The present invention is related to the field of gene editing. In particular, the gene editing is directed toward single nucleotide base editing. For example, such single nucleotide base editing results in a conversion of a CG base pair to a TA base pair. The high accuracy and precision of the presently disclosed single nucleotide base gene editor is accomplished by an NmeCas9 nuclease that is fused to a nucleotide deaminase protein. The compact nature of the NmeCas9 coupled with a larger number of compatible protospacer adjacent motifs provide the Cas9 fusion constructs contemplated herein to have a gene editing window that can edit sites that are not targetable by other conventional SpyCas9 base editor platforms.
Many human diseases arise due to the mutation of a single base. The ability to correct such genetic aberrations is paramount in treating these genetic disorders. Clustered regularly interspaced short palindromic repeats (CRISPR) along with CRISPR associated (Cas) proteins comprise an RNA-guided adaptive immune system in archaea and bacteria. These systems provide immunity by targeting and inactivating nucleic acids that originate from foreign genetic elements.
SpyCas9 base editing platforms cannot be used to target all single-base mutations due to their limited editing windows. The editing window is constrained in part by the requirement for an NGG PAM and by the requirement that the edited base(s) be a very precise distance from the PAM. SpyCas9 is also intrinsically associated with high off-targeting effects in genome editing.
What is needed in the art is a highly accurate Cas9 single base editing platform having a programmable target specificity due to recognition of a diverse population of PAM sites.
The present invention is related to the field of gene editing. In particular, the gene editing is directed toward single nucleotide base editing. For example, such single nucleotide base editing results in a conversion of a CG base pair to a TA base pair. The high accuracy and precision of the presently disclosed single nucleotide base gene editor is accomplished by an NmeCas9 nuclease that is fused to a nucleotide deaminase protein. The compact nature of the NmeCas9 coupled with a larger number of compatible protospacer adjacent motifs provide the Cas9 fusion constructs contemplated herein to have a gene editing window that is superior to other conventional SpyCas9 base editor platforms.
In one embodiment, the present invention contemplates a mutated NmeCas9 protein comprising a fused nucleotide deaminase and a binding region for an N4CC nucleotide sequence. In one embodiment, said protein is Nme2Cas9. In one embodiment, said protein further comprises a nuclear localization signal protein. In one embodiment, said nucleotide deaminase is a cytidine deaminase. In one embodiment, said nucleotide deaminase is an adenosine deaminase. In one embodiment, the protein further comprises a uracil glycosylase inhibitor. In one embodiment, the said nuclear localization signal protein includes, but is not limited to, nucleoplasmin (NLS) and/or SV40 NLS and/or C-myc NLS. In one embodiment, said binding region is a protospacer accessory motif interacting domain. In one embodiment, said protospacer accessory motif interacting domain comprises said mutation. In one embodiment, said mutation is a D16A mutation. In one embodiment, said mutated NmeCas9 protein further comprises CBE4. In one embodiment, said mutated NmeCas9 protein further comprises a linker. In one embodiment, said linker is a 73aa linker. In one embodiment, said linker is a 3×HA-tag.
In one embodiment, the present invention contemplates a construct, wherein said construct is an optimized nNme2Cas9-ABEmax.
In one embodiment, the present invention contemplates a construct, wherein said construct is a nNme2Cas9-CBE4.
In one embodiment, the present invention contemplates a construct, wherein said construct is a YE1-BE3-nNme2Cas9 (D16A)-UGI.
In one embodiment, the present invention contemplates an adeno-associated virus comprising a mutated NmeCas9 protein, said mutated NmeCas9 protein comprising a fused nucleotide deaminase and a binding region for an N4CC nucleotide sequence. In one embodiment, said virus is an adeno-associated virus 8. In one embodiment, said virus is an adeno-associated virus 6. In one embodiment, said protein is Nme2Cas9. In one embodiment, said protein further comprises a nuclear localization signal protein. In one embodiment, said nucleotide deaminase is a cytidine deaminase. In one embodiment, said nucleotide deaminase is an adenosine deaminase. In one embodiment, the protein further comprises a uracil glycosylase inhibitor. In one embodiment, the nuclear localization signal protein includes, but is not limited to, nucleoplasmin (NLS) and/or SV40 NLS and/or C-myc NLS. In one embodiment, said binding region is a protospacer accessory motif interacting domain. In one embodiment, said protospacer accessory motif interacting domain comprises said mutation. In one embodiment, said mutation is a D16A mutation. In one embodiment, said mutated NmeCas9 protein further comprises CBE4. In one embodiment, said mutated NmeCas9 protein further comprises a linker. In one embodiment, said linker is a 73aa linker. In one embodiment, said linker is a 3×HA-tag.
In one embodiment, the present invention contemplates a construct, wherein said construct is an optimized nNme2Cas9-ABEmax.
In one embodiment, the present invention contemplates a construct, wherein said construct is a nNme2Cas9-CBE4.
In one embodiment, the present invention contemplates a construct, wherein said construct is a YE1-BE3-nNme2Cas9 (D16A)-UGI.
In one embodiment, the present invention contemplates a method, comprising: a) providing; i) a nucleotide sequence comprising a gene with a mutated single base, wherein said gene is flanked by an N4CC nucleotide sequence; ii) a mutated NmeCas9 protein comprising a fused nucleotide deaminase and a binding region for said N4CC nucleotide sequence; b) contacting said nucleotide sequence with said mutated NmeCas9 protein under conditions such that said binding region attaches to said N4CC nucleotide sequence; and c) replacing said mutated single base with a wild type base with said mutated NmeCas9 protein. In one embodiment, said protein is Nme2Cas9. In one embodiment, said protein further comprises a nuclear localization signal protein. In one embodiment, said nucleotide deaminase is a cytidine deaminase. In one embodiment, said nucleotide deaminase is an adenosine deaminase. In one embodiment, the protein further comprises a uracil glycosylase inhibitor. In one embodiment, the nuclear localization signal protein includes, but is not limited to, nucleoplasmin (NLS) and/or SV40 NLS and/or C-myc NLS. In one embodiment, said binding region is a protospacer accessory motif interacting domain. In one embodiment, said protospacer accessory motif interacting domain comprises said mutation. In one embodiment, said mutation is a D16A mutation. In one embodiment, said mutated NmeCas9 protein further comprises CBE4. In one embodiment, said mutated NmeCas9 protein further comprises a linker. In one embodiment, said linker is a 73aa linker. In one embodiment, said linker is a 3×HA-tag. In one embodiment, said gene encodes a tyrosinase. In one embodiment, said gene is Fah. In one embodiment, said gene is c-fos.
In one embodiment, the present invention contemplates a method, comprising: a) providing; i) a patient comprising a nucleotide sequence comprising a gene with a mutated single base, wherein said gene is flanked by an N4CC nucleotide sequence, wherein said mutated gene causes a genetically-based medical condition; ii) an adeno-associated virus comprising a mutated NmeCas9 protein, said mutated NmeCas9 protein comprising a fused nucleotide deaminase and a binding region for said N4CC nucleotide sequence; b) treating said patient with said adeno-associated virus under conditions such that said mutated NmeCas9 protein replaces said mutated single base with a wild type single base, such that said genetically-based medical condition does not develop. In one embodiment, said gene encodes a tyrosinase protein. In one embodiment, said genetically-based medical condition is tyrosinemia. In one embodiment, said virus is an adeno-associated virus 8. In one embodiment, said virus is an adeno-associated virus 6. In one embodiment, said protein is Nme2Cas9. In one embodiment, said protein further comprises a nuclear localization signal protein. In one embodiment, said nucleotide deaminase is a cytidine deaminase. In one embodiment, said nucleotide deaminase is an adenosine deaminase. In one embodiment, the protein further comprises a uracil glycosylase inhibitor. In one embodiment, the nuclear localization signal protein includes, but is not limited to, nucleoplasmin (NLS) and/or SV40 NLS and/or C-myc NLS. In one embodiment, said binding region is a protospacer accessory motif interacting domain. In one embodiment, said protospacer accessory motif interacting domain comprises said mutation. In one embodiment, said mutation is a D16A mutation. In one embodiment, said mutated NmeCas9 protein further comprises CBE4. In one embodiment, said mutated NmeCas9 protein further comprises a linker. In one embodiment, said linker is a 73aa linker. In one embodiment, said linker is a 3×HA-tag. In one embodiment, said gene encodes a tyrosinase. In one embodiment, said gene is Fah. In one embodiment, said gene is c-fos.
In one embodiment, the present invention contemplates a method, comprising: a) providing; i) a patient comprising a nucleotide sequence comprising a gene with a mutated single base, wherein said gene is flanked by an N4CC nucleotide sequence, wherein said mutated gene causes a genetically-based medical condition; ii) an optimized nNme2Cas9-ABEmax, comprising a mutated NmeCas9 protein, said mutated NmeCas9 protein comprising a fused nucleotide deaminase and a binding region for said N4CC nucleotide sequence; b) treating said patient with said optimized nNme2Cas9-ABEmax under conditions such that said mutated NmeCas9 protein replaces said mutated single base with a wild type single base, such that said genetically-based medical condition does not develop.
In one embodiment, the present invention contemplates a method, comprising: a) providing; i) a patient comprising a nucleotide sequence comprising a gene with a mutated single base, wherein said gene is flanked by an N4CC nucleotide sequence, wherein said mutated gene causes a genetically-based medical condition; ii) a nNme2Cas9-CBE4, comprising a mutated NmeCas9 protein, said mutated NmeCas9 protein comprising a fused nucleotide deaminase and a binding region for said N4CC nucleotide sequence; b) treating said patient with said nNme2Cas9-CBE4 under conditions such that said mutated NmeCas9 protein replaces said mutated single base with a wild type single base, such that said genetically-based medical condition does not develop.
In one embodiment, the present invention contemplates a method, comprising: a) providing; i) a patient comprising a nucleotide sequence comprising a gene with a mutated single base, wherein said gene is flanked by an N4CC nucleotide sequence, wherein said mutated gene causes a genetically-based medical condition; ii) a YE1-BE3-nNme2Cas9 (D16A)-UGI, comprising a mutated NmeCas9 protein, said mutated NmeCas9 protein comprising a fused nucleotide deaminase and a binding region for said N4CC nucleotide sequence; b) treating said patient with said nNme2Cas9-CBE4 under conditions such that said mutated NmeCas9 protein replaces said mutated single base with a wild type single base, such that said genetically-based medical condition does not develop.
To facilitate the understanding of this invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as “a”, “an” and “the” are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as outlined in the claims.
As used herein, the term “edit” “editing” or “edited” refers to a method of altering a nucleic acid sequence of a polynucleotide (e.g., for example, a wild type naturally occurring nucleic acid sequence or a mutated naturally occurring sequence) by selective deletion of a specific genomic target. Such a specific genomic target includes, but is not limited to, a chromosomal region, a gene, a promoter, an open reading frame or any nucleic acid sequence.
As used herein, the term “single base” refers to one, and only one, nucleotide within a nucleic acid sequence. When used in the context of single base editing, it is meant that the base at a specific position within the nucleic acid sequence is replaced with a different base. This replacement may occur by many mechanisms, including but not limited to, substitution or modification.
As used herein, the term “target” or “target site” refers to a pre-identified nucleic acid sequence of any composition and/or length. Such target sites include, but is not limited to, a chromosomal region, a gene, a promoter, an open reading frame or any nucleic acid sequence. In some embodiments, the present invention interrogates these specific genomic target sequences with complementary sequences of gRNA.
The term “on-target binding sequence” as used herein, refers to a subsequence of a specific genomic target that may be completely complementary to a programmable DNA binding domain and/or a single guide RNA sequence.
The term “off-target binding sequence” as used herein, refers to a subsequence of a specific genomic target that may be partially complementary to a programmable DNA binding domain and/or a single guide RNA sequence.
The term “effective amount” as used herein, refers to a particular amount of a pharmaceutical composition comprising a therapeutic agent that achieves a clinically beneficial result (i.e., for example, a reduction of symptoms). Toxicity and therapeutic efficacy of such compositions can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index, and it can be expressed as the ratio LD50/ED50. Compounds that exhibit large therapeutic indices are preferred. The data obtained from these cell culture assays and additional animal studies can be used in formulating a range of dosage for human use. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.
The term “symptom”, as used herein, refers to any subjective or objective evidence of disease or physical disturbance observed by the patient. For example, subjective evidence is usually based upon patient self-reporting and may include, but is not limited to, pain, headache, visual disturbances, nausea and/or vomiting. Alternatively, objective evidence is usually a result of medical testing including, but not limited to, body temperature, complete blood count, lipid panels, thyroid panels, blood pressure, heart rate, electrocardiogram, tissue and/or body imaging scans.
The term “disease” or “medical condition”, as used herein, refers to any impairment of the normal state of the living animal or plant body or one of its parts that interrupts or modifies the performance of the vital functions. Typically manifested by distinguishing signs and symptoms, it is usually a response to: i) environmental factors (as malnutrition, industrial hazards, or climate); ii) specific infective agents (as worms, bacteria, or viruses); iii) inherent defects of the organism (as genetic anomalies); and/or iv) combinations of these factors.
The terms “reduce,” “inhibit,” “diminish,” “suppress,” “decrease,” “prevent” and grammatical equivalents (including “lower,” “smaller,” etc.) when in reference to the expression of any symptom in an untreated subject relative to a treated subject, mean that the quantity and/or magnitude of the symptoms in the treated subject is lower than in the untreated subject by any amount that is recognized as clinically relevant by any medically trained personnel. In one embodiment, the quantity and/or magnitude of the symptoms in the treated subject is at least 10% lower than, at least 25% lower than, at least 50% lower than, at least 75% lower than, and/or at least 90% lower than the quantity and/or magnitude of the symptoms in the untreated subject.
The term “attached” as used herein, refers to any interaction between a medium (or carrier) and a drug. Attachment may be reversible or irreversible. Such attachment includes, but is not limited to, covalent bonding, ionic bonding, Van der Waals forces or friction, and the like. A drug is attached to a medium (or carrier) if it is impregnated, incorporated, coated, in suspension with, in solution with, mixed with, etc.
The term “drug” or “compound” as used herein, refers to any pharmacologically active substance capable of being administered which achieves a desired effect. Drugs or compounds can be synthetic or naturally occurring, non-peptide, proteins or peptides, oligonucleotides or nucleotides, polysaccharides or sugars.
The term “administered” or “administering”, as used herein, refers to any method of providing a composition to a patient such that the composition has its intended effect on the patient. An exemplary method of administering is by a direct mechanism such as, local tissue administration (i.e., for example, extravascular placement), oral ingestion, transdermal patch, topical, inhalation, suppository etc.
The term “patient” or “subject”, as used herein, is a human or animal and need not be hospitalized. For example, out-patients, persons in nursing homes are “patients.” A patient may comprise any age of a human or non-human animal and therefore includes both adult and juveniles (i.e., children). It is not intended that the term “patient” connote a need for medical treatment, therefore, a patient may voluntarily or involuntarily be part of experimentation whether clinical or in support of basic science studies.
The term “affinity” as used herein, refers to any attractive force between substances or particles that causes them to enter into and remain in chemical combination. For example, an inhibitor compound that has a high affinity for a receptor will provide greater efficacy in preventing the receptor from interacting with its natural ligands, than an inhibitor with a low affinity.
The term “pharmaceutically” or “pharmacologically acceptable”, as used herein, refer to molecular entities and compositions that do not produce adverse, allergic, or other untoward reactions when administered to an animal or a human.
The term, “pharmaceutically acceptable carrier”, as used herein, includes any and all solvents, or a dispersion medium including, but not limited to, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils, coatings, isotonic and absorption delaying agents, liposome, commercially available cleansers, and the like. Supplementary bioactive ingredients also can be incorporated into such carriers.
The term “viral vector” encompasses any nucleic acid construct derived from a virus genome capable of incorporating heterologous nucleic acid sequences for expression in a host organism. For example, such viral vectors may include, but are not limited to, adeno-associated viral vectors, lentiviral vectors, SV40 viral vectors, retroviral vectors, adenoviral vectors. Although viral vectors are occasionally created from pathogenic viruses, they may be modified in such a way as to minimize their overall health risk. This usually involves the deletion of a part of the viral genome involved with viral replication. Such a virus can efficiently infect cells but, once the infection has taken place, the virus may require a helper virus to provide the missing proteins for production of new virions. Preferably, viral vectors should have a minimal effect on the physiology of the cell it infects and exhibit genetically stable properties (e.g., do not undergo spontaneous genome rearrangement). Most viral vectors are engineered to infect as wide a range of cell types as possible. Even so, a viral receptor can be modified to target the virus to a specific kind of cell. Viruses modified in this manner are said to be pseudotyped. Viral vectors are often engineered to incorporate certain genes that help identify which cells took up the viral genes. These genes are called marker genes. For example, a common marker gene confers antibiotic resistance to a certain antibiotic.
As used herein the “ROSA26 gene” or “Rosa26 gene” refers to a human or mouse (respectively) locus that is widely used for achieving generalized expression in the mouse. Targeting to the ROSA26 locus may be achieved by introducing a desired gene into the first intron of the locus, at a unique XbaI site approximately 248 bp upstream of the original gene trap line. A construct may be constructed using an adenovirus splice acceptor followed by a gene of interest and a polyadenylation site inserted at the unique XbaI site. A neomycin resistance cassette may also be included in the targeting vector.
As used herein the “PCSK9 gene” or “Pcsk9 gene” refers to a human or mouse (respectively) locus that encodes a PCSK9 protein. The PCSK9 gene resides on chromosome 1 at the band 1p32.3 and includes 13 exons. This gene may produce at least two isoforms through alternative splicing.
The term “proprotein convertase subtilisin/kexin type 9” and “PCSK9” refers to a protein encoded by a gene that modulates low density lipoprotein levels. Proprotein convertase subtilisin/kexin type 9, also known as PCSK9, is an enzyme that in humans is encoded by the PCSK9 gene. Seidah et al., “The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation” Proc. Natl. Acad. Sci. U.S.A. 100 (3): 928-933 (2003). Similar genes (orthologs) are found across many species. Many enzymes, including PSCK9, are inactive when they are first synthesized, because they have a section of peptide chains that blocks their activity; proprotein convertases remove that section to activate the enzyme. PSCK9 is believed to play a regulatory role in cholesterol homeostasis. For example, PCSK9 can bind to the epidermal growth factor-like repeat A (EGF-A) domain of the low-density lipoprotein receptor (LDL-R) resulting in LDL-R internalization and degradation. Clearly, it would be expected that reduced LDL-R levels result in decreased metabolism of LDL-C, which could lead to hypercholesterolemia.
The term “hypercholesterolemia” as used herein, refers to any medical condition wherein blood cholesterol levels are elevated above the clinically recommended levels. For example, if cholesterol is measured using low density lipoproteins (LDLs), hypercholesterolemia may exist if the measured LDL levels are above, for example, approximately 70 mg/dl. Alternatively, if cholesterol is measured using free plasma cholesterol, hypercholesterolemia may exist if the measured free cholesterol levels are above, for example, approximately 200-220 mg/dl.
As used herein, the term “CRISPRs” or “Clustered Regularly Interspaced Short Palindromic Repeats” refers to an acronym for DNA loci that contain multiple, short, direct repetitions of base sequences. Each repetition contains a series of bases followed by 30 or so base pairs known as “spacer DNA”. The spacers are short segments of DNA from a virus and may serve as a ‘memory’ of past exposures to facilitate an adaptive defense against future invasions.
As used herein, the term “Cas” or “CRISPR-associated (cas)” refers to genes often associated with CRISPR repeat-spacer arrays.
As used herein, the term “Cas9” refers to a nuclease from Type II CRISPR systems, an enzyme specialized for generating double-strand breaks in DNA, with two active cutting sites (the HNH and RuvC domains), one for each strand of the double helix. Jinek combined tracrRNA and spacer RNA into a “single-guide RNA” (sgRNA) molecule that, mixed with Cas9, could find and cleave DNA targets through Watson-Crick pairing between the guide sequence within the sgRNA and the target DNA sequence.
The term “protospacer adjacent motif” (or PAM) as used herein, refers to a DNA sequence that may be required for a Cas9/sgRNA to form an R-loop to interrogate a specific DNA sequence through Watson-Crick pairing of its guide RNA with the genome. The PAM specificity may be a function of the DNA-binding specificity of the Cas9 protein (e.g., a “protospacer adjacent motif recognition domain” at the C-terminus of Cas9).
As used herein, the term “sgRNA” refers to single guide RNA used in conjunction with CRISPR associated systems (Cas). sgRNAs are a fusion of crRNA and tracrRNA and contain nucleotides of sequence complementary to the desired target site. Jinek et al., “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity” Science 337(6096):816-821 (2012) Watson-Crick pairing of the sgRNA with the target site permits R-loop formation, which in conjunction with a functional PAM permits DNA cleavage or in the case of nuclease-deficient Cas9 allows binds to the DNA at that locus.
As used herein, the term “fluorescent protein” refers to a protein domain that comprises at least one organic compound moiety that emits fluorescent light in response to the appropriate wavelengths. For example, fluorescent proteins may emit red, blue and/or green light. Such proteins are readily commercially available including, but not limited to: i) mCherry (Clonetech Laboratories): excitation: 556/20 nm (wavelength/bandwidth); emission: 630/91 nm; ii) sfGFP (Invitrogen): excitation: 470/28 nm; emission: 512/23 nm; iii) TagBFP (Evrogen): excitation 387/11 nm; emission 464/23 nm.
As used herein, the term “sgRNA” refers to single guide RNA used in conjunction with CRISPR associated systems (Cas). sgRNAs contains nucleotides of sequence complementary to the desired target site. Watson-crick pairing of the sgRNA with the target site recruits the nuclease-deficient Cas9 to bind the DNA at that locus.
As used herein, the term “orthogonal” refers targets that are non-overlapping, uncorrelated, or independent. For example, if two orthogonal nuclease-deficient Cas9 gene fused to different effector domains were implemented, the sgRNAs coded for each would not cross-talk or overlap. Not all nuclease-deficient Cas9 genes operate the same, which enables the use of orthogonal nuclease-deficient Cas9 gene fused to a different effector domains provided the appropriate orthogonal sgRNAs.
As used herein, the term “phenotypic change” or “phenotype” refers to the composite of an organism's observable characteristics or traits, such as its morphology, development, biochemical or physiological properties, phenology, behavior, and products of behavior. Phenotypes result from the expression of an organism's genes as well as the influence of environmental factors and the interactions between the two.
“Nucleic acid sequence” and “nucleotide sequence” as used herein refer to an oligonucleotide or polynucleotide, and fragments or portions thereof, and to DNA or RNA of genomic or synthetic origin which may be single- or double-stranded, and represent the sense or antisense strand.
The term “an isolated nucleic acid”, as used herein, refers to any nucleic acid molecule that has been removed from its natural state (e.g., removed from a cell and is, in a preferred embodiment, free of other genomic nucleic acid).
The terms “amino acid sequence” and “polypeptide sequence” as used herein, are interchangeable and to refer to a sequence of amino acids.
As used herein the term “portion” when in reference to a protein (as in “a portion of a given protein”) refers to fragments of that protein. The fragments may range in size from four amino acid residues to the entire amino acid sequence minus one amino acid.
The term “portion” when used in reference to a nucleotide sequence refers to fragments of that nucleotide sequence. The fragments may range in size from 5 nucleotide residues to the entire nucleotide sequence minus one nucleic acid residue.
As used herein, the terms “complementary” or “complementarity” are used in reference to “polynucleotides” and “oligonucleotides” (which are interchangeable terms that refer to a sequence of nucleotides) related by the base-pairing rules. For example, the sequence “C-A-G-T,” is complementary to the sequence “G-T-C-A.” Complementarity can be “partial” or “total.” “Partial” complementarity is where one or more nucleic acid bases is not matched according to the base pairing rules. “Total” or “complete” complementarity between nucleic acids is where each and every nucleic acid base is matched with another base under the base pairing rules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This is of particular importance in amplification reactions, as well as detection methods which depend upon binding between nucleic acids.
The terms “homology” and “homologous” as used herein in reference to nucleotide sequences refer to a degree of complementarity with other nucleotide sequences. There may be partial homology or complete homology (i.e., identity). A nucleotide sequence which is partially complementary, i.e., “substantially homologous,” to a nucleic acid sequence is one that at least partially inhibits a completely complementary sequence from hybridizing to a target nucleic acid sequence. The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or Northern blot, solution hybridization and the like) under conditions of low stringency. A substantially homologous sequence or probe will compete for and inhibit the binding (i.e., the hybridization) of a completely homologous sequence to a target sequence under conditions of low stringency. This is not to say that conditions of low stringency are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (i.e., selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% identity); in the absence of non-specific binding the probe will not hybridize to the second non-complementary target.
The terms “homology” and “homologous” as used herein in reference to amino acid sequences refer to the degree of identity of the primary structure between two amino acid sequences. Such a degree of identity may be directed to a portion of each amino acid sequence, or to the entire length of the amino acid sequence. Two or more amino acid sequences that are “substantially homologous” may have at least 50% identity, preferably at least 75% identity, more preferably at least 85% identity, most preferably at least 95%, or 100% identity.
An oligonucleotide sequence which is a “homolog” is defined herein as an oligonucleotide sequence which exhibits greater than or equal to 50% identity to a sequence, when sequences having a length of 100 bp or larger are compared.
Low stringency conditions comprise conditions equivalent to binding or hybridization at 42° C. in a solution consisting of 5×SSPE (43.8 g/l NaCl, 6.9 g/l NaH2PO4.H2O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.1% SDS, 5×Denhardt's reagent {50×Denhardt's contains per 500 ml: 5 g Ficoll (Type 400, Pharmacia), 5 g BSA (Fraction V; Sigma)} and 100 μg/ml denatured salmon sperm DNA followed by washing in a solution comprising 5×SSPE, 0.1% SDS at 42° C. when a probe of about 500 nucleotides in length is employed. Numerous equivalent conditions may also be employed to comprise low stringency conditions; factors such as the length and nature (DNA, RNA, base composition) of the probe and nature of the target (DNA, RNA, base composition, present in solution or immobilized, etc.) and the concentration of the salts and other components (e.g., the presence or absence of formamide, dextran sulfate, polyethylene glycol), as well as components of the hybridization solution may be varied to generate conditions of low stringency hybridization different from, but equivalent to, the above listed conditions. In addition, conditions which promote hybridization under conditions of high stringency (e.g., increasing the temperature of the hybridization and/or wash steps, the use of formamide in the hybridization solution, etc.) may also be used.
As used herein, the term “hybridization” is used in reference to the pairing of complementary nucleic acids using any process by which a strand of nucleic acid joins with a complementary strand through base pairing to form a hybridization complex. Hybridization and the strength of hybridization (i.e., the strength of the association between the nucleic acids) is impacted by such factors as the degree of complementarity between the nucleic acids, stringency of the conditions involved, the T. of the formed hybrid, and the G:C ratio within the nucleic acids.
As used herein the term “hybridization complex” refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bounds between complementary G and C bases and between complementary A and T bases; these hydrogen bonds may be further stabilized by base stacking interactions. The two complementary nucleic acid sequences hydrogen bond in an antiparallel configuration. A hybridization complex may be formed in solution (e.g., Co t or Ro t analysis) or between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized to a solid support (e.g., a nylon membrane or a nitrocellulose filter as employed in Southern and Northern blotting, dot blotting or a glass slide as employed in in situ hybridization, including FISH (fluorescent in situ hybridization)).
DNA molecules are said to have “5′ ends” and “3′ ends” because mononucleotides are reacted to make oligonucleotides in a manner such that the 5′ phosphate of one mononucleotide pentose ring is attached to the 3′ oxygen of its neighbor in one direction via a phosphodiester linkage. Therefore, an end of an oligonucleotide is referred to as the “5′ end” if its 5′ phosphate is not linked to the 3′ oxygen of a mononucleotide pentose ring. An end of an oligonucleotide is referred to as the “3′ end” if its 3′ oxygen is not linked to a 5′ phosphate of another mononucleotide pentose ring. As used herein, a nucleic acid sequence, even if internal to a larger oligonucleotide, also may be said to have 5′ and 3′ ends. In either a linear or circular DNA molecule, discrete elements are referred to as being “upstream” or 5′ of the “downstream” or 3′ elements. This terminology reflects the fact that transcription proceeds in a 5′ to 3′ fashion along the DNA strand. The promoter and enhancer elements which direct transcription of a linked gene are generally located 5′ or upstream of the coding region. However, enhancer elements can exert their effect even when located 3′ of the promoter element and the coding region. Transcription termination and polyadenylation signals are located 3′ or downstream of the coding region.
The term “transfection” or “transfected” refers to the introduction of foreign DNA into a cell.
As used herein, the terms “nucleic acid molecule encoding”, “DNA sequence encoding,” and “DNA encoding” refer to the order or sequence of deoxyribonucleotides along a strand of deoxyribonucleic acid. The order of these deoxyribonucleotides determines the order of amino acids along the polypeptide (protein) chain. The DNA sequence thus codes for the amino acid sequence.
As used herein, the term “gene” means the deoxyribonucleotide sequences comprising the coding region of a structural gene and including sequences located adjacent to the coding region on both the 5′ and 3′ ends for a distance of about 1 kb on either end such that the gene corresponds to the length of the full-length mRNA. The sequences which are located 5′ of the coding region and which are present on the mRNA are referred to as 5′ non-translated sequences. The sequences which are located 3′ or downstream of the coding region and which are present on the mRNA are referred to as 3′ non-translated sequences. The term “gene” encompasses both cDNA and genomic forms of a gene. A genomic form or clone of a gene contains the coding region interrupted with non-coding sequences termed “introns” or “intervening regions” or “intervening sequences.” Introns are segments of a gene which are transcribed into heterogeneous nuclear RNA (hnRNA); introns may contain regulatory elements such as enhancers. Introns are removed or “spliced out” from the nuclear or primary transcript; introns therefore are absent in the messenger RNA (mRNA) transcript. The mRNA functions during translation to specify the sequence or order of amino acids in a nascent polypeptide.
In addition to containing introns, genomic forms of a gene may also include sequences located on both the 5′ and 3′ end of the sequences which are present on the RNA transcript. These sequences are referred to as “flanking” sequences or regions (these flanking sequences are located 5′ or 3′ to the non-translated sequences present on the mRNA transcript). The 5′ flanking region may contain regulatory sequences such as promoters and enhancers which control or influence the transcription of the gene. The 3′ flanking region may contain sequences which direct the termination of transcription, posttranscriptional cleavage and polyadenylation.
The term “label” or “detectable label” are used herein, to refer to any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means. Such labels include biotin for staining with labeled streptavidin conjugate, magnetic beads (e.g., Dynabeads®), fluorescent dyes (e.g., fluorescein, texas red, rhodamine, green fluorescent protein, and the like), radiolabels (e.g., 3H, 125I, 35S, 14C, or 32P), enzymes (e.g., horse radish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and calorimetric labels such as colloidal gold or colored glass or plastic (e.g., polystyrene, polypropylene, latex, etc.) beads. Patents teaching the use of such labels include, but are not limited to, U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241 (all herein incorporated by reference in their entirety). The labels contemplated in the present invention may be detected by many methods. For example, radiolabels may be detected using photographic film or scintillation counters, fluorescent markers may be detected using a photodetector to detect emitted light. Enzymatic labels are typically detected by providing the enzyme with a substrate and detecting, the reaction product produced by the action of the enzyme on the substrate, and calorimetric labels are detected by simply visualizing the colored label.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
14B shows an exemplary Nme2Cas9 and SpyCas9 that both induce indels at DSs. Six DSs in VEGFA (with GN3GN19NGGNCC sequences) were selected for direct comparisons of editing by the two orthologs. Plasmids expressing each Cas9 (with the same promoter, linkers, tags and NLSs) and its cognate guide were transfected into HEK293T cells. Indel efficiencies were determined by TIDE 72 hrs post transfection. Nme2Cas9 editing was detectable at all six sites and was marginally or significantly more efficient than SpyCas9 at two sites (DS2 and DS6, respectively). SpyCas9 edited four out of the six sites (DS1, DS2. DS4 and DS6), with two sites showing significantly higher editing efficiencies than Nme2Cas9 (DS1 and DS4). DS2, DS4 and DS6 were selected for GUIDE-Seq analysis as Nme2Cas9 was equally efficient, less efficient and more efficient than SpyCas9, respectively, at these sites.
The present invention is related to the field of gene editing. In particular, the gene editing is directed toward single nucleotide base editing. For example, such single nucleotide base editing results in a conversion of a CG base pair to a TA base pair. The high accuracy and precision of the presently disclosed single nucleotide base gene editor is accomplished by an NmeCas9 nuclease that is fused to a nucleotide deaminase protein. The compact nature of the NmeCas9 coupled with a larger number of compatible protospacer adjacent motifs provide the Cas9 fusion constructs contemplated herein can edit sites that are not targetable by conventional SpyCas9 base editor platforms.
A. NmeCas9 Single Base Editing
Cas9 is a programmable nuclease that uses a guide RNA to create a double-stranded break at any desired genomic locus. This programmability has been harnessed for biomedical and therapeutic approaches. However, Cas9-induced breaks often lead to imprecise repair by the cellular machinery, hindering its therapeutic application for single-base corrections as well as uniform and precise gene knock-outs. Moreover, it is extremely challenging to combine Cas9-induced DNA double strand breaks and a repair template for homologous directed repair (HDR) for correcting genetic mutations in post-mitotic cells (e.g. neuronal cells).
Single nucleotide base editing is a genome editing approach where a nuclease-dead or -impaired Cas9 (e.g., dead Cas9 (dCas9) or nickase Cas9 (nCas9)) is fused to another enzyme capable of base-editing nucleotides without causing DNA double strand breaks. To date, two broad classes of Cas9 base editors have been developed: i) cytidine deaminase (edits a CG base pair to a TA base pair) SpyCas9 fusion protein; and ii) adenosine deaminase (edits a AT base pair to a GC base pair) SpyCas9. Liu et al., “Nucleobase editors and uses thereof” US 2017/0121693; and Lui et al., “Fusions of cas9 domains and nucleic acid-editing domains” US 2015/0166980; (both herein incorporated by reference).
However as mentioned above, SpyCas9 base editing platforms cannot be used to target all single-base mutations due to their limited editing windows. The editing window is constrained by the requirement for an NGG PAM. SpyCas9 is also intrinsically associated with high off-targeting effects in genome editing.
In one embodiment, the present invention contemplates a deaminase fusion protein with a compact and hyper-accurate Nme2Cas9 (Neisseria meningitidis spp.). This Nme2Cas9 has 1,082 amino acids as compared to SpyCas9 that has 1,368 amino acids. This Nme2Cas9 ortholog functions efficiently in mammalian cells, recognizes an N4CC PAM, and is intrinsically hyper-accurate. Edraki et al., Mol Cell. (in preparation).
Although it is not necessary to understand the mechanism of an invention, it is believed that the compactness and hyper-accuracy of an NmeCas9 base editor targets single-base mutations that could not be reached previously by other Cas9 platforms currently known in the art. It is further believed that the NmeCas9 base editors contemplated herein target pathogenic mutations that are not feasible via current base editor platforms, and with an increased base editing accuracy.
In one embodiment, the present invention contemplates a fusion protein comprising a Nme2Cas9 and a deaminase protein, exemplary examples including ABE7.10-nNme2Cas9 (D16A); Optimized nNme2Cas9-ABEmax; nNme2Cas9-CBE4 (equals BE4-nNme2Cas9 (D16A)-UGI-UGI) as well as ABEmax-nNme2Cas9 (D16A). See,
In one embodiment, the deaminase protein is Apobec1 (YE1-BE3). It is not intended to limit Apobec1 to one organism. In one embodiment, the Apobec1 is derived from a rat species. Kim et al., “Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions”. Nature Biotechnology 35 (2017). In one embodiment, the Nme2Cas9 comprises an nNme2Cas9 D16A mutant. In one embodiment, the fusion protein further comprises a uracil glycosylase inhibitor protein (UGI). In one embodiment, the fusion protein comprises a YE1-BE3-nNme2Cas9 (D16A)-UGI construct. In one embodiment, the YE1-BE3-nNme2Cas9 (D16A)-UGI construct has the sequence of:
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNK
HVEVNFIEKFTTERYFCPNTRCSITWFLSYSPCGECSRAITEFLSRYPHVTLFIYIARLYHH
ADPENRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLE
LYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK
SGSETPGTSESATP
ES
MAAFKPNPINYILGLAIGIASVGWAMVEIDEEENPIRLIDLGVRVFERAEVPKTGDSLAMAR
RLARSVRRLTRRRAHRLLRARRLLKREGVLQAADFDENGLIKSLPNTPWQLRAAALDRKLTPL
EWSAVLLHLIKHRGYLSQRKNEGETADKELGALLKGVANNAHALQTGDFRTPAELALNKFEK
ESGHIRNQRGDYSHTFSRKDLQAELILLFEKQKEFGNPHVSGGLKEGIETLLMTQRPALSGDA
VQKMLGHCTFEPAEPKAAKNTYTAERFIWLTKLNNLRILEQGSERPLTDTERATLMDEPYRKS
KLTYAQARKLLGLEDTAFFKGLRYGKDNAEASTLMEMKAYHAISRALEKEGLKDKKSPLNLSS
ELQDEIGTAFSLFKTDEDITGRLKDRVQPEILEALLKHISFDKFVQISLKALRRIVPLMEQGKR
YDEACAEIYGDHYGKKNTEEKIYLPPIPADEIRNPVVLRALSQARKVINGVVRRYGSPARIHIET
AREVGKSFKDRKEIEKRQEENRKDREKAAAKFREYFPNFVGEPKSKDILKLRLYEQQHGKCL
YSGKEINLVRLNEKGYVEIDAALPFSRTWDDSFNNKVLVLGSENQNKGNQTPYEYFNGKDNS
REWQEFKARVETSRFPRSKKQRILLQKFDEDGFKECNLNDTRYVNRFLCQFVADHILLTGKG
KRRVFASNGQITNLLRGFWGLRKVRAENDRHHALDAVVVACSTVAMQQKITRFVRYKEMNAF
DGKTIDKETGKVLHQKTHFPQPWEFFAQEVMIRVFGKPDGKPEFEEADTPEKLRTLLAEKLS
SRPEAVHEYVTPLFVSRAPNRKMSGAHKDTLRSAKRFVKHNEKISVKRVWLTEIKLADLENMV
NYKNGREIELYEALKARLEAYGGNAKQAFDPKDNPFYKKGGQLVKAVRVEKTQESGVLLNKK
NAYTIADNGDMVRVDVFCKVDKKGKNQYFIVPIYAWQVAENILPDIDCKGYRIDDSYTFCFSL
HKYDLIAFQKDEKSKVEFAYYINCDSSNGRFYLAWHDKGSKEQQFRISTQNLVLIQKYQVNEL
VHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKML
SGGSPKKKRKV*
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNK
HVEVNFIEKFTTERYFCPNTRCSITWFLSYSPCGECSRAITEFLSRYPHVTLFIYIARLYHH
ADPENRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLE
LYCHLGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK
SGSETPGTSESATP
ES
AIAAFKPNPINYILGLAIGIASVGWAMVEIDEEENPIRLIDLGVRVFERAEVPKTGDSLAMAR
RLARSVRRLTRRRAHRLLRARRLLKREGVLQAADFDENGLIKSLPNTPWQLRAAALDRKLTPL
EWSAVLLHLIKHRGYLSQRKNEGETADKELGALLKGVANNAHALQTGDERTPAELALNKFEK
ESGHIRNQRGDYSHTFSRKDLQAELILLFEKQKEFGNPHVSGGLKEGIETLLMTQRPALSGDA
VQKMLGHCTFEPAEPKAAKNTYTAERFIWLTKLNNLRILEQGSERPLTDTERATLMDEPYRKS
KLTYAQARKLLGLEDTAFFKGLRYGKDNAEASTLMEMKAYHAISRALEKEGLKDKKSPLNLSS
ELQDEIGTAFSLEKTDEDITGRLKDRVQPEILEALLKHISFDKEVQISLKALRRIVPLMEQGKR
YDEACAEIYGDHYGKKNTEEKIYLPPIPADEIRNPVVLRALSQARKVINGVVRRYGSPARIHIET
AREVGKSFKDRKEIEKRQEENRKDREKAAAKFREYFPNEVGEPKSKDILKLRLYEQQHGKCL
YSGKEINLVRLNEKGYVEIDAALPFSRTWDDSFNNKVLVLGSENQNKGNQTPYEYFNGKDNS
REWQEFKARVETSRFPRSKKQRILLQKFDEDGEKECNLNDTRYVNRELCQFVADHILLTGKG
KRRVFASNGQITNLLRGFWGLRKVRAENDRHHALDAVVVACSTVAMQQKITREVRYKEMNAF
DGKTIDKETGKVLHQKTHFPQPWEFFAQEVMIRVEGKPDGKPEFEEADTPEKLRTLLAEKLS
SRPEAVHEYVTPLEVSRAPNRKMSGAHKDTLRSAKREVKHNEKISVKRVWLTEIKLADLENMV
NYKNGREIELYEALKARLEAYGGNAKQAFDPKDNPFYKKGGQLVKAVRVEKTQESGVLLNKK
NAYTIADNGDMVRVDVECKVDKKGKNQYFIVPIYAWQVAENILPDIDCKGYRIDDSYTECFSL
HKYDLIAFQKDEKSKVEFAYYINCDSSNGRFYLAWHDKGSKEQQFRISTQNLVLIQKYQKYNVEL
GKEIRPCRLKKRPPVR
SGGS
TNLSDHEKETGKQLVIQESILMLPEEVEEVIGNKPESDI
LVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKML
SGGSPKKKRKV*
In one embodiment, the YE1-BE3-nNme2Cas9 (D16A)-UGI construct has the sequence of:
In one embodiment, the present invention contemplates a fusion protein comprising an NmeCas9/ABE7.10 deaminase protein. In one embodiment, the deaminase protein is TadA. In one embodiment, the deaminase protein is TadA 7.10. In one embodiment, the ABE7.10-nNme2Cas9 (D16A) construct has the following sequence:
MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH
AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG
SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SEVEFSHEYVVMRHALTLAKRARDEREVPVGAV
LVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCV
MCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAA
LLCYFFRMPRQVFNAQK
GGSSGGSSGSETPGTSESATPESSGGSSGGSMAAF
KPNPINYILGLAIGIASVGWAMVEIDEEENPIRLIDLGVRVFERAEVPKTGDSLAMARRLARSVR
RLTRRRAHRLLRARRLLKREGVLQAADFDENGLIKSLPNTPWQLRAAALDRKLTPLEWSAVLL
HLIKHRGYLSQRKNEGETADKELGALLKGVANNAHALQTGDFRTPAELALNKFEKESGHIRN
QRGDYSHTFSRKDLQAELILLFEKQKEFGNPHVSGGLKEGIETLLMTQRPALSGDAVQKMLG
HCTFEPAEPKAAKNTYTAERFIWLTKLNNLRILEQGSERPLTDTERATLMDEPYRKSKLTYAQA
RKLLGLEDTAFFKGLRYGKDNAEASTLMEMKAYHAISRALEKEGLKDKKSPLNLSSELQDEIG
TAFSLFKTDEDITGRLKDRVQPEILEALLKHISFDKFVQISLKALRRIVPLMEQGKRYDEACAEI
YGDHYGKKNTEEKIYLPPIPADEIRNPVVLRALSQARKVINGVVRRYGSPARIHIETAREVGKSF
KDRKEIEKRQEENRKDREKAAAKFREYFPNFVGEPKSKDILKLRLYEQQHGKCLYSGKEINLV
RLNEKGYVEIDHALPFSRTWDDSFNNKVLVLGSENQNKGNQTPYEYFNGKDNSREWQEFKA
RVETSRFPRSKKQRILLQKFDEDGFKECNLNDTRYVNRFLCQFVADHILLTGKGKRRVFASN
GQITNLLRGFWGLRKVRAENDRHHALDAVVVACSTVAMQQKITRFVRYKEMNAFDGKTIDK
ETGKVLHQKTHFPQPWEFFAQEVMIRVFGKPDGKPEFEEADTPEKLRTLLAEKLSSRPEAVH
EYVTPLFVSRAPNRKMSGAHKDTLRSAKRFVKHNEKISVKRVWLTEIKLADLENMVNYKNGR
EIELYEALICARLEAYGGNAKQAFDPKDNPFYKKGGQLVKAVRVEKTQESGVLLNKKNAYTIA
DNGDMVRVDVFCKVDKKGKWQYFIVPIYAWQVAENILPDIDCKGYRIDDSYTFCFSLHKYDLI
AFQKDEKSKVEFAYYINCDSSNGRFYLAWHDKGSKEQQFRISTQNLVLIQKYQVNELGKEIRP
CRLKKRPPVR
EDKRPAATKKAGQAKKKK*
In one embodiment, an ABE7.10-nNme2Cas9 (D16A) construct has the following amino acid sequence:
MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH
AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG
SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SEVEFSHEYWMRHALTLAKRARDEREVPVGAV
LVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLV
M
QNYRLIDATLYVTFEPCV
MCAGAMIIISRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAA
LLCYFFRIVIPRQVFNAQKKAQSSTD
MA
AFKPNPINYILGLAIGIASVGWAMVEIDEEENPIRLIDLGVRVFERAEVPKTGDSLAMARRLARS
VRRLTRRRAHRLLRARRLLKREGVLQAADFDENGLIKSLPNTPWQLRAAALDRKLTPLEWSAV
LLHLIKHRGYLSQRKNEGETADKELGALLKGVANNAHALQTGDFRTPAELALNKFEKESGHI
RNQRGDYSHITSRKDLQAELILLFEKQKEFGNPHVSGGLKEGIETLLMTQRPALSGDAVQKM
LGHCTFEPAEPKAAKNTYTAERFIWLTKLNNLRILEQGSERPLTDTERATLMDEPYRKSKLTYA
QARKLLGLEDTAFFKGLRYGKDNAEASTLMEMKAYHAISRALEKEGLKDKKSPLNLSSELQD
EIGTAFSLEKTDEDITGRLKDRVQPEILEALLKHISFDKEVQISLKALRRIVPLMEQGKRYDEAC
AETYGDHYGKKNTEEKIYLPPIPADEIRNPVVLRALSQARKVINGVVRRYGSPARIHIETAREVG
KSFKDRKEIEKRQEENRKDREKAAAKFREYFPNEVGEPKSKDILKLRLYEQQHGKCLYSGKEI
NLVRLNEKGYVEIDHALPFSRTWDDSENNKVLVLGSENQNKGNQTPYEYENGKDNSREWQE
FKARVETSRFPRSKKQRILLQKFDEDGEKECNLNDTRYVNRELCQFVADHILLTGKGKRRVF
ASNGQITNLLRGFWGLRKVRAENDRHHALDAVVVACSTVAMQQKITREVRYKEMNAFDGKTI
DKETGKVLHQKTHFPQPWEFFAQEVMIRVFGKPDGKPEFEEADTPEKLRTLLAEKLSSRPEA
VHEYVTPLEVSRAPNRKMSGAHKDTLRSAKREVKHNEKISVKRVWLTEIKLADLENMVNYKN
GREIELYEALKARLEAYGGNAKQAFDPKDNPFYKKGGQLVKAVRVEKTQESGVLLNKKNAYT
IADNGDMVRVDVECKVDKKGKNQYFIVPIYAWQVAENILPDIDCKGYRIDDSYTECFSLHKYD
LIAFQKDEKSKVEFAYYINCDSSNGRFYLAWHDKGSKEQQFRISTQNLVLIQKYQVNELGKEIR
PCRLKKRPPVR
KRPAATKKAGQAKKKK*
In one embodiment, an ABEmax-nNme2Cas9 (D16A) construct has the following amino acid sequence
PKKKRKV
SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNN
RVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIH
SRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQ
EIKAQKKAQSSTD
SEVEFSHEYWMRHA
LTLAKRARDEREVPVGAVLVLNNRVIGEGWNRAIGLIMPTAHAEIMALRQGGLV
MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYP
GMNHRVEITEGILADECAALLCYFFRMPRQVFNAQKKAQSSTD
MAAFKPNPINYILGLAIGIASVGWAMVEIDEEENPIRLIDLGVRVF
ERAEVPKTGDSLAMARRLARSVRRLTRRRAHRLLRARRLLKREGVLQAADFDENGLIKSLPNT
PWQLRAAALDRKLTPLEWSAVLLHLIKHRGYLSQRKNEGETADKELGALLKGVANNAHALQT
GDFRTPAELALNKFEKESGHIRNQRGDYSHTFSRKDLQAELILLFEKQKEFGNPHVSGGLKE
GIETLLMTQRPALSGDAVQKAILGHCTFEPAEPKAAKNTYTAERFIWLTKLNNLRILEQGSERP
LTDTERATLMDEPYRKSKLTYAQARKLLGLEDTAFFKGLRYGKDNAEASTLMEMKAYHAISRA
LEKEGLKDKKSPLNLSSELQDEIGTAFSLFKTDEDITGRLKDRVQPEILEALLKHISFDKFVQIS
LKALRRIVPLMEQGKRYDEACAEIYGDHYGKKNTEEKIYLPPIPADEIRNPVVLRALSQARKVI
NGVVRRYGSPARIHIETAREVGKSFKDRKEIEKRQEENRKDREKAAAKFREYFPNFVGEPKSK
DILKLRLYEQQHGKCLYSGKEINLVRLNEKGYVEIDHALPFSRTWDDSFNNKVLVLGSENQNK
GNQTPYEYFNGKDNSREWQEFKARVETSRFPRSKKQRILLQKFDEDGFKECNLNDTRYVNRF
LCQFVADHILLTGKGKRRVFASNGQITNLLRGFWGLRKVRAENDRHHALDAVVVACSTVAMQ
QKITRFVRYKEMNAFDGKTIDKETGKVLHQKTHFPQPWEFFAQEVMIRVFGKPDGKPEFEE
ADTPEKLRTLLAEKLSSRPEAVHEYVTPLFVSRAPNRKMSGAHKDTLRSAKRFVKHNEKISVK
RVWLTEIKLADLENMVNYKNGREIELYEALKARLEAYGGNAKQAFDPKDNPFYKKGGQLVKA
VRVEKTQESGVLLNKKNAYTIADNGDMVRVDVFCKVDKKGKNQYFIVPIYAWQVAENILPDI
DCKGYRIDDSYTFCFSLHKYDLIAFQKDEKSKVEFAYYINCDSSNGRFYLAWHDKGSKEQQF
RISTQNLVLIQKYQVNELGKEIRPCRLKKRPPVR
KRPAATKKAGQAKKKKPKKKRK
V*
In one embodiment, a CBE4-nNme2Cas9 (D16A)-UGI-UGI construct has the following amino acid sequence:
TGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEV
NFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPR
NRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCII
LGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK
AAFKPNPINYILGLAIGIASVGWAMVEIDEEENPIRLIDLGVRVEER
AEVPKTGDSLAMARRLARSVRRLTRRRAHRLLRARRLLKREGVLQAADFDENGLIKSLPNTPW
QLRAAALDRKLTPLEWSAVLLHLIKHRGYLSQRKNEGETADKELGALLKGVANNAHALQTGD
FRTPAELALNKFEKESGHIRNQRGDYSHTFSRKDLQAELILLFEKQKEFGNPHVSGGLKEGIE
TLLMTQRPALSGDAVQKMLGHCTFEPAEPKAAKNTYTAERFIWLTKLNNLRILEQGSERPLTD
TERATLMDEPYRKSKLTYAQARKLLGLEDTAFFKGLRYGKDNAEASTLMEMKAYHAISRALEK
EGLKDKKSPLNLSSELQDEIGTAFSLEKTDEDITGRLKDRVQPEILEALLKHISFDKFVQISLKA
LRRIVPLMEQGKRYDEACAEIYGDHYGKKNTEEKIYLPPIPADEIRNPVVLRALSQARKVINGV
VRRYGSPARIHIETAREVGKSFKDRKEIEKRQEENRKDREKAAAKFREYFPNEVGEPKSKDILK
LRLYEQQHGKCLYSGKEINLVRLNEKGYVEIDHALPFSRTWDDSFNNKVLVLGSENQNKGNQ
TPYEYENGKDNSREWQEFKARVETSRFPRSKKQRILLQKFDEDGFKECNLNDTRYVNRFLCQ
FVADHILLTGKGKRRVFASNGQITNLLRGFWGLRKVRAENDRHHALDAVVVACSTVAMQQKI
TRFVRYKEMNAFDGKTIDKETGKVLHQKTHFPQPWEFFAQEVMIRVFGKPDGKPEFEEADT
PEKLRTLLAEKLSSRPEAVHEYVTPLFVSRAPNRKMSGAHKDTLRSAKRFVKHNEKISVKRVW
LTEIKLADLENMVNYKIVGREIELYEALKARLEAYGGNAKQAFDPKDNPFYKKGGQLVKAVRV
EKTQESGVLLNKKNAYTIADNGDMVRVDVFCKVDKKGKNQYFIVPIYAWQVAENILPDIDCK
GYRIDDSYTFCFSLHKYDLIAFQKDEKSKVEFAYYINCDSSNGRFYLAWHDKGSKEQQFRIST
QNLVLIQKYQVNELGKEIRPCRLKKRPPVR
TNLSDIIEKETGKQLVI
QESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDS
NGENKIKML
TNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESD
ILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKML
PAAKRVKLD PAAKRVKLD
In one embodiment, an optimized nNme2Cas9-ABEmax construct refers to an optimized version with improved promoter, NLS sequences, and linker sequences. In some embodiments, an optimized nNme2Cas9-ABEmax construct comprises, 5′ to 3′, a C-myc NLS, 12aa linker, 15aa linker, SV40 NLS, TadA, TadA*7.10, 48aa linker, nNme2Cas9, a 73aa linker (3×HA-tag), 15aa linker, and a C-myc NLS. In some embodiments, an optimized nNme2Cas9-ABEmax construct further comprises at least two each alternating C-myc NLS and a 12aa linker at the 3′ end. In some embodiments, an optimized nNme2Cas9-ABEmax construct further comprises at least two each alternating 15aa linker and C-myc NLS at the 5′ end. See,
In one embodiment, an optimized nNme2Cas9-ABEmax construct has the following amino acid sequence
SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHA
EIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAGS
LMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SEVEFSHEYWMRHALTLAKRARDEREVPVGAVL
VLNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVM
CAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNIIRVEITEGILADECAAL
LCYFFRMPRQVFNAQKKAQSSTD
AAFKPNPINYILGLAIGIASVGWAMVEIDEEENPIRLIDLGVRVFERAEVPK
TGDSLAMARRLARSVRRLTRRRAHRLLRARRLLKREGVLQAADFDENGLIKSLPNTPWQLRAA
ALDRKLTPLEWSAVLLHLIKHRGYLSQRKNEGETADKELGALLKGVANNAHALQTGDFRTPA
ELALNKFEKESGHIRNQRGDYSHTFSRKDLQAELILLFEKQKEFGNPHVSGGLKEGIETLLMT
QRPALSGDAVQKMLGHCTFEPAEPKAAKNTYTAERFIWLTKLNNLRILEQGSERPLTDTERAT
LMDEPYRKSKLTYAQARKLLGLEDTAFFKGLRYGKDNAEASTLMEMKAYHAISRALEKEGLK
DKKSPLNLSSELQDEIGTAFSLFKTDEDITGRLKDRVQPEILEALLKHISFDKFVQISLKALRRI
VPLMEQGKRYDEACAEIYGDHYGKKNTEEKIYLPPIPADEIRNPVVLRALSQARKVINGVVRRY
GSPARIHIETAREVGKSFKDRKEIEKRQEENRKDREKAAAKFREYFPNFVGEPKSKDILKLRLY
EQQHGKCLYSGKEINLVRLNEKGYVEIDHALPFSRTWDDSFNNKVLVLGSENQNKGNQTPYE
YFNGKDNSREWQEFKARVETSRFPRSKKQRILLQKFDEDGFKECNLNDTRYVNRFLCQFVA
DHILLTGKGKRRVFASNGQITNLLRGFWGLRKVRAENDRHHALDAVVVACSTVAMQQKITRF
VRYKEMNAFDGKTIDKETGKVLHQKTHFPQPWEFFAQEVMIRVFGKPDGKPEFEEADTPEK
LRTLLAEKLSSRPEAVHEYVTPLFVSRAPNRKMSGAHKDTLRSAKRFVKHNEKISVKRVWLTEI
KLADLENIVIVNYKNGREIELYEALKARLEAYGGNAKQAFDPKDNPFYKKGGQLVKAVRVEKT
QESGVLLNKKNAYTIADNGDMVRVDVFCKVDKKGKNQYFIVPIYAWQVAENILPDIDCKGYRI
DDSYTFCFSLHKYDLIAFQKDEKSKVEFAYYINCDSSNGRFYLAWHDKGSKEQQFRISTQNLV
LIQKYQVNELGKEIRPCRLKKRPPVR
PAAKRVKLD PAAKRV
In some embodiments, a plasmid nSpCas9-ABEmax (Addgene ID:112095) was used for experimental controls and for molecular cloning. In some embodiments, a plasmid nSpCas9-CBE4 (Addgene ID: 100802) was used for experimental controls and for molecular cloning.
Electroporation of HEK293T cells with DNA plasmids comprising a YE1-BE3-Nme2Cas9 nucleotide deaminase fusion protein achieved robust single-base editing of a CG base pair to a TA base pair at an endogenous target site (TS25). See,
Four other YE1-BE3-nNme2Cas9/D16A mutant fusion proteins were co-expressed with enhanced green fluorescent protein (EGFP) in a stable K562-derived cell line expressing enhanced green fluorescent protein (EGFP). Each YE1-BE3-nNme2Cas9/D16A mutant fusion protein had a specific UGI target site. See,
Deep-sequencing analysis indicates YE1-BE3-nNme2Cas9 converts C residues to T residues at each of the four EGFP target sites. The percentage of editing ranged from 0.24% to 2%. The potential base editing window is from nucleotides 2-8 in the displaced DNA strand, counting the nucleotide at the 5′ (PAM-distal) end as nucleotide #1. See,
Electroporation of HEK293T cells with DNA plasmids comprising a YE1-BE3-nNme2Cas9 c-fos promoter achieved robust single-base editing of a CG base pair to a TA base pair at endogenous target sites in the c-fos promoter (
In one embodiment, the present invention contemplates the expression of an ABE7.10-nNme2Cas9 (D16A) fusion protein for base editing. Although it is not necessary to understand the mechanism of an invention, it is believed that Nme2Cas9 base editing may be an effective treatment for tyrosinemia by reversing a G-to-A point mutation in the Fah gene with an ABE7.10-nNme2Cas9 (D16A) fusion protein.
G-to-A mutation (red) at the last nucleotide of exon 8 in Fah gene, causing exon skipping. FAH deficiency leads to toxin accumulation and severe liver damage. The position of a SpyCas9 PAM (black rectangular box) downstream of the mutation is not optimal for designing the sgRNA since the A mutation is out of the efficient base editing window of ABE7.10, which is 4-7th nt at the 5′ (PAM-distal) end (underlined) (Gaudelli et al., 2017).
However, there are two Nme2Cas9 PAMs (red rectangular box) in the downstream sequences that can potentially correct the mutation and revert DNA sequence to wildtype via ABE7.10-nNme2Cas9 (D16A). See,
Furthermore, we contemplate extending base editing to a tyrosinemia mouse model for reversing the G-to-A point mutation by viral delivery methods using ABEmax-nNme2Cas9 (D16A), where the desired editing cannot be achieved with SpyCas9-derived base editors due to a suboptimal base editing window relative to available PAMs nearby (e.g.
B. NmeCas9 Constructs: Compact & Hyperaccurate
Clustered, regularly interspaced, short, palindromic repeats (CRISPR) along with CRISPR-associated (Cas) proteins constitute bacterial and archaeal adaptive immune pathways against phages and other mobile genetic elements (MGEs) (Barrangou et al., 2007; Brouns et al., 2008; Marraffini and Sontheimer, 2008). In Type II CRISPR systems, CRISPR RNA (crRNA) is bound to a trans-activating crRNA (tracrRNA) and loaded onto a Cas9 effector protein that cleaves MGE nucleic acids complementary to the crRNA (Garneau et al., 2010; Deltcheva et al., 2011; Sapranauskas et al., 2011; Gasiunas et al., 2012; Jinek et al., 2012). The crRNA:tracrRNA hybrid can be fused into a single-guide RNA (sgRNA) (Jinek et al., 2012). The RNA programmability of Cas9 endonucleases has made it a powerful genome editing platform in biotechnology and medicine (Cho et al., 2013; Cong et al., 2013; Hwang et al., 2013; Jiang et al., 2013; Jinek et al., 2013; Mali et al., 2013b).
In addition to sgRNA, Cas9 target recognition is usually associated with a 1-5 nucleotide signature downstream of the complementary DNA sequence, called a protospacer adjacent motif (PAM) (Deveau et al., 2008; Mojica et al., 2009). Cas9 orthologs exhibit considerable diversity in PAM length and sequence. Among Cas9 orthologs that have been characterized, Streptococcus pyogenes Cas9 (SpyCas9) is the most widely used, in part because it recognizes a short NGG PAM (Jinek et al., 2012) (N represents any nucleotide) that affords a high density of targetable sites. Nevertheless, Spy's relatively large size (i.e., 1,368 amino acids) makes this Cas9 difficult to package (along with sgRNA and promoters) into a single recombinant adeno-associated virus (rAAV). This has been shown to be a drawback for therapeutic applications given the promise shown by AAV vectors for in vivo gene delivery (Keeler et al., 2017). Moreover, SpyCas9 and its RNA guides have required extensive characterization and engineering to minimize the tendency to edit near-cognate, off-target sites. (Bolukbasi et al., 2015b; Tsai and Joung, 2016; Tycko et al., 2016; Chen et al., 2017; Casini et al., 2018; Yin et al., 2018). To date, subsequent engineering efforts have not overcome these size limitations.
Several Cas9 orthologs of less than 1,100 amino acids in length obtained from diverse species have been validated for mammalian genome editing, including strains of N. meningitidis (NmeCas9, 1,082 aa) (Esvelt et al., 2013; Hou et al., 2013), Staphylococcus aureus (SauCas9, 1,053 aa) (Ran et al., 2015), Campylobacter jejuni (CjeCas9, 984 aa) (Kim et al., 2017), and Geobacillus stearothermophilus (GeoCas9, 1,089 aa) (Harrington et al., 2017b). NmeCas9, CjeCas9, and GeoCas9 are representatives of type II-C Cas9s (Mir et al., 2018), most of which are <1,100 aa. With the exception of GeoCas9, each of these shorter sequence orthologs has been successfully deployed for in vivo editing via all-in-one AAV delivery (in which a single vector expresses both guide and effector) (Ran et al., 2015; Kim et al., 2017; Ibraheim et al., 2018, submitted). Furthermore, NmeCas9 and CjeCas9 have been shown to be naturally resistant to off-target editing (Lee et al., 2016; Kim et al., 2017; Amrani et al., 2018, submitted). However, the PAMs that are recognized by compact Cas9s are usually longer than that of SpyCas9, substantially reducing the number of targetable sites at or near a given locus; for example, i) N4GAYW/N4GYTT/N4GTCT for NmeCas9 (Esvelt et al., 2013; Hou et al., 2013; Lee et al., 2016; Amrani et al., 2018); ii) N2GRRT for SauCas9 (Ran et al., 2015); iii) N4RYAC for CjeCas9 (Kim et al., 2017); and iv) N4CRAA/N4GMAA for GeoCas9s (Harrington et al., 2017b) (Y=C, T; R=A, G; M=A, C; W=A, T). A smaller subset of target sites is advantageous for highly accurate and precise gene editing tasks including, but not limited to: i) editing of small targets (e.g. miRNAs); ii) correction of mutations by base editing which alters a very narrow window of bases relative to the PAM (Komor et al., 2016; Gaudelli et al., 2017); or iii) precise editing via homology-directed repair (HDR) which is most efficient when the rewritten bases are close to the cleavage site (Gallagher and Haber, 2018). Because of PAM restrictions, many editing sites cannot be targeted using all-in-one AAV vectors for in vivo delivery even with these shorter Cas9 proteins. For example, A SauCas9 mutant (SauCas9KKH) has been developed that has reduced PAM constraints (N3RRT), though this increase in targeting range often comes at the cost of reduced on-target editing efficacy, and off-target edits are still observed. (Kleinstiver et al., 2015).
Safe and effective CRISPR-based therapeutic gene editing will be greatly enhanced by Cas9 orthologs and variants that are highly active in human cells, resistant to off-targeting, sufficiently compact for all-in-one AAV delivery, and capable of accessing a high density of genomic sites. In one embodiment, the present invention contemplates a compact, hyper-accurate Cas9 (Nme2Cas9) from a distinct strain of N. meningitidis. In one embodiment, the present invention contemplates a method for single-AAV delivery of Nme2Cas9 and its sgRNA to perform efficient genome editing in vivo and/or ex vivo. Although it is not necessary to understand the mechanism of an invention, it is believed that this ortholog functions efficiently in mammalian cells and recognizes an N4CC PAM that affords a target site density identical to that of wild-type SpyCas9 (e.g., every 8 bp on average, when both DNA strands are considered).
1. PAM Interacting Domains and Anti-CRISPR Proteins
PAM recognition by Cas9 orthologs occurs predominantly through protein-DNA interactions between the PAM Interacting Domain (PID) and the nucleotides adjacent to the protospacer (Jiang and Doudna, 2017). PAM mutations often enable phage escape from type II CRISPR immunity (Paez-Espino et al., 2015), placing these systems under selective pressure not only to acquire new CRISPR spacers, but also to evolve new PAM specificities via PID mutations. In addition, some phages and MGEs express anti-CRISPR (Acr) proteins that inhibit Cas9 (Pawluk et al., 2016; Hynes et al., 2017; Rauch et al., 2017). PID binding is an effective inhibitory mechanism adopted by some Acrs (Dong et al., 2017; Shin et al., 2017; Yang and Patel, 2017), suggesting that PID variation may also be driven by selective pressure to escape Acr inhibition. Cas9 PIDs can evolve such that closely-related orthologs recognize distinct PAMs, as illustrated recently in two species of Geobacillus. The Cas9 encoded by G. stearothermophilus recognizes a N4CRAA PAM, but when its PID was swapped with that of strain LC300's Cas9, its PAM requirement changed to N4GMAA (Harrington et al., 2017b).
In one embodiment, the present invention contemplates a plurality of N. meningitidis Cas9 orthologs with divergent PIDs that recognize different PAMs. In one embodiment, the present invention contemplates a Cas9 protein with a high sequence identity (>80% along their entire lengths) to that of NmeCas9 strain 8013 (Nme1Cas9) (Zhang et al., 2013). Nme1Cas9 also has a small size and naturally high accuracy as discussed above. (Lee et al., 2016; Amrani et al., 2018). Alignments revealed three clades of meningococcal Cas9 orthologs, each with >98% identity in the N-terminal ˜820 amino acid (aa) residues, which includes all regions of the protein other than the PID. See,
All of these Cas9 orthologs are 1,078-1,082 aa in length. The first Glade (group 1) includes orthologs in which the >98% aa sequence identity with Nme1Cas9 extends through the PID. In contrast, the other two groups had PIDs that were significantly diverged from that of Nme1Cas9, with group 2 and group 3 orthologs averaging ˜52% and ˜86% PID sequence identity with Nme1Cas9, respectively. One meningococcal strain was selected from each group: i) Del1444 from group 2; and ii) 98002 from group 3 for detailed analysis, which are referred to herein as Nme2Cas9 (1,082 aa) and Nme3Cas9 (1,081 aa), respectively. The CRISPR-cas loci from these two strains have repeat sequences and spacer lengths that are identical to those of strain 8013. See,
To determine whether these Cas9 orthologs have distinct PAMs, the PID of Nme1Cas9 was replaced with that of either Nme2Cas9 or Nme3Cas9. To identify the corresponding PAM requirements, these protein chimeras were expressed in Escherichia coli, purified, and used for in vitro PAM identification (Karvelis et al., 2015; Ran et al., 2015; Kim et al., 2017). Briefly, a pool of DNA fragments containing a protospacer followed by a 10-nt randomized sequence was cleaved in vitro using recombinant Cas9 and a cognate, in vitro-transcribed sgRNA. See,
The expected N4GATT PAM consensus was validated in the recovered full-length Nme1Cas9. See,
In one embodiment, ABE7.10-nNme2Cas9 (D16A) is used for single-base editing of A●T base pair to a G●C base pair. In one embodiment, BEmax-nNme2Cas9 (D16A) is used for single-base editing of A●T base pair to a G●C base pair. (See,
Any remaining PAM nucleotides could not be confidently assigned due to the low cleavage efficiencies of the chimeric proteins under the conditions used. See,
These tests were repeated using a full-length Nme2Cas9 (rather than a PID-swapped chimera) with the NNNNCNNN DNA pool, and again a CC(A) consensus was recovered. See,
2. N4CC PAM-Directed Gene Editing
To test the efficacy of Nme2Cas9 in human genome editing, a full-length (e.g., not PID-swapped) human-codon-optimized Nme2Cas9 construct was cloned into a mammalian expression plasmid with appended nuclear localization signals (NLSs) and linkers validated previously for Nme1Cas9 (Amrani et al., 2018). For initial tests, a modified, fluorescence-based Traffic Light Reporter (TLR2.0) was used (Certo et al., 2011). Briefly, a disrupted GFP is followed by an out-of-frame T2A peptide and mCherry cassette. When DNA double-strand breaks (DSBs) are introduced in the broken-GFP cassette, a subset of non-homologous end joining (NHEJ) repair events leave +1-frameshifted indels, placing mCherry in frame and yielding red fluorescence that can be easily quantified by flow cytometry See,
For initial tests, Nme2Cas9 plasmid was transiently co-transfected with one of fifteen sgRNA plasmids carrying spacers that target TLR2.0 sites with N4CC PAMs. No HDR donor was included, so only NHEJ-based editing (mCherry) was scored. Most sgRNAs were in a G23 format (i.e. a 5′-terminal G to facilitate transcription, followed by a 23 nt guide sequence), as used routinely for Nme1Cas9 (Lee et al., 2016; Pawluk et al., 2016; Amrani et al., 2018; Ibraheim et al., 2018). No sgRNA and an sgRNA targeting an N4GATT PAM were used as negative controls, and SpyCas9+sgRNA and Nme1Cas9+sgRNA co-transfections (targeting NGG and N4GATT protospacers, respectively) were included as positive controls. Editing by SpyCas9 and Nme1Cas9 was readily detectable (˜28% and 10% mCherry, respectively). See,
For Nme2Cas9, all 15 targets with N4CC PAMs were functional, though to various extents ranging from 4% to 20% mCherry. These fifteen sites include examples with each of the four possible nucleotides in the 7th PAM position (e.g., after the CC dinucleotide), indicating that a slight preference for an A residue was observed in vitro (
To determine whether both C residues in the N4CC PAM are involved in editing, a series of N4DC (D=A, T, G) and N4CD PAM sites were tested in TLR2.0 reporter cells. See,
The length of the spacer in the crRNA differs among Cas9 orthologs and can affect on-vs. off-target activity (Cho et al., 2014; Fu et al., 2014). SpyCas9's optimal spacer length is 20 nts, with truncations down to 17 nts tolerated (Fu et al., 2014). In contrast, Nme1Cas9 usually has 24-nt spacers (Hou et al., 2013; Zhang et al., 2013), and tolerates truncations down to 18-20 nts (Lee et al., 2016; Amrani et al., 2018). To test spacer length requirements for Nme2Cas9, guide RNA plasmids were created for each targeted single TLR2.0 site, but with varying spacer lengths. See,
3. Precise Editing By HDR And HNH Nickase
Cas9 enzymes use their HNH and RuvC domains to cleave the guide-complementary and non-complementary strand of the target DNA, respectively. SpyCas9 nickases (nCas9s), in which either the HNH or RuvC domain is mutationally inactivated, have been used to induce homology-directed repair (HDR) and to improve genome editing specificity via DSB induction by dual nickases (Mali et al., 2013a; Ran et al., 2013).
To test the efficacy of Nme2Cas9 as a nickase, a Nme2Cas9D16A (HNH nickase) and Nme2Cas9H588A (RuvC nickase) were created, which possess alanine mutations in catalytic residues of the RuvC and HNH domains, respectively (Esvelt et al., 2013; Hou et al., 2013; Zhang et al., 2013). TLR2.0 cells, along with a GFP donor dsDNA, were used to determine whether Nme2Cas9-induced nicks can induce precise edits via HDR. Target sites within TLR2.0 were used to test the functionality of each nickase using guides targeting cleavage sites spaced 32 bp and 64 bp apart. See,
Studies in previously characterized Cas9s have identified a specific region proximal to the PAM where Cas9 activity is highly sensitive to sequence mismatches. This 8 to 12-nt region is known as the seed sequence and has been observed among all Cas9s characterized to date (Gorski et al., 2017). To determine whether Nme2Cas9 also possesses a seed sequence, a series of transient transfections was performed, each targeting the same locus in TLR2.0, but with a single-nucleotide mismatch at different positions of the guide. See,
4. Delivery Methods to Mammalian Cell Types
Nme2Cas9's ability to function in different mammalian cell lines was tested using various delivery methods. As an initial test, forty (40) different sites (29 with a N4CC PAM, and 11 sites were tested with a N4CD PAM). Several loci were selected (AAVS1, VEGFA, etc.), and target sites with N4CC PAMs were randomly chosen for editing with Nme2Cas9. Editing (%) was determined by transiently transfecting 150 ng of Nme2Cas9 along with 150 ng of sgRNA plasmids followed by TIDE analysis 72 hours post-transfection. A subset of sites exhibiting a range of editing efficiencies in this initial screen was selected for repeat analyses in triplicate. See,
HEK293T cells were used to support transient transfections and at 72-hours post transfection the, cells were harvested, followed by genomic DNA extraction and selective amplification of the targeted locus. TIDE analysis was used to measure indel efficiency at each locus (Brinkman et al., 2014). Nme2Cas9 editing was detectable at most of these sites, even though efficiencies varied depending on the target sequence. Table 1. Interestingly, Nme2Cas9 induced indels at several genomic sites with N4CD PAMs, albeit less consistently and at lower levels. Table 1. Fourteen (14) sites with N4CC PAMs were analyzed in triplicate, and consistent editing was observed. See,
The ability of Nme2Cas9 to function was tested in mouse Hepa1-6 cells (hepatoma-derived). For Hepa1-6 cells, a single plasmid encoding both Nme2Cas9 and an sgRNA (targeting either Rosa26 or Pcsk9) was transiently transfected and indels were measured after 72 hrs. Editing was readily observed at both sites. See,
Ribonucleoprotein (RNP) delivery of Cas9 and its sgRNA is also useful for some genome editing applications, and the greater transience of Cas9's presence can minimize off-target editing (Kim et al., 2014; Zuris et al., 2015). Moreover, some cell types (e.g. certain immune cells) are recalcitrant to DNA transfection-based editing (Schumann et al., 2015). To test whether Nme2Cas9 is functional by RNP delivery, a 6×His-tagged Nme2Cas9 (fused to three NLSs) was cloned into a bacterial expression construct and the recombinant protein was purified. The recombinant protein was then loaded with T7 RNA polymerase-transcribed sgRNAs targeting three previously validated sites. Electroporation of the Nme2Cas9:sgRNA complex induced successful editing at each of the three target sites in HEK293T cells, as detected by TIDE. See,
5. Anti-CRISPR Regulation
To date, five families of Acrs from diverse bacterial species have been shown to inhibit Nme1Cas9 in vitro and in human cells (Pawluk et al., 2016; Lee et al., 2018, submitted). Considering the high sequence identity between Nme1Cas9 and Nme2Cas9, at least some of these Acr families should inhibit Nme2Cas9. To test this, all five families of recombinant Acrs were expressed, purified and tested for Nme2Cas9's ability to cleave a target in vitro in the presence of a member of each family (10:1 Acr:Cas9 molar ratio). An inhibitor was used for the type I-E CRISPR system in E. coli (AcrE2) as a negative control, while Nme1Cas9 was used as a positive control. (Pawluk et al., 2014); (Pawluk et al., 2016). As expected, all 5 families inhibited Nme1Cas9, while AcrE2 failed to do so. See,
To further test this, a Nme1Cas9/Nme2Cas9 chimera with the PID of Nme2Cas9 was tested. See,
Based on the above in vitro data, it was hypothesized that AcrIIC1Nme, AcrIIC2Nme, AcrIIC3Nme, and AcrIIC4Hpa could be used as off-switches for Nme2Cas9 genome editing. To test this, Nme2Cas9/sgRNA plasmid transfections (150 ng of each plasmid) targeting TS16 were performed in HEK293T cells in the presence or absence of Acr expression plasmids, as it has been reported that most Acrs inhibited Nme1Cas9 at those plasmid ratios (Pawluk et al., 2016). As expected, AcrIIC1Nme, AcrIIC2Nme, AcrIIC3Nme and AcrIIC4Hpa inhibited Nme2Cas9 genome editing, while AcrIIC5Smu had no effect. See,
6. Hyper-Accuracy
Nme1Cas9 demonstrates remarkable editing fidelity in cells and mouse models (Lee et al., 2016; Amrani et al., 2018; Ibraheim et al., 2018). Furthermore, the similarity of Nme2Cas9 to Nme1Cas9 over most of its length suggests that it may likewise be hyper-accurate. However, the higher number of sites sampled in the genome as a result of the dinucleotide PAM could create more opportunities for Nme2Cas9 off-targeting in comparison with Nme1Cas9 and its less frequently encountered 4-nucleotide PAM. To assess the off-target profile of Nme2Cas9, GUIDE-seq (genome-wide, unbiased identification of double-stranded breaks enabled by sequencing) was used to identify potential off-target sites empirically and in an unbiased fashion (Tsai et al., 2014). Even the best off-target prediction algorithms are prone to false negatives necessitating empirical target site profiling methods (Bolukbasi et al., 2015b; Tsai and Joung, 2016; Tycko et al., 2016). GUIDE-seq relies on the incorporation of double-stranded oligodeoxynucleotides (dsODNs) into DNA double-stranded break sites throughout the genome. These insertion sites are then detected by amplification and high-throughput sequencing.
Because SpyCas9 is a well-characterized Cas9 ortholog it is useful for multiplexed applications with other Cas9s, and as a benchmark for their editing properties (Jiang and Doudna, 2017; Komor et al., 2017). SpyCas9 and Nme2Cas9 were cloned into identical plasmid backbones, with the same UTRs, linkers, NLSs, and promoters, for parallel transient transfections (along with similarly matched sgRNA-expressing plasmids) into HEK293T cells. First, it was confirmed that the RNA guides for SpyCas9 and Nme2Cas9 are orthogonal, i.e. that Nme2Cas9 sgRNAs do not direct editing by SpyCas9, and vice versa. See,
Next, to identify a use of SpyCas9 as a benchmark for GUIDE-seq, because Spy Cas9 and. Nme2Cas9 have non-overlapping PAMs its can therefore potentially edit any dual site (DS) flanked by a 5′-NGGNCC-3′ sequence, which simultaneously fulfills the PAM requirements of both Cas9's. This permits side-by-side comparisons of off-targeting with RNA guides that facilitate an edit of the exact same on-target site. See,
For GUIDE-seq, DS2, DS4 and DS6 were selected to sample off-target cleavage with Nme2Cas9 guides that direct on-target editing as efficiently, less efficiently, or more efficiently than the corresponding SpyCas9 guides, respectively. In addition to the three dual sites, TS6 was added as it has been observed to be an efficiently edited Nme2Cas9 target sites, having an approximate 30-50% indel efficiency depending on the cell type. See,
Plasmid transfections were performed for each Cas9 along with their cognate sgRNAs and the dsODNs. Subsequently, GUIDE-seq libraries were prepared as described previously (Amrani et al., 2018). A GUIDE-seq analysis revealed efficient on-target editing for both Cas9 orthologs, with relative efficiencies (as reflected by GUIDE-seq read counts) that are similar to those observed by TIDE.
For off-target identification, the analysis revealed that the DS2, DS4, and DS6 SpyCas9 sgRNAs appeared to direct editing at 93, 10, and 118 candidate off-target sites, respectively, in the normal range of off-targets when plasmid-based. SpyCas9 editing is analyzed by GUIDE-seq (Fu et al., 2014; Tsai et al., 2014). In striking contrast. the DS2, DS4, and DS6 Nme2Cas9 sgRNAs appeared to direct editing at 1, 0, and 1 off-target sites, respectively.
To validate the off-target sites detected by GUIDE-seq, a targeted deep sequencing was performed to measure indel formation at the top off-target loci following GUIDE-seq-independent editing (i.e. without co-transfection of the dsODN). While SpyCas9 showed considerable editing at most off-target sites tested and, in some instances, was more efficient than that at the corresponding on-target site, Nme2Cas9 exhibited no detectable indels at the lone DS2 and DS6 candidate off-target sites. See,
To further corroborate the above GUIDE-Seq results, CRISPRseek was used to computationally predict potential off-target sites for two active Nme2Cas9 sgRNAs that targeted TS25 and TS47, both of which are also in VEGFA See,
7. Associated Adenovirus Delivery
The compact size, small PAM, and high fidelity of Nme2Cas9 offer major advantages for in vivo genome editing using Associated Adenovirus (AAV) delivery. To test whether effective Nme2Cas9 genome editing can be achieved via single-AAV delivery. Nme2Cas9 was cloned with its sgRNA and their promoters (UI a and U6, respectively) into an AAV vector backbone. See,
SauCas9- or Nme1Cas9-induced indels in Pcsk9 in the mouse liver results and reduced cholesterol levels providing a useful and easy-to-score in vivo benchmark for new editing platforms (Ran et al., 2015; Ibraheim et al., 2018). The Nme2Cas9 RNA guides were the same as those used above. See,
Only 2.25% liver indels overall (˜3-3.5% in hepatocytes) were detected at the Rosa26-OT1 off-target site, comparable to the 1% editing that we observed at this site in transfected Hepa1-6 cells.
Western blotting was performed using an anti-PCSK9 antibody to estimate PCSK9 protein levels in the livers of mice treated with sgPcsk9 and sgRosa26. Liver PCSK9 was below the detection limit in mice treated with sgPcsk9, whereas sgRosa26-treated mice exhibited normal levels of PCSK9. See,
AAV vectors have recently been used for the generation of genome-edited mice, without the need for microinjection or electroporation, simply by soaking the zygotes in culture medium containing AAV vector(s), followed by reimplantation into pseudopregnant females (Yoon et al., 2018). Editing was obtained previously with a dual-AAV system in which SpyCas9 and its sgRNA were delivered in separate vectors (Yoon et al., 2018). To test whether Nme2Cas9 could perform accurate and efficient editing in mouse zygotes with an all-in-one AAV delivery system, we targeted Tyrosinase (Tyr). A bi-allelic inactivation of Tyr disrupts melanin production resulting in an albino phenotype (Yokoyama et al., 1990).
An efficient Tyr sgRNA was validated that cleaves the Tyr locus only seventeen (17) bp from the site of the classic albino mutation in Hepa1-6 cells by transient transfections. See,
From the 3×108 GCs experiment, four (4) pups (14%) were obtained, two of which died at birth, preventing a coat color or genome analysis. Coat color analysis of the remaining two pups revealed one chinchilla and one mosaic pup. These results indicate that single-AAV delivery of Nme2Cas9 and its guide can be used to generate mutations in mouse zygotes without microinjection or electroporation.
To measure on-target indel formation in the Tyr gene, DNA was isolated from the tails of each mouse, the locus was amplified and upon which a TIDE analysis was performed. All mice had high levels of on-target editing by Nme2Cas9, varying from 84% to 100%. See,
The data is inconclusive as to whether there was no mosaicism in mouse 9-2. or that additional alleles were absent from mouse 9-1. because only tail samples were sequenced and other tissues could have distinct lesions. Analysis of tail DNA from chinchilla mice revealed the presence of in-frame mutations that are potentially the cause of the chinchilla coat color. The limited mutational complexity suggests that editing occurred early during embryonic development in these mice. These results provide a streamlined route toward mammalian mutagenesis through the application of a single AAV vector, in this case delivering both Nme2Cas9 and its sgRNA.
T SAK E SV RV LT K L DLE MVN
RE LYEALKARLEA
T SAK NE SV RV LT KL DL MVN RE
AF PFYK G Q VKAVRVE VQ GV
IADN MVRV
AF PFYK
Q VKAVRVE QESGV IADN MVRV
Y VPIY WQVA ILPD IDDS F FSLH D
IQKYQ
I QKYQ
ELGKEIRPCRLKKRPPVR
ELGKEIRPCRLKKRPPVR
MAAFKPNPINYILGLDIGIASVGWAMVEIDEEENPIRLIDLGVRVF
ERAEVPKTGDSLAMARRLARSVRRLTRRRAHRLLRARRLLKREGV
LQAADFDENGLIKSLPNTPWQLRAAALDRKLTPLEWSAVLLHLIK
HRGYLSQRKNEGETADKELGALLKGVANNAHALQTGDFRTPAELA
LNKFEKESGHIRNQRGDYSHTFSRKDLQAELILLFEKQKEFGNPH
VSGGLKEGIETLLMTQRPALSGDAVQKMLGHCTFEPAEPKAAKNT
YTAERFIWLTKLNNLRILEQGSERPLTDTERATLMDEPYRKSKLT
YAQARKLLGLEDTAFFKGLRYGKDNAEASTLMEMKAYHAISRALE
KEGLKDKKSPLNLSSELQDEIGTAFSLFKTDEDITGRLKDRVQPE
ILEALLKHISFDKFVQISLKALRRIVPLMEQGKRYDEACAEIYGD
HYGKKNTEEKIYLPPIPADEIRNPWLRALSQARKVINGWRRYGSP
ARIHIETAREVGKSFKDRKEIEKRQEENRKDREKAAAKFREYFPN
FVGEPKSKDILKLRLYEQQHGKCLYSGKEINLVRLNEKGYVEIDH
ALPFSRTWDDSFNNKVLVLGSENQNKGNQTPYEYFNGKDNSREWQ
EFKARVETSRFPRSKKQRILLQKFDEDGFKECNLNDTRYVNRFLC
QFVADHILLTGKGKRRVFASNGQITNLLRGFWGLRKVRAENDRHH
ALDAVWACSTVAMQQKITRFVRYKEMNAFDGKTIDKETGKVLHQK
TIIFPQPWEFFAQEVMIRVFGKPDGKPEFEEADTPEKLRTLLAEK
LSSRPEAVHEYVTPLFVSRAPNRKMSGAHKDTLRSAKRFVKHNEK
ISVKRVWLTEIKLADLENMVNYKNGREIELYEALKARLEAYGGNA
KQAFDPKDNPFYKKGGQLVKAVRVEKTQESGVLLNKKNAYTIADN
GDMVRVDVFCKVDKKGKNQYFIVPIYAWQVAENILPDIDCKGYRI
DDSYTFCFSLHKYDLIAFQKDEKSKVEFAYYINCDSSNGRFYLAW
HDKGSKEQQFRISTQNLVLIQKYQVNELG
PKKKRKV
AAPAAKKKKLDFESG*
MV
PKKKRKV
KRPAATKKAGQAKKKK
MAAFKPNPINYILGLDIGI
ASVGWAMVEIDEEENPIRLIDLGVRVFERAEVPKTGDSLAMARRL
ARSVRRLTRRRAHRLLRARRLLKREGVLQAADFDENGLIKSLPNT
PWQLRAAALDRKLTPLEWSAVLLHLIKHRGYLSQRKNEGETADKE
LGALLKGVANNAHALQTGDFRTPAELALNKFEKESGHIRNQRGDY
SHTFSRKDLQAELILLFEKQKEFGNPHVSGGLKEGIETLLMTQRP
ALSGDAVQKMLGHCTFEPAEPKAAKNTYTAERFIWLTKLNNLRIL
EQGSERPLTDTERATLMDEPYRKSKLTYAQARKLLGLEDTAFFKG
LRYGKDNAEASTLMEMKAYHAISRALEKEGLKDKKSPLNLSSELQ
DEIGTAFSLFKTDEDITGRLKDRVQPEILEALLKHISFDKFVQIS
LKALRRIVPLMEQGKRYDEACAEIYGDHYGKKNTEEKIYLPPIPA
DEIRNPVVLRALSQARKVINGVVRRYGSPARIHIETAREVGKSFK
DRKEIEKRQEENRKDREKAAAKFREYFPNFVGEPKSKDILKLRLY
EQQHGKCLYSGKEINLVRLNEKGYVEIDHALPFSRTWDDSFNNKV
LVLGSENQNKGNQTPYEYFNGKDNSREWQEFKARVETSRFPRSKK
QRILLQKFDEDGFKECNLNDTRYVNRFLCQFVADHILLTGKGKRR
VFASNGQITNLLRGFWGLRKVRAENDRHHALDAVVVACSTVAMQQ
KITRFVRYKEMNAFDGKTIDKETGKVLHQKTHFPQPWEFFAQEVM
IRVFGKPDGKPEFEEADTPEKLRTLLAEKLSSRPEAVHEYVTPLF
VSRAPNRKMSGAHKDTLRSAKRFVKHNEKISVKRVWLTEIKLADL
ENMVNYKNGREIELYEALKARLEAYGGNAKQAFDPKDNPFYKKGG
QLVKAVRVEKTQESGVLLNKKNAYTIADNGDMVRVDVFCKVDKKG
KNQYFIVPIYAWQVAENILPDIDCKGYRIDDSYTFCFSLHKYDLI
AFQKDEKSKVEFAYYINCDSSNGRFYLAWHDKGSKEQQFRISTQN
LVLIQKYQVNELGKEIRPCRLKKRPPVR
KRPAATKKAGQAKKKK
DYAAAPAAKKKKLD*
PKKKRKV
MAAFKPNPINYILGLDIGIASVGWAMVEIDEEENPI
RLIDLGVRVFERAEVPKTGDSLAMARRLARSVRRLTRRRAHRLLR
ARRLLKREGVLQAADFDENGLIKSLPNTPWQLRAAALDRKLTPLE
WSAVLLHLIKHRGYLSQRKNEGETADKELGALLKGVANNAHALQT
GDFRTPAELALNKFEKESGHIRNQRGDYSHTFSRKDLQAELILLF
EKQKEFGNPHVSGGLKEGIETLLMTQRPALSGDAVQKMLGHCTFE
PAEPKAAKNTYTAERFIWLTKLNNLRILEQGSERPLTDTERATLM
DEPYRKSKLTYAQARKLLGLEDTAFFKGLRYGKDNAEASTLMEMK
AYHAISRALEKEGLKDKKSPLNLSSELQDEIGTAFSLFKTDEDIT
GRLKDRVQPEILEALLKHISFDKFVQISLKALRRIVPLMEQGKRY
DEACAEIYGDHYGKKNTEEKIYLPPIPADEIRNPVVLRALSQARK
VINGVVRRYGSPARIHIETAREVGKSFKDRKEIEKRQEENRKDRE
KAAAKFREYFPNFVGEPKSKDILKLRLYEQQHGKCLYSGKEINLV
RLNEKGYVEIDHALPFSRTWDDSFNNKVLVLGSENQNKGNQTPYE
YFNGKDNSREWQEFKARVETSRFPRSKKQRILLQKFDEDGFKECN
LNDTRYVNRFLCQFVADHILLTGKGKRRVFASNGQITNLLRGFWG
LRKVRAENDRHHALDAVVVACSTVAMQQKITRFVRYKEMNAFDGK
TIDKETGKVLHQKTHFPQPWEFFAQEVMIRVFGKPDGKPEFEEAD
TPEKLRTLLAEKLSSRPEAVHEYVTPLFVSRAPNRKMSGAHKDTL
RSAKRFVKHNEKISVKRVWLTEIKLADLENMVNYKNGREIELYEA
LKARLEAYGGNAKQAFDPKDNPFYKKGGQLVKAVRVEKTQESGVL
LNKKNAYTIADNGDMVRVDVFCKVDKKGKNQYFIVPIYAWQVAEN
ILPDIDCKGYRIDDSYTFCFSLHKYDLIAFQKDEKSKVEFAYYIN
CDSSNGRFYLAWHDKGSKEQQFRISTQNLVLIQKYQVNELGKEIR
PCRLKKRPPVR
PAAKKKKLD
KRPAATKKAGQAKKKK*
PKKKRKV
MAAFKPNPINYILGLDIGIASVGWAMVEIDEEENPI
RLIDLGVRVFERAEVPKTGDSLAMARRLARSVRRLTRRRAHRLLR
ARRLLKREGVLQAADFDENGLIKSLPNTPWQLRAAALDRKLTPLE
WSAVLLHLIKHRGYLSQRKNEGETADKELGALLKGVANNAHALQT
GDFRTPAELALNKFEKESGHIRNQRGDYSHTFSRKDLQAELILLF
EKQKEFGNPHVSGGLKEGIETLLMTQRPALSGDAVQKMLGHCTFE
PAEPKAAKNTYTAERFIWLTKLNNLRILEQGSERPLTDTERATLM
DEPYRKSKLTYAQARKLLGLEDTAFFKGLRYGKDNAEASTLMEMK
AYHAISRALEKEGLKDKKSPLNLSSELQDEIGTAFSLFKTDEDIT
GRLKDRVQPEILEALLKHISFDKFVQISLKALRRIVPLMEQGKRY
DEACAEIYGDHYGKKNTEEKIYLPPIPADEIRNPVVLRALSQARK
VINGVVRRYGSPARIHIETAREVGKSFKDRKEIEKRQEENRKDRE
KAAAKFREYFPNFVGEPKSKDILKLRLYEQQHGKCLYSGKEINLV
RLNEKGYVEIDHALPFSRTIFDDSFNNKVLVLGSENQNKGNQTPY
EYFNGKDNSREWQEFKARVETSRFPRSKKQRILLQKFDEDGFKEC
NLNDTRYVNRFLCQFVADHILLTGKGKRRVFASNGQITNLLRGFW
GLRKVRAENDRHHALDAVVVACSTVAMQQKITRFVRYKEMNAFDG
KTIDKETGKVLHQKTHFPQPWEFFAQEVMIRVFGKPDGKPEFEEA
DTPEKLRTLLAEKLSSRPEAVHEYVTPLFVSRAPNRKMSGAHKDT
LRSAKRFVKHNEKISVKRVWLTEIKLADLENMVNYKNGREIELYE
ALKARLEAYGGNAKQAFDPKDNPFYKKGGQLVKAVRVEKTQESGV
LLNKKNAYTIADNGDIVIVRVDVFCKVDKKGKNQYFIVPIYAWQV
AENILPDIDCKGYRIDDSYTFCFSLHKYDLIAFQKDEKSKVEFAY
YINCDSSNGRFYLAWHDKGSKEQQFRISTQNLVLIQKYQVNELGK
EIRPCRLKKRPPVR
PAAKKKKLD
KRPAATKKAGQAKKKK*
9. Therapeutic Applications
Although compact Cas9 orthologs have been previously validated for genome editing, including via single-AAV delivery, their longer PAMs have restricted therapeutic development due to target site frequencies that are lower than that of the more widely adopted SpyCas9. In addition, SauCas9 and its KKH variant with relaxed PAM requirements (Kleinstiver et al., 2015) are prone to off-target editing with some sgRNAs (Friedland et al., 2015; Kleinstiver et al., 2015). These limitations are exacerbated with target loci that require editing within a narrow sequence window, or that require precise segmental deletion. We have identified Nme2Cas9 as a compact and highly accurate Cas9 with a less restrictive dinucleotide PAM for genome editing by AAV delivery in vivo. The development of Nme2Cas9 greatly expands the genomic scope of in vivo editing, especially via viral vector delivery. The Nme2Cas9 all-in-one AAV delivery platform established in this study can in principle be used to target as wide a range of sites as SpyCas9 (due to the identical densities of optimal N4CC and NGG PAMs), but without the need to deliver two separate vectors to the same target cells. The availability of a catalytically dead version of Nme2Cas9 (dNme2Cas9) also promises to expand the scope of applications such as CRISPRi, CRISPRa, base editing, and related approaches (Dominguez et al., 2016; Komor et al., 2017). Moreover, Nme2Cas9's hyper-accuracy enables precise editing of target genes, potentially ameliorating safety issues resulting from off-target activities. Perhaps counterintuitively, the higher target site density of Nme2Cas9 (compared to that of Nme1Cas9) does not lead to a relative increase in off-target editing for the former. Similar results have been reported recently with SpyCas9 variants evolved to have shorter PAMs (Hu et al., 2018). Type II-C Cas9 orthologs are generally slower nucleases in vitro than SpyCas9 (Ma et al., 2015; Mir et al., 2018); interestingly, enzymological principles indicate that a reduced apparent kcat (within limits) can improve on- vs. off-target specificity for RNA-guided nucleases (Bisaria et al., 2017).
The discovery of Nme2Cas9 and Nme3Cas9 hinged on unexplored Cas9s that are highly related (outside of the PID) to an ortholog that was previously validated for human genome editing (Esvelt et al., 2013; Hou et al., 2013; Lee et al., 2016; Amrani et al., 2018). The relatedness of Nme2Cas9 and Nme3Cas9 to Nme1Cas9 brought an added benefit, namely that they use the exact same sgRNA scaffold, circumventing the need to identify and validate functional tracrRNA sequences for each. In the context of natural CRISPR immunity, the accelerated evolution of novel PAM specificities could reflect selective pressure to restore targeting of phages and MGEs that have escaped interference through PAM mutations (Deveau et al., 2008; Paez-Espino et al., 2015). Our observation that AcrIIC5Smu inhibits Nme1Cas9 but not Nme2Cas9 suggests a second, non-mutually-exclusive basis for accelerated PID variation, namely evasion of anti-CRISPR inhibition. We also speculate that accelerated variability may not be restricted to PIDs, perhaps resulting from selective pressures to evade anti-CRISPRs that bind other Cas9 domains. Cas9 inhibitors such as AcrIIC1 that bind more conserved regions of Cas9 likely present fewer routes toward mutational escape and therefore exhibit a broader inhibitory spectrum (Harrington et al., 2017a). Whatever the sources of selective pressure driving Acr and Cas9 co-evolution, the availability of validated inhibitors of Nme2Cas9 (e.g. AcrIIC1-4) provides opportunities for additional levels of control over its activities.
The approach used in this study (i.e. searching for rapidly-evolving domains within Cas9) can be implemented elsewhere, especially with bacterial species that are well-sampled at the level of genome sequence. This approach could also be applied to other CRISPR-Cas effector proteins such as Cas12 and Cas13 that have also been developed for genome or transcriptome engineering and other applications. This strategy could be especially compelling with Cas proteins that are closely related to orthologs with proven efficacy in heterologous contexts (e.g. in eukaryotic cells), as was the case for Nme1Cas9. The application of this approach to meningococcal Cas9 orthologs yielded a new genome editing platform, Nme2Cas9, with a unique combination of characteristics (compact size, dinucleotide PAM, hyper-accuracy, single-AAV deliverability, and Acr susceptibility) that promise to accelerate the development of genome editing tools for both general and therapeutic applications.
For RNP experiments, the Neon electroporation system was used exactly as described (Amrani et al., 2018). Briefly, 40 picomoles of 3×NLS-Nme2Cas9 along with 50 picomoles of T7-transcribed sgRNA was assembled in buffer R and electroporated using 10 μL Neon tips. After electroporation, cells were plated in pre-warmed 24-well plates containing the appropriate culture media without antibiotics. Electroporation parameters (voltage, width, number of pulses) were 1150 V, 20 ms, 2 pulses for HEK293T cells; 1000 V, 50 ms, 1 pulse for K562 cells.
For the AAV8 vector injections, 8-week-old female C57BL/6NJ mice were injected with 4×1011 genome copies per mouse via tail vein, with the sgRNA targeting a validated site in either Pcsk9 or Rosa26. Mice were sacrificed 28 days after vector administration and liver tissues were collected for analysis. Liver tissues were fixed in 4% formalin overnight, embedded in paraffin, sectioned and stained with hematoxylin and eosin (H&E). Blood was drawn from the facial vein at 0, 14 and 28 days post injection, and serum was isolated using a serum separator (BD, Cat. No. 365967) and stored at −80° C. until assay. Serum cholesterol level was measured using the Infinity™ colorimetric endpoint assay (Thermo-Scientific) following the manufacturer's protocol and as previously described (Ibraheim et al., 2018). For the anti-PCSK9 Western blot, 40 μg of protein from tissue or 2 ng of Recombinant Mouse PCSK9 Protein (R&D Systems, 9258-SE-020) were loaded onto a MiniPROTEAN® TGX™ Precast Gel (Bio-Rad). The separated bands were transferred onto a PVDF membrane and blocked with 5% Blocking-Grade Blocker solution (Bio-Rad) for 2 hours at room temperature. Next, the membrane was incubated with rabbit anti-GAPDH (Abcam ab9485, 1:2,000) or goat anti-PCSK9 (R&D Systems AF3985, 1:400) antibodies overnight. Membranes were washed in TBST and incubated with horseradish peroxidase (HRP)-conjugated goat anti-rabbit (Bio-Rad 1706515, 1:4,000), and donkey anti-goat (R&D Systems HAF109, 1:2,000) secondary antibodies for 2 hours at room temperature. The membranes were washed again in TBST and visualized using Clarity™ western ECL substrate (Bio-Rad) using an M35A XOMAT Processor (Kodak).
Zygotes were incubated in 15 μl drops of KSOM (Potassium-Supplemented Simplex Optimized Medium, Millipore, Cat. No. MR-106-D) containing 3×109 or 3×108 GCs of AAV6.Nme2Cas9.sgTyr vector for 5-6 h (4 zygotes in each drop). After incubation, zygotes were rinsed in M2 and transferred to fresh KSOM for overnight culture. The next day, the embryos that advanced to 2-cell stage were transferred into the oviduct of pseudopregnant recipients and allowed to develop to term.
Nme1Cas9 peptide sequence was used as a query in BLAST searches to find all Cas9 orthologs in Neisseria meningitidis species. Orthologs with >80% identity to Nme1Cas9 were selected for the remainder of this study. The PIDs were then aligned with that of Nme1Cas9 (residues 820-1082) using ClustalW2 and those with clusters of mutations in the PID were selected for further analysis. An unrooted phylogenetic tree of NmeCas9 orthologs was constructed using FigTree (http://tree.bio.ed.ac.uk/software/figtree/).
Examples of plasmids and oligonucleotides used in this study are listed in Table 3. The PIDs of Nme2Cas9 and Nme3Cas9 were ordered as gBlocks (IDT) to replace the PID of Nme1Cas9 using Gibson Assembly (NEB) in the bacterial expression plasmid pMSCG7 (Zhang et al., 2015), which encodes Nme1Cas9 with a 6×His tag. The construct was transformed into E. coli, expressed and purified as previously described (Pawluk et al., 2016). Briefly, Rosetta (DE3) cells containing the respective Cas9 plasmids were grown at 37° C. to an OD600 of 0.6 and protein expression was induced by 1 mM IPTG for 16 hr at 18° C. Cells were harvested and lysed by sonication in lysis buffer [50 mM Tris-HCl (pH 7.5), 500 mM NaCl, 5 mM imidazole. 1 mM DTT] supplemented with 1 mg/mL Lysozyme and protease inhibitor cocktail (Sigma). The lysate was then run through a Ni2+-NTA agarose column (Qiagen), and the bound protein was eluted with 300 mM imidazole and dialyzed into storage buffer [20 mM HEPES-NaOH (pH 7.5), 250 mM NaCl, 1 mM DTT]. For Acr proteins, 6×His-tagged proteins were expressed in E. coli strain BL2I Rosetta (DE3). Cells were grown at 37° C. to an optical density (OD600) of 0.6 in a shaking incubator. The bacterial cultures were cooled to 18° C., and protein expression was induced by adding 1 mM IPTG for overnight expression. The next day, cells were harvested and resuspended in lysis buffer supplemented with 1 mg/mL Lysozyme and protease inhibitor cocktail (Sigma) and protein was purified using the same protocol as for Cas9. The 6×His tag was removed by incubation of the resin-bound protein with Tobacco Etch Virus (TEV) protease overnight at 4° C. to isolate untagged Acrs.
A dsDNA target library with randomized PAM sequences was generated by overlapping PCR, with the forward primer containing the 10-nt randomized PAM region. The library was gel-purified and subjected to in vitro cleavage reaction by purified Cas9 along with T7-transcribed sgRNAs. 300 nM Cas9:sgRNA complex was used to cleave 300 nM of the target fragment in 1×NEBuffer 3.1 (NEB) at 37° C. for 1 hr. The reaction was then treated with proteinase K at 50° C. for 10 minutes and run on a 4% agarose/1×TAE gel. The cleavage product was excised, eluted, and cloned using a previously described protocol (Zhang et al., 2012), with modifications. Briefly, DNA ends were repaired, non-templated 2′-deoxyadenosine tails were added, and Y-shaped adapters were ligated. After PCR, the product was quantitated with KAPA Library Quantification Kit and sequenced using a NextSeq 500 (Illumina) to obtain 75 nt paired-end reads. Sequences were analyzed with custom scripts and R.
Human codon-optimized Nme2Cas9 was cloned by Gibson Assembly into the pCDest2 plasmid backbone previously used for Nme1Cas9 and SpyCas9 expression (Pawluk et al., 2016; Amrani et al., 2018). Transfection of HEK293T and HEK293T-TLR2.0 cells was performed as previously described (Amrani et al., 2018). For Hepa1-6 transfections, Lipofectamine LTX was used to transfect 500 ng of all-in-one AAV.sgRNA.Nme2Cas9 plasmid in 24-well plates (˜105 cells/well), using cells that had been cultured 24 hours before transfection. For K562 cells stably expressing Nme2Cas9 delivered via lentivector (see below), 50,000-150,000 cells were electroporated with 500 ng sgRNA plasmid using 10 μL Neon tips. To measure indels in all cells 72 hr after transfections, cells were harvested and genomic DNA was extracted using the DNaesy Blood and Tissue kit (Qiagen). The targeted locus was amplified by PCR, Sanger-sequenced (Genewiz), and analyzed by TIDE (Brinkman et al., 2014) using the Desktop Genetics web-based interface (http://tide.deskgen.com).
K562 cells stably expressing Nme2Cas9 were generated as previously described for Nme1Cas9 (Amrani et al., 2018). For lentivirus production, the lentiviral vector was co-transfected into HEK293T cells along with the packaging plasmids (Addgene 12260 & 12259) in 6-well plates using TransIT-LT1 transfection reagent (Mirus Bio). After 24 hours, culture media was aspirated from the transfected cells and replaced with 1 mL of fresh DMEM. The next day, the supernatant containing the virus was collected and filtered through a 0.45 μm filter. 10 uL of the undiluted supernatant along with 2.5 ug of Polybrene was used to transduce ˜106 K562 cells in 6-well plates. The transduced cells were selected using media supplemented with 2.5 μg/mL puromycin.
For RNP experiments, the Neon electroporation system was used exactly as described (Amrani et al., 2018). Briefly, 40 picomoles of 3×NLS-Nme2Cas9 along with 50 picomoles of T7-transcribed sgRNA was assembled in buffer R and electroporated using 10 μL Neon tips. After electroporation, cells were plated in pre-warmed 24-well plates containing the appropriate culture media without antibiotics. Electroporation parameters (voltage, width, number of pulses) were 1150 V, 20 ms, 2 pulses for HEK293T cells; 1000 V, 50 ms, 1 pulse for K562 cells.
GUIDE-seq experiments were performed as described previously (Tsai et al., 2014), with minor modifications (Bolukbasi et al., 2015a). Briefly, HEK293T cells were transfected with 200 ng of Cas9 plasmid, 200 ng of sgRNA plasmid, and 7.5 pmol of annealed GUIDE-seq oligonucleotides using Polyfect (Qiagen). Alternatively, Hepa1-6 cells were transfected as described above. Genomic DNA was extracted with a DNeasy Blood and Tissue kit (Qiagen) 72 h after transfection according to the manufacturer's protocol. Library preparation and sequencing were performed exactly as described previously (Bolukbasi et al., 2015a). For analysis, all sequences with up to ten mismatches with the target site, as well as a C in the fifth PAM position (N4CN), were considered potential off-target sites. Data were analyzed using the Bioconductor package GUIDEseq version 1.1.17 (Zhu et al., 2017).
We used targeted deep sequencing to confirm the results of GUIDE-seq and to measure indel rates with maximal accuracy. We used two-step PCR amplification to produce DNA fragments for each on- and off-target site. For SpyCas9 editing at DS2 and DS6, we selected the top off-target sites based on GUIDE-seq read counts. For SpyCas9 editing at DS4, fewer candidate off-target sites were identified by GUIDE-seq, and only those with NGG (DS4|OT1, DS4|OT3, DS4|OT6) or NGC (DS4|OT2) PAMs were examined by sequencing. In the first step, we used locus-specific primers bearing universal overhangs with ends complementary to the adapters. In the first step, 2×PCR master mix (NEB) was used to generate fragments bearing the overhangs. In the second step, the purified PCR products were amplified with a universal forward primer and indexed reverse primers. Full-size products (˜250 bp) were gel-purified and sequenced on an Illumina MiSeq in paired-end mode. MiSeq data analysis was performed as previously described (Pinello et al., 2016; Ibraheim et al., 2018).
Global off-target predictions for TS25 and TS47 were performed using the Bioconductor package CRISPRseek. Minor changes were made to accommodate characteristics of Nme2Cas9 not shared with SpyCas9. Specifically, we used the following changes to: gRNA.size=24, PAM=“NNNCC”, PAM.size=6, RNA.PAM.pattern=“NNNNCN”, and candidate off-target sites with fewer than 6 mismatches were collected. The top potential off-target sites based on the numbers and positions of mismatches were selected. Genomic DNA from cells targeted by each respective sgRNA was used to amplify each candidate off-target locus and then analyzed by TIDE.
All animal experiments were conducted under the guidance of the Institutional Animal Care and Use Committee (IACUC) of the University of Massachusetts Medical School. C57BL/6NJ (Stock No. 005304). Mice were obtained from The Jackson Laboratory. All animals were maintained in a 12 h light cycle. The middle of the light cycle of the day when a mating plug was observed was considered embryonic day 0.5 (E0.5) of gestation. Zygotes were collected at E0.5 by tearing the ampulla with forceps and incubation in M2 medium containing hyaluronidase to remove cumulus cells.
For the AAV8 vector injections, 8-week-old female C57BL/6NJ mice were injected with 4×1011 genome copies per mouse via tail vein, with the sgRNA targeting a validated site in either Pcsk9 or Rosa26. Mice were sacrificed 28 days after vector administration and liver tissues were collected for analysis. Liver tissues were fixed in 4% formalin overnight, embedded in paraffin, sectioned and stained with hematoxylin and eosin (H&E). Blood was drawn from the facial vein at 0, 14 and 28 days post injection, and serum was isolated using a serum separator (BD, Cat. No. 365967) and stored at −80° C. until assay. Serum cholesterol level was measured using the Infinity™ colorimetric endpoint assay (Thermo-Scientific) following the manufacturer's protocol and as previously described (Ibraheim et al., 2018). For the anti-PCSK9 Western blot, 40 μg of protein from tissue or 2 ng of Recombinant Mouse PCSK9 Protein (R&D Systems, 9258-SE-020) were loaded onto a MiniPROTEAN® TGX™ Precast Gel (Bio-Rad). The separated bands were transferred onto a PVDF membrane and blocked with 5% Blocking-Grade Blocker solution (Bio-Rad) for 2 hours at room temperature. Next, the membrane was incubated with rabbit anti-GAPDH (Abcam ab9485, 1:2,000) or goat anti-PCSK9 (R&D Systems AF3985, 1:400) antibodies overnight. Membranes were washed in TBST and incubated with horseradish peroxidase (HRP)-conjugated goat anti-rabbit (Bio-Rad 1706515, 1:4,000), and donkey anti-goat (R&D Systems HAF109, 1:2,000) secondary antibodies for 2 hours at room temperature. The membranes were washed again in TBST and visualized using Clarity™ western ECL substrate (Bio-Rad) using an M35A XOMAT Processor (Kodak).
Zygotes were incubated in 15 μl drops of KSOM (Potassium-Supplemented Simplex Optimized Medium, Millipore, Cat. No. MR-106-D) containing 3×109 or 3×108 GCs of AAV6.Nme2Cas9.sgTyr vector for 5-6 h (4 zygotes in each drop). After incubation, zygotes were rinsed in M2 and transferred to fresh KSOM for overnight culture. The next day, the embryos that advanced to 2-cell stage were transferred into the oviduct of pseudopregnant recipients and allowed to develop to term.
REFERENCES, each of which are herein incorporated by reference in their entirety:
All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in biological control, biochemistry, molecular biology, entomology, plankton, fishery systems, and fresh water ecology, or related fields are intended to be within the scope of the following claims.
This application claims priority to the co-pending PCT/US19/56341 application, filed Oct. 15, 2019 and the U.S. Provisional Patent Application No. 62/745,666, filed Oct. 15, 2018, now expired, herein incorporated by reference in its entirety. A Sequence Listing has been submitted in an ASCII text file named “19482.txt” created on Sep. 17, 2021, consisting of 342,134 bytes, the entire content of which is herein incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US19/56341 | 10/15/2019 | WO |
Number | Date | Country | |
---|---|---|---|
62745666 | Oct 2018 | US |