Information
-
Patent Application
-
20030111015
-
Publication Number
20030111015
-
Date Filed
October 11, 200222 years ago
-
Date Published
June 19, 200321 years ago
-
CPC
-
US Classifications
-
International Classifications
- C23F001/00
- C23C016/00
- H01L021/306
Abstract
The invention relates to a reaction chamber especially for carrying out substrate coating methods, such as CVD methods, characterized in that at least one opening is provided in at least one outer wall in which an HF and especially an RF feedthrough is inserted in a pressure or vacuum tight manner. The inventive reaction chamber is further characterized by a combination of the following features: a support plate is sealingly inserted in every opening; the support plate has at least one opening for an HF line; every HF line is provided with a collar in the zone disposed in the reaction chamber, a first seal being mounted on said collar; a first disc from an insulating material is inserted between a second seal on the support plate and the first seal on the collar; a thread is provided in the zone outside the reaction chamber of every HF line, a screw element being screwed onto said thread in such a manner that it sealingly forces the collar of the HF line against the insulating disc via the first seal and said disc against the support plate via the second seal, without an electrical contact between the HF line and the support plate being established or an arc-over between the HF line and the support plate occurring.
Description
[0001] This application is a continuation of pending International Application No. PCT/DE01/01450 filed Apr. 12, 2001, designating the United States and claiming priority from pending German Application No. 100 18 127 filed Apr. 12, 2000.
FIELD OF THE INVENTION
[0002] The invention relates to a reaction chamber especially for carrying out substrate coating methods, such as CVD methods, according to the precharacterizing clause of patent claim 1.
[0003] Reaction chambers, as they are defined in the precharacterizing clause of patent claim 1, are used for example for producing III-V or II-VI semiconductor layers, superconductors or other layers on any desired substrate, such as silicon or SiC, e.g. by means of CVD methods. For application possibilities of generic reaction chambers in addition to the possibilities mentioned above by way of example, which do not represent an exhaustive list, you are referred to known reaction chambers, as disclosed by the patent literature and/or manufactured in series production and offered for sale by, for example, the applicant of this patent application, Aixtron AG, Aachen, DE.
[0004] In many applications, inductive heaters or resistance heaters are used for heating the substrates and/or other elements of the reaction chamber. For feeding the induction coils or other electrical elements disposed in the reaction chamber for heaters, sensors or control devices, it is necessary to provide electrical feedthroughs and especially HF or RF (radio frequency) feedthroughs.
BACKGROUND OF THE INVENTION
[0005] The feedthroughs, and especially the HF or RF feedthroughs, are usually inserted in openings which are provided in the outside wall of the reaction chamber. It goes without saying that it is necessary for the feedthrough to be inserted in the respective opening in such a way that the reaction chamber remains sealed in a vacuum- and pressure-tight manner from the space outside.
[0006] The patent literature discloses a wide variety of embodiments of vacuum- and pressure-tight HF and RF feedthroughs. Furthermore, a wide variety of feedthroughs for vacuum recipients or the like are offered for sale by the relevant manufacturers.
[0007] However, with regard to the requirements stated below, as they arise specifically in the case of reaction chambers for the applications stated at the beginning, the known feedthroughs are not optimal, or make a compromise with respect to the overall set of requirements which follow:
[0008] 1. HF feedthroughs should be insensitive to impact and shock, and especially not be made to leak by impact or shock, as may occur when working in reaction chambers.
[0009] 2. HF feedthroughs should allow themselves to be cooled with water, especially whenever they are intended to conduct high levels of electrical energy into the interior space of the reaction chamber, without arc-overs to the chamber wall or other parts of the reaction chamber occurring.
[0010] 3. HF feedthroughs should be easily exchangeable, allowing if need be defective parts to be easily replaced.
[0011] 4. HF feedthroughs should also be suitable for being manufactured at low cost.
SUMMARY OF THE INVENTION
[0012] The invention is based on the object of providing a reaction chamber with at least one electrical feedthrough and especially an HF feedthrough, it being possible for the feedthrough to be manufactured at low cost and easily installed, the feedthrough withstanding impact or shock without being damaged, and especially without leaking, and it being possible if need be for defective parts of the feedthrough to be individually replaced.
[0013] A solution for achieving this object as provided by the invention is given in patent claim 1. Developments of the invention are the subject of claims 2 and the claims which then follow.
[0014] The invention is distinguished by the combination of the following features:
[0015] a support plate is inserted in a sealing manner into every opening,
[0016] the support plate has at least one opening for an HF line,
[0017] every HF line has at its region disposed in the reaction chamber a collar on which a first seal is provided,
[0018] a first disk of an insulating material is inserted between a second seal on the support plate and the first seal on the collar,
[0019] at the region of each HF line disposed outside the reaction chamber there is provided a thread onto which a screw element is screwed in such a way that it holds the collar of the HF line in a sealing manner against the insulating disk via the first seal and said disk against the support plate via the second seal, without an electrical contact between the HF line and the support plate being established or an arc-over between the HF line and the support plate occurring.
[0020] The feedthrough used in the case of the reaction chambers according to the invention comprises two “main elements”, that is the support plate and the at least one HF line inserted into the support plate. The two parts are insulated from each other and can consequently consist of a metal, so that they are not fragile. The HF line is in this case screwed to the support plate, the screwed connection, for example a union nut, being designed in such a way that no major forces are exerted on fragile materials, such as for example elements of insulating material, even if impact or shock act on the HF line and/or the support plate. This is achieved in particular by the insulation between the HF line and the support plate being established by an insulating disk, which consists for example of quartz or a ceramic material. A disk of this type is comparatively insensitive to ruptures etc. Should damage nevertheless occur to the insulating disk and/or seals, which may in particular be O-rings, these parts can be easily exchanged after releasing the connections, and especially the screwed connection between the HF line and the support plate.
[0021] The screw element may consist of an insulating material; it is preferred, however, if it consists of a metal, such as steel or stainless steel, and if a second disk of an insulating material, which likewise preferably consists of quartz or a ceramic material, is inserted between the screw element and the support plate.
[0022] To prevent electrical contact or arc-overs between the HF line and the support plate, consisting for example of stainless steel, it is further preferred if a sleeve of an insulating material is inserted between the first disk and the second disk or the screw element. This sleeve, which may under certain circumstances be subjected to forces but does not contribute to the sealing effect, preferably consists of an insulating plastic, and especially Teflon.
[0023] In particular whenever high levels of electrical energy are to be transferred into the reaction chamber, it is of advantage if the support plate is water-cooled. For this purpose, channels through which water flows may be provided in the support plate. In this case, it is of particular advantage if every HF line is surrounded by a channel through which water flows.
[0024] In the case of a preferred configuration of the invention, the collar is a component part of a sleeve which is mounted in a sealing manner on the HF line, and at the other end of which the thread is provided.
[0025] With regard to the electrical and thermal conductivity, it is further preferred if the HF line consists of copper. The collar may then consist of a (different) metallic material and especially stainless steel and be soldered onto the HF line.
[0026] To establish a sealed connection between the outside wall of the reaction chamber and the support plate, it is further of advantage if the support plate has an external seal, and is screwed to the wall of the reaction chamber in the region inside the seal.
[0027] In the case of a preferred exemplary embodiment of the invention, at least two lines, and especially HF lines, are provided in the (every) support plate and may in particular be the leads for a coil of an inductive heater.
BRIEF DESCRIPTION OF THE DRAWING
[0028] The invention is described below by way of example, without restricting the general idea of the invention, on the basis of an exemplary embodiment with reference to the drawing, to which you are expressly referred moreover with regard to the disclosure of all the details according to the invention not explained in more detail in the text. In the drawing:
[0029]
FIG. 1 shows a cross-section through part of a reaction chamber according to the invention.
DETAILED DESCRIPTION OF THE DRAWING
[0030]
FIG. 1 shows a cross-section through part of a reaction chamber according to the invention, of which only an outside wall 1 is represented. Provided in the outside wall 1 is an opening (without reference numeral), into which the HF feedthrough designed according to the invention is inserted. The HF feedthrough is connected to an induction coil 3 in the interior space 2 of the reaction chamber. It goes without saying that the feedthrough according to the invention may also supply other elements disposed in the reaction chamber with electric power.
[0031] The feedthrough according to the invention has a support plate 4, which consists for example of stainless steel and in the exemplary embodiment shown has two openings for HF lines 5′ and 5″, which are connected to the induction coil 3. The HF lines 5 consist of copper and have in their interior a channel 6 through which water flows. Provided on each of the lines 5 is a sleeve 7 with a collar at the end disposed in the interior space 2 of the reaction chamber and with an external thread on the end located outside the reaction chamber. Provided on the underside of the collar of the sleeve 7 is a groove, into which an O-ring 8 is inserted. A groove into which a O-ring 9 is inserted is also provided on the upper side of the support plate 4. Disposed between the collar 7 and the support plate 4 is a disk 10 of an insulating material, preferably quartz or a ceramic material.
[0032] To hold the seals 8 and 9 in a sealing manner against the disk 10, screwed onto the external thread on the other end of the sleeve 7 is a union nut 11, which is electrically separated from the support plate 4 by a disk 12 of an insulating material, for example likewise quartz or a ceramic material. To avoid arc-overs between the sleeve 7 and the support plate 4, a sleeve 13 which likewise consists of an insulating material, preferably a plastics material, such as Teflon, is inserted in the intermediate space.
[0033] For cooling the support plate 4, channels 14 through which water is conducted via connections 15 are provided in said support plate.
[0034] On the side of the support plate 4 facing the outside wall 1, a groove in which an O-ring 16 is inserted is provided in the outer edge region. The support plate 4 is pressed in a sealing manner against the wall 1 by a screwed connection indicated in the drawing.
[0035] The drawing also shows securing screws and a connection for a water supply and discharge. This connection may be realized for example by means of a screwed pipe connection.
[0036] The invention has been described above on the basis of an exemplary embodiment without restricting generality. In particular, the geometrical realization represented is to be understood merely as an example.
Claims
- 1. A reaction chamber especially for carrying out substrate coating methods, such as CVD methods, in which at least one opening in which an HF feedthrough, and especially an RF feedthrough, is inserted in a pressure- and vacuum-tight manner is provided in at least one outside wall, characterized by the combination of the following features:
a support plate (4) is inserted in a sealing manner into every opening, the support plate has at least one opening for an HF line (5), every HF line has at its region disposed in the reaction chamber a collar on which a first seal (8) is provided, a first disk (10) of an insulating material is inserted between a second seal (9) on the support plate (4) and the first seal (8) on the collar, at the region of each HF line disposed outside the reaction chamber there is provided a thread onto which a screw element (11) is screwed in such a way that it holds the collar of the HF line in a sealing manner against the insulating disk via the first seal and said disk against the support plate via the second seal, without an electrical contact between the HF line and the support plate being established or an arc-over between the HF line and the support plate occurring.
- 2. The reaction chamber as claimed in claim 1, characterized in that the screw element (11) consists of a metal, and in that a second disk (12) of an insulating material is inserted between the screw element (11) and the support plate (4).
- 3. The reaction chamber as claimed in claim 1 or 2, characterized in that a sleeve (13) of an insulating material which prevents electrical contact or arc-over between the HF line (5) and the support plate (4) is inserted between the first disk (10) and the second disk (12) or the screw element (11).
- 4. The reaction chamber as claimed in one of claims 1 to 3, characterized in that the screw element is a union nut (11).
- 5. The reaction chamber as claimed in one of claims 1 to 4, characterized in that the support plate is water-cooled.
- 6. The reaction chamber as claimed in one of claims 1 to 5, characterized in that the first and the second disk (10, 12) consist of quartz or a ceramic material.
- 7. The reaction chamber as claimed in one of claims 3 to 6, characterized in that the sleeve (13) consists of an insulating plastic and especially Teflon.
- 8. The reaction chamber as claimed in one of claims 1 to 7, characterized in that the collar is a component part of a sleeve (7) which is mounted in a sealing manner on the HF line (5), and at the other end of which the thread is provided.
- 9. The reaction chamber as claimed in one of claims 1 to 8, characterized in that the HF line (5) consists of copper.
- 10. The reaction chamber as claimed in claim 9, characterized in that the collar or the sleeve (7) consists of a metallic material and especially stainless steel and is soldered on to the HF line.
- 11. The reaction chamber as claimed in one of claims 1 to 10, characterized in that the support plate (4) has a seal (16) lying externally on its circumference, and is screwed to the wall (1) of the reaction chamber in the region inside the seal.
- 12. The reaction chamber as claimed in one of claims 1 to 11, characterized in that the seals (8, 9, 16) are O-rings.
- 13. The reaction chamber as claimed in one of claims 1 to 12, characterized in that at least two HF lines (5′, 5″) are provided in the support plate (4).
- 14. The reaction chamber as claimed in claim 13, characterized in that the two HF lines (5′, 5″) are the leads for a coil (3) of an inductive heater.
- 15. The reaction chamber as claimed in claim 13 or 14, characterized in that the water cooling has channels (14) through which water flows in the support plate (4).
- 16. The reaction chamber as claimed in claim 15, characterized in that every HF line (5′, 5″) is surrounded by a channel (14) through which water flows.
Priority Claims (1)
Number |
Date |
Country |
Kind |
100 18 127.9 |
Apr 2000 |
DE |
|
Continuations (1)
|
Number |
Date |
Country |
Parent |
PCT/DE01/01450 |
Apr 2001 |
US |
Child |
10269157 |
Oct 2002 |
US |