infarction, stroke, thrombosis associated with chronic kidney disease or end-stage renal disease (ESRD), including thrombosis associated with dialysis, or other procoagulant condition.


Aspect 109. Use or method according to aspect 108, wherein the thromboembolic disease is deep vein thrombosis, pulmonary embolism, or a combination thereof.


Aspect 110. Use of an oligomeric compound according to any of items 1 to 100 in the manufacture of a medicament for a treatment of a disease or disorder. The diseases and disorders are advantageously the same as set forth herein above.


The molecules disclosed herein, including, but not limited to, the hairpin RNAs as shown in Tables 6 and 7 and FIGS. 15 to 18, 20 and 22 are characterized by surprisingly outstanding performance, including in an in vivo setting; see, for example, the evidence shown in FIGS. 24 and 25. These data show a long-lasting down-regulation of Factor XI in response to administration of constructs as described herein. Further evidence of surprising performance of a plurality of constructs can be seen in the in vitro data provided in the Examples, including the data shown in FIG. 19.


The Figures as provided herein illustrate exemplary methods and data. While the methods are shown and described as being a series of acts that are performed in a particular sequence, it is to be understood and appreciated that the methods are not limited by the order of the sequence. For example, some acts can occur in a different order than what is described herein. In addition, an act can occur concurrently with another act. Further, in some instances, not all acts may be required to implement a method described herein.


The order of the steps of the methods described herein is exemplary, but the steps may be carried out in any suitable order, or simultaneously where appropriate. Additionally, steps may be added or substituted in, or individual steps may be deleted from any of the methods without departing from the scope of the subject matter described herein. Aspects of any of the Examples described above may be combined with aspects of any of the other Examples described to form further Examples.


It will be understood that the above description of a preferred embodiment is given by way of example only and that various modifications may be made by those skilled in the art. What has been described above includes Examples of one or more embodiments. It is, of course, not possible to describe every conceivable modification and alteration of the above compounds, compositions or methods for purposes of describing the aforementioned aspects, but one of ordinary skill in the art can recognize that many further modifications and permutations of various aspects are possible. Accordingly, the described aspects are intended to embrace all such alterations, modifications, and variations that fall within the scope of the appended claims.


EXAMPLES

The following Examples illustrate certain embodiments of the present disclosure and are not limiting. Moreover, where specific embodiments are provided, the inventors have contemplated generic application of those specific embodiments. For example, disclosure of an oligonucleotide having a particular motif or modification patterns provides reasonable support for additional oligonucleotides having the same or similar motif or modification patterns.


The syntheses of the RNAi constructs disclosed herein may be carried out using synthesis methods known to the person skilled in the art, such as synthesis methods disclosed in https://en.wikipedia.org/wiki/Oligonucleotide_synthesis {retrieved on 16 Feb. 2022}, wherein the methods disclosed on this website are incorporated by reference herein in their entirety. The only difference to the synthesis method disclosed in this reference is that GalNAc phosphoramidite immobilized on a support is used in the synthesis method during the first synthesis step.


The terms “construct number” and “SEQ ID NO” are used equivalently herein, especially with respect to 67 nucleobase sequences. Nucleobase sequences generally do not carry information about modifications of the sugar-phosphate backbone.


Example 1

Oligomeric compounds were synthesized using the oligonucleotides as set out in Tables 1a and 1 b below.









TABLE 1a







Summary sequence table for active nucleobase sequences:












Seq

Seq



Oligo
ID
Antisense (Guide) Strand
ID
Sense (Passenger) Strand


Name
No
Sequence (5′ to 3′)
No
Sequence (5′ to 3′)





F11-
  1
UCAAAAUCUUAGGUGACUC
251
CACCUAAGAUUUUGA


01









F11-
  2
UAUUGAUUUAAAAUGCCAC
252
CAUUUUAAAUCAAUA


02









F11-
  3
UAGAAAUCGCUGCUGUCCU
253
CAGCAGCGAUUUCUA


03









F11-
  4
UAUAAGAAAAUCAUCCUGA
254
GAUGAUUUUCUUAUA


04









F11-
  5
UAAACACCGUAUUAGGGAA
255
CUAAUACGGUGUUUA


05









F11-
  6
UAAAUCAGUGUCAUGGUAA
256
CAUGACACUGAUUUA


06









F11-
  7
UAUACCCGCUUUCUGCCAU
257
CAGAAAGCGGGUAUA


07









F11-
  8
UAGAUGUUUUAAGGAGACA
258
UCCUUAAAACAUCUA


08









F11-
  9
UGGUAUCUUGGCUUUCUGG
259
AAAGCCAAGAUACCA


09









F11-
 10
UCUCUGUAUCUCUUCUGGC
260
GAAGAGAUACAGAGA


10









F11-
 11
UAUGGAUUAUUAUUUCUUG
261
AAAUAAUAAUCCAUA


11









F11-
 12
UAGCCAGAUUAGAAAGUGC
262
UUUCUAAUCUGGCUA


12









F11-
 13
UAGCGGACGGCAUUGGUGC
263
CAAUGCCGUCCGCUA


13









F11-
 14
UAUUUCAGAUUGAUUUAAA
264
AAUCAAUCUGAAAUA


14









F11-
 15
UUUGUCUCUUAGUUUUCUG
265
AAACUAAGAGACAAA


15









F11-
 16
UAGAACACUGGGAUGCUGU
266
CAUCCCAGUGUUCUA


16









F11-
 17
UCCACUUGAUAUAAGAAAA
267
CUUAUAUCAAGUGGA


17









F11-
 18
UCAUUUUCUUACAAACACC
268
UUUGUAAGAAAAUGA


18









F11-
 19
UUAAUGCGUGUACUGGGCA
269
CAGUACACGCAUUAA


19









F11-
 20
UAGGACAGAGGGCCUCCCG
270
AGGCCCUCUGUCCUA


20









F11-
 21
UCAACCGGGAUGAUGAGUG
271
CAUCAUCCCGGUUGA


21









F11-
 22
UGACAAAGAUUUCUUUGAG
272
AAGAAAUCUUUGUCA


22









F11-
 23
UGAGGAAGCAUGCUGGCAC
273
CAGCAUGCUUCCUCA


23









F11-
 24
UGGAAAAUGUCCCUAAUAC
274
UAGGGACAUUUUCCA


24









F11-
 25
UUUAAGUAACACUUGCCCU
275
CAAGUGUUACUUAAA


25









F11-
 26
UCAAUAUCAUACCCGCUUU
276
CGGGUAUGAUAUUGA


26









F11-
 27
UAAAUGUACCACUUGAUAU
277
CAAGUGGUACAUUUA


27









F11-
 28
UAGAAAAUCAUCCUGAAAA
278
CAGGAUGAUUUUCUA


28









F11-
 29
UUAACACUUGCCCUUCCCU
279
AAGGGCAAGUGUUAA


29









F11-
 30
UAGCAUUUUCUUACAAACA
280
UGUAAGAAAAUGCUA


30









F11-
 31
UCAAACACCGUAUUAGGGA
281
UAAUACGGUGUUUGA


31









F11-
 32
UAGCGGCUGUUAAUAUCCA
282
UAUUAACAGCCGCUA


32









F11-
 33
UGAGCGGCUGUUAAUAUCC
283
AUUAACAGCCGCUCA


33









F11-
 34
UGAGACAAAGAUUUCUUUG
284
GAAAUCUUUGUCUCA


34









F11-
 35
UUGGGUUAUUUUAUGUCCU
285
CAUAAAAUAACCCAA


35









F11-
 36
UGAGCCAUGACACUGUCGA
286
CAGUGUCAUGGCUCA


36









F11-
 37
UCAGAUUAGAAAGUGCACA
287
CACUUUCUAAUCUGA


37









F11-
 38
UAGAAUACCCAGAAAUCGC
288
UUUCUGGGUAUUCUA


38









F11-
 39
UCAGAUGUUUUAAGGAGAC
289
CCUUAAAACAUCUGA


39









F11-
 40
UUGUAUCCAGAGAUGCCUC
290
CAUCUCUGGAUACAA


40









F11-
 41
UGAGUCACACAUUCACCAG
291
UGAAUGUGUGACUCA


41









F11-
 42
UCAAAGAAAGAUGUGUCCU
292
CACAUCUUUCUUUGA


42









F11-
 43
UACCACUUGAUAUAAGAAA
293
UUAUAUCAAGUGGUA


43









F11-
 44
UAAGAAAGCUUUAAGUAAC
294
CUUAAAGCUUUCUUA


44









F11-
 45
UUUAUUUCAGAUUGAUUUA
295
UCAAUCUGAAAUAAA


45









F11-
 46
UUGGUGUGAGCAUUGCUUG
296
CAAUGCUCACACCAA


46









F11-
 47
UAUCAUCCUGAAAAGACCU
297
CUUUUCAGGAUGAUA


47









F11-
 48
UGUGAGCAUUGCUUGAAAG
298
CAAGCAAUGCUCACA


48









F11-
 49
UCUGUAUCUCUUCUGGCAC
299
CAGAAGAGAUACAGA


49









F11-
 50
UACCUUAAUGUGUAUCCAG
300
AUACACAUUAAGGUA


50









F11-
 51
UAUCAUGGAUUAUUAUUUC
301
UAAUAAUCCAUGAUA


51









F11-
 52
UCAAAGAUUUCUUUGAGAU
302
CAAAGAAAUCUUUGA


52









F11-
 53
UGAAGUAUUUUAGUUGGAG
303
AACUAAAAUACUUCA


53









F11-
 54
UAGAUUGAUUUAAAAUGCC
304
UUUUAAAUCAAUCUA


54









F11-
 55
UGGGUAUCUUGGCUUUCUG
305
AAGCCAAGAUACCCA


55









F11-
 56
UAGGAGACAAAGAUUUCUU
306
AAUCUUUGUCUCCUA


56









F11-
 57
UGUCAUGGUAAAAUGAAGA
307
CAUUUUACCAUGACA


57









F11-
 58
UAUAUCCAGUUCUUCUCCC
308
GAAGAACUGGAUAUA


58









F11-
 59
UAAUAUCCAGUUCUUCUCC
309
AAGAACUGGAUAUUA


59









F11-
 60
UCUGUGGUUUCCAGUUUCA
310
ACUGGAAACCACAGA


60









F11-
 61
UAGAUUAGAAAGUGCACAG
311
GCACUUUCUAAUCUA


61









F11-
 62
UAGAAAUCAGUGUCAUGGU
312
UGACACUGAUUUCUA


62









F11-
 63
UUGGAUUAUUAUUUCUUGA
313
GAAAUAAUAAUCCAA


63









F11-
 64
UCCAGAUUAGAAAGUGCAC
314
ACUUUCUAAUCUGGA


64









F11-
 65
UCUCAUUAUCCAUUUUACA
315
AAAUGGAUAAUGAGA


65









F11-
 66
UUUGGGCCAUUCCUGGGAA
316
CAGGAAUGGCCCAAA


66









F11-
 67
UUGGGCUUGAUUUUGGUGG
317
CAAAAUCAAGCCCAA


67









F11-
 68
UCAGAUUGAUUUAAAAUGC
318
UUUAAAUCAAUCUGA


68









F11-
 69
UAAGCAACCGGGAUGAUGA
319
CAUCCCGGUUGCUUA


69









F11-
 70
UCUUAAUGUGUAUCCAGAG
320
GGAUACACAUUAAGA


70









F11-
 71
UGUAAUUCACUGUGGUUUC
321
CCACAGUGAAUUACA


71









F11-
 72
UACAUUUCUAUCUCCUUUG
322
GGAGAUAGAAAUGUA


72









F11-
 73
UCACUGGUUUCCAAUGAUG
323
AUUGGAAACCAGUGA


73









F11-
 74
UGAAUCUGUGUAAUUCACU
324
AAUUACACAGAUUCA


74









F11-
 75
UGUCCUAUUCACUCUUGGC
325
AGAGUGAAUAGGACA


75









F11-
 76
UAGCAUUGCUUGAAAGAAU
326
UUUCAAGCAAUGCUA


76









F11-
 77
UAAUACCCAGAAAUCGCUG
327
GAUUUCUGGGUAUUA


77









F11-
 78
UAUUAUUAUUUCUUGAACC
328
CAAGAAAUAAUAAUA


78









F11-
 79
UAAGUAUUUUAGUUGGAGA
329
CAACUAAAAUACUUA


79









F11-
 80
UGAAUCCAGUCCACGUACU
330
CGUGGACUGGAUUCA


80









F11-
 81
UAGACAAAGAUUUCUUUGA
331
AGAAAUCUUUGUCUA


81









F11-
 82
UACAGGAUUUCAGUGAAAA
332
CACUGAAAUCCUGUA


82









F11-
 83
UAACAAGGCAAUAUCAUAC
333
GAUAUUGCCUUGUUA


83









F11-
 84
UAAGGCAAUAUCAUACCCG
334
UAUGAUAUUGCCUUA


84









F11-
 85
UAUACCCAGAAAUCGCUGC
335
CGAUUUCUGGGUAUA


85









F11-
 86
UGAUUGAUUUAAAAUGCCA
336
AUUUUAAAUCAAUCA


86









F11-
 87
UCCUAUUCACUCUUGGCAG
337
CAAGAGUGAAUAGGA


87









F11-
 88
UGUAGACACGCAAAAUCUU
338
UUUUGCGUGUCUACA


88









F11-
 89
UUGAGUUUUCUCCAGAAUC
339
CUGGAGAAAACUCAA


89









F11-
 90
UAUUUCUUUGAGAUUCUUU
340
AAUCUCAAAGAAAUA


90









F11-
 91
UUAUAAGAAAAUCAUCCUG
341
AUGAUUUUCUUAUAA


91









F11-
 92
UAAAAUCUUAGGUGACUCU
342
UCACCUAAGAUUUUA


92









F11-
 93
UACACUGGGAUGCUGUGCC
343
CAGCAUCCCAGUGUA


93









F11-
 94
UUGCACAGGAUUUCAGUGA
344
UGAAAUCCUGUGCAA


94









F11-
 95
UAUACAAGCCAGAUUAGAA
345
AAUCUGGCUUGUAUA


95









F11-
 96
UUGUGGUUUCCAGUUUCAA
346
AACUGGAAACCACAA


96









F11-
 97
UUGCCCUUCCCUUCGUUGC
347
CGAAGGGAAGGGCAA


97









F11-
 98
UAAAAUCAUCCUGAAAAGA
348
UUCAGGAUGAUUUUA


98









F11-
 99
UCCAAGAAAUCAGUGUCAU
349
CACUGAUUUCUUGGA


99









F11-
100
UGGCAUAUGGGUCGUUGAG
350
ACGACCCAUAUGCCA


100









F11-
101
UAGAAUCUGUGUAAUUCAC
351
AUUACACAGAUUCUA


101









F11-
102
UAUCCAGUCCACGUACUCG
352
UACGUGGACUGGAUA


102









F11-
103
UCCUCUGUAUCUCUUCUGG
353
AAGAGAUACAGAGGA


103









F11-
104
UGCACAGGAUUUCAGUGAA
354
CUGAAAUCCUGUGCA


104









F11-
105
UGUAAAAUGAAGAAUGGCA
355
AUUCUUCAUUUUACA


105









F11-
106
UGUCGUUGAGAAUCUGUGU
356
AGAUUCUCAACGACA


106









F11-
107
UGCAACAAUAUCCAGUUCU
357
CUGGAUAUUGUUGCA


107









F11-
108
UCAGCGGACGGCAUUGGUG
358
AAUGCCGUCCGCUGA


108









F11-
109
UGAAAGCUUUAAGUAACAC
359
UACUUAAAGCUUUCA


109









F11-
110
UGCAGUGUUUCUGUAACAC
360
UACAGAAACACUGCA


110









F11-
111
UGAGAAUCUGUGUAAUUCA
361
UUACACAGAUUCUCA


111









F11-
112
UUCCAGUCCACGUACUCGA
362
GUACGUGGACUGGAA


112









F11-
113
UUGUGAGCAUUGCUUGAAA
363
AAGCAAUGCUCACAA


113









F11-
114
UCCGGGAUGAUGAGUGCAG
364
ACUCAUCAUCCCGGA


114









F11-
115
UCCACUUUAUCGAGCUUCG
365
GCUCGAUAAAGUGGA


115









F11-
116
UCAUUAUCCAUUUUACACA
366
UAAAAUGGAUAAUGA


116









F11-
117
UAACCGGGAUGAUGAGUGC
367
UCAUCAUCCCGGUUA


117









F11-
118
UUUCUUUGGGCCAUUCCUG
368
AAUGGCCCAAAGAAA


118









F11-
119
UCUAAGGGUAUCUUGGCUU
369
CAAGAUACCCUUAGA


119









F11-
120
UUUGGUGUGAGCAUUGCUU
370
AAUGCUCACACCAAA


120









F11-
121
UCAUAUGGGUCGUUGAGAA
371
CAACGACCCAUAUGA


121









F11-
122
UUUAAUGUGUAUCCAGAGA
372
UGGAUACACAUUAAA


122









F11-
123
UUCAGAUGUUUUAAGGAGA
373
CUUAAAACAUCUGAA


123









F11-
124
UUUCCAAUGAUGGAGCCUC
374
CUCCAUCAUUGGAAA


124









F11-
125
UAGAAUCCAGUCCACGUAC
375
GUGGACUGGAUUCUA


125









F11-
126
UUUUGAGAUUCUUUGGGCC
376
CAAAGAAUCUCAAAA


126









F11-
127
UAAUCAUCCUGAAAAGACC
377
UUUUCAGGAUGAUUA


127









F11-
128
UAGACACGCAAAAUCUUAG
378
GAUUUUGCGUGUCUA


128









F11-
129
UCGUACUCGACCACGUUGG
379
CGUGGUCGAGUACGA


129









F11-
130
UCAUCCAGUCACCCAGCAA
380
UGGGUGACUGGAUGA


130









F11-
131
UAACACUGGGAUGCUGUGC
381
AGCAUCCCAGUGUUA


131









F11-
132
UCAGAAAGAGCUUUGCUCU
382
CAAAGCUCUUUCUGA


132









F11-
133
UUUCUUUGAGAUUCUUUGG
383
AGAAUCUCAAAGAAA


133









F11-
134
UAGCAACAAUAUCCAGUUC
384
UGGAUAUUGUUGCUA


134









F11-
135
UACCACUUUAUCGAGCUUC
385
CUCGAUAAAGUGGUA


135









F11-
136
UCCCUUCCCUUCGUUGCAG
386
AACGAAGGGAAGGGA


136









F11-
137
UCGCAAAAUCUUAGGUGAC
387
CCUAAGAUUUUGCGA


137









F11-
138
UAGCGUGUUACUGUGGAGG
388
CACAGUAACACGCUA


138









F11-
139
UCUCCUUCCCUGUAGCCGG
389
CUACAGGGAAGGAGA


139









F11-
140
UGUCCUCUGUAUCUCUUCU
390
GAGAUACAGAGGACA


140









F11-
141
UGUAUCUUGGCUUUCUGGA
391
GAAAGCCAAGAUACA


141









F11-
142
UCUCUUGGCAGUGUUUCUG
392
AACACUGCCAAGAGA


142









F11-
143
UGAAAUCAGUGUCAUGGUA
393
AUGACACUGAUUUCA


143









F11-
144
UCUUCCCUGUAGCCGGCAC
394
CGGCUACAGGGAAGA


144









F11-
145
UCUGGCCGCUCCCUUUGAG
395
AAGGGAGCGGCCAGA


145









F11-
146
UCACGCAAAAUCUUAGGUG
396
UAAGAUUUUGCGUGA


146









F11-
147
UGAAACCAGAAAGAGCUUU
397
CUCUUUCUGGUUUCA


147









F11-
148
UAAAGCUUUAAGUAACACU
398
UUACUUAAAGCUUUA


148









F11-
149
UACAAGCCAGAUUAGAAAG
399
CUAAUCUGGCUUGUA


149









F11-
150
UACUCAUUAUCCAUUUUAC
400
AAUGGAUAAUGAGUA


150









F11-
151
UCCUGAAAAGACCUUGUUG
401
AAGGUCUUUUCAGGA


151









F11-
152
UGGUUUCCAAUGAUGGAGC
402
CAUCAUUGGAAACCA


152









F11-
153
UCAGUUUCUGGCAGGCCUC
403
CCUGCCAGAAACUGA


153









F11-
154
UAUGGCAGAACACUGGGAU
404
CAGUGUUCUGCCAUA


154









F11-
155
UAGAUUUCUUUGAGAUUCU
405
UCUCAAAGAAAUCUA


155









F11-
156
UGUUUCCAGUUUCAACAAG
406
UUGAAACUGGAAACA


156









F11-
157
UUCCUCUGUAUCUCUUCUG
407
AGAGAUACAGAGGAA


157









F11-
158
UCAUCCUGAAAAGACCUUG
408
GUCUUUUCAGGAUGA


158









F11-
159
UUUGAGUUUUCUCCAGAAU
409
UGGAGAAAACUCAAA


159









F11-
160
UAAUUCACUGUGGUUUCCA
410
AACCACAGUGAAUUA


160









F11-
161
UAAGAUUUCUUUGAGAUUC
411
CUCAAAGAAAUCUUA


161









F11-
162
UGGAGACAAAGAUUUCUUU
412
AAAUCUUUGUCUCCA


162









F11-
163
UGAAAAUCAUCCUGAAAAG
413
UCAGGAUGAUUUUCA


163









F11-
164
UCUUUCUGCCAUUUUAUAC
414
AAAAUGGCAGAAAGA


164









F11-
165
UAGUCCACGUACUCGACCA
415
CGAGUACGUGGACUA


165









F11-
166
UUUAAUGCGUGUACUGGGC
416
AGUACACGCAUUAAA


166









F11-
167
UUAAUGUGUAUCCAGAGAU
417
CUGGAUACACAUUAA


167









F11-
168
UGAUUCUUUGGGCCAUUCC
418
UGGCCCAAAGAAUCA


168









F11-
169
UUGAAACCAGAAAGAGCUU
419
UCUUUCUGGUUUCAA


169









F11-
170
UCACACAUUCACCAGAAAC
420
CUGGUGAAUGUGUGA


170









F11-
171
UACAAAGAUUUCUUUGAGA
421
AAAGAAAUCUUUGUA


171









F11-
172
UCAUUUCUAUCUCCUUUGG
422
AGGAGAUAGAAAUGA


172









F11-
173
UUUUCUGUAACACUGUCUU
423
CAGUGUUACAGAAAA


173









F11-
174
UGGAUUUCAGUGAAAAUCC
424
UUUCACUGAAAUCCA


174









F11-
175
UCGCUCCCUUUGAGCACAG
425
GCUCAAAGGGAGCGA


175









F11-
176
UCAGUCCACGUACUCGACC
426
GAGUACGUGGACUGA


176









F11-
177
UAGGCAUAUGGGUCGUUGA
427
CGACCCAUAUGCCUA


177









F11-
178
UAUGUCCUCUGUAUCUCUU
428
GAUACAGAGGACAUA


178









F11-
179
UGCUUGAUUUUGGUGGUAC
429
CACCAAAAUCAAGCA


179









F11-
180
UAUGAUGGAGCCUCCACAC
430
GGAGGCUCCAUCAUA


180









F11-
181
UUCGUUGAGAAUCUGUGUA
431
CAGAUUCUCAACGAA


181









F11-
182
UUUAUCCAUUUUACACAAC
432
UGUAAAAUGGAUAAA


182









F11-
183
UUGUCCUAUUCACUCUUGG
433
GAGUGAAUAGGACAA


183









F11-
184
UCAAUAUCCAGUUCUUCUC
434
AGAACUGGAUAUUGA


184









F11-
185
UCUUUGAGAUUCUUUGGGC
435
AAAGAAUCUCAAAGA


185









F11-
186
UCACUCUUGGCAGUGUUUC
436
CACUGCCAAGAGUGA


186









F11-
187
UCUUGAAAGAAUACCCAGA
437
GGUAUUCUUUCAAGA


187









F11-
188
UAGGCAAUAUCAUACCCGC
438
GUAUGAUAUUGCCUA


188









F11-
189
UCUGUGUAAUUCACUGUGG
439
AGUGAAUUACACAGA


189









F11-
190
UAAUAUCCACUGGUUUCCA
440
AACCAGUGGAUAUUA


190









F11-
191
UUGAAAGAAUACCCAGAAA
441
UGGGUAUUCUUUCAA


191









F11-
192
UGUUAAUAUCCACUGGUUU
442
CAGUGGAUAUUAACA


192









F11-
193
UUGUCAUGGUAAAAUGAAG
443
AUUUUACCAUGACAA


193









F11-
194
UAUUCUUUGGGCCAUUCCU
444
AUGGCCCAAAGAAUA


194









F11-
195
UCAGUUCCUCCAACGAUCC
445
CGUUGGAGGAACUGA


195









F11-
196
UGGGUGUGCUUCAGUAGAC
446
ACUGAAGCACACCCA


196









F11-
197
UGAAGAAAGCUUUAAGUAA
447
UUAAAGCUUUCUUCA


197









F11-
198
UAUCCUGAAAAGACCUUGU
448
GGUCUUUUCAGGAUA


198









F11-
199
UAGAAAGCUUUAAGUAACA
449
ACUUAAAGCUUUCUA


199









F11-
200
UCAGUGUUUCUGUAACACU
450
UUACAGAAACACUGA


200









F11-
201
UGACACGCAAAAUCUUAGG
451
AGAUUUUGCGUGUCA


201









F11-
202
UGUGUGAGCAUUGCUUGAA
452
AGCAAUGCUCACACA


202









F11-
203
UACCAGAAAGAGCUUUGCU
453
AAGCUCUUUCUGGUA


203









F11-
204
UAGAAAGUGCACAGGAUUU
454
CCUGUGCACUUUCUA


204









F11-
205
UUUUAUUUCAGAUUGAUUU
455
CAAUCUGAAAUAAAA


205









F11-
206
UUAUCCAGUUCUUCUCCCA
456
AGAAGAACUGGAUAA


206









F11-
207
UCCGUGAAAGUGAAGAGUA
457
CUUCACUUUCACGGA


207









F11-
208
UGGUGUGCUUCAGUAGACA
458
UACUGAAGCACACCA


208









F11-
209
UGGACAGAGGGCCUCCCGA
459
GAGGCCCUCUGUCCA


209









F11-
210
UAAGAAAAUCAUCCUGAAA
460
AGGAUGAUUUUCUUA


210









F11-
211
UUGAGAUUCUUUGGGCCAU
461
CCCAAAGAAUCUCAA


211









F11-
212
UAUGUUUUAAGGAGACAAA
462
UCUCCUUAAAACAUA


212









F11-
213
UCACAGUUUCUGGCAGGCC
463
UGCCAGAAACUGUGA


213









F11-
214
UACAAUAUCCAGUUCUUCU
464
GAACUGGAUAUUGUA


214









F11-
215
UACAUUCACCAGAAACUGA
465
UUUCUGGUGAAUGUA


215









F11-
216
UCAAGGCAAUAUCAUACCC
466
AUGAUAUUGCCUUGA


216









F11-
217
UCUCCAACGAUCCUGGGCU
467
CAGGAUCGUUGGAGA


217









F11-
218
UCUGAAACCAGAAAGAGCU
468
CUUUCUGGUUUCAGA


218









F11-
219
UAAUCUCCCUUGCAAGCGU
469
UUGCAAGGGAGAUUA


219









F11-
220
UUGUGUAAUUCACUGUGGU
470
CAGUGAAUUACACAA


220









F11-
221
UUUUCAGUGAAAAUCCAGA
471
GAUUUUCACUGAAAA


221









F11-
222
UAAAUCAUCCUGAAAAGAC
472
UUUCAGGAUGAUUUA


222









F11-
223
UUACACUCAUUAUCCAUUU
473
GGAUAAUGAGUGUAA


223









F11-
224
UUUGGCAGUGUUUCUGUAA
474
AGAAACACUGCCAAA


224









F11-
225
UGGUACACUCAUUAUCCAU
475
AUAAUGAGUGUACCA


225









F11-
226
UAGGCAGGCAUAUGGGUCG
476
CCAUAUGCCUGCCUA


226









F11-
227
UCCAGUUUCAACAAGGCAA
477
CUUGUUGAAACUGGA


227









F11-
228
UUGGCCGCUCCCUUUGAGC
478
AAAGGGAGCGGCCAA


228









F11-
229
UACUGUGGUUUCCAGUUUC
479
CUGGAAACCACAGUA


229









F11-
230
UCUUUGGGCCAUUCCUGGG
480
GGAAUGGCCCAAAGA


230









F11-
231
UUAAGAAAAUCAUCCUGAA
481
GGAUGAUUUUCUUAA


231









F11-
232
UCUCUUUUAUUUCAGAUUG
482
CUGAAAUAAAAGAGA


232









F11-
233
UUCUUUGAGAUUCUUUGGG
483
AAGAAUCUCAAAGAA


233









F11-
234
UAAUGAUGGAGCCUCCACA
484
GAGGCUCCAUCAUUA


234









F11-
235
UGAAGAAUGGCAGAACACU
485
UUCUGCCAUUCUUCA


235









F11-
236
UCAAUGAUGGAGCCUCCAC
486
AGGCUCCAUCAUUGA


236









F11-
237
UAUGGAGCCUCCACACAGG
487
UGUGGAGGCUCCAUA


237









F11-
238
UCCCAAGAAAUCAGUGUCA
488
ACUGAUUUCUUGGGA


238









F11-
239
UGAGCCUCCACACAGGUGU
489
CUGUGUGGAGGCUCA


239









F11-
240
UCUCCCAAGAAAUCAGUGU
490
UGAUUUCUUGGGAGA


240









F11-
241
UCCUCCACACAGGUGUCUC
491
CACCUGUGUGGAGGA


241









F11-
242
UCCAAUGAUGGAGCCUCCA
492
GGCUCCAUCAUUGGA


242









F11-
243
UUUUCCAAUGAUGGAGCCU
493
UCCAUCAUUGGAAAA


243









F11-
244
UUCCCAAGAAAUCAGUGUC
494
CUGAUUUCUUGGGAA


244









F11-
245
UAGCCUCCACACAGGUGUC
495
CCUGUGUGGAGGCUA


245









F11-
246
UUCUUCUCCCAAGAAAUCA
496
UUCUUGGGAGAAGAA


246









F11-
247
UGUUUCCAAUGAUGGAGCC
497
CCAUCAUUGGAAACA


247









F11-
248
UUCCAAUGAUGGAGCCUCC
498
GCUCCAUCAUUGGAA


248









F11-
249
UUGGAGCCUCCACACAGGU
499
GUGUGGAGGCUCCAA


249









F11-
250
UGCCUCCACACAGGUGUCU
500
ACCUGUGUGGAGGCA


250









In above Table 1a:


A represents adenine;


U represents uracil;


C represents cytosine;


G represents guanine.









TABLE 1b







Summary sequence table for active nucleobase sequences with chemical modifications:











Oligo
construct
Antisense (Guide) Strand
construct
Sense (Passenger) Strand


Name
No
Sequence (5′ to 3′)
No
Sequence (5′ to 3′)














F11-
501
PmU.fC.mA.fA.mA.fA.mU.fC.mU.fU.m
751
fC.mA.fC.mC.fU.mA.fA.mG.fA.mU


01M

A.fG.mG.fU.mG.fA.mC.fU.mC

.fU.mU.fU.mG.fA


F11-
502
PmU.fA.mU.fU.mG.fA.mU.fU.mU.fA.m
752
fC.mA.fU.mU.fU.mU.fA.mA.fA.mU


02M

A.fA.mA.fU.mG.fC.mC.fA.mC

.fC.mA.fA.mU.fA


F11-
503
PmU.fA.mG.fA.mA.fA.mU.fC.mG.fC.m
753
fC.mA.fG.mC.fA.mG.fC.mG.fA.m


03M

U.fG.mC.fU.mG.fU.mC.fC.mU

U.fU.mU.fC.mU.fA


F11-
504
PmU.fA.mU.fA.mA.fG.mA.fA.mA.fA.m
754
fG.mA.fU.mG.fA.mU.fU.mU.fU.m


04M

U.fC.mA.fU.mC.fC.mU.fG.mA

C.fU.mU.fA.mU.fA


F11-
505
PmU.fA.mA.fA.mC.fA.mC.fC.mG.fU.m
755
fC.mU.fA.mA.fU.mA.fC.mG.fG.m


05M

A.fU.mU.fA.mG.fG.mG.fA.mA

U.fG.mU.fU.mU.fA


F11-
506
PmU.fA.mA.fA.mU.fC.mA.fG.mU.fG.m
756
fC.mA.fU.mG.fA.mC.fA.mC.fU.m


06M

U.fC.mA.fU.mG.fG.mU.fA.mA

G.fA.mU.fU.mU.fA


F11-
507
PmU.fA.mU.fA.mC.fC.mC.fG.mC.fU.m
757
fC.mA.fG.mA.fA.mA.fG.mC.fG.m


07M

U.fU.mC.fU.mG.fC.mC.fA.mU

G.fG.mU.fA.mU.fA


F11-
508
PmU.fA.mG.fA.mU.fG.mU.fU.mU.fU.m
758
fU.mC.fC.mU.fU.mA.fA.mA.fA.mC


08M

A.fA.mG.fG.mA.fG.mA.fC.mA

.fA.mU.fC.mU.fA


F11-
509
PmU.fG.mG.fU.mA.fU.mC.fU.mU.fG.m
759
fA.mA.fA.mG.fC.mC.fA.mA.fG.mA


09M

G.fC.mU.fU.mU.fC.mU.fG.mG

.fll.mA.fC.mC.fA


F11-
510
PmU.fC.mU.fC.mU.fG.mU.fA.mU.fC.m
760
fG.mA.fA.mG.fA.mG.fA.mU.fA.m


10M

U.fC.mU.fU.mC.fU.mG.fG.mC

C.fA.mG.fA.mG.fA


F11-
511
PmU.fA.mU.fG.mG.fA.mU.fU.mA.fU.m
761
fA.mA.fA.mU.fA.rnA.fU.mA.fA.mU


11M

U.fA.mU.fU.mU.fC.mU.fU.mG

.fC.mC.fA.mU.fA


F11-
512
PmU.fA.mG.fC.mC.fA.mG.fA.mU.fU.m
762
fU.mU.fU.mC.fU.mA.fA.mU.fC.m


12M

A.fG.mA.fA.mA.fG.mU.fG.mC

U.fG.mG.fC.mU.fA


F11-
513
PmU.fA.mG.fC.mG.fG.mA.fC.mG.fG.
763
fC.mA.fA.mU.fG.mC.fC.mG.fU.m


13M

mC.fA.mU.fU.mG.fG.mU.fG.mC

C.fC.mG.fC.mU.fA


F11-
514
PmU.fA.mU.fU.mU.fC.mA.fG.mA.fU.m
764
fA.mA.fU.mC.fA.mA.fU.mC.fU.mG


14M

U.fG.mA.fU.mU.fU.mA.fA.mA

.fA.mA.fA.mU.fA


F11-
515
PmU.fU.mU.fG.mU.fC.mU.fC.mU.fU.m
765
fA.mA.fA.mC.fU.mA.fA.mG.fA.mG


15M

A.fG.mU.fU.mU.fU.mC.fU.mG

.fA.mC.fA.mA.fA


F11-
516
PmU.fA.mG.fA.mA.fC.mA.fC.mU.fG.m
766
fC.mA.fU.mC.fC.mC.fA.mG.fU.m


16M

G.fG.mA.fU.mG.fC.mU.fG.mU

G.fU.mU.fC.mU.fA


F11-
517
PmU.fC.mC.fA.mC.fU.mU.fG.mA.fU.m
767
fC.mU.fU.mA.fU.mA.fU.mC.fA.mA


17M

A.fU.mA.fA.mG.fA.mA.fA.mA

.fG.mU.fG.mG.fA


F11-
518
PmU.fC.mA.fU.mU.fU.mU.fC.mU.fU.m
768
fU.mU.fU.mG.fU.mA.fA.mG.fA.m


18M

A.fC.mA.fA.mA.fC.mA.fC.mC

A.fA.mA.fU.mG.fA


F11-
519
PmU.fU.mA.fA.mU.fG.mC.fG.mU.fG.m
769
fC.mA.fG.mU.fA.mC.fA.mC.fG.m


19M

U.fA.mC.fU.mG.fG.mG.fC.mA

C.fA.mU.fU.mA.fA


F11-
520
PmU.fA.mG.fG.mA.fC.mA.fG.mA.fG.m
770
fA.mG.fG.mC.fC.mC.fU.mC.fU.m


20M

G.fG.mC.fC.mU.fC.mC.fC.mG

G.fU.mC.fC.mU.fA


F11-
521
PmU.fC.mA.fA.mC.fC.mG.fG.mG.fA.m
771
fC.mA.fU.mC.fA.mU.fC.mC.fC.m


21M

U.fG.mA.fU.mG.fA.mG.fU.mG

G.fG.mU.fU.mG.fA


F11-
522
PmU.fG.mA.fC.mA.fA.mA.fG.mA.fU.m
772
fA.mA.fG.mA.fA.mA.fU.mC.fU.mU


22M

U.fU.mC.fU.mU.fU.mG.fA.mG

.fU.mG.fU.mC.fA


F11-
523
PmU.fG.mA.fG.mG.fA.mA.fG.mC.fA.m
773
fC.mA.fG.mC.fA.mU.fG.mC.fU.m


23M

U.fG.mC.fU.mG.fG.mC.fA.mC

U.fC.mC.fU.mC.fA


F11-
524
PmU.fG.mG.fA.mA.fA.mA.fU.mG.fU.m
774
fU.mA.fG.mG.fG.mA.fC.mA.fU.m


24M

C.fC.mC.fU.mA.fA.mU.fA.mC

U.fU.mU.fC.mC.fA


F11-
525
PmU.fU.mU.fA.mA.fG.mU.fA.mA.fC.m
775
fC.mA.fA.mG.fU.mG.fU.mU.fA.m


25M

A.fC.mU.fU.mG.fC.mC.fC.mU

C.fU.mU.fA.mA.fA


F11-
526
PmU.fC.mA.fA.mU.fA.mU.fC.mA.fU.m
776
fC.mG.fG.mG.fU.mA.fU.mG.fA.m


26M

A.fC.mC.fC.mG.fC.mU.fU.mU

U.fA.mU.fU.mG.fA


F11-
527
PmU.fA.mA.fA.mU.fG.mU.fA.mC.fC.m
777
fC.mA.fA.mG.fU.mG.fG.mU.fA.m


27M

A.fC.mU.fU.mG.fA.mU.fA.mU

C.fA.mU.fU.mU.fA


F11-
528
PmU.fA.mG.fA.mA.fA.mA.fU.mC.fA.m
778
fC.mA.fG.mG.fA.mU.fG.mA.fU.m


28M

U.fC.mC.fU.mG.fA.mA.fA.mA

U.fU.mU.fC.mU.fA


F11-
529
PmU.fU.mA.fA.mC.fA.mC.fU.mU.fG.m
779
fA.mA.fG.mG.fG.mC.fA.mA.fG.m


29M

C.fC.mC.fU.mU.fC.mC.fC.mU

U.fG.mU.fU.mA.fA


F11-
530
PmU.fA.mG.fC.mA.fU.mU.fU.mU.fC.m
780
fU.mG.fU.mA.fA.mG.fA.mA.fA.mA


30M

U.fU.mA.fC.mA.fA.mA.fC.mA

.fU.mG.fC.mU.fA


F11-
531
PmU.fC.mA.fA.mA.fC.mA.fC.mC.fG.m
781
fU.mA.fA.mU.fA.mC.fG.mG.fU.m


31M

U.fA.mU.fU.mA.fG.mG.fG.mA

G.fU.mU.fU.mG.fA


F11-
532
PmU.fA.mG.fC.mG.fG.mC.fU.mG.fU.
782
fU.mA.fU.mU.fA.mA.fC.mA.fG.mC


32M

mU.fA.mA.fU.mA.fU.mC.fC.mA

.fC.mG.fC.mU.fA


F11-
533
PmU.fG.mA.fG.mC.fG.mG.fC.mU.fG.
783
fA.mU.fU.mA.fA.mC.fA.mG.fC.mC


33M

mU.fU.mA.fA.mU.fA.mU.fC.mC

.fG.mC.fU.mC.fA


F11-
534
PmU.fG.mA.fG.mA.fC.mA.fA.mA.fG.m
784
fG.mA.fA.mA.fU. mC.fU. mU.fU.m


34M

A.fU .mU .fU .mC.fU .mU .fU .mG

G.fU.mC.fU.mC.fA


F11-
535
PmU.fU.mG.fG.mG.fU.mU.fA.mU.fU.m
785
fC.mA.fU.mA.fA.mA.fA.mU.fA.mA


35M

U.fU.mA.fU.mG.fU.mC.fC.mU

.fC.mC.fC.mA.fA


F11-
536
PmU.fG.mA.fG.mC.fC.mA.fU.mG.fA.m
786
fC.mA.fG.mU.fG.mU.fC.mA.fU.m


36M

C.fA.mC.fU.mG.fU.mC.fG.mA

G.fG.mC.fU.mC.fA


F11-
537
PmU.fC.mA.fG.mA.fU.mU.fA.mG.fA.m
787
fC.mA.fC.mU.fU.mU.fC.mU.fA.mA


37M

A.fA.mG.fU.mG.fC.mA.fC.mA

.fU.mC.fU.mG.fA


F11-
538
PmU.fA.mG.fA.mA.fU.mA.fC.mC.fC.m
788
fU.mU.fU.mC.fU.mG.fG.mG.fU.m


38M

A.fG.mA.fA.mA.fU.mC.fG.mC

A.fU.mU.fC.mU.fA


F11-
539
PmU.fC.mA.fG.mA.fU.mG.fU.mU.fU.m
789
fC.mC.fU.mU.fA.mA.fA.mA.fC.mA


39M

U.fA.mA.fG.mG.fA.mG.fA.mC

.fU.mC.fU.mG.fA


F11-
540
PmU.fU.mG.fU.mA.fU.mC.f.mA.fG.m
790
fC.mA.fU.mC.fU.mC.fU.mG.fG.m


40M

A.fG.mA.fU.mG.fC.mC.fU.mC

A.fU.mA.fC.mA.fA


F11-
541
PmU.fG.mA.fG.mU.fC.mA.fC.mA.fC.m
791
fU.mG.fA.mA.fU.mG.fU.mG.fU.m


41M

A.fU.mU.fC.mA.fC.mC.fA.mG

G.fA.mC.fU.mC.fA


F11-
542
PmU.fC.mA.fA.mA.fG.mA.fA.mA.fG.m
792
fC.mA.fC.mA.fU. mC.fU. mU.fU.m


42M

A.fU.mG.fU.mG.fU.mC.fC.mU

C.fU.mU.fU.mG.fA


F11-
543
PmU.fA.mC.fC.mA.fC.mU.fU.mG.fA.m
793
fU.mU.fA.mU.fA.mU.fC.mA.fA.mG


43M

U.fA.mU.fA.mA.fG.mA.fA.mA

.fU.mG.fG.mU.fA


F11-
544
PmU.fA.mA.fG.mA.fA.mA.fG.mC.fU.m
794
fC.mU.fU.mA.fA.mA.fG. mC.fU. m


44M

U.fU.mA.fA.mG.fU.mA.fA.mC

U.fU.mC.fU.mU.fA


F11-
545
PmU.fU.mU.fA.mU.fU.mU.fC.mA.fG.m
795
fU.mC.fA.mA.fU.mC.fU.mG.fA.mA


45M

A.fU.mU.fG.mA.fU.mU.fU.mA

.fA.mU.fA.mA.fA


F11-
546
PmU.fU.mG.fG.mU.fG.mU.fG.mA.fG.
796
fC.mA.fA.mU.fG.mC.fU.mC.fA.m


46M

mC.fA.mU.fU.mG.fC.mU.fU.mG

C.fA.mC.fC.mA.fA


F11-
547
PmU.fA.mU.fC.mA.fU.mC.fC.mU.fG.m
797
fC.mU.fU.mU.fU.mC.fA.mG.fG.m


47M

A.fA.mA.fA.mG.fA.mC.fC.mU

A.fU.mG.fA.mU.fA


F11-
548
PmU.fG.mU.fG.mA.fG.mC.fA.mU.fU.m
798
fC.mA.fA.mG.fC.mA.fA.mU.fG.m


48M

G.fC.mU.fU.mG.fA.mA.fA.mG

C.fU.mC.fA.mC.fA


F11-
549
PmU.fC.mU.fG.mU.fA.mU.fC.mU.fC.m
799
fC.mA.fG.mA.fA.mG.fA.mG.fA.m


49M

U.fU.mC.fU.mG.fG.mC.fA.mC

U.fA.mC.fA.mG.fA


F11-
550
PmU.fA.mC.fC.mU.fU.mA.fA.mU.fG.m
800
fA.mU.fA.mC.fA.mC.fA.mU.fU.mA


50M

U.fG.mU.fA.mU.fC.mC.fA.mG

.fA.mG.fG.mU.fA


F11-
551
PmU.fA.mU.fC.mA.fU.mG.fG.mA.fU.m
801
fU.mA.fA.mU.fA.mA.fU.mC.fC.mA


51M

U.fA.mU.fU.mA.fU.mU.fU.mC

.fU.mG.fA.mU.fA


F11-
552
PmU.fC.mA.fA.mA.fG.mA.fU.mU.fU.m
802
fC.mA.fA.mA.fG.mA.fA.mA.fU.mC


52M

C.fU.mU.fU.mG.fA.mG.fA.mU

.fU.mU.fU.mG.fA


F11-
553
PmU.fG.mA.fA.mG.fU.mA.fU.mU.fU.m
803
fA.mA.fC.mU.fA.mA.fA.mA.fU.mA


53M

U.fA.mG.fU.mU.fG.mG.fA.mG

.fC.mU.fU.mC.fA


F11-
554
PmU.fA.mG.fA.mU.fU.mG.fA.mU.fU.m
804
fU.mU.fU.mU.fA.mA.fA.mU.fC.mA


54M

U.fA.mA.fA.mA.fU.mG.fC.mC

.fA.mU.fC.mU.fA


F11-
555
PmU.fG.mG.fG.mU.fA.mU.fC.mU.fU.m
805
fA.mA.fG.mC.fC.mA.fA.mG.fA.mU


55M

G.fG.mC.fU.mU.fU.mC.fU.mG

.fA.mC.fC.mC.fA


F11-
556
PmU.fA.mG.fG.mA.fG.mA.fC.mA.fA.m
806
fA.mA.fU.mC.fU.mU.fU.mG.fU.m


56M

A.fG.mA.fU.mU.fU.mC.fU.mU

C.fU.mC.fC.mU.fA


F11-
557
PmU.fG.mU.fC.mA.fU.mG.fG.mU.fA.m
807
fC.mA.fU.mU.fU.mU.fA.mC.fC.mA


57M

A.fA.mA.fU.mG.fA.mA.fG.mA

.fU.mG.fA.mC.fA


F11-
558
PmU.fA.mU.fA.mU.fC.mC.fA.mG.fU.m
808
fG.mA.fA.mG.fA.mA.fC.mU.fG.m


58M

U .fC. mU .fU .mC .fU. mC .fC .mC

G.fA.mU.fA.mU.fA


F11-
559
PmU.fA.mA.fU.mA.fU.mC.fC.mA.fG.m
809
fA.mA.fG.mA.fA.mC.fU.mG.fG.m


59M

U.fU.mC.fU.mU.fC.mU.fC.mC

A.fU.mA.fU.mU.fA


F11-
560
PmU.fC.mU.fG.mU.fG.mG.fU.mU.fU.
810
fA.mC.fU.mG.fG.mA.fA.mA.fC.m


60M

mC.fC.mA.fG.mU.fU.mU.fC.mA

C.fA.mC.fA.mG.fA


F11-
561
PmU.fA.mG.fA.mU.fU.mA.fG.mA.fA.m
811
fG.mC.fA.mC.fU.mU.fU.mC.fU.m


61M

A.fG.mU.fG.mC.fA.mC.fA.mG

A.fA.mU.fC.mU.fA


F11-
562
PmU.fA.mG.fA.mA.fA.mU.fC.mA.fG.m
812
fU.mG.fA.mC.fA.mC.fU.mG.fA.m


62M

U.fG.mU.fC.mA.fU.mG.fG.mU

U.fU.mU.fC.mU.fA


F11-
563
PmU.fU.mG.fG.mA.fU.mU.fA.mU.fU.m
813
fG.mA.fA.mA.fU.mA.fA.mU.fA.mA


63M

A.fU.mU.fU.mC.fU.mU.fG.mA

.fU.mC.fC.mA.fA


F11-
564
PmU.fC.mC.fA.mG.fA.mU.fU.mA.fG.m
814
fA.mC.fU.mU.fU.mC.fU.mA.fA.mU


64M

A.fA.mA.fG.mU.fG.mC.fA.mC

.fC.mU.fG.mG.fA


F11-
565
PmU.fC.mU.fC.mA.fU.mU.fA.mU.fC.m
815
fA.mA.fA.mU.fG.mG.fA.mU.fA.mA


65M

C.fA.mU.fU.mU.fU.mA.fC.mA

.fU.mG.fA.mG.fA


F11-
566
PmU.fU.mU.fG.mG.fG.mC.fC.mA.fU.m
816
fC.mA.fG.mG.fA.mA.fU.mG.fG.m


66M

U.fC.mC.fU.mG.fG.mG.fA.mA

C.fC.mC.fA.mA.fA


F11-
567
PmU.fU.mG.fG.mG.fC.mU.fU.mG.fA.
817
fC.mA.fA.mA.fA.mU.fC.mA.fA.mG


67M

mU.fU.mU.fU.mG.fG.mU.fG.mG

.fC.mC.fC.mA.fA


F11-
568
PmU.fC.mA.fG.mA.fU.mU.fG.mA.fU.m
818
fU.mU.fU.mA.fA.mA.fU.mC.fA.mA


68M

U.fU.mA.fA.mA.fA.mU.fG.mC

.fU.mC.fU.mG.fA


F11-
569
PmU.fA.mA.fG.mC.fA.mA.fC.mC.fG.m
819
fC.mA.fU.mC.fC.mC.fG.mG.fU.m


69M

G.fG.mA.fU.mG.fA.mU.fG.mA

U.fG.mC.fU.mU.fA


F11-
570
PmU.fC.mU.fU.mA.fA.mU.fG.mU.fG.m
820
fG.mG.fA.mU.fA.mC.fA.mC.fA.m


70M

U.fA.mU.fC.mC.fA.mG.fA.mG

U.fU.mA.fA.mG.fA


F11-
571
PmU.fG.mU.fA.mA.fU.mU.fC.mA.fC.m
821
fC.mC.fA.mC.fA.mG.fU.mG.fA.m


71M

U.fG.mU.fG.mG.fU.mU.fU.mC

A.fU.mU.fA.mC.fA


F11-
572
PmU.fA.mC.fA.mU.fU.mU.fC.mU.fA.m
822
fG.mG.fA.mG.fA.mU.fA.mG.fA.m


72M

U.fC.mU.fC.mC.fU.mU.fU.mG

A.fA.mU.fG.mU.fA


F11-
573
PmU.fC.mA.fC.mU.fG.mG.fU.mU.fU.m
823
fA.mU.fU.mG.fG.mA.fA.mA.fC.m


73M

C.fC.mA.fA.mU.fG.mA.fU.mG

C.fA.mG.fU.mG.fA


F11-
574
PmU.fG.mA.fA.mU.fC.mU.fG.mU.fG.m
824
fA.mA.fU.mU.fA.mC.fA.mC.fA.mG


74M

U.fA.mA.fU.mU.fC.mA.fC.mU

.fA.mU.fU.mC.fA


F11-
575
PmU.fG.mU.fC.mC.fU.mA.fU.mU.fC.m
825
fA.mG.fA.mG.fU.mG.fA.mA.fU.m


75M

A.fC.mU.fC.mU.fU.mG.fG.mC

A.fG.mG.fA.mC.fA


F11-
576
PmU.fA.mG.fC.mA.fU.mU.fG.mC.fU.m
826
fU.mU.fU.mC.fA.mA.fG.mC.fA.mA


76M

U.fG.mA.fA.mA.fG.mA.fA.mil

.fU.mG.fC.mU.fA


F11-
577
PmU.fA.mA.fU.mA.fC.mC.fC.mA.fG.m
827
fG.mA.fU.mU.fU.mC.fU.mG.fG.m


77M

A.fA.mA.fU.mC.fG.mC.fU.mG

G.fU.mA.fU.mU.fA


F11-
578
PmU.fA.mU.fU.mA.fU.mU.fA.mU.fU.m
828
fC.mA.fA.mG.fA.mA.fA.mil .fA.mA


78M

U.fC.mll.fll.mG.fA.mA.fC.mC

.fU.mA.fA.mU.fA


F11-
579
PmU.fA.mA.fG.mU.fA.mU.fU.mU.fU.m
829
fC.mA.fA.mC.fU.mA.fA.mA.fA.mU


79M

A.fG.mU.fU.mG.fG.mA.fG.mA

.fA.mC.fU.mU.fA


F11-
580
PmU.fG.mA.fA.mU.fC.mC.fA.mG.fU.m
830
fC. mG .fU. mG .fG. mA.fC. mU .fG. m


80M

C.fC.mA.fC.mG.fU.mA.fC.mU

G.fA.mU.fU.mC.fA


F11-
581
PmU.fA.mG.fA.mC.fA.mA.fA.mG.fA.m
831
fA.mG.fA.mA.fA.mU.fC.mU.fU.mU


81M

U .fU .mil .fC .mil .fU .mil .fG .mA

.fG.mU.fC.mU.fA


F11-
582
PmU.fA.mC.fA.mG.fG.mA.fU.mU.fU.m
832
fC. mA.fC. mU.fG.mA.fA.mA.fU.mC


82M

C.fA.mG.fU.mG.fA.mA.fA.mA

.fC.mU.fG.mU.fA


F11-
583
PmU.fA.mA.fC.mA.fA.mG.fG.mC.fA.m
833
fG.mA.fU.mA.fU.mU.fG.mC.fC.m


83M

A.fU.mA.fU.mC.fA.mU.fA.mC

U.fU.mG.fU.mU.fA


F11-
584
PmU.fA.mA.fG.mG.fC.mA.fA.mU.fA.m
834
fU.mA.fU.mG.fA.mU.fA.mU.fU.m


84M

U.fC.mA.fU.mA.fC.mC.f.mG

G.fC.mC.fU.mU.fA


F11-
585
PmU.fA.mU.fA.mC.fC.mC.fA.mG.fA.m
835
fC.mG.fA.mU.fU.mU.fC.mU.fG.m


85M

A.fA.mU.fC.mG.fC.mU.fG.mC

G.fG.mU.fA.mU.fA


F11-
586
PmU.fG.mA.fU.mU.fG.mA.fU.mU.fU.m
836
fA.mU.fU.mU.fU.mA.fA.mA.fU.mC


86M

A.fA.mA.fA.mU.fG.mC.fC.mA

.fA.mA.fU.mC.fA


F11-
587
PmU.fC.mC.fU.mA.fU.mU.fC.mA.fC.m
837
fC.mA.fA.mG.fA.mG.fU.mG.fA.m


87M

U.fC.mU.fU.mG.fG.mC.fA.mG

A.fU.mA.fG.mG.fA


F11-
588
PmU.fG.mU.fA.mG.fA.mC.fA.mC.fG.m
838
fU.mU.fU.mU.fG.mC.fG.mU.fG.m


88M

C.fA.mA.fA.mA.fU.mC.fU.mU

U.fC.mU.fA.mC.fA


F11-
589
PmU.fU.mG.fA.mG.fU.mU.fU.mU.fC.m
839
fC.mU.fG.mG.fA.mG.fA.mA.fA.m


89M

U.fC.mC.fA.mG.fA.mA.fU.mC

A.fC.mU.fC.mA.fA


F11-
590
PmU.fA.mU.fU.mU.fC.mU.fU.mU.fG.m
840
fA.mA.fU.mC.fU.mC.fA.mA.fA.mG


90M

A.fG.mA.fU.mU.fC.mU.fU.mU

.fA.mA.fA.mU.fA


F11-
591
PmU.fU.mA.fU.mA.fA.mG.fA.mA.fA.m
841
fA.mU.fG.mA.fU.mU.fU.mU.fC.m


91M

A.fU.mC.fA.mU.fC.mC.fU.mG

U.fU.mA.fU.mA.fA


F11-
592
PmU.fA.mA.fA.mA.fU.mC.fU.mU.fA.m
842
fU.mC.fA.mC.fC.mU.fA.mA.fG.mA


92M

G.fG.mU.fG.mA.fC.mU.fC.mU

.fU.mU.fU.mU.fA


F11-
593
PmU.fA.mC.fA.mC.fU.mG.fG.mG.fA.m
843
fC.mA.fG.mC.fA.mU.fC.mC.fC.m


93M

U.fG.mC.fU.mG.fU.mG.fC.mC

A.fG.mU.fG.mU.fA


F11-
594
PmU.fU.mG.fC.mA.fC.mA.fG.mG.fA.m
844
fU.mG.fA.mA.fA.mU.fC.mC.fU.m


94M

U.fU.mU.fC.mA.fG.mU.fG.mA

G.fU.mG.fC.mA.fA


F11-
595
PmU.fA.mU.fA.mC.fA.mA.fG.mC.fC.m
845
fA.mA.fU.mC.fU.mG.fG.mC.fU.m


95M

A.fG.mA.fU.mU.fA.mG.fA.mA

U.fG.mU.fA.mU.fA


F11-
596
PmU.fU.mG.fU.mG.fG.mU.fU.mU.fC.
846
fA.mA.fC.mU.fG.mG.fA.mA.fA.mC


96M

mC.fA.mG.fU.mU.fU.mC.fA.mA

.fC.mA.fC.mA.fA


F11-
597
PmU.fU.mG.fC.mC.fC.mU.fU.mC.fC.m
847
fC.mG.fA.mA.fG.mG.fG.mA.fA.m


97M

C.fU.mU.fC.mG.fU.mU.fG.mC

G.fG.mG.fC.mA.fA


F11-
598
PmU.fA.mA.fA.mA.fU.mC.fA.mU.fC.m
848
fU.mU.fC.mA.fG.mG.fA.mU.fG.m


98M

C.fU.mG.fA.mA.fA.mA.fG.mA

A.fU.mU.fU.mU.fA


F11-
599
PmU.fC.mC.fA.mA.fG.mA.fA.mA.fU.m
849
fC.mA.fC.mU.fG.mA.fU.mU.fU.m


99M

C.fA.mG.fU.mG.fU.mC.fA.mU

C.fU.mU.fG.mG.fA


F11-
600
PmU.fG.mG.fC.mA.fU.mA.fU.mG.fG.m
850
fA.mC.fG.mA.fC.mC.fC.mA.fU.mA


100M

G.fU.mC.fG.mU.fU.mG.fA.mG

.fU.mG.fC.mC.fA


F11-
601
PmU.fA.mG.fA.mA.fU.mC.fU.mG.fU.m
851
fA.mU.fU.mA.fC.mA.fC.mA.fG.mA


101M

G.fU.mA.fA.mU.fU.mC.fA.mC

.fU.mU.fC.mU.fA


F11-
602
PmU.fA.mU.fC.mC.fA.mG.fU.mC.fC.m
852
fU.mA.fC.mG.fU.mG.fG.mA.fC.m


102M

A.fC.mG.fU.mA.fC.mU.fC.mG

U.fG.mG.fA.mU.fA


F11-
603
PmU.fC.mC.fU.mC.fU.mG.fU.mA.fU.m
853
fA.mA.fG.mA.fG.mA.fU.mA.fC.mA


103M

C.fU.mC.fU.mU.fC.mU.fG.mG

.fG.mA.fG.mG.fA


F11-
604
PmU.fG.mC.fA.mC.fA.mG.fG.mA.fU.m
854
fC.mU.fG.mA.fA.mA.fU.mC.fC.m


104M

U.fU.mC.fA.mG.fU.mG.fA.mA

U.fG.mU.fG.mC.fA


F11-
605
PmU.fG.mU.fA.mA.fA.mA.fU.mG.fA.m
855
fA.mU.fU.mC.fU.mU.fC.mA.fU.m


105M

A.fG.mA.fA.mU.fG.mG.fC.mA

U.fU.mU.fA.mC.fA


F11-
606
PmU.fG.mU.fC.mG.fU.mU.fG.mA.fG.
856
fA.mG.fA.mU.fU.mC.fU.mC.fA.mA


106M

mA.fA.mU.fC.mU.fG.mU.fG.mU

.fC.mG.fA.mC.fA


F11-
607
PmU.fG.mC.fA.mA.fC.mA.fA.mU.fA.m
857
fC.mU.fG.mG.fA.mU.fA.mU.fU.m


107M

U.fC.mC.fA.mG.fU.mU.fC.mU

G.fU.mU.fG.mC.fA


F11-
608
PmU.fC.mA.fG.mC.fG.mG.fA.mC.fG.m
858
fA.mA.fU.mG.fC.mC.fG.mU.fC.m


108M

G.fC.mA.fU.mU.fG.mG.fU.mG

C.fG.mC.fU.mG.fA


F11-
609
PmU.fG.mA.fA.mA.fG.mC.fU.mU.fU.m
859
fU.mA.fC.mU.fU.mA.fA.mA.fG.mC


109M

A.fA.mG.fU.mA.fA.mC.fA.mC

.fU.mU.fU.mC.fA


F11-
610
PmU.fG.mC.fA.mG.fU.mG.fU.mU.fU.m
860
fU.mA.fC.mA.fG.mA.fA.mA.fC.mA


110M

C.fU.mG.fU.mA.fA.mC.fA.mC

.fC.mU.fG.mC.fA


F11-
611
PmU.fG.mA.fG.mA.fA.mU.fC.mU.fG.m
861
fU.mU.fA.mC.fA.mC.fA.mG.fA.mU


111M

U.fG.mU.fA.mA.fU.mU.fC.mA

.fU.mC.fU.mC.fA


F11-
612
PmU.fU.mC.fC.mA.fG.mU.fC.mC.fA.m
862
fG.mU.fA.mC.fG.mU.fG.mG.fA.m


112M

C.fG.mU.fA.mC.fU.mC.fG.mA

C.fU.mG.fG.mA.fA


F11-
613
PmU.fU.mG.fU.mG.fA.mG.fC.mA.fU.m
863
fA.mA.fG.mC.fA.mA.fU.mG.fC.m


113M

U.fG.mC.fU.mU.fG.mA.fA.mA

U.fC.mA.fC.mA.fA


F11-
614
PmU.fC.mC.fG.mG.fG.mA.fU.mG.fA.m
864
fA.mC.fU.mC.fA.mU.fC.mA.fU.mC


114M

U.fG.mA.fG.mU.fG.mC.fA.mG

.fC.mC.fG.mG.fA


F11-
615
PmU.fC.mC.fA.mC.fU.mU.fU.mA.fU.m
865
fG.mC.fU.mC.fG.mA.fU.mA.fA.m


115M

C.fG.mA.fG.mC.fU.mU.fC.mG

A.fG.mU.fG.mG.fA


F11-
616
PmU.fC.mA.fU.mU.fA.mU.fC.mC.fA.m
866
fU.mA.fA.mA.fA.mU.fG.mG.fA.mil


116M

U.fU.mU.fU.mA.fC.mA.fC.mA

.fA.mA.fU.mG.fA


F11-
617
PmU.fA.mA.fC.mC.fG.mG.fG.mA.fU.m
867
fU.mC.fA.mU.fC.mA.fU.mC.fC.m


117M

G.fA.mU.fG.mA.fG.mU.fG.mC

C.fG.mG.fU.mU.fA


F11-
618
PmU.fU.mU.fC.mU.fU.mU.fG.mG.fG.
868
fA.mA.fU.mG.fG.mC.fC.mC.fA.m


118M

mC.fC.mA.fU.mU.fC.mC.fU.mG

A.fA.mG.fA.mA.fA


F11-
619
PmU.fC.mU.fA.mA.fG.mG.fG.mU.fA.m
869
fC.mA.fA.mG.fA.mU.fA.mC.fC.mC


119M

U.fC.mU.fU.mG.fG.mC.fU.mU

.fU.mU.fA.mG.fA


F11-
620
PmU.fU.mU.fG.mG.fU.mG.fU.mG.fA.
870
fA.mA.fU.mG.fC.mU.fC.mA.fC.mA


120M

mG.fC.mA.fU.mU.fG.mC.fU.mU

.fC.mC.fA.mA.fA


F11-
621
PmU.fC.mA.fU.mA.fU.mG.fG.mG.fU.m
871
fC.mA.fA.mC.fG.mA.fC.mC.fC.mA


121M

C.fG.mU.fU.mG.fA.mG.fA.mA

.fU.mA.fU.mG.fA


F11-
622
PmU.fU.mU.fA.mA.fU.mG.fU.mG.fU.m
872
fU.mG.fG.mA.fU.mA.fC.mA.fC.m


122M

A.fU.mC.fC.mA.fG.mA.fG.mA

A.fU.mU.fA.mA.fA


F11-
623
PmU.fU.mC.fA.mG.fA.mU.fG.mU.fU.m
873
fC.mU.fU.mA.fA.mA.fA.mC.fA.mU


123M

U.fU.mA.fA.mG.fG.mA.fG.mA

.fC.mU.fG.mA.fA


F11-
624
PmU.fU.mU.fC.mC.fA.mA.fU.mG.fA.m
874
fC.mU.fC.mC.fA.mU.fC.mA.fU.m


124M

U.fG.mG.fA.mG.fC.mC.fU.mC

U.fG.mG.fA.mA.fA


F11-
625
PmU.fA.mG.fA.mA.fU.mC.fC.mA.fG.m
875
fG.mU.fG.mG.fA.mC.fU.mG.fG.m


125M

U.fC.mC.fA.mC.fG.mU.fA.mC

A.fU.mU.fC.mU.fA


F11-
626
PmU.fU.mU.fU.mG.fA.mG.fA.mU.fU.m
876
fC.mA.fA.mA.fG.mA.fA.mU.fC.mU


126M

C.fU.mU.fU.mG.fG.mG.fC.mC

.fC.mA.fA.mA.fA


F11-
627
PmU.fA.mA.fU.mC.fA.mU.fC.mC.fU.m
877
fU.mU.fU.mU.fC.mA.fG.mG.fA.m


127M

G.fA.mA.fA.mA.fG.mA.fC.mC

U.fG.mA.fU.mU.fA


F11-
628
PmU.fA.mG.fA.mC.fA.mC.fG.mC.fA.m
878
fG.mA.fU.mU.fU.mU.fG.mC.fG.m


128M

A.fA.mA.fU.mC.fU.mU.fA.mG

U.fG.mU.fC.mU.fA


F11-
629
PmU.fC.mG.fU.mA.fC.mU.fC.mG.fA.m
879
fC.mG.fU.mG.fG.mU.fC.mG.fA.m


129M

C.fC.mA.fC.mG.fU.mU.fG.mG

G.fU.mA.fC.mG.fA


F11-
630
PmU.fC.mA.fU.mC.fC.mA.fG.mU.fC.m
880
fU.mG.fG.mG.fU.mG.fA.mC.fU.m


130M

A.fC.mC.fC.mA.fG.mC.fA.mA

G.fG.mA.fU.mG.fA


F11-
631
PmU.fA.mA.fC.mA.fC.mU.fG.mG.fG.m
881
fA.mG.fC.mA.fU.mC.fC.mC.fA.m


131M

A.fU.mG.fC.mU.fG.mU.fG.mC

G.fU.mG.fU.mU.fA


F11-
632
PmU.fC.mA.fG.mA.fA.mA.fG.mA.fG.m
882
fC.mA.fA.mA.fG.mC.fU.mC.fU.m


132M

C.fU.mU.fU.mG.fC.mU.fC.mU

U.fU.mC.fU.mG.fA


F11-
633
PmU.fU.mU.fC.mU.fU.mU.fG.mA.fG.m
883
fA.mG.fA.mA.fU.mC.fU.mC.fA.mA


133M

A.fU.mU.fC.mU.fU.mU.fG.mG

.fA.mG.fA.mA.fA


F11-
634
PmU.fA.mG.fC.mA.fA.mC.fA.mA.fU.m
884
fU.mG.fG.mA.fU.mA.fU.mU.fG.m


134M

A.fU.mC.fC.mA.fG.mU.fU.mC

U.fU.mG.fC.mU.fA


F11-
635
PmU.fA.mC.fC.mA.fC.mU.fU.mU.fA.m
885
fC.mU.fC.mG.fA.mU.fA.mA.fA.m


135M

U.fC.mG.fA.mG.fC.mU.fU.mC

G.fU.mG.fG.mU.fA


F11-
636
PmU.fC.mC.fC.mU.fU.mC.fC.mC.fU.m
886
fA.mA.fC.mG.fA.mA.fG.mG.fG.m


136M

U.fC.mG.fU.mU.fG.mC.fA.mG

A.fA.mG.fG.mG.fA


F11-
637
PmU.fC.mG.fC.mA.fA.mA.fA.mU.fC.m
887
fC.mC.fU.mA.fA.mG.fA.mU.fU.m


137M

U.fU.mA.fG.mG.fU.mG.fA.mC

U.fU.mG.fC.mG.fA


F11-
638
PmU.fA.mG.fC.mG.fU.mG.fU.mU.fA.m
888
fC.mA.fC.mA.fG.mU.fA.mA.fC.mA


138M

C.fU.mG.fU.mG.fG.mA.fG.mG

.fC.mG.fC.mU.fA


F11-
639
PmU.fC.mU.fC.mC.fU.mU.fC.mC.fC.m
889
fC.mU.fA.mC.fA.mG.fG.mG.fA.m


139M

U.fG.mU.fA.mG.fC.mC.fG.mG

A.fG.mG.fA.mG.fA


F11-
640
PmU.fG.mU.fC.mC.fU.mC.fU.mG.fU.m
890
fG.mA.fG.mA.fU.mA.fC.mA.fG.m


140M

A.fU.mC.fU.mC.fU.mU.fC.mU

A.fG.mG.fA.mG.fA


F11-
641
PmU.fG.mU.fA.mU.fC.mU.fU.mG.fG.m
891
fG.mA.fA.mA.fG.mC.fC.mA.fA.m


141M

C .fU. mU .fU .mC .fU. mG .fG .mA

G.fA.mU.fA.mC.fA


F11-
642
PmU.fC.mU.fC.mU.fU.mG.fG.mC.fA.m
892
fA.mA.fC.mA.fC.mU.fG.mC.fC.mA


142M

G.fU.mG.fU.mU.fU.mC.fU.mG

.fA.mG.fA.mG.fA


F11-
643
PmU.fG.mA.fA.mA.fU.mC.fA.mG.fU.m
893
fA.mU.fG.mA.fC.mA.fC.mU.fG.m


143M

G.fU.mC.fA.mU.fG.mG.fU.mA

A.fU.mU.fU.mC.fA


F11-
644
PmU.fC.mU.fU.mC.fC.mC.fU.mG.fU.m
894
fC.mG.fG.mC.fU.mA.fC.mA.fG.m


144M

A.fG.mC.fC.mG.fG.mC.fA.mC

G.fG.mA.fA.mG.fA


F11-
645
PmU.fC.mU.fG.mG.fC.mC.fG.mC.fU.
895
fA.mA.fG.mG.fG.mA.fG.mC.fG.m


145M

mC.fC.mC.fU.mU.fU.mG.fA.mG

G.fC.mC.fA.mG.fA


F11-
646
PmU.fC.mA.fC.mG.fC.mA.fA.mA.fA.m
896
fU.mA.fA.mG.fA.mU.fU.mU.fU.m


146M

U.fC.mU.fU.mA.fG.mG.fU.mG

G.fC.mG.fU.mG.fA


F11-
647
PmU.fG.mA.fA.mA.fC.mC.fA.mG.fA.m
897
fC.mU.fC.mU.fU.mU.fC.mU.fG.m


147M

A.fA.mG.fA.mG.fC.mU.fU.mU

G.fU.mU.fU.mC.fA


F11-
648
PmU.fA.mA.fA.mG.fC.mU.fU.mU.fA.m
898
fU.mU.fA.mC.fU.mU.fA.mA.fA.mG


148M

A.fG.mU.fA.mA.fC.mA.fC.mU

.fC.mU.fU.mU.fA


F11-
649
PmU.fA.mC.fA.mA.fG.mC.fC.mA.fG.m
899
fC.mU.fA.mA.fU.mC.fU.mG.fG.m


149M

A.fU.mU.fA.mG.fA.mA.fA.mG

C.fU.mU.fG.mU.fA


F11-
650
PmU.fA.mC.fU.mC.fA.mU.fU.mA.fU.m
900
fA.mA.fU.mG.fG. mA.fU. mA.fA.mU


150M

C.fC.mA.fU.mU.fU.mU.fA.mC

.fG.mA.fG.mU.fA


F11-
651
PmU.fC.mC.fU.mG.fA.mA.fA.mA.fG.m
901
fA.mA.fG.mG.fU.mC.fU.mU.fU.m


151M

A.fC.mC.fU.mU.fG.mU.fU.mG

U.fC.mA.fG.mG.fA


F11-
652
PmU.fG.mG.fU.mU.fU.mC.fC.mA.fA.m
902
fC. mA.fU. mC.fA.mU.fU.mG.fG.m


152M

u .fG. mA.fU. mG .fG. mA .fG. mC

A.fA.mA.fC.mC.fA


F11-
653
PmU.fC.mA.fG.mU.fU.mU.fC.mU.fG.m
903
fC.mC.fU.mG.fC.mC.fA.mG.fA.m


153M

G.fC.mA.fG.mG.fC.mC.fU.mC

A.fA.mC.fU.mG.fA


F11-
654
PmU.fA.mU.fG.mG.fC.mA.fG.mA.fA.m
904
fC.mA.fG.mU.fG.mU.fU.mC.fU.m


154M

C.fA.mC.fU.mG.fG.mG.fA.mU

G.fC.mC.fA.mU.fA


F11-
655
PmU.fA.mG.fA.mU.fU.mU.fC.mU.fU.m
905
fU.mC.fU.mC.fA.mA.fA.mG.fA.mA


155M

U.fG.mA.fG.mA.fU.mU.fC.mU

.fA.mU.fC.mU.fA


F11-
656
PmU.fG.mU.fU.mU.fC.mC.fA.mG.fU.m
906
fU.mU.fG.mA.fA.mA.fC.mU.fG.m


156M

U.fU.mC.fA.mA.fC.mA.fA.mG

G.fA.mA.fA.mC.fA


F11-
657
PmU.fU.mC.fC.mU.fC.mU.fG.mU.fA.m
907
fA.mG.fA.mG.fA.mU.fA.mC.fA.m


157M

U.fC.mU.fC.mU.fU.mC.fU.mG

G.fA.mG.fG.mA.fA


F11-
658
PmU.fC. mA.fU. mC.fC.mU.fG.mA.fA.m
908
fG.mU.fC.mU.fU.mU.fU.mC.fA.m


158M

A.fA.mG.fA.mC.fC.mU.fU.mG

G.fG.mA.fU.mG.fA


F11-
659
PmU.fU.mU.fG.mA.fG.mU.fU.mU.fU.m
909
fU.mG.fG.mA.fG.mA.fA.mA.fA.m


159M

C.fU.mC.fC.mA.fG.mA.fA.mU

C.fU.mC.fA.mA.fA


F11-
660
PmU.fA.mA.fU.mU.fC.mA.fC.mU.fG.m
910
fA.mA.fC.mC.fA.mC.fA.mG.fU.m


160M

U.fG.mG.fU.mU.fU.mC.fC.mA

G.fA.mA.fU.mU.fA


F11-
661
PmU.fA.mA.fG.mA.fU.mU.fU.mC.fU.m
911
fC.mU.fC.mA.fA.mA.fG.mA.fA.mA


161M

U.fU.mG.fA.mG.fA.mU.fU.mC

.fU.mC.fU.mU.fA


F11-
662
PmU.fG.mG.fA.mG.fA.mC.fA.mA.fA.m
912
fA.mA.fA.mU.fC.mU.fU.mU.fG.m


162M

G.fA.mU.fU.mU.fC.mU.fU.mU

U.fC.mU.fC.mC.fA


F11-
663
PmU.fG.mA.fA.mA.fA.mU.fC.mA.fU.m
913
fU.mC.fA.mG.fG.mA.fU.mG.fA.m


163M

C.fC.mU.fG.mA.fA.mA.fA.mG

U.fU.mU.fU.mC.fA


F11-
664
PmU.fC.mU.fU.mU.fC.mU.fG.mC.fC.m
914
fA.mA.fA.mA.fU.mG.fG.mC.fA.m


164M

A.fU.mU.fU.mU.fA.mU.fA.mC

G.fA.mA.fA.mG.fA


F11-
665
PmU.fA.mG.fU.mC.fC.mA.fC.mG.fU.m
915
fC.mG.fA.mG.fU.mA.fC.mG.fU.m


165M

A.fC.mU.fC.mG.fA.mC.fC.mA

G.fG.mA.fC.mU.fA


F11-
666
PmU.fU.mU.fA.mA.fU.mG.fC.mG.fU.m
916
fA.mG.fU.mA.fC.mA.fC.mG.fC.m


166M

G.fU.mA.fC.mU.fG.mG.fG.mC

A.fU.mU.fA.mA.fA


F11-
667
PmU.fU.mA.fA.mU.fG.mU.fG.mU.fA.m
917
fC.mU.fG.mG.fA.mU.fA.mC.fA.m


167M

U.fC.mC.fA.mG.fA.mG.fA.mU

C.fA.mU.fU.mA.fA


F11-
668
PmU.fG.mA.fU.mU.fC.mU.fU.mU.fG.m
918
fU.mG.fG.mC.fC.mC.fA.mA.fA.m


168M

G.fG.mC.fC.mA.fU.mU.fC.mC

G.fA.mA.fU.mC.fA


F11-
669
PmU.fU.mG.fA.mA.fA.mC.fC.mA.fG.m
919
fU.mC.fU.mU.fU.mC.fU.mG.fG.m


169M

A.fA.mA.fG.mA.fG.mC.fU.mU

U.fU.mU.fC.mA.fA


F11-
670
PmU.fC.mA.fC.mA.fC.mA.fU.mU.fC.m
920
fC.mU.fG.mG.fU.mG.fA.mA.fU.m


170M

A.fC.mC.fA.mG.fA.mA.fA.mC

G.fU.mG.fU.mG.fA


F11-
671
PmU.fA.mC.fA.mA.fA.mG.fA.mU.fU.m
921
fA.mA.fA.mG.fA.mA.fA.mU.fC.mil


171M

U.fC.mU.fU.mU.fG.mA.fG.mA

.fU.mU.fG.mU.fA


F11-
672
PmU.fC.mA.fU.mU.fU.mC.fU.mA.fU.m
922
fA.mG.fG.mA.fG.mA.fU.mA.fG.m


172M

C.fU.mC.fC.mU.fU.mU.fG.mG

A.fA.mA.fU.mG.fA


F11-
673
PmU.fU.mU.fU.mC.fU.mG.fU.mA.fA.m
923
fC.mA.fG.mU.fG.mU.fU.mA.fC.m


173M

C.fA.mC.fU.mG.fU.mC.fU.mU

A.fG.mA.fA.mA.fA


F11-
674
PmU.fG.mG.fA.mU.fU.mU.fC.mA.fG.m
924
fU.mU.fU.mC.fA.mC.fU.mG.fA.m


174M

U.fG.mA.fA.mA.fA.mU.fC.mC

A.fA.mU.fC.mC.fA


F11-
675
PmU.fC.mG.fC.mU.fC.mC.fC.mU.fU.m
925
fG.mC.fU.mC.fA.mA.fA.mG.fG.m


175M

U.fG.mA.fG.mC.fA.mC.fA.mG

G.fA.mG.fC.mG.fA


F11-
676
PmU.fC.mA.fG.mU.fC.mC.fA.mC.fG.m
926
fG.mA.fG.mU.fA.mC.fG.mU.fG.m


176M

U.fA.mC.fU.mC.fG.mA.fC.mC

G.fA.mC.fU.mG.fA


F11-
677
PmU.fA.mG.fG.mC.fA.mU.fA.mU.fG.m
927
fC.mG.fA.mC.fC.mC.fA.mU.fA.m


177M

G.fG.mU.fC.mG.fU.mU.fG.mA

U.fG.mC.fC.mU.fA


F11-
678
PmU.fA.mU.fG.mU.fC.mC.fU.mC.fU.m
928
fG.mA.fU.mA.fC.mA.fG.mA.fG.m


178M

G.fU.mA.fU.mC.fU.mC.fU.mU

G.fA.mC.fA.mU.fA


F11-
679
PmU.fG.mC.fU.mU.fG.mA.fU.mU.fU.m
929
fC.mA.fC.mC.fA.mA.fA.mA.fU.mC


179M

U.fG.mG.fU.mG.fG.mU.fA.mC

.fA.mA.fG.mC.fA


F11-
680
PmU.fA.mU.fG.mA.fU.mG.fG.mA.fG.m
930
fG.mG.fA.mG.fG.mC.fU.mC.fC.m


180M

C.fC.mU.fC.mC.fA.mC.fA.mC

A.fU.mC.fA.mU.fA


F11-
681
PmU.fU.mC.fG.mU.fU.mG.fA.mG.fA.m
931
fC.mA.fG.mA.fU.mU.fC.mU.fC.m


181M

A.fU .mC .fU .mG.fU .mG .fU .mA

A.fA.mC.fG.mA.fA


F11-
682
PmU.fU.mU.fA.mU.fC.mC.fA.mU.fU.m
932
fU. mG.fU. mA.fA.mA.fA.mU.fG.m


182M

U.fU.mA.fC.mA.fC.mA.fA.mC

G.fA.mU.fA.mA.fA


F11-
683
PmU.fU.mG.fU.mC.fC.mU.fA.mU.fU.m
933
fG.mA.fG.mU.fG.mA.fA.mU.fA.m


183M

C.fA.mC.fU.mC.fU.mU.fG.mG

G.fG.mA.fC.mA.fA


F11-
684
PmU.fC.mA.fA.mU.fA.mU.fC.mC.fA.m
934
fA.mG.fA.mA.fC.mU.fG.mG.fA.m


184M

G.fU.mU.fC.mU.fU.mC.fU.mC

U.fA.mU.fU.mG.fA


F11-
685
PmU.fC.mU.fU.mU.fG.mA.fG.mA.fU.m
935
fA.mA.fA.mG.fA.mA.fU.mC.fU.mC


185M

U.fC.mU.fU.mU.fG.mG.fG.mC

.fA.mA.fA.mG.fA


F11-
686
PmU.fC.mA.fC.mU.fC.mU.fU.mG.fG.m
936
fC.mA.fC.mU.fG.mC.fC.mA.fA.m


186M

C.fA.mG.fU. mG.fU. mU.fU.mC

G.fA.mG.fU.mG.fA


F11-
687
PmU.fC.mU.fU.mG.fA.mA.fA.mG.fA.m
937
fG. mG.fU. mA.fU.mU.fC.mU.fU.m


187M

A.fU.mA.fC.mC.fC.mA.fG.mA

U.fC.mA.fA.mG.fA


F11-
688
PmU.fA.mG.fG.mC.fA.mA.fU.mA.fU.m
938
fG.mU.fA.mU.fG.mA.fU.mA.fU.m


188M

C.fA.mU.fA.mC.fC.mC.fG.mC

U.fG.mC.fC.mU.fA


F11-
689
PmU.fC.mU.fG.mU.fG.mU.fA.mA.fU.m
939
fA.mG.fU.mG.fA.mA.fU.mU.fA.m


189M

U.fC.mA.fC.mU.fG.mU.fG.mG

C.fA.mC.fA.mG.fA


F11-
690
PmU.fA.mA.fU.mA.fU.mC.fC.mA.fC.m
940
fA.mA.fG.mC.fA. mG.fU. mG.fG.m


190M

U.fG.mG.fU.mU.fU.mC.fC.mA

A.fU.mA.fU.mU.fA


F11-
691
PmU.fU.mG.fA.mA.fA.mG.fA.mA.fU.m
941
fU.mG.fG.mG.fU.mA.fU.mU.fC.m


191M

A.fC.mC.fC.mA.fG.mA.fA.mA

U.fU.mU.fC.mA.fA


F11-
692
PmU.fG.mU.fU.mA.fA.mU.fA.mU.fC.m
942
fC.mA.fG.mU.fG.mG.fA.mU.fA.m


192M

C.fA.mC.fU.mG.fG.mU.fU.mU

U.fU.mA.fA.mC.fA


F11-
693
PmU.fU. mG.fU. mC.fA.mU.fG. mG.fU. m
943
fA.mU.fU.mU.fU.mA.fC.mC.fA.mU


193M

A.fA.mA.fA.mU.fG.mA.fA.mG

.fG.mA.fC.mA.fA


F11-
694
PmU.fA.mU.fU.mC.fU.mU.fU.mG.fG.m
944
fA.mU.fG.mG.fC.mC.fC.mA.fA.m


194M

G.fC.mC.fA.mU.fU.mC.fC.mU

A.fG.mA.fA.mU.fA


F11-
695
PmU.fC.mA.fG.mU.fU.mC.fC.mU.fC.m
945
fC.mG.fU.mU.fG.mG.fA. mG.fG.m


195M

C.fA.mA.fC.mG.fA.mU.fC.mC

A.fA.mC.fU.mG.fA


F11-
696
PmU.fG.mG.fG.mU.fG.mU.fG.mC.fU.
946
fA.mC.fU.mG.fA.mA.fG.mC.fA.m


196M

mU.fC.mA.fG.mU.fA.mG.fA.mC

C.fA.mC.fC.mC.fA


F11-
697
PmU.fG.mA.fA.mG.fA.mA.fA.mG.fC.m
947
fU.mU.fA.mA.fA.mG.fC.mU.fU.m


197M

U.fU.mU.fA.mA.fG.mU.fA.mA

U.fC.mU.fU.mC.fA


F11-
698
PmU.fA.mU.fC.mC.fU.mG.fA.mA.fA.m
948
fG.mG.fU.mC.fU.mU.fU.mU.fC.m


198M

A.fG.mA.fC.mC.fU.mU.fG.mU

A.fG.mG.fA.mU.fA


F11-
699
PmU.fA.mG.fA.mA.fA.mG.fC.mU.fU.m
949
fA.mC.fU.mU.fA.mA.fA.mG.fC.mU


199M

U.fA.mA.fG.mU.fA.mA.fC.mA

.fU.mU.fC.mU.fA


F11-
700
PmU.fC.mA.fG.mU.fG.mU.fU.mU.fC.m
950
fU.mU.fA.mC.fA.mG.fA.mA.fA.mC


200M

U.fG.mU.fA.mA.fC.mA.fC.mU

.fA.mC.fU.mG.fA


F11-
701
PmU.fG.mA.fC.mA.fC.mG.fC.mA.fA.m
951
fA.mG.fA.mU.fU.mU.fU.mG.fC.m


201M

A.fA.mU.fC.mU.fU.mA.fG.mG

G.fU.mG.fU.mC.fA


F11-
702
PmU.fG.mU.fG.mU.fG.mA.fG.mC.fA.m
952
fA.mG.fC.mA.fA.mU.fG.mC.fU.m


202M

U.fU.mG.fC.mU.fU.mG.fA.mA

C.fA.mC.fA.mC.fA


F11-
703
PmU.fA.mC.fC.mA.fG.mA.fA.mA.fG.m
953
fA.mA.fG.mC.fU.mC.fU.mU.fU.m


203M

A.fG.mC.fU.mU.fU.mG.fC.mU

C.fU.mG.fG.mU.fA


F11-
704
PmU.fA.mG.fA.mA.fA.mG.fU.mG.fC.m
954
fC.mC.fU.mG.fU.mG.fC.mA.fC.m


204M

A.fC.mA.fG.mG.fA.mU.fU.mU

U.fU.mU.fC.mU.fA


F11-
705
PmU.fU.mU.fU.mA.fU.mU.fU.mC.fA.m
955
fC.mA.fA.mU.fC.mU.fG.mA.fA.mA


205M

G.fA.mU.fU.mG.fA.mU.fU.mU

.fU.mA.fA.mA.fA


F11-
706
PmU.fU.mA.fU.mC.fC.mA.fG.mU.fU.m
956
fA.mG.fA.mA.fG.mA.fA.mC.fU.m


206M

C.fU.mU.fC.mU.fC.mC.fC.mA

G.fG.mA.fU.mA.fA


F11-
707
PmU.fC.mC.fG.mU.fG.mA.fA.mA.fG.m
957
f.mU.fU.mC.fA.mC.fU.mU.fU.m


207M

U.fG.mA.fA.mG.fA.mG.fU.mA

C.fA.mC.fG.mG.fA


F11-
708
PmU.fG.mG.fU.mG.fU.mG.fC.mU.fU.
958
fU.mA.fC.mU.fG.mA.fA.mG.fC.m


208M

mC.fA.mG.fU.mA.fG.mA.fC.mA

A.fC.mA.fC.mC.fA


F11-
709
PmU.fG.mG.fA.mC.fA.mG.fA.mG.fG.m
959
fG.mA.fG.mG.fC.mC.fC.mU.fC.m


209M

G .fC .mC .fU .mC .fC .mC .fG .mA

U.fG.mU.fC.mC.fA


F11-
710
PmU.fA.mA.fG.mA.fA.mA.fA.mU.fC.m
960
fA.mG.fG.mA.fU.mG.fA.mU.fU.m


210M

A.fU.mC.fC.mU.fG.mA.fA.mA

U .fU.mC.fU.mil .fA


F11-
711
PmU.fU.mG.fA.mG.fA.mU.fU.mC.fU.m
961
fC.mC.fC.mA.fA.mA.fG.mA.fA.mU


211M

U.fU.mG.fG.mG.fC.mC.fA.mU

.fC.mU.fC.mA.fA


F11-
712
PmU.fA.mU.fG.mU.fU.mU.fU.mA.fA.m
962
fU.mC.fU.mC.fC.mU.fU.mA.fA.mA


212M

G.fG.mA.fG.mA.fC.mA.fA.mA

.fA.mC.fA.mU.fA


F11-
713
PmU.fC.mA.fC.mA.fG.mU.fU.mU.fC.m
963
fU.mG.fC.mC.fA.mG.fA.mA.fA.m


213M

U.fG.mG.fC.mA.fG.mG.fC.mC

C.fU.mG.fU.mG.fA


F11-
714
PmU.fA.mC.fA.mA.fU.mA.fU.mC.fC.m
964
fG.mA.fA.mC.fU.mG.fG.mA.fU.m


214M

A.fG.mU.fU.mC.fU.mU.fC.mU

A.fU.mU.fG.mU.fA


F11-
715
PmU.fA.mC.fA.mU.fU.mC.fA.mC.fC.m
965
fU.mU.fU.mC.fU.mG.fG.mU.fG.m


215M

A.fG.mA.fA.mA.fC.mU.fG.mA

A.fA.mU.fG.mU.fA


F11-
716
PmU.fC.mA.fA.mG.fG.mC.fA.mA.fU.m
966
fA.mU.fG.mA.fU.mA.fU.mU.fG.m


216M

A.fU.mC.fA.mU.fA.mC.fC.mC

C.fC.mU.fU.mG.fA


F11-
717
PmU.fC.mU.fC.mC.fA.mA.fC.mG.fA.m
967
fC.mA.fG.mG.fA.mU.fC.mG.fU.m


217M

U.fC.mC.fU.mG.fG.mG.fC.mU

U.fG.mG.fA.mG.fA


F11-
718
PmU.fC.mU.fG.mA.fA.mA.fC.mC.fA.m
968
fC.mU.fU.mU.fC.mU.fG.mG.fU.m


218M

G.fA.mA.fA.mG.fA.mG.fC.mU

U.fU.mC.fA.mG.fA


F11-
719
PmU.fA.mA.fU.mC.fU.mC.fC.mC.fU.m
969
fU.mU.fG.mC.fA.mA.fG.mG.fG.m


219M

U.fG.mC.fA.mA.fG.mC.fG.mU

A.fG.mA.fU.mU.fA


F11-
720
PmU.fU.mG.fU.mG.fU.mA.fA.mU.fU.m
970
fC.mA.fG.mU.fG.mA.fA.mU.fU.m


220M

C.fA.mC.fU.mG.fU.mG.fG.mU

A.fC.mA.fC.mA.fA


F11-
721
PmU.fU.mU.fU.mC.fA.mG.fU.mG.fA.m
971
fG.mA.fU.mU.fU.mU.fC.mA.fC.m


221M

A.fA.mA.fU.mC.fC.mA.fG.mA

U.fG.mA.fA.mA.fA


F11-
722
PmU.fA.mA.fA.mU.fC.mA.fU.mC.fC.m
972
fU.mU.fU.mC.fA.mG.fG.mA.fU.m


222M

U.fG.mA.fA.mA.fA.mG.fA.mC

G.fA.mU.fU.mU.fA


F11-
723
PmU.fU.mA.fC.mA.fC.mU.fC.mA.fU.m
973
fG.mG.fA.mU.fA.mA.fU.mG.fA.m


223M

U.fA.mU.fC.mC.fA.mU.fU.mU

G.fU.mG.fU.mA.fA


F11-
724
PmU.fU.mU.fG.mG.fC.mA.fG.mU.fG.
974
fA.mG.fA.mA.fA.mC.fA.mC.fU.mG


224M

mU.fU.mU.fC.mU.fG.mU.fA.mA

.fC.mC.fA.mA.fA


F11-
725
PmU.fG.mG.fU.mA.fC.mA.fC.mU.fC.m
975
fA.mU.fA.mA.fU.mG.fA.mG.fU.m


225M

A.fU.mU.fA.mU.fC.mC.fA.mU

G.fU.mA.fC.mC.fA


F11-
726
PmU.fA.mG.fG.mC.fA.mG.fG.mC.fA.m
976
fC.mC.fA.mU.fA.mU.fG.mC.fC.m


226M

U.fA.mU.fG.mG.fG.mU.fC.mG

U.fG.mC.fC.mU.fA


F11-
727
PmU.fC.mC.fA.mG.fU.mU.fU.mC.fA.m
977
fC.mU.fU.mG.fU.mU.fG.mA.fA.m


227M

A.fC.mA.fA.mG.fG.mC.fA.mA

A.fC.mU.fG.mG.fA


F11-
728
PmU.fU.mG.fG.mC.fC.mG.fC.mU.fC.
978
fA.mA.fA.mG.fG.mG.fA.mG.fC.m


228M

mC.fC.mU.fU.mU.fG.mA.fG.mC

G.fG.mC.fC.mA.fA


F11-
729
PmU.fA.mC.fU.mG.fU.mG.fG.mU.fU.m
979
fC.mU.fG.mG.fA.mA.fA.mC.fC.m


229M

U.fC.mC.fA.mG.fU.mU.fU.mC

A.fC.mA.fG.mU.fA


F11-
730
PmU.fC.mU.fU.mU.fG.mG.fG.mC.fC.
980
fG.mG.fA.mA.fU.mG.fG.mC.fC.m


230M

mA.fU.mU.fC.mC.fU.mG.fG.mG

C.fA.mA.fA.mG.fA


F11-
731
PmU.fU.mA.fA.mG.fA.mA.fA.mA.fU.m
981
fG.mG.fA.mU.fG.mA.fU.mU.fU.m


231M

C.fA.mU.fC.mC.fU.mG.fA.mA

U.fC.mU.fU.mA.fA


F11-
732
PmU.fC.mU.fC.mU.fU.mU.fU.mA.fU.m
982
fC.mU.fG.mA.fA.mA.fU.mA.fA.mA


232M

U.fU.mC.fA.mG.fA.mU.fU.mG

.fA.mG.fA.mG.fA


F11-
733
PmU.fU.mC.fU.mU.fU.mG.fA.mG.fA.m
983
fA.mA.fG.mA.fA.mU.fC.mU.fC.mA


233M

U.fU.mC.fU.mU.fU.mG.fG.mG

.fA.mA.fG.mA.fA


F11-
734
PmU.fA.mA.fU.mG.fA.mU.fG.mG.fA.m
984
fG.mA.fG.mG.fC.mU.fC.mC.fA.m


234M

G.fC.mC.fU.mC.fC.mA.fC.mA

U.fC.mA.fU.mU.fA


F11-
735
PmU.fG.mA.fA.mG.fA.mA.fU.mG.fG.m
985
fU.mU.fC.mU.fG.mC.fC.mA.fU.m


235M

C.fA.mG.fA.mA.fC.mA.fC.mU

U.fC.mU.fU.mC.fA


F11-
736
PmU.fC.mA.fA.mU.fG.mA.fU.mG.fG.m
986
fA.mG.fG.mC.fU.mC.fC.mA.fU.m


236M

A.fG.mC.fC.mU.fC.mC.fA.mC

C.fA.mU.fU.mG.fA


F11-
737
PmU.fA.mU.fG.mG.fA.mG.fC.mC.fU.m
987
fU.mG.fU.mG.fG.mA.fG.mG.fC.m


237M

C.fC.mA.fC.mA.fC.mA.fG.mG

U.fC.mC.fA.mU.fA


F11-
738
PmU.fC.mC.fC.mA.fA.mG.fA.mA.fA.m
988
fA.mC.fU.mG.fA.mU.fU.mU.fC.m


238M

U.fC.mA.fG.mU.fG.mU.fC.mA

U.fU.mG.fG.mG.fA


F11-
739
PmU.fG.mA.fG.mC.fC.mU.fC.mC.fA.m
989
fC.mU.fG.mU.fG.mU.fG.mG.fA.m


239M

C.fA.mC.fA.mG.fG.mU.fG.mU

G.fG.mC.fU.mC.fA


F11-
740
PmU.fC.mU.fC.mC.fC.mA.fA.mG.fA.m
990
fU.mG.fA.mU.fU.mU.fC.mU.fU.m


240M

A.fA.mU.fC.mA.fG.mU.fG.mU

G.fG.mG.fA.mG.fA


F11-
741
PmU.fC.mC.fU.mC.fC.mA.fC.mA.fC.m
991
fC.mA.fC.mC.fU.mG.fU.mG.fU.m


241M

A.fG.mG.fU.mG.fU.mC.fU.mC

G.fG.mA.fG.mG.fA


F11-
742
PmU.fC.mC.fA.mA.fU.mG.fA.mU.fG.m
992
fG.mG.fC.mU.fC.mC.fA.mU.fC.m


242M

G fA. mG .fC. mC .fU. mC .fC. m A

A.fU.mU.fG.mG.fA


F11-
743
PmU.fU.mU.fU.mC.fC.mA.fA.mU.fG.m
993
fU.mC.fC.mA.fU.mC.fA.mU.fU.m


243M

A.fU.mG.fG.mA.fG.mC.fC.mU

G.fG.mA.fA.mA.fA


F11-
744
PmU.fU.mC.fC.mC.fA.mA.fG.mA.fA.m
994
fC.mU.fG.mA.fU.mU.fU.mC.fU.m


244M

A.fU.mC.fA.mG.fU.mG.fU.mC

U.fG.mG.fG.mA.fA


F11-
745
PmU.fA.mG.fC.mC.fU.mC.fC.mA.fC.m
995
fC.mC.fU.mG.fU.mG.fU.mG.fG.m


245M

A.fC.mA.fG.mG.fU.mG.fU.mC

A.fG.mG.fC.mU.fA


F11-
746
PmU.fU.mC.fU.mU.fC.mU.fC.mC.fC.m
996
fU.mU.fC.mU.fU.mG.fG.mG.fA.m


246M

A.fA.mG.fA.mA.fA.mU.fC.mA

G.fA.mA.fG.mA.fA


F11-
747
PmU.fG.mU.fU.mU.fC.mC.fA.mA.fU.m
997
fC.mC.fA.mU.fC.mA.fU.mU.fG.m


247M

G.fA.mU.fG.mG.fA.mG.fC.mC

G.fA.mA.fA.mC.fA


F11-
748
PmU.fU.mC.fC.mA.fA.mU.fG.mA.fU.m
998
fG.mC.fU.mC.fC.mA.fU.mC.fA.m


248M

G.fG.mA.fG.mC.fC.mU.fC.mC

U.fU.mG.fG.mA.fA


F11-
749
PmU.fU.mG.fG.mA.fG.mC.fC.mU.fC.m
999
fG.mU.fG.mU.fG.mG.fA.mG.fG.m


249M

C.fA.mC.fA.mC.fA.mG.fG.mU

C.fU.mC.fC.mA.fA


F11-
750
PmU.fG.mC.fC.mU.fC.mC.fA.mC.fA.m
1000
fA.mC.fC.mU.fG.mU.fG.mU.fG.m


250M

C.fA.mG.fG.mU.fG.mU.fC.mU

G.fA.mG.fG.mC.fA









In above Table 1 b:


A represents adenine;


U represents uracil;


C represents cytosine;


G represents guanine;


P represents a terminal phosphate group;


m represents a methyl modification at the 2′ position of the sugar of the underlying nucleoside;


f represents a fluoro modification at the 2′ position of the sugar of the underlying nucleoside.


The target sequences in the Factor XI gene, with which the antisense (guide) sequences of Tables 1a/1b interact are set out in Table 1c below.









TABLE 1c







Summary sequence table for the nucleobases of


the target gene:










Seq ID
Target sequence


Oligo Name
No
(5′ to 3′)





F11-01T
1001
GAGUCACCUAAGAUUUUGC





F11-02T
1002
GUGGCAUUUUAAAUCAAUC





F11-03T
1003
AGGACAGCAGCGAUUUCUG





F11-04T
1004
UCAGGAUGAUUUUCUUAUA





F11-05T
1005
UUCCCUAAUACGGUGUUUG





F11-06T
1006
UUACCAUGACACUGAUUUC





F11-07T
1007
AUGGCAGAAAGCGGGUAUG





F11-08T
1008
UGUCUCCUUAAAACAUCUG





F11-09T
1009
CCAGAAAGCCAAGAUACCC





F11-10T
1010
GCCAGAAGAGAUACAGAGG





F11-11T
1011
CAAGAAAUAAUAAUCCAUG





F11-12T
1012
GCACUUUCUAAUCUGGCUU





F11-13T
1013
GCACCAAUGCCGUCCGCUG





F11-14T
1014
UUUAAAUCAAUCUGAAAUA





F11-15T
1015
CAGAAAACUAAGAGACAAA





F11-16T
1016
ACAGCAUCCCAGUGUUCUG





F11-17T
1017
UUUUCUUAUAUCAAGUGGU





F11-18T
1018
GGUGUUUGUAAGAAAAUGC





F11-19T
1019
UGCCCAGUACACGCAUUAA





F11-20T
1020
CGGGAGGCCCUCUGUCCUG





F11-21T
1021
CACUCAUCAUCCCGGUUGC





F11-22T
1022
CUCAAAGAAAUCUUUGUCU





F11-23T
1023
GUGCCAGCAUGCUUCCUCC





F11-24T
1024
GUAUUAGGGACAUUUUCCC





F11-25T
1025
AGGGCAAGUGUUACUUAAA





F11-26T
1026
AAAGCGGGUAUGAUAUUGC





F11-27T
1027
AUAUCAAGUGGUACAUUUC





F11-28T
1028
UUUUCAGGAUGAUUUUCUU





F11-29T
1029
AGGGAAGGGCAAGUGUUAC





F11-30T
1030
UGUUUGUAAGAAAAUGCUA





F11-31T
1031
UCCCUAAUACGGUGUUUGC





F11-32T
1032
UGGAUAUUAACAGCCGCUC





F11-33T
1033
GGAUAUUAACAGCCGCUCA





F11-34T
1034
CAAAGAAAUCUUUGUCUCC





F11-35T
1035
AGGACAUAAAAUAACCCAU





F11-36T
1036
UCGACAGUGUCAUGGCUCC





F11-37T
1037
UGUGCACUUUCUAAUCUGG





F11-38T
1038
GCGAUUUCUGGGUAUUCUU





F11-39T
1039
GUCUCCUUAAAACAUCUGA





F11-40T
1040
GAGGCAUCUCUGGAUACAC





F11-41T
1041
CUGGUGAAUGUGUGACUCA





F11-42T
1042
AGGACACAUCUUUCUUUGG





F11-43T
1043
UUUCUUAUAUCAAGUGGUA





F11-44T
1044
GUUACUUAAAGCUUUCUUC





F11-45T
1045
UAAAUCAAUCUGAAAUAAA





F11-46T
1046
CAAGCAAUGCUCACACCAA





F11-47T
1047
AGGUCUUUUCAGGAUGAUU





F11-48T
1048
CUUUCAAGCAAUGCUCACA





F11-49T
1048
GUGCCAGAAGAGAUACAGA





F11-50T
1050
CUGGAUACACAUUAAGGUU





F11-51T
1051
GAAAUAAUAAUCCAUGAUC





F11-52T
1052
AUCUCAAAGAAAUCUUUGU





F11-53T
1053
CUCCAACUAAAAUACUUCA





F11-54T
1054
GGCAUUUUAAAUCAAUCUG





F11-55T
1055
CAGAAAGCCAAGAUACCCU





F11-56T
1056
AAGAAAUCUUUGUCUCCUU





F11-57T
1057
UCUUCAUUUUACCAUGACA





F11-58T
1058
GGGAGAAGAACUGGAUAUU





F11-59T
1059
GGAGAAGAACUGGAUAUUG





F11-60T
1060
UGAAACUGGAAACCACAGU





F11-61T
1061
CUGUGCACUUUCUAAUCUG





F11-62T
1062
ACCAUGACACUGAUUUCUU





F11-63T
1063
UCAAGAAAUAAUAAUCCAU





F11-64T
1064
GUGCACUUUCUAAUCUGGC





F11-65T
1065
UGUAAAAUGGAUAAUGAGU





F11-66T
1066
UUCCCAGGAAUGGCCCAAA





F11-67T
1067
CCACCAAAAUCAAGCCCAG





F11-68T
1068
GCAUUUUAAAUCAAUCUGA





F11-69T
1069
UCAUCAUCCCGGUUGCUUG





F11-70T
1070
CUCUGGAUACACAUUAAGG





F11-71T
1071
GAAACCACAGUGAAUUACA





F11-72T
1072
CAAAGGAGAUAGAAAUGUA





F11-73T
1073
CAUCAUUGGAAACCAGUGG





F11-74T
1074
AGUGAAUUACACAGAUUCU





F11-75T
1075
GCCAAGAGUGAAUAGGACA





F11-76T
1076
AUUCUUUCAAGCAAUGCUC





F11-77T
1077
CAGCGAUUUCUGGGUAUUC





F11-78T
1078
GGUUCAAGAAAUAAUAAUC





F11-79T
1079
UCUCCAACUAAAAUACUUC





F11-80T
1080
AGUACGUGGACUGGAUUCU





F11-81T
1081
UCAAAGAAAUCUUUGUCUC





F11-82T
1082
UUUUCACUGAAAUCCUGUG





F11-83T
1083
GUAUGAUAUUGCCUUGUUG





F11-84T
1084
CGGGUAUGAUAUUGCCUUG





F11-85T
1085
GCAGCGAUUUCUGGGUAUU





F11-86T
1086
UGGCAUUUUAAAUCAAUCU





F11-87T
1087
CUGCCAAGAGUGAAUAGGA





F11-88T
1088
AAGAUUUUGCGUGUCUACA





F11-89T
1089
GAUUCUGGAGAAAACUCAA





F11-90T
1090
AAAGAAUCUCAAAGAAAUC





F11-91T
1091
CAGGAUGAUUUUCUUAUAU





F11-92T
1092
AGAGUCACCUAAGAUUUUG





F11-93T
1093
GGCACAGCAUCCCAGUGUU





F11-94T
1094
UCACUGAAAUCCUGUGCAC





F11-95T
1095
UUCUAAUCUGGCUUGUAUU





F11-96T
1096
UUGAAACUGGAAACCACAG





F11-97T
1097
GCAACGAAGGGAAGGGCAA





F11-98T
1098
UCUUUUCAGGAUGAUUUUC





F11-99T
1099
AUGACACUGAUUUCUUGGG





F11-100T
1100
CUCAACGACCCAUAUGCCU





F11-101T
1101
GUGAAUUACACAGAUUCUC





F11-102T
1102
CGAGUACGUGGACUGGAUU





F11-103T
1103
CCAGAAGAGAUACAGAGGA





F11-104T
1104
UUCACUGAAAUCCUGUGCA





F11-105T
1105
UGCCAUUCUUCAUUUUACC





F11-106T
1106
ACACAGAUUCUCAACGACC





F11-107T
1107
AGAACUGGAUAUUGUUGCU





F11-108T
1108
CACCAAUGCCGUCCGCUGC





F11-109T
1109
GUGUUACUUAAAGCUUUCU





F11-110T
1110
GUGUUACAGAAACACUGCC





F11-111T
1111
UGAAUUACACAGAUUCUCA





F11-112T
1112
UCGAGUACGUGGACUGGAU





F11-113T
1113
UUUCAAGCAAUGCUCACAC





F11-114T
1114
CUGCACUCAUCAUCCCGGU





F11-115T
1115
CGAAGCUCGAUAAAGUGGU





F11-116T
1116
UGUGUAAAAUGGAUAAUGA





F11-117T
1117
GCACUCAUCAUCCCGGUUG





F11-118T
1118
CAGGAAUGGCCCAAAGAAU





F11-119T
1119
AAGCCAAGAUACCCUUAGU





F11-120T
1120
AAGCAAUGCUCACACCAAA





F11-121T
1121
UUCUCAACGACCCAUAUGC





F11-122T
1122
UCUCUGGAUACACAUUAAG





F11-123T
1123
UCUCCUUAAAACAUCUGAG





F11-124T
1124
GAGGCUCCAUCAUUGGAAA





F11-125T
1125
GUACGUGGACUGGAUUCUG





F11-126T
1126
GGCCCAAAGAAUCUCAAAG





F11-127T
1127
GGUCUUUUCAGGAUGAUUU





F11-128T
1128
CUAAGAUUUUGCGUGUCUA





F11-129T
1129
CCAACGUGGUCGAGUACGU





F11-130T
1130
UUGCUGGGUGACUGGAUGG





F11-131T
1131
GCACAGCAUCCCAGUGUUC





F11-132T
1132
AGAGCAAAGCUCUUUCUGG





F11-133T
1133
CCAAAGAAUCUCAAAGAAA





F11-134T
1134
GAACUGGAUAUUGUUGCUG





F11-135T
1135
GAAGCUCGAUAAAGUGGUG





F11-136T
1136
CUGCAACGAAGGGAAGGGC





F11-137T
1137
GUCACCUAAGAUUUUGCGU





F11-138T
1138
CCUCCACAGUAACACGCUG





F11-139T
1139
CCGGCUACAGGGAAGGAGG





F11-140T
1140
AGAAGAGAUACAGAGGACA





F11-141T
1141
UCCAGAAAGCCAAGAUACC





F11-142T
1142
CAGAAACACUGCCAAGAGU





F11-143T
1143
UACCAUGACACUGAUUUCU





F11-144T
1144
GUGCCGGCUACAGGGAAGG





F11-145T
1145
CUCAAAGGGAGCGGCCAGG





F11-146T
1146
CACCUAAGAUUUUGCGUGU





F11-147T
1147
AAAGCUCUUUCUGGUUUCA





F11-148T
1148
AGUGUUACUUAAAGCUUUC





F11-149T
1149
CUUUCUAAUCUGGCUUGUA





F11-150T
1150
GUAAAAUGGAUAAUGAGUG





F11-151T
1151
CAACAAGGUCUUUUCAGGA





F11-152T
1152
GCUCCAUCAUUGGAAACCA





F11-153T
1153
GAGGCCUGCCAGAAACUGU





F11-154T
1154
AUCCCAGUGUUCUGCCAUU





F11-155T
1155
AGAAUCUCAAAGAAAUCUU





F11-156T
1156
CUUGUUGAAACUGGAAACC





F11-157T
1157
CAGAAGAGAUACAGAGGAC





F11-158T
1158
CAAGGUCUUUUCAGGAUGA





F11-159T
1159
AUUCUGGAGAAAACUCAAG





F11-160T
1160
UGGAAACCACAGUGAAUUA





F11-161T
1161
GAAUCUCAAAGAAAUCUUU





F11-162T
1162
AAAGAAAUCUUUGUCUCCU





F11-163T
1163
CUUUUCAGGAUGAUUUUCU





F11-164T
1164
GUAUAAAAUGGCAGAAAGC





F11-165T
1165
UGGUCGAGUACGUGGACUG





F11-166T
1166
GCCCAGUACACGCAUUAAA





F11-167T
1167
AUCUCUGGAUACACAUUAA





F11-168T
1168
GGAAUGGCCCAAAGAAUCU





F11-169T
1169
AAGCUCUUUCUGGUUUCAG





F11-170T
1170
GUUUCUGGUGAAUGUGUGA





F11-171T
1171
UCUCAAAGAAAUCUUUGUC





F11-172T
1172
CCAAAGGAGAUAGAAAUGU





F11-173T
1173
AAGACAGUGUUACAGAAAC





F11-174T
1174
GGAUUUUCACUGAAAUCCU





F11-175T
1175
CUGUGCUCAAAGGGAGCGG





F11-176T
1176
GGUCGAGUACGUGGACUGG





F11-177T
1177
UCAACGACCCAUAUGCCUG





F11-178T
1178
AAGAGAUACAGAGGACAUA





F11-179T
1179
GUACCACCAAAAUCAAGCC





F11-180T
1180
GUGUGGAGGCUCCAUCAUU





F11-181T
1181
UACACAGAUUCUCAACGAC





F11-182T
1182
GUUGUGUAAAAUGGAUAAU





F11-183T
1183
CCAAGAGUGAAUAGGACAG





F11-184T
1184
GAGAAGAACUGGAUAUUGU





F11-185T
1185
GCCCAAAGAAUCUCAAAGA





F11-186T
1186
GAAACACUGCCAAGAGUGA





F11-187T
1187
UCUGGGUAUUCUUUCAAGC





F11-188T
1188
GCGGGUAUGAUAUUGCCUU





F11-189T
1189
CCACAGUGAAUUACACAGA





F11-190T
1190
UGGAAACCAGUGGAUAUUA





F11-191T
1191
UUUCUGGGUAUUCUUUCAA





F11-192T
1192
AAACCAGUGGAUAUUAACA





F11-193T
1193
CUUCAUUUUACCAUGACAC





F11-194T
1194
AGGAAUGGCCCAAAGAAUC





F11-195T
1195
GGAUCGUUGGAGGAACUGC





F11-196T
1196
GUCUACUGAAGCACACCCA





F11-197T
1197
UUACUUAAAGCUUUCUUCA





F11-198T
1198
ACAAGGUCUUUUCAGGAUG





F11-199T
1199
UGUUACUUAAAGCUUUCUU





F11-200T
1200
AGUGUUACAGAAACACUGC





F11-201T
1201
CCUAAGAUUUUGCGUGUCU





F11-202T
1202
UUCAAGCAAUGCUCACACC





F11-203T
1203
AGCAAAGCUCUUUCUGGUU





F11-204T
1204
AAAUCCUGUGCACUUUCUA





F11-205T
1205
AAAUCAAUCUGAAAUAAAA





F11-206T
1206
UGGGAGAAGAACUGGAUAU





F11-207T
1207
UACUCUUCACUUUCACGGC





F11-208T
1208
UGUCUACUGAAGCACACCC





F11-209T
1209
UCGGGAGGCCCUCUGUCCU





F11-210T
1210
UUUCAGGAUGAUUUUCUUA





F11-211T
1211
AUGGCCCAAAGAAUCUCAA





F11-212T
1212
UUUGUCUCCUUAAAACAUC





F11-213T
1213
GGCCUGCCAGAAACUGUGC





F11-214T
1214
AGAAGAACUGGAUAUUGUU





F11-215T
1215
UCAGUUUCUGGUGAAUGUG





F11-216T
1216
GGGUAUGAUAUUGCCUUGU





F11-217T
1217
AGCCCAGGAUCGUUGGAGG





F11-218T
1218
AGCUCUUUCUGGUUUCAGU





F11-219T
1219
ACGCUUGCAAGGGAGAUUC





F11-220T
1220
ACCACAGUGAAUUACACAG





F11-221T
1221
UCUGGAUUUUCACUGAAAU





F11-222T
1222
GUCUUUUCAGGAUGAUUUU





F11-223T
1223
AAAUGGAUAAUGAGUGUAC





F11-224T
1224
UUACAGAAACACUGCCAAG





F11-225T
1225
AUGGAUAAUGAGUGUACCA





F11-226T
1226
CGACCCAUAUGCCUGCCUU





F11-227T
1227
UUGCCUUGUUGAAACUGGA





F11-228T
1228
GCUCAAAGGGAGCGGCCAG





F11-229T
1229
GAAACUGGAAACCACAGUG





F11-230T
1230
CCCAGGAAUGGCCCAAAGA





F11-231T
1231
UUCAGGAUGAUUUUCUUAU





F11-232T
1232
CAAUCUGAAAUAAAAGAGG





F11-233T
1233
CCCAAAGAAUCUCAAAGAA





F11-234T
1234
UGUGGAGGCUCCAUCAUUG





F11-235T
1235
AGUGUUCUGCCAUUCUUCA





F11-236T
1236
GUGGAGGCUCCAUCAUUGG





F11-237T
1237
CCUGUGUGGAGGCUCCAUC





F11-238T
1238
UGACACUGAUUUCUUGGGA





F11-239T
1239
ACACCUGUGUGGAGGCUCC





F11-240T
1240
ACACUGAUUUCUUGGGAGA





F11-241T
1241
GAGACACCUGUGUGGAGGC





F11-242T
1242
UGGAGGCUCCAUCAUUGGA





F11-243T
1243
AGGCUCCAUCAUUGGAAAC





F11-244T
1244
GACACUGAUUUCUUGGGAG





F11-245T
1245
GACACCUGUGUGGAGGCUC





F11-246T
1246
UGAUUUCUUGGGAGAAGAA





F11-247T
1247
GGCUCCAUCAUUGGAAACC





F11-248T
1248
GGAGGCUCCAUCAUUGGAA





F11-249T
1249
ACCUGUGUGGAGGCUCCAU





F11-250T
1250
AGACACCUGUGUGGAGGCU









In above Table 1c:


A represents adenine;


U represents uracil;


C represents cytosine;


G represents guanine.


It should also be noted that the scope of the present embodiments extends to sequences that correspond to those in Table 1a or Table 1 b, and wherein the 5′ nucleoside of the antisense (guide) strand (first region as defined herein) can include any nucleobase that can be present in an RNA molecule, in other words can be any of adenine (A), uracil (U), guanine or cytosine (C). Additionally, the scope of the present embodiments extends to sequences that correspond to those in Table 1a or Table 1b, and wherein the 3′ nucleoside of the sense (passenger) strand (second region as defined herein) can include any nucleobase that can be present in an RNA molecule, in other words can be any of adenine (A), uracil (U), guanine or cytosine (C), preferably however a nucleobase that is complementary to the 5′ nucleobase of the antisense (guide) strand (first region as defined herein). These further sequences are shown in Tables 1d (unmodified) and 1e (chemically modified), where N and N′ respectively represent any RNA nucleobase that can be present in the 5′ terminal position of the antisense (guide) strand (first region as defined herein) and in the 3′ terminal position of the sense (passenger) strand (second region as defined herein).









TABLE 1d







Summary sequence table for active nucleobase sequences:











Oligo
Seq
Antisense (Guide) Strand
Seq ID
Sense (Passenger) Strand


Name
ID No
Sequence (5′ to 3′)
No
Sequence (5′ to 3′)





F11-
1251
NCAAAAUCUUAGGUGACUC
1501
CACCUAAGAUUUUGN′


01N









F11-
1252
NAUUGAUUUAAAAUGCCAC
1502
CAUUUUAAAUCAAUN′


02N









F11-
1253
NAGAAAUCGCUGCUGUCCU
1503
CAGCAGCGAUUUCUN′


03N









F11-
1254
NAUAAGAAAAUCAUCCUGA
1504
GAUGAUUUUCUUAUN′


04N









F11-
1255
NAAACACCGUAUUAGGGAA
1505
CUAAUACGGUGUUUN′


05N









F11-
1256
NAAAUCAGUGUCAUGGUAA
1506
CAUGACACUGAUUUN′


06N









F11-
1257
NAUACCCGCUUUCUGCCAU
1507
CAGAAAGCGGGUAUN′


07N









F11-
1258
NAGAUGUUUUAAGGAGACA
1508
UCCUUAAAACAUCUN′


08N









F11-
1259
NGGUAUCUUGGCUUUCUGG
1059
AAAGCCAAGAUACCN′


09N









F11-
1260
NCUCUGUAUCUCUUCUGGC
1510
GAAGAGAUACAGAGN′


10N









F11-
1261
NAUGGAUUAUUAUUUCUUG
1511
AAAUAAUAAUCCAUN′


11N









F11-
1262
NAGCCAGAUUAGAAAGUGC
1512
UUUCUAAUCUGGCUN′


12N









F11-
1263
NAGCGGACGGCAUUGGUGC
1513
CAAUGCCGUCCGCUN′


13N









F11-
1264
NAUUUCAGAUUGAUUUAAA
1514
AAUCAAUCUGAAAUN′


14N









F11-
1265
NUUGUCUCUUAGUUUUCUG
1515
AAACUAAGAGACAAN′


15N









F11-
1266
NAGAACACUGGGAUGCUGU
1516
CAUCCCAGUGUUCUN′


16N









F11-
1267
NCCACUUGAUAUAAGAAAA
1517
CUUAUAUCAAGUGGN′


17N









F11-
1268
NCAUUUUCUUACAAACACC
1518
UUUGUAAGAAAAUGN′


18N









F11-
1269
NUAAUGCGUGUACUGGGCA
1519
CAGUACACGCAUUAN′


19N









F11-
1270
NAGGACAGAGGGCCUCCCG
1520
AGGCCCUCUGUCCUN′


20N









F11-
1271
NCAACCGGGAUGAUGAGUG
1521
CAUCAUCCCGGUUGN′


21N









F11-
1272
NGACAAAGAUUUCUUUGAG
1522
AAGAAAUCUUUGUCN′


22N









F11-
1273
NGAGGAAGCAUGCUGGCAC
1523
CAGCAUGCUUCCUCN′


23N









F11-
1274
NGGAAAAUGUCCCUAAUAC
1524
UAGGGACAUUUUCCN′


24N









F11-
1275
NUUAAGUAACACUUGCCCU
1525
CAAGUGUUACUUAAN′


25N









F11-
1276
NCAAUAUCAUACCCGCUUU
1526
CGGGUAUGAUAUUGN′


26N









F11-
1277
NAAAUGUACCACUUGAUAU
1527
CAAGUGGUACAUUUN′


27N









F11-
1278
NAGAAAAUCAUCCUGAAAA
1528
CAGGAUGAUUUUCUN′


28N









F11-
1279
NUAACACUUGCCCUUCCCU
1529
AAGGGCAAGUGUUAN′


29N









F11-
1280
NAGCAUUUUCUUACAAACA
1530
UGUAAGAAAAUGCUN′


30N









F11-
1281
NCAAACACCGUAUUAGGGA
1531
UAAUACGGUGUUUGN′


31N









F12-
1282
NAGCGGCUGUUAAUAUCCA
1532
UAUUAACAGCCGCUN′


32N









F11-
1283
NGAGCGGCUGUUAAUAUCC
1533
AUUAACAGCCGCUCN′


33N









F11-
1284
NGAGACAAAGAUUUCUUUG
1534
GAAAUCUUUGUCUCN′


34N









F11-
1285
NUGGGUUAUUUUAUGUCCU
1535
CAUAAAAUAACCCAN′


35N









F11-
1286
NGAGCCAUGACACUGUCGA
1536
CAGUGUCAUGGCUCN′


36N









F11-
1287
NCAGAUUAGAAAGUGCACA
1537
CACUUUCUAAUCUGN′


37N









F11-
1288
NAGAAUACCCAGAAAUCGC
1538
UUUCUGGGUAUUCUN′


38N









F11-
1289
NCAGAUGUUUUAAGGAGAC
1539
CCUUAAAACAUCUGN′


39N









F11-
1290
NUGUAUCCAGAGAUGCCUC
1540
CAUCUCUGGAUACAN′


40N









F11-
1291
NGAGUCACACAUUCACCAG
1541
UGAAUGUGUGACUCN′


41N









F11-
1292
NCAAAGAAAGAUGUGUCCU
1542
CACAUCUUUCUUUGN′


42N









F11-
1293
NACCACUUGAUAUAAGAAA
1543
UUAUAUCAAGUGGUN′


43N









F11-
1294
UAAGAAAGCUUUAAGUAAC
1544
CUUAAAGCUUUCUUN′


44N









F11-
1295
NUUAUUUCAGAUUGAUUUA
1545
UCAAUCUGAAAUAAN′


45N









F11-
1296
NUGGUGUGAGCAUUGCUUG
1546
CAAUGCUCACACCAN′


46N









F11-
1297
NAUCAUCCUGAAAAGACCU
1547
CUUUUCAGGAUGAUN′


47N









F11-
1298
NGUGAGCAUUGCUUGAAAG
1548
CAAGCAAUGCUCACN′


48N









F11-
1299
NCUGUAUCUCUUCUGGCAC
1549
CAGAAGAGAUACAGN′


49N









F11-
1300
NACCUUAAUGUGUAUCCAG
1550
AUACACAUUAAGGUN′


50N









F11-
1301
NAUCAUGGAUUAUUAUUUC
1551
UAAUAAUCCAUGAUN′


51N









F11-
1302
NCAAAGAUUUCUUUGAGAU
1552
CAAAGAAAUCUUUGN′


52N









F11-
1303
NGAAGUAUUUUAGUUGGAG
1553
AACUAAAAUACUUCN′


53N









F11-
1304
NAGAUUGAUUUAAAAUGCC
1554
UUUUAAAUCAAUCUN′


54N









F11-
1305
NGGGUAUCUUGGCUUUCUG
1555
AAGCCAAGAUACCCN′


55N









F11-
1306
NAGGAGACAAAGAUUUCUU
1556
AAUCUUUGUCUCCUN′


56N









F11-
1307
NGUCAUGGUAAAAUGAAGA
1557
CAUUUUACCAUGACN′


57N









F11-
1308
NAUAUCCAGUUCUUCUCCC
1558
GAAGAACUGGAUAUN′


58N









F11-
1309
NAAUAUCCAGUUCUUCUCC
1559
AAGAACUGGAUAUUN′


59N









F11-
1310
NCUGUGGUUUCCAGUUUCA
1560
ACUGGAAACCACAGN′


60N









F11-
1311
NAGAUUAGAAAGUGCACAG
1561
GCACUUUCUAAUCUN′


61N









F11-
1312
NAGAAAUCAGUGUCAUGGU
1562
UGACACUGAUUUCUN′


62N









F11-
1313
NUGGAUUAUUAUUUCUUGA
1563
GAAAUAAUAAUCCAN′


63N









F11-
1314
NCCAGAUUAGAAAGUGCAC
1564
ACUUUCUAAUCUGGN′


64N









F11-
1315
NCUCAUUAUCCAUUUUACA
1565
AAAUGGAUAAUGAGN′


65N









F11-
1316
NUUGGGCCAUUCCUGGGAA
1566
CAGGAAUGGCCCAAN′


66N









F11-
1317
NUGGGCUUGAUUUUGGUGG
1567
CAAAAUCAAGCCCAN′


67N









F11-
1318
NCAGAUUGAUUUAAAAUGC
1568
UUUAAAUCAAUCUGN′


68N









F11-
1319
NAAGCAACCGGGAUGAUGA
1569
CAUCCCGGUUGCUUN′


69N









F11-
1320
NCUUAAUGUGUAUCCAGAG
1570
GGAUACACAUUAAGN′


70N









F11-
1321
NGUAAUUCACUGUGGUUUC
1571
CCACAGUGAAUUACN′


71N









F11-
1322
NACAUUUCUAUCUCCUUUG
1572
GGAGAUAGAAAUGUN′


72N









F11-
1323
NCACUGGUUUCCAAUGAUG
1573
AUUGGAAACCAGUGN′


73N









F11-
1324
NGAAUCUGUGUAAUUCACU
1574
AAUUACACAGAUUCN′


74N









F11-
1325
NGUCCUAUUCACUCUUGGC
1575
AGAGUGAAUAGGACN′


75N









F11-
1326
NAGCAUUGCUUGAAAGAAU
1576
UUUCAAGCAAUGCUN′


76N









F11-
1327
NAAUACCCAGAAAUCGCUG
1577
GAUUUCUGGGUAUUN′


77N









F11-
1328
NAUUAUUAUUUCUUGAACC
1578
CAAGAAAUAAUAAUN′


78N









F11-
1329
NAAGUAUUUUAGUUGGAGA
1579
CAACUAAAAUACUUN′


79N









F11-
1330
NGAAUCCAGUCCACGUACU
1580
CGUGGACUGGAUUCN′


80N









F11-
1331
NAGACAAAGAUUUCUUUGA
1581
AGAAAUCUUUGUCUN′


81N









F11-
1332
NACAGGAUUUCAGUGAAAA
1582
CACUGAAAUCCUGUN′


82N









F11-
1333
NAACAAGGCAAUAUCAUAC
1583
GAUAUUGCCUUGUUN′


83N









F11-
1334
NAAGGCAAUAUCAUACCCG
1584
UAUGAUAUUGCCUUN′


84N









F11-
1335
NAUACCCAGAAAUCGCUGC
1585
CGAUUUCUGGGUAUN′


85N









F11-
1336
NGAUUGAUUUAAAAUGCCA
1586
AUUUUAAAUCAAUCN′


86N









F11-
1337
NCCUAUUCACUCUUGGCAG
1587
CAAGAGUGAAUAGGN′


87N









F11-
1338
NGUAGACACGCAAAAUCUU
1588
UUUUGCGUGUCUACN′


88N









F11-
1339
NUGAGUUUUCUCCAGAAUC
1589
CUGGAGAAAACUCAN′


89N









F11-
1340
NAUUUCUUUGAGAUUCUUU
1590
AAUCUCAAAGAAAUN′


90N









F11-
1341
NUAUAAGAAAAUCAUCCUG
1591
AUGAUUUUCUUAUAN′


91N









F11-
1342
NAAAAUCUUAGGUGACUCU
1592
UCACCUAAGAUUUUN′


92N









F11-
1343
NACACUGGGAUGCUGUGCC
1593
CAGCAUCCCAGUGUN′


93N









F11-
1344
NUGCACAGGAUUUCAGUGA
1594
UGAAAUCCUGUGCAN′


94N









F11-
1345
NAUACAAGCCAGAUUAGAA
1595
AAUCUGGCUUGUAUN′


95N









F11-
1346
NUGUGGUUUCCAGUUUCAA
1596
AACUGGAAACCACAN′


96N









F11-
1347
NUGCCCUUCCCUUCGUUGC
1597
CGAAGGGAAGGGCAN′


97N









F11-
1348
NAAAAUCAUCCUGAAAAGA
1598
UUCAGGAUGAUUUUN′


98N









F11-
1349
NCCAAGAAAUCAGUGUCAU
1599
CACUGAUUUCUUGGN′


99N









F11-
1350
NGGCAUAUGGGUCGUUGAG
1600
ACGACCCAUAUGCCN′


100N









F11-
1351
NAGAAUCUGUGUAAUUCAC
1601
AUUACACAGAUUCUN′


101N









F11-
1352
NAUCCAGUCCACGUACUCG
1602
UACGUGGACUGGAUN′


102N









F11-
1353
NCCUCUGUAUCUCUUCUGG
1603
AAGAGAUACAGAGGN′


103N









F11-
1354
NGCACAGGAUUUCAGUGAA
1604
CUGAAAUCCUGUGCN′


104N









F11-
1355
NGUAAAAUGAAGAAUGGCA
1605
AUUCUUCAUUUUACN′


105N









F11-
1356
NGUCGUUGAGAAUCUGUGU
1606
AGAUUCUCAACGACN′


106N









F11-
1357
NGCAACAAUAUCCAGUUCU
1607
CUGGAUAUUGUUGCN′


107N









F11-
1358
NCAGCGGACGGCAUUGGUG
1608
AAUGCCGUCCGCUGN′


108N









F11-
1359
NGAAAGCUUUAAGUAACAC
1609
UACUUAAAGCUUUCN′


109N









F11-
1360
NGCAGUGUUUCUGUAACAC
1610
UACAGAAACACUGCN′


110N









F11-
1361
NGAGAAUCUGUGUAAUUCA
1611
UUACACAGAUUCUCN′


111N









F11-
1362
NUCCAGUCCACGUACUCGA
1612
GUACGUGGACUGGAN′


112N









F11-
1363
NUGUGAGCAUUGCUUGAAA
1613
AAGCAAUGCUCACAN′


113N









F11-
1364
NCCGGGAUGAUGAGUGCAG
1614
ACUCAUCAUCCCGGN′


114N









F11-
1365
NCCACUUUAUCGAGCUUCG
1615
GCUCGAUAAAGUGGN′


115N









F11-
1366
NCAUUAUCCAUUUUACACA
1616
UAAAAUGGAUAAUGN′


116N









F11-
1367
NAACCGGGAUGAUGAGUGC
1617
UCAUCAUCCCGGUUN′


117N









F11-
1368
NUUCUUUGGGCCAUUCCUG
1618
AAUGGCCCAAAGAAN′


118N









F11-
1369
NCUAAGGGUAUCUUGGCUU
1619
CAAGAUACCCUUAGN′


119N









F11-
1370
NUUGGUGUGAGCAUUGCUU
1620
AAUGCUCACACCAAN′


120N









F11-
1371
NCAUAUGGGUCGUUGAGAA
1621
CAACGACCCAUAUGN′


121N









F11-
1372
NUUAAUGUGUAUCCAGAGA
1622
UGGAUACACAUUAAN′


122N









F11-
1373
NUCAGAUGUUUUAAGGAGA
1623
CUUAAAACAUCUGAN′


123N









F11-
1374
NUUCCAAUGAUGGAGCCUC
1624
CUCCAUCAUUGGAAN′


124N









F11-
1375
NAGAAUCCAGUCCACGUAC
1625
GUGGACUGGAUUCUN′


125N









F11-
1376
NUUUGAGAUUCUUUGGGCC
1626
CAAAGAAUCUCAAAN′


126N









F11-
1377
NAAUCAUCCUGAAAAGACC
1627
UUUUCAGGAUGAUUN′


127N









F11-
1378
NAGACACGCAAAAUCUUAG
1628
GAUUUUGCGUGUCUN′


128N









F11-
1379
NCGUACUCGACCACGUUGG
1629
CGUGGUCGAGUACGN′


129N









F11-
1380
NCAUCCAGUCACCCAGCAA
1630
UGGGUGACUGGAUGN′


130N









F11-
1381
NAACACUGGGAUGCUGUGC
1631
AGCAUCCCAGUGUUN′


131N









F11-
1382
NCAGAAAGAGCUUUGCUCU
1632
CAAAGCUCUUUCUGN′


132N









F11-
1383
NUUCUUUGAGAUUCUUUGG
1633
AGAAUCUCAAAGAAN′


133N









F11-
1384
NAGCAACAAUAUCCAGUUC
1634
UGGAUAUUGUUGCUN′


134N









F11-
1385
NACCACUUUAUCGAGCUUC
1635
CUCGAUAAAGUGGUN′


135N









F11-
1386
NCCCUUCCCUUCGUUGCAG
1636
AACGAAGGGAAGGGN′


136N









F11-
1387
NCGCAAAAUCUUAGGUGAC
1637
CCUAAGAUUUUGCGN′


137N









F11-
1388
NAGCGUGUUACUGUGGAGG
1638
CACAGUAACACGCUN′


138N









F11-
1389
NCUCCUUCCCUGUAGCCGG
1639
CUACAGGGAAGGAGN′


139N









F11-
1390
NGUCCUCUGUAUCUCUUCU
1640
GAGAUACAGAGGACN′


140N









F11-
1391
NGUAUCUUGGCUUUCUGGA
1641
GAAAGCCAAGAUACN′


141N









F11-
1392
NCUCUUGGCAGUGUUUCUG
1642
AACACUGCCAAGAGN′


142N









F11-
1393
NGAAAUCAGUGUCAUGGUA
1643
AUGACACUGAUUUCN′


143N









F11-
1394
NCUUCCCUGUAGCCGGCAC
1644
CGGCUACAGGGAAGN′


144N









F11-
1395
NCUGGCCGCUCCCUUUGAG
1645
AAGGGAGCGGCCAGN′


145N









F11-
1396
NCACGCAAAAUCUUAGGUG
1646
UAAGAUUUUGCGUGN′


146N









F11-
1397
NGAAACCAGAAAGAGCUUU
1647
CUCUUUCUGGUUUCN′


147N









F11-
1398
NAAAGCUUUAAGUAACACU
1648
UUACUUAAAGCUUUN′


148N









F11-
1399
NACAAGCCAGAUUAGAAAG
1649
CUAAUCUGGCUUGUN′


149N









F11-
1400
NACUCAUUAUCCAUUUUAC
1650
AAUGGAUAAUGAGUN′


150N









F11-
1401
NCCUGAAAAGACCUUGUUG
1651
AAGGUCUUUUCAGGN′


151N









F11-
1402
NGGUUUCCAAUGAUGGAGC
1652
CAUCAUUGGAAACCN′


152N









F11-
1403
NCAGUUUCUGGCAGGCCUC
1653
CCUGCCAGAAACUGN′


153N









F11-
1404
NAUGGCAGAACACUGGGAU
1654
CAGUGUUCUGCCAUN′


154N









F11-
1405
NAGAUUUCUUUGAGAUUCU
1655
UCUCAAAGAAAUCUN′


155N









F11-
1406
NGUUUCCAGUUUCAACAAG
1656
UUGAAACUGGAAACN′


156N









F11-
1407
NUCCUCUGUAUCUCUUCUG
1657
AGAGAUACAGAGGAN′


157N









F11-
1408
NCAUCCUGAAAAGACCUUG
1658
GUCUUUUCAGGAUGN′


158N









F11-
1409
NUUGAGUUUUCUCCAGAAU
1659
UGGAGAAAACUCAAN′


159N









F11-
1410
NAAUUCACUGUGGUUUCCA
1660
AACCACAGUGAAUUN′


160N









F11-
1411
NAAGAUUUCUUUGAGAUUC
1661
CUCAAAGAAAUCUUN′


161N









F11-
1412
NGGAGACAAAGAUUUCUUU
1662
AAAUCUUUGUCUCCN′


162N









F11-
1413
NGAAAAUCAUCCUGAAAAG
1663
UCAGGAUGAUUUUCN′


163N









F11-
1414
NCUUUCUGCCAUUUUAUAC
1664
AAAAUGGCAGAAAGN′


164N









F11-
1415
NAGUCCACGUACUCGACCA
1665
CGAGUACGUGGACUN′


165N









F11-
1416
NUUAAUGCGUGUACUGGGC
1666
AGUACACGCAUUAAN′


166N









F11-
1417
NUAAUGUGUAUCCAGAGAU
1667
CUGGAUACACAUUAN′


167N









F11-
1418
NGAUUCUUUGGGCCAUUCC
1668
UGGCCCAAAGAAUCN′


168N









F11-
1419
NUGAAACCAGAAAGAGCUU
1669
UCUUUCUGGUUUCAN′


169N









F11-
1420
NCACACAUUCACCAGAAAC
1670
CUGGUGAAUGUGUGN′


170N









F11-
1421
NACAAAGAUUUCUUUGAGA
1671
AAAGAAAUCUUUGUN′


171N









F11-
1422
NCAUUUCUAUCUCCUUUGG
1672
AGGAGAUAGAAAUGN′


172N









F11-
1423
NUUUCUGUAACACUGUCUU
1673
CAGUGUUACAGAAAN′


173N









F11-
1424
NGGAUUUCAGUGAAAAUCC
1674
UUUCACUGAAAUCCN′


174N









F11-
1425
NCGCUCCCUUUGAGCACAG
1675
GCUCAAAGGGAGCGN′


175N









F11-
1426
NCAGUCCACGUACUCGACC
1676
GAGUACGUGGACUGN′


176N









F11-
1427
NAGGCAUAUGGGUCGUUGA
1677
CGACCCAUAUGCCUN′


177N









F11-
1428
NAUGUCCUCUGUAUCUCUU
1678
GAUACAGAGGACAU N′


178N









F11-
1429
NGCUUGAUUUUGGUGGUAC
1679
CACCAAAAUCAAGCN′


179N









F11-
1430
NAUGAUGGAGCCUCCACAC
1680
GGAGGCUCCAUCAUN′


180N









F11-
1431
NUCGUUGAGAAUCUGUGUA
1681
CAGAUUCUCAACGAN′


181N









F11-
1432
NUUAUCCAUUUUACACAAC
1682
UGUAAAAUGGAUAAN′


182N









F11-
1433
NUGUCCUAUUCACUCUUGG
1683
GAGUGAAUAGGACAN′


183N









F11-
1434
NCAAUAUCCAGUUCUUCUC
1684
AGAACUGGAUAUUGN′


184N









F11-
1435
NCUUUGAGAUUCUUUGGGC
1685
AAAGAAUCUCAAAGN′


185N









F11-
1436
NCACUCUUGGCAGUGUUUC
1686
CACUGCCAAGAGUGN′


186N









F11-
1437
NCUUGAAAGAAUACCCAGA
1687
GGUAUUCUUUCAAGN′


187N









F11-
1438
NAGGCAAUAUCAUACCCGC
1688
GUAUGAUAUUGCCUN′


188N









F11-
1439
NCUGUGUAAUUCACUGUGG
1689
AGUGAAUUACACAGN′


189N









F11-
1440
NAAUAUCCACUGGUUUCCA
1690
AACCAGUGGAUAUUN′


190N









F11-
1441
NUGAAAGAAUACCCAGAAA
1691
UGGGUAUUCUUUCAN′


191N









F11-
1442
NGUUAAUAUCCACUGGUUU
1692
CAGUGGAUAUUAACN′


192N









F11-
1443
NUGUCAUGGUAAAAUGAAG
1693
AUUUUACCAUGACAN′


193N









F11-
1444
NAUUCUUUGGGCCAUUCCU
1694
AUGGCCCAAAGAAUN′


194N









F11-
1445
NCAGUUCCUCCAACGAUCC
1695
CGUUGGAGGAACUGN′


195N









F11-
1446
NGGGUGUGCUUCAGUAGAC
1696
ACUGAAGCACACCCN′


196N









F11-
1447
NGAAGAAAGCUUUAAGUAA
1697
UUAAAGCUUUCUUCN′


197N









F11-
1448
NAUCCUGAAAAGACCUUGU
1698
GGUCUUUUCAGGAUN′


198N









F11-
1449
NAGAAAGCUUUAAGUAACA
1699
ACUUAAAGCUUUCUN′


199N









F11-
1450
NCAGUGUUUCUGUAACACU
1700
UUACAGAAACACUGN′


200N









F11-
1451
NGACACGCAAAAUCUUAGG
1701
AGAUUUUGCGUGUCN′


201N









F11-
1452
NGUGUGAGCAUUGCUUGAA
1702
AGCAAUGCUCACACN′


202N









F11-
1453
NACCAGAAAGAGCUUUGCU
1703
AAGCUCUUUCUGGUN′


203N









F11-
1454
NAGAAAGUGCACAGGAUUU
1704
CCUGUGCACUUUCUN′


204N









F11-
1455
NUUUAUUUCAGAUUGAUUU
1705
CAAUCUGAAAUAAAN′


205N









F11-
1456
NUAUCCAGUUCUUCUCCCA
1706
AGAAGAACUGGAUAN′


206N









F11-
1457
NCCGUGAAAGUGAAGAGUA
1707
CUUCACUUUCACGGN′


207N









F11-
1458
NGGUGUGCUUCAGUAGACA
1708
UACUGAAGCACACCN′


208N









F11-
1459
NGGACAGAGGGCCUCCCGA
1709
GAGGCCCUCUGUCCN′


209N









F11-
1460
NAAGAAAAUCAUCCUGAAA
1710
AGGAUGAUUUUCUUN′


210N









F11-
1461
NUGAGAUUCUUUGGGCCAU
1711
CCCAAAGAAUCUCAN′


211N









F11-
1462
NAUGUUUUAAGGAGACAAA
1712
UCUCCUUAAAACAUN′


212N









F11-
1463
NCACAGUUUCUGGCAGGCC
1713
UGCCAGAAACUGUGN′


213N









F11-
1464
NACAAUAUCCAGUUCUUCU
1714
GAACUGGAUAUUGUN′


214N









F11-
1465
NACAUUCACCAGAAACUGA
1715
UUUCUGGUGAAUGUN′


215N









F11-
1466
NCAAGGCAAUAUCAUACCC
1716
AUGAUAUUGCCUUGN′


216N









F11-
1467
NCUCCAACGAUCCUGGGCU
1717
CAGGAUCGUUGGAGN′


217N









F11-
1468
NCUGAAACCAGAAAGAGCU
1718
CUUUCUGGUUUCAGN′


218N









F11-
1469
NAAUCUCCCUUGCAAGCGU
1719
UUGCAAGGGAGAUUN′


219N









F11-
1470
NUGUGUAAUUCACUGUGGU
1720
CAGUGAAUUACACAN′


220N









F11-
1471
NUUUCAGUGAAAAUCCAGA
1721
GAUUUUCACUGAAAN′


221N









F11-
1472
NAAAUCAUCCUGAAAAGAC
1722
UUUCAGGAUGAUUUN′


222N









F11-
1473
NUACACUCAUUAUCCAUUU
1723
GGAUAAUGAGUGUAN′


223N









F11-
1474
NUUGGCAGUGUUUCUGUAA
1724
AGAAACACUGCCAAN′


224N









F11-
1475
NGGUACACUCAUUAUCCAU
1725
AUAAUGAGUGUACCN′


225N









F11-
1476
NAGGCAGGCAUAUGGGUCG
1726
CCAUAUGCCUGCCUN′


226N









F11-
1477
NCCAGUUUCAACAAGGCAA
1727
CUUGUUGAAACUGGN′


227N









F11-
1478
NUGGCCGCUCCCUUUGAGC
1728
AAAGGGAGCGGCCAN′


228N









F11-
1479
NACUGUGGUUUCCAGUUUC
1729
CUGGAAACCACAGUN′


229N









F11-
1480
NCUUUGGGCCAUUCCUGGG
1730
GGAAUGGCCCAAAGN′


230N









F11-
1481
NUAAGAAAAUCAUCCUGAA
1731
GGAUGAUUUUCUUAN′


231N









F11-
1482
NCUCUUUUAUUUCAGAUUG
1732
CUGAAAUAAAAGAGN′


232N









F11-
1483
NUCUUUGAGAUUCUUUGGG
1733
AAGAAUCUCAAAGAN′


233N









F11-
1484
NAAUGAUGGAGCCUCCACA
1734
GAGGCUCCAUCAUUN′


234N









F11-
1485
NGAAGAAUGGCAGAACACU
1735
UUCUGCCAUUCUUCN′


235N









F11-
1486
NCAAUGAUGGAGCCUCCAC
1736
AGGCUCCAUCAUUGN′


236N









F11-
1487
NAUGGAGCCUCCACACAGG
1737
UGUGGAGGCUCCAUN′


237N









F11-
1488
NCCCAAGAAAUCAGUGUCA
1738
ACUGAUUUCUUGGGN′


238N









F11-
1489
NGAGCCUCCACACAGGUGU
1739
CUGUGUGGAGGCUCN′


239N









F11-
1490
NCUCCCAAGAAAUCAGUGU
1740
UGAUUUCUUGGGAGN′


240N









F11-
1491
NCCUCCACACAGGUGUCUC
1741
CACCUGUGUGGAGGN′


241N









F11-
1492
NCCAAUGAUGGAGCCUCCA
1742
GGCUCCAUCAUUGGN′


242N









F11-
1493
NUUUCCAAUGAUGGAGCCU
1743
UCCAUCAUUGGAAAN′


243N









F11-
1494
NUCCCAAGAAAUCAGUGUC
1744
CUGAUUUCUUGGGAN′


244N









F11-
1495
NAGCCUCCACACAGGUGUC
1745
CCUGUGUGGAGGCUN′


245N









F11-
1496
NUCUUCUCCCAAGAAAUCA
1746
UUCUUGGGAGAAGAN′


246N









F11-
1497
NGUUUCCAAUGAUGGAGCC
1747
CCAUCAUUGGAAACN′


247N









F11-
1498
NUCCAAUGAUGGAGCCUCC
1748
GCUCCAUCAUUGGAN′


248N









F11-
1499
NUGGAGCCUCCACACAGGU
1749
GUGUGGAGGCUCCAN′


249N









F11-
1500
NGCCUCCACACAGGUGUCU
1750
ACCUGUGUGGAGGCN′


250N









In above Table 1d:


A represents adenine;


U represents uracil;


C represents cytosine;


G represents guanine;


N represents any RNA nucleobase;


N′ represents any RNA nucleobase and is preferably complementary to N.









TABLE 1e







Summary sequence table for active nucleobase sequences with chemical modifications:











Oligo
construct
Antisense (Guide) Strand
construct
Sense (Passenger) Strand


Name
No
Sequence (5′ to 3′)
No
Sequence (5′ to 3′)














F11-
1751
PmN.fC.mA.fA.mA.fA.mU.fC.mU.fU.
2001
fC.mA.fC.mC.fU.mA.fA.mG.fA.mU.


01NM

mA.fG.mG.fU.mG.fA.mC.fU.mC

fU.mU.fU.mG.fN′


F11-
1752
PmN.fA.mU.fU.mG.fA.mU.fU.mU.fA.
2002
fC.mA.fU.mU.fU.mU.fA.mA.fA.mU.


02NM

mA.fA.mA.fU.mG.fC.mC.fA.mC

fC.mA.fA.mU.fN′


F11-
1753
PmN.fA.mG.fA.mA.fA.mU.fC.mG.fC.
2003
fC.mA.fG.mC.fA.mG.fC.mG.fA.mU.


03NM

mU.fG.mC.fU.mG.fU.mC.fC.mU

fU.mU.fC.mU.fN′


F11-
1754
PmN.fA.mU.fA.mA.fG.mA.fA.mA.fA.
2004
fG.mA.fU.mG.fA.mU.fU.mU.fU.mC.


04NM

mU.fC.mA.fU.mC.fC.mU.fG.mA

fU.mU.fA.mU.fN′


F11-
1755
PmN.fA.mA.fA.mC.fA.mC.fC.mG.fU.
2005
fC.mU.fA.mA.fU.mA.fC.mG.fG.mU.


05NM

mA.fU.mU.fA.mG.fG.mG.fA.mA

fG.mU.fU.mU.fN′


F11-
1756
PmN.fA.mA.fA.mU.fC.mA.fG.mU.fG.
2006
fC.mA.fU.mG.fA.mC.fA.mC.fU.mG.


06NM

mU.fC.mA.fU.mG.fG.mU.fA.mA

fA.mU.fU.mU.fN′


F11-
1757
PmN.fA.mU.fA.mC.fC.mC.fG.mC.fU.
2007
fC.mA.fG.mA.fA.mA.fG.mC.fG.mG.


07NM

mU.fU.mC.fU.mG.fC.mC.fA.mU

fG.mU.fA.mU.fN′


F11-
1758
PmN.fA.mG.fA.mU.fG.mU.fU.mU.fU.
2008
fU.mC.fC.mU.fU.mA.fA.mA.fA.mC.


08NM

mA.fA.mG.fG.mA.fG.mA.fC.mA

fA.mU.fC.mU.fN′


F11-
1759
PmN.fG.mG.fU.mA.fU.mC.fU.mU.
2009
fA.mA.fA.mG.fC.mC.fA.mA.fG.mA.


09NM

fG.mG.fC.mU.fU.mU.fC.mU.fG.mG

fU.mA.fC.mC.fN′


F11-
1760
PmN.fC.mU.fC.mU.fG.mU.fA.mU.fC.
2010
fG.mA.fA.mG.fA.mG.fA.mU.fA.mC.


10NM

mU.fC.mU.fU.mC.fU.mG.fG.mC

fA.mG.fA.mG.fN′


F11-
1761
PmN.fA.mU.fG.mG.fA.mU.fU.mA.fU.
2011
fA.mA.fA.mU.fA.mA.fU.mA.fA.mU.


11NM

mU.fA.mU.fU.mU.fC.mU.fU.mG

fC.mC.fA.mU.fN′


F11-
1762
PmN.fA.mG.fC.mC.fA.mG.fA.mU.fU.
2012
fU.mU.fU.mC.fU.mA.fA.mU.fC.mU.


12NM

mA.fG.mA.fA.mA.fG.mU.fG.mC

fG.mG.fC.mU.fN′


F11-
1763
PmN.fA.mG.fC.mG.fG.mA.fC.mG.fG.
2013
fC.mA.fA.mU.fG.mC.fC.mG.fU.mC.


13NM

mC.fA.mU.fU.mG.fG.mU.fG.mC

fG.mG.fC.mU.fN′


F11-
1764
PmN.fA.mU.fU.mU.fC.mA.fG.mA.fU.
2014
fA.mA.fU.mC.fA.mA.fU.mC.fU.mG.


14NM

mU.fG.mA.fU.mU.fU.mA.fA.mA

fA.mA.fA.mU.fA


F11-
1765
PmN.fU.mU.fG.mU.fC.mU.fC.mU.fU.
2015
fA.mA.fA.mC.fU.mA.fA.mG.fA.mG.


15NM

mA.fG.mU.fU.mUc.fU.mC.fU.mG

fA.mC.fA.mA.fN′


F11-
1766
PmN.fA.mG.fA.mA.fC.mA.fC.mU.fG.
2016
fC.mA.fU.mC.fC.mC.fA.mG.fU.mG.


16NM

mG.fG.mA.fU.mG.fC.mU.fG.mU

fU.mU.fC.mU.fN′


F11-
1767
PmN.fC.mC.fA.mC.fU.mU.fG.mA.fU.
2017
fC.mU.fU.mA.fU.mA.fU.mC.fA.mA.


17NM

mA.fU.mA.fA.mG.fA.mA.fA.mA

fG.mU.fG.mG.fN′


F11-
1768
PmN.fC.mA.fU.mU.fU.mU.fC.mU.fU.
2018
fU.mU.fU.mG.fU.mA.fA.mG.fA.mA.


18NM

mA.fC.mA.fA.mA.fC.mA.fC.mC

fA.mA.fU.mG.fN′


F11-
1769
PmN.fU.mA.fA.mU.fG.mC.fG.mU.fG.
2019
fC.mA.fG.mU.fA.mC.fA.mC.fG.mC.


19NM

mU.fA.mC.fU.mG.fG.mG.fC.mA

fA.mU.fU.mA.fN′


F11-
1770
PmN.fA.mG.fG.mA.fC.mA.fG.mA.fG.
2020
fA.mG.fG.mC.fC.mC.fU.mC.fU.mG.


20NM

mG.fG.mC.fC.mU.fC.mC.fC.mG

fU.mC.fC.mU.fN′


F11-
1771
PmN.fC.mA.fA.mC.fC.mG.fG.mG.fA.
2021
fC.mA.fU.mC.fA.mU.fC.mC.fC.mG.


21NM

mU.fG.mA.fU.mG.fA.mG.fU.mG

fG.mU.fU.mG.fN′


F11-
1772
PmN.fG.mA.fC.mA.fA.mA.fG.mA.fU.
2022
fA.mA.fG.mA.fA.mA.fU.mC.fU.mU.


22NM

mU.fU.mC.fU.mU.fU.mG.fA.mG

fU.mG.fU.mC.fN′


F11-
1773
PmN.fG.mA.fG.mG.fA.mA.fG.mC.fA.
2023
fC.mA.fG.mC.fA.mU.fG.mC.fU.mU.


23NM

mU.fG.mC.fU.mG.fG.mC.fA.mC

fC.mC.fU.mC.fN′


F11-
1774
PmN.fG.mG.fA.mA.fA.mA.fU.mG.fU.
2024
fU.mA.fG.mG.fG.mA.fC.mA.fU.mU.


24NM

mC.fC.mC.fU.mA.fA.mU.fA.mC

fU.mU.fC.mC.fN′


F11-
1775
PmN.fU.mU.fA.mA.fG.mU.fA.mA.fC.
2025
fC.mA.fA.mG.fU.mG.fU.mU.fA.mC.


25NM

mA.fC.mU.fU.mG.fC.mC.fC.mU

fU.mU.fA.mA.fN′


F11-
1776
PmN.fC.mA.fA.mU.fA.mU.fC.mA.fU.
2026
fC.mG.fG.mG.fU.mA.fU.mG.fA.mU.


26NM

mA.fC.mC.fC.mG.fC.mU.fU.mU

fA.mU.fU.mG.fN′


F11-
1777
PmN.fA.mA.fA.mU.fG.mU.fA.mC.fC.
2027
fC.mA.fA.mG.fU.mG.fG.mU.fA.mC.


27NM

mA.fC.mU.fU.mG.fA.mU.fA.mU

fA.mU.fU.mU.fN′


F11-
1778
PmN.fA.mG.fA.mA.fA.mA.fU.mC.fA.
2028
fC.mA.fG.mG.fA.mU.fG.mA.fU.mU.


28NM

mU.fC.mC.fU.mG.fA.mA.fA.mA

fU.mU.fC.mU.fN′


F11-
1779
PmN.fU.mA.fA.mC.fA.mC.fU.mU.fG.
2029
fA.mA.fG.mG.fG.mC.fA.mA.fG.mU.


29NM

mC.fC.mC.fU.mU.fC.mC.fC.mU

fG.mU.fU.mA.fN′


F11-
1780
PmN.fA.mG.fC.mA.fU.mU.fU.mU.fC.
2030
fU.mG.fU.mA.fA.mG.fA.mA.fA.mA.


30NM

mU.fU.mA.fC.mA.fA.mA.fC.mA

fU.mG.fC.mU.fN′


F11-
1781
PmN.fC.mA.fA.mA.fC.mA.fC.mC.fG.
2031
fU.mA.fA.mU.fA.mC.fG.mG.fU.mG.


31NM

mU.fA.mU.fU.mA.fG.mG.fG.mA

fU.mU.fU.mG.fN′


F11-
1782
PmN.fA.mG.fC.mG.fG.mC.fU.mG.fU.
2032
fU.mA.fU.mU.fA.mA.fC.mA.fG.mC.


32NM

mU.fA.mA.fU.mA.fU.mC.fC.mA

fC.mG.fC.mU.fN′


F11-
1783
PmN.fG.mA.fG.mC.fG.mG.fC.mU.fG.
2033
fA.mU.fU.mA.fA.mC.fA.mG.fC.mC.


33NM

mU.fU.mA.fA.mU.fA.mU.fC.mC

fG.mC.fU.mC.fN′


F11-
1784
PmN.fG.mA.fG.mA.fC.mA.fA.mA.fG.
2034
fG.mA.fA.mA.fU.mC.fU.mU.fU.mG.


34NM

mA.fU.mU.fU.mC.fU.mU.fU.mG

fU.mC.fU.mC.fN′


F11-
1785
PmN.fU.mG.fG.mG.fU.mU.fA.mU.fU.
2035
fC.mA.fU.mA.fA.mA.fA.mU.fA.mA.


35NM

mU.fU.mA.fU.mG.fU.mC.fC.mU

fC.mC.fC.mA.fN′


F11-
1786
PmN.fG.mA.fG.mC.fC.mA.fU.mG.fA.
2036
fC.mA.fG.mU.fG.mU.fC.mA.fU.mG.


36NM

mC.fA.mC.fU.mG.fU.mC.fG.mA

fG.mC.fU.mC.fN′


F11-
1787
PmN.fC.mA.fG.mA.fU.mU.fA.mG.fA.
2037
fC.mA.fC.mU.fU.mU.fC.mU.fA.mA.


37NM

mA.fA.mG.fU.mG.fC.mA.fC.mA

fU.mC.fU.mG.fN′


F11-
1788
PmN.fA.mG.fA.mA.fU.mA.fC.mC.fC.
2038
fU.mU.fU.mC.fU.mG.fG.mG.fU.mA.


38NM

mA.fG.mA.fA.mA.fU.mC.fG.mC

fU.mU.fC.mU.fN′


F11-
1789
PmN.fC.mA.fG.mA.fU.mG.fU.mU.fU.
2039
fC.mC.fU.mU.fA.mA.fA.mA.fC.mA.


39NM

mU.fA.mA.fG.mG.fA.mG.fA.mC

fU.mC.fU.mG.fN′


F11-
1790
PmN.fU.mG.fU.mA.fU.mC.fC.mA.fG.
2040
fC.mA.fU.mC.fU.mC.fU.mG.fG.mA.


40NM

mA.fG.mA.fU.mG.fC.mC.fU.mC

fU.mA.fC.mA.fN′


F11-
1791
PmN.fG.mA.fG.mU.fC.mA.fC.mA.fC.
2041
fU.mG.fA.mA.fU.mG.fU.mG.fU.mG.


41NM

mA.fU.mU.fC.mA.fC.mC.fA.mG

fA.mC.fU.mC.fN′


F11-
1792
PmN.fC.mA.fA.mA.fG.mA.fA.mA.fG.
2042
fC.mA.fC.mA.fU.mC.fU.mU.fU.mC.


42NM

mA.fU.mG.fU.mG.fU.mC.fC.mU

fU.mU.fU.mG.fN′


F11-
1793
PmN.fA.mC.fC.mA.fC.mU.fU.mG.fA.
2043
fU.mU.fA.mU.fA.mU.fC.mA.fA.mG.


43NM

mU.fA.mU.fA.mA.fG.mA.fA.mA

fU.mG.fG.mU.fN′


F11-
1794
PmN.fA.mA.fG.mA.fA.mA.fG.mC.fU.
2044
fC.mU.fU.mA.fA.mA.fG.mC.fU.mU.


44NM

mU.fU.mA.fA.mG.fU.mA.fA.mC

fU.mC.fU.mU.fN′


F11-
1795
PmN.fU.mU.fA.mU.fU.mU.fC.mA.fG.
2045
fU.mC.fA.mA.fU.mC.fU.mG.fA.mA.


45NM

mA.fU.mU.fG.mA.fU.mU.fU.mA

fA.mU.fA.mA.fN′


F11-
1796
PmN.fU.mG.fG.mU.fG.mU.fG.mA.fG.
2046
fC.mA.fA.mU.fG.mC.fU.mC.fA.mC.


46NM

mC.fA.mU.fU.mG.fC.mU.fU.mG

fA.mC.fC.mA.fN′


F11-
1797
PmN.fA.mU.fC.mA.fU.mC.fC.mU.fG.
2047
fC.mU.fU.mU.fU.mC.fA.mG.fG.mA.


47NM

mA.fA.mA.fA.mG.fA.mC.fC.mU

fU.mG.fA.mU.fN′


F11-
1798
PmN.fG.mU.fG.mA.fG.mC.fA.mU.fU.
2048
fC.mA.fA.mG.fC.mA.fA.mU.fG.mC.


48NM

mG.fC.mU.fU.mG.fA.mA.fA.mG

fU.mC.fA.mC.fN′


F11-
1799
PmN.fC.mU.fG.mU.fA.mU.fC.mU.fC.
2049
TC.mA.fG.mA.fA.mG.fA.mG.fA.mU.


49NM

mU.fU.mC.fU.mG.fG.mC.fA.mC

fA.mC.fA.mG.fN′


F11-
1800
PmN.fA.mC.fC.mU.fU.mA.fA.mU.fG.
2050
fA.mU.fA.mC.fA.mC.fA.mU.fU.mA.


50NM

mU.fG.mU.fA.mU.fC.mC.fA.mG

fA.mG.fG.mU.fN′


F11-
1801
PmN.fA.mU.fC.mA.fU.mG.fG.mA.fU.
2051
fU.mA.fA.mU.fA.mA.fU.mC.fC.mA.


51NM

mU.fA.mU.fU.mA.fU.mU.fU.mC

fU.mG.fA.mU.fN′


F11-
1802
PmN.fC.mA.fA.mA.fG.mA.fU.mU.fU.
2052
fC.mA.fA.mA.fG.mA.fA.mA.fU.mC.


52NM

mC.fU.mU.fU.mG.fA.mG.fA.mU

fU.mU.fU.mG.fN′


F11-
1803
PmN.fG.mA.fA.mG.fU.mA.fU.mU.fU.
2053
fA.mA.fC.mU.fA.mA.fA.mA.fU.mA.


53NM

mU.fA.mG.fU.mU.fG.mG.fA.mG

fC.mU.fU.mC.fN′


F11-
1804
PmN.fA.mG.fA.mU.fU.mG.fA.mU.fU.
2054
fU.mU.fU.mU.fA.mA.fA.mU.fC.mA.


54NM

mU.fA.mA.fA.mA.fU.mG.fC.mC

fA.mU.fC.mU.fN′


F11-
1805
PmN.fG.mG.fG.mU.fA.mU.fC.mU.fU.
2055
fA.mA.fG.mC.fC.mA.fA.mG.fA.mU.


55NM

mG.fG.mC.fU.mU.fU.mC.fU.mG

fA.mC.fC.mC.fN′


F11-
1806
PmN.fA.mG.fG.mA.fG.mA.fC.mA.fA.
2056
fA.mA.fU.mC.fU.mU.fU.mG.fU.mC.


56NM

mA.fG.mA.fU.mU.fU.mC.fU.mU

fU.mC.fC.mU.fN′


F11-
1807
PmN.fG.mU.fC.mA.fU.mG.fG.mU.fA.
2057
fC.mA.fU.mU.fU.mU.fA.mC.fC.mA.


57NM

mA.fA.mA.fU.mG.fA.mA.fG.mA

fU.mG.fA.mC.fN′


F11-
1808
PmN.fA.mU.fA.mU.fC.mC.fA.mG.fU.
2058
fG.mA.fA.mG.fA.mA.fC.mU.fG.mG.


58NM

mU.fC.mU.fU.mC.fU.mC.fC.mC

fA.mU.fA.mU.fN′


F11-
1809
PmN.fA.mA.fU.mA.fU.mC.fC.mA.fG.
2059
fA.mA.fG.mA.fA.mC.fU.mG.fG.mA.


59NM

mU.fU.mC.fU.mU.fC.mU.fC.mC

fU.mA.fU.mU.fN′


F11-
1810
PmN.fC.mU.fG.mU.fG.mG.fU.mU.fU.
2060
fA.mC.fU.mG.fG.mA.fA.mA.fC.mC.


60NM

mC.fC.mA.fG.mU.fU.mU.fC.mA

fA.mC.fA.mG.fN′


F11-
1811
PmN.fA.mG.fA.mU.fU.mA.fG.mA.fA.
2061
fG.mC.fA.mC.fU.mU.fU.mC.fU.mA.


61NM

mA.fG.mU.fG.mC.fA.mC.fA.mG

fA.mU.fC.mU.fN′


F11-
1812
PmN.fA.mG.fA.mA.fA.mU.fC.mA.fG.
2062
fU.mG.fA.mC.fA.mC.fU.mG.fA.mU.


62NM

mU.fG.mU.fC.mA.fU.mG.fG.mU

fU.mU.fC.mU.fN′


F11-
1813
PmN.fU.mG.fG.mA.fU.mU.fA.mU.fU.
2063
fG.mA.fA.mA.fU.mA.fA.mU.fA.mA.


63NM

mA.fU.mU.fU.mC.fU.mU.fG.mA

fU.mC.fC.mA.fN′


F11-
1814
PmN.fC.mC.fA.mG.fA.mU.fU.mA.fG.
2064
fA.mC.fU.mU.fU.mC.fU.mA.fA.mU.


64NM

mA.fA.mA.fG.mU.fG.mC.fA.mC

fC.mU.fG.mG.fN′


F11-
1815
PmN.fC.mU.fC.mA.fU.mU.fA.mU.fC.
2065
fA.mA.fA.mU.fG.mG.fA.mU.fA.mA.


65NM

mC.fA.mU.fU.mU.fU.mA.fC.mA

fU.mG.fA.mG.fN′


F11-
1816
PmN.fU.mU.fG.mG.fG.mC.fC.mA.fU.
2066
fC.mA.fG.mG.fA.mA.fU.mG.fG.mC.


66NM

mU.fC.mC.fU.mG.fG.mG.fA.mA

fC.mC.fA.mA.fN′


F11-
1817
PmN.fU.mG.fG.mG.f.mU.fU.mG.fA.
2067
fC.mA.fA.mA.fA.mU.fC.mA.fA.mG.


67NM

mU.fU.mU.fU.mG.fG.mU.fG.mG

fC.mC.fC.mA.fN′


F11-
1818
PmN.fC.mA.fG.mA.fU.mU.fG.mA.fU.
2068
fU.mU.fU.mA.fA.mA.fU.mC.fA.mA.


68NM

mU.fU.mA.fA.mA.fA.mU.fG.mC

fU.mC.fU.mG.fN′


F11-
1819
PmN.fA.mA.fG.mC.fA.mA.fC.mC.fG.
2069
fC.mA.fU.mC.fC.mC.fG.mG.fU.mU.


69NM

mG.fG.mA.fU.mG.fA.mU.fG.mA

fG.mC.fU.mU.fN′


F11-
1820
PmN.fC.mU.fU.mA.fA.mU.fG.mU.fG.
2070
fG.mG.fA.mU.fA.mC.fA.mC.fA.mU.


70NM

mU.fA.mU.fC.mC.fA.mG.fA.mG

fU.mA.fA.mG.fN′


F11-
1821
PmN.fG.mU.fA.mA.fU.mU.fC.mA.fC.
2071
fC.mC.fA.mC.fA.mG.fU.mG.fA.mA.


71NM

mU.fG.mU.fG.mG.fU.mU.fU.mC

fU.mU.fA.mC.fN′


F11-
1822
PmN.fA.mC.fA.mU.fU.mU.fC.mU.fA.
2072
fG.mG.fA.mG.fA.mU.fA.mG.fA.mA.


72NM

mU.fC.mU.fC.mC.fU.mU.fU.mG

fA.mU.fG.mU.fN′


F11-
1823
PmN.fC.mA.fC.mU.fG.mG.fU.mU.fU.
2073
fA.mU.fU.mG.fG.mA.fA.mA.fC.mC.


73NM

mC.fC.mA.fA.mU.fG.mA.fU.mG

fA.mG.fU.mG.fN′


F11-
1824
PmN.fG.mA.fA.mU.fC.mU.fG.mU.fG.
2074
fA.mA.fU.mU.fA.mC.fA.mC.fA.mG.


74NM

mU.fA.mA.fU.mU.fC.mA.fC.mU

fA.mU.fU.mC.fN′


F11-
1825
PmN.fG.mU.fC.mC.fU.mA.fU.mU.fC.
2075
fA.mG.fA.mG.fU.mG.fA.mA.fU.mA.


75NM

mA.fC.mU.fC.mU.fU.mG.fG.mC

fG.mG.fA.mC.fN′


F11-
1826
PmN.fA.mG.fC.mA.fU.mU.fG.mC.fU.
2076
fU.mU.fU.mC.fA.mA.fG.mC.fA.mA.


76NM

mU.fG.mA.fA.mA.fG.mA.fA.mU

fU.mG.fC.mU.fN′


F11-
1827
PmN.fA.mA.fU.mA.fC.mC.fC.mA.fG.
2077
fG.mA.fU.mU.fU.mC.fU.mG.fG.mG.


77NM

mA.fA.mA.fU.mC.fG.mC.fU.mG

fU.mA.fU.mU.fN′


F11-
1828
PmN.fA.mU.fU.mA.fU.mU.fA.mU.fU.
2078
fC.mA.fA.mG.fA.mA.fA.mU.fA.mA.


78NM

mU.fC.mU.fU.mG.fA.mA.fC.mC

fU.mA.fA.mU.fN′


F11-
1829
PmN.fA.mA.fG.mU.fA.mU.fU.mU.fU.
2079
fC.mA.fA.mC.fU.mA.fA.mA.fA.mU.


79NM

mA.fG.mU.fU.mG.fG.mA.fG.mA

fA.mC.fU.mU.fN′


F11-
1830
PmN.fG.mA.fA.mU.fC.mC.fA.mG.fU.
2080
fC.mG.fU.mG.fG.mA.fC.mU.fG.mG.


80NM

mC.fC.mA.fC.mG.fU.mA.fC.mU

fA.mU.fU.mC.fN′


F11-
1831
PmN.fA.mG.fA.mC.fA.mA.fA.mG.fA.
2081
fA.mG.fA.mA.fA.mU.fC.mU.fU.mU.


81NM

mU.fU.mU.fC.mU.fU.mU.fG.mA

fG.mU.fC.mU.fN′


F11-
1832
PmN.fA.mC.fA.mG.fG.mA.fU.mU.fU.
2082
fC.mA.fC.mU.fG.mA.fA.mA.fU.mC.


82NM

mC.fA.mG.fU.mG.fA.mA.fA.mA

fC.mU.fG.mU.fN′


F11-
1833
PmN.fA.mA.fC.mA.fA.mG.fG.mC.fA.
2083
fG.mA.fU.mA.fU.mU.fG.mC.fC.mU.


83NM

mA.fU.mA.fU.mC.fA.mU.fA.mC

fU.mG.fU.mU.fN′


F11-
1834
PmN.fA.mA.fG.mG.fC.mA.fA.mU.fA.
2084
fU.mA.fU.mG.fA.mU.fA.mU.fU.mG.


84NM

mU.fC.mA.fU.mA.fC.mC.fC.mG

fC.mC.fU.mU.fN′


F11-
1835
PmN.fA.mU.fA.mC.fC.mC.fA.mG.fA.
2085
fC.mG.fA.mU.fU.mU.fC.mU.fG.mG.


85NM

mA.fA.mU.fC.mG.fC.mU.fG.mC

fG.mU.fA.mU.fN′


F11-
1836
PmN.fG.mA.fU.mU.fG.mA.fU.mU.fU.
2086
fA.mU.fU.mU.fU.mA.fA.mA.fU.mC.


86NM

mA.fA.mA.fA.mU.fG.mC.fC.mA

fA.mA.fU.mC.fN′


F11-
1837
PmN.fC.mC.fU.mA.fU.mU.fC.mA.fC.
2087
fC.mA.fA.mG.fA.mG.fU.mG.fA.mA.


87NM

mU.fC.mU.fU.mG.fG.mC.fA.mG

fU.mA.fG.mG.fN′


F11-
1838
PmN.fG.mU.fA.mG.fA.mC.fA.mC.fG.
2088
fU.mU.fU.mU.fG.mC.fG.mU.fG.mU.


88NM

mC.fA.mA.fA.mA.fU.mC.fU.mU

fC.mU.fA.mC.fN′


F11-
1839
PmN.fU.mG.fA.mG.fU.mU.fU.mU.fC.
2089
fC.mU.fG.mG.fA.mG.fA.mA.fA.mA.


89NM

mU.fC.mC.fA.mG.fA.mA.fU.mC

fC.mU.fC.mA.fN′


F11-
1840
PmN.fA.mU.fU.mU.fC.mU.fU.mU.fG.
2090
fA.mA.fU.mC.fU.mC.fA.mA.fA.mG.


90NM

mA.fG.mA.fU.mU.fC.mU.fU.mU

fA.mA.fA.mU.fN′


F11-
1841
PmN.fU.mA.fU.mA.fA.mG.fA.mA.fA.
2091
fA.mU.fG.mA.fU.mU.fU.mU.fC.mU.


91NM

mA.fU.mC.fA.mU.fC.mC.fU.mG

fU.mA.fU.mA.fN′


F11-
1842
PmN.fA.mA.fA.mA.fU.mC.fU.mU.fA.
2092
fU.mC.fA.mC.fC.mU.fA.mA.fG.mA.


92NM

mG.fG.mU.fG.mA.fC.mU.fC.mU

fU.mU.fU.mU.fN′


F11-
1843
PmN.fA.mC.fA.mC.fU.mG.fG.mG.fA.
2093
fC.mA.fG.mC.fA.mU.fC.mC.fC.mA.


93NM

mU.fG.mC.fU.mG.fU.mG.fC.mC

fG.mU.fG.mU.fN′


F11-
1844
PmN.fU.mG.fC.mA.fC.mA.fG.mG.fA.
2094
fU.mG.fA.mA.fA.mU.fC.mC.fU.mG.


94NM

mUfU.mU.fC.mA.fG.mU.fG.mA

fU.mG.fC.mA.fN′


F11-
1845
PmN.fA.mU.fA.mC.fA.mA.fG.mC.fC.
2095
fA.mA.fU.mC.fU.mG.fG.mC.fU.mU.


95NM

mA.fG.mA.fU.mU.fA.mG.fA.mA

fG.mU.fA.mU.fN′


F11-
1846
PmN.fU.mG.fU.mG.fG.mU.fU.mU.fC.
2096
fA.mA.fC.mU.fG.mG.fA.mA.fA.mC.


96NM

mC.fA.mG.fU.mU.fU.mC.fA.mA

fC.mA.fC.mA.fN′


F11-
1847
PmN.fU.mG.fC.mC.fC.mU.fU.mC.fC.
8207
fC.mG.fA.mA.fG.mG.fG.mA.fA.mG.


97NM

mC.fU.mU.fC.mG.fU.mU.fG.mC

fG.mG.fC.mA.fN′


F11-
1848
PmN.fA.mA.fA.mA.fU.mC.fA.mU.fC.
2098
fU.mU.fC.mA.fG.mG.fA.mU.fG.mA.


98NM

mC.fU.mG.fA.mA.fA.mA.fG.mA

fU.mU.fU.mU.fN′


F11-
1849
PmN.fC.mC.fA.mA.fG.mA.fA.mA.fU.
2099
fC.mA.fC.mU.fG.mA.fU.mU.fU.mC.


99NM

mC.fA.mG.fU.mG.fU.mC.fA.mU

fU.mU.fG.mG.fN′


F11-
1850
PmN.fG.mG.fC.mA.fU.mA.fU.mG.fG.
2100
fA.mC.fG.mA.fC.mC.fC.mA.fU.mA.


100NM

mG.fU.mC.fG.mU.fU.mG.fA.mG

fU.mG.fC.mC.fN′


F11-
1851
PmN.fA.mG.fA.mA.fU.mC.fU.mG.fU.
2101
fA.mU.fU.mA.fC.mA.fC.mA.fG.mA.


101NM

mG.fU.mA.fA.mU.fU.mC.fA.mC

fU.mU.fC.mU.fN′


F11-
1852
PmN.fA.mU.fC.mC.fA.mG.fU.mC.fC.
2102
fU.mA.fC.mG.fU.mG.fG.mA.fC.mU.


102NM

mA.fC.mG.fU.mA.fC.mU.fC.mG

fG.mG.fA.mU.fN′


F11-
1853
PmN.fC.mC.fU.mC.fU.mG.fU.mA.fU.
2103
fA.mA.fG.mA.fG.mA.fU.mA.fC.mA.


103NM

mC.fU.mC.fU.mU.fC.mU.fG.mG

fG.mA.fG.mG.fN′


F11-
1854
PmN.fG.mC.fA.mC.fA.mG.fG.mA.fU.
2104
fC.mU.fG.mA.fA.mA.fU.mC.fC.mU.


104NM

mU.fU.mC.fA.mG.fU.mG.fA.mA

fG.mU.fG.mC.fN′


F11-
1855
PmN.fG.mU.fA.mA.fA.mA.fU.mG.fA
2105
fA.mU.fU.mC.fU.mU.fC.mA.fU.mU.


105NM

mA.fG.mA.fA.mU.fG.mG.fC.mA

fU.mU.fA.mC.fN′


F11-
1856
PmN.fG.mU.fC.mG.fU.mU.fG.mA.fG.
2106
fA.mG.fA.mU.fU.mC.fU.mC.fA.mA.


106NM

mA.fA.mU.fC.mU.fG.mU.fG.mU

fC.mG.fA.mC.fN′


F11-
1857
PmN.fG.mC.fA.mA.fC.mA.fA.mU.fA.
2107
fC.mU.fG.mG.fA.mU.fA.mU.fU.mG.


107NM

mU.fC.mC.fA.mG.fU.mU.fC.mU

fU.mU.fG.mC.fN′


F11-
1858
PmN.fC.mA.fG.mC.fG.mG.fA.mC.fG.
2108
fA.mA.fU.mG.fC.mC.fG.mU.fC.mC.


108NM

mG.fC.mA.fU.mU.fG.mG.fU.mG

fG.mC.fU.mG.fN′


F11-
1859
PmN.fG.mA.fA.mA.fG.mC.fU.mU.fU.
2109
fU.mA.fC.mU.fU.mA.fA.mA.fG.mC.


109NM

mA.fA.mG.fU.mA.fA.mC.fA.mC

fU.mU.fU.mC.fN′


F11-
1860
PmN.fG.mC.fA.mG.fU.mG.fU.mU.fU.
2110
fU.mA.fC.mA.fG.mA.fA.mA.fC.mA.


110NM

mC.fU.mG.fU.mA.fA.mC.fA.mC

fC.mU.fG.mC.fN′


F11-
1861
PmN.fG.mA.fG.mA.fA.mU.fC.mU.fG.
2111
fU.mU.fA.mC.fA.mC.fA.mG.fA.mU.


111NM

mU.fG.mU.fA.mA.fU.mU.fC.mA

fU.mC.fU.mC.fN′


F11-
1862
PmN.fU.mC.fC.mA.fG.mU.fC.mC.fA.
2112
fG.mU.fA.mC.fG.mU.fG.mG.fA.mC.


112NM

mC.fG.mU.fA.mC.fU.mC.fG.mA

fU.mG.fG.mA.fN′


F11-
1863
PmN.fU.mG.fU.mG.fA.mG.fC.mA.fU.
2113
fA.mA.fG.mC.fA.mA.fU.mG.fC.mU.


113NM

mU.fG.mC.fU.mU.fG.mA.fA.mA

fC.mA.fC.mA.fN′


F11-
1864
PmN.fC.mC.fG.mG.fG.mA.fU.mG.fA.
2114
fA.mC.fU.mC.fA.mU.fC.mA.fU.mC.


114NM

mU.fG.mA.fG.mU.fG.mC.fA.mG

fC.mC.fG.mG.fN′


F11-
1865
PmN.fC.mC.fA.mC.fU.mU.fU.mA.fU.
2115
fG.mC.fU.mC.fG.mA.fU.mA.fA.mA.


115NM

mC.fG.mA.fG.mC.fU.mU.fC.mG

fG.mU.fG.mG.fN′


F11-
1866
PmN.fC.mA.fU.mU.fA.mU.fC.mC.fA.
2116
fU.mA.fA.mA.fA.mU.fG.mG.fA.mU.


116NM

mU.fU.mU.fU.mA.fC.mA.fC.mA

fA.mA.fU.mG.fN′


F11-
1867
PmN.fA.mA.fC.mC.fG.mG.fG.mA.fU.
2117
fU.mC.fA.mU.fC.mA.fU.mC.fC.mC.


117NM

mG.fA.mU.fG.mA.fG.mU.fG.mC

fG.mG.fU.mU.fN′


F11-
1868
PmN.fU.mU.fC.mU.fU.mU.fG.mG.fG.
2118
fA.mA.fU.mG.fG.mC.fC.mC.fA.mA.


118NM

mC.fC.mA.fU.mU.fC.mC.fU.mG

fA.mG.fA.mA.fN′


F11-
1869
PmN.fC.mU.fA.mA.fG.mG.fG.mU.fA.
2119
fC.mA.fA.mG.fA.mU.fA.mC.fC.mC.


119NM

mU.fC.mU.fU.mG.fG.mC.fU.mU

fU.mU.fA.mG.fN′


F11-
1870
PmN.fU.mU.fG.mG.fU.mG.fU.mG.fA.
2120
fA.mA.fU.mG.fC.mU.fC.mA.fC.mA.


120NM

mG.fC.mA.fU.mU.fG.mC.fU.mU

fC.mC.fA.mA.fN′


F11-
1871
PmN.fC.mA.fU.mA.fU.mG.fG.mG.fU.
2121
fC.mA.fA.mC.fG.mA.fC.mC.fC.mA.


121NM

mC.fG.mU.fU.mG.fA.mG.fA.mA

fU.mA.fU.mG.fN′


F11-
1872
PmN.fU.mU.fA.mA.fU.mG.fU.mG.fU.
2122
fU.mG.fG.mA.fU.mA.fC.mA.fC.mA.


122NM

mA.fU.mC.fC.mA.fG.mA.fG.mA

fU.mU.fA.mA.fN′


F11-
1873
PmN.fU.mC.fA.mG.fA.mU.fG.mU.fU.
2123
fC.mU.fU.mA.fA.mA.fA.mC.fA.mU.


123NM

mU.fU.mA.fA.mG.fG.mA.fG.mA

fC.mU.fG.mA.fN′


F11-
1874
PmN.fU.mU.fC.mC.fA.mA.fU.mG.fA.
2124
fC.mU.fC.mC.fA.mU.fC.mA.fU.mU.


124NM

mU.fG.mG.fA.mG.fC.mC.fU.mC

fG.mG.fA.mA.fN′


F11-
1875
PmN.fA.mG.fA.mA.fU.mC.fC.mA.fG.
2125
fG.mU.fG.mG.fA.mC.fU.mG.fG.mA.


125NM

mU.fC.mC.fA.mC.fG.mU.fA.mC

fU.mU.fC.mU.fN′


F11-
1876
PmN.fU.mU.fU.mG.fA.mG.fA.mU.fU.
2126
fC.mA.fA.mA.fG.mA.fA.mU.fC.mU.


126NM

mC.fU.mU.fU.mG.fG.mG.fC.mC

fC.mA.fA.mA.fN′


F11-
1877
PmN.fA.mA.fU.mC.fA.mU.fC.mC.fU.
2127
fU.mU.fU.mU.fC.mA.fG.mG.fA.mU.


127NM

mG.fA.mA.fA.mA.fG.mA.fC.mC

fG.mA.fU.mU.fN′


F11-
1878
PmN.fA.mG.fA.mC.fA.mC.fG.mC.fA.
2128
fG.mA.fU.mU.fU.mU.fG.mC.fG.mU.


128NM

mA.fA.mA.fU.mC.fU.mU.fA.mG

fG.mU.fC.mU.fN′


F11-
1879
PmN.fC.mG.fU.mA.fC.mU.fC.mG.fA.
2129
fC.mG.fU.mG.fG.mU.fC.mG.fA.mG.


129NM

mC.fC.mA.fC.mG.fU.mU.fG.mG

fU.mA.fC.mG.fN′


F11-
1880
PmN.fC.mA.fU.mC.fC.mA.fG.mU.fC.
2130
fU.mG.fG.mG.fU.mG.fA.mC.fU.mG.


130NM

mA.fC.mC.fC.mA.fG.mC.fA.mA

fG.mA.fU.mG.fN′


F11-
1881
PmN.fA.mA.fC.mA.fC.mU.fG.mG.fG.
2131
fA.mG.fC.mA.fU.mC.fC.mC.fA.mG.


131NM

mA.fU.mG.fC.mU.fG.mU.fG.mC

fU.mG.fU.mU.fN′


F11-
1882
PmN.fC.mA.fG.mA.fA.mA.fG.mA.fG.
2132
fC.mA.fA.mA.fG.mC.fU.mC.fU.mU.


132NM

mC.fU.mU.fU.mG.fC.mU.fC.mU

fU.mC.fU.mG.fN′


F11-
1883
PmN.fU.mU.fC.mU.fU.mU.fG.mA.fG.
2133
fA.mG.fA.mA.fU.mC.fU.mC.fA.mA.


133NM

mA.fU.mU.fC.mU.fU.mU.fG.mG

fA.mG.fA.mA.fN′


F11-
1884
PmN.fA.mG.fC.mA.fA.mC.fA.mA.fU.
2134
fU.mG.fG.mA.fU.mA.fU.mU.fG.mU.


134NM

mA.fU.mC.fC.mA.fG.mU.fU.mC

fU.mG.fC.mU.fN′


F11-
1885
PmN.fA.mC.fC.mA.fC.mU.fU.mU.fA.
2135
fC.mU.fC.mG.fA.mU.fA.mA.fA.mG.


135NM

mU.fC.mG.fA.mG.fC.mU.fU.mC

fU.mG.fG.mU.fN′


F11-
1886
PmN.fC.mC.fC.mU.fU.mC.fC.mC.fU.
2136
fA.mA.fC.mG.fA.mA.fG.mG.fG.mA.


136NM

mU.fC.mG.fU.mU.fG.mC.fA.mG

fA.mG.fG.mG.fN′


F11-
1887
PmN.fC.mG.fC.mA.fA.mA.fA.mU.fC.
2137
fC.mC.fU.mA.fA.mG.fA.mU.fU.mU.


137NM

mU.fU.mA.fG.mG.fU.mG.fA.mC

fU.mG.fC.mG.fN′


F11-
1888
PmN.fA.mG.fC.mG.fU.mG.fU.mU.fA.
2138
fC.mA.fC.mA.fG.mU.fA.mA.fC.mA.


138NM

mC.fU.mG.fU.mG.fG.mA.fG.mG

fC.mG.fC.mU.fN′


F11-
1889
PmN.fC.mU.fC.mC.fU.mU.fC.mC.fC.
2139
fC.mU.fA.mC.fA.mG.fG.mG.fA.mA.


139NM

mU.fG.mU.fA.mG.fC.mC.fG.mG

fG.mG.fA.mG.fN′


F11-
1890
PmN.fG.mU.fC.mC.fU.mC.fU.mG.fU.
2140
fG.mA.fG.mA.fU.mA.fC.mA.fG.mA.


140NM

mA.fU.mC.fU.mC.fU.mU.fC.mU

fG.mG.fA.mC.fN′


F11-
1891
PmN.fG.mU.fA.mU.fC.mU.fU.mG.fG.
2141
fG.mA.fA.mA.fG.mC.fC.mA.fA.mG.


141NM

mC.fU.mU.fU.mC.fU.mG.fG.mA

fA.mU.fA.mC.fN′


F11-
1892
PmN.fC.mU.fC.mU.fU.mG.fG.mC.fA.
2142
fA.mA.fC.mA.fC.mU.fG.mC.fC.mA.


142NM

mG.fU.mG.fU.mU.fU.mC.fU.mG

fA.mG.fA.mG.fN′


F11-
1893
PmN.fG.mA.fA.mA.fU.mC.fA.mG.fU.
2143
fA.mU.fG.mA.fC.mA.fC.mU.fG.mA.


143NM

mG.fU.mC.fA.mU.fG.mG.fU.mA

fU.mU.fU.mC.fN′


F11-
1894
PmN.fC.mU.fU.mC.fC.mC.fU.mG.fU.
2144
fC.mG.fG.mC.fU.mA.fC.mA.fG.mG.


144NM

mA.fG.mC.fC.mG.fG.mC.fA.mC

fG.mA.fA.mG.fN′


F11-
1895
PmN.fC.mU.fG.mG.fC.mC.fG.mC.fU.
2145
fA.mA.fG.mG.fG.mA.fG.mC.fG.mG.


145NM

mC.fC.mC.fU.mU.fU.mG.fA.mG

fC.mC.fA.mG.fN′


F11-
1896
PmN.fC.mA.fC.mG.fC.mA.fA.mA.fA.
2146
fU.mA.fA.mG.fA.mU.fU.mU.fU.mG.


146NM

mU.fC.mU.fU.mA.fG.mG.fU.mG

fC.mG.fU.mG.fN′


F11-
1897
PmN.fG.mA.fA.mA.fC.mC.fA.mG.fA.
2147
fC.mU.fC.mU.fU.mU.fC.mU.fG.mG.


147NM

mA.fA.mG.fA.mG.fC.mU.fU.mU

fU.mU.fU.mC.fN′


F11-
1898
PmN.fA.mA.fA.mG.fC.mU.fU.mU.fA.
2148
fU.mU.fA.mC.fU.mU.fA.mA.fA.mG.


148NM

mA.fG.mU.fA.mA.fC.mA.fC.mU

fC.mU.fU.mU.fN′


F11-
1899
PmN.fA.mC.fA.mA.fG.mC.fC.mA.fG.
2149
fC.mU.fA.mA.fU.mC.fU.mG.fG.mC.


149NM

mA.fU.mU.fA.mG.fA.mA.fA.mG

fU.mU.fG.mU.fN′


F11-
1900
PmN.fA.mC.fU.mC.fA.mU.fU.mA.fU.
2150
fA.mA.fU.mG.fG.mA.fU.mA.fA.mU.


150NM

mC.fC.mA.fU.mU.fU.mU.fA.mC

fG.mA.fG.mU.fN′


F11-
1901
PmN.fC.mC.fU.mG.fA.mA.fA.mA.fG.
2151
fA.mA.fG.mG.fU.mC.fU.mU.fU.mU.


151NM

mA.fC.mC.fU.mU.fG.mU.fU.mG

fC.mA.fG.mG.fN′


F11-
1902
PmN.fG.mG.fU.mU.fU.mC.fC.mA.fA.
2152
fC.mA.fU.mC.fA.mU.fU.mG.fG.mA.


152NM

mU.fG.mA.fU.mG.fG.mA.fG.mC

fA.mA.fC.mC.fN′


F11-
1903
PmN.fC.mA.fG.mU.fU.mU.fC.mU.fG.
2153
fC.mC.fU.mG.fC.mC.fA.mG.fA.mA.


153NM

mG.fC.mA.fG.mG.fC.mC.fU.mC

fA.mC.fU.mG.fN′


F11-
1904
PmN.fA.mU.fG.mG.fC.mA.fG.mA.fA.
2154
fC.mA.fG.mU.fG.mU.fU.mC.fU.mG.


154NM

mC.fA.mC.fU.mG.fG.mG.fA.mU

fC.mC.fA.mU.fN′


F11-
1905
PmN.fA.mG.fA.mU.fU.mU.fC.mU.fU.
2155
fU.mC.fU.mC.fA.mA.fA.mG.fA.mA.


155NM

mU.fG.mA.fG.mA.fU.mU.fC.mU

fA.mU.fC.mU.fN′


F11-
1906
PmN.fG.mU.fU.mU.fC.mC.fA.mG.fU.
2156
fU.mU.fG.mA.fA.mA.fC.mU.fG.mG.


156NM

mU.fU.mC.fA.mA.fC.mA.fA.mG

fA.mA.fA.mC.fN′


F11-
1907
PmN.fU.mC.fC.mU.fC.mU.fG.mU.fA.
2157
fA.mG.fA.mG.fA.mU.fA.mC.fA.mG.


157NM

mU.fC.mU.fC.mU.fU.mC.fU.mG

fA.mG.fG.mA.fN′


F11-
1908
PmN.fC.mA.fU.mC.fC.mU.fG.mA.fA.
2158
fG.mU.fC.mU.fU.mU.fU.mC.fA.mG.


158NM

mA.fA.mG.fA.mC.fC.mU.fU.mG

fG.mA.fU.mG.fN′


F11-
1909
PmN.fU.mU.fG.mA.fG.mU.fU.mU.fU.
2159
fU.mG.fG.mA.fG.mA.fA.mA.fA.mC.


159NM

mC.fU.mC.fC.mA.fG.mA.fA.mU

fU.mC.fA.mA.fN′


F11-
1910
PmN.fA.mA.fU.mU.fC.mA.fC.mU.fG.
2160
fA.mA.fC.mC.fA.mC.fA.mG.fU.mG.


160NM

mU.fG.mG.fU.mU.fU.mC.fC.mA

fA.mA.fU.mU.fN′


F11-
1911
PmN.fA.mA.fG.mA.fU.mU.fU.mC.fU.
2161
fC.mU.fC.mA.fA.mA.fG.mA.fA.mA.


161NM

mU.fU.mG.fA.mG.fA.mU.fU.mC

fU.mC.fU.mU.fN′


F11-
1912
PmN.fG.mG.fA.mG.fA.mC.fA.mA.fA.
2162
fA.mA.fA.mU.fC.mU.fU.mU.fG.mU.


162NM

mG.fA.mU.fU.mU.fC.mU.fU.mU

fC.mU.fC.mC.fN′


F11-
1913
PmN.fG.mA.fA.mA.fA.mU.fC.mA.fU.
2163
fU.mC.fA.mG.fG.mA.fU.mG.fA.mU.


163NM

mC.fC.mU.fG.mA.fA.mA.fA.mG

fU.mU.fU.mC.fN′


F11-
1914
PmN.fC.mU.fU.mU.fC.mU.fG.mC.fC.
2164
fA.mA.fA.mA.fU.mG.fG.mC.fA.mG.


164NM

mA.fU.mU.fU.mU.fA.mU.fA.mC

fA.mA.fA.mG.fN′


F11-
1915
PmN.fA.mG.fU.mC.fC.mA.fC.mG.fU.
2165
fC.mG.fA.mG.fU.mA.fC.mG.fU.mG.


165NM

mA.fC.mU.fC.mG.fA.mC.fC.mA

fG.mA.fC.mU.fN′


F11-
1916
PmN.fU.mU.fA.mA.fU.mG.fC.mG.fU.
2166
fA.mG.fU.mA.fC.mA.fC.mG.fC.mA.


166NM

mG.fU.mA.fC.mU.fG.mG.fG.mC

fU.mU.fA.mA.fN′


F11-
1917
PmN.fU.mA.fA.mU.fG.mU.fG.mU.fA.
2167
fC.mU.fG.mG.fA.mU.fA.mC.fA.mC.


167NM

mU.fC.mC.fA.mG.fA.mG.fA.mU

fA.mU.fU.mA.fN′


F11-
1918
PmN.fG.mA.fU.mU.fC.mU.fU.mU.fG.
2168
fU.mG.fG.mC.fC.mC.fA.mA.fA.mG.


168NM

mG.fG.mC.fC.mA.fU.mU.fC.mC

fA.mA.fU.mC.fN′


F11-
1919
PmN.fU.mG.fA.mA.fA.mC.fC.mA.fG.
2169
fU.mC.fU.mU.fU.mC.fU.mG.fG.mU.


169NM

mA.fA.mA.fG.mA.fG.mC.fU.mU

fU.mU.fC.mA.fN′


F11-
1920
PmN.fC.mA.fC.mA.fC.mA.fU.mU.fC.
2170
fC.mU.fG.mG.fU.mG.fA.mA.fU.mG.


170NM

mA.fC.mC.fA.mG.fA.mA.fA.mC

fU.mG.fU.mG.fN′


F11-
1921
PmN.fA.mC.fA.mA.fA.mG.fA.mU.fU.
2171
fA.mA.fA.mG.fA.mA.fA.mU.fC.mU.


171NM

mU.fC.mU.fU.mU.fG.mA.fG.mA

fU.mU.fG.mU.fN′


F11-
1922
PmN.fC.mA.fU.mU.fU.mC.fU.mA.fU.
2172
fA.mG.fG.mA.fG.mA.fU.mA.fG.mA.


172NM

mC.fU.mC.fC.mU.fU.mU.fG.mG

fA.mA.fU.mG.fN′


F11-
1923
PmN.fU.mU.fU.mC.fU.mG.fU.mA.fA.
2173
fC.mA.fG.mU.fG.mU.fU.mA.fC.mA.


173NM

mC.fA.mC.fU.mG.fU.mC.fU.mU

fG.mA.fA.mA.fN′


F11-
1924
PmN.fG.mG.fA.mU.fU.mU.fC.mA.fG.
2174
fU.mU.fU.mC.fA.mC.fU.mG.fA.mA.


174NM

mU.fG.mA.fA.mA.fA.mU.fC.mC

fA.mU.fC.mC.fN′


F11-
1925
PmN.fC.mG.fC.mU.fC.mC.fC.mU.fU.
2175
fG.mC.fU.mC.fA.mA.fA.mG.fG.mG.


175NM

mU.fG.mA.fG.mC.fA.mC.fA.Mg

fA.mG.fC.mG.fN′


F11-
1926
PmN.fC.mA.fG.mU.fC.mC.fA.mC.fG.
2176
fG.mA.fG.mU.fA.mC.fG.mU.fG.mG.


176NM

mU.fA.mC.fUn.mC.fG.mA.fC.mC

fA.mC.fU.mG.fN′


F11-
1927
PmN.fA.mG.fG.mC.fA.mU.fA.mU.fG.
2177
fC.mG.fA.mC.fC.mC.fA.mU.fA.mU.


177NM

mG.fG.mU.fC.mG.fU.mU.fG.mA

fG.mC.fC.mU.fN′


F11-
1928
PmN.fA.mU.fG.mU.fC.mC.fU.mC.fU.
2178
fG.mA.fU.mA.fC.mA.fG.mA.fG.mG.


178NM

mG.fU.mA.fU.mC.fU.mC.fU.mU

fA.mC.fA.mU.fN′


F11-
1929
PmN.fG.mC.fU.mU.fG.mA.fU.mU.fU.
2179
fC.mA.fC.mC.fA.mA.fA.mA.fU.mC.


179NM

mU.fG.mG.fU.mG.fG.mU.fA.mC

fA.mA.fG.mC.fN′


F11-
1930
PmN.fA.mU.fG.mA.fU.mG.fG.mA.fG.
2180
fG.mG.fA.mG.fG.mC.fU.mC.fC.mA.


180NM

mC.fC.mU.fC.mC.fA.mC.fA.mC

fU.mC.fA.mU.fN′


F11-
1931
PmN.fU.mC.fG.mU.fU.mG.fA.mG.fA.
2181
fC.mA.fG.mA.fU.mU.fC.mU.fC.mA.


181NM

mA.FU.mC.fU.mG.fU.mG.fU.mA

fA.mC.fG.mA.fN′


F11-
1932
PmN.fU.mU.fA.mU.fC.mC.fA.mU.fU.
2182
fU.mG.fU.mA.fA.mA.fA.mU.fG.mG.


182NM

mU.fU.mA.fC.mA.fC.mA.fA.mC

fA.mU.fA.mA.fN′


F11-
1933
PmN.fU.mG.fU.mC.fC.mU.fA.mU.fU.
2183
fG.mA.fG.mU.fG.mA.fA.mU.fA.mG.


183NM

mC.fA.mC.fU.mC.fU.mU.fG.mG

fG.mA.fC.mA.fN′


F11-
1934
PmN.fC.mA.fA.mU.fA.mU.fC.mC.fA.
2184
fA.mG.fA.mA.fC.mU.fG.mG.fA.mU.


184NM

mG.fU.mU.fC.mU.fU.mC.fU.mC

fA.mU.fU.mG.fN′


F11-
1935
PmN.fC.mU.fU.mU.fG.mA.fG.mA.fU.
2185
fA.mA.fA.mG.fA.mA.fU.mC.fU.mC.


185NM

mU.fC.mU.fU.mU.fG.mG.fG.mC

fA.mA.fA.mG.fN′


F11-
1936
PmN.fC.mA.fC.mU.fC.mU.fU.mG.fG.
2186
fC.mA.fC.mU.fG.mC.fC.mA.fA.mG.


186NM

mC.fA.mG.fU.mG.fU.mU.fU.mC

fA.mG.fU.mG.fN′


F11-
1937
PmN.fC.mU.fU.mG.fA.mA.fA.mG.fA.
2187
fG.mG.fU.mA.fU.mU.fC.mU.fU.mU.


187NM

mA.fU.mA.fC.mC.fC.mA.fG.mA

fC.mA.fA.mG.fN′


F11-
1938
PmN.fA.mG.fG.mC.fA.mA.fU.mA.fU.
2188
fG.mU.fA.mU.fG.mA.fU.mA.fU.mU.


188NM

mC.fA.mU.fA.mC.fC.mC.fG.mC

fG.mC.fC.mU.fN′


F11-
1939
PmN.fC.mU.fG.mU.fG.mU.fA.mA.fU.
2189
fA.mG.fU.mG.fA.mA.fU.mU.fA.mC.


189NM

mU.fC.mA.fC.mU.fG.mU.fG.mG

fA.mC.fA.mG.fN′


F11-
1940
PmN.fA.mA.fU.mA.fU.mC.fC.mA.fC.
92190
fA.mA.fC.mC.fA.mG.fU.mG.fG.mA.


190NM

mU.fG.mG.fU.mU.fU.mC.fC.mA

fU.mA.fU.mU.fN′


F11-
1941
PmN.fU.mG.fA.mA.fA.mG.fA.mA.fU.
2191
fU.mG.fG.mG.fU.mA.fU.mU.fC.mU.


191NM

mA.fC.mC.fC.mA.fG.mA.fA.mA

fU.mU.fC.mA.fN′


F11-
1942
PmN.fG.mU.fU.mA.fA.mU.fA.mU.fC.
2192
fC.mA.fG.mU.fG.mG.fA.mU.fA.mU.


192NM

mC.fA.mC.fU.mG.fG.mU.fU.mU

fU.mA.fA.mC.fN′


F11-
1943
PmN.fU.mG.fU.mC.fA.mU.fG.mG.fU.
2193
fA.mU.fU.mU.fU.mA.fC.mC.fA.mU.


193NM

mA.fA.mA.fA.mU.fG.mA.fA.mG

fG.mA.fC.mA.fN′


F11-
1944
PmN.fA.mU.fU.mC.fU.mU.fU.mG.fG.
2194
fA.mU.fG.mG.fC.mC.fC.mA.fA.mA.


194NM

mG.fC.mC.fA.mU.fU.mC.fC.mU

fG.mA.fA.mU.fN′


F11-
1945
PmN.fC.mA.fG.mU.fU.mC.fC.mU.fC.
2195
fC.mG.fU.mU.fG.mG.fA.mG.fG.mA.


195NM

mC.fA.mA.fC.mG.fA.mU.fC.mC

fA.mG.fU.mG.fN′


F11-
1946
PmN.fG.mG.fG.mU.fG.mU.fG.mC.
2196
fA.mC.fU.mG.fA.mA.fG.mC.fA.mC.


196NM

fU.mU.fC.mA.fG.mU.fA.mG.fA.mC

fA.mC.fC.mC.fN′


F11-
1947
PmN.fG.mA.fA.mG.fA.mA.fA.mG.fC.
2197
fU.mU.fA.mA.fA.mG.fC.mU.fU.mU.


197NM

mU.fU.mU.fA.mA.fG.mU.fA.mA

fC.mU.fU.mC.fN′


F11-
1948
PmN.fA.mU.fC.mC.fU.mG.fA.mA.fA.
2198
fG.mG.fU.mC.fU.mU.fU.mU.fC.mA.


198NM

mA.fG.mA.fC.mC.fU.mU.fG.mU

fG.mG.fA.mU.fN′


F11-
1949
PmN.fA.mG.fA.mA.fA.mG.fC.mU.fU.
2199
fA.mC.fU.mU.fA.mA.fA.mG.fC.mU.


199NM

mU.fA.mA.fG.mU.fA.mA.fC.mA

fU.mU.fC.mU.fN′


F11-
1950
PmN.fC.mA.fG.mU.fG.mU.fU.mU.fC.
2200
fU.mU.fA.mC.fA.mG.fA.mA.fA.mC.


200NM

mU.fG.mU.fA.mA.fC.mA.fC.mU

fA.mC.fU.mG.fN′


F11-
1951
PmN.fG.mA.fC.mA.fC.mG.fC.mA.fA.
2201
fA.mG.fA.mU.fU.mU.fU.mG.fC.mG.


201NM

mA.fA.mU.fC.mU.fU.mA.fG.mG

fU.mG.fU.mC.fN′


F11-
1952
PmN.fG.mU.fG.mU.fG.mA.fG.mC.fA.
2202
fA.mG.fC.mA.fA.mU.fG.mC.fU.mC.


202NM

mU.fU.mG.fC.mU.fU.mG.fA.mA

fA.mC.fA.mC.fN′


F11-
1953
PmN.fA.mC.fC.mA.fG.mA.fA.mA.fG.
2203
fA.mA.fG.mC.fU.mC.fU.mU.fU.mC.


203NM

mA.fG.mC.fU.mU.fU.mG.fC.mU

fU.mG.fG.mU.fN′


F11-
1954
PmN.fA.mG.fA.mA.fA.mG.fU.mG.fC.
2204
fC.mC.fU.mG.fU.mG.fC.mA.fC.mU.


204NM

mA.fC.mA.fG.mG.fA.mU.fU.mU

fU.mU.fC.mU.fN′


F11-
1955
PmN.fU.mU.fU.mA.fU.mU.fU.mC.fA.
2205
fC.mA.fA.mU.fC.mU.fG.mA.fA.mA.


205NM

mG.fA.mU.fU.mG.fA.mU.fU.mU

fU.mA.fA.mA.fN′


F11-
1956
PmN.fU.mA.fU.mC.fC.mA.fG.mU.fU.
2206
fA.mG.fA.mA.fG.mA.fA.mC.fU.mG.


206NM

mC.fU.mU.fC.mU.fC.mC.fC.mA

fG.mA.fU.mA.fN′


F11-
1957
PmN.fC.mC.fG.mU.fG.mA.fA.mA.fG.
2207
fC.mU.fU.mC.fA.mC.fU.mU.fU.mC.


207NM

mU.fG.mA.fA.mG.fA.mG.fU.mA

fA.mC.fG.mG.fN′


F11-
1958
PmN.fG.mG.fU.mG.fU.mG.fC.mU.fU.
2208
fU.mA.fC.mU.fG.mA.fA.mG.fC.mA.


208NM

mC.fA.mG.fU.mA.fG.mA.fC.mA

fC.mA.fC.mC.fN′


F11-
1959
PmN.fG.mG.fA.mC.fA.mG.fA.mG.fG.
2209
fG.mA.fG.mG.fC.mC.fC.mU.fC.mU.


209NM

mG.fC.mC.fU.mC.fC.mC.fG.mA

fG.mU.fC.mC.fN′


F11-
1960
PmN.fA.mA.fG.mA.fA.mA.fA.mU.fC.
2210
fA.mG.fG.mA.fU.mG.fA.mU.fU.mU.


210NM

mA.fU.mC.fC.mU.fG.mA.fA.mA

fU.mC.fU.mU.fN′


F11-
1961
PmN.fU.mG.fA.mG.fA.mU.fU.mC.fU.
2211
fC.mC.fC.mA.fA.mA.fG.mA.fA.mU.


211NM

mU.fU.mG.fG.mG.fC.mC.fA.mU

fC.mU.fC.mA.fA.fN′


F11-
1962
PmN.fA.mU.fG.mU.fU.mU.fU.mA.fA.
2212
fU.mC.fU.mC.fC.mU.fU.mA.fA.mA.


212NM

mG.fG.mA.fG.mA.fC.mA.fA.mA

fA.mC.fA.mU.fN′


F11-
1963
PmN.fC.mA.fC.mA.fG.mU.fU.mU.fC.
2213
fU.mG.fC.mC.fA.mG.fA.mA.fA.mC.


213NM

mU.fG.mG.fC.mA.fG.mG.fC.mC

fU.mG.fU.mG.fN′


F11-
1964
PmN.fA.mC.fA.mA.fU.mA.fU.mC.fC.
2214
fG.mA.fA.mC.fU.mG.fG.mA.fU.mA.


214NM

mA.fG.mU.fU.mC.fU.mU.fC.mU

fU.mU.fG.mU.fN′


F11-
1965
PmN.fA.mC.fA.mU.fU.mC.fA.mC.fC.
2215
fU.mU.fU.mC.fU.mG.fG.mU.fG.mA.


215NM

mA.G.mA.fA.mA.fC.mU.fG.mA

fA.mU.fG.mU.fN′


F11-
1966
PmN.fC.mA.fA.mG.fG.mC.fA.mA.fU.
2216
fA.mU.fG.mA.fU.mA.fU.mU.fG.mC.


216NM

mA.fU.mC.fA.mU.fA.mC.fC.mC

fC.mU.fU.mG.fN′


F11-
1967
PmN.fC.mU.fC.mC.fA.mA.fC.mG.fA.
2217
fC.mA.fG.mG.fA.mU.fC.mG.fU.mU.


217NM

mU.fC.mC.fU.mG.fG.mG.fC.mU

fG.mG.fA.mG.fN′


F11-
1968
PmN.fC.mU.fG.mA.fA.mA.fC.mC.fA.
2218
fC.mU.fU.mU.fC.mU.fG.mG.fU.mU.


218NM

mG.fA.mA.fA.mG.fA.mG.fC.mU

fU.mC.fA.mG.fN′


F11-
1969
PmN.fA.mA.fU.mC.fU.mC.fC.mC.fU.
2219
fU.mU.fG.mC.fA.mA.fG.mG.fG.mA.


219NM

mU.fG.mC.fA.mA.fG.mC.fG.mU

fG.mA.fU.mU.fN′


F11-
1970
PmN.fU.mG.fU.mG.fU.mA.fA.mU.fU.
2220
fC.mA.fG.mU.fG.mA.fA.mU.fU.mA.


220NM

mC.fA.mC.fU.mG.fU.mG.fG.mU

fC.mA.fC.mA.fN′


F11-
1971
PmN.fU.mU.fU.mC.fA.mG.fU.mG.fA.
2221
fG.mA.fU.mU.fU.mU.fC.mA.fC.mU.


221NM

mA.fA.mA.fU.mC.fC.mA.fG.mA

fG.mA.fA.mA.fN′


F11-
1972
PmN.fA.mA.fA.mU.fC.mA.fU.mC.fC.
2222
fU.mU.fU.mC.fA.mG.fG.mA.fU.mG.


222NM

mU.fG.mA.fA.mA.fA.mG.fA.mC

fA.mU.fU.mU.fN′


F11-
1973
PmN.fU.mA.fC.mA.fC.mU.fC.mA.fU.
2223
fG.mG.fA.mU.fA.mA.fU.mG.fA.mG.


223NM

mU.fA.mU.fC.mC.fA.mU.fU.mU

fU.mG.fU.mA.fN′


F11-
1974
PmN.fU.mU.fG.mG.fC.mA.fG.mU.fG.
2224
fA.mG.fA.mA.fA.mC.fA.mC.fU.mG.


224NM

mU.fU.mU.fC.mU.fG.mU.fA.mA

fC.mC.fA.mA.fN′


F11-
1975
PmN.fG.mG.fU.mA.fC.mA.fC.mU.fC.
2225
fA.mU.fA.mA.fU.mG.fA.mG.fU.mG.


225NM

mA.fU.mU.fA.mU.fC.mC.fA.mU

fU.mA.fC.mC.fN′


F11-
1976
PmN.fA.mG.fG.mC.fA.mG.fG.mC.fA.
2226
fC.mC.fA.mU.fA.mU.fG.mC.fC.mU.


226NM

mU.fA.mU.fG.mG.fG.mU.fC.mG

fG.mC.fC.mU.fN′


F11-
1977
PmN.fC.mC.fA.mG.fU.mU.fU.mC.fA.
2227
fC.mU.fU.mG.fU.mU.fG.mA.fA.mA.


227NM

mA.fC.mA.fA.mG.fG.mC.fA.mA

fC.mU.fG.mG.fN′


F11-
1978
PmN.fU.mG.fG.mC.fC.mG.fC.mU.fC.
2228
fA.mA.fA.mG.fG.mG.fA.mG.fC.mG.


228NM

mC.fC.mU.fU.mU.fG.mA.fG.mC

fG.mC.fC.mA.fN′


F11-
1979
PmN.fA.mC.fU.mG.fU.mG.fG.mU.fU.
2229
fC.mU.fG.mG.fA.mA.fA.mC.fC.mA.


229NM

mU.fC.mC.fA.mG.fU.mU.fU.mC

fC.mA.fG.mU.fN′


F11-
1980
PmN.fC.mU.fU.mU.fG.mG.fG.mC.fC.
2230
fG.mG.fA.mA.fU.mG.fG.mC.fC.mC.


230NM

mA.fU.mU.fC.mC.fU.mG.fG.mG

fA.mA.fA.mG.fN′


F11-
1981
PmN.fU.mA.fA.mG.fA.mA.fA.mA.fU.
2231
fG.mG.fA.mU.fG.mA.fU.mU.fU.mU.


231NM

mC.fA.mU.fC.mC.fU.mG.fA.mA

fC.mU.fU.mA.fN′


F11-
1982
PmN.fC.mU.fC.mU.fU.mU.fU.mA.fU.
2232
fC.mU.fG.mA.fA.mA.fU.mA.fA.mA.


232NM

mU.fU.mC.fA.mG.fA.mU.fU.mG

fA.mG.fA.mG.fN′


F11-
1983
PmN.fU.mC.fU.mU.fU.mG.fA.mG.fA.
2233
fA.mA.fG.mA.fA.mU.fC.mU.fC.mA.


233NM

mU.fU.mC.fU.mU.fU.mG.fG.mG

fA.mA.fG.mA.fN′


F11-
1984
PmN.fA.mA.fU.mG.fA.mU.fG.mG.fA.
2234
fG.mA.fG.mG.fC.mU.fC.mC.fA.mU.


234NM

mG.fC.mC.fU.mC.fC.mA.fC.mA

fC.mA.fU.mU.fN′


F11-
1985
PmN.fG.mA.fA.mG.fA.mA.fU.mG.fG.
2235
fU.mU.fC.mU.fG.mC.fC.mA.fU.mU.


235NM

mC.fA.mG.fA.mA.fC.mA.fC.mU

fC.mU.fU.mC.fN′


F11-
1986
PmN.fC.mA.fA.mU.fG.mA.fU.mG.fG.
2236
fA.mG.fG.mC.fU.mC.fC.mA.fU.mC.


236NM

mA.fG.mC.fC.mU.fC.mC.fA.mC

fA.mU.fU.mG.fN′


F11-
1987
PmN.fA.mU.fG.mG.fA.mG.fC.mC.fU.
2237
fU.mG.fU.mG.fG.mA.fG.mG.fC.mU.


237NM

mC.fC.mA.fC.mA.fC.mA.fG.mG

fC.mC.fA.mU.fN′


F11-
1988
PmN.fC.mC.fC.mA.fA.mG.fA.mA.fA.
2238
fA.mC.fU.mG.fA.mU.fU.mU.fC.mU.


238NM

mU.fC.mA.fG.mU.fG.mU.fC.mA

fU.mG.fG.mG.fN′


F11-
1989
PmN.fG.mA.fG.mC.fC.mU.fC.mC.fA.
2239
fC.mU.fG.mU.fG.mU.fG.mG.fA.mG.


239NM

mC.fA.mC.fA.mG.fG.mU.fG.mU

fG.mC.fU.mC.fN′


F11-
1990
PmN.fC.mU.fC.mC.fC.mA.fA.mG.fA.
2240
fU.mG.fA.mU.fU.mU.fC.mU.fU.mG.


240NM

mA.fA.mU.fC.mA.fG.mU.fG.mU

fG.mG.fA.mG.fN′


F11-
1991
PmN.fC.mC.fU.mC.fC.mA.fC.mA.fC.
2241
fC.mA.fC.mC.fU.mG.fU.mG.fU.mG.


241NM

mA.fG.mG.fU.mG.fU.mC.fU.mC

fG.mA.fG.mG.fN′


F11-
1992
PmN.fC.mC.fA.mA.fU.mG.fA.mU.fG.
2242
fG.mG.fC.mU.fC.mC.fA.mU.fC.mA.


242NM

mG.fA.mG.fC.mC.fU.mC.fC.mA

fU.mU.fG.mG.fN′


F11-
1993
PmN.fU.mU.fU.mC.fC.mA.fA.mU.fG.
2243
fU.mC.fC.mA.fU.mC.fA.mU.fU.mG.


243NM

mA.fU.mG.fG.mA.fG.mC.fC.mU

fG.mA.fA.mA.fN′


F11-
1994
PmN.fU.mC.fC.mC.fA.mA.fG.mA.fA.
2244
fC.mU.fG.mA.fU.mU.fU.mC.fU.mU.


244NM

mA.fU.mC.fA.mG.fU.mG.fU.mC

fG.mG.fG.mA.fN′


F11-
1995
PmN.fA.mG.fC.mC.fU.mC.fC.mA.fC.
2245
fC.mC.fU.mG.fU.mG.fU.mG.fG.mA.


245NM

mA.fC.mA.fG.mG.fU.mG.fU.mC

fG.mG.fC.mU.fN′


F11-
1996
PmN.fU.mC.fU.mU.fC.mU.fC.mC.fC.
2246
fU.mU.fC.mU.fU.mG.fG.mG.fA.mG.


246NM

mA.fA.mG.fA.mA.fA.mU.fC.mA

ffA.mA.fG.mA.fN′


F11-
1997
PmN.fG.mU.fU.mU.fC.mC.fA.mA.fU.
2247
fC.mC.fA.mU.fC.mA.fU.mU.fG.mG.


247NM

mG.fA.mU.fG.mG.fA.mG.fC.mC

A.mA.fA.mC.fN′


F11-
1998
PmN.fU.mC.fC.mA.fA.mU.fG.mA.fU.
2248
fG.mC.fU.mC.fC.mA.fU.mC.fA.mU.


248NM

mG.fG.mA.fG.mC.fC.mU.fC.mC

fU.mG.fG.mA.fN′


F11-
1999
PmN.fU.mG.fG.mA.fG.mC.fC.mU.fC.
2249
fG.mU.fG.mU.fG.mG.fA.mG.fG.mC.


249NM

mC.fA.mC.fA.mC.fA.mG.fG.mU

fU.mC.fC.mA.fN′


F11-
2000
PmN.fG.mC.fC.mU.fC.mC.fA.mC.fA.
2250
fA.mC.fC.mU.fG.mU.fG.mU.fG.mG.


250NM

mC.fA.mG.fG.mU.fG.mU.fC.mil

fA.mG.fG.mC.fN′









In above Table 1e:


A represents adenine;


U represents uracil;


C represents cytosine;


G represents guanine;


P represents a terminal phosphate group;


m represents a methyl modification at the 2′ position of the sugar of the underlying nucleoside;


f represents a fluoro modification at the 2′ position of the sugar of the underlying nucleoside


N represents any RNA nucleobase;


N′ represents any RNA nucleobase and is preferably complementary to N.


Example 2

Oligonucleotides as set out in Tables 1a/1 b above that target FXI mRNA in human hepatoma cells were screened as follows.


Native gel electrophoresis for random FXI oligomeric compounds: Oligomeric compounds including oligonucleotides as set out in Table 1a/1 b above were dissolved in sterile Rnase-, Dnase free water to the final concentration 100 μM. 10 random oligomeric compounds were selected for validation based on following Table 2.











TABLE 2





No.
Lot No.
ID

















1
32407
F11-07 


2
32443
F11-43 


3
32467
F11-67 


4
32482
F11-82 


5
32521
F11-121


6
32530
F11-130


7
32555
F11-155


8
32596
F11-196


9
32615
F11-215


10
33642
F11-242









20% TBE gel electrophoresis was carried out for the above oligomeric compounds of Table 2, 10 μm oligonucleotide/lane, staining: SybrGold. FIG. 1 illustrates the stability of the resulting duplexes. Based on this QC data we used all oligomeric compounds in the following screening.


Two independent F11 qPCR assays and were validated for the screening. Both assays produced linear dose response as illustrated in FIG. 2 with high sensitivity and efficiency. Due to known qPCR artifacts caused by siRNAs overlapping with qPCR probe regions, two probes from different target gene regions were used.


Screening F11 oligomeric compounds in hepatoma cell line: Protocol details:


Cell seeding: 10,000 HepG2 cells/well.


Lipofectamine RNAiMax mediated transfection.


Transfection: 20 nM compounds, antibiotic-free EMEM medium 10% FBS, 72 h incubation.


Gene expression was measured by qPCR (Taqman chemistry), adjusted to the standard curve and normalized to the reference gene GAPDH.


Data is expressed as the percentage of gene expression in non-treated cells (NT).


Results of the screening are shown in FIGS. 3 to 12.


26 oligomeric compounds with 80% knockdown cut off were selected for the dose response curves. Basis for this selection is as follows in Table 3.













TABLE 3






Probe 0011
Probe 0011
Probe 0014
Probe 0014



(% of NT)
(StDev)
(% of NT)
(StDev)



















F11-183
16.38125499
2.013845618
7.390709343
0.566515346


F11-140
9.879406487
3.562127243
14.22784171
3.594956374


F11-27 
12.75921626
0.196272116
11.67948753
0.736184873


F11-91 
13.02726487
1.209635635
11.9438287
1.262506376


F11-163
11.85412492
0.429451274
14.23620915
0.292814079


F11-207
14.0604508
0.474611347
12.58144382
0.838626235


F11-46 
15.99580158
0.887618916
10.81760361
0.429607546


F11-199
12.09311021
0.561879319
16.177289
0.804157804


F11-220
10.19545315
2.801932011
18.89268438
4.374803266


F11-238
13.40181876
0.052184671
17.3012001
1.131315389


F11-98 
15.77153606
1.342306305
15.82298746
1.641051662


F11-105
14.09977643
0.481691161
18.58881771
1.10194639


F11-146
13.12223851
1.009310781
19.79764347
0.70176306


F11-152
10.7295455
0.718550243
22.44897671
1.853140055


F11-109
14.71437898
0.483729553
18.58436211
0.097538284


F11-120
15.82404014
0.296398359
17.48975387
2.035559291


F11-218
14.31316962
0.304685608
19.64927627
1.469210086


F11-13 
15.75002936
0.544846368
18.21711753
0.233023069


F11-39 
19.6320507
2.268987147
14.61318275
1.740915389


F11-210
16.1566738
0.521574928
19.46520418
0.491427909


F11-08 
17.52268129
0.100107723
18.84244532
0.566323481


F11-224
16.03733736
0.892648857
20.79529032
0.619058244


F11-182
19.06641913
0.47270836
19.16890424
1.516153913


F11-103
14.8052026
1.32389517
25.00603503
2.748462021


F11-151
17.9105237
0.303879045
21.95923162
0.360854952


F11-223
16.88767639
1.818246469
24.88274643
1.656451297









Example 3

Dose response curves for the 26 FXI lead compounds as identified in Example 2 are shown in FIG. 13.


Dose response curves for the 5 FXI lead compounds are shown in FIG. 14.


Example 4

IC50 values are shown for the 26 FXI lead compounds as identified in Example 2 in following Table 4.
















TABLE 4





siRNA (nM)
50
25
12.5
5
2
0.8
0.32






















F11-140
10.84824
27.26815
52.49094
74.79465
86.01931
92.5617
108.1231


F11-91
11.21362
17.5123
30.79378
52.89924
71.85335
76.62539
86.24001


F11-46
11.31357
19.1463
34.94334
58.3431
72.36898
79.03502
87.90456


F11-27
12.00189
19.71206
36.34996
58.61257
73.49525
80.52213
95.02346


F11-08
12.88477
23.17136
38.502
60.95352
75.64406
85.64319
94.30091


F11-207
13.33847
28.59863
48.07128
70.58417
80.28337
83.17787
97.52694


F11-146
13.38071
23.04423
40.71772
67.32095
87.86172
94.18917
112.7978


F11-152
14.24965
24.9051
51.57466
70.85458
81.53343
88.18263
105.3212


F11-13
16.1023
30.30924
48.19031
63.18166
75.90383
80.13827
91.06444


F11-220
16.95432
25.76435
52.68453
80.69079
87.87234
98.52989
105.8545


F11-218
17.20341
31.58884
61.17974
77.06415
101.7601
105.0303
109.3946


F11-109
17.57553
29.90478
47.49863
67.90813
83.63117
99.25234
104.6814


F11-105
17.62636
27.2131
48.11403
75.61487
91.99868
99.3779
113.5676


F11-103
19.05623
31.3836
53.66986
70.21575
87.15926
94.18358
109.3758


F11-98
19.08747
25.21664
40.70468
62.53904
90.33434
92.00181
109.9554


F11-39
20.76369
36.33147
56.83281
71.87339
85.66001
88.7146
89.9771


F11-183
22.96668
40.72956
62.72405
82.71394
91.62041
102.8007
117.0328


F11-163
23.72934
27.92605
45.96363
70.65669
90.44246
95.26864
111.0215


F11-223
25.55254
50.53311
79.41138
88.2778
102.639
100.4705
109.0358


F11-151
25.79851
29.31085
43.72433
64.81009
83.78671
85.73753
101.2187


F11-120
26.54193
37.32053
44.77477
68.73705
81.41065
91.22496
92.68608


F11-199
28.11948
37.72515
63.274
74.59009
89.97225
96.10097
97.29022


F11-224
28.19833
42.50665
62.41726
82.4676
85.58443
92.77884
100.0632


F11-210
29.66767
37.73558
58.54817
67.94156
78.98299
88.30405
103.0938


F11-182
32.95932
52.5532
72.82952
81.79542
88.47215
101.748
104.4618


F11-238
73.20162
93.24065
91.91126
90.37185
88.5052
87.39394
99.47702









Example 5

Species cross-reactivity of the 26 FXI lead compounds as identified in Example 2 are shown in following Table 5.














TABLE 5







Selected

Macaca


Mus


Rattus




oligos

fascicularis


musculus


norvegicus










F11-183
MF
0
0



F11-140
MF
0
0



F11-27 
0
0
0



F11-91 
MF
0
0



F11-163
MF
0
0



F11-207
MF
0
0



F11-46 
MF
0
0



F11-199
MF
0
0



F11-220
MF
0
0



F11-238
MF
MUS
RN



F11-98 
MF
0
0



F11-105
MF
0
0



F11-146
MF
0
0



F11-152
MF
MUS
RN



F11-109
MF
0
0



F11-120
MF
0
0



F11-218
MF
0
0



F11-13 
MF
0
0



F11-39 
MF
0
RN



F11-210
MF
0
0



F11-08 
MF
0
0



F11-224
MF
0
0



F11-182
MF
0
0



F11-103
MF
0
0



F11-151
MF
0
0



F11-223
MF
0
0










Example 6

Further to the data as provided in Examples 3 to 5, oligonucleotides F11-46/SEQ ID NO: 46, F11-91/SEQ ID NO: 91 and F11-152/SEQ ID NO: 152 have been identified as particularly preferred antisense oligonucleotide sequences to be used in oligomeric compounds as described herein. On this basis, these sequences have been incorporated into overall oligomeric compounds as described herein of the following sequences SEQ ID NOs 2251 to 2253 as set out in following Table 6. Furthermore, selected modifications have been applied to SEQ ID NOs 2251 to 2253 as shown in SEQ ID NOs 2254 to 2286 in following Table 6. All sequences as provided below in Table 6 are set out in the 5′ to 3′ directionality.











TABLE 6






SEQ ID1




or




construct2



Oligo Name
No
Sequence







F11-46C
2251
UUGGUGUGAGCAUUGCUUGCAAUGCUCACACCAA (includes


(Oligomeric

antisense SEQ ID NO 46, and sense SEQ ID NO 296)


compound




F11-46




complete




sequence)







F11-91C
2252
UUAUAAGAAAAUCAUCCUGAUGAUUUUCUUAUAA (includes


(Oligomeric

antisense SEQ ID NO 91, and sense SEQ ID NO 341)


compound




F11-91




complete




sequence)







F11-152 C
2253
UGGUUUCCAAUGAUGGAGCCAUCAUUGGAAACCA (includes


(Oligomeric

antisense SEQ ID NO 152, and sense SEQ ID NO 402)


compound




F11-152




complete




sequence)







F11-46CPS
2254
mU(ps)fU(ps)mGfGmUfGmUfGmAfGmCfAmUfUmG(ps)fC(ps)


(Oligomeric

mU(ps)fU(ps)mG(ps)fCmAfAmUfGmCfUmCfAmCfAmCfCmAfA


compound

(includes antisense SEQ ID NO 46, and sense SEQ ID NO 296)


F11-46




complete




sequence/




(ps) modified)







F11-91CPS
2255
mU(ps)fU(ps)mAfUmAfAmGfAmAfAmAfUmCfAmU(ps)fC(ps)mC


(Oligomeric

(ps)fU(ps)mG(ps)fAmUfGmAfUmUfUmUfCmUfUmAfUmAfA


compound

(includes antisense SEQ ID NO 91, and sense SEQ ID NO 341)


F11-91




complete




sequence/




(ps) modified)







F11-152CPS
2256
mU(ps)fG(ps)mGfUmUfUmCfCmAfAmUfGmAfUmG(ps)fG(ps)mA


(Oligomeric

(ps)fG(ps)mC(ps)fCmAfUmCfAmUfUmGfGmAfAmAfCmCfA


compound

(includes antisense SEQ ID NO 152, and sense SEQ ID NO 402)


F11-152




complete / (ps)




modified)







F11-46VP
2257
(VP)mU(ps)fU(ps)mGfGmUfGmUfGmAfGmCfAmUfUmG(ps)fC(ps)


(Oligomeric

mU(ps)fU(ps)mG(ps)fCmAfAmUfGmCfUmCfAmCfAmCfCmAfA


compound

(includes antisense SEQ ID NO 46, and sense SEQ ID NO 296)


F11-46




complete




sequence / ps




and vinyl




phosphonate




modification)







F11-91VP
2258
(VP)mU(ps)fU(ps)mAfUmAfAmGfAmAfAmAfUmCfAmU(ps)fC(ps)


(Oligomeric

mC(ps)fU(ps)mG(ps)fAmUfGmAfUmUfUmUfCmUfUmAfUmAfA


compound

(includes antisense SEQ ID NO 91, and sense SEQ ID NO 341)


F11-91




complete




sequence / ps




and vinyl




phosphonate




modification)







F11-152VP
2259
(VP)mU(ps)fG(ps)mGfUmUfUmCfCmAfAmUfGmAfUmG(ps)fG(ps)


(Oligomeric

mA(ps)fG(ps)mC(ps)fCmAfUmCfAmUfUmGfGmAfAmAfCmCfA


compound

(includes antisense SEQ ID NO 152, and sense SEQ ID NO 402)


F11-152




complete




sequence / ps




and vinyl




phosphonate




modification)







F11-46IL
2260
mU(ps)fU(ps)mGfGmUfGmUfGmAfGmCfAmUfUmG(ps)fC(ps)mU


(Oligomeric

(ps)fUiGfCmAfAmUfGmCfUmCfAmCfAmCfCmAfA (includes


compound

antisense SEQ ID NO 46, and sense SEQ ID NO 296)


F11-46




complete




sequence / ps




and inverted




nucleotide




loop)







F11-91IL
2261
mU(ps)fU(ps)mAfUmAfAmGfAmAfAmAfUmCfAmU(ps)fC(ps)mC


(Oligomeric

(ps)fUiGfAmUfGmAfUmUfUmUfCmUfUmAfUmAfA (includes


compound

antisense SEQ ID NO 91, and sense SEQ ID NO 341)


F11-91




complete




sequence / ps




and inverted




nucleotide




loop)







F11-152IL
2262
mU(ps)fG(ps)mGfUmUfUmCfCmAfAmUfGmAfUmG(ps)fG(ps)mA


(Oligomeric

(ps)fGiCfCmAfUmCfAmUfUmGfGmAfAmAfCmCfA (includes


compound

antisense SEQ ID NO 152, and sense SEQ ID NO 402)


F11-152




complete




sequence / ps




and inverted




nucleotide




loop)







F11-46IE
2263
mUiUmGfGmUfGmUfGmAfGmCfAmUfUmG(ps)fC(ps)mU(ps)fU


(Oligomeric

(ps)mG(ps)fCmAfAmUfGmCfUmCfAmCfAmCfCiAfA (includes


compound

antisense SEQ ID NO 46, and sense SEQ ID NO 296)


F11-46




complete




sequence / ps




and end




inverted




nucleotide)







F11-91IE
2264
mUiUmAfUmAfAmGfAmAfAmAfUmCfAmU(ps)fC(ps)mC(ps)fU(ps)


(Oligomeric

mG(ps)fAmUfGmAfUmUfUmUfCmUfUmAfUiAfA (includes


compound

antisense SEQ ID NO 91, and sense SEQ ID NO 341)


F11-91




complete




sequence / ps




and end




inverted




nucleotide)







F11-152IE
2265
mUiGmGfUmUfUmCfCmAfAmUfGmAfUmG(ps)fG(ps)mA(ps)fG


(Oligomeric

(ps)mC(ps)fCmAfUmCfAmUfUmGfGmAfAmAfCiCfA (includes


compound

antisense SEQ ID NO 152, and sense SEQ ID NO 402)


F11-152




complete




sequence / ps




and end




inverted




nucleotide)







F11-46II
2266
mU(ps)fU(ps)mGfGmUfGiUfGmAfGmCfAmUfUmG(ps)fC(ps)mU


(Oligomeric

(ps)fU(ps)mG(ps)fmCfAmAfUmGfCfUmCiAmCfAmCfCmAfA


compound

(includes antisense SEQ ID NO 46, and sense SEQ ID NO 296)


F11-46




complete




sequence / ps




and internal




inverted




nucleotide)







F11-91II
2267
mU(ps)fU(ps)mAfUmAfAiGfAmAfAmAfUmCfAmU(ps)fC(ps)mC


(Oligomeric

(ps)fU(ps)mG(ps)fAmUfGmAfUmUfUmUiCmUfUmAfUmAfA


compound

(includes antisense SEQ ID NO 91, and sense SEQ ID NO 341)


F11-91




complete




sequence / ps




and internal




inverted




nucleotide)







F11-152II
2268
mU(ps)fG(ps)mGfUmUfUiCfCmAfAmUfGmAfUmG(ps)fG(ps)mA


(Oligomeric

(ps)fG(ps)mC(ps)fCmAfUmCfAmUfUmGiGmAfAmAfCmCfA


compound

(includes antisense SEQ ID NO 152, and sense SEQ ID NO 402)


F11-152




complete




sequence / ps




and internal




inverted




nucleotide)







F11-46MF
2269
mU(ps)fU(ps)mGmGmUmGmUmGmAmGmCmAmUfUmG(ps)mC


(Oligomeric

(ps)mU(ps)mU(ps)mG(ps)mCmAfAfUfGmCmUmCmAmCmAm


compound

CmCmAmA (includes antisense SEQ ID NO 46, and sense SEQ


F11-46

ID NO 296)


complete




sequence / ps




and minimum




2F)







F11-91MF
2270
mU(ps)fU(ps)mAmUmAmAmGmAmAmAmAmUmCfAmU(ps)mC


(Oligomeric

(ps)mC(ps)mU(ps)mG(ps)mAmUfGfAfUmUmUmUmCmUmUmA


compound

mUmAmA (includes antisense SEQ ID NO 91, and sense SEQ


F11-91

ID NO 341)


complete




sequence / ps




and minimum




2F)







F11-152MF
2271
mU(ps)fG(ps)mGmUmUmUmCmCmAmAmUmGmAfUmG(ps)mG


(Oligomeric

(ps)mA(ps)mG(ps)mC(ps)mCmAfUfCfAmUmUmGmGmAmAm


compound

AmCmCmA (includes antisense SEQ ID NO 152, and sense


F11-152

SEQ ID NO 402)


complete




sequence / ps




and minimum




2F)







F11-46ILG
2272
mU(ps)fU(ps)mGfGmUfGmUfGmAfGmCfAmUfUmG(ps)fC(ps)mU


(Oligomeric

(ps)fU(ps)mG(ps)fCmAfAmUfGmCfUCfACfAmCC(ps)mA(ps)fA


compound

(includes antisense SEQ ID NO 46, and sense SEQ ID NO 296)


F11-46




complete




sequence / ps




and internal




ligand




arrangement)







F11-91ILG
2273
mU(ps)fU(ps)mAfUmAfAmGfAmAfAmAfUmCfAmU(ps)fC(ps)mC


(Oligomeric

(ps)fU(ps)mG(ps)fAmUfGmAfUmUfUUfCmUUmAU(ps)mA(ps)fA


compound

(includes antisense SEQ ID NO 91, and sense SEQ ID NO 341)


F11-91




complete




sequence / ps




and internal




ligand




arrangement)







F11-152ILG
2274
mU(ps)fG(ps)mGfUmUfUmCfCmAfAmUfGmAfUmG(ps)fG(ps)mA


(Oligomeric

(ps)fG(ps)mC(ps)fCmAUmCfAUUmGfGmAfAmAC(ps)mC(ps)fA


compound

(includes antisense SEQ ID NO 152, and sense SEQ ID NO 402)


F11-152




complete




sequence / ps




and internal




ligand




arrangement)







F11-46ILGIE
2275
mU(ps)fU(ps)mGfGmUfGmUfGmAfGmCfAmUfUmG(ps)fC(ps)mU


(Oligomeric

(ps)fU(ps)mG(ps)fCmAfAmUfGmCfUCfACfAmCCmAiN″mN′″


compound

(includes antisense SEQ ID NO 46, and sense SEQ ID NO 296)


F11-46




complete




sequence / ps,




internal ligand




arrangement




and inverted




nucleotide end




stabilization)







F11-91ILGIE
2276
mU(ps)fU(ps)mAfUmAfAmGfAmAfAmAfUmCfAmU(ps)fC(ps)mC


(Oligomeric

(ps)fU(ps)mG(ps)fAmUfGmAfUmUfUUfCmUUmAUmAiN″mN′″


compound

(includes antisense SEQ ID NO 91, and sense SEQ ID NO 341)


F11-91




complete




sequence / ps,




internal ligand




arrangement




and inverted




nucleotide end




stabilization)







F11-152ILGIE
2277
mU(ps)fG(ps)mGfUmUfUmCfCmAfAmUfGmAfUmG(ps)fG(ps)mA


(Oligomeric

(ps)fG(ps)mC(ps)fCmAUmCfAUUmGfGmAfAmACmCiN″mN′″


compound

(includes antisense SEQ ID NO 152, and sense SEQ ID NO 402)


F11-152




complete




sequence / ps,




internal ligand




arrangement




and inverted




nucleotide end




stabilization)







F11-46MVP
2278
(mVP)mU(ps)fU(ps)mGfGmUfGmUfGmAfGmCfAmUfUmG(ps)fC


(Oligomeric

(ps)mU(ps)fU(ps)mG(ps)fCmAfAmUfGmCfUmCfAmCfAmCfCmA


compound

fA (includes antisense SEQ ID NO 46, and sense SEQ ID NO


F11-46

296)


complete




sequence / ps




and methyl




vinyl




phosphonate




modification)







F11-91MVP
2279
(mVP)mU(ps)fU(ps)mAfU mAfAmGfAmAfAmAfU mCfAmU(ps)fC(ps)


(Oligomeric

mC(ps)fU(ps)mG(ps)fAmUfGmAfUmUfUmUfCmUfUmAfUmAfA


compound

(includes antisense SEQ ID NO 91, and sense SEQ ID NO 341)


F11-91




complete




sequence / ps




and methyl




vinyl




phosphonate




modification)







F11-152MVP
2280
(mVP)mU(ps)fG(ps)mGfUmUfUmCfCmAfAmUfGmAfUmG(ps)fG


(Oligomeric

(ps)mA(ps)fG(ps)mC(ps)fCmAfUmCfAmUfUmGfGmAfAmAfCmCfA


compound

(includes antisense SEQ ID NO 152, and sense SEQ ID NO


F11-152

402)


complete




sequence / ps




and methyl




vinyl




phosphonate




modification)







F11-46IT
2281
iUfUmGfGmUfGmUfGmAfGmCfAmUfUmG(ps)fC(ps)mU(ps)fU(ps)


(Oligomeric

mG(ps)fCmAfAmUfGmCfUmCfAmCfAmCfCmAiA (includes


compound

antisense SEQ ID NO 46, and sense SEQ ID NO 296)


F11-46




complete




sequence / PS




and inverted




nucleotide




terminal




stabilization)







F11-91IT
2282
iUfUmAfUmAfAmGfAmAfAmAfUmCfAmU(ps)fC(ps)mC(ps)fU(ps)


(Oligomeric

mG(ps)fAmUfGmAfUmUfUmUfCmUfUmAfUmAiA (includes


compound

antisense SEQ ID NO 91, and sense SEQ ID NO 341)


F11-91




complete




sequence / PS




and inverted




nucleotide




terminal




stabilization)







F11-152IT
2283
iUfGmGfUmUfUmCfCmAfAmUfGmAfUmG(ps)fG(ps)mA(ps)fG


(Oligomeric

(ps)mC(ps)fCmAfUmCfAmUfUmGfGmAfAmAfCmCiA (includes


compound

antisense SEQ ID NO 152, and sense SEQ ID NO 402)


F11-152




complete




sequence / PS




and inverted




nucleotide




terminal




stabilization)







F11-46CM
2284
NUUGGUGUGAGCAUUGCUUGCAAUGCUCACACCAN′


(Oligomeric

(includes antisense SEQ ID NO 46, and sense SEQ ID NO 296)


compound




F11-46




complete




sequence)







F11-91CM
2285
NUAUAAGAAAAUCAUCCUGAUGAUUUUCUUAUAN′ (includes


(Oligomeric

antisense SEQ ID NO 91, and sense SEQ ID NO 341)


compound




F11-91




complete




sequence)







F11-152CM
2286
NGGUUUCCAAUGAUGGAGCCAUCAUUGGAAACCN′


(Oligomeric

(includes antisense SEQ ID NO 152, and sense SEQ ID NO 402)


compound




F11-152




complete




sequence)






1In case of nucleobase sequences




2In case of nucleobase and sugar modifications being given







In above Table 6:


A represents adenine;


U represents uracil;


C represents cytosine;


G represents guanine;


m represents a methyl modification at the 2′ position of the sugar of the underlying nucleoside;


f represents a fluoro modification at the 2′ position of the sugar of the underlying nucleoside


N/N″/N′″ represents any RNA nucleobase;


N′ represents any RNA nucleobase and is preferably complementary to N;


(ps) represents a phosphorothioate inter-nucleoside linkage;


i represents an inverted inter-nucleoside linkage, which can be either 3′-3′, or 5′-5′;


vp represents vinyl phosphonate;


mvp represents methyl vinyl phosphonate.


For each of the above constructs of Table 6, a ligand, such as a galnac ligand, is preferably attached at the 3′ end of the sequence. Specifically for SEQ ID NOs 2251, 2252, 2253, this can be respectively illustrated as follows, where Galnac can represent any arrangement of Galnac attachment, preferably however a triantennary galnac attachment:











UUGGUGUGAGCAUUGCUUGCAAUGCUCACACCAA - Galnac







UUAUAAGAAAAUCAUCCUGAUGAUUUUCUUAUAA - Galnac







UGGUUUCCAAUGAUGGAGCCAUCAUUGGAAACCA - Galnac.






Alternatively for SEQ ID NOs 2272 to 2273 as shown in above Table 6, the ligand, preferably Galnac, attachment can be to an internal non-terminal nucleoside, such as attachment to the nucleosides in the above sequences where the nucleobase is not shown as modified.


Example 7

This Example describes a structure-function relationship study of constructs comprising the nucleobase sequence of SEQ ID NO: 91.



FIG. 18 shows the constructs comprising the nucleobase sequence of SEQ ID NO: 91 which have been tested.


Tests have been performed in primary hepatocytes.


Human plateable 5 donor hepatocytes (Sekisui XenoTech, HPCH05+) are thawed in 45 mL of Human OptiThaw Hepatocyte media (Sekisui Xenotech, K8000), spun down at 200 g for 5 minutes, and resuspended in 2×WEM complete (5% FBS, 2 uM Dexamethasone, Pen/Strep, 8 ug/mL human insulin, 4 mM GlutaMAX, 30 mM HEPES pH 7.4). 2×WEM complete consists of WEM (Gibco, A1217601) and 2× the Hepatocyte Plating Supplement Pack (Gibco, CM3000) with only 1×FBS. The hepatocytes are then plated on 6 well Collagen 1 coated plates (Gibco, A1142803) at 25,000 cell/well at 50 uL per well and allowed to recover and adhere for 4 hours at 37 C.


After 4 hours, GalNac conjugated complexes are diluted to 2 uM in basal WEM and used to make a 2×, 7 step, 5 fold dilution series. 50 uL of each dilution is added to corresponding wells of the plated hepatocytes to make a final dilution series of 1-0.000064 uM in 1×WEM complete.


The cells are allowed to culture for 72 hours at 37 degrees without disruption before harvest and RNA isolation using the PureLink Pro 96 total RNA Purification Kit (Invitrogen, 12173011A) according to the manufacturers protocol.


Results are shown in FIG. 19.


Based on these results, 7 molecules have been designed which are to be subjected to further analysis (see following Examples). These molecules are shown in FIG. 20. Performance data in primary hepatocytes are shown in FIG. 21.


Based on these data, three molecules have been tested in humanized mice; see Example 8 below.


Example 8

This Examples describes testing of the three molecules identified in Example 7 in humanized mice.


Table 7 below shows nucleobase sequences (SEQ ID NOs) and full modification information (construct NOs) of these three molecules.














Designation




as used




herein
Nucleobase sequence
Structure of the construct







91-conv-31
UUAUAAGAAAAUCAUCCUGAU
/phos/mU*fU*mAfUmAfAmGfAmAfAmAfUmC*



UUUCUUAUAA
fA*mU*fC*mC*mU*fGmAfUmUfUmUfCmUfUm



(SEQ ID NO: 2287)
AfU*mA*fA*/3galnac/




(construct NO: 2290)





91-vp
UUAUAAGAAAAUCAUCCUGAU
/vp/mU/*fU*mAfUmAfAmGfAmAfAmAfUmCfA



GAUUUUCUUAUAA
mU*fC*mC*fU*mG*fAmUfGmAfUmUfUmUfC



(SEQ ID NO: 2288)
mUfUmAfU*mA*fA*/3galnac/




(construct NO: 2291)





91-conv-34
(SEQ ID NO: 2288)
/phos/mU*fU*mAfUmAfAmGfAmAfAmAfUmCf




AmU*fC*mC*fU*mG*fAmUfGmAfUmUfUmUfC




mUfUmAfU*mA*fA*/3galnac/




(construct NO: 2292)









In above Table 7


A represents adenine;


U represents uracil;


C represents cytosine;


G represents guanine;


m represents a methyl modification at the 2′ position of the sugar of the underlying nucleoside;


f represents a fluoro modification at the 2′ position of the sugar of the underlying nucleoside;


* represents a phosphorothioate inter-nucleoside linkage;


vp represents vinyl phosphonate;


phos represents phosphonate; and


3galnac represents the toothbrush ligand defined herein above.



FIG. 22 also shows the structures of these molecules. FIG. 23 shows performance of these molecules 5 days after administration.


Based on these results, the construct designated “91-Conv-31” (structure displayed in FIG. 22) has been selected for testing in non-human primates; see Example 9 below. Of note, this molecule is particularly short and comprises only a total of 31 nucleotides.


Example 9

This Example describes a Pharmacodynamics Study of construct designated “91-Conv-31” (structure displayed in FIG. 22) Following Single/Repeat Subcutaneous Injection to Cynomolgus Monkeys.


Material and Methods


For an overview of the study protocol, see FIG. 24. A more detailed account is given below.


Study Protocol









TABLE 8







Study Design
















Target Dose
TOTAL
Target Dose






Level
Target Dose
Concentration
Dose


Group/Phase
# of Males
Test Article
(mg/animal)
Volume (mL)
(mg/mL)
Route





G1P1
3 naïve1
saline

3.5 mL

SC



non-naïve







G2P1
3 naïve 1
STP122G
3.5 (Target
3.5 mL
1
SC



non-naïve

as 1 mg/kg)





G3P1
3 naïve 1
STP122G
10.5 (Target
3.5 mL
3
SC



non-naïve

as 3 mg/kg)





G4P1
3 naïve 1
STP122G
35 (Target
3.5 mL
10
SC



non-naïve

as 10 mg/kg)





G5P1
3 naïve 1
STP122G
10.5 (Target
3.5 mL
3
SC



non-naïve

as 3 mg/kg)





G6P1
3 naïve 1
STP122G
10.5 (Target
3.5 mL
3
SC



non-naïve

as 3 mg/kg)








Note:


1. Test article storage: Desiccated at room temperature, protected from light.


2. For SC group, animals will be fed on daily diet.


3. For all groups, saline will be used for vehicles


4. ″STP122G″ is an alternative designation for the preferred construct referred to as ″91-Conv-31″ herein













TABLE 9







Dose and Sample Collections

























Day
Day
Wk
Wk
Wk
Wk
Wk
Wk
Wk
Wk
Wk
Wk
Wk
Wk
Wk




−14
0
1
2
3
4
5
6
7
8
9
10
11
12
13


























Dose
G1

QD
















G2

QD
















G3

QD
















G4

QD
















G5

QD
QD















G6

QD
QD
QD













1 mL Whole
Group1-6
Bl


Bl
Bl
Bl
Bl
Bl






Bl


Blood Sampling


















for Hematology


















0.6 mL Serum
Group1-6
Se


Se
Se
Se
Se
Se






Se


Sampling for


















Clinical


















Chemistry


















1.7 mL Whole
Group1-6
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl


Blood Sampling


















for Coagulation


















2.5 mL Plasma
Group1-6
P, Se
P, Se
P, Se
P, Se
P, Se
P, Se
P, Se
P, Se
P, Se
P, Se
P, Se
P, Se
P, Se
P, Se
P, Se


and 0.3 mL


















Serum Sampling


















for PD





1.Wk1 point should be 7 days after Day 0; Wk2 point should be 14 days after Day 0.


2.Single dose with single compound, subcutaneous injection. For Day 0, Wk1 and Wk2, animals will be dosed after all samples collection.


3.(K2) EDTA as the anticoagulant for Hematology blood and sodium citrate as the anticoagulant for Coagulation blood and plasma.


4.Bl is short for blood; P is short for plasma; Se is short for Serum


5.Clinical Pathology Examination


Hematology


Erythrocyte count (RBC), Red cell distribution width (RDW), Hematocrit (HCT), Platelet count (PLT), Hemoglobin (HGB), Mean platelet volume (MPV), Mean corpuscular volume (MCV), Leukocyte counts (WBC), and Differential (absolute and percent), Mean corpuscular hemoglobin (MCH), Blood smear for possible cytology, Mean corpuscular hemoglobin concentration (MCHC), Absolute reticulocyte count (Retic).


Coagulation


Prothrombin time (PT), Activated partial thromboplastin time (APTT), Fibrinogen (FIB).


Clinical Chemistry


Alkaline Phosphatase (ALP), Total Protein (TP), Alanine Aminotransferase (ALT), Albumin (ALB), Aspartate Aminotransferase (AST), g-glutamyltransferase (GGT), Bilirubin, total (TBIL), Globulin (GLB), Phosphorus (P), Albumin/Globulin Ratio Creatinine (CRE), Sodium (Na), Glucose (GLU), Chloride (Cl), Calcium (Ca), Triglycerides (TG), Total Cholesterol (TCHO), Urea (UREA), Potassium (K), Creatine Kinase (CK), Lactate Dehydrogenase (LDH), Glutamate dehydrogenase (GLDH).






  • 1 Study Information
    • 1.1 Study Objective
      • The objective of this study is to determine the pharmacodynamics (PD) of the compound selected for this study, following a single/repeat subcutaneous (SC) administration in male cynomolgus monkeys.
    • 1.2 Regulatory Compliance
      • This study is conducted in accordance with the Institutional Animal Care and Use Committee (IACUC) standard animal procedures along with the IACUC guidelines that are in compliance with the Animal Welfare Act and the Guide for the Care and Use of Laboratory Animals.
      • This study will be conducted in accordance with this protocol and protocol amendments (if applicable) and the associated study-specific procedures, and with applicable Standard Operating Procedures (SOPs) and generally recognized good laboratory practices. This study will not be considered within the scope of the Good Laboratory Practice regulations.

  • 2 Test Article and Vehicle Information
    • 2.1 Test Article
      • Compounds as specified further above.



















Storage Conditions:
Desiccate at room temperature,




protected from light



Handling
Standard laboratory precautions



Instructions:
as defined in WuXi SOPs



Dose Preparation:
Doses will be prepared according to




instructions provided by the sponsor.




A copy of the instructions, as well as




details of preparation, will be




maintained in the study records.



Dose Solution




Analysis Samples:




Disposition of
Remaining formulations will be



Remaining
stored at 4°C.



Test Article




Formulations:




Disposition of
Remaining test article will be



Remaining
shipped back to sponsor or discarded



Test Article (dry
6 months after the final report



powder or solid):
is signed or at approval of Sponsor.










  • 3 Test System Identification
    • 3.1 Animal Specifications
















Species
Cynomolgus monkeys (Macacafascicularis)


Justification for
This is an acceptable species to support PK studies


Species
for compounds intended to use in humans.


Selection



History of Dosing
18 naïve animals and 6 non-naïve animals


Body Weight
2-7 kg


Range



Age
≥2.0 years old


Sex
Male


Source
Hainan Jingang Laboratory Animal Co. Ltd and



other permitted vendor


Address of Supplier
Nayangxintan Fucheng Town, Qiongshan District,



Haikou Hainan Province, P.R. China


Method of
Unique skin tattoo on chest


Identification



Justification for
The number of animals in each group is the


number of Animals
minimum number of animals necessary for



assessment of interanimal variability.


Selection of
24 males will be selected. Animals will have


Animals
undergone a physical examination for general health



by a staff veterinarian. 24 males confirmed as being



healthy, will be assigned to study.


Acclimation Period
Selected animals will be acclimated prior to the



study.











    • 3.2 Animal Care
      • 3.2.1 Environmental Conditions
        • The room(s) will be controlled and monitored for relative humidity (targeted mean range 40% to 70%, and any excursion from this range for more than 3 hours will be documented as a deviation) and temperature (targeted mean range 18° C. to 26° C., and any excursion from this range will be documented as a deviation) with 10 to 20 air changes/hour. The room will be on a 12-hour light/dark cycle except when interruptions are necessitated by study activities.
      • 3.2.2 Housing
        • Animals will be pair-housed in cages that are in accordance with applicable animal welfare laws and regulations during acclimation period. The monkeys will be housed individually in cages during experiment.
        • Diet and Feeding
        • Animals will be fed twice daily. Stock monkeys will be fed approximately 120 grams of Certified Monkey Diet daily. These amounts can be adjusted as necessary based on food consumption of the group or body weight changes of an individual and/or changes in the certified diet.
        • Animals will be fasted overnight prior to blood collections for serum chemistry.
        • Drinking Water
        • Reverse osmosis (RO) water will be available to all animals, ad libitum.
      • 3.2.3 Feed and Water Analyses
        • RO water is analyzed every three months and every batch of feed will be analyzed before use. Feed and water analyses will be maintained in the facility records.
      • 3.2.4 Environmental Enrichment
        • Enrichment toys will be provided.



  • 4 Administration of Dose Formulation
















Administration
Subcutaneous injection via the dorsal area of the


Route:
animals' thoracic regions.


Justification for
Dose levels chosen to characterize the


the Dose Level:
pharmacodynamics of test article in monkeys over the



desired dose range and dosing frequencies.


Justification
This administration route is consistent with the


for the
proposed initial route of human administration.


Administration



Route:



Dose
The dose formulations will be administered per facility


Administration:
SOPs.



SC ADMINISTRATION: SC injection site will be



along the dorsal area of the animals' thoracic



regions. For multiple or large doses, different sites



will be used. When the injection site is altered,



the location must be documented in the record.











    • 4.1 Observations and Examinations
      • 4.1.1 Clinical Observations
        • Twice daily (approximately 9:30 a.m. and 4:00 p.m.), cage-side observations for general health and appearance will be conducted. Animals will be given physical examinations prior to study initiation to confirm animals' health. On dosing days, the animals will be observed at 2, 4 and 6-hours post-dosing. General condition, injection site, behavior, activity, excretion, respiration or other unusual observations noted throughout the study will be recorded in the raw data. When necessary, additional clinical observations will be performed and recorded. A staff veterinarian or veterinary technician will evaluate each animal if clinical observations demonstrate declining animal condition and the Study Director will be notified. The Study Director, or designee, will notify the Sponsor if warranted by the evaluation.
      • 4.1.2 Body Weight
        • All animals will be weighted weekly. On dosing days, animals will be weighed on prior to dosing to determine the dose volume to be administered.
      • 4.1.3 Blood Collection for Clinical Pathology
        • All blood samples will be collected from a peripheral vessel from restrained, non-sedated animals.












TABLE 10







Clinical Pathology Schedule

















Sample







Volume




Sampling

Tube Type/Size
approximately


Groups
Sample
Schedulea
Evaluations
Information
(minimum)
















1-6
Blood
Once during
Hematology
K2EDTA
  2 mL
2.0 mL (1.0 mL)




pre-study;
Serum
Plain with
3.5 mL
1.2 mL (1.1 mL)




Weeks 2, 3, 4,
Chemistry
separating






5, 6, and 13.

gel






Once during
Coagulation
Sodium
  2 mL
1.7 mL (1.3 mL)




pre-study;

Citrate






Weekly.






aBlood sample may be collected from animals subjected to unscheduled euthanasia. Animals may not be fasted under that circumstance.













        • (1) Blood Collection for Hematology: Whole blood (at least 1.0 mL) will be collected from the animals into commercially available tubes with Potassium (K2) EDTA at room temperature (RT). The blood samples will be sent to clinical pathology lab in RT and tested for hematology parameters listed in the Table 9. A blood smear will be prepared from each hematology sample. Blood smears will be labeled, stained, and stored. Blood smears may be read to investigate results of the hematology analyses. If additional examination of blood smears is deemed necessary, the smears may be subsequently evaluated and this evaluation will be described in a study plan amendment.

        • (2) Blood Collection for Coagulation Test: Approximately 1.7 mL blood will be collected into sodium citrate anticoagulation tubes at RT and sent to clinical pathology lab. The parameters listed in Table 9 will be performed to test coagulation function.

        • (3) Blood Collection for Clinical Chemistry: Whole blood samples (approximately 1.2 mL) without anticoagulant will be collected and held at RT and up-right for at least 30 minutes and sent to clinical pathology lab. The samples will be processed to serum, which will be examined for the parameters listed in Table 9.



      • 4.1.4 Blood Collection for Pharmacodynamics (PD)




















Blood:
All blood samples will be collected from a peripheral



vessel from restrained, non-sedated animals.


Animals:
All available, all groups


Post-Dose



Blood volume:
Approximately 5.6 mL


Anticoagulant:
Sodium citrate


Frequency:
Refer to Table 9. Actual sample collection times will be



recorded in the study records. For samples collected



within the first hour of dosing, a ± 1 minute is acceptable.



For the remaining time points, samples that are taken



within 5% of the scheduled time are acceptable and will



not be considered as protocol deviation.


Sample
For FXI ELISA: 2 mL Blood will be collected into a tube


Processing:
(Purchased from sponsor’s required company) containing



sodium citrate on wet ice. Then all the blood will be



mixed upside down 4 times. Samples will be



centrifuged (1000 g for 20 minutes at 4° C.) and



approximately 1 mL plasma will be transferred



into two tubes quickly (approximately



0.50 mL per tube). One tube (labeled frozen plasma)



should be frozen instantly in liquid nitrogen, then stored



at −80° C.



For FXI Activity Assays: 3 mL Blood will be collected



into a tube (Purchased from sponsor’s required company)



containing sodium citrate on wet ice. Then all the blood



will be mixed upside down 4 times. Samples will be



centrifuged (1660 g for 10 minutes at 4° C.) and



approximately 1.5 mL plasma will be transferred into two



labeled polypropylene micro-centrifuge tubes quickly



(approximately 0.70 mL per tube). One tube (labeled



frozen plasma) should be frozen instantly in liquid



nitrogen, then stored at −80° C.. Another tube should be



in a cool set to maintain 2-6° C. and shipped within



2-4 hours in 4° C. for analysis of Factor XI protein



for Activity Assays.



For Serum: Whole blood samples (approximately 0.6 mL)



without anticoagulant will be collected and held at RT



and up-right for at least 30 minutes and then samples



will be centrifuged (3200 g for 10 minutes at 4° C.) and



approximately 0.3 mL serum will be transferred into tubes



quickly. The tube should be frozen instantly in liquid



nitrogen, then stored at −80° C. until analysis.









  • 5 Protocol Amendments and Deviations
    • Changes to the approved protocol will be in the form of amendments approved by the Study Director and the Sponsor. Amendments will describe the protocol changes clearly and will include the effective date of the change and the justification for the change. The Study Director and Study Representative may authorize protocol changes by telephone or electronic means if he/she is not physically present at the time urgent or critical changes are required. Any authorization for such changes made as above must be documented appropriately and followed by a properly prepared written protocol amendment. The amendment must be signed and dated by the Study Director within 45 days of the effective date(s).
    • All deviations from the protocol and SOPs and the reasons of the deviations will be documented and acknowledged by the Study Director. The Sponsors Representative will be informed promptly of the occurrence of any deviations that might affect the results of the study, and any corrective actions taken. Protocol and SOP deviations that could impact data interpretation will be included in the final report.

  • 6 Archiving of Materials
    • Test article preparation, test article tracking, in-life data, protocol, protocol amendments (if applicable), and the original final report generated as a result of this study will be archived.

  • 7 STATISTICAL ANALYSIS
    • The following section does not apply to data recorded on unscheduled occasions. Such data will be reported on an individual basis.
    • All numerical data will be subjected to calculation of group means and standard deviations by using Microsoft Excel software, unless otherwise stated hereafter. These descriptive statistics will be presented for each dataset of interest, as determined by the variable to be analyzed and the dataset classification variables (for example: sex, measurement occasion, and any other relevant variable that can be used to specify on which subdivision the descriptive statistics have to be reported).
    • If a dataset has less than three non-missing values in each group, then the following inferential data analysis will not be conducted. No inferential data analysis will be conducted on toxicokinetic parameters and semi-quantitative data such as: urine protein, urine pH, urine bilirubin, urine occult blood, urine glucose, and urine ketones.
    • Whenever there are more than two groups, the homogeneity of the group variances will be evaluated using Levene's test at the 0.05 significance level. If differences between group variances are not found to be significant (p>0.05), then a parametric one-way analysis of variance (ANOVA) will be performed. When significant differences among the means are indicated by ANOVA test (p≤0.05), Dunnett's test will be used to perform the group mean comparisons between the control group and each treated group.
    • If Levene's test indicates heterogeneous group variances (p≤0.05) and the data set contains just positive values, log transformation will be performed. If transformed data still fail the test for homogeneity of variance (p≤0.05) or where the data contain zero and/or negative values, then the non-parametric Kruskal-Wallis test will be used to compare all considered groups.



When Kruskal-Wallis test is significant (p≤0.05), Dunnett's test on ranks will be used to perform the pairwise group comparisons of interest.

    • Whenever there are only two groups to compare, Levene's test will be performed as described above but a two-sample t-test will replace the one-way ANOVA, a Wilcoxon rank-sum test will be performed instead of the Kruskal-Wallis and, no Dunnett's tests or Dunnett's tests on ranks will be performed.
    • Each pairwise group comparisons of interest will be conducted via a two-sided test at the 5% significance level. Significant results will be reported as either p≤0.001, p≤0.01, or p≤0.05, where p represents the observed probability.


Results


The results of the study are depicted in FIGS. 25, 27 and 28.



FIG. 25 shows performance of construct designated “91-Conv-31” (structure displayed in FIG. 22) in an in vivo study in terms of Factor XI activity knock-down. The effect of different dosages (expressed in mg/kg) and of single or multiple dosing at the beginning are shown and compared to a negative control (saline).


Efficient and unexpectedly long-lasting knock-down is apparent.



FIG. 26 shows the molecular mechanism underlying the tests for targeting specificity as performed in the course of an in vivo study.


APTT stands for activated partial thromboplastin time. It measures the activity of intrinsic pathway of clotting that is impacted by factors like FXI. PT stands for prothrombin time which evaluates the integrity of extrinsic pathway of clotting that looks at the presence of factors like VII, V, X, prothrombin and fibrinogen.



FIG. 27 shows the read-out of the tests illustrated in FIG. 26.


The % FXI plasma activity (FIG. 25), together with APTT and PT data (FIG. 27) demonstrate that the molecule specifically targets FXI and does not have any off-target effect on the extrinsic clotting pathway.



FIG. 28 presents data demonstrating a lack of side effects. A panel liver function and hematology parameters have been assessed. In particular, no elevated levels of liver enzymes and no changes in hematology parameters could be found.

Claims
  • 1. An oligomeric compound that inhibits expression of FXI, comprising a first nucleobase sequence that is at least partially complementary to at least a portion of RNA transcribed from an FXI gene, wherein said first nucleobase sequence is selected from the sequences selected from the group consisting of SEQ ID NOs 1 to 250, and SEQ ID NOs 1251 to 1500.
  • 2. An oligomeric compound according to claim 1, further comprising a second nucleobase sequence that is at least partially complementary to said first nucleobase sequence and is selected from the group consisting of: SEQ ID NOs 251 to 500, and SEQ ID NOs 1501 to 1750.
  • 3-12. (canceled)
  • 13. An oligomeric compound that inhibits expression of FXI, comprising at least a first region of linked nucleosides that is at least partially complementary to at least a portion of an RNA transcribed from an FXI gene, wherein said RNA is selected from the sequences selected from the group consisting of SEQ ID NOs 1001 to 1250.
  • 14. An oligomeric compound according to claim 13, wherein said RNA is selected from the following sequences, or a portion thereof: SEQ ID NOs 1008, 1013, 1027, 1039, 1046, 1091, 1098, 1103, 1105, 1109, 1120, 1140, 1146, 1151, 1152, 1163, 1182, 1183, 1199, 1207, 1210, 1218, 1220, 1223, 1224, 1238.
  • 15. An oligomeric compound according to claim 13, wherein said RNA is selected from the following sequences, or a portion thereof: SEQ ID NOs 1008, 1046, 1091, 1146, 1152, 1207.
  • 16. An oligomeric compound according to claim 13, wherein said RNA is selected from the following sequences, or a portion thereof: SEQ ID NOs 1046, 1091, 1152.
  • 17. An oligomeric compound according to claim 1, wherein said first region of linked nucleosides consists essentially of 18 to 20 linked nucleosides.
  • 18. An oligomeric compound according to claim 2, wherein said second region of linked nucleosides consists essentially of 11 to 16, 12 to 15, or 13 to 16 linked nucleosides.
  • 19. An oligomeric compound according to claim 2, comprising at least one complementary duplex region that comprises at least a portion of said first nucleoside region directly or indirectly linked to at least a portion of said second nucleoside region.
  • 20. An oligomeric compound according to claim 19, wherein each of said first and second nucleoside regions has a 5′ to 3′ directionality thereby defining 5′ and 3′ regions respectively thereof.
  • 21. An oligomeric compound according to claim 20, wherein the 5′ region of said first nucleoside region is directly or indirectly linked to the 3′ region of said second nucleoside region, for example by complementary base pairing, and/or wherein the 3′ region of said first nucleoside region is directly or indirectly linked to the 5′ region of said second nucleoside region.
  • 22. An oligomeric compound according to claim 1, further comprising one or more ligands.
  • 23. An oligomeric compound according to claim 21, wherein said one or more ligands are conjugated to said second nucleoside region.
  • 24-28. (canceled)
  • 29. An oligomeric compound according to claim 28, wherein said one or more carbohydrates comprise one or more N-Acetyl-Galactosamine moieties.
  • 30-32. (canceled)
  • 33. An oligomeric compound according to claim 19, wherein said oligomeric compound comprises a single strand comprising said first and second nucleoside regions, wherein said single strand dimerises whereby at least a portion of said first nucleoside region is directly or indirectly linked to at least a portion of said second nucleoside region so as to form said at least partially complementary duplex region.
  • 34-35. (canceled)
  • 36. An oligomeric compound according to claim 34, wherein said hairpin loop comprises 4 or 5 linked nucleosides.
  • 37-73. (canceled)
  • 74. An oligomeric compound according to claim 1, wherein one or more nucleosides of the first nucleoside region and/or the second nucleoside region is an inverted nucleoside and is attached to an adjacent nucleoside via the 3′ carbon of its sugar and the 3′ carbon of the sugar of the adjacent nucleoside, and/or one or more nucleosides of the first nucleoside region and/or the second nucleoside region is an inverted nucleoside and is attached to an adjacent nucleoside via the 5′ carbon of its sugar and the 5′ carbon of the sugar of the adjacent nucleoside.
  • 75-76. (canceled)
  • 77. An oligomeric compound that inhibits expression of FXI, comprising at least a first region of linked nucleosides having at least a first nucleobase sequence selected from the group consisting of: constructs SEQ NOs 501 to 750, and constructs SEQ NOs 1751 to 2000.
  • 78. An oligomeric compound according to claim 77, further comprising at least a second region of linked nucleosides having at least a second nucleobase sequence that is at least partially complementary to said first nucleobase sequence, wherein said second nucleobase sequence is a modified sequence and is selected from the group consisting of construct NOs 751 to 1000, and constructs NOs 2001 to 2250.
  • 79-87. (canceled)
  • 88. An oligomeric compound according to claim 86 or 87, further comprising one or more ligands.
  • 89-94. (canceled)
  • 95. An oligomeric compound according to claim 88 wherein said one or more carbohydrates comprise one or more N-Acetyl-Galactosamine moieties.
  • 96-100. (canceled)
  • 101. A composition comprising an oligomeric compound according to claim 1, and a physiologically acceptable excipient.
  • 102-103. (canceled)
  • 104. A method of treating a disease or disorder comprising administering an oligomeric compound according to claim 1 to an individual in need of treatment.
  • 105-109. (canceled)
Provisional Applications (2)
Number Date Country
63253040 Oct 2021 US
63174533 Apr 2021 US