Electroplating is commonly used in integrated circuit manufacturing processes to form electrically conductive structures. For example, in a copper damascene process, electroplating is used to form copper lines and vias within channels previously etched into a dielectric layer. In such a process, a seed layer of copper is first deposited into the channels and on the substrate surface via physical vapor deposition. Then, electroplating is used to deposit a thicker copper layer over the seed layer such that the channels are completely filled. Excess copper is then removed by chemical mechanical polishing, thereby forming the individual copper features.
Current electroplating systems may be classified as “open contact” and “closed contact.” Open contact plating systems are systems in which the wafer contacts that deliver electric current to the seed layer during plating are exposed to the plating solution. Likewise, closed contact plating systems are those in which the contacts are not exposed to the plating solution.
Both open and closed contact electroplating systems may undergo a cleaning process on a scheduled basis to ensure proper system performance. For example, in a closed contact system, scheduled maintenance may be periodically performed to remove plating solution residues that may be potentially deposited in the cup by removal of wafers from the cup. However, such maintenance may involve relatively slow and labor-intensive manual processes. This may involve taking the electroplating system offline during cleaning, thereby causing system downtime and decreased throughput.
Accordingly, embodiments of a closed-contact electroplating cup that may be rapidly cleaned while an electroplating system is on-line are disclosed. For example, in one disclosed embodiment, a closed-contact electroplating system comprises a cup assembly and a cone assembly, wherein the cup assembly comprises a cup bottom comprising an opening, a seal surrounding the opening, an electrical contact structure comprising a plurality of electrical contacts disposed around the opening, and an interior cup side that is tapered inwardly in along an axial direction of the cup from a cup top toward the cup bottom.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
The depicted clamshell is a closed contact system in which the electrical contacts in the cup form an electrical connection with a wafer in the cup and are not exposed to the plating solution during a plating process, and generally remain clean from plating solution. However, upon removing the cup assembly 102 and cone 106 from the plating solution after completing a plating process, small amounts of plating solution may remain on the wafer surface and/or on the seal that seals the contacts from the plating solution. Removal of the wafer from the cup assembly 102 may occasionally cause some amount of this residual plating solution to contaminate the electrode region and other interior regions of the cup assembly 102.
The substrate holder 100 comprises various features that allow the cup assembly 102 to be quickly and easily cleaned via an automatic spin-rinse process performed while the electroplating system is on-line and between process batches. In contrast, other electroplating systems may require frequent manual cleanings during which the cup is removed from the electroplating system by a technician and cleaned by hand. Such a manual cleaning process, which generally involves taking the electroplating system off-line, may result in a greater amount of downtime for such systems, and therefore may lower system throughput.
Referring now to
The cup bottom 200 may be made from any suitable material. Suitable materials include materials capable of demonstrating high strength and stiffness at the thicknesses used for the cup bottom, and also that resist corrosion by low pH plating solutions, such as copper/sulfuric acid solutions. One specific non-limiting example of a suitable material is titanium.
The seal 204 also may be formed from any suitable material. Suitable materials include materials that do not react with or are not corroded by the acidic solutions used for plating, and of a sufficiently high purity not to introduce contaminants into the plating solution. Examples of suitable materials include, but are not limited to, perfluoro polymers sold under the name Chemraz, available from Greene, Tweed of Kulpsville, Pa. In some embodiments, the seal 204 may be coated with a hydrophobic coating. This may allow the seal 204 to shed aqueous plating solution when removed from a plating bath, and also may facilitate the removal of water from the seal 204 during a spin-rinse process. Other details of the seal that facilitate the spin-rinsing of the cup assembly 102 are described below with reference to
Continuing with
Continuing with
The tapered interior side of the bus bar 208 may have any suitable angle relative to the wafer surface plane. The angle selected for use may depend upon various factors, including but not limited to the rate at which the cup assembly 102 is spun during a rinse process, geometrical considerations such as space constraints and wafer size, etc. In the specific example of a cup assembly 102 that is spun at 400 rpm during rinsing, suitable angles include, but are not limited to angles, in the range of 81 degrees or less. In one specific embodiment, an angle of approximately 75 degrees is used. Further, while the interior surface of the cup assembly 102 is depicted as being defined by the bus bar 208, it will be appreciated that the tapered interior side of the cup may be formed from any other suitable component. For example, in some embodiments, an electrically insulating shield (not shown) positioned over the interior side of the bus bar 208 may form the interior side of the cup assembly 102.
The bus bar 208 is positioned within and substantially surrounded by a shield structure 212 that electrically insulates the bus bar 208 from the cup bottom 200 and from the plating solution. An o-ring 209 may be located between the bus bar 208 and shield structure 212 to seal the space between these structures, and one or more bolts 207 or other fasteners may be used to secure these structures together. Likewise, an o-ring 211 may be located between the shield structure 212 and the cup bottom 200 to prevent plating solution from reaching the spaces between these structures. One or more bolts 213 may also be used to hold these structures together.
The shield structure 212 may have a tapered outer surface 214, and an outwardly curved upper lip 216. These structures may deflect any plating solution splashed by entry of the substrate holder 100 into a plating bath away from the cup assembly 102 and cone 106, and thereby help to prevent contamination of these parts In other embodiments, the outer surface of the shield structure 212 may have other suitable configurations, and/or may omit the outwardly curved lip 216.
An electrical connection is made to the bus bar 208 through a plurality of struts 218 that extend from a top surface of the bus bar 208. The struts 218 are made from an electrically conductive material, and act as a conductor through which electrical current reaches the bus bar 208. In some embodiments, the struts 218 may be coated with an insulating coating. The struts 218 also structurally connect the cup assembly 102 to a vertical drive mechanism (not shown) that allows the cup to be lifted from and lowered into a plating solution, and also connect the cup to the rotational drive mechanism 110. The location of struts 218 internal to the bus bar 208, rather than on an outside portion of the cup, helps to prevent the formation of a wake caused by the struts 218 pulling through the plating solution during rotation of the clamshell 100 in a plating process. This may help to avoid introduction of plating solution into the space between the cup and cone during a plating process, and therefore may help to reduce a frequency at which preventative maintenance is performed. While the depicted embodiment comprises four struts, it will be appreciated that any suitable number of struts, either more than or fewer than four, may be used.
The depicted struts 218 have an elongate cross-sectional configuration that is oriented at a diagonal to the radial dimension of the cup assembly 102. This may reduce the interference of the struts with a stream of water directed at the cup assembly 102 during a spin-rinse process. Alternatively, any other suitable strut configuration may be used.
Continuing with
Next,
The fluid shedding structure 400 extends from a location adjacent to the inner edge 402 of the seal to a location adjacent to the bottom edge of the bus bar 208. Thus, when the cup assembly 102 is rotated at a sufficient speed, any fluid located on the fluid shedding structure 400 is forced upwardly toward the interior side of the bus bar 208, and then upwardly along the bus bar 208 and out of the cup, by the force exerted by the rotating cup assembly 102. The depicted fluid shedding structure 400 has a somewhat shallower angle with respect to the surface of a wafer positioned in the cup than the interior side of the bus bar 208. However, it will be understood that the fluid shedding structure 400 may have any suitable angle relative to the interior side of the bus bar 208 without departing from the scope of the present invention. The selection of angle for the fluid shedding structure 400 may depend upon various factors, including but not limited to the manufacturability of the seal, spring characteristics of the contact structure 206, and the rate(s) of rotation used in the spin-rinsing process, and the strength of the cup bottom. For a cup assembly that is spun at a rate of 400 rpm or greater, suitable angles include angles in the range of 45+/−10 degrees. Angles outside of this range may also be used, but low angles may cause higher levels of cup bottom stress, while higher angles may affect the performance of the contacts. Additionally, as mentioned above, the seal may comprise a hydrophobic coating so that the seal sheds aqueous plating solutions and cleaning water more easily.
The seal 204 may further comprise a keying feature configured to hold the seal 204 in a desired location on the cup bottom. This may help locate the seal 204 in a correct location during installation and replacement of the seal, and also may help to resist displacement of the seal during normal use and cleaning. The depicted keying feature comprises a protrusion configured to fit within a complimentary groove of the cup bottom 200; however, other suitable keying features may be used.
The seal 204 further comprises feature, such as a groove formed in its upper surface, that is configured to accommodate a stiffening ring 404. The stiffening ring is seated within the groove to provide support to the seal and help achieve tighter manufacturing tolerances. In some embodiments, the seal 204 may be bonded to the stiffening ring for additional robustness.
Referring next to
The contact structure 206 also comprises a plurality of contacts 416 that extend from the outer ring 410 toward a center of the contact structure 206. Each contact 416 comprises a portion that extends downwardly and inwardly from the outer ring 410, which generally follows the contour of the fluid shedding structure 400 of the seal 204. This allows the contacts to shed fluids toward the bus bar 208 during a spin-rinse process.
Further, the downwardly and inwardly extending portion of each contact 206 is spaced from the seal 204. Each contact 206 also comprises an upwardly turned end portion configured to contact a wafer positioned in the cup assembly 102. In this manner, each contact 416 acts as a leaf spring that is pushed against the surface of a wafer in the cup with some spring force to ensure good contact between the contact 416 and the wafer. The contacts may extend at any angle from the outer ring 410. Suitable angles may depend, for example, on the angle of the underlying fluid shedding structure 400 of the seal 204, the desired separation between the contacts 416 and the seal 204, etc. Examples of suitable angles include, but are not limited to, angles in the range of 48 to 54 degrees with respect to a plane of the outer ring 410.
Any suitable spin-rinse process may be used to periodically clean the cup assembly 102. One embodiment of a method for cleaning the cup is shown generally at 600 in
After each wafer plating processing cycle and counter variable increment, it is determined whether a scheduled cleaning has been reached based upon the value of the counter variable. Any suitable number of processing cycles may be performed before performing a scheduled cleaning. Because the spin-rinse cleaning may be performed quickly while the plating system is on-line, the cleaning may be performed at a greater frequency than a similar manual cleaning process for which a plating system is brought off-line with less effect on system throughput. Examples of suitable numbers of cycles between cleaning include, but are not limited to, 20-40 cycles.
Once it is determined that a scheduled cleaning has been reached, method 600 next comprises, at 610, positioning the cup assembly adjacent to the cleaning fluid nozzle and above (or otherwise out of) the plating solution. Next, at 612, method 600 comprises spinning the cup assembly at a preselected speed that is sufficient to shed water from the interior of the cup assembly, and then, at 614, spraying a cleaning fluid such as deionized water onto the interior surfaces of the cup assembly while spinning the cup assembly. The deionized water is generally of a sufficiently high purity not to introduce contaminants onto the surfaces of the cup assembly.
The cup assembly may be spun at any suitable rate of speed sufficient to cause the removal of water from the interior cup assembly surfaces. Suitable rates of speed include, but are not limited to, rates of approximately 400 rpm or higher. Higher rates of speed may ensure the removal of greater amounts of water, and also may remove the water more quickly, thereby providing for a faster cleaning process. Further, higher rates of speed may also ensure that the rinsate (i.e. rinse solution) from the process does not fall into the plating solution. In one specific embodiment, the cup assembly is spun at a rate of approximately 600 rpm. In other embodiments, rates less than 400 rpm may be used with suitable cup geometries and materials that allow efficient removal of water at such rates.
After the cup assembly has been rinsed sufficiently, the spraying of water is ceased and the cup assembly is spun for a sufficient amount of time to remove substantially all water from the cup assembly, as indicated at 616. Once this process has been completed, method 600 ends. Generally, method 600 will immediately be performed again once it concludes for one scheduled maintenance cycle so that the next preventative maintenance process will occur after the desired number of wafer processing cycles.
Continuing with the Figures,
As shown in
Use of the disclosed cup assembly 102 in combination with sufficiently frequent spin-rinsing cleaning processes may allow other more disruptive cleaning processes to be performed on a less frequent basis. For example, the contacts of an electroplating cup assembly may be periodically etched by dipping the cup assembly into the plating solution to expose the contacts to the acidic solution, and then rinsing the contacts with deionized water. By employing a periodic automatic spin-rinse process as disclosed above, the contacts may be degraded less by exposure to plating solution residues during a plating process due to ability to perform more frequent cleanings. Therefore, this may enable the more disruptive etching cleaning process to be performed on a less frequent basis, or even scheduled for idle times (rather than after a specific time or number of process cycles), thus reducing system downtime.
It will be understood that the configurations and/or approaches described herein are exemplary in nature, and that these specific embodiments or examples are not to be considered in a limiting sense, because numerous variations are possible. The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various processes, systems and configurations, and other features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.
This application is a continuation of U.S. patent application Ser. No. 11/932,595, filed Oct. 31, 2007, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11932595 | Oct 2007 | US |
Child | 13079745 | US |