Pulsed behavior modeling with steady state average conditions

Information

  • Patent Grant
  • 8952710
  • Patent Number
    8,952,710
  • Date Filed
    Friday, July 13, 2012
    12 years ago
  • Date Issued
    Tuesday, February 10, 2015
    9 years ago
Abstract
A method for pulsed behavior modeling of a device under test (DUT) using steady state conditions is disclosed. The method includes providing an automated test system (ATS) programmed to capture at least one behavior of the DUT. The ATS then generates a DUT input power pulse that transitions from a predetermined steady state level to a predetermined pulse level and back to the predetermined steady state level. At least one behavior of the DUT is then captured by the ATS while the input power is at the predetermined pulse level. The ATS then steps the predetermined pulse level to a different predetermined pulse level, and the above steps are repeated until a range of predetermined pulse levels is swept. The ATS then steps the predetermined steady state level to a different steady state level, and the above steps are repeated until a range of predetermined steady state levels is swept.
Description
FIELD OF THE DISCLOSURE

The present disclosure is related to modeling the behavior of a device under test (DUT). In particular, the present disclosure is related to pulse behavior modeling of DUTs such as power amplifiers (PAs).


BACKGROUND

Behavior models are valuable tools for power amplifier (PA) design and system analysis. As shown in FIG. 1, a traditional approach for obtaining a behavior models for PAs relies on pulsed measurements where an input power sweep is performed at a low duty cycle with a device under test (DUT) turned off during a remaining portion of the duty cycle. The exemplary input power sweep shown in FIG. 1 has a 5% duty cycle with an average input power of −100 dBm, wherein an instantaneous input power (PINST) is stepped from −30 dBm to 10 dBm in 1 dB steps. During the DUT off portion of the duty cycle, the DUT is disabled by removing the average input power or by disabling the bias to the DUT. An average input power of −100 dBm as shown in FIG. 1 effectively disables the DUT for 95% of the duty cycle. However, leaving the DUT off for such a relatively long portion of the duty cycle prevents the DUT from reaching steady state conditions associated with operation of the DUT in various applications. Consequently, data collected using the traditional approach will result in relatively inaccurate modeling of DUT performance for relatively complex applications that use one or more DUT models to generate pre-distortion for a PA. Thus, there remains a need for a method and system that accurately models DUT performance for operating conditions encountered in complex systems such as an envelope tracking system that employs pre-distortion to linearize an associated PA.


SUMMARY

The present disclosure provides a method for pulsed behavior modeling of a device under test (DUT) using steady state conditions. The method includes providing an automated test system (ATS) programmed to capture at least one behavior of the DUT. The ATS then generates a DUT input power pulse that transitions from a predetermined steady state level to a predetermined pulse level and back to the predetermined steady state level. At least one behavior of the DUT is then captured by the ATS while the input power is at the predetermined pulse level. The ATS then steps the predetermined pulse level to a different predetermined pulse level, and the above steps are repeated until a range of predetermined pulse levels is swept. The ATS then steps the predetermined steady state level to a different steady state level, and the above steps are repeated until a range of predetermined steady state levels is swept.


In at least one exemplary embodiment, the present disclosure also provides for an extended method that adds pulse modeling of PA behavior under envelope tracking conditions. This extended method further includes a step of setting a predetermined average PA supply voltage in association with generating the input power signal for the DUT. The extended method further includes stepping a predetermined PA supply voltage pulse level to a different predetermined PA supply pulse level via the ATS in connection with stepping the predetermined steady state level to a different steady state level. Moreover, a tangible computer-readable medium having instruction code stored thereon is provided for instructing a computing device of the ATS to perform operations for pulsed behavior modeling of the DUT. Further still, in one exemplary embodiment, the tangible computer readable medium may also be writable for recording data related to pulsed behavior of the DUT captured using the present method.


Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.



FIG. 1 is a graph of input power versus time of an input power sweep used to obtain a traditional device under test (DUT) behavior model.



FIG. 2 is a graph of input power versus time of an input power sweep usable to obtain a DUT behavior model according to the present disclosure.



FIGS. 3A and 3B are graphs of exemplary input power and supply voltage sweeps usable to obtain a DUT behavior model under a steady state average condition.



FIG. 4 is a graph of exemplary amplitude modulation—amplitude modulation (AMAM) data corresponding to a family of steady state average power input curves.



FIG. 5 is graph of exemplary amplitude modulation—phase modulation (AMPM) data corresponding to a family of steady state average power input curves.



FIG. 6 is a graph of exemplary UMTS Terrestrial Radio Access (U TRA) Adjacent Channel Leakage Ratio (ACLR) results produced with a DUT behavior model obtained via the present method for pulsed behavior modeling of a DUT using steady state conditions.



FIG. 7 is a block diagram of an automatic test system (ATS) configured to implement the present method for pulsed behavior modeling of a DUT using steady state conditions.



FIG. 8 is a flow chart of a general method for conducting pulsed behavior modeling with steady state average conditions.



FIG. 9A is a flow chart of an enhanced method for conducting pulsed behavior modeling with steady state average conditions.



FIG. 9B is a continuation of the flow chart of FIG. 9A.





DETAILED DESCRIPTION

The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.


The present disclosure provides a test process that applies average steady state type operating conditions to a device under test (DUT) during the time between input power pulses that are swept over a range of predetermined input power pulse levels. Average operation conditions could vary based on the type of DUT. For example, in a standard linear PA, the average condition may be achieved by applying average RF power at a RF input of the DUT with nominal bias applied. In another example, an envelope tracking PA might achieve average steady state conditions by applying both the average RF input power and average supply voltage that is typically a collector voltage (VCC) or drain voltage (VDD).



FIG. 2 is a graph of input power versus time of an input power sweep usable to obtain a DUT behavior model according to the present disclosure. In this exemplary case, a pulse measurement is modified to set an average steady state operating condition during the DUT off portions of a duty cycle. This is accomplished by setting an RF input drive level to a desired average power during the off portion of the duty cycle. In an exemplary case depicted in FIG. 2, the RF input drive level is set to 0 dBm average power during the off portion of the duty cycle, which in this case is for 95% of the duty cycle. During the other 5% of the time an instantaneous input power pulse PINST is applied to the input of the DUT. It is to be understood that the term instantaneous is a relative term that is used to describe a relatively sharp transition from a predetermined steady state level to a predetermined pulse level and back to the predetermined steady state level. In this exemplary case shown in FIG. 2, PINST is swept in an incremental fashion over a range that extends from a beginning predetermined pulse level of −30 dBm to an ending predetermined pulse level of 10 dBm using 1 dB steps. However, other beginning and ending predetermined pulse levels as well as other step sizes may be chosen. Moreover, the predetermined levels for PINST can be decremented from a beginning predetermined to an ending predetermined pulse level instead of incremented, or the order of the predetermined levels for PINST can be randomized.



FIGS. 3A and 3B are graphs of exemplary input power and supply voltage sweeps usable to obtain a DUT behavior model under a steady state average condition. These input power and supply voltage sweeps are particularly useful for modeling the behavior of a DUT used in an envelope tracking system. In this scenario, both a RF input drive level Pin (FIG. 3A) and a supply voltage VCC (FIG. 3B) are set to average operating conditions between steps of a measurement sweep. In this exemplary case, the average Pin is −2.5 dBm and the average VCC is 2.5V. The Pin sweep range is −20 dBm to 10 dBm in 5 dB steps and the VCC sweep range is 1V to 3V in 1V steps. In this exemplary case, the Pin sweep of the predetermined pulse levels is nested inside the VCC sweep of predetermined supply voltage pulse levels (VCCINST).


Application of an average steady state condition for input power can significantly affect the thermally sensitive characteristics of a DUT. As an example, consider the amplitude modulation—amplitude modulation (AMAM) and amplitude modulation—phase modulation (AMPM) measurements of a typical PA. FIG. 4 is a graph of AMAM measurements, while FIG. 5 is a graph of AMPM measurements. Taken together, the family of curves in both graphs shows how the complex gain of the typical amplifier varies as the steady state average input power changes during the DUT off portions of the duty cycle.



FIG. 6 is a graph of exemplary results produced with a DUT behavior model obtained via the present method for pulsed behavior modeling of a DUT using steady state conditions. In particular, the graph of FIG. 6 shows the benefit of modeling the behavior of the DUT under steady state average conditions. The behavior model in this exemplary case is UMTS Terrestrial Radio Access (UTRA) Adjacent Channel Leakage Ratio (ACLR) versus output power of the DUT. The dotted and dashed curve reflects a behavior model obtained using the method of the present disclosure where an average operating condition is set at a steady state value by applying an average input power to the DUT during off portions of each duty cycle during a measurement sweep. This behavior model is a compilation of a plurality of average input power drive levels. The dotted and dashed curve was generated from a simulation using this behavior model as a function of average input power. Notice that the dotted and dashed curve shows an improved correlation with lab measurements depicted by the solid curve as compared to the dashed curve generated using a traditional behavior model obtained from sweep measurements taken with the DUT disabled during the off portions of each duty cycle.



FIG. 7 is a block diagram of an automated test system (ATS) 10 that is usable to perform the measurements needed to capture at least one behavior of a DUT 12. The ATS 10 includes a system controller 14 that has a computing device that executes code from a tangible computer-readable medium 16. The system controller 14 provides test signals to the DUT 12. These test signals can include but are not limited to, input power levels, bias levels, and supply voltage levels. The DUT 12 provides at least one output in response to such test signals. The output of DUT 12 is detected by a behavior sensor 18 that captures at least one behavior via at least one measurement that is transmitted to the system controller 14. The behavior sensor 18 can be, but is not limited to, a power detector, a voltmeter, and a phase detector. Data for a behavior model for the DUT 12 can then be recorded to the tangible computer-readable medium 16. The system controller 14 may derive the behavior model for the DUT 12 using the data of the captured behavior or the system controller 14 can pass along the data of the captured behavior to an external processor (not shown) for behavior model generation.



FIG. 8 is a flow chart of a general method provided by the present disclosure for conducting pulsed behavior modeling with steady state average conditions. The method begins by providing the ATS 10 (FIG. 7), which is programmed to capture at least one behavior of a DUT (step 100). The ATS 10 generates for the DUT 12 (FIG. 7) an input power signal having an input pulse that transitions from a predetermined steady state level to a predetermined pulse level and back to the predetermined steady state level (step 102). Next, the ATS 10 captures via the behavior sensor 18 (FIG. 7) at least one behavior of the DUT 12 while the input power is at a predetermined pulse level (step 104). The ATS 10 then steps the predetermined pulse level to a different predetermined pulse level (step 106). The step in pulse level is typically an increment or decrement of a desired amount such as 1 dB. The ATS 10 then determines if a desired range of predetermined pulse levels has been swept (step 108). If not, steps 102 through 108 are repeated for the next predetermined pulse level. If yes, the ATS 10 steps the predetermined steady state level to a different steady state level (step 110). The ATS 10 then determines if a desired range of predetermined steady state levels has been swept (step 112). If not, steps 102 through 112 are repeated for the next predetermined pulse level. If yes, the ATS 10 ends the method (step 114). The captured behavior data is then usable to derive a model behavior for the DUT.



FIGS. 9A and 9B make up a flow chart of an extended method for conducting pulsed behavior modeling with steady state average conditions. In particular, the extended method adds pulse modeling of PA behavior under envelope tracking conditions. The extended method begins by providing the ATS 10 (FIG. 7), which is programmed to capture at least one behavior of a DUT (step 200). The ATS 10 generates for the DUT 12 (FIG. 7) a supply voltage signal having a supply voltage pulse that transitions from a predetermined steady state level to a predetermined pulse level and back to the predetermined steady state level (step 202). Then, the ATS 10 generates for the DUT 12 (FIG. 7) an input power signal having an input power pulse that transitions from a predetermined steady state level to a predetermined pulse level and back to the predetermined steady state level (step 204). Next, the ATS 10 captures via the behavior sensor 18 (FIG. 7) at least one behavior of the DUT 12 while the supply voltage and input power are at the predetermined pulse levels (step 206). The ATS 10 then steps the predetermined input power pulse level to a different predetermined input power pulse level (step 208). The step in pulse level is typically an increment or decrement of a desired amount such as 1 dB. The ATS 10 then determines if a desired range of predetermined input power pulse levels has been swept (step 210). If not, steps 204 through 210 are repeated for the next predetermined input power pulse level. The ATS 10 then steps the predetermined supply voltage pulse level for the DUT 12 to a different predetermined supply voltage pulse level (step 212). The step in supply voltage level is typically an increment or decrement of a desired amount such as 1 V. The ATS 10 then determines if a desired range of predetermined supply voltage pulse levels has been swept (step 214). If not, steps 202 through 214 are repeated for the next predetermined supply voltage pulse level. The initial predetermined input power pulse level is also re-established. If yes, the ATS 10 steps the predetermined steady state input power level to a different steady state input power level (step 216). The ATS 10 then determines if a desired range of predetermined steady state input power levels has been swept (step 218). If not, steps 202 through 218 are repeated for the next predetermined steady state input power level. The initial predetermined input power pulse level and initial predetermined supply voltage pulse level are also re-established. If yes, the ATS 10 steps the predetermined steady state supply voltage level to a different steady state supply voltage level (step 220). The ATS 10 then determines if a desired range of predetermined supply voltage levels has been swept (step 222). If not, steps 202 through 222 are repeated for the next predetermined steady state supply voltage level. The initial predetermined input power pulse level, initial predetermined supply voltage pulse level, and initial predetermined steady state input power level are also re-established. If yes, the ATS 10 ends the extended method (step 224). The captured behavior data is then usable to derive a model behavior for the DUT.


Those skilled in the art will recognize improvements and modifications to the embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

Claims
  • 1. A method for pulsed behavior modeling of a device under test (DUT) comprising: generating for the DUT an input power signal having an input power pulse that transitions from a predetermined steady state level to a predetermined pulse level and back to the predetermined steady state level;capturing at least one behavior of the DUT while the input power is at the predetermined pulse level;stepping the predetermined pulse level to a different predetermined pulse level;repeating the above steps until a range of predetermined pulse levels is swept;stepping the predetermined steady state level to a different steady state level; andrepeating the above steps until a range of predetermined steady state levels is swept.
  • 2. The method of claim 1 wherein the DUT is a power amplifier (PA).
  • 3. The method of claim 2 wherein the at least one behavior is amplitude modulation-amplitude modulation (AMAM) behavior for each predetermined steady state level and each predetermined pulse level.
  • 4. The method of claim 2 wherein the at least one behavior is amplitude modulation-phase modulation (AMPM) behavior for each predetermined steady state level and each predetermined pulse level.
  • 5. The method of claim 1 wherein the range of predetermined pulse levels is from around −30 dBm to around 10 dBm.
  • 6. The method of claim 5 wherein an iterative step of predetermined pulse level is around 1 dB while stepping the predetermined pulse level to a different predetermined pulse level.
  • 7. The method of claim 1 wherein the range of predetermined steady state levels is from around −20 dBm to around 10 dBm.
  • 8. The method of claim 7 wherein an iterative step of predetermined steady level is around 10 dB.
  • 9. The method of claim 2 wherein the range of predetermined steady state levels is only one steady state level of input power for an envelope tracking system.
  • 10. The method of claim 9 further including a step of setting a predetermined average PA supply voltage in association with generating the input power signal for the DUT.
  • 11. The method of claim 10 further including stepping a predetermined PA supply voltage pulse level to a different predetermined PA supply pulse level is associated with stepping the predetermined steady state level to a different steady state level.
  • 12. A tangible computer-readable medium having instructions stored thereon, wherein the instructions are readable by a computing device of an automated test system to perform operations for pulsed behavior modeling of a device under test (DUT), the operations comprising: generating for the DUT an input power signal having an input power pulse that transitions from a predetermined steady state level to a predetermined pulse level and back to the predetermined steady state level;capturing at least one behavior of the DUT while the input power is at the predetermined pulse level;stepping the predetermined pulse level to a different predetermined pulse level;repeating the above steps until a range of predetermined pulse levels is swept;stepping the predetermined steady state level to a different steady state level; andrepeating the above steps until a range of predetermined steady state levels is swept.
  • 13. The tangible computer-readable medium of claim 12 wherein the DUT is a power amplifier (PA).
  • 14. The tangible computer-readable medium of claim 13 wherein the at least one behavior is amplitude modulation-amplitude modulation (AMAM) behavior for each predetermined steady state level and each predetermined pulse level.
  • 15. The tangible computer-readable medium of claim 13 wherein the at least one behavior is amplitude modulation-phase modulation (AMPM) behavior for each predetermined steady state level and each predetermined pulse level.
  • 16. The tangible computer-readable medium of claim 12 wherein the range of predetermined pulse levels is from around −30 dBm to around 10 dBm.
  • 17. The tangible computer-readable medium of claim 16 wherein an iterative step of predetermined pulse level is around 1 dB while stepping the predetermined pulse level to a different predetermined pulse level.
  • 18. The tangible computer-readable medium of claim 12 wherein the range of predetermined steady state levels is from around −20 dBm to around 10 dBm.
  • 19. The tangible computer-readable medium of claim 18 wherein an iterative step of predetermined steady level is around 10 dB.
  • 20. The tangible computer-readable medium of claim 13 wherein the range of predetermined steady state levels is only one steady state level of input power for an envelope tracking system.
  • 21. The tangible computer-readable medium of claim 20 further including a step of setting a predetermined average PA supply voltage in association with generating the input power signal for the DUT.
  • 22. The tangible computer-readable medium of claim 21 further including stepping a predetermined PA supply voltage pulse level to a different predetermined PA supply pulse level is associated with stepping the predetermined steady state level to a different steady state level.
RELATED APPLICATIONS

This application claims the benefit of provisional patent application Ser. No. 61/508,187, filed Jul. 15, 2011, the disclosure of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (252)
Number Name Date Kind
3969682 Rossum Jul 1976 A
3980964 Grodinsky Sep 1976 A
4587552 Chin May 1986 A
4692889 McNeely Sep 1987 A
4831258 Paulk et al. May 1989 A
4996500 Larson et al. Feb 1991 A
5099203 Weaver et al. Mar 1992 A
5146504 Pinckley Sep 1992 A
5187396 Armstrong, II et al. Feb 1993 A
5311309 Ersoz et al. May 1994 A
5317217 Rieger et al. May 1994 A
5351087 Christopher et al. Sep 1994 A
5414614 Fette et al. May 1995 A
5420643 Romesburg et al. May 1995 A
5486871 Filliman et al. Jan 1996 A
5532916 Tamagawa Jul 1996 A
5541547 Lam Jul 1996 A
5581454 Collins Dec 1996 A
5646621 Cabler et al. Jul 1997 A
5715526 Weaver, Jr. et al. Feb 1998 A
5767744 Irwin et al. Jun 1998 A
5822318 Tiedemann, Jr. et al. Oct 1998 A
5898342 Bell Apr 1999 A
5905407 Midya May 1999 A
5936464 Grondahl Aug 1999 A
6043610 Buell Mar 2000 A
6043707 Budnik Mar 2000 A
6055168 Kotowski et al. Apr 2000 A
6070181 Yeh May 2000 A
6118343 Winslow Sep 2000 A
6133777 Savelli Oct 2000 A
6141541 Midya et al. Oct 2000 A
6147478 Skelton et al. Nov 2000 A
6198645 Kotowski et al. Mar 2001 B1
6204731 Jiang et al. Mar 2001 B1
6256482 Raab Jul 2001 B1
6300826 Mathe et al. Oct 2001 B1
6313681 Yoshikawa Nov 2001 B1
6348780 Grant Feb 2002 B1
6483281 Hwang Nov 2002 B2
6559689 Clark May 2003 B1
6566935 Renous May 2003 B1
6583610 Groom et al. Jun 2003 B2
6617930 Nitta Sep 2003 B2
6621808 Sadri Sep 2003 B1
6624712 Cygan et al. Sep 2003 B1
6658445 Gau et al. Dec 2003 B1
6681101 Eidson et al. Jan 2004 B1
6690652 Sadri Feb 2004 B1
6701141 Lam Mar 2004 B2
6703080 Reyzelman et al. Mar 2004 B2
6728163 Gomm et al. Apr 2004 B2
6744151 Jackson et al. Jun 2004 B2
6819938 Sahota Nov 2004 B2
6958596 Sferrazza et al. Oct 2005 B1
6995995 Zeng et al. Feb 2006 B2
7038536 Cioffi et al. May 2006 B2
7043213 Robinson et al. May 2006 B2
7058373 Grigore Jun 2006 B2
7099635 McCune Aug 2006 B2
7164893 Leizerovich et al. Jan 2007 B2
7200365 Watanabe et al. Apr 2007 B2
7233130 Kay Jun 2007 B1
7253589 Potanin et al. Aug 2007 B1
7254157 Crotty et al. Aug 2007 B1
7279875 Gan et al. Oct 2007 B2
7394233 Trayling et al. Jul 2008 B1
7405618 Lee et al. Jul 2008 B2
7411316 Pai Aug 2008 B2
7414330 Chen Aug 2008 B2
7515885 Sander et al. Apr 2009 B2
7528807 Kim et al. May 2009 B2
7529523 Young et al. May 2009 B1
7539466 Tan et al. May 2009 B2
7595569 Amerom et al. Sep 2009 B2
7609114 Hsieh et al. Oct 2009 B2
7615979 Caldwell Nov 2009 B2
7627622 Conrad et al. Dec 2009 B2
7646108 Paillet et al. Jan 2010 B2
7653366 Grigore Jan 2010 B2
7679433 Li Mar 2010 B1
7684216 Choi et al. Mar 2010 B2
7696735 Oraw et al. Apr 2010 B2
7715811 Kenington May 2010 B2
7724837 Filimonov et al. May 2010 B2
7773691 Khlat et al. Aug 2010 B2
7777459 Williams Aug 2010 B2
7782036 Wong et al. Aug 2010 B1
7783269 Vinayak et al. Aug 2010 B2
7800427 Chae et al. Sep 2010 B2
7805115 McMorrow et al. Sep 2010 B1
7859336 Markowski et al. Dec 2010 B2
7880547 Lee et al. Feb 2011 B2
7894216 Melanson Feb 2011 B2
7898268 Bernardon et al. Mar 2011 B2
7898327 Nentwig Mar 2011 B2
7907010 Wendt et al. Mar 2011 B2
7915961 Li Mar 2011 B1
7923974 Martin et al. Apr 2011 B2
7965140 Takahashi Jun 2011 B2
7994864 Chen et al. Aug 2011 B2
8000117 Petricek Aug 2011 B2
8008970 Homol et al. Aug 2011 B1
8022761 Drogi et al. Sep 2011 B2
8026765 Giovannotto Sep 2011 B2
8044639 Tamegai et al. Oct 2011 B2
8068622 Melanson et al. Nov 2011 B2
8081199 Takata et al. Dec 2011 B2
8093951 Zhang et al. Jan 2012 B1
8159297 Kumagai Apr 2012 B2
8164388 Iwamatsu Apr 2012 B2
8174313 Vice May 2012 B2
8183917 Drogi et al. May 2012 B2
8183929 Grondahl May 2012 B2
8198941 Lesso Jun 2012 B2
8204456 Xu et al. Jun 2012 B2
8242813 Wile et al. Aug 2012 B1
8274332 Cho et al. Sep 2012 B2
8289084 Morimoto et al. Oct 2012 B2
8362837 Koren et al. Jan 2013 B2
8541993 Notman et al. Sep 2013 B2
8542061 Levesque et al. Sep 2013 B2
8548398 Baxter et al. Oct 2013 B2
8558616 Shizawa et al. Oct 2013 B2
8588713 Khlat Nov 2013 B2
8611402 Chiron Dec 2013 B2
8618868 Khlat et al. Dec 2013 B2
8624576 Khlat et al. Jan 2014 B2
8624760 Ngo et al. Jan 2014 B2
8626091 Khlat et al. Jan 2014 B2
8638165 Shah et al. Jan 2014 B2
8648657 Rozenblit Feb 2014 B1
8659355 Henshaw et al. Feb 2014 B2
8718582 See et al. May 2014 B2
20020071497 Bengtsson et al. Jun 2002 A1
20030017286 Williams et al. Jan 2003 A1
20030031271 Bozeki et al. Feb 2003 A1
20030062950 Hamada et al. Apr 2003 A1
20030137286 Kimball et al. Jul 2003 A1
20030198063 Smyth Oct 2003 A1
20030206603 Husted Nov 2003 A1
20030220953 Allred Nov 2003 A1
20030232622 Seo et al. Dec 2003 A1
20040047329 Zheng Mar 2004 A1
20040051384 Jackson et al. Mar 2004 A1
20040124913 Midya et al. Jul 2004 A1
20040184569 Challa et al. Sep 2004 A1
20040196095 Nonaka Oct 2004 A1
20040219891 Hadjichristos Nov 2004 A1
20040239301 Kobayashi Dec 2004 A1
20040266366 Robinson et al. Dec 2004 A1
20040267842 Allred Dec 2004 A1
20050008093 Matsuura et al. Jan 2005 A1
20050032499 Cho Feb 2005 A1
20050047180 Kim Mar 2005 A1
20050064830 Grigore Mar 2005 A1
20050093630 Whittaker et al. May 2005 A1
20050110562 Robinson et al. May 2005 A1
20050122171 Miki et al. Jun 2005 A1
20050156582 Redl et al. Jul 2005 A1
20050156662 Raghupathy et al. Jul 2005 A1
20050157778 Trachewsky et al. Jul 2005 A1
20050200407 Arai et al. Sep 2005 A1
20050286616 Kodavati Dec 2005 A1
20060006946 Burns et al. Jan 2006 A1
20060062324 Naito et al. Mar 2006 A1
20060097711 Brandt May 2006 A1
20060128324 Tan et al. Jun 2006 A1
20060178119 Jarvinen Aug 2006 A1
20060181340 Dhuyvetter Aug 2006 A1
20060220627 Koh Oct 2006 A1
20060244513 Yen et al. Nov 2006 A1
20070008804 Lu et al. Jan 2007 A1
20070014382 Shakeshaft et al. Jan 2007 A1
20070024360 Markowski Feb 2007 A1
20070063681 Liu Mar 2007 A1
20070082622 Leinonen et al. Apr 2007 A1
20070146076 Baba Jun 2007 A1
20070182392 Nishida Aug 2007 A1
20070183532 Matero Aug 2007 A1
20070259628 Carmel et al. Nov 2007 A1
20080003950 Haapoja et al. Jan 2008 A1
20080044041 Tucker et al. Feb 2008 A1
20080081572 Rofougaran Apr 2008 A1
20080104432 Vinayak et al. May 2008 A1
20080150619 Lesso et al. Jun 2008 A1
20080205095 Pinon et al. Aug 2008 A1
20080242246 Minnis et al. Oct 2008 A1
20080252278 Lindeberg et al. Oct 2008 A1
20080258831 Kunihiro et al. Oct 2008 A1
20080280577 Beukema et al. Nov 2008 A1
20090004981 Eliezer et al. Jan 2009 A1
20090097591 Kim Apr 2009 A1
20090160548 Ishikawa et al. Jun 2009 A1
20090167260 Pauritsch et al. Jul 2009 A1
20090174466 Hsieh et al. Jul 2009 A1
20090184764 Markowski et al. Jul 2009 A1
20090190699 Kazakevich et al. Jul 2009 A1
20090218995 Ahn Sep 2009 A1
20090230934 Hooijschuur et al. Sep 2009 A1
20090261908 Markowski Oct 2009 A1
20090284235 Weng et al. Nov 2009 A1
20090289720 Takinami et al. Nov 2009 A1
20090319065 Risbo Dec 2009 A1
20100001793 Van Zeijl et al. Jan 2010 A1
20100017553 Laurencin et al. Jan 2010 A1
20100019749 Katsuya et al. Jan 2010 A1
20100019840 Takahashi Jan 2010 A1
20100026250 Petty Feb 2010 A1
20100045247 Blanken et al. Feb 2010 A1
20100171553 Okubo et al. Jul 2010 A1
20100253309 Xi et al. Oct 2010 A1
20100266066 Takahashi Oct 2010 A1
20100301947 Fujioka et al. Dec 2010 A1
20100308654 Chen Dec 2010 A1
20100311365 Vinayak et al. Dec 2010 A1
20100321127 Watanabe et al. Dec 2010 A1
20100327825 Mehas et al. Dec 2010 A1
20110018626 Kojima Jan 2011 A1
20110058601 Kim et al. Mar 2011 A1
20110084760 Guo et al. Apr 2011 A1
20110148375 Tsuji Jun 2011 A1
20110234182 Wilson Sep 2011 A1
20110235827 Lesso et al. Sep 2011 A1
20110279180 Yamanouchi et al. Nov 2011 A1
20110298539 Drogi et al. Dec 2011 A1
20120025907 Koo et al. Feb 2012 A1
20120025919 Huynh Feb 2012 A1
20120034893 Baxter et al. Feb 2012 A1
20120049953 Khlat Mar 2012 A1
20120068767 Henshaw et al. Mar 2012 A1
20120074916 Trochut Mar 2012 A1
20120133299 Capodivacca et al. May 2012 A1
20120139516 Tsai et al. Jun 2012 A1
20120154035 Hongo et al. Jun 2012 A1
20120154054 Kaczman et al. Jun 2012 A1
20120170334 Menegoli et al. Jul 2012 A1
20120176196 Khlat Jul 2012 A1
20120194274 Fowers et al. Aug 2012 A1
20120200354 Ripley et al. Aug 2012 A1
20120236444 Srivastava et al. Sep 2012 A1
20120244916 Brown et al. Sep 2012 A1
20120299647 Honjo et al. Nov 2012 A1
20130034139 Khlat et al. Feb 2013 A1
20130094553 Paek et al. Apr 2013 A1
20130169245 Kay et al. Jul 2013 A1
20130214858 Tournatory et al. Aug 2013 A1
20130229235 Ohnishi Sep 2013 A1
20130307617 Khlat et al. Nov 2013 A1
20130328613 Kay et al. Dec 2013 A1
20140009200 Kay et al. Jan 2014 A1
20140009227 Kay et al. Jan 2014 A1
Foreign Referenced Citations (19)
Number Date Country
0755121 Jan 1997 EP
1492227 Dec 2004 EP
1569330 Aug 2005 EP
2214304 Aug 2010 EP
2244366 Oct 2010 EP
2372904 Oct 2011 EP
2462204 Feb 2010 GB
2465552 May 2010 GB
2484475 Apr 2012 GB
0048306 Aug 2000 WO
2004002006 Dec 2003 WO
2004082135 Sep 2004 WO
2005013084 Feb 2005 WO
2006021774 Mar 2006 WO
2006070319 Jul 2006 WO
2006073208 Jul 2006 WO
2007107919 Sep 2007 WO
2007149346 Dec 2007 WO
2012172544 Dec 2012 WO
Non-Patent Literature Citations (134)
Entry
Wu, Patrick Y. et al., “A Two-Phase Switching Hybrid Supply Modulator for RF Power Amplifiers with 9% Efficiency Improvement,” IEEE Journal of Solid-State Circuits, vol. 45, No. 12, Dec. 2010, pp. 2543-2556.
Yousefzadeh, Vahid et al., “Band Separation and Efficiency Optimization in Linear-Assisted Switching Power Amplifiers,” 37th IEEE Power Electronics Specialists Conference, Jun. 18-22, 2006, pp. 1-7.
International Preliminary Report on Patentability for PCT/US2012/040317, mailed Dec. 12, 2013, 5 pages.
Notice of Allowance for U.S. Appl. No. 13/531,719, mailed Dec. 30, 2013, 7 pages.
Non-Final Office Action for U.S. Appl. No. 14/022,940, mailed Dec. 20, 2013, 5 pages.
International Search Report and Written Opinion for PCT/US2013/052277, mailed Jan. 7, 2014, 14 pages.
Notice of Allowance for U.S. Appl. No. 12/836,307 mailed May 5, 2014, 6 pages.
Notice of Allowance for U.S. Appl. No. 14/022,858 mailed May 27, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/367,973 mailed Apr. 25, 2014, 5 pages.
Non-Final Office Action for U.S. Appl. No. 13/647,815 mailed May 2, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/689,883 mailed Mar. 27, 2014, 13 pages.
Non-Final Office Action for U.S. Appl. No. 13/692,084 mailed Apr. 10, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/684,826 mailed Apr. 3, 2014, 5 pages.
Notice of Allowance for U.S. Appl. No. 14/022,940, mailed Jun. 10, 2014, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/714,600 mailed May 9, 2014, 14 pages.
Non-Final Office Action for U.S. Appl. No. 13/951,976 mailed Apr. 4, 2014, 7 pages.
Examination Report for European Patent Application No. 11720630.0 issued Mar. 18, 2014, 4 pages.
International Preliminary Report on Patentability for PCT/US2012/062070 mailed May 8, 2014, 8 pages.
International Search Report and Written Opinion for PCT/US2012/062110 issued Apr. 8, 2014, 12 pages.
International Preliminary Report on Patentability for PCT/US2012/062110 mailed May 8, 2014, 9 pages.
International Preliminary Report on Patentability for PCT/US2012/024124, mailed Aug. 22, 2013, 8 pages.
International Preliminary Report on Patentability for PCT/US2012/023495, mailed Aug. 15, 2013, 10 pages.
Dixon, N., “Standardization boosts momentum for Envelope tracking,” Microwave Engineers, Europe, Apr. 20, 2011, 2 pages.
Choi, J. et al., “A New Power Management IC Architecture for Envelope Tracking Power Amplifier,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, No. 7, Jul. 2011, pp. 1796-1802.
Kim, N. et al, “Ripple feedback filter suitable for analog/digital mixed-mode audio amplifier for improved efficiency and stability,” 33rd Annual Power Electronics Specialists Conference, vol. 1, Jun. 23, 2002, pp. 45-49.
Kim, D. et al., “High Efficiency and Wideband Envelope Tracking Power Amplifier with Sweet Spot Tracking,” 2010 IEEE Radio Frequency Integrated Circuits Symposium, May 23-25, 2010, pp. 255-258.
Knutson, P, et al., “An Optimal Approach to Digital Raster Mapper Design,” 1991 IEEE Transactions on Consumer Electronics held Jun. 5-7, 1991, vol. 37, Issue 4, published Nov. 1991, pp. 746-752.
Le, Hanh-Phuc et al., “A 32nm Fully Integrated Reconfigurable Switched-Capacitor DC-DC Convertor Delivering 0.55W/mm^2 at 81% Efficiency,” 2010 IEEE International Solid State Circuits Conference, Feb. 7-11, 2010, pp. 210-212.
Sahu, B. et al., “Adaptive Power Management of Linear RF Power Amplifiers in Mobile Handsets—An Integrated System Design Approach,” submission for IEEE Asia Pacific Microwave Conference, Mar. 2004, 4 pages.
Unknown, “Nujira files 100th envelope tracking patent,” CS: Compound Semiconductor, Apr. 11, 2011, 1 page.
Non-final Office Action for U.S. Appl. No. 12/112,006 mailed Apr. 5, 2010, now Patent No. 7,884,681, 6 pages.
Notice of Allowance for U.S. Appl. No. 12/112,006 mailed Jul. 19, 2010, now Patent No. 7,884,681, 6 pages.
International Search Report for PCT/US11/033037 mailed Aug. 9, 2011, 10 pages.
International Search Report for PCT/US2011/044857 mailed Oct. 24, 2011, 10 pages.
International Search Report for PCT/US11/49243 mailed Dec. 22, 2011, 9 pages.
International Search Report for PCT/US2011/064255 mailed Apr. 3, 2012, 12 pages.
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691 mailed Feb. 1, 2008, 17 pages.
Final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Jul. 30, 2008, 19 pages.
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Nov. 26, 2008, 22 pages.
Final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed May 4, 2009, 20 pages.
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Feb. 3, 2010, 21 pages.
Notice of Allowance for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Jun. 9, 2010, 7 pages.
International Search Report for PCT/US06/12619 mailed May 8, 2007, 2 pages.
Extended European Search Report for application 06740532.4 mailed Dec. 7, 2010, 7 pages.
International Search Report for PCT/US2011/061009 mailed Feb. 8, 2012, 14 pages.
International Search Report for PCT/US2012/023495 mailed May 7, 2012, 13 pages.
Invitation to Pay Additional Fees and Where Applicable Protest Fee for PCT/US2011/061007 mailed Feb. 13, 2012, 7 pages.
Hekkala, A. et al., “Adaptive time misalignment compensation in envelope tracking amplifiers,” International Symposium on Spread Spectrum Techniques and Applications, Aug. 2008, pp. 761-765.
Invitation to Pay Additional Fees and Where Applicable Protest Fee for PCT/US2012/024124 mailed Jun. 1, 2012, 7 pages.
Li et al., “A highly efficient SiGe differential power amplifier using an envelope-tracking technique for 3GPP LTE applications,” IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct. 4-6, 2010, pp. 121-124.
Cidronali, A. et al., “A 240W dual-band 870 and 2140 MHz envelope tracking GaN PA designed by a probability distribution conscious approach,” IEEE MTT-S International Microwave Symposium Digest, Jun. 5-10, 2011, 4 pages.
International Search Report for PCT/US2011/061007 mailed Aug. 16, 2012, 16 pages.
International Search Report for PCT/US2012/024124 mailed Aug. 24, 2012, 14 pages.
Notice of Allowance for U.S. Appl. No. 13/297,490, mailed Feb. 27, 2014, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/297,470, mailed Feb. 20, 2014, 16 pages.
Notice of Allowance for U.S. Appl. No. 13/550,049, mailed Mar. 6, 2014, 5 pages.
International Preliminary Report on Patentability for PCT/US2012/046887, mailed Jan. 30, 2014, 8 pages.
International Preliminary Report on Patentability for PCT/US2012/053654, mailed Mar. 13, 2014, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/661,552, mailed Feb. 21, 2014, 5 pages.
International Search Report and Written Opinion for PCT/US2013/065403, mailed Feb. 5, 2014, 11 pages.
International Preliminary Report on Patentability for PCT/US2011/044857 mailed Mar. 7, 2013, 6 pages.
Notice of Allowance for U.S. Appl. No. 13/218,400 mailed Apr. 11, 2013, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/297,470 mailed May 8, 2013, 15 pages.
Notice of Allowance for U.S. Appl. No. 13/222,453 mailed Feb. 21, 2013, 7 pages.
Final Office Action for U.S. Appl. No. 13/222,484 mailed Apr. 10, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2012/053654 mailed Feb. 15, 2013, 11 pages.
International Search Report and Written Opinion for PCT/US2012/067230 mailed Feb. 21, 2013, 10 pages.
Notice of Allowance for U.S. Appl. No. 13/188,024, mailed Jun. 18, 2013, 8 pages.
International Preliminary Report on Patentability for PCT/US2011/054106 mailed Apr. 11, 2013, 8 pages.
International Preliminary Report on Patentability for PCT/US2011/061007 mailed May 30, 2013, 11 pages.
International Preliminary Report on Patentability for PCT/US2011/061009 mailed May 30, 2013, 10 pages.
Non-Final Office Action for U.S. Appl. No. 13/423,649, mailed May 22, 2013, 7 pages.
Advisory Action for U.S. Appl. No. 13/222,484, mailed Jun. 14, 2013, 3 pages.
International Preliminary Report on Patentability for PCT/US2011/064255, mailed Jun. 20, 2013, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/343,840, mailed Jul. 1, 2013, 8 pages.
Non-final Office Action for U.S. Appl. No. 13/218,400 mailed Nov. 8, 2012, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/316,229 mailed Nov. 14, 2012, 9 pages.
Non-final Office Action for U.S. Appl. No. 13/222,484 mailed Nov. 8, 2012, 9 pages.
International Preliminary Report on Patentability for PCT/US11/49243 mailed Nov. 13, 2012, 33 pages.
Non-final Office Action for U.S. Appl. No. 13/089,917 mailed Nov. 23, 2012, 6 pages.
Non final Office Action for U.S. Appl. No. 13/222,453 mailed Dec. 6, 2012, 13 pages.
International Preliminary Report on Patentability for PCT/US2011/033037 mailed Oct. 23, 2012, 7 pages.
Final Office Action for U.S. Appl. No. 13/297,470, mailed Oct. 25, 2013, 17 pages.
Notice of Allowance for U.S. Appl. No. 14/022,858, mailed Oct. 25, 2013, 9 pages.
Non-Final Office Action for U.S. Appl. No. 13/550,049, mailed Nov. 25, 2013, 6 pages.
Non-Final Office Action for U.S. Appl. No. 12/836,307, mailed Nov. 5, 2013, 6 pages.
Examination Report for European Patent Application No. 11720630, mailed Aug. 16, 2013, 5 pages.
International Search Report for PCT/US2011/054106 mailed Feb. 9, 2012, 11 pages.
International Search Report for PCT/US12/40317 mailed Sep. 7, 2012, 7 pages.
International Search Report for PCT/US2012/046887 mailed Dec. 21, 2012, 12 pages.
Non-Final Office Action for U.S. Appl. No. 13/188,024, mailed Feb. 5, 2013, 8 pages.
International Search Report and Written Opinion for PCT/US2012/062070, mailed Jan. 21, 2013, 12 pages.
Lie, Donald Y.C. et al., “Design of Highly-Efficient Wideband RF Polar Transmitters Using Envelope-Tracking (ET) for Mobile WiMAX/Wibro Applications,” IEEE 8th International Conference on ASIC (ASCION), Oct. 20-23, 2009, pp. 347-350.
Lie, Donald Y.C. et al., “Highly Efficient and Linear Class E SiGe Power Amplifier Design,” 8th International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Oct. 23-26, 2006, pp. 1526-1529.
Notice of Allowance for U.S. Appl. No. 13/363,888, mailed Jul. 18, 2013, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/222,453, mailed Aug. 22, 2013, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/367,973, mailed Sep. 24, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/423,649, mailed Aug. 30, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/316,229, mailed Aug. 29, 2013, 8 pages.
Quayle Action for U.S. Appl. No. 13/531,719, mailed Oct. 10, 2013, 5 pages.
Notice of Allowance for U.S. Appl. No. 13/550,060, mailed Aug. 16, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/222,484, mailed Aug. 26, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/602,856, mailed Sep. 24, 2013, 9 pages.
Notice of Allowance for U.S. Patent Application No. 141072,140, mailed Aug. 27, 2014, 8 pages.
Non-Final Office Action for U.S. Patent Application No. 14/072,225, mailed Aug. 15, 2014, 4 pages.
Non-Final Office Action for U.S. Patent Application No. 13/486,012, mailed Jul. 28, 2014, 7 pages.
Non-Final Office Action for U.S. Patent Application No. 13/689,883, mailed Aug. 27, 2014, 12 pages.
Notice of Allowance for U.S. Patent Application No. 131661,552, mailed Jun. 13, 2014, 5 pages.
Notice of Allowance for U.S. Patent Application No. 131692,084, mailed Jul. 23, 2014, 7 pages.
Notice of Allowance for U.S. Patent Application No. 131690,187, mailed Sep. 3, 2014, 9 pages.
Notice of Allowance for U.S. Patent Application No. 131684,826, mailed Jul. 18, 2014, 7 pages.
Non-Final Office Action for U.S. Patent Application No. 13/782,142, mailed Sep. 4, 2014, 6 pages.
Hassan, Muhammad, et al., “A Combined Series-Parallel Hybrid Envelope Amplifier for Envelope Tracking Mobile Terminal Rf Power Amplifier Applications,” IEEE Journal of Solid-State Circuits, vol. 47, no. 5, May 1, 2012, pp. 1185-1198.
Hoversten, John, et al, “Codesign of Pa, Supply, and Signal Processing for Linear Supply-Modulated Rf Transmitters,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, Jun. 2012, pp. 2010-2020.
European Search Report for Patent Application No. 14162682.0, issued Aug. 27, 2014, 7 pages.
International Preliminary Report on Patentability and Written Opinion for PCT/US2012/067230, mailed Jun. 12, 2014, 7 pp.
International Search Report and Written Opinion for PCT/US2014/028089, mailed Jul. 17, 2014, 10 pages.
Invitation to Pay Additional Fees and Partial International Search Report for PCT/US2014I028178, mailed Jul. 24, 2014, 7 pp.
Non-Final Office Action for U.S. Appl. No. 12/836,307, mailed Sep. 25, 2014, 5 pages.
Advisory Action for U.S. Appl. No. 13/297,470, mailed Sep. 19, 2014, 3 pages.
Non-Final Office Action for U.S. Appl. No. 13/297,470, mailed Oct. 20, 2014, 22 pages.
Notice of Allowance for U.S. Appl. No. 13/367,973, mailed Sep. 15, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/647,815, mailed Sep. 19, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/661,227, mailed Sep. 29, 2014, 24 pages.
Notice of Allowance for U.S. Appl. No. 13/684,826, mailed Sep. 8, 2014, 6 pages.
Non-Final Office Action for U.S. Appl, No. 13/714,600, mailed Oct. 15, 2014, 13 pages.
Notice of Allowance for U.S. Appl. No. 131914,888, mailed Oct. 17, 2014, 10 pages.
Non-Final Office Action for U.S. Appl. No. 13/747,725, mailed Oct. 7, 2014, 6 pages.
Notice of Allowance for U.S. Appl. No. 13/486,012, mailed Nov. 21, 2014, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/747,749, mailed Nov. 12, 2014, 32 pages.
Notice of Allowance for U.S. Appl. No. 141072, 140, mailed Dec. 2, 2014, 8 pages.
Extended European Search Report for European Patent Application No. 12794149.0, issued Oct. 29, 2014, 6 pages.
International Search Report and Written Opinion for PCT/US2014/012927, mailed Sep. 30, 2014, 11 pages.
International Search Report and Written Opinion for PCT/US2014/028178, mailed Sep. 30, 2014, 17 pages.
Related Publications (1)
Number Date Country
20130181730 A1 Jul 2013 US
Provisional Applications (1)
Number Date Country
61508187 Jul 2011 US