In one aspect, the present inventions described and illustrated herein relate to an integrated circuit device having a memory cell array and read circuitry to detect, sense, sample and/or determine a data state of the memory cells in the array. More particularly, in one aspect, the present inventions relate to an integrated circuit having memory cell array including a plurality of memory cells (for example, memory cells having an electrically floating body in which a charge is stored) wherein read circuitry is selectively coupled to one or more memory cells to detect, sense, sample and/or determine a data state of the one or more memory cells.
Briefly, with reference to
One type of dynamic random access memory cell is based on, among other things, a floating body effect of, for example, semiconductor on insulator (SOI) transistors. (See, for example, U.S. Pat. No. 6,969,662, U.S. Patent Application Publication No. 2006/0131650 and U.S. Patent Application Publication No. 2007/0058427). In this regard, the memory cell may consist of a partially depleted (PD) or a fully depleted (FD) SOI transistor (or transistor formed in bulk material/substrate) on having a channel, which is disposed adjacent to the body and separated therefrom by a gate dielectric. The body region of the transistor is electrically floating in view of the insulation or non-conductive region (for example, in bulk-type material/substrate) disposed beneath the body region. The state of cell is determined by the concentration of charge in the body of the transistor.
With reference to
Data is written into or read from a selected memory cell by applying suitable control signals to a selected word line(s) 28, and/or a selected bit line(s) 32. In this illustrative embodiment, source line (30) is a common node in a typical implementation though it could be similarly decoded. In response, charge carriers are accumulated in or emitted and/or ejected from electrically floating body region 18 wherein the data states are defined by the amount of carriers within electrically floating body region 18. Notably, the entire contents of U.S. Pat. Nos. 6,969,662, 7,301,803 and U.S. Patent Application Publication No. 2007/0058427, including, for example, all features, attributes, architectures, configurations, materials, techniques and advantages described and illustrated therein, are incorporated by reference herein.
As mentioned above, memory cell 12 of memory cell array 10 operates by accumulating in or emitting/ejecting majority carriers (electrons or holes) 34 from body region 18 of, for example, N-channel transistors. (See,
Several arrangements, layouts and techniques have been proposed to read the data stored in an electrically floating body type transistor. (See, for example, U.S. Pat. No. 6,567,330; “Memory Design Using a One-Transistor Cell on SOI”, IEEE Journal of Solid-State Circuits, Vol. 37, No. 11, November 2002; and U.S. Pat. No. 7,301,838). For example, a current sense amplifier (cross-coupled type) may be employed to compare the cell current to a reference current, for example, the current of a reference cell. From that comparison, it is determined whether the memory cell contained a logic high data state (relatively more majority carriers contained within body region) or logic low data state (relatively less majority carriers contained within body region). The differences of the charge stored in the body of the transistor affect the threshold voltage of the transistor, which in turn affects the current conducted by the transistor when switched into its conductive state.
In particular, the sense amplifier (for example, a cross-coupled sense amplifier) typically includes an input/output connected to an associated bit line and an input connected to a reference current generator. In operation, the sense amplifier compares the current conducted by the memory cell with a reference current. The magnitude of the reference current generally lies between the magnitudes of the currents conducted in the logic high data state and logic low data state of the memory cell. The sense amplifier compares the reference current to the current produced by the memory cell (the current varies depending on whether the memory cell is either in a logic high data state or logic low data state). Based on that comparison, the sense amplifier generates or outputs an output signal having a predetermined polarity (for example, a positive or negative polarity) depending on the data state stored in the memory cell (for example, whether the memory cell stored a logic high or a logic low binary data state). (See, for example, U.S. Pat. No. 6,567,330; “Memory Design Using a One-Transistor Cell on SOI”, IEEE Journal of Solid-State Circuits, Vol. 37, No. 11, November 2002; and U.S. Pat. No. 7,301,838).
There are many inventions described and illustrated herein. The present inventions are neither limited to any single aspect nor embodiment thereof, nor to any combinations and/or permutations of such aspects and/or embodiments. Moreover, each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of the other aspects of the present inventions and/or embodiments thereof. For the sake of brevity, many of those permutations and combinations will not be discussed separately herein.
In a first principle aspect, certain of the present inventions are directed to an integrated circuit device comprising a memory cell array including a plurality of memory cells and a bit line having an intrinsic capacitance, wherein a plurality of the memory cells are coupled to the bit line. In this embodiment, each memory cell includes an electrically floating body transistor including a body region which is electrically floating, wherein each memory cell is programmable to store one of a plurality of data states including (i) a first data state representative of a first charge in the body region of the transistor, and (ii) a second data state representative of a second charge in the body region of the transistor. The integrated circuit device further includes memory cell control circuitry, coupled to the memory cell array, to generate one or more read control signals to perform a read operation wherein, in response to the one or more read control signals, the electrically floating body transistor associated with a selected memory cell conducts a current, which is representative of the data state stored in the selected memory cell, on the bit line. The integrated circuit device also includes sense amplifier circuitry having an input which is electrically coupled to the bit line to receive a signal which is responsive to the current conducted on the bit line by the electrically floating body transistor of the selected memory cell and, in response thereto, to (i) sense the data state stored in the selected memory cell and (ii) output a signal which is representative thereof. Current regulation circuitry, electrically coupled to the bit line, sinks or sources at least a portion of the current conducted on the bit line by the electrically floating body transistor of the selected memory cell during only a portion of the read operation. In addition, sensing circuitry, coupled between the bit line and the current regulation circuitry, responsively couples the current regulation circuitry to the bit line during the portion of the read operation.
In one embodiment, the sensing circuitry includes a transistor (for example, a p-channel or n-channel type transistor) wherein the transistor provides a current path between the bit line and the current regulation circuitry in response to a predetermined voltage on the bit line. In another embodiment, the sensing circuitry includes a switch which provides a current path between the bit line and the current regulation circuitry in response to a predetermined voltage on the bit line.
The sense amplifier circuitry (for example, a cross-coupled sense amplifier) may sense the data state of the selected memory cell using an amplitude of the voltage on the bit line. The amplitude of the voltage on the bit line is responsive to the amount of current on the bit line conducted by the electrically floating body transistor associated with the selected memory cell during the read operation.
In one embodiment, the current regulation circuitry includes a current mirror circuit.
Notably, the electrically floating body transistor associated with the selected memory cell may conduct a channel current which is representative of the data state of the memory cell on the bit line. The electrically floating body transistor associated with the selected memory cell may conduct a bipolar transistor current which is representative of the data state of the memory cell on the bit line.
In another aspect, the present inventions may be directed to an integrated circuit device comprising a memory cell array including a plurality of memory cells arranged in a matrix of rows and columns, wherein each memory cell is programmable to store one of a plurality of data states, and a bit line having an intrinsic capacitance, wherein a plurality of the memory cells are coupled to the bit line. The integrated circuit device may include memory cell control circuitry, coupled to the memory cell array, to generate one or more read control signals to perform a read operation wherein, in response to the one or more read control signals, a selected memory cell conducts a current, which is representative of the data state stored in the selected memory cell, on the bit line. Sense amplifier circuitry having an input which is electrically coupled to the bit line may receive a signal which is responsive to the current conducted on the bit line, and, in response thereto, to (i) sense the data state stored in the selected memory cell and (ii) output a signal which is representative thereof. The integrated circuit device may also include current regulation circuitry, electrically coupled to the bit line, to sink or source at least a portion of the current conducted on the bit line by the selected memory cell during only a portion of the read operation. Sensing circuitry, coupled between the bit line and the current regulation circuitry, may responsively couple the current regulation circuitry to the bit line during the portion of the read operation.
In one embodiment, the sensing circuitry includes a transistor (for example, a p-channel or n-channel type transistor) wherein the transistor provides a current path between the bit line and the current regulation circuitry in response to a predetermined voltage on the bit line. In another embodiment, the sensing circuitry includes a switch which provides a current path between the bit line and the current regulation circuitry in response to a predetermined voltage on the bit line.
The sense amplifier circuitry (for example, a cross-coupled sense amplifier) may sense the data state of the selected memory cell using an amplitude of the voltage on the bit line. The amplitude of the voltage on the bit line is responsive to the amount of current on the bit line conducted by the electrically floating body transistor associated with the selected memory cell during the read operation.
In one embodiment, the current regulation circuitry includes a current mirror circuit.
In another aspect, the present inventions are directed to an integrated circuit device comprising a memory cell array including: (a) a plurality of memory cells wherein each memory cell includes an electrically floating body transistor including a body region which is electrically floating, wherein each memory cell is programmable to store one of a plurality of data states including (i) a first data state representative of a first charge in the body region of the transistor, and (ii) a second data state representative of a second charge in the body region of the transistor, and (b) a bit line having an intrinsic capacitance, wherein a plurality of the memory cells are coupled to the bit line. The integrated circuit according to this aspect of the present inventions includes:
In another aspect, the present inventions are directed to a method of reading a memory cell which is disposed on integrated circuit device comprising a memory cell array including a plurality of memory cells arranged in a matrix of rows and columns, wherein the memory cell array includes a plurality of memory cells wherein each memory cell includes an electrically floating body transistor including a body region which is electrically floating, wherein each memory cell is programmable to store one of a plurality of data states including (i) a first data state representative of a first charge in the body region of the transistor, and (ii) a second data state representative of a second charge in the body region of the transistor. The method according to this aspect of the inventions comprises
In one embodiment, the method may further include sensing a predetermined voltage on the bit line, wherein sinking or sourcing at least a portion of the current conducted on the bit line further includes sinking or sourcing a substantial portion of the current provided on the bit line by the electrically floating body transistor after sensing the predetermined voltage on the bit line. In another embodiment, the method may further include providing a current path during only a portion of the read operation in order to sink or source at least a portion of the current provided on the bit line by the electrically floating body transistor of the selected memory cell.
Notably, determining the data state stored in the selected memory cell using the signal which is responsive to the current conducted by the electrically floating body transistor may further includes using an amplitude of the voltage on the bit line to determine the data state stored in the selected memory cell. The amplitude of the voltage on the bit line may be responsive to the amount of current conducted on the bit line during the read operation.
Again, there are many inventions, and aspects of the inventions, described and illustrated herein. This Summary of the Inventions is not exhaustive of the scope of the present inventions. Indeed, this Summary of the Inventions may not be reflective of or correlate to the inventions protected by the claims in this or in continuation/divisional applications hereof.
Moreover, this Summary of the Inventions is not intended to be limiting of the inventions or the claims (whether the currently presented claims or claims of a divisional/continuation application) and should not be interpreted in that manner. While certain embodiments have been described and/or outlined in this Summary of the Inventions, it should be understood that the present inventions are not limited to such embodiments, description and/or outline, nor are the claims limited in such a manner (which should also not be interpreted as being limited by the Summary of the Inventions).
Indeed, many other aspects, inventions and embodiments, which may be different from and/or similar to, the aspects, inventions and embodiments presented in this Summary, will be apparent from the description, illustrations and claims, which follow. In addition, although various features, attributes and advantages have been described in this Summary of the Inventions and/or are apparent in light thereof, it should be understood that such features, attributes and advantages are not required whether in one, some or all of the embodiments of the present inventions and, indeed, need not be present in any of the embodiments of the present inventions.
In the course of the detailed description to follow, reference will be made to the attached drawings. These drawings illustrate different aspects of the present inventions and, where appropriate, reference numerals illustrating like structures, components, materials and/or elements in different figures are labeled similarly. It is understood that various combinations of the structures, components, materials and/or elements, other than those specifically illustrated, are contemplated and are within the scope of the present inventions.
Moreover, there are many inventions described and illustrated herein. The present inventions are neither limited to any single aspect nor embodiment thereof, nor to any combinations and/or permutations of such aspects and/or embodiments. Moreover, each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of the other aspects of the present inventions and/or embodiments thereof. For the sake of brevity, many of those permutations and combinations will not be discussed separately herein.
Again, there are many inventions described and illustrated herein. The present inventions are neither limited to any single aspect nor embodiment thereof, nor to any combinations and/or permutations of such aspects and/or embodiments. Each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of the other aspects of the present inventions and/or embodiments thereof. For the sake of brevity, many of those combinations and permutations are not discussed separately herein.
There are many inventions described and illustrated herein. In one aspect, the present inventions are directed to an integrated circuit device having read circuitry and/or read circuitry architectures for use with a memory cell array having a plurality of memory cells arranged, for example, in a matrix of rows and columns. In another aspect, the present inventions are directed to methods of reading and/or operating the memory cells of the memory cell array using, for example, the read circuitry of the present inventions. The memory cell array and read circuitry and/or architectures may comprise a portion of the integrated circuit device, for example, a logic device (such as, a microcontroller, microprocessor or the like) or a memory device (such as, a discrete memory device).
Notably, the present inventions may be implemented in conjunction with any memory cell technology, whether now known or later developed. For example, the memory cells may include one or more transistors having electrically floating body regions, one or more transistors wherein each transistor includes a plurality of electrically floating gates, junction field effect transistors (often referred to as JFETs), thyristor-based memory cells or any other memory/transistor technology whether now known or later developed. All such memory technologies are intended to fall within the scope of the present inventions.
Moreover, the present inventions may be implemented in conjunction with any type of memory type (whether discrete or integrated with logic devices). For example, the memory may be a DRAM, SRAM and/or Flash. All such memories are intended to fall within the scope of the present inventions.
Indeed, in one embodiment, the memory cells of the memory cell array may include at least one transistor having an electrically floating body transistor which stores an electrical charge in the electrically floating body region thereof. The amount of charge stored in the in the electrically floating body region correlates to the data state of the memory cell. One type of such memory cell is based on, among other things, a floating body effect of semiconductor on insulator (SOI) transistors. (See, for example, (1) Fazan et al., U.S. Pat. No. 6,969,662, (2) U.S. Pat. No. 7,301,838, (3) U.S. Pat. No. 7,301,838, (4) Okhonin, U.S. Patent Application Publication No. 2007/0138530, (“Electrically Floating Body Memory Cell and Array, and Method of Operating or Controlling Same”), and (5) Okhonin et al., U.S. Patent Application Publication No. 2007/0187775, (“Multi-Bit Memory Cell Having Electrically Floating Body Transistor, and Method of Programming and Reading Same”), all of which are incorporated by reference herein in their entirety). In this regard, the memory cell may consist of a partially depleted (PD) or a fully depleted (FD) SOI transistor or bulk transistor (transistor which formed in or on a bulk material/substrate) having a gate, which is disposed adjacent to the electrically floating body and separated therefrom by a gate dielectric. The body region of the transistor is electrically floating in view of the insulation or non-conductive region, for example, in bulk-type material/substrate, disposed beneath the body region. The state of memory cell may be determined by the concentration or amount of charge contained or stored in the body region of the Sal or bulk transistor which may determine the amount of current output or conducted in response to the application of read control signals.
With reference to
With continued reference to
The sense amplifier circuitry 102 may employ sensing circuitry and/or techniques. In the context of a voltage sense amplifier, sense amplifier circuitry 102 may, in response to a control signal, compare a signal which is representative of the data state of the memory cell to a reference signal, for example, a voltage of a reference cell or output of reference generation circuitry. (See, for example,
The sense amplifier circuitry 102 may be any circuitry and employ any technique, whether now known or later developed, which reads, senses, samples, detects and/or determines the data state stored in the memory cell. For example, sense amplifier circuitry 102 may include the circuitry described and illustrated in U.S. Pat. No. 7,301,838. Alternatively, the sense amplifier include the sense amplifier circuitry described and illustrated in U.S. Provisional Patent Application Ser. No. 60/967,605 (Inventor: Philippe Graber, Filed: Sep. 6, 2007, Title: “Sense Amplifier Circuitry for Integrated Circuit Having Memory Cell Array, and Method of Operating Same”).
Notably, in the illustrative embodiment of
With continued reference to
Notably, regulating the current output or conducted by transistor 14 of memory cell 12 may provide an advantage during operation of memory cells 12 in memory cell array 10. (See, for example,
The current regulation circuitry 104 may be any circuitry, whether now known or later developed, which controls the amount of an input or output current. For example, current regulation circuitry 104 may be implemented using a current mirror circuit. (See, for example,
With reference to
With reference to
The sensing circuitry 106 may be any circuitry and employ any technique, whether now known or later developed, which (1) senses, detects and/or determines a predetermined amount of current to the intrinsic capacitance (capacitor 110 (Cbitline)) of the bit line and/or a predetermined voltage at node 108, and (2) electrically couples node 108 (or provides a current path from node 108) to current regulation circuitry 104. For example, sensing circuitry 106 may be implemented using comparator circuitry 112 to sense, detect and/or determine the amount of charge or current by memory cell (i.e., Ibitcell) and/or (ii) amplitude of the voltage at node 108. (See, for example,
In one embodiment, the amplitude or level of the threshold voltage (Vthreshold) is less than the bit line voltage quiescent point. For example, the threshold voltage (Vthreshold) may be 0.1V.
With reference to
Notably, depending on the input/output characteristics of transistor 114c and 114d, transistor 114c and 114d may start to conduct current before the voltage on signal line 106a is equal to or exceeds a threshold voltage (i) higher than reference voltage Vref1 for transistor 114c or (ii) lower for transistor 114d than reference voltage Vref1. Indeed, transistor 114c or transistor 114d may be sized, designed and/or fabricated to provide predetermined temporal response characteristics as well as input/output characteristics. For example, the level of body implant may be adjusted to provide adequate control for the conduction threshold of transistor 114c or transistor 114d.
In sum, sensing circuitry 106 may be any circuitry and employ any technique, whether now known or later developed, which senses, detects and/or determines a predetermined voltage on the intrinsic capacitance (capacitor 110 (Cbitline)) of the bit line and/or a predetermined voltage at node 108, and, in response thereto, electrically couples node 108 (or provides a current path from node 108) to current regulation circuitry 104.
With reference to
The integrated circuit may include reference generation circuitry 120 to generate or provide one, some or all of the reference voltages and/or reference currents employed herein. Such circuitry is well known to those skilled in the art.
In operation, with reference to
In the context of the embodiment of
Notably, in those situations where sense amplifier circuitry 102 employs the sense amplifier circuitry described and illustrated in U.S. Provisional Patent Application Ser. No. 60/967,605 (Inventor: Philippe Graber, Filed: Sep. 6, 2007, Title: “Sense Amplifier Circuitry for Integrated Circuit Having Memory Cell Array, and Method of Operating Same”), it may be advantageous to include a suitable time delay between the precharge phase and the data sense and sample phase of the read operation. In this regard, during the delay operation, the various nodes and/or elements of read circuitry 100 and, in particular, various nodes and elements of the particular sense amplifier circuitry, may undergo “settling” before implementation of a read operation. In this way, when read circuitry 100 implements a read operation, optimum, (highly) predetermined, suitable and/or proper conditions may exist which facilitates highly reliable and/or highly repetitive reading, sensing, and/or sampling of the information on bit line.
With continued reference to
Thereafter, the voltage on the bit line attains a quiescent level (Vquiescent) and sense amplifier circuitry 102 reads, senses, samples, detects and/or determines the voltage on the bit line (which is representative of the logic high data state stored in the selected memory cell) via asserting the control signal, “Sample”. In response thereto, sense amplifier circuitry 102 outputs a signal which is representative of the logic high data state stored in the selected memory cell. (See,
Notably, in those memory cell array embodiments which employ current regulation techniques, the present inventions may provide a more desired and/or suitable control of the current regulation technique by limiting and/or controlling the timing of when the regulation circuitry 104 draws or sinks bit line current (Ibitcell). That is, in contrast to conventional current regulation technique and/or architectures, the present inventions prevent or inhibit current regulation circuitry 104 from drawing or sinking current from the bitline (and the bitline capacitance) until a predetermined condition exists or is sensed on the bitline and/or until a predetermined time of/in the read operation. For example, in the embodiment of
With reference to
Notably, in those embodiments where read circuitry 100 does not include bit line precharge circuitry 116, the operation is similar to that discussed above except that the read operation does not include a precharge phase. For the sake of brevity the discussion the data sense and sample phase of the read operation wherein the memory cell provides information (for example, a current and/or voltage signal) on the bit line which is read, sensed, sampled, detected and/or determined by sense amplifier circuitry 102.
As illustrated, the integrated circuit of the present inventions further includes memory cell selection and control circuitry. (See,
As mentioned above, the present inventions may be implemented in an integrated circuit that is a logic device which includes a memory portion and logic portion (see, for example,
Further, as mentioned above, the present inventions may be employed in conjunction with any memory cell technology now known or later developed. For example, the present inventions may be implemented in conjunction with a memory array, having a plurality of memory cells each including an electrically floating body transistor. (See, for example, (1) U.S. Pat. No. 6,969,662, (2) U.S. Pat. No. 7,301,838, (3) U.S. Pat. No. 7,301,838, (4) Okhonin, U.S. Patent Application Publication No. 2007/0138530, (“Electrically Floating Body Memory Cell and Array, and Method of Operating or Controlling Same”), and (5) Okhonin et al., U.S. Patent Application Publication No. 2007/0187775, (“Multi-Bit Memory Cell Having Electrically Floating Body Transistor, and Method of Programming and Reading Same”). For example, the memory cell may consist of a PD or a FD SOI or transistor (or transistor formed on or in bulk material/substrate) having a gate, which is disposed adjacent to the electrically floating body and separated therefrom by a gate dielectric. The body region of the transistor is electrically floating in view of the insulation or non-conductive region (for example, in bulk-type material/substrate) disposed beneath the body region. The state of memory cell is determined by the concentration of charge within the body region of the SOI transistor. The entire contents of these U.S. Patent Applications, including, for example, the inventions, features, attributes, architectures, configurations, materials, techniques and advantages described and illustrated therein, are hereby incorporated by reference herein. For the sake of brevity, those discussions will not be repeated;
rather those discussions (text and illustrations), including the discussions relating to the memory cell, architecture, layout, structure, are incorporated by reference herein in its entirety.
The memory cells of the memory cell array may be comprised of N-channel, P-channel and/or both types of transistors. Indeed, circuitry that is peripheral to the memory array (for example, sense amplifiers or comparators, row and column address decoders, as well as line drivers (not illustrated in detail herein)) may include P-channel and/or N-channel type transistors. Where N-channel type transistors or P-channel type transistors are employed as memory cells in the memory array(s), suitable write and read voltages are well known to those skilled in the art (and in view of the U.S. Patents and U.S. Patent Applications incorporated herein by reference).
Moreover, the present inventions may be implemented in conjunction with any memory cell array configuration and/or arrangement of the memory cell array. In this regard, integrated circuit device (for example, memory or logic device) may include a plurality of memory cell arrays, each having a plurality of memory cells, wherein the read circuitry of the present invention may be shared between a plurality of memory cell arrays or dedicated to one memory cell array. For example, the present inventions may be employed in any architecture or layout and/or technique of sensing data from memory cells of a memory cell array. For example, read circuitry 100 may be employed in the architectures, circuitry and techniques described and illustrated in U.S. Patent Application Publication No. 2007/0241405, by Popoff, (“Semiconductor Memory Array Architecture, and Method of Controlling Same”), the application being incorporated herein by reference in its entirety. Briefly, with reference to
With reference to
Further, the memory cells may be arranged, configured and/or controlled using any of the memory cell arrays, architectures and/or control/operation techniques. For example, the memory cells may be arranged, configured and/or controlled using any of the memory cell arrays, architectures and/or control/operation techniques described and illustrated in the following U.S. Patent Applications:
(1) application Ser. No. 10/450,238, which was filed by Fazan et al. on Jun. 10, 2003 and entitled “Semiconductor Device” (now U.S. Pat. No. 6,969,662);
(2) application Ser. No. 10/487,157, which was filed by Fazan et al. on Feb. 18, 2004 and entitled “Semiconductor Device” (now U.S. Pat. No. 7,061,050);
(3) application Ser. No. 10/829,877, which was filed by Ferrant et al. on Apr. 22, 2004 and entitled “Semiconductor Memory Cell, Array, Architecture and Device, and Method of Operating Same” (now U.S. Pat. No. 7,085,153);
(4) application Ser. No. 11/079,590, which was filed by Ferrant et al. and entitled “Semiconductor Memory Device and Method of Operating Same” (now U.S. Pat. No. 7,187,581); and (5) application Ser. No. 10/941,692, which was filed by Fazan et al. on Sep. 15, 2004 and entitled “Low Power Programming Technique for a One Transistor SOI Memory Device & Asymmetrical Electrically Floating Body Memory Device, and Method of Manufacturing Same” (now U.S. Pat. No. 7,184,298).
Notably, the present inventions may be fabricated using well known techniques and/or materials. Indeed, any fabrication technique and/or material, whether now known or later developed, may be employed to fabricate the memory cells, transistors and/or memory array(s). For example, the present inventions may employ silicon (whether bulk-type or SOI), germanium, silicon/germanium, gallium arsenide or any other semiconductor material in which transistors may be formed. Indeed, the electrically floating body transistors, memory cells, and/or memory array(s) may employ the techniques described and illustrated in U.S. Pat. No. 7,335,934, by Fazan, (“Integrated Circuit Device, and Method of Fabricating Same”) and/or U.S. Patent Application Publication No. 2007/0085140, by Bassin, (“One Transistor Memory Cell having a Strained Electrically Floating Body Region, and Method of Operating Same”) (hereinafter collectively “Integrated Circuit Device Patent Applications”). The entire contents of the Integrated Circuit Device Patent Applications, including, for example, the inventions, features, attributes, architectures, configurations, materials, techniques and advantages described and illustrated therein, are hereby incorporated by reference herein.
Further, in one embodiment, an integrated circuit device includes memory section (having a plurality of memory cells, for example, PD or FD SOI memory transistors) and logic section (having, for example, high performance transistors, such as FinFET, multiple gate transistors, and/or non-high performance transistors (for example, single gate transistors that do not possess the performance characteristics of high performance transistors)). Moreover, as noted above, the memory cell and/or memory cell array, as well as the circuitry of the present inventions may be implemented in an integrated circuit device having a memory portion and a logic portion (see, for example,
There are many inventions described and illustrated herein. While certain embodiments, features, attributes and advantages of the inventions have been described and illustrated, it should be understood that many others, as well as different and/or similar embodiments, features, attributes and advantages of the present inventions, are apparent from the description and illustrations. As such, the above embodiments of the inventions are merely exemplary. They are not intended to be exhaustive or to limit the inventions to the precise forms, techniques, materials and/or configurations disclosed. Many modifications and variations are possible in light of this disclosure. It is to be understood that other embodiments may be utilized and operational changes may be made without departing from the scope of the present inventions. As such, the scope of the inventions is not limited solely to the description above because the description of the above embodiments has been presented for the purposes of illustration and description.
For example, the read circuitry according to certain aspects of the present inventions may be implemented in conjunction with one or more circuits (for example, one or more drivers, inverters and/or latches) to, for example, more fully establish, obtain/provide a predetermined or proper polarity of, and/or maintain the data read, sensed, sampled and/or determined by sense amplifier circuitry 102 during the read/data sense operation and output on signal line 102b. (See, for example,
Further, read circuitry of the present inventions may employ any of the configurations of the sense amplifier circuitry, sensing circuitry, current regulation circuitry and bit line precharge circuitry described, incorporated by reference and/or illustrated herein. All permutations and combinations of configurations for read circuitry are intended to fall within the scope of the present inventions. Moreover, all permutations and combinations of configurations of the read circuitry may be implemented in conjunction with any of the memory cells, memory cell technologies, memory cell array architectures and memory types described, incorporated by reference and/or illustrated herein. For the sake of brevity all permutations and combinations will not be discussed in detail but are intended to fall within the scope of the present inventions.
As mentioned above, each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of such aspects and/or embodiments. For the sake of brevity, those permutations and combinations will not be discussed separately herein. As such, the present inventions are neither limited to any single aspect (nor embodiment thereof), nor to any combinations and/or permutations of such aspects and/or embodiments.
Moreover, the above embodiments of the present inventions are merely exemplary embodiments. They are not intended to be exhaustive or to limit the inventions to the precise forms, techniques, materials and/or configurations disclosed. Many modifications and variations are possible in light of the above teaching. It is to be understood that other embodiments may be utilized and operational changes may be made without departing from the scope of the present inventions. As such, the foregoing description of the exemplary embodiments of the inventions has been presented for the purposes of illustration and description. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the inventions not be limited solely to the description above.
The exemplary embodiments above included an architecture wherein current regulation circuitry 104 draws or sinks current after sensing circuitry 106 senses, detects and/or determines a predetermined condition exists or is sensed on the bit line and/or until a predetermined time of/in the read operation. (See, for example, FIGS. 4A-4D and 7A-7C). In another exemplary embodiment, the present inventions prevent or inhibit current regulation circuitry 104 from providing or sourcing current to the bit line (and the bit line capacitance) until sensing circuitry 106 senses, detects and/or determines a predetermined condition exists or is sensed on the bit line and/or until a predetermined time of/in the read operation. (See, for example,
Notably, the operation of exemplary read circuitry 100 of the embodiment of
In the event that the selected memory cell stores a different logic state (for example, a logic low data state), the selected memory cell conducts little to no current (Ibitcell) (or an insufficient amount of current (Ibitcell)) from the bit line. Thus, the voltage on the bit line (Vbitline) does not sufficiently decrease to “turn on” transistor 114c and, as such, sensing circuitry 106 does not couple current regulation circuitry 104 to node 108 to allow circuitry 104 to source or provide some or all of the bit line current (Ibitcell). Moreover, the amplitude of the voltage on the bit line does not decrease below the reference voltage level (Vsample
In the embodiment of
Notably, although generally described herein as DC reference signals (for example, ground or supply) the reference potential may be AC and/or DC signals.
In this document, the term “circuit” may mean, among other things, a single component (for example, electrical/electronic) or a multiplicity of components (whether in integrated circuit form or otherwise), which are active and/or passive, and which are coupled together to provide or perform a desired function. The term “circuitry” may mean, among other things, a circuit (whether integrated or otherwise), a group of such circuits, one or more processors, one or more state machines, one or more processors implementing software, or a combination of one or more circuits (whether integrated or otherwise), one or more state machines, one or more processors, and/or one or more processors implementing software. The term “data” may mean, among other things, a current or voltage signal(s) whether in an analog or a digital form. The term “to sense a/the data state stored in memory cell” means, among other things, to sample, to sense, to read and/or to determine a/the data state stored in memory cell; “sensing a/the data state stored in memory cell”, “sensed a/the data state stored in memory cell” or the like shall have the same meaning.
This patent application is a continuation of U.S. patent application Ser. No. 12/080,642, filed Apr. 4, 2008, entitled “Read Circuitry for an Integrated Circuit Having Memory Cells and/or a Memory Cell Array, and Method of Operating Same,” which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3439214 | Kabell | Apr 1969 | A |
3997799 | Baker | Dec 1976 | A |
4032947 | Kesel et al. | Jun 1977 | A |
4250569 | Sasaki et al. | Feb 1981 | A |
4262340 | Sasaki et al. | Apr 1981 | A |
4298962 | Hamano et al. | Nov 1981 | A |
4371955 | Sasaki | Feb 1983 | A |
4527181 | Sasaki | Jul 1985 | A |
4630089 | Sasaki et al. | Dec 1986 | A |
4658377 | McElroy | Apr 1987 | A |
4791610 | Takemae | Dec 1988 | A |
4807195 | Busch et al. | Feb 1989 | A |
4954989 | Auberton-Herve et al. | Sep 1990 | A |
4979014 | Hieda et al. | Dec 1990 | A |
5010524 | Fifield et al. | Apr 1991 | A |
5144390 | Matloubian | Sep 1992 | A |
5164805 | Lee | Nov 1992 | A |
5258635 | Nitayama et al. | Nov 1993 | A |
5313432 | Lin et al. | May 1994 | A |
5315541 | Harari et al. | May 1994 | A |
5350938 | Matsukawa et al. | Sep 1994 | A |
5355330 | Hisamoto et al. | Oct 1994 | A |
5388068 | Ghoshal et al. | Feb 1995 | A |
5397726 | Bergemont et al. | Mar 1995 | A |
5432730 | Shubat et al. | Jul 1995 | A |
5446299 | Acovic et al. | Aug 1995 | A |
5448513 | Hu et al. | Sep 1995 | A |
5466625 | Hsieh et al. | Nov 1995 | A |
5489792 | Hu et al. | Feb 1996 | A |
5506436 | Hayashi et al. | Apr 1996 | A |
5515383 | Katoozi | May 1996 | A |
5526307 | Yiu et al. | Jun 1996 | A |
5528062 | Hsieh et al. | Jun 1996 | A |
5568356 | Schwartz | Oct 1996 | A |
5583808 | Brahmbhatt | Dec 1996 | A |
5593912 | Rajeevakumar | Jan 1997 | A |
5606188 | Bronner et al. | Feb 1997 | A |
5608250 | Kalnitsky | Mar 1997 | A |
5627092 | Alsmeier et al. | May 1997 | A |
5631186 | Park et al. | May 1997 | A |
5677867 | Hazani | Oct 1997 | A |
5696718 | Hartmann | Dec 1997 | A |
5740099 | Tanigawa | Apr 1998 | A |
5754469 | Hung et al. | May 1998 | A |
5774411 | Hsieh et al. | Jun 1998 | A |
5778243 | Aipperspach et al. | Jul 1998 | A |
5780906 | Wu et al. | Jul 1998 | A |
5784311 | Assaderaghi et al. | Jul 1998 | A |
5798968 | Lee et al. | Aug 1998 | A |
5811283 | Sun | Sep 1998 | A |
5847411 | Morii | Dec 1998 | A |
5877978 | Morishita et al. | Mar 1999 | A |
5886376 | Acovic et al. | Mar 1999 | A |
5886385 | Arisumi et al. | Mar 1999 | A |
5897351 | Forbes | Apr 1999 | A |
5929479 | Oyama | Jul 1999 | A |
5930648 | Yang | Jul 1999 | A |
5936265 | Koga | Aug 1999 | A |
5939745 | Park et al. | Aug 1999 | A |
5943258 | Houston et al. | Aug 1999 | A |
5943581 | Lu et al. | Aug 1999 | A |
5960265 | Acovic et al. | Sep 1999 | A |
5968840 | Park et al. | Oct 1999 | A |
5977578 | Tang | Nov 1999 | A |
5982003 | Hu et al. | Nov 1999 | A |
5986914 | McClure | Nov 1999 | A |
6018172 | Hidaka et al. | Jan 2000 | A |
6048756 | Lee et al. | Apr 2000 | A |
6081443 | Morishita | Jun 2000 | A |
6096598 | Furukawa et al. | Aug 2000 | A |
6097056 | Hsu et al. | Aug 2000 | A |
6097624 | Chung et al. | Aug 2000 | A |
6111778 | MacDonald et al. | Aug 2000 | A |
6121077 | Hu et al. | Sep 2000 | A |
6133597 | Li et al. | Oct 2000 | A |
6157216 | Lattimore et al. | Dec 2000 | A |
6171923 | Chi et al. | Jan 2001 | B1 |
6177300 | Houston et al. | Jan 2001 | B1 |
6177698 | Gruening et al. | Jan 2001 | B1 |
6177708 | Kuang et al. | Jan 2001 | B1 |
6214694 | Leobandung et al. | Apr 2001 | B1 |
6222217 | Kunikiyo | Apr 2001 | B1 |
6225158 | Furukawa et al. | May 2001 | B1 |
6245613 | Hsu et al. | Jun 2001 | B1 |
6252281 | Yamamoto et al. | Jun 2001 | B1 |
6262935 | Parris et al. | Jul 2001 | B1 |
6292424 | Ohsawa | Sep 2001 | B1 |
6297090 | Kim | Oct 2001 | B1 |
6300649 | Hu et al. | Oct 2001 | B1 |
6320227 | Lee et al. | Nov 2001 | B1 |
6333532 | Davari et al. | Dec 2001 | B1 |
6333866 | Ogata | Dec 2001 | B1 |
6350653 | Adkisson et al. | Feb 2002 | B1 |
6351426 | Ohsawa | Feb 2002 | B1 |
6359802 | Lu et al. | Mar 2002 | B1 |
6384445 | Hidaka et al. | May 2002 | B1 |
6391658 | Gates et al. | May 2002 | B1 |
6403435 | Kang et al. | Jun 2002 | B1 |
6421269 | Somasekhar et al. | Jul 2002 | B1 |
6424011 | Assaderaghi et al. | Jul 2002 | B1 |
6424016 | Houston | Jul 2002 | B1 |
6429477 | Mandelman et al. | Aug 2002 | B1 |
6432769 | Fukuda et al. | Aug 2002 | B1 |
6440872 | Mandelman et al. | Aug 2002 | B1 |
6441435 | Chan | Aug 2002 | B1 |
6441436 | Wu et al. | Aug 2002 | B1 |
6466511 | Fujita et al. | Oct 2002 | B2 |
6479862 | King et al. | Nov 2002 | B1 |
6480407 | Keeth | Nov 2002 | B1 |
6492211 | Divakaruni et al. | Dec 2002 | B1 |
6518105 | Yang et al. | Feb 2003 | B1 |
6531754 | Nagano et al. | Mar 2003 | B1 |
6537871 | Forbes | Mar 2003 | B2 |
6538916 | Ohsawa | Mar 2003 | B2 |
6544837 | Divakauni et al. | Apr 2003 | B1 |
6548848 | Horiguchi et al. | Apr 2003 | B2 |
6549450 | Hsu et al. | Apr 2003 | B1 |
6552398 | Hsu et al. | Apr 2003 | B2 |
6552932 | Cernea | Apr 2003 | B1 |
6556477 | Hsu et al. | Apr 2003 | B2 |
6560142 | Ando | May 2003 | B1 |
6563733 | Liu et al. | May 2003 | B2 |
6566177 | Radens et al. | May 2003 | B1 |
6567330 | Fujita | May 2003 | B2 |
6573566 | Ker et al. | Jun 2003 | B2 |
6574135 | Komatsuzaki | Jun 2003 | B1 |
6590258 | Divakauni et al. | Jul 2003 | B2 |
6590259 | Adkisson et al. | Jul 2003 | B2 |
6617651 | Ohsawa | Sep 2003 | B2 |
6621725 | Ohsawa | Sep 2003 | B2 |
6632723 | Watanabe et al. | Oct 2003 | B2 |
6650565 | Ohsawa | Nov 2003 | B1 |
6653175 | Nemati et al. | Nov 2003 | B1 |
6686624 | Hsu | Feb 2004 | B2 |
6703673 | Houston | Mar 2004 | B2 |
6707118 | Muljono et al. | Mar 2004 | B2 |
6714436 | Burnett et al. | Mar 2004 | B1 |
6721222 | Somasekhar et al. | Apr 2004 | B2 |
6825524 | Ikehashi et al. | Nov 2004 | B1 |
6861689 | Burnett | Mar 2005 | B2 |
6870225 | Bryant et al. | Mar 2005 | B2 |
6882566 | Nejad et al. | Apr 2005 | B2 |
6888770 | Ikehashi | May 2005 | B2 |
6894913 | Yamauchi | May 2005 | B2 |
6897098 | Hareland et al. | May 2005 | B2 |
6903984 | Tang et al. | Jun 2005 | B1 |
6909151 | Hareland et al. | Jun 2005 | B2 |
6912150 | Portmann et al. | Jun 2005 | B2 |
6913964 | Hsu | Jul 2005 | B2 |
6936508 | Visokay et al. | Aug 2005 | B2 |
6969662 | Fazan et al. | Nov 2005 | B2 |
6975536 | Maayan et al. | Dec 2005 | B2 |
6982902 | Gogl et al. | Jan 2006 | B2 |
6987041 | Ohkawa | Jan 2006 | B2 |
7030436 | Forbes | Apr 2006 | B2 |
7037790 | Chang et al. | May 2006 | B2 |
7041538 | Ieong et al. | May 2006 | B2 |
7042765 | Sibigtroth et al. | May 2006 | B2 |
7061806 | Tang et al. | Jun 2006 | B2 |
7085153 | Ferrant et al. | Aug 2006 | B2 |
7085156 | Ferrant et al. | Aug 2006 | B2 |
7170807 | Fazan et al. | Jan 2007 | B2 |
7177175 | Fazan et al. | Feb 2007 | B2 |
7187581 | Ferrant et al. | Mar 2007 | B2 |
7230846 | Keshavarzi | Jun 2007 | B2 |
7233024 | Scheuerlein et al. | Jun 2007 | B2 |
7256459 | Shino | Aug 2007 | B2 |
7301803 | Okhonin et al. | Nov 2007 | B2 |
7301838 | Waller | Nov 2007 | B2 |
7317641 | Scheuerlein | Jan 2008 | B2 |
7324387 | Bergemont et al. | Jan 2008 | B1 |
7335934 | Fazan | Feb 2008 | B2 |
7341904 | Willer | Mar 2008 | B2 |
7416943 | Figura et al. | Aug 2008 | B2 |
7456439 | Horch | Nov 2008 | B1 |
7477540 | Okhonin et al. | Jan 2009 | B2 |
7492632 | Carman | Feb 2009 | B2 |
7517744 | Mathew et al. | Apr 2009 | B2 |
7539041 | Kim et al. | May 2009 | B2 |
7542340 | Fisch et al. | Jun 2009 | B2 |
7542345 | Okhonin et al. | Jun 2009 | B2 |
7545694 | Srinivasa Raghavan et al. | Jun 2009 | B2 |
7606066 | Okhonin et al. | Oct 2009 | B2 |
7696032 | Kim et al. | Apr 2010 | B2 |
7702935 | Cornwell et al. | Apr 2010 | B2 |
7957206 | Bauser | Jun 2011 | B2 |
20010055859 | Yamada et al. | Dec 2001 | A1 |
20020030214 | Horiguchi | Mar 2002 | A1 |
20020034855 | Horiguchi et al. | Mar 2002 | A1 |
20020036322 | Divakauni et al. | Mar 2002 | A1 |
20020051378 | Ohsawa | May 2002 | A1 |
20020064913 | Adkisson et al. | May 2002 | A1 |
20020070411 | Vermandel et al. | Jun 2002 | A1 |
20020072155 | Liu et al. | Jun 2002 | A1 |
20020076880 | Yamada et al. | Jun 2002 | A1 |
20020086463 | Houston et al. | Jul 2002 | A1 |
20020089038 | Ning | Jul 2002 | A1 |
20020098643 | Kawanaka et al. | Jul 2002 | A1 |
20020110018 | Ohsawa | Aug 2002 | A1 |
20020114191 | Iwata et al. | Aug 2002 | A1 |
20020130341 | Horiguchi et al. | Sep 2002 | A1 |
20020160581 | Watanabe et al. | Oct 2002 | A1 |
20020180069 | Houston | Dec 2002 | A1 |
20030003608 | Arikado et al. | Jan 2003 | A1 |
20030015757 | Ohsawa | Jan 2003 | A1 |
20030035324 | Fujita et al. | Feb 2003 | A1 |
20030042516 | Forbes et al. | Mar 2003 | A1 |
20030047784 | Matsumoto et al. | Mar 2003 | A1 |
20030057487 | Yamada et al. | Mar 2003 | A1 |
20030057490 | Nagano et al. | Mar 2003 | A1 |
20030102497 | Fried et al. | Jun 2003 | A1 |
20030112659 | Ohsawa | Jun 2003 | A1 |
20030113959 | Min et al. | Jun 2003 | A1 |
20030123279 | Aipperspach et al. | Jul 2003 | A1 |
20030146474 | Ker et al. | Aug 2003 | A1 |
20030146488 | Nagano et al. | Aug 2003 | A1 |
20030151112 | Yamada et al. | Aug 2003 | A1 |
20030231521 | Ohsawa | Dec 2003 | A1 |
20040021137 | Fazan et al. | Feb 2004 | A1 |
20040021179 | Lee | Feb 2004 | A1 |
20040029335 | Lee et al. | Feb 2004 | A1 |
20040075143 | Bae et al. | Apr 2004 | A1 |
20040108532 | Forbes et al. | Jun 2004 | A1 |
20040188714 | Scheuerlein et al. | Sep 2004 | A1 |
20040217420 | Yeo et al. | Nov 2004 | A1 |
20040227189 | Kajiyama | Nov 2004 | A1 |
20050001257 | Schloesser et al. | Jan 2005 | A1 |
20050001269 | Hayashi et al. | Jan 2005 | A1 |
20050017240 | Fazan | Jan 2005 | A1 |
20050047240 | Ikehashi et al. | Mar 2005 | A1 |
20050062088 | Houston | Mar 2005 | A1 |
20050063224 | Fazan et al. | Mar 2005 | A1 |
20050064659 | Willer | Mar 2005 | A1 |
20050105342 | Tang et al. | May 2005 | A1 |
20050111255 | Tang et al. | May 2005 | A1 |
20050121710 | Shino | Jun 2005 | A1 |
20050135169 | Somasekhar et al. | Jun 2005 | A1 |
20050141262 | Yamada et al. | Jun 2005 | A1 |
20050141290 | Tang et al. | Jun 2005 | A1 |
20050145886 | Keshavarzi et al. | Jul 2005 | A1 |
20050145935 | Keshavarzi et al. | Jul 2005 | A1 |
20050167751 | Nakajima et al. | Aug 2005 | A1 |
20050189576 | Ohsawa | Sep 2005 | A1 |
20050208716 | Takaura et al. | Sep 2005 | A1 |
20050226070 | Ohsawa | Oct 2005 | A1 |
20050232043 | Ohsawa | Oct 2005 | A1 |
20050242396 | Park et al. | Nov 2005 | A1 |
20050265107 | Tanaka | Dec 2005 | A1 |
20050269642 | Minami | Dec 2005 | A1 |
20060043484 | Cabral et al. | Mar 2006 | A1 |
20060084247 | Liu | Apr 2006 | A1 |
20060091462 | Okhonin et al. | May 2006 | A1 |
20060098481 | Okhonin et al. | May 2006 | A1 |
20060126374 | Waller et al. | Jun 2006 | A1 |
20060131650 | Okhonin et al. | Jun 2006 | A1 |
20060223302 | Chang et al. | Oct 2006 | A1 |
20060279985 | Keshavarzi et al. | Dec 2006 | A1 |
20070001162 | Orlowski et al. | Jan 2007 | A1 |
20070008811 | Keeth et al. | Jan 2007 | A1 |
20070013007 | Kusunoki et al. | Jan 2007 | A1 |
20070023833 | Okhonin et al. | Feb 2007 | A1 |
20070045709 | Yang | Mar 2007 | A1 |
20070058427 | Okhonin et al. | Mar 2007 | A1 |
20070064489 | Bauser et al. | Mar 2007 | A1 |
20070085140 | Bassin | Apr 2007 | A1 |
20070097751 | Popoff et al. | May 2007 | A1 |
20070114599 | Hshieh | May 2007 | A1 |
20070133330 | Ohsawa | Jun 2007 | A1 |
20070138524 | Kim et al. | Jun 2007 | A1 |
20070138530 | Okhonin | Jun 2007 | A1 |
20070187751 | Hu et al. | Aug 2007 | A1 |
20070187775 | Okhonin et al. | Aug 2007 | A1 |
20070200176 | Kammler et al. | Aug 2007 | A1 |
20070252205 | Hoentschel et al. | Nov 2007 | A1 |
20070263466 | Morishita et al. | Nov 2007 | A1 |
20070278578 | Yoshida et al. | Dec 2007 | A1 |
20080049486 | Gruening-von Schwerin | Feb 2008 | A1 |
20080083949 | Zhu et al. | Apr 2008 | A1 |
20080099808 | Burnett et al. | May 2008 | A1 |
20080130379 | Ohsawa | Jun 2008 | A1 |
20080133849 | Deml et al. | Jun 2008 | A1 |
20080158935 | Taguchi | Jul 2008 | A1 |
20080165577 | Fazan et al. | Jul 2008 | A1 |
20080253179 | Slesazeck | Oct 2008 | A1 |
20080258206 | Hofmann | Oct 2008 | A1 |
20090086535 | Ferrant et al. | Apr 2009 | A1 |
20090121269 | Caillat et al. | May 2009 | A1 |
20090127592 | El-Kareh et al. | May 2009 | A1 |
20090201723 | Okhonin et al. | Aug 2009 | A1 |
20100085813 | Shino | Apr 2010 | A1 |
20100091586 | Carman | Apr 2010 | A1 |
20100110816 | Nautiyal et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
272437 | Jul 1927 | CA |
0 030 856 | Jun 1981 | EP |
0 350 057 | Jan 1990 | EP |
0 354 348 | Feb 1990 | EP |
0 202 515 | Mar 1991 | EP |
0 207 619 | Aug 1991 | EP |
0 175 378 | Nov 1991 | EP |
0 253 631 | Apr 1992 | EP |
0 513 923 | Nov 1992 | EP |
0 300 157 | May 1993 | EP |
0 564 204 | Oct 1993 | EP |
0 579 566 | Jan 1994 | EP |
0 362 961 | Feb 1994 | EP |
0 599 506 | Jun 1994 | EP |
0 359 551 | Dec 1994 | EP |
0 366 882 | May 1995 | EP |
0 465 961 | Aug 1995 | EP |
0 694 977 | Jan 1996 | EP |
0 333 426 | Jul 1996 | EP |
0 727 820 | Aug 1996 | EP |
0 739 097 | Oct 1996 | EP |
0 245 515 | Apr 1997 | EP |
0 788 165 | Aug 1997 | EP |
0 801 427 | Oct 1997 | EP |
0 510 607 | Feb 1998 | EP |
0 537 677 | Aug 1998 | EP |
0 858 109 | Aug 1998 | EP |
0 860 878 | Aug 1998 | EP |
0 869 511 | Oct 1998 | EP |
0 878 804 | Nov 1998 | EP |
0 920 059 | Jun 1999 | EP |
0 924 766 | Jun 1999 | EP |
0 642 173 | Jul 1999 | EP |
0 727 822 | Aug 1999 | EP |
0 933 820 | Aug 1999 | EP |
0 951 072 | Oct 1999 | EP |
0 971 360 | Jan 2000 | EP |
0 980 101 | Feb 2000 | EP |
0 601 590 | Apr 2000 | EP |
0 993 037 | Apr 2000 | EP |
0 836 194 | May 2000 | EP |
0 599 388 | Aug 2000 | EP |
0 689 252 | Aug 2000 | EP |
0 606 758 | Sep 2000 | EP |
0 682 370 | Sep 2000 | EP |
1 073 121 | Jan 2001 | EP |
0 726 601 | Sep 2001 | EP |
0 731 972 | Nov 2001 | EP |
1 162 663 | Dec 2001 | EP |
1 162 744 | Dec 2001 | EP |
1 179 850 | Feb 2002 | EP |
1 180 799 | Feb 2002 | EP |
1 191 596 | Mar 2002 | EP |
1 204 146 | May 2002 | EP |
1 204 147 | May 2002 | EP |
1 209 747 | May 2002 | EP |
0 744 772 | Aug 2002 | EP |
1 233 454 | Aug 2002 | EP |
0 725 402 | Sep 2002 | EP |
1 237 193 | Sep 2002 | EP |
1 241 708 | Sep 2002 | EP |
1 253 634 | Oct 2002 | EP |
0 844 671 | Nov 2002 | EP |
1 280 205 | Jan 2003 | EP |
1 288 955 | Mar 2003 | EP |
2 197 494 | Mar 1974 | FR |
1 414 228 | Nov 1975 | GB |
04-176163 | Jun 1922 | JP |
55-038664 | Mar 1980 | JP |
62-007149 | Jan 1987 | JP |
62-272561 | Nov 1987 | JP |
02-294076 | Dec 1990 | JP |
03-171768 | Jul 1991 | JP |
05-347419 | Dec 1993 | JP |
08-213624 | Aug 1996 | JP |
08-213624 | Aug 1996 | JP |
08-274277 | Oct 1996 | JP |
08-316337 | Nov 1996 | JP |
09-046688 | Feb 1997 | JP |
09-082912 | Mar 1997 | JP |
10-242470 | Sep 1998 | JP |
11-087649 | Mar 1999 | JP |
2000-247735 | Aug 2000 | JP |
12-274221 | Sep 2000 | JP |
12-389106 | Dec 2000 | JP |
13-180633 | Jun 2001 | JP |
2002-009081 | Jan 2002 | JP |
2002-083945 | Mar 2002 | JP |
2002-094027 | Mar 2002 | JP |
2002-176154 | Jun 2002 | JP |
2002-246571 | Aug 2002 | JP |
2002-329795 | Nov 2002 | JP |
2002-343886 | Nov 2002 | JP |
2002-353080 | Dec 2002 | JP |
2003-031693 | Jan 2003 | JP |
2003-68877 | Mar 2003 | JP |
2003-086712 | Mar 2003 | JP |
2003-100641 | Apr 2003 | JP |
2003-100900 | Apr 2003 | JP |
2003-132682 | May 2003 | JP |
2003-203967 | Jul 2003 | JP |
2003-243528 | Aug 2003 | JP |
2004-335553 | Nov 2004 | JP |
0124268 | Apr 2001 | WO |
2005008778 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20110216609 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12080642 | Apr 2008 | US |
Child | 13112526 | US |