The invention relates to shielded containers, and more particularly to shielded containers configured to hold a radiopharmaceutical.
Radiation-shielding containers for storing, transporting, and dispensing radioactive drugs are known in the art. Radioactive drugs, commonly known as radiopharmaceuticals, are used to treat a variety of illnesses. However, technicians and medical personnel who handle these drugs on a regular basis must take precautions to reduce their exposure to the radiation emitted by radiopharmaceuticals. These precautions include, among other things, the use of radiation-shielding containers to store radiopharmaceuticals.
Accordingly, radiation-shielding containers that are configured to hold vials of radiopharmaceutical liquid are known. Some containers provide access ports or other openings such that a liquid contained therein can be withdrawn from the vials using a syringe. Other containers exist that are configured to hold an individual syringe that contains radiopharmaceutical liquid. The syringe container is popular among hospitals and other care facilities because the radiopharmaceutical can be shipped and stored in pre-measured doses, thereby reducing the equipment and labor costs associated with storing and handling large quantities of radiopharmaceuticals.
In one embodiment, the invention provides a radiation-shielding container assembly. The assembly includes an elongated body portion that has a closed end, an open end, an outer surface defining a central axis, and an inner surface spaced radially inwardly from the outer surface. An outer body interface extends radially inwardly from the outer surface, and a transition surface extends from the outer body interface toward the inner surface. The transition surface defines a frusto-conical body surface that surrounds the central axis. The assembly also includes a cap portion that is securable to the body portion. The cap portion includes a closed end and an open end that is spaced from the closed end. The open end includes a frusto-conical cap surface that surrounds the open end and is matingly engageable with the transition surface. As such, when the cap portion is secured to the body portion, the frusto-conical cap surface and the frusto-conical body surface overlap along a plane lying perpendicular to the central axis.
In another embodiment, the invention also provides a radiation-shielding container that is configured to receive a syringe having opposed ends and containing a radiopharmaceutical. The container includes a first radiation shield that is configured to receive a first end of the syringe, and a first casing that at least partially surrounds the first radiation shield. The container also includes a second radiation shield that is configured to receive a second end of the syringe, and a second casing that at least partially surrounds the second radiation shield and is securable to the first casing. The container is configured such that when the second casing is secured to the first casing, the first and second radiation shields overlap to preclude a straight-line path for radiation emitted by the radiopharmaceutical to pass from the container.
In another embodiment, the invention further provides a radiation-shielding container for a syringe that contains a radioactive liquid. The syringe container includes a generally cylindrical body casing that has a central axis and a cap-engaging portion. The container also includes a first radiation-shielding liner that is received within the body casing. The first liner defines a first chamber that has a first chamber opening that is surrounded by a first interface surface. The container further includes a generally cylindrical cap casing having a body-engaging portion that is engagable with the cap-engaging portion to releasably secure the cap to the body. A second radiation-shielding liner is received within the cap casing and defines a second chamber that has a second chamber opening surrounded by a second interface surface. An interface plane extends across one of the chamber openings and is substantially perpendicular to the central axis. As such, when the cap is secured to the body, each interface surface includes portions lying on each side of the interface plane.
Other features of the invention will become apparent to those skilled in the art upon review of the following detailed description and drawings.
Before one embodiment of the invention is explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including” and “comprising” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
The drawings illustrate a radiation-shielding syringe container 10 embodying the invention. With reference to
The body liner 22 includes a plurality of circumferentially extending ribs 42 that grip an inner surface 46 of the outer portion 18 and substantially secure the body liner 22 to the outer portion 18 upon initial assembly of the portions 18, 22. Similarly, the cap liner 34 includes a plurality of circumferentially extending ribs 50 that grip an inner surface 54 (see
Referring now also to
Referring now to
Referring now to
Referring now to
Referring now to
Referring to
It should be appreciated that the particular configuration of the cap 14 and body 26 are not limited with respect to the configuration of the threaded portions 86, 144, and the frusto-conical portions 132, 182. For example, the outer cap portion 30 can include external threads formed around the open end 142 and the outer body portion 18 can include internal threads formed around the open end 118. Similarly, the cap liner 34 can include a frusto-conical recess whereas the body liner 22 would then include a frusto-conical protrusion.
The outer body portion 218 and the outer cap portion 230 of the container 210 substantially completely surround the body liner 222 and the cap liner 234. In some embodiments, the outer portions 218, 230 are formed by overmolding the outer portions 218, 230, which can be polymeric, around the liners 222, 234. The liners 222, 234 can be formed from substantially any of the radiation-shielding materials discussed above.
The cap 226 includes a body-engaging portion 266 in the form of external threads, and the body 214 includes a cap-engaging portion 270 in the form of internal threads. The illustrated threads are formed in the outer portions 218, 230 and are provided with a plurality of thread leads, each thread lead having a relatively large thread pitch. In this regard, a relatively small amount of relative rotation between the cap 226 and the body 214 (e.g. one-quarter of a turn) is required to open and close the container 210, while maintaining an adequate structural coupling between the cap 226 and the body 214 when the two are connected.
The body 214 includes an open end 282 that is sized to receive an open end 342 of the cap 226. When the cap 226 and the body 214 are secured together, portions of the cap liner 234 and the body liner 222 overlap each other in the axial direction. The overlapping nature of the cap liner 234 and the body liner 222 when the container 210 is closed is sufficient to substantially prevent a straight-line path for radiation emitted from inside the container 210 to pass from the container 210 to the outer surroundings. It should be noted that the cap liner 234 and the body liner 222 of the container 210 do not intimately engage one another, however adequate absorption of emitted radiation is maintained. The overmolded configuration of the outer portions 218, 230 protects the liners 222, 234 from dents, dings, scratches and the like.
Various features of the invention are set forth in the following claims.
This application claims the benefit of provisional application No. 60/332,610 filed Nov. 23, 2001.
Number | Name | Date | Kind |
---|---|---|---|
4825088 | Nair et al. | Apr 1989 | A |
5519931 | Reich | May 1996 | A |
5536945 | Reich | Jul 1996 | A |
5560511 | McNerney | Oct 1996 | A |
5611429 | Phillips | Mar 1997 | A |
5672883 | Reich | Sep 1997 | A |
5918443 | Phillips | Jul 1999 | A |
RE36693 | Reich | May 2000 | E |
6155420 | Phillips | Dec 2000 | A |
6166391 | Strine et al. | Dec 2000 | A |
6425174 | Reich | Jul 2002 | B1 |
6576918 | Fu et al. | Jun 2003 | B1 |
6722499 | Reich | Apr 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20030141210 A1 | Jul 2003 | US |
Number | Date | Country | |
---|---|---|---|
60332610 | Nov 2001 | US |