RECOMBINANT AAV VECTORS AND METHODS OF USING THE SAME

Information

  • Patent Application
  • 20210189424
  • Publication Number
    20210189424
  • Date Filed
    June 11, 2019
    4 years ago
  • Date Published
    June 24, 2021
    2 years ago
Abstract
The present disclosure relates to recombinant vectors expressing the human ND4 gene, methods of preparing recombinant vectors expressing the human ND4 gene, and uses thereof. Recombinant AAV2 vectors as disclosed herein are useful in treating Leber Hereditary Optic Neuroretinopathy (LHON), including ND4-related LHON.
Description

The present disclosure relates to recombinant adeno-associated virus (AAV) vectors expressing the human ND4 gene, methods of preparing recombinant AAV vectors expressing the human ND4 gene, and uses thereof. Recombinant AAV vectors as disclosed herein are useful in treating Leber Hereditary Optic Neuroretinopathy (LHON), including ND4-related LHON.


BACKGROUND OF THE DISCLOSURE

Leber Hereditary Optic Neuroretinopathy (LHON), also known as “Leber Hereditary Optic Neuropathy,” or “Leber Hereditary Optic Atrophy,” is an optic nerve dysfunction that manifests as bilateral, acute or subacute loss of central vision due to degeneration of retinal ganglion cells. LHON is linked to point mutations in the mitochondrial DNA (mtDNA), which is inherited maternally (Orssaud, C., Orphanet Encyclopedia, http://www.orpha.net/data/patho/GB/uk-LHON.pdf, 2003). The most common mtDNA point mutations that are associated with LHON are G3460A/ND1, G11778A/ND4 and T14484C/ND6. These mutations are linked with defects of subunits of the complex I (NADH-dehydrogenase-ubiquinone reductase) in mitochondria.


The G11778A mitochondrial DNA point mutation in the NADH dehydrogenase 4 gene (ND4 gene) leads to the production of a misfolded protein that alters mitochondrial complex I activity and reduces oxidative phosphorylation (Baracca, et al., Arch. Neurol., 62, pp. 730-736 (2005)). This results in a reduced production of ATP and an increased generation of reactive oxygen species, and leads to the death of retinal ganglion cells (RGCs) (Perier et al., Proc Natl Acad Sci USA, 102, pp. 19126-19131 (2005); Qi et al., Arch. Ophthalmol., 125, pp. 268-272 (2007)). The G11778A mitochondrial DNA point mutation is manifested by a severe visual impairment.


LHON lends itself to gene therapies, including the use of viral vectors, e.g., recombinant adeno-associated viral vectors (AAV), such as serotype 2 (recombinant AAV2 vectors). In some instances, the use of recombinant AAV vectors permits the transfer of recombinant DNA into retinal ganglion cells of the fovea and perifovea in humans. The transfer of cDNA coding for mitochondrial ND4 provides an ND4 protein that localizes to complex I of the mitochondria.


In some instances, while not wishing to be bound by theory, recombinant AAV2 vectors expressing the ND4 gene can exert biological activity by virtue of their ability, e.g., to (1) reach the nucleus of a target cell through internalization into the cytoplasm (via endocytosis) and nuclear import via binding of the AAV2 particle with nucleolin (nuclear shuttle protein), (2) form intranuclear episomes transcribing ND4 mRNA coding a functional NADH dehydrogenase 4 protein, and (3) target ND4 mRNA toward mitochondria by virtue of a mitochondrial targeting sequence (MTS) to allow ND4 protein expression into mitochondria (U.S. Pat. No. 9,017,999).


SUMMARY OF THE DISCLOSURE

In some aspects, the present disclosure relates to the following embodiments:

    • 1. A recombinant AAV2 vector comprising:
      • a 3′UTR Cox/0 sequence comprising SEQ ID No: 1,
      • a nucleic acid sequence encoding an NADH dehydrogenase 4 (ND4) polypeptide comprising SEQ ID No: 13, and
      • a nucleic acid sequence encoding an MTS Cox/0 polypeptide comprising SEQ ID No: 11.
    • 2. A recombinant AAV2 vector comprising:
      • a 3′UTR Cox/0 sequence comprising SEQ ID No: 1,
      • a nucleic acid sequence encoding an NADH dehydrogenase 4 (ND4) polypeptide comprising SEQ ID No: 13, and
      • a nucleic acid sequence encoding an MTS Cox/0 polypeptide comprising SEQ ID No: 12.
    • 3. A recombinant AAV2 vector comprising:
      • a 3′UTR Cox/0 sequence comprising SEQ ID No: 14,
      • a nucleic acid sequence encoding an NADH dehydrogenase 4 (ND4) polypeptide comprising SEQ ID No: 13, and
      • a nucleic acid sequence encoding an MTS Cox/0 polypeptide comprising SEQ ID No: 11.
    • 4. A recombinant AAV2 vector comprising:
      • a 3′UTR Cox/0 sequence comprising SEQ ID No: 14,
      • a nucleic acid sequence encoding an NADH dehydrogenase 4 (ND4) polypeptide comprising SEQ ID No: 13, and
      • a nucleic acid sequence encoding an MTS Cox/0 polypeptide comprising SEQ ID No: 12.
    • 5. A recombinant AAV2 vector comprising:
      • a 3′UTR Cox10 sequence comprising SEQ ID No: 1,
      • a sequence encoding ND4 comprising SEQ ID No: 2, and
      • an MTS Cox10 sequence comprising SEQ ID No: 3.
    • 6. A recombinant AAV2 vector comprising:
      • a 3′UTR Cox10 sequence consisting of SEQ ID No: 1,
      • a sequence encoding ND4 consisting of SEQ ID No: 2, and
      • an MTS Cox10 sequence consisting of SEQ ID No: 3.
    • 7. A recombinant AAV2 vector comprising:
      • a 3′UTR Cox10 sequence comprising SEQ ID No: 1,
      • a sequence encoding ND4 comprising SEQ ID No: 17, and
      • an MTS Cox10 sequence comprising SEQ ID No: 3.
    • 8. A recombinant AAV2 vector comprising:
      • a 3′UTR Cox10 sequence consisting of SEQ ID No: 1,
      • a sequence encoding ND4 consisting of SEQ ID No: 17, and
      • an MTS Cox10 sequence consisting of SEQ ID No: 3.
    • 9. A recombinant AAV2 vector comprising:
      • a 3′UTR Cox10 sequence comprising SEQ ID No: 14,
      • a sequence encoding ND4 comprising SEQ ID No: 15, and
      • an MTS Cox10 sequence comprising SEQ ID No: 16.
    • 10. A recombinant AAV2 vector comprising:
      • a 3′UTR Cox10 sequence consisting of SEQ ID No: 14,
      • a sequence encoding ND4 consisting of SEQ ID No: 15, and
      • an MTS Cox10 sequence consisting of SEQ ID No: 16.
    • 11. A recombinant AAV2 vector comprising:
      • a 3′UTR Cox10 sequence comprising SEQ ID No: 14,
      • a sequence encoding ND4 comprising SEQ ID No: 18, and
      • an MTS Cox10 sequence comprising SEQ ID No: 16.
    • 12. A recombinant AAV2 vector comprising:
      • a 3′UTR Cox10 sequence consisting of SEQ ID No: 14,
      • a sequence encoding ND4 consisting of SEQ ID No: 18, and
      • an MTS Cox10 sequence consisting of SEQ ID No: 16.
    • 13. The recombinant AAV2 vector of any one of embodiments 1-2 or 5-8, further comprising:
      • an HBB2 intron sequence comprising SEQ ID No: 4,
      • a CMV promoter sequence comprising SEQ ID No: 5,
      • a first ITR sequence comprising SEQ ID No: 6, and
      • a second ITR sequence comprising SEQ ID No: 7.
    • 14. The recombinant AAV2 vector of any one of embodiments 1-2 or 5-8, further comprising:
      • an HBB2 intron sequence consisting of SEQ ID No: 4,
      • a CMV promoter sequence consisting of SEQ ID No: 5,
      • a first ITR sequence consisting of SEQ ID No: 6, and
      • a second ITR sequence consisting of SEQ ID No: 7.
    • 15. The recombinant AAV2 vector of any one of embodiments 3-4 or 9-12, further comprising:
      • an HBB2 intron sequence comprising SEQ ID No: 24,
      • a CMV promoter sequence comprising SEQ ID No: 25,
      • a first ITR sequence comprising SEQ ID No: 26, and
      • a second ITR sequence comprising SEQ ID No: 27.
    • 16. The recombinant AAV2 vector of any one of embodiments 3-4 or 9-12, further comprising:
      • an HBB2 intron sequence consisting of SEQ ID No: 24,
      • a CMV promoter sequence consisting of SEQ ID No: 25,
      • a first ITR sequence consisting of SEQ ID No: 26, and
      • a second ITR sequence consisting of SEQ ID No: 27.
    • 17. A recombinant AAV2 vector comprising:
      • a 3′UTR Cox10 sequence comprising SEQ ID No: 1,
      • a sequence encoding ND4 comprising SEQ ID No: 17, and
      • an MTS Cox10 sequence comprising SEQ ID No: 3,
      • an HBB2 intron sequence consisting of SEQ ID No: 4,
      • a CMV promoter sequence consisting of SEQ ID No: 5,
      • a first ITR sequence consisting of SEQ ID No: 6, and
      • a second ITR sequence consisting of SEQ ID No: 7.
    • 18. A recombinant AAV2 vector comprising:
      • a 3′UTR Cox10 sequence comprising SEQ ID No: 14,
      • a sequence encoding ND4 comprising SEQ ID No: 18, and
      • an MTS Cox10 sequence comprising SEQ ID No: 16,
      • an HBB2 intron sequence consisting of SEQ ID No: 24,
      • a CMV promoter sequence consisting of SEQ ID No: 25,
      • a first ITR sequence consisting of SEQ ID No: 26, and
      • a second ITR sequence consisting of SEQ ID No: 27.
    • 19. A method of treating Leber Hereditary Optic Neuroretinopathy in a patient in need thereof, comprising administering to the patient an effective amount of the recombinant AAV2 vector according to any one of embodiments 1-18.
    • 20. A method of treating Leber Hereditary Optic Neuroretinopathy in a patient in need thereof, comprising administering to the patient an effective amount of the recombinant vector according to any one of embodiments 1-18, wherein the patient has experienced a disease duration of less than nine months.
    • 21. A method of treating Leber Hereditary Optic Neuroretinopathy in a patient in need thereof, comprising administering to the patient an effective amount of the recombinant AAV2 vector according to any one of claims 1-18, wherein the patient has experienced a disease duration of six to nine months.
    • 22. A method of treating Leber Hereditary Optic Neuroretinopathy in a patient in need thereof, comprising administering to the patient an effective amount of the recombinant AAV2 vector according to any one of embodiments 1-18, wherein the patient has a baseline visual acuity of <about 1.6 LogMAR.
    • 23. A method of treating Leber Hereditary Optic Neuroretinopathy in a patient in need thereof, comprising administering to the patient an effective amount of the recombinant AAV2 vector according to any one of embodiments 1-18, wherein the patient has experienced a disease duration of less than nine months and the patient has a baseline visual acuity of <about 1.6 LogMAR.
    • 24. A method of treating Leber Hereditary Optic Neuroretinopathy in a patient in need thereof, comprising administering to the patient an effective amount of the recombinant AAV2 vector according to any one of embodiments 1-18, wherein the patient has experienced a disease duration of six to nine months and the patient has a baseline visual acuity of <about 1.6 LogMAR.
    • 25. The method according to any one of embodiments 19-24, wherein the Leber Hereditary Optic Neuroretinopathy is ND4-related Leber Hereditary Optic Neuroretinopathy.
    • 26. The method according to any one of embodiments 19-25, wherein the recombinant AAV2 vector is administered intravitreally.
    • 27. The method according to any one of claims 19-26, wherein the recombinant AAV2 vector is administered intravitreally in an amount of about 109 to 1011 viral genomes per eye.
    • 28. The method according to any one of embodiments 19-27, wherein the recombinant AAV2 vector is administered intravitreally in an amount of about 1010 to 1011 viral genomes per eye.
    • 29. The method according to any one of embodiments 19-28, wherein the recombinant AAV2 vector is administered intravitreally in an amount of about 5.0×1010 to 1.0×1011 viral genomes per eye.
    • 30. The method according to any one of embodiments 19-29, wherein the recombinant AAV2 vector is administered intravitreally in an amount of about 9.0×1010 viral genomes per eye.
    • 31. A pAAV-ND4 transfer plasmid comprising:
      • a 3′UTR Cox/0 sequence comprising SEQ ID NO: 1,
      • a coding sequence ND4 comprising SEQ ID NO: 2,
      • an MTS Cox/0 sequence comprising SEQ ID NO: 3,
      • an HBB2 intron sequence comprising SEQ ID NO: 4,
      • a CMV promoter sequence comprising SEQ ID NO: 5,
      • an ITR sequence comprising SEQ ID NO: 6, and
      • an ITR sequence comprising SEQ ID NO: 7.
    • 32. A pAAV-ND4 transfer plasmid comprising:
      • a 3′UTR Cox/0 sequence comprising SEQ ID NO: 1,
      • a coding sequence ND4 comprising SEQ ID NO: 17,
      • an MTS Cox/0 sequence comprising SEQ ID NO: 3,
      • an HBB2 intron sequence comprising SEQ ID NO: 4,
      • a CMV promoter sequence comprising SEQ ID NO: 5,
      • an ITR sequence comprising SEQ ID NO: 6, and
      • an ITR sequence comprising SEQ ID NO: 7.
    • 33. The pAAV-ND4 transfer plasmid of embodiment 31 or 32, further comprising:
      • an f1 origin of replication sequence comprising SEQ ID NO: 8,
      • a Kanamycin resistance gene sequence comprising SEQ ID NO: 9,
      • a ColE1 origin of replication sequence comprising SEQ ID NO: 10.
    • 34. A pAAV-ND4 transfer plasmid comprising:
      • a 3′UTR Cox/0 sequence consisting of SEQ ID NO: 1,
      • a coding sequence ND4 consisting of SEQ ID NO: 2,
      • an MTS Cox/0 sequence consisting of SEQ ID NO: 3,
      • an HBB2 intron sequence consisting of SEQ ID NO: 4,
      • a CMV promoter sequence consisting of SEQ ID NO: 5,
      • an ITR sequence consisting of SEQ ID NO: 6, and
      • an ITR sequence consisting of SEQ ID NO: 7.
    • 35. A pAAV-ND4 transfer plasmid comprising:
      • a 3′UTR Cox/0 sequence consisting of SEQ ID NO: 1,
      • a coding sequence ND4 consisting of SEQ ID NO: 17,
      • an MTS Cox/0 sequence consisting of SEQ ID NO: 3,
      • an HBB2 intron sequence consisting of SEQ ID NO: 4,
      • a CMV promoter sequence consisting of SEQ ID NO: 5,
      • an ITR sequence consisting of SEQ ID NO: 6, and
      • an ITR sequence consisting of SEQ ID NO: 7.
    • 36. The pAAV-ND4 transfer plasmid of embodiment 34 or 35, further comprising:
      • an f1 origin of replication sequence consisting of SEQ ID NO: 8,
      • a Kanamycin resistance gene sequence consisting of SEQ ID NO: 9, and
      • a ColE1 origin of replication sequence consisting of SEQ ID NO: 10.
    • 37. A pAAV-ND4 transfer plasmid comprising SEQ ID NO: 22.
    • 38. A pAAV-ND4 transfer plasmid comprising SEQ ID NO: 23.
    • 39. A method of preparing the recombinant AAV2 vector according to any one of embodiments 1-18, comprising tri-transfecting in a packaging cell line:
      • (i) a pAAV-ND4 transfer plasmid according to any one of embodiments 31-38;
      • (ii) a rep/cap plasmid, and
      • (iii) an adenovirus helper plasmid.
    • 40. The method according to embodiment 39, wherein the packaging cell line comprises the human embryonic kidney 293 (HEK 293) cell line.
    • 41. The method according to embodiment 38 or 40, wherein the rep/cap plasmid is pRep2Cap2 plasmid.
    • 42. The method according to any one of embodiments 38-41, wherein the adenovirus helper plasmid is pXX6 plasmid.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several non-limiting embodiments of the present disclosure and together with the description, serve to explain the principles of the disclosure.



FIG. 1 depicts an embodiment of a recombinant AAV2 vector of the disclosure comprising inverted terminal repeats (ITRs), a cytomegalovirus immediate early promoter (CMV) in an intron-containing expression cassette (beta globin intron, HBB2), an MTS Cox/0 sequence, a coding sequence ND4, and a 3′UTR Cox/0 sequence.



FIG. 2 depicts the structure of an embodiment of a pAAV-ND4 plasmid of the disclosure.



FIG. 3 depicts an embodiment of a pRep2Cap2 plasmid of the disclosure.



FIG. 4 depicts an embodiment of an adenovirus helper pXX6 plasmid of the disclosure.



FIG. 5 depicts an example of a Pelli-Robson chart.



FIG. 6 depicts sustained bilateral improvement in BCVA with treatment.



FIG. 7 depicts the evolution in contrast sensitivity during the course of study.





DETAILED DESCRIPTION OF THE DISCLOSURE

Disclosed herein in some embodiments are recombinant vectors expressing a gene encoding the human NADH dehydrogenase type 4 (ND4) protein ND4 (SEQ ID NO: 13). Also disclosed herein are methods of treating LHON by administration of recombinant AAV2 vectors expressing the human ND4 protein.


The term “a,” “an,” or “the” refers to one or to more than one of the grammatical object of the article. The term may mean “one,” “one or more,” “at least one,” or “one or more than one.” By way of example, “an element” means one element or more than one element. The term “or” means “and/or” unless otherwise stated. The term “including” or “containing” is not limiting.


The term “codon” is meant to refer to a sequence of three nucleotides, e.g., deoxyribonucleotides or ribonucleotides, which together form a unit of a genetic code that encodes an amino acid. The term “genetic code” is meant to refer to the full set of relationships between codons and amino acids used by living cells. The genetic code is highly similar among all organisms, and a person of ordinary skill in the art would understand that the terms “universal genetic code” or “standard genetic code” is meant to refer to the most common genetic code, used by most organisms including humans. In some embodiments, the universal genetic code is the genetic code used in eukaryotic cells. In some embodiments, the universal genetic code is the genetic code for nuclear genes. The term “mitochondria genetic code” is meant to refer to the code used in mitochondria, that sets out the codes for mitochondria nucleic acids and proteins. In some embodiments, the mitochondria genetic code is the vertebrate mitochondria code. In some embodiments, the mitochondria genetic code is the human mitochondria code. Codon usage in the mitochondria vs. the universal genetic code is described in Lewin, Genes V, Oxford University Press; New York 1994, the content of which is incorporated by reference.


The human NADH dehydrogenase type 4 (ND4) protein is a subunit of NADH dehydrogenase (ubiquinone), which is targeted to the mitochondrial inner membrane, and is the largest of the five complexes of the electron transport chain. The ND4 gene, also known as mitochondrially encoded NADH dehydrogenase 4 (MT-ND4), is located in the human mitochondria DNA. Exemplary nucleic acid sequences encoding the ND4 protein include but are not limited to NCBI NC_012920.1. In some embodiments, the nucleic acid sequence encoding an ND4 polypeptide may be a mitochondrial nucleic acid, or a nuclear nucleic acid encoding for the human ND4 polypeptide. In some embodiments, the nucleic acid sequence encoding an ND4 polypeptide may be any nucleic acid sequence encoding a human ND4 polypeptide. In some embodiments, the nucleic acid sequence encoding a human ND4 protein comprises SEQ ID NO: 2, 15, 17 or 18. Exemplary amino acid sequences for the human ND4 polypeptide include but are not limited to Genbank ACF70814.1. In some embodiments, the amino acid sequence of the human ND4 polypeptide comprises SEQ ID NO: 13.









TABLE 1





Sequences of various embodiments of the disclosure


















SEQ ID NO: 2
ND4
1374
ATGAGAAACCAGTGATAATGTCTGGGTTCAGGGACAGCAGCA



(3′ to 5′)
nt
GGATGGGAGACAGATGCATAAACATCAGGGTGTTCTCTCTGGT





GAATGAGGGCTTCATGTTATTAATGTGGTGAGTCAGTGAGCCC





CACTGGGTAGTGGTAAACATGTACAGGCTGTAGAGGGCTGTG





ACCAGCATGTTCAGTCCTGTCAGGAGCAGGGTGATGTTGCTC





CAGGAGAATGTTGTCACCAGCACTGACAGCTCTCCCAGCAGG





TTAATTGTAGGGGGCAGAGCCAGGTTGGCCAGACTAGCCAGG





AGCCACCAGAAAGCCATCAGTGGGAGCAGGGTCTGGAGCCCC





TGACTCAGGATCATAATTCTTGAGTGAGTTCTTTCATAGTTGCT





ATTTGCCAGGCAGAACAGGAGGCTGCTGGTCAGCCCATGAGC





AATCATGAGGATCACTGCCCCAGTAAAGGACCAGGGTGTCTG





AATCAGAATGGCAGTCACCACCAGTGCCATGTGGCTGATGGA





GCTGTAAGCAATCAGGCTCTTGAGGTCAGTCTGCCTGAGACA





GATGGAGCTGGTCATGATCATACCCCAGAGGCTCAGAACCAG





GAAAGGGTAAGCCATGTGCTTTGTCAGAGGGTTCAGGATCAG





GGTGAGCCTCATCATACCATAACCACCCAGCTTCAGGAGGACA





GCAGCCAGGACCATGGAGCCAGCTATTGGAGCTTCCACATGA





GCCTTGGGGAGCCAGAGGTGCAGGCCATAGAGGGGCATCTTC





ACCATAAAGGCCATTGTATAAGCCAGCCACATCAGGTTGTTTG





CCCAGGAGTTACTCAGCTCCTGGGCAGTCAGAGTCAGCAGGA





GGATGTTCAGGCTACCCAGTGTGTTGTGGGTATAGATCAGTGC





AATCAGCAGGGGCAGTGAGCCCACCAGTGTATAAAAGAGAAA





GTAGGTGCCTGCATTCAGCCTCTCAGGCTGATTTCCCCACCTA





GTGATGATGGCCAGGGTTGGGATGAGAGTGGTCTCAAAGAAG





ATATAGAACATGATCAGCTCAGTGGCTGTGAAGGTCATAATCA





GGCTGATTTGCAGGCTAATGAGCATGGACAGGTACAGCTTTTT





CCTTGACAGAGGCTCTGAGCTGAGGTGCCTCTGACTGGCCAT





GATAGTCAGAGGCAGCAGCCATGTGGTCAGCATGAGCAGGGG





GGTTGTCAGGGGATCAGAGGAAAAGGTAGGGGAGCATGAAAA





GAGGTTATTATTAATCTGGTTGAAAAACAGCAGTGGGATGATG





CTGATAATCAGGCTGTGGGTTGTGGTGTTAATCCAAATCATGT





GCTTTTTGCTCAGCCATGTGAGAGGCAGCAGCATGATGGTTG





GCACAATCAGCTTCAGCA





SEQ ID NO: 17
ND4
1380
TCAGGATGAGAAACCAGTGATAATGTCTGGGTTCAGGGACAG



(3′ to 5′)
nt
CAGCAGGATGGGAGACAGATGCATAAACATCAGGGTGTTCTCT





CTGGTGAATGAGGGCTTCATGTTATTAATGTGGTGAGTCAGTG





AGCCCCACTGGGTAGTGGTAAACATGTACAGGCTGTAGAGGG





CTGTGACCAGCATGTTCAGTCCTGTCAGGAGCAGGGTGATGTT





GCTCCAGGAGAATGTTGTCACCAGCACTGACAGCTCTCCCAG





CAGGTTAATTGTAGGGGGCAGAGCCAGGTTGGCCAGACTAGC





CAGGAGCCACCAGAAAGCCATCAGTGGGAGCAGGGTCTGGA





GCCCCTGACTCAGGATCATAATTCTTGAGTGAGTTCTTTCATAG





TTGCTATTTGCCAGGCAGAACAGGAGGCTGCTGGTCAGCCCA





TGAGCAATCATGAGGATCACTGCCCCAGTAAAGGACCAGGGT





GTCTGAATCAGAATGGCAGTCACCACCAGTGCCATGTGGCTG





ATGGAGCTGTAAGCAATCAGGCTCTTGAGGTCAGTCTGCCTGA





GACAGATGGAGCTGGTCATGATCATACCCCAGAGGCTCAGAA





CCAGGAAAGGGTAAGCCATGTGCTTTGTCAGAGGGTTCAGGA





TCAGGGTGAGCCTCATCATACCATAACCACCCAGCTTCAGGAG





GACAGCAGCCAGGACCATGGAGCCAGCTATTGGAGCTTCCAC





ATGAGCCTTGGGGAGCCAGAGGTGCAGGCCATAGAGGGGCA





TCTTCACCATAAAGGCCATTGTATAAGCCAGCCACATCAGGTT





GTTTGCCCAGGAGTTACTCAGCTCCTGGGCAGTCAGAGTCAG





CAGGAGGATGTTCAGGCTACCCAGTGTGTTGTGGGTATAGATC





AGTGCAATCAGCAGGGGCAGTGAGCCCACCAGTGTATAAAAG





AGAAAGTAGGTGCCTGCATTCAGCCTCTCAGGCTGATTTCCCC





ACCTAGTGATGATGGCCAGGGTTGGGATGAGAGTGGTCTCAA





AGAAGATATAGAACATGATCAGCTCAGTGGCTGTGAAGGTCAT





AATCAGGCTGATTTGCAGGCTAATGAGCATGGACAGGTACAGC





TTTTTCCTTGACAGAGGCTCTGAGCTGAGGTGCCTCTGACTGG





CCATGATAGTCAGAGGCAGCAGCCATGTGGTCAGCATGAGCA





GGGGGGTTGTCAGGGGATCAGAGGAAAAGGTAGGGGAGCAT





GAAAAGAGGTTATTATTAATCTGGTTGAAAAACAGCAGTGGGA





TGATGCTGATAATCAGGCTGTGGGTTGTGGTGTTAATCCAAAT





CATGTGCTTTTTGCTCAGCCATGTGAGAGGCAGCAGCATGATG





GTTGGCACAATCAGCTTCAGCAT





SEQ ID NO: 15
ND4
1374
TGCTGAAGCTGATTGTGCCAACCATCATGCTGCTGCCTCTCAC



(5′ to 3′)
nt
ATGGCTGAGCAAAAAGCACATGATTTGGATTAACACCACAACC





CACAGCCTGATTATCAGCATCATCCCACTGCTGTTTTTCAACCA





GATTAATAATAACCTCTTTTCATGCTCCCCTACCTTTTCCTCTG





ATCCCCTGACAACCCCCCTGCTCATGCTGACCACATGGCTGCT





GCCTCTGACTATCATGGCCAGTCAGAGGCACCTCAGCTCAGA





GCCTCTGTCAAGGAAAAAGCTGTACCTGTCCATGCTCATTAGC





CTGCAAATCAGCCTGATTATGACCTTCACAGCCACTGAGCTGA





TCATGTTCTATATCTTCTTTGAGACCACTCTCATCCCAACCCTG





GCCATCATCACTAGGTGGGGAAATCAGCCTGAGAGGCTGAAT





GCAGGCACCTACTTTCTCTTTTATACACTGGTGGGCTCACTGC





CCCTGCTGATTGCACTGATCTATACCCACAACACACTGGGTAG





CCTGAACATCCTCCTGCTGACTCTGACTGCCCAGGAGCTGAGT





AACTCCTGGGCAAACAACCTGATGTGGCTGGCTTATACAATGG





CCTTTATGGTGAAGATGCCCCTCTATGGCCTGCACCTCTGGCT





CCCCAAGGCTCATGTGGAAGCTCCAATAGCTGGCTCCATGGT





CCTGGCTGCTGTCCTCCTGAAGCTGGGTGGTTATGGTATGATG





AGGCTCACCCTGATCCTGAACCCTCTGACAAAGCACATGGCTT





ACCCTTTCCTGGTTCTGAGCCTCTGGGGTATGATCATGACCAG





CTCCATCTGTCTCAGGCAGACTGACCTCAAGAGCCTGATTGCT





TACAGCTCCATCAGCCACATGGCACTGGTGGTGACTGCCATTC





TGATTCAGACACCCTGGTCCTTTACTGGGGCAGTGATCCTCAT





GATTGCTCATGGGCTGACCAGCAGCCTCCTGTTCTGCCTGGC





AAATAGCAACTATGAAAGAACTCACTCAAGAATTATGATCCTGA





GTCAGGGGCTCCAGACCCTGCTCCCACTGATGGCTTTCTGGT





GGCTCCTGGCTAGTCTGGCCAACCTGGCTCTGCCCCCTACAA





TTAACCTGCTGGGAGAGCTGTCAGTGCTGGTGACAACATTCTC





CTGGAGCAACATCACCCTGCTCCTGACAGGACTGAACATGCT





GGTCACAGCCCTCTACAGCCTGTACATGTTTACCACTACCCAG





TGGGGCTCACTGACTCACCACATTAATAACATGAAGCCCTCAT





TCACCAGAGAGAACACCCTGATGTTTATGCATCTGTCTCCCAT





CCTGCTGCTGTCCCTGAACCCAGACATTATCACTGGTTTCTCA





T





SEQ ID NO: 18
ND4
1380
ATGCTGAAGCTGATTGTGCCAACCATCATGCTGCTGCCTCTCA



(5′ to 3′)
nt
CATGGCTGAGCAAAAAGCACATGATTTGGATTAACACCACAAC





CCACAGCCTGATTATCAGCATCATCCCACTGCTGTTTTTCAACC





AGATTAATAATAACCTCTTTTCATGCTCCCCTACCTTTTCCTCT





GATCCCCTGACAACCCCCCTGCTCATGCTGACCACATGGCTG





CTGCCTCTGACTATCATGGCCAGTCAGAGGCACCTCAGCTCA





GAGCCTCTGTCAAGGAAAAAGCTGTACCTGTCCATGCTCATTA





GCCTGCAAATCAGCCTGATTATGACCTTCACAGCCACTGAGCT





GATCATGTTCTATATCTTCTTTGAGACCACTCTCATCCCAACCC





TGGCCATCATCACTAGGTGGGGAAATCAGCCTGAGAGGCTGA





ATGCAGGCACCTACTTTCTCTTTTATACACTGGTGGGCTCACT





GCCCCTGCTGATTGCACTGATCTATACCCACAACACACTGGGT





AGCCTGAACATCCTCCTGCTGACTCTGACTGCCCAGGAGCTG





AGTAACTCCTGGGCAAACAACCTGATGTGGCTGGCTTATACAA





TGGCCTTTATGGTGAAGATGCCCCTCTATGGCCTGCACCTCTG





GCTCCCCAAGGCTCATGTGGAAGCTCCAATAGCTGGCTCCAT





GGTCCTGGCTGCTGTCCTCCTGAAGCTGGGTGGTTATGGTAT





GATGAGGCTCACCCTGATCCTGAACCCTCTGACAAAGCACATG





GCTTACCCTTTCCTGGTTCTGAGCCTCTGGGGTATGATCATGA





CCAGCTCCATCTGTCTCAGGCAGACTGACCTCAAGAGCCTGAT





TGCTTACAGCTCCATCAGCCACATGGCACTGGTGGTGACTGC





CATTCTGATTCAGACACCCTGGTCCTTTACTGGGGCAGTGATC





CTCATGATTGCTCATGGGCTGACCAGCAGCCTCCTGTTCTGCC





TGGCAAATAGCAACTATGAAAGAACTCACTCAAGAATTATGATC





CTGAGTCAGGGGCTCCAGACCCTGCTCCCACTGATGGCTTTC





TGGTGGCTCCTGGCTAGTCTGGCCAACCTGGCTCTGCCCCCT





ACAATTAACCTGCTGGGAGAGCTGTCAGTGCTGGTGACAACAT





TCTCCTGGAGCAACATCACCCTGCTCCTGACAGGACTGAACAT





GCTGGTCACAGCCCTCTACAGCCTGTACATGTTTACCACTACC





CAGTGGGGCTCACTGACTCACCACATTAATAACATGAAGCCCT





CATTCACCAGAGAGAACACCCTGATGTTTATGCATCTGTCTCC





CATCCTGCTGCTGTCCCTGAACCCAGACATTATCACTGGTTTC





TCATCCTGA





SEQ ID NO: 13
ND4
459
MLKLIVPTIMLLPLTWLSKKHMIWINTTTHSLIISIIPLLFFNQINNNLF




AA
SCSPTFSSDPLTTPLLMLTTWLLPLTIMASQRHLSSEPLSRKKLYL





SMLISLQISLIMTFTATELIMFYIFFETTLIPTLAIITRWGNQPERLNA





GTYFLFYTLVGSLPLLIALIYTHNTLGSLNILLLTLTAQELSNSWANN





LMWLAYTMAFMVKMPLYGLHLWLPKAHVEAPIAGSMVLAAVLLKL





GGYGMMRLTLILNPLTKHMAYPFLVLSLWGMIMTSSICLRQTDLK





SLIAYSSISHMALVVTAILIQTPWSFTGAVILMIAHGLTSSLLFCLAN





SNYERTHSRIMILSQGLQTLLPLMAFWWLLASLANLALPPTINLLG





ELSVLVTTFSWSNITLLLTGLNMLVTALYSLYMFTTTQWGSLTHHI





NNMKPSFTRENTLMFMHLSPILLLSLNPDIITGFSS









Without being bound by theory, mitochondrial genes may use a mitochondrial genetic code which is different from the universal genetic code used by nuclear genes. When a mitochondrial gene is inserted in a recombinant vector to be expressed in the nucleus, the mitochondrial nucleic acid sequence may be recoded in accordance with the universal genetic code, in order to be correctly expressed and/or translated outside the mitochondria. In some embodiments, a mitochondria-encoded gene may be recoded to form a nuclear-encoded version of the same gene. In some embodiments, the nuclear-encoded version is produced by codon substitution of the mitochondrial nucleic acid. In some embodiments, the nuclear-encoded version is produced by codon substitution to replace the codons of the mitochondrial genetic code with codons of the universal genetic code. Codon usage in the mitochondria vs. the universal genetic code is described in Lewin, Genes V, Oxford University Press; New York 1994, the content of which is incorporated by reference. Exemplary codon substitutions include but are not limited to UGA to UGG, AGA to UAA, UAG or UGA, AGG to UAA, UAG or UGA, AUA to AUG, CUG or GUG, AUU to AUG, CUG or GUG. In some embodiments, the nucleic acid encoding a human ND4 polypeptide is the sequence of a naturally occurring mitochondrial nucleic acid, recoded in accordance with the universal genetic code.


Due to the degeneracy of the genetic code, most amino acids can be encoded by multiple synonymous codons (Grantham et al., Nucleic Acids Res., 8(1):r49-r62 (1980). Without being bound by theory, synonymous codons naturally occur with different frequencies in different organisms. The choice of codons may affect protein expression, structure, and function. When expressing a recombinant protein, one may select specific codons to optimize for expression in a chosen host system, thus recoding by taking into account the preferred codon usage. In some embodiments, recoding is done taking into account the preferred usage codon of mammalian cells. In some embodiments, recoding is done taking into account the preferred codon usage in humans.


In some embodiments, the nucleic acid sequence encoding a human ND4 protein, recoded in accordance with the universal genetic code, and taking into account the human preferred usage codon comprises the nucleic acid sequence SEQ ID NO: 2 (3′ to 5′ sequence) or its reverse complement SEQ ID NO: 15 (5′ to 3′ sequence).


In some embodiments, the nucleic acid sequence encoding human ND4 protein, recoded in accordance with the universal genetic code, and taking into account the human preferred usage codon comprises the nucleic acid sequence SEQ ID NO: 17 (3′ to 5′ sequence) or its reverse complement SEQ ID NO: 18 (5′ to 3′ sequence).


The term “vector” refers to any genetic element, such as a plasmid, phage, transposon, cosmid, chromosome, virus, virion, etc., which is capable of replication when associated with the proper control elements and which can transfer gene sequences between cells. Thus, the term includes cloning and expression vehicles, as well as viral vectors. In some embodiments, the vector is a DNA vector. In some embodiments, the vector is a circular vector. In some embodiments, the vector is a plasmid. In some embodiments, the vector is double-stranded. In some embodiments, the vector is single-stranded.


In some embodiment, the recombinant vector disclosed herein is a recombinant viral vector. In some embodiments, the viral vector is an adeno-associated viral (AAV) vector, chimeric AAV vector, adenoviral vector, retroviral vector, lentiviral vector, DNA viral vector, herpes simplex viral vector, baculoviral vector, or any mutant or derivative thereof. In some embodiments, the recombinant viral vector is a recombinant adeno-associated virus (AAV) vector. In some embodiments, by an “AAV vector” is meant a vector derived from an adeno-associated virus serotype, including without limitation, AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8 and AAV-9. AAV vectors can have one or more of the AAV wild-type genes deleted in whole or part, e.g., the rep and/or cap genes, while retaining functional flanking inverted terminal repeat (ITR) sequences. Functional ITR sequences are necessary for the rescue, replication and packaging of the AAV virion. Thus, an AAV vector is defined herein to include at least those sequences that in cis provide for replication and packaging (e.g., functional ITRs) of the virus. The ITRs need not be the wild-type nucleotide sequences, and may be altered, e.g., by the insertion, deletion or substitution of nucleotides, so long as the sequences provide for functional rescue, replication and packaging. An “AAV vector” may also refer to the protein shell or capsid, which provides an efficient vehicle for delivery of vector nucleic acid to the nucleus of target cells. In some embodiments, the recombinant viral vector is a recombinant AAV2 vector. In some embodiments, a recombinant vector of the disclosure is a recombinant AAV vector, of serotype 2 (rAAV2/2).


In some embodiments, a recombinant AAV vector disclosed herein comprises a nucleic acid sequence encoding the ND4 protein, and operatively linked gene regulatory control sequences, including but not limited to promoters, enhancers, termination signals. Without being bound by theory, a cytomegalovirus (CMV) immediate early promoter may provide high and sustained expression levels of an operatively linked nucleic acid sequence in a cell. In some embodiments, the recombinant AAV vector of the disclosure comprises a cytomegalovirus (CMV) immediate early promoter. Without being bound by theory, intronic sequences incorporated into recombinant nucleic acid sequences or transgenes may stabilize mRNA levels and increase expression of an operatively linked nucleic acid sequence. In some embodiments, the recombinant AAV2 vector of the disclosure comprises a beta-globin (HBB2) derived intronic sequence.


In some embodiments, a recombinant AAV2 vector of the disclosure is a recombinant adeno-associated virus (AAV), serotype 2, (rAAV2/2) encoding the human NADH dehydrogenase 4 (ND4) under the control of the cytomegalovirus immediate early promoter (CMV) in an intron-containing expression cassette (beta globin intron, HBB2), further comprising viral inverted terminal repeats (ITRs) from AAV2/2 (FIG. 1). In some embodiments, a CMV promoter comprises SEQ ID NO: 5 or SEQ ID NO: 25. In some embodiments, a HBB2 intron comprises SEQ ID NO: 4 or SEQ ID NO: 24. In some embodiments, an ITR sequence comprises SEQ ID NO: 6, 7, 26 or 27.









TABLE 2





Sequences of various embodiments of the disclosure


















SEQ ID NO: 1
3′UTR
595
aacatgtggaatccccagtcccagtgcacagcagccgggtcctagctattggtattgt



Cox10
nt
tagaaggactatggttgagaatgtgtggggtggggaaaaccaaaaatgcaggccctgg



(3′ to

ctcagtcaccaggaagggggtgctccgaggcctttgagggacctgagctcacagaact



5′)

acagacagcagatcatgaggctcacactttctggccaccaagtgccactctgctgggc





atgtggagtgtgcgtgtggtgtggtggtaaggatggaaccaaaagaggaagctgtgta





tgtgtacccccatgtgaggaggaagaaacagaatagagggtggggttggaggagagat





gtataaagaccctcaaagggaaaaataattccttttttgtattcactgactgagctga





tgcatttcttatttggggagcattttgggtaatatttaaaaaaaaaaaaaactgtcaa





gtgatcactgggcaccgaattcgtttataatcttgttctaaacccagcaatttctctt





cttgtgttccagaattaccacaacatgctcgcctggcagcggagggaaaggggcggtg





ggcgtcccagtgctc





SEQ ID NO: 14
3′UTR
595
gagcactgggacgcccaccgcccctttccctccgctgccaggcgagcatgttgtggta



Cox10
nt
attctggaacacaagaagagaaattgctgggtttagaacaagattataaacgaattcg



(5′ to

gtgcccagtgatcacttgacagttttttttttttttaaatattacccaaaatgctccc



3′)

caaataagaaatgcatcagctcagtcagtgaatacaaaaaaggaattatttttccctt





tgagggtctttatacatctctcctccaaccccaccctctattctgtttcttcctcctc





acatgggggtacacatacacagcttcctcttttggttccatccttaccaccacaccac





acgcacactccacatgcccagcagagtggcacttggtggccagaaagtgtgagcctca





tgatctgctgtctgtagttctgtgagctcaggtccctcaaaggcctcggagcaccccc





ttcctggtgactgagccagggcctgcatttttggttttccccaccccacacattctca





accatagtccttctaacaataccaatagctaggacccggctgctgtgcactgggactg





gggattccacatgtt





SEQ ID NO: 3
MTS
84 nt
agtcctcctttccaggtaccacacactcccccccacacagccagtcaggagcctggat



Cox10

gacagtgtatgggggctggcagccat



(3′ to





5′)







SEQ ID NO: 16
MTS
84 nt
atggctgccagcccccatacactgtcatccaggctcctgactggctgtgtggggggga



Cox10

gtgtgtggtacctggaaaggaggact



(5′ to





3′)







SEQ ID NO: 4
HBB2
398
aattctttgccaaagtgatgggccagcacacagaccagcacgttgcccaggagctgtg



intron
nt
ggaggaagataagaggtatgaacatgattagcaaaagggcctagcttggactcagaat



(3′ to

aatccagccttatcccaaccataaaataaaagcagaatggtagctggattgtagctgc



5′)

tattagcaatatgaaacctcttacatcagttacaatttatatgcagaaatatttatat





gcagaaatattgctattgccttaacccagaaattatcactgttattctttagaatggt





gcaaagaggcatgatacattgtatcattattgccctgaaagaaagagattagggaaag





tattagaaataagataaacaaaaaagtatattaaaagaagaaagcatttt





SEQ ID NO: 24
HBB2
398
aaaatgctttcttcttttaatatacttttttgtttatcttatttctaatactttccct



intron
nt
aatctctttctttcagggcaataatgatacaatgtatcatgcctctttgcaccattct



(5′ to

aaagaataacagtgataatttctgggttaaggcaatagcaatatttctgcatataaat



3′)

atttctgcatataaattgtaactgatgtaagaggtttcatattgctaatagcagctac





aatccagctaccattctgcttttattttatggttgggataaggctggattattctgag





tccaagctaggcccttttgctaatcatgttcatacctcttatcttcctcccacagctc





ctgggcaacgtgctggtctgtgtgctggcccatcactttggcaaagaatt





SEQ ID NO: 5
CMV
654
ggaggctggatcggtcccggtgtcttctatggaggtcaaaacagcgtggatggcgtct



promoter
nt
ccaggcgatctgacggttcactaaacgagctctgcttatatagacctcccaccgtaca



(3′

cgcctaccgcccatttgcgtcaatggggcggagttgttacgacattttggaaagtccc



to 5′)

gttgattttggtgccaaaacaaactcccattgacgtcaatggggtggagacttggaaa





tccccgtgagtcaaaccgctatccacgcccattgatgtactgccaaaaccgcatcacc





atggtaatagcgatgactaatacgtagatgtactgccaagtaggaaagtcccataagg





tcatgtactgggcataatgccaggcgggccatttaccgtcattgacgtcaataggggg





cgtacttggcatatgatacacttgatgtactgccaagtgggcagtttaccgtaaatac





tccacccattgacgtcaatggaaagtccctattggcgttactatgggaacatacgtca





ttattgacgtcaatgggcgggggtcgttgggcggtcagccaggcgggccatttaccgt





aagttatgtaacgcggaactccatatatgggctatgaactaatgaccccgtaattgat





tactattaataactag





SEQ ID NO: 25
CMV
654
ctagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagtt



promoter
nt
ccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgc



(5′

ccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccatt



to 3′)

gacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgta





tcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcat





tatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattag





tcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcg





gtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttt





tggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgc





aaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctcgtttagtgaa





ccgtcagatcgcctggagacgccatccacgctgttttgacctccatagaagacaccgg





gaccgatccagcctcc





SEQ ID NO: 6
ITR (3′
128
aggaacccctagtgatggagttggccactccctctctgcgcgctcgctcgctcactga



to 5′)
nt
ggccgggcgaccaaaggtcgcccgacgcccgggctttgcccgggcggcctcagtgagc





gagcgagcgcgc





SEQ ID NO: 26
ITR (5′
128
gcgcgctcgctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcgaccttt



to 3′)
nt
ggtcgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaactccatca





ctaggggttcct





SEQ ID NO: 7
ITR (3′
130
ctgcgcgctcgctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcgacct



to 5′)
nt
ttggtcgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaactccat





cactaggggttcct





SEQ ID NO: 27
ITR (5′
130
aggaacccctagtgatggagttggccactccctctctgcgcgctcgctcgctcactga



to 3′)
nt
ggccgggcgaccaaaggtcgcccgacgcccgggctttgcccgggcggcctcagtgagc





gagcgagcgcgcag









In some embodiments, the recombinant AAV2 vector of the disclosure comprises a coding sequence of human ND4 that is codon-optimized for improved expression in human cells.


In some embodiments, a recombinant AAV vector of the disclosure is a recombinant adeno-associated virus (AAV), serotype 2, (rAAV2/2) encoding the gene of the human NADH dehydrogenase 4 (ND4), and comprises:

    • (i) a 3′UTR Cox/0 sequence comprising SEQ ID NO: 1;
    • (ii) a coding sequence ND4 comprising SEQ ID NO: 2; and
    • (iii) an MTS Cox/0 sequence comprising SEQ ID NO: 3.


In some embodiments, a recombinant AAV vector of the disclosure is a recombinant adeno-associated virus (AAV), serotype 2, (rAAV2/2) encoding the gene of the human NADH dehydrogenase 4 (ND4), and comprises:

    • (i) a 3′UTR Cox/0 sequence consisting of SEQ ID NO: 1;
    • (ii) a coding sequence ND4 consisting of SEQ ID NO: 2; and
    • (iii) an MTS Cox/0 sequence consisting of SEQ ID NO: 3.


In some embodiments, a recombinant AAV vector of the disclosure is a recombinant adeno-associated virus (AAV), serotype 2, (rAAV2/2) encoding the gene of the human NADH dehydrogenase 4 (ND4), and comprises:

    • (i) a 3′UTR Cox/0 sequence comprising SEQ ID NO: 1;
    • (ii) a coding sequence ND4 comprising SEQ ID NO: 17; and
    • (iii) an MTS Cox/0 sequence comprising SEQ ID NO: 3.


In some embodiments, a recombinant AAV vector of the disclosure is a recombinant adeno-associated virus (AAV), serotype 2, (rAAV2/2) encoding the gene of the human NADH dehydrogenase 4 (ND4), and comprises:

    • (i) a 3′UTR Cox/0 sequence consisting of SEQ ID NO: 1;
    • (ii) a coding sequence ND4 consisting of SEQ ID NO: 17; and
    • (iii) an MTS Cox/0 sequence consisting of SEQ ID NO: 3.


In some embodiments, a recombinant AAV vector of the disclosure is a recombinant adeno-associated virus (AAV), serotype 2, (rAAV2/2) encoding the gene of the human NADH dehydrogenase 4 (ND4), and comprises:

    • (i) a 3′UTR Cox/0 sequence comprising SEQ ID NO: 14;
    • (ii) a coding sequence ND4 comprising SEQ ID NO: 15; and
    • (iii) an MTS Cox/0 sequence comprising SEQ ID NO: 16


In some embodiments, a recombinant AAV vector of the disclosure is a recombinant adeno-associated virus (AAV), serotype 2, (rAAV2/2) encoding the gene of the human NADH dehydrogenase 4 (ND4), and comprises:

    • (i) a 3′UTR Cox/0 sequence consisting of SEQ ID NO: 14;
    • (ii) a coding sequence ND4 consisting of SEQ ID NO: 15; and
    • (iii) an MTS Cox/0 sequence consisting of SEQ ID NO: 16.


In some embodiments, a recombinant AAV vector of the disclosure is a recombinant adeno-associated virus (AAV), serotype 2, (rAAV2/2) encoding the gene of the human NADH dehydrogenase 4 (ND4), and comprises:

    • (i) a 3′UTR Cox/0 sequence comprising SEQ ID NO: 14;
    • (ii) a coding sequence ND4 comprising SEQ ID NO: 18; and
    • (iii) an MTS Cox/0 sequence comprising SEQ ID NO: 16.


In some embodiments, a recombinant AAV vector of the disclosure is a recombinant adeno-associated virus (AAV), serotype 2, (rAAV2/2) encoding the gene of the human NADH dehydrogenase 4 (ND4), and comprises:

    • (i) a 3′UTR Cox/0 sequence consisting of SEQ ID NO: 14;
    • (ii) a coding sequence ND4 consisting of SEQ ID NO: 18; and
    • (iii) an MTS Cox/0 sequence consisting of SEQ ID NO: 16.


In some embodiments, a recombinant AAV vector of the disclosure is a recombinant adeno-associated virus (AAV), serotype 2, (rAAV2/2) encoding the gene of the human NADH dehydrogenase 4 (ND4), and comprises:

    • (i) a 3′UTR Cox/0 sequence of:









(SEQ ID NO: 1)


aacatgtggaatccccagtcccagtgcacagcagccgggtcctagctatt





ggtattgttagaaggactatggttgagaatgtgtggggtggggaaaacca





aaaatgcaggccctggctcagtcaccaggaagggggtgctccgaggcctt





tgagggacctgagctcacagaactacagacagcagatcatgaggctcaca





ctttctggccaccaagtgccactctgctgggcatgtggagtgtgcgtgtg





gtgtggtggtaaggatggaaccaaaagaggaagctgtgtatgtgtacccc





catgtgaggaggaagaaacagaatagagggtggggttggaggagagatgt





ataaagaccctcaaagggaaaaataattccttttttgtattcactgactg





agctgatgcatttcttatttggggagcattttgggtaatatttaaaaaaa





aaaaaaactgtcaagtgatcactgggcaccgaattcgtttataatcttgt





tctaaacccagcaatttctcttcttgtgttccagaattaccacaacatgc





tcgcctggcagcggagggaaaggggcggtgggcgtcccagtgctc








    • (ii) a coding sequence ND4 of:












(SEQ ID NO: 2)


atgagaaaccagtgataatgtctgggttcagggacagcagcaggatggga





gacagatgcataaacatcagggtgttctctctggtgaatgagggcttcat





gttattaatgtggtgagtcagtgagccccactgggtagtggtaaacatgt





acaggctgtagagggctgtgaccagcatgttcagtcctgtcaggagcagg





gtgatgttgctccaggagaatgttgtcaccagcactgacagctctcccag





caggttaattgtagggggcagagccaggttggccagactagccaggagcc





accagaaagccatcagtgggagcagggtctggagcccctgactcaggatc





ataattcttgagtgagttctttcatagttgctatttgccaggcagaacag





gaggctgctggtcagcccatgagcaatcatgaggatcactgccccagtaa





aggaccagggtgtctgaatcagaatggcagtcaccaccagtgccatgtgg





ctgatggagctgtaagcaatcaggctcttgaggtcagtctgcctgagaca





gatggagctggtcatgatcataccccagaggctcagaaccaggaaagggt





aagccatgtgctttgtcagagggttcaggatcagggtgagcctcatcata





ccataaccacccagcttcaggaggacagcagccaggaccatggagccagc





tattggagcttccacatgagccttggggagccagaggtgcaggccataga





ggggcatcttcaccataaaggccattgtataagccagccacatcaggttg





tttgcccaggagttactcagctcctgggcagtcagagtcagcaggaggat





gttcaggctacccagtgtgttgtgggtatagatcagtgcaatcagcaggg





gcagtgagcccaccagtgtataaaagagaaagtaggtgcctgcattcagc





ctctcaggctgatttccccacctagtgatgatggccagggttgggatgag





agtggtctcaaagaagatatagaacatgatcagctcagtggctgtgaagg





tcataatcaggctgatttgcaggctaatgagcatggacaggtacagcttt





ttccttgacagaggctctgagctgaggtgcctctgactggccatgatagt





cagaggcagcagccatgtggtcagcatgagcaggggggttgtcaggggat





cagaggaaaaggtaggggagcatgaaaagaggttattattaatctggttg





aaaaacagcagtgggatgatgctgataatcaggctgtgggttgtggtgtt





aatccaaatcatgtgctttttgctcagccatgtgagaggcagcagcatga





tggttggcacaatcagcttcagca








    • (iii) an MTS Cox/0 sequence of:












(SEQ ID NO: 3)


agtcctcctttccaggtaccacacactcccccccacacagccagtcagga





gcctggatgacagtgtatgggggctggcagccat








    • (iv) an HBB2 intron sequence of:












(SEQ ID NO: 4)


aattctttgccaaagtgatgggccagcacacagaccagcacgttgcccag





gagctgtgggaggaagataagaggtatgaacatgattagcaaaagggcct





agcttggactcagaataatccagccttatcccaaccataaaataaaagca





gaatggtagctggattgtagctgctattagcaatatgaaacctcttacat





cagttacaatttatatgcagaaatatttatatgcagaaatattgctattg





ccttaacccagaaattatcactgttattctttagaatggtgcaaagaggc





atgatacattgtatcattattgccctgaaagaaagagattagggaaagta





ttagaaataagataaacaaaaaagtatattaaaagaagaaagcatttt








    • (v) a CMV promoter sequence of:












(SEQ ID NO: 5)


ggaggctggatcggtcccggtgtcttctatggaggtcaaaacagcgtgga





tggcgtctccaggcgatctgacggttcactaaacgagctctgcttatata





gacctcccaccgtacacgcctaccgcccatttgcgtcaatggggcggagt





tgttacgacattttggaaagtcccgttgattttggtgccaaaacaaactc





ccattgacgtcaatggggtggagacttggaaatccccgtgagtcaaaccg





ctatccacgcccattgatgtactgccaaaaccgcatcaccatggtaatag





cgatgactaatacgtagatgtactgccaagtaggaaagtcccataaggtc





atgtactgggcataatgccaggcgggccatttaccgtcattgacgtcaat





agggggcgtacttggcatatgatacacttgatgtactgccaagtgggcag





tttaccgtaaatactccacccattgacgtcaatggaaagtccctattggc





gttactatgggaacatacgtcattattgacgtcaatgggcgggggtcgtt





gggcggtcagccaggcgggccatttaccgtaagttatgtaacgcggaact





ccatatatgggctatgaactaatgaccccgtaattgattactattaataa





ctag








    • (vi) an ITR sequence of:












(SEQ ID NO: 6)


aggaacccctagtgatggagttggccactccctctctgcgcgctcgctcg





ctcactgaggccgggcgaccaaaggtcgcccgacgcccgggctttgcccg





ggcggcctcagtgagcgagcgagcgcgc,







and
    • (vii) an ITR sequence of:









(SEQ ID NO: 7)


ctgcgcgctcgctcgctcactgaggccgcccgggcaaagcccgggcgtcg





ggcgacctttggtcgcccggcctcagtgagcgagcgagcgcgcagagagg





gagtggccaactccatcactaggggttcct.






In some embodiments, a recombinant AAV vector of the disclosure is a recombinant adeno-associated virus (AAV), serotype 2, (rAAV2/2) encoding the gene of the human NADH dehydrogenase 4 (ND4), and comprises:

    • (i) a 3′UTR Cox/0 sequence comprising SEQ ID NO: 1,
    • (ii) a coding sequence ND4 comprising SEQ ID NO: 17,
    • (iii) an MTS Cox/0 sequence comprising SEQ ID NO: 3,
    • (iv) an HBB2 intron sequence comprising SEQ ID NO: 4,
    • (v) a CMV promoter sequence comprising SEQ ID NO: 5,
    • (vi) an ITR sequence comprising SEQ ID NO: 6, and
    • (vii) an ITR sequence comprising SEQ ID NO: 7.


In some embodiments, the recombinant AAV vector of the disclosure is a recombinant adeno-associated virus (AAV), serotype 2, (rAAV2/2) encoding the gene of the human NADH dehydrogenase 4 (ND4), and comprises:

    • (i) a 3′UTR Cox/0 sequence comprising SEQ ID NO: 14,
    • (ii) a coding sequence ND4 comprising SEQ ID NO: 15,
    • (iii) an MTS Cox/0 sequence comprising SEQ ID NO: 16,
    • (iv) an HBB2 intron sequence comprising SEQ ID NO: 24,
    • (v) a CMV promoter sequence comprising SEQ ID NO: 25,
    • (vi) an ITR sequence comprising SEQ ID NO: 26, and
    • (vii) an ITR sequence comprising SEQ ID NO: 27.


In some embodiments, the recombinant AAV vector of the disclosure is a recombinant adeno-associated virus (AAV), serotype 2, (rAAV2/2) encoding the gene of the human NADH dehydrogenase 4 (ND4), and comprises:

    • (i) a 3′UTR Cox/0 sequence comprising SEQ ID NO: 14,
    • (ii) a coding sequence ND4 comprising SEQ ID NO: 18,
    • (iii) an MTS Cox/0 sequence comprising SEQ ID NO: 16,
    • (iv) an HBB2 intron sequence comprising SEQ ID NO: 24,
    • (v) a CMV promoter sequence comprising SEQ ID NO: 25,
    • (vi) an ITR sequence comprising SEQ ID NO: 26, and
    • (vii) an ITR sequence comprising SEQ ID NO: 27.


In some embodiment, the recombinant vector of the disclosure further comprises:

    • (i) an HBB2 intron sequence comprising SEQ ID NO: 4,
    • (ii) a CMV promoter sequence comprising SEQ ID NO: 5,
    • (iii) an ITR sequence comprising SEQ ID NO: 6, and
    • (iv) an ITR sequence comprising SEQ ID No: 7.


In some embodiment, the recombinant vector of the disclosure further comprises:

    • (i) an HBB2 intron sequence consisting of SEQ ID NO: 4,
    • (ii) a CMV promoter sequence consisting of SEQ ID NO: 5,
    • (iii) an ITR sequence consisting of SEQ ID NO: 6, and
    • (iv) an ITR sequence consisting of SEQ ID No: 7.


In some embodiment, the recombinant vector of the disclosure further comprises:

    • (i) an HBB2 intron sequence comprising SEQ ID NO: 24,
    • (ii) a CMV promoter sequence comprising SEQ ID NO: 25,
    • (iii) an ITR sequence comprising SEQ ID NO: 26, and
    • (iv) an ITR sequence comprising SEQ ID No: 27.


In some embodiment, the recombinant vector of the disclosure further comprises:

    • (i) an HBB2 intron sequence consisting of SEQ ID NO: 24,
    • (ii) a CMV promoter sequence consisting of SEQ ID NO: 25,
    • (iii) an ITR sequence consisting of SEQ ID NO: 26, and
    • (iv) an ITR sequence consisting of SEQ ID No: 27.


In some embodiments, a recombinant vector of the disclosure is a recombinant adeno-associated virus (AAV), serotype 2, (rAAV2/2) encoding a ND4 protein, and comprises:

    • a 3′UTR Cox/0 sequence comprising SEQ ID NO: 14,
    • a nucleic acid sequence encoding an ND4 polypeptide comprising SEQ ID NO: 13, and
    • a nucleic acid sequence encoding an MTS Cox/0 polypeptide sequence comprising SEQ ID NO: 11.


In some embodiments, a recombinant vector of the disclosure is a recombinant adeno-associated virus (AAV), serotype 2, (rAAV2/2) encoding a ND4 protein, and comprises:

    • a 3′UTR Cox/0 sequence comprising SEQ ID NO: 14,
    • a nucleic acid sequence encoding an ND4 polypeptide SEQ ID NO: 13, and
    • a nucleic acid sequence encoding MTS Cox/0 polypeptide sequence comprising SEQ ID NO: 12.


In some embodiments, a recombinant vector of the disclosure is a recombinant adeno-associated virus (AAV), serotype 2, (rAAV2/2) encoding a ND4 protein, and comprises:

    • a 3′UTR Cox/0 sequence comprising SEQ ID NO: 1,
    • a nucleic acid sequence encoding an ND4 polypeptide comprising SEQ ID NO: 13, and
    • a nucleic acid sequence encoding an MTS Cox/0 polypeptide sequence comprising SEQ ID NO: 11.


In some embodiments, a recombinant vector of the disclosure is a recombinant adeno-associated virus (AAV), serotype 2, (rAAV2/2) encoding a ND4 protein, and comprises:

    • a 3′UTR Cox/0 sequence comprising SEQ ID NO: 1,
    • a nucleic acid sequence encoding an ND4 polypeptide SEQ ID NO: 13, and
    • a nucleic acid sequence encoding MTS Cox/0 polypeptide sequence comprising SEQ ID NO: 12.









TABLE 3





Sequences of various embodiments of the disclosure


















SEQ ID
Cox10 MTS
20
MAASPHTLSSRLLTGCVGGS


NO: 11
(cleaved)
AA






SEQ ID
Cox10 MTS
28
MAASPHTLSSRLLTGCVGGSVWYLERRT


NO: 12
(uncleaved)
AA









Sequences such as promoters, introns or ITR are well known to person of ordinary skill in the art who can easily interchange each of them with other elements known in the art.


Recombinant vectors of the disclosure are useful in treating Leber Hereditary Optic Neuroretinopathy (LHON), including ND4-related LHON.


In some embodiments, a recombinant vector of the disclosure is administered to a patient in need thereof via intravitreal injection.


In some embodiments, a recombinant vector of the disclosure is administered to a patient in need thereof via a single intravitreal injection.


In some embodiments, a recombinant viral vector of the disclosure is administered to patients in need thereof in one or more doses of about 109 to 1011 vg (viral genomes) per eye. In some embodiments, a recombinant AAV2 vector of the disclosure is administered to patients in need thereof in one or more doses of about 1010 vg per eye, for example 9×1010 vg per eye.


One aspect of the disclosure pertains to a pAAV-ND4 transfer plasmid that, in some embodiments, may be used in the preparation of a recombinant AAV2 vector of the disclosure.


In some embodiments, a pAAV-ND4 transfer plasmid of the disclosure comprises the following functional elements and sequences:


3′UTR Cox10: nt 11-605=595 bp

Coding sequence ND4: nt 618-1997=1380 bp


MTS Cox10: nt 1998-2081=84 bp

HBB2 intron: nt 2124-2616=493 bp


CMV promoter: nt 2624-3283=660 bp


ITR: nt 3327-3454=128 bp

F1 origin: nt 3872-4327=456 bp


Kana R gene: nt 4482-5273=792 bp


COLE1 origin: nt 5488-6102=615 bp


ITR: nt 6324-6453=130 bp.









TABLE 4







Annotated regions within one embodiment of the pAAV-ND4 plasmid










Name
Start
Stop
Sequence













3′UTR
11
605
aacatgtggaatccccagtcccagtgcacagcagccgggtcctagctattggtattgttagaa


COX10


ggactatggttgagaatgtgtggggtggggaaaaccaaaaatgcaggccctggctcagtca


(polyA


ccaggaagggggtgctccgaggcctttgagggacctgagctcacagaactacagacagca


sequence


gatcatgaggctcacactttctggccaccaagtgccactctgctgggcatgtggagtgtgcgtg


underlined)


tggtgtggtggtaaggatggaaccaaaagaggaagctgtgtatgtgtacccccatgtgagga





ggaagaaacagaatagagggtggggttggaggagagatgtataaagaccctcaaaggga





aaaataattccttttttgtattcactgactgagctgatgcatttcttatttggggagcattttgggtaat





atttaaaaaaaaaaaaaactgtcaagtgatcactgggcaccgaattcgtttataatcttgttcta





aacccagcaatttctcttcttgtgttccagaattaccacaacatgctcgcctggcagcggaggg





aaaggggcggtgggcgtcccagtgctc





ND4
618
1997
tcaggatgagaaaccagtgataatgtctgggttcagggacagcagcaggatgggagacag





atgcataaacatcagggtgttctctctggtgaatgagggcttcatgttattaatgtggtgagtcagt





gagccccactgggtagtggtaaacatgtacaggctgtagagggctgtgaccagcatgttcag





tcctgtcaggagcagggtgatgttgctccaggagaatgttgtcaccagcactgacagctctcc





cagcaggttaattgtagggggcagagccaggttggccagactagccaggagccaccagaa





agccatcagtgggagcagggtctggagcccctgactcaggatcataattcttgagtgagttcttt





catagttgctatttgccaggcagaacaggaggctgctggtcagcccatgagcaatcatgagg





atcactgccccagtaaaggaccagggtgtctgaatcagaatggcagtcaccaccagtgcca





tgtggctgatggagctgtaagcaatcaggctcttgaggtcagtctgcctgagacagatggagc





tggtcatgatcataccccagaggctcagaaccaggaaagggtaagccatgtgctttgtcaga





gggttcaggatcagggtgagcctcatcataccataaccacccagcttcaggaggacagcag





ccaggaccatggagccagctattggagcttccacatgagccttggggagccagaggtgcag





gccatagaggggcatcttcaccataaaggccattgtataagccagccacatcaggttgtttgc





ccaggagttactcagctcctgggcagtcagagtcagcaggaggatgttcaggctacccagtg





tgttgtgggtatagatcagtgcaatcagcaggggcagtgagcccaccagtgtataaaagaga





aagtaggtgcctgcattcagcctctcaggctgatttccccacctagtgatgatggccagggttg





ggatgagagtggtctcaaagaagatatagaacatgatcagctcagtggctgtgaaggtcata





atcaggctgatttgcaggctaatgagcatggacaggtacagctttttccttgacagaggctctg





agctgaggtgcctctgactggccatgatagtcagaggcagcagccatgtggtcagcatgagc





aggggggttgtcaggggatcagaggaaaaggtaggggagcatgaaaagaggttattatta





atctggttgaaaaacagcagtgggatgatgctgataatcaggctgtgggttgtggtgttaatcc





aaatcatgtgctttttgctcagccatgtgagaggcagcagcatgatggttggcacaatcagcttc





agcat





MTS Cox10
1998
2081
agtcctcctttccaggtaccacacactcccccccacacagccagtcaggagcctggatgaca





gtgtatgggggctggcagccat





betaglobin
2124
2616
atcccaattctttgccaaagtgatgggccagcacacagaccagcacgttgcccaggagctgt


intron


gggaggaagataagaggtatgaacatgattagcaaaagggcctagcttggactcagaata





atccagccttatcccaaccataaaataaaagcagaatggtagctggattgtagctgctattagc





aatatgaaacctcttacatcagttacaatttatatgcagaaatatttatatgcagaaatattgctatt





gccttaacccagaaattatcactgttattctttagaatggtgcaaagaggcatgatacattgtatc





attattgccctgaaagaaagagattagggaaagtattagaaataagataaacaaaaaagtat





attaaaagaagaaagcattttttgtgggcctatagactctataggcggtacttacgtcactcttgg





cacggggaatccgcgttccaatgcaccgttcccggccgggattcg





CMV
2624
3283
ggaggctggatcggtcccggtgtcttctatggaggtcaaaacagcgtggatggcgtctccagg


promoter


cgatctgacggttcactaaacgagctctgcttatatagacctcccaccgtacacgcctaccgcc





catttgcgtcaatggggcggagttgttacgacattttggaaagtcccgttgattttggtgccaaaa





caaactcccattgacgtcaatggggtggagacttggaaatccccgtgagtcaaaccgctatc





cacgcccattgatgtactgccaaaaccgcatcaccatggtaatagcgatgactaatacgtag





atgtactgccaagtaggaaagtcccataaggtcatgtactgggcataatgccaggcgggcca





tttaccgtcattgacgtcaatagggggcgtacttggcatatgatacacttgatgtactgccaagt





gggcagtttaccgtaaatactccacccattgacgtcaatggaaagtccctattggcgttactatg





ggaacatacgtcattattgacgtcaatgggcgggggtcgttgggcggtcagccaggcgggcc





atttaccgtaagttatgtaacgcggaactccatatatgggctatgaactaatgaccccgtaattg





attactattaataactagacgcgt





5′ ITR
3327
3454
aggaacccctagtgatggagttggccactccctctctgcgcgctcgctcgctcactgaggccg





ggcgaccaaaggtcgcccgacgcccgggctttgcccgggcggcctcagtgagcgagcga





gcgcgc





F1 origin
3872
4327
acgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgc





tacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccg





gctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacct





cgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggt





ttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaaca





ctcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaa





atgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgcttacaattt





Kana R gene
4482
5273
attgaacaagatggattgcacgcaggttctccggccgcttgggtggagaggctattcggctat





gactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggg





gcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaagacgaggc





agcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcact





gaagcgggaagggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctca





ccttgctcctgccgagaaagtatccatcatggctgatgcaatgcggcggctgcatacgcttgat





ccggctacctgcccattcgaccaccaagcgaaacatcgcatcgagcgagcacgtactcgg





atggaagccggtcttgtcgatcaggatgatctggacgaagagcatcaggggctcgcgccag





ccgaactgttcgccaggctcaaggcgagcatgcccgacggcgaggatctcgtcgtgaccca





tggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgactgtgg





ccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaaga





gcttggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcag





cgcatcgccttctatcgccttcttgacgagttcttctga





ColE1 origin
5488
6102
aaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccg





ctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttc





agcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccacttcaag





aactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtgg





cgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtc





gggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaact





gagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcgg





acaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagg





gggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgt





gatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcg





3′ ITR
6324
6453
ctgcgcgctcgctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcgacctttg





gtcgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaactccatcacta





ggggttcct









In some embodiments, a pAAV-ND4 transfer plasmid of the disclosure comprises:

    • (i) a 3′UTR Cox/0 sequence of SEQ ID NO: 1,
    • (ii) a coding sequence ND4 of SEQ ID NO: 2,
    • (iii) an MTS Cox/0 sequence of SEQ ID NO: 3,
    • (iv) an HBB2 intron sequence of SEQ ID NO: 4,
    • (v) a CMV promoter sequence of SEQ ID NO: 5,
    • (vi) an ITR sequence of SEQ ID NO: 6, and
    • (vii) an ITR sequence of SEQ ID NO: 7.


In some embodiments, a pAAV-ND4 transfer plasmid of the disclosure comprises:

    • (i) a 3′UTR Cox/0 sequence of SEQ ID NO: 1,
    • (ii) a coding sequence ND4 of SEQ ID NO: 17,
    • (iii) an MTS Cox/0 sequence of SEQ ID NO: 3,
    • (iv) an HBB2 intron sequence of SEQ ID NO: 4,
    • (v) a CMV promoter sequence of SEQ ID NO: 5,
    • (vi) an ITR sequence of SEQ ID NO: 6, and
    • (vii) an ITR sequence of SEQ ID NO: 7.


In some embodiments, a pAAV-ND4 transfer plasmid of the disclosure comprises:

    • (i) a 3′UTR Cox/0 sequence of SEQ ID NO: 14,
    • (ii) a coding sequence ND4 of SEQ ID NO: 15,
    • (iii) an MTS Cox/0 sequence of SEQ ID NO: 16,
    • (iv) an HBB2 intron sequence of SEQ ID NO: 24,
    • (v) a CMV promoter sequence of SEQ ID NO: 25,
    • (vi) an ITR sequence of SEQ ID NO: 26, and
    • (vii) an ITR sequence of SEQ ID NO: 27.


In some embodiments, a pAAV-ND4 transfer plasmid of the disclosure comprises:

    • (i) a 3′UTR Cox/0 sequence of SEQ ID NO: 14,
    • (ii) a coding sequence ND4 of SEQ ID NO: 18,
    • (iii) an MTS Cox/0 sequence of SEQ ID NO: 16,
    • (iv) an HBB2 intron sequence of SEQ ID NO: 24,
    • (v) a CMV promoter sequence of SEQ ID NO: 25,
    • (vi) an ITR sequence of SEQ ID NO: 26, and
    • (vii) an ITR sequence of SEQ ID NO: 27.


In some embodiments, a pAAV-ND4 transfer plasmid of the disclosure comprises:










(SEQ ID NO: 22)



gctcggtccgaacatgtggaatccccagtcccagtgcacagcagccgggtcctagctattggtattgttaga






aggactatggttgagaatgtgtggggtggggaaaaccaaaaatgcaggccctggctcagtcaccaggaa





gggggtgctccgaggcctttgagggacctgagctcacagaactacagacagcagatcatgaggctcaca





ctttctggccaccaagtgccactctgctgggcatgtggagtgtgcgtgtggtgtggtggtaaggatggaacca





aaagaggaagctgtgtatgtgtacccccatgtgaggaggaagaaacagaatagagggtggggttggag





gagagatgtataaagaccctcaaagggaaaaataattccttttttgtattcactgactgagctgatgcatttctt





atttggggagcattttgggtaatatttaaaaaaaaaaaaaactgtcaagtgatcactgggcaccgaattcgttt





ataatcttgttctaaacccagcaatttctcttcttgtgttccagaattaccacaacatgctcgcctggcagcgga





gggaaaggggcggtgggcgtcccagtgctcagatctctcgagtcaggatgagaaaccagtgataatgtct





gggttcagggacagcagcaggatgggagacagatgcataaacatcagggtgttctctctggtgaatgagg





gcttcatgttattaatgtggtgagtcagtgagccccactgggtagtggtaaacatgtacaggctgtagagggc





tgtgaccagcatgttcagtcctgtcaggagcagggtgatgttgctccaggagaatgttgtcaccagcactga





cagctctcccagcaggttaattgtagggggcagagccaggttggccagactagccaggagccaccagaa





agccatcagtgggagcagggtctggagcccctgactcaggatcataattcttgagtgagttctttcatagttgc





tatttgccaggcagaacaggaggctgctggtcagcccatgagcaatcatgaggatcactgccccagtaaa





ggaccagggtgtctgaatcagaatggcagtcaccaccagtgccatgtggctgatggagctgtaagcaatc





aggctcttgaggtcagtctgcctgagacagatggagctggtcatgatcataccccagaggctcagaaccag





gaaagggtaagccatgtgctttgtcagagggttcaggatcagggtgagcctcatcataccataaccaccca





gcttcaggaggacagcagccaggaccatggagccagctattggagcttccacatgagccttggggagcc





agaggtgcaggccatagaggggcatcttcaccataaaggccattgtataagccagccacatcaggttgttt





gcccaggagttactcagctcctgggcagtcagagtcagcaggaggatgttcaggctacccagtgtgttgtg





ggtatagatcagtgcaatcagcaggggcagtgagcccaccagtgtataaaagagaaagtaggtgcctgc





attcagcctctcaggctgatttccccacctagtgatgatggccagggttgggatgagagtggtctcaaagaa





gatatagaacatgatcagctcagtggctgtgaaggtcataatcaggctgatttgcaggctaatgagcatgga





caggtacagctttttccttgacagaggctctgagctgaggtgcctctgactggccatgatagtcagaggcagc





agccatgtggtcagcatgagcaggggggttgtcaggggatcagaggaaaaggtaggggagcatgaaaa





gaggttattattaatctggttgaaaaacagcagtgggatgatgctgataatcaggctgtgggttgtggtgttaat





ccaaatcatgtgctttttgctcagccatgtgagaggcagcagcatgatggttggcacaatcagcttcagcata





gtcctcctttccaggtaccacacactcccccccacacagccagtcaggagcctggatgacagtgtatgggg





gctggcagccatgtcgactctagaggatccccggggaattcaatcgatgttcgaatcccaattctttgccaaa





gtgatgggccagcacacagaccagcacgttgcccaggagctgtgggaggaagataagaggtatgaaca





tgattagcaaaagggcctagcttggactcagaataatccagccttatcccaaccataaaataaaagcaga





atggtagctggattgtagctgctattagcaatatgaaacctcttacatcagttacaatttatatgcagaaatattt





atatgcagaaatattgctattgccttaacccagaaattatcactgttattctttagaatggtgcaaagaggcatg





atacattgtatcattattgccctgaaagaaagagattagggaaagtattagaaataagataaacaaaaaag





tatattaaaagaagaaagcattttttgtgggcctatagactctataggcggtacttacgtcactcttggcacggg





gaatccgcgttccaatgcaccgttcccggccgggattcgaatccgcggaggctggatcggtcccggtgtctt





ctatggaggtcaaaacagcgtggatggcgtctccaggcgatctgacggttcactaaacgagctctgcttata





tagacctcccaccgtacacgcctaccgcccatttgcgtcaatggggcggagttgttacgacattttggaaagt





cccgttgattttggtgccaaaacaaactcccattgacgtcaatggggtggagacttggaaatccccgtgagtc





aaaccgctatccacgcccattgatgtactgccaaaaccgcatcaccatggtaatagcgatgactaatacgt





agatgtactgccaagtaggaaagtcccataaggtcatgtactgggcataatgccaggcgggccatttaccg





tcattgacgtcaatagggggcgtacttggcatatgatacacttgatgtactgccaagtgggcagtttaccgtaa





atactccacccattgacgtcaatggaaagtccctattggcgttactatgggaacatacgtcattattgacgtca





atgggcgggggtcgttgggcggtcagccaggcgggccatttaccgtaagttatgtaacgcggaactccata





tatgggctatgaactaatgaccccgtaattgattactattaataactagacgcgtgcggccgtagataagtag





catggcgggttaatcattaactacaaggaacccctagtgatggagttggccactccctctctgcgcgctcgct





cgctcactgaggccgggcgaccaaaggtcgcccgacgcccgggctttgcccgggcggcctcagtgagc





gagcgagcgcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgca





gcctgaatggcgaatggattccagacgattgagcgtcaaaatgtaggtatttccatgagcgtttttccgttgca





atggctggcggtaatattgttctggatattaccagcaaggccgatagtttgagttcttctactcaggcaagtgat





gttattactaatcaaagaagtattgcgacaacggttaatttgcgtgatggacagactcttttactcggtggcctc





actgattataaaaacacttctcaggattctggcgtaccgttcctgtctaaaatccctttaatcggcctcctgtttag





ctcccgctctgattctaacgaggaaagcacgttatacgtgctcgtcaaagcaaccatagtacgcgccctgta





gcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagc





gcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggc





tccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgta





gtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttc





caaactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattg





gttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgcttacaatttaggtgg





cacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatga





gacaataaccctgataaatgcttcaataatagcacctagatcaagagacaggatgaggatcgtttcgcatg





attgaacaagatggattgcacgcaggttctccggccgcttgggtggagaggctattcggctatgactgggca





caacagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgcccggttctttttgtca





agaccgacctgtccggtgccctgaatgaactgcaagacgaggcagcgcggctatcgtggctggccacga





cgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcgggaagggactggctgctattgggcgaa





gtgccggggcaggatctcctgtcatctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgc





ggcggctgcatacgcttgatccggctacctgcccattcgaccaccaagcgaaacatcgcatcgagcgagc





acgtactcggatggaagccggtcttgtcgatcaggatgatctggacgaagagcatcaggggctcgcgcca





gccgaactgttcgccaggctcaaggcgagcatgcccgacggcgaggatctcgtcgtgacccatggcgat





gcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgactgtggccggctgggtgtggc





ggaccgctatcaggacatagcgttggctacccgtgatattgctgaagagcttggcggcgaatgggctgacc





gcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttctatcgccttcttgacgagttcttct





gaattattaacgcttacaatttcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcatcaggt





ggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcat





gaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttct





tgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgc





cggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtcc





ttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatc





ctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccgg





ataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctac





accgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcgg





acaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacg





cctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcagggggg





cggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacat





gttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgca





gccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccg





cctctccccgcgcgttggccgattcattaatgcagctgcgcgctcgctcgctcactgaggccgcccgggcaa





agcccgggcgtcgggcgacctttggtcgcccggcctcagtgagcgagcgagcgcgcagagagggagtg





gccaactccatcactaggggttccttgtagttaatgattaacccgccatgctacttatcta






In some other embodiments, a pAAV-ND4 transfer plasmid of the disclosure comprises the following functional elements and sequences:


3′UTR Cox10: nt 11-605=595 bp

Coding sequence ND4: nt 618-1997=1380 bp


MTS Cox10: nt 1998-2081=84 bp

HBB2 intron: nt 2124-2616=493 bp


CMV promoter: nt 2624-3283=660 bp


ITR: nt 3327-3454=128 bp

F1 origin: nt 3827-4282=456 bp


Kana R gene: nt 4437-5228=792 bp


COLE1 origin: nt 5443-6057=615 bp


ITR: nt 6279-6408=130 bp.









TABLE 5







Annotated regions within one embodiment of the pAAV-ND4 plasmid










Name
Start
Stop
Sequence













3′UTR
11
605
aacatgtggaatccccagtcccagtgcacagcagccgggtcctagctattggtattgttagaa


COX10


ggactatggttgagaatgtgtggggtggggaaaaccaaaaatgcaggccctggctcagtca


(polyA


ccaggaagggggtgctccgaggcctttgagggacctgagctcacagaactacagacagca


sequence


gatcatgaggctcacactttctggccaccaagtgccactctgctgggcatgtggagtgtgcgtg


underlined)


tggtgtggtggtaaggatggaaccaaaagaggaagctgtgtatgtgtacccccatgtgagga





ggaagaaacagaatagagggtggggttggaggagagatgtataaagaccctcaaaggga





aaaataattccttttttgtattcactgactgagctgatgcatttcttatttggggagcattttgggtaat





atttaaaaaaaaaaaaaactgtcaagtgatcactgggcaccgaattcgtttataatcttgttcta





aacccagcaatttctcttcttgtgttccagaattaccacaacatgctcgcctggcagcggaggg





aaaggggcggtgggcgtcccagtgctc





ND4
618
1997
tcaggatgagaaaccagtgataatgtctgggttcagggacagcagcaggatgggagacag





atgcataaacatcagggtgttctctctggtgaatgagggcttcatgttattaatgtggtgagtcagt





gagccccactgggtagtggtaaacatgtacaggctgtagagggctgtgaccagcatgttcag





tcctgtcaggagcagggtgatgttgctccaggagaatgttgtcaccagcactgacagctctcc





cagcaggttaattgtagggggcagagccaggttggccagactagccaggagccaccagaa





agccatcagtgggagcagggtctggagcccctgactcaggatcataattcttgagtgagttcttt





catagttgctatttgccaggcagaacaggaggctgctggtcagcccatgagcaatcatgagg





atcactgccccagtaaaggaccagggtgtctgaatcagaatggcagtcaccaccagtgcca





tgtggctgatggagctgtaagcaatcaggctcttgaggtcagtctgcctgagacagatggagc





tggtcatgatcataccccagaggctcagaaccaggaaagggtaagccatgtgctttgtcaga





gggttcaggatcagggtgagcctcatcataccataaccacccagcttcaggaggacagcag





ccaggaccatggagccagctattggagcttccacatgagccttggggagccagaggtgcag





gccatagaggggcatcttcaccataaaggccattgtataagccagccacatcaggttgtttgc





ccaggagttactcagctcctgggcagtcagagtcagcaggaggatgttcaggctacccagtg





tgttgtgggtatagatcagtgcaatcagcaggggcagtgagcccaccagtgtataaaagaga





aagtaggtgcctgcattcagcctctcaggctgatttccccacctagtgatgatggccagggttg





ggatgagagtggtctcaaagaagatatagaacatgatcagctcagtggctgtgaaggtcata





atcaggctgatttgcaggctaatgagcatggacaggtacagctttttccttgacagaggctctg





agctgaggtgcctctgactggccatgatagtcagaggcagcagccatgtggtcagcatgagc





aggggggttgtcaggggatcagaggaaaaggtaggggagcatgaaaagaggttattatta





atctggttgaaaaacagcagtgggatgatgctgataatcaggctgtgggttgtggtgttaatcc





aaatcatgtgctttttgctcagccatgtgagaggcagcagcatgatggttggcacaatcagcttc





agcat





MTS Cox10
1998
2081
agtcctcctttccaggtaccacacactcccccccacacagccagtcaggagcctggatgaca





gtgtatgggggctggcagccat





betaglobin
2124
2616
atcccaattctttgccaaagtgatgggccagcacacagaccagcacgttgcccaggagctgt


intron


gggaggaagataagaggtatgaacatgattagcaaaagggcctagcttggactcagaata





atccagccttatcccaaccataaaataaaagcagaatggtagctggattgtagctgctattagc





aatatgaaacctcttacatcagttacaatttatatgcagaaatatttatatgcagaaatattgctatt





gccttaacccagaaattatcactgttattctttagaatggtgcaaagaggcatgatacattgtatc





attattgccctgaaagaaagagattagggaaagtattagaaataagataaacaaaaaagtat





attaaaagaagaaagcattttttgtgggcctatagactctataggcggtacttacgtcactcttgg





cacggggaatccgcgttccaatgcaccgttcccggccgggattcg





CMV
2624
3283
ggaggctggatcggtcccggtgtcttctatggaggtcaaaacagcgtggatggcgtctccagg


promoter


cgatctgacggttcactaaacgagctctgcttatatagacctcccaccgtacacgcctaccgcc





catttgcgtcaatggggcggagttgttacgacattttggaaagtcccgttgattttggtgccaaaa





caaactcccattgacgtcaatggggtggagacttggaaatccccgtgagtcaaaccgctatc





cacgcccattgatgtactgccaaaaccgcatcaccatggtaatagcgatgactaatacgtag





atgtactgccaagtaggaaagtcccataaggtcatgtactgggcataatgccaggcgggcca





tttaccgtcattgacgtcaatagggggcgtacttggcatatgatacacttgatgtactgccaagt





gggcagtttaccgtaaatactccacccattgacgtcaatggaaagtccctattggcgttactatg





ggaacatacgtcattattgacgtcaatgggcgggggtcgttgggcggtcagccaggcgggcc





atttaccgtaagttatgtaacgcggaactccatatatgggctatgaactaatgaccccgtaattg





attactattaataactagacgcgt





5′ ITR
3327
3454
aggaacccctagtgatggagttggccactccctctctgcgcgctcgctcgctcactgaggccg





ggcgaccaaaggtcgcccgacgcccgggctttgcccgggcggcctcagtgagcgagcga





gcgcgc





F1 origin
3827
4282
acgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgc





tacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccg





gctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacct





cgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggt





ttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaaca





ctcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaa





atgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgcttacaattt





Kana R gene
4437
5228
attgaacaagatggattgcacgcaggttctccggccgcttgggtggagaggctattcggctat





gactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggg





gcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaagacgaggc





agcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcact





gaagcgggaagggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctca





ccttgctcctgccgagaaagtatccatcatggctgatgcaatgcggcggctgcatacgcttgat





ccggctacctgcccattcgaccaccaagcgaaacatcgcatcgagcgagcacgtactcgg





atggaagccggtcttgtcgatcaggatgatctggacgaagagcatcaggggctcgcgccag





ccgaactgttcgccaggctcaaggcgagcatgcccgacggcgaggatctcgtcgtgaccca





tggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgactgtgg





ccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaaga





gcttggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcag





cgcatcgccttctatcgccttcttgacgagttcttctga





ColE1 origin
5443
6057
aaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccg





ctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttc





agcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccacttcaag





aactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtgg





cgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtc





gggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaact





gagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcgg





acaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagg





gggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgt





gatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcg





3′ ITR
6279
6408
ctgcgcgctcgctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcgacctttg





gtcgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaactccatcacta





ggggttcct









In some embodiments, a pAAV-ND4 transfer plasmid of the disclosure comprises:










(SEQ ID NO: 23)



gctcggtccgaacatgtggaatccccagtcccagtgcacagcagccgggtcctagctattggtattgttaga






aggactatggttgagaatgtgtggggtggggaaaaccaaaaatgcaggccctggctcagtcaccaggaa





gggggtgctccgaggcctttgagggacctgagctcacagaactacagacagcagatcatgaggctcaca





ctttctggccaccaagtgccactctgctgggcatgtggagtgtgcgtgtggtgtggtggtaaggatggaacca





aaagaggaagctgtgtatgtgtacccccatgtgaggaggaagaaacagaatagagggtggggttggag





gagagatgtataaagaccctcaaagggaaaaataattccttttttgtattcactgactgagctgatgcatttctt





atttggggagcattttgggtaatatttaaaaaaaaaaaaaactgtcaagtgatcactgggcaccgaattcgttt





ataatcttgttctaaacccagcaatttctcttcttgtgttccagaattaccacaacatgctcgcctggcagcgga





gggaaaggggcggtgggcgtcccagtgctcagatctctcgagtcaggatgagaaaccagtgataatgtct





gggttcagggacagcagcaggatgggagacagatgcataaacatcagggtgttctctctggtgaatgagg





gcttcatgttattaatgtggtgagtcagtgagccccactgggtagtggtaaacatgtacaggctgtagagggc





tgtgaccagcatgttcagtcctgtcaggagcagggtgatgttgctccaggagaatgttgtcaccagcactga





cagctctcccagcaggttaattgtagggggcagagccaggttggccagactagccaggagccaccagaa





agccatcagtgggagcagggtctggagcccctgactcaggatcataattcttgagtgagttctttcatagttgc





tatttgccaggcagaacaggaggctgctggtcagcccatgagcaatcatgaggatcactgccccagtaaa





ggaccagggtgtctgaatcagaatggcagtcaccaccagtgccatgtggctgatggagctgtaagcaatc





aggctcttgaggtcagtctgcctgagacagatggagctggtcatgatcataccccagaggctcagaaccag





gaaagggtaagccatgtgctttgtcagagggttcaggatcagggtgagcctcatcataccataaccaccca





gcttcaggaggacagcagccaggaccatggagccagctattggagcttccacatgagccttggggagcc





agaggtgcaggccatagaggggcatcttcaccataaaggccattgtataagccagccacatcaggttgttt





gcccaggagttactcagctcctgggcagtcagagtcagcaggaggatgttcaggctacccagtgtgttgtg





ggtatagatcagtgcaatcagcaggggcagtgagcccaccagtgtataaaagagaaagtaggtgcctgc





attcagcctctcaggctgatttccccacctagtgatgatggccagggttgggatgagagtggtctcaaagaa





gatatagaacatgatcagctcagtggctgtgaaggtcataatcaggctgatttgcaggctaatgagcatgga





caggtacagctttttccttgacagaggctctgagctgaggtgcctctgactggccatgatagtcagaggcagc





agccatgtggtcagcatgagcaggggggttgtcaggggatcagaggaaaaggtaggggagcatgaaaa





gaggttattattaatctggttgaaaaacagcagtgggatgatgctgataatcaggctgtgggttgtggtgttaat





ccaaatcatgtgctttttgctcagccatgtgagaggcagcagcatgatggttggcacaatcagcttcagcata





gtcctcctttccaggtaccacacactcccccccacacagccagtcaggagcctggatgacagtgtatgggg





gctggcagccatgtcgactctagaggatccccggggaattcaatcgatgttcgaatcccaattctttgccaaa





gtgatgggccagcacacagaccagcacgttgcccaggagctgtgggaggaagataagaggtatgaaca





tgattagcaaaagggcctagcttggactcagaataatccagccttatcccaaccataaaataaaagcaga





atggtagctggattgtagctgctattagcaatatgaaacctcttacatcagttacaatttatatgcagaaatattt





atatgcagaaatattgctattgccttaacccagaaattatcactgttattctttagaatggtgcaaagaggcatg





atacattgtatcattattgccctgaaagaaagagattagggaaagtattagaaataagataaacaaaaaag





tatattaaaagaagaaagcattttttgtgggcctatagactctataggcggtacttacgtcactcttggcacggg





gaatccgcgttccaatgcaccgttcccggccgggattcgaatccgcggaggctggatcggtcccggtgtctt





ctatggaggtcaaaacagcgtggatggcgtctccaggcgatctgacggttcactaaacgagctctgcttata





tagacctcccaccgtacacgcctaccgcccatttgcgtcaatggggcggagttgttacgacattttggaaagt





cccgttgattttggtgccaaaacaaactcccattgacgtcaatggggtggagacttggaaatccccgtgagtc





aaaccgctatccacgcccattgatgtactgccaaaaccgcatcaccatggtaatagcgatgactaatacgt





agatgtactgccaagtaggaaagtcccataaggtcatgtactgggcataatgccaggcgggccatttaccg





tcattgacgtcaatagggggcgtacttggcatatgatacacttgatgtactgccaagtgggcagtttaccgtaa





atactccacccattgacgtcaatggaaagtccctattggcgttactatgggaacatacgtcattattgacgtca





atgggcgggggtcgttgggcggtcagccaggcgggccatttaccgtaagttatgtaacgcggaactccata





tatgggctatgaactaatgaccccgtaattgattactattaataactagacgcgtgcggccgtagataagtag





catggcgggttaatcattaactacaaggaacccctagtgatggagttggccactccctctctgcgcgctcgct





cgctcactgaggccgggcgaccaaaggtcgcccgacgcccgggctttgcccgggcggcctcagtgagc





gagcgagcgcgcagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcag





cctgaatggcgaatggcgattccgttgcaatggctggcggtaatattgttctggatattaccagcaaggccga





tagtttgagttcttctactcaggcaagtgatgttattactaatcaaagaagtattgcgacaacggttaatttgcgt





gatggacagactcttttactcggtggcctcactgattataaaaacacttctcaggattctggcgtaccgttcctgt





ctaaaatccctttaatcggcctcctgtttagctcccgctctgattctaacgaggaaagcacgttatacgtgctcg





tcaaagcaaccatagtacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcg





tgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccgg





ctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaa





aaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttgga





gtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgattt





ataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaa





caaaatattaacgcttacaatttaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttcta





aatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatagcacctagatcaa





gagacaggatgaggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtg





gagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtca





gcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaagacgaggc





agcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcgg





gaagggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctgccgaga





aagtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcccattcgaccacc





aagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatctgga





cgaagagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgagcatgcccgacggcg





aggatctcgtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggattc





atcgactgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaa





gagcttggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcg





ccttctatcgccttcttgacgagttcttctgaattattaacgcttacaatttcctgatgcggtattttctccttacgcat





ctgtgcggtatttcacaccgcatcaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttct





aaatacattcaaatatgtatccgctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagac





cccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaa





accaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttca





gcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggccaccacttcaagaactctgtagc





accgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccg





ggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacgggggggtcgtgcacac





agcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgcc





acgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgc





acgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagc





gtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggtt





cctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcct





ttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcg





gaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctgcgcgctcg





ctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcgacctttggtcgcccggcctcagtgag





cgagcgagcgcgcagagagggagtggccaactccatcactaggggttccttgtagttaatgattaacccgc





catgctacttatctac






In some embodiments, a pAAV-ND4 transfer plasmid of the disclosure comprises a Kanamycin resistance gene to allow for antibiotic selection. In some embodiments, a pAAV-ND4 transfer plasmid of the disclosure comprises an f1 origin of replication sequence to allow for replication of the plasmid. In some embodiments, a pAAV-ND4 transfer plasmid of the disclosure comprises a ColE1 origin of replication sequence to allow for replication of plasmid.


Thus, in some embodiments, a pAAV-ND4 transfer plasmid of the disclosure further comprises:

    • (i) an f1 origin of replication sequence comprising:









(SEQ ID No: 8)


acgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgc





agcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgcttt





cttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaa





atcgggggctccctttagggttccgatttagtgctttacggcacctcgac





cccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctg





atagacggtttttcgccctttgacgttggagtccacgttctttaatagtg





gactcttgttccaaactggaacaacactcaaccctatctcggtctattct





tttgatttataagggattttgccgatttcggcctattggttaaaaaatga





gctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgctta





caattt,








    • (ii) a Kanamycin resistance gene sequence comprising:












(SEQ ID No: 9)


attgaacaagatggattgcacgcaggttctccggccgcttgggtggagag





gctattcggctatgactgggcacaacagacaatcggctgctctgatgccg





ccgtgttccggctgtcagcgcaggggcgcccggttctttttgtcaagacc





gacctgtccggtgccctgaatgaactgcaagacgaggcagcgcggctatc





gtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtca





ctgaagcgggaagggactggctgctattgggcgaagtgccggggcaggat





ctcctgtcatctcaccttgctcctgccgagaaagtatccatcatggctga





tgcaatgcggcggctgcatacgcttgatccggctacctgcccattcgacc





accaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggt





cttgtcgatcaggatgatctggacgaagagcatcaggggctcgcgccagc





cgaactgttcgccaggctcaaggcgagcatgcccgacggcgaggatctcg





tcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggc





cgcttttctggattcatcgactgtggccggctgggtgtggcggaccgcta





tcaggacatagcgttggctacccgtgatattgctgaagagcttggcggcg





aatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcg





cagcgcatcgccttctatcgccttcttgacgagttcttctga,







and
    • (iii) a ColE1 origin of replication sequence comprising:









(SEQ ID No: 10)


aaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgca





aacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagc





taccaactctttttccgaaggtaactggcttcagcagagcgcagatacca





aatactgtccttctagtgtagccgtagttaggccaccacttcaagaactc





tgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctg





ctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatag





ttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacaca





gcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtg





agctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtat





ccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagg





gggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgac





ttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaa





aacgccagcaacgcg.






Generation of a pAAV-ND4 transfer plasmid of the disclosure can be accomplished using a suitable genetic engineering technique known in the art (see, e.g., Green, et al., Molecular Cloning: A Laboratory Manual, 4th edition, Cold Spring Harbor Press, (2012)).


In some embodiments, a recombinant AAV vector of the disclosure is produced by tri-transfection in a transitory packaging cell line with (i) a pAAV-ND4 transfer plasmid of the disclosure (e.g., that shown in FIG. 2), (ii) a rep/cap plasmid providing to host cells the genetic material encoding for the synthesis of essential proteins (e.g., as non-limiting examples, enzymes and structural proteins) involved in the production of the AAV2/2 particle, and (iii) an adenovirus helper plasmid providing the helper function to induce the expression of rep/cap gene.


In some embodiments, the packaging cell line comprises the human embryonic kidney 293 (HEK 293) cell line.


In some embodiments, the rep/cap plasmid is pRep2Cap2 plasmid. In some embodiments, the rep/cap plasmid is pRep2Cap2 plasmid comprising the following elements (FIG. 3):

    • i. a rep sequence from AAV2/2 serotype (nt 281-2212, 1932 bp),
    • ii. a cap sequence from AAV2/2 serotype (nt 2163-4370; 2208 bp),
    • iii. a Kanamycin resistance gene (nt 5712-6506, complementary; 795 bp), and
    • iv. a prokaryotic origin of replication (nt 4896-5496; 601 bp) and phage f1 origin of replication (nt 6658-7113; 456 bp).


In some embodiments, the adenovirus helper plasmid is pXX6 plasmid. In some embodiments, the adenovirus helper plasmid is pXX6 plasmid comprising the following elements (FIG. 4):

    • i. adenoviral ITRs: (nt 1-85 and 18638-18732),
    • ii. a Kanamycin resistance gene (nt 1402-2196, 795 bp),
    • iii. a prokaryotic origin of replication (nt 2411-3025; 615 bp) and phage f1 origin of replication (nt 795-1250; 456 bp), and
    • iv. 13 specific adenoviral sequences (from VA1 RNA sequence to E4orf2 sequence, nt 4259-17916).


Patients suffering from LHON and treated with the recombinant vectors disclosed herein may receive therapeutic benefit, e.g., by an improvement in visual acuity. The term “treatment” as used herein, is defined as the application or administration of a therapeutic agent to a subject, who has a disease, a symptom of disease or a predisposition toward a disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease, one or more symptoms of the disease, or the predisposition toward the disease. As long as the compositions of the disclosure either alone or in combination with another therapeutic agent cure, heal, alleviate, relive, alter, remedy, ameliorate, improve or affect at least one symptom of LHON being treated, as compared to that symptom in the absence of treatment, the result is considered a treatment of the underlying disorder regardless of whether all the symptoms of the disorder are cured, healed, alleviated, relieved, altered, remedied, ameliorated, improved or affected or not. Treatment may be achieved using an “effective amount” of a therapeutic agent, which shall be understood to embrace partial and complete treatment, e.g., partial or complete curing, healing, alleviating, relieving, altering, remedying, ameliorating, improving, or affecting the disease, one or more symptoms of the disease, or the predisposition toward the disease. An “effective amount” of may be determined empirically. Likewise, a “therapeutically effective amount” is a concentration or which is effective for achieving a stated therapeutic effect.


In one embodiment, the term “treating” comprises the step of administering an effective dose, or effective multiple doses, of a composition comprising a nucleic acid, a vector, a recombinant virus, or a pharmaceutical composition as disclosed herein, to an animal (including a human being) in need thereof. If the dose is administered prior to development of a disorder/disease, the administration is prophylactic. If the dose is administered after the development of a disorder/disease, the administration is therapeutic. In embodiments, an effective dose is a dose that detectably alleviates (either eliminates or reduces) at least one symptom associated with the disorder/disease state being treated, that slows or prevents progression to a disorder/disease state, that slows or prevents progression of a disorder/disease state, that diminishes the extent of disease, that results in remission (partial or total) of disease, and/or that prolongs survival. The term encompasses but does not require complete treatment (i.e., curing) and/or prevention.


In some embodiments, the titer of recombinant vector administered is measured in viral genomes (vg). In some embodiments, the titer of recombinant vector administered is measured by quantitative polymerase chain reaction (qPCR). In some embodiments, the titer of recombinant vector administered is measured by digital droplet PCR (ddPCR). In some embodiments, recombinant AAV vector is administered intravitreally at an amount of about 1.0×109 to 1.0×1012 vg per eye. In some embodiments, recombinant AAV vector is administered intravitreally at an amount of about 5.0×109 to 5×1011 vg per eye. In some embodiments, recombinant AAV vector is administered intravitreally at an amount of about 1.0×1010 to 1×1011 vg per eye. In some embodiments, recombinant AAV vector is administered intravitreally at an amount of about 9×1011 vg per eye. The titer of recombinant vector may be measured by PCR from primers that hybridize within the recombinant vector. Examples of primers include but are not limited to: CTCCATCACTAGGGGTTCCTTG AAV22mers.F (SEQ ID NO: 19) GTAGATAAGTAGCATGGC AAV18mers.R (SEQ ID NO: 20) TAGTTAATGATTAACCC AAV_MGB.P (SEQ ID NO: 21)


In some embodiments, the recombinant vector of the disclosure, e.g. an AAV, serotype 2, (rAAV) encoding the gene of the human NADH dehydrogenase 4 (ND4), comprises:

    • a 3′UTR Cox/0 sequence comprising SEQ ID NO:1,
    • a nucleic acid sequence encoding an ND4 polypeptide comprising SEQ ID NO: 13, and
    • a nucleic acid sequence encoding an MTS Cox/0 polypeptide comprising SEQ ID NO: 11,


is administered at an effective dose into a patient in need thereof. In some embodiments, the patient suffers from LHON.


In some embodiments, the recombinant vector of the disclosure, e.g. an AAV, serotype 2, (rAAV) encoding the gene of the human NADH dehydrogenase 4 (ND4), comprises:

    • a 3′UTR Cox/0 sequence comprising SEQ ID NO:1,
    • a nucleic acid sequence encoding an ND4 polypeptide comprising SEQ ID NO: 13, and
    • a nucleic acid sequence encoding an MTS Cox/0 polypeptide comprising SEQ ID NO: 12,


is administered at an effective dose into a patient in need thereof. In some embodiments, the patient suffers from LHON.


In some embodiments, the recombinant vector of the disclosure, e.g. an AAV, serotype 2, (rAAV) encoding the gene of the human NADH dehydrogenase 4 (ND4), comprises:

    • a 3′UTR Cox/0 sequence comprising SEQ ID NO: 14,
    • a nucleic acid sequence encoding an ND4 polypeptide comprising SEQ ID NO: 13, and
    • a nucleic acid sequence encoding an MTS Cox/0 polypeptide comprising SEQ ID NO: 11,


is administered at an effective dose into a patient in need thereof. In some embodiments, the patient suffers from LHON.


In some embodiments, the recombinant vector of the disclosure, e.g. an AAV, serotype 2, (rAAV) encoding the gene of the human NADH dehydrogenase 4 (ND4), comprises:

    • a 3′UTR Cox/0 sequence comprising SEQ ID NO: 14,
    • a nucleic acid sequence encoding an ND4 polypeptide comprising SEQ ID NO: 13, and
    • a nucleic acid sequence encoding an MTS Cox/0 polypeptide comprising SEQ ID NO: 12,


is administered at an effective dose into a patient in need thereof. In some embodiments, the patient suffers from LHON.


Onset of LHON may be determined by the presence of symptoms. In some embodiments, the recombinant vectors are administered to patients with disease onset of less than 9 months, e.g., 6 to 9 months, 3 to 6 months, or 1 to 3 months. In some embodiments, the recombinant vectors are administered to patients with disease onset of more than 9 months, e.g., for 12 months, for 2 years, or for 3 years. In some embodiments, the patient shows one or more symptoms of LHON, e.g., loss in visual acuity.


A scale to measure visual acuity in a patient may be expressed as the (decadic) logarithm of the minimum angle of resolution (MAR) (Bailey I L, Lovie J E. I, Am. J. Optom. Physiol. Opt., 53 (11): 740-745 (1976)). The LogMAR scale converts the geometric sequence of a traditional chart to a linear scale. It measures visual acuity loss: positive values indicate vision loss, while negative values denote normal or better visual acuity. In some embodiments, visual acuity of a patient suffering from LHON is measured by the LogMar Scale. In some embodiments, visual acuity of a patient suffering from LHON is measured by the Snellen Scale.


Another commonly used measure of visual acuity is the Early Treatment Diabetic Retinopathy Study (ETDRS) visual acuity charts, which is capable of quantifying visual acuity to very low vision levels (Ferris et al., Am. J. Opthalmol., 94:91-96 (1982)). In some embodiments, visual acuity of a patient suffering from LHON is measured by the ETDRS charts.


Contrast is determined by the difference in the color and brightness of an object and other objects within the same field of view. Patients suffering from LHON may have reduced sensitivity for contrast. Another scale that measures visual acuity may be the Pelli-Robson contrast sensitivity chart (Pelli et al., Clin. Vision Sci., 2(3):187-199 (1988). In some embodiments, visual acuity of a patient suffering from LHON is measured by a Pelli Robson chart.


In some embodiments, treatment is administered in patients with visual acuity at before treatment e.g., at baseline, of <2.0 LogMAR, e.g., <1.8, <1.6, <1.4, <1.2, <1.0, or <0.8 LogMAR. In some embodiments, treatment is administered in patients with visual acuity at before treatment e.g., at baseline, of at least 3 letters, e.g., at least 4, 5, 6, 7, 8, 9, 10, 11, or 12 letters.


Efficacy or response to treatment may be measured by reversal or amelioration of disease symptoms. In some embodiments, a baseline visual acuity is measured before administration of treatment. In some embodiments, efficacy or response to treatment is measured by an increase in visual acuity. In some embodiments, efficacy or response to treatment is measured by an increase in visual acuity after treatment compared to the baseline before treatment. In some embodiments, efficacy or response to the treatment is measured by the difference between ETDRS scores before and after treatment. In some embodiments, efficacy or response to the treatment is measured by a difference of at least +5.0 ETDRS score, e.g., at least +6.0, +7.0, +8.0, +9.0, +10.0, +11.0, +12.0, +13.0, +14.0, +15.0, or +16.0 after treatment compared to baseline. In some embodiments, efficacy or response to the treatment is measured by a difference of at least 0.05 LogMAR, e.g., at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0 after treatment compared to baseline.


As disclosed herein, and without being bound by theory, patients who respond to treatment with a recombinant vector of the disclosure (e.g. patients for which an increase in visual acuity was observed) may include those patients with a disease duration (e.g., vision loss) at baseline of less than 9 months, for example, of 6 to 9 months, and/or with visual acuity at baseline of <1.6 LogMAR. In some embodiments, a criterion (e.g., a disease duration as measured by vision loss at baseline of less than 9 months, or of 6 to 9 months, and/or visual acuity at baseline of <1.6 LogMAR) may be used to identify a patient sub-population that is expected to respond better to treatment with recombinant vector of the disclosure (e.g., a patient population for which an increase in visual acuity may be expected).


The present disclosure further describes the use of recombinant vector encoding a human NADH dehydrogenase 4 (ND4) polypeptide and comprising (i) a nucleic acid sequence encoding a MTS Cox10 sequence comprising SEQ ID NO: 11, (ii) a nucleic acid sequence encoding a NADH dehydrogenase 4 (ND4) polypeptide comprising SEQ ID No: 13, and (iii) a 3′UTR Cox10 sequence comprising SEQ ID NO: 14 (or its reverse complement SEQ ID NO: 1), in the treatment of Leber Hereditary Optic Neuroretinopathy (LHON) for a group of patients with (i) disease duration at baseline of less than 9 months (e.g. 6 to 9 months) and/or (ii) visual acuity at baseline of less than 1.6 LogMAR.


The present disclosure also describes a method of treating patients suffering from LHON, with (i) disease duration at baseline of less than 9 months (e.g. 6 to 9 months) and/or (ii) visual acuity at baseline of less than 1.6 LogMAR, comprising administering an effective amount of a recombinant vector encoding a human NADH dehydrogenase 4 (ND4) polypeptide and comprising (i) a nucleic acid sequence encoding a MTS Cox10 sequence comprising SEQ ID NO: 11, (ii) a nucleic acid sequence encoding NADH dehydrogenase 4 (ND4) polypeptide comprising SEQ ID No: 13, and (iii) a 3′UTR Cox10 sequence comprising SEQ ID NO: 14 (or its reverse complement SEQ ID NO: 1).


The present disclosure is further illustrated by the following examples that should not be construed as limiting. The contents of all references, patents, and published patent applications cited throughout this application, as well as the Figures, are incorporated herein by reference in their entirety for all purposes.


Example 1

The safety and efficacy of a vector, as disclosed herein, comprising a recombinant adeno-associated virus (AAV) vector, serotype 2, containing the human mitochondrial ND4 gene (rAAV2/2-ND4) (“Vector A”) in patients having Leber Hereditary Optic Neuroretinopathy was investigated.


Patients participating in the study suffered vision loss for a duration of greater than six months up to one year. Enrolled subjects had a confirmed G11778A mutation in the ND4 gene. Enrolled subjects also had baseline vision greater than or equal to Count Fingers.


Each patient had one eye randomly selected to receive a single injection of Vector A, while the other eye received a sham injection. In a first patient group, the right eye (OD) was treated with Vector A, while the left eye (OS) was sham-treated. In a second patient group, the right eye (OD) was sham-treated, while the left eye (OS) was treated with Vector A.


Treatment with Vector A was by means of intravitreal injection containing 9×1010 viral genomes in 90 μL balanced salt solution plus 0.001% Pluronic F68®. Sham-treatment comprised intravitreal injection that was performed by applying pressure to the eye at the location of a typical intravitreal injection procedure, using the blunt end of a syringe without a needle.


Comparisons were made between vector A-treated eyes versus sham-treated eyes in changes from baseline (pre-study) point and week 48 of LogMAR acuity derived from the number of letters patients read on the ETDRS chart at week 48 post-treatment. In a separate mode of comparison, the better-seeing eye of each patient was determined at visit 1, prior to randomization, based on vision testing results. Better-seeing eyes that received Vector A were compared to better-seeing eyes that received the sham injection. A similar analysis was performed for the worse-seeing eyes. As would be understood by a person having ordinary skill in the art, ETDRS (Early Treatment Diabetic Retinopathy Study) is a measurement of visual acuity that is capable of quantifying visual acuity to very low vision levels.


As would be understood by a person having ordinary skill in the art, MAR refers to minimum angle of resolution (in minutes of arc) of the stroke width of the smallest letter recognized. The logarithm of MAR (LogMAR) and, by way of a non-limiting example, LogMAR charts, are used to determine visual acuity. (Johnston, A., Association of Contact Lens Manufacturers Year Book 2011-2016, pp. 38-39 (2016)).


Patient demographics at baseline are presented in Table 6.












TABLE 6







Statistic
Study









N subjects
37



Demographics



N males (%)
29 (78.4) 



Mean age - years (SD)
34.2 (15.2)   



Median age - years (range)
 30 (15, 67)



Vision loss duration (VLD)



Eyes with available data
74



Mean VLD - days (SD)
270.9 (59.4)    



Median VLD - days (range)

262 (181, 364)




Simultaneous bilateral onset



N subjects (%)
7 (19%)







SD: standard deviation,



VLD: vision loss duration






Data pertaining to patient visual acuity at baseline are presented in Table 7.












TABLE 7





Statistic
Study
Treated eyes
Sham eyes







N subjects
37




N eyes with available data
74


All eyes


Mean LogMAR (SD)
1.6
1.66
1.55



(0.4)
(0.5)
(0.42)


Median LogMAR (range)
1.6
1.6
1.5



(0.7, 3.2)
(0.8, 3.17)
(0.7, 2.81)


Best-seeing eyes


Mean LogMAR (SD)
1.5
1.44
1.50



(0.4)
(0.33)
(0.38)


Median LogMAR (range)
1.5
1.45
1.50



(0.7, 2.2)
(0.8, 2.09)
(0.7, 2.22)


Worst-seeing eyes


Mean LogMAR (SD)
1.7
1.84
1.61



(0.5)
(0.55)
(0.48)


Median LogMAR (range)
1.6
1.6
1.55



(0.8, 3.2)
(0.8, 3.17)
(0.9, 2.81)









At 48 weeks, a favorable safety profile of Vector A was reported. 75% of adverse events (AEs) were ocular. 50% of ocular AEs were related to Vector A, and 48% of ocular AEs were related to the procedure. The most common ocular AEs comprised anterior chamber inflammation (15%), vitritis (9%), punctate keratitis (9%), and IOP elevation (8%).


At 48 weeks, tRNFL (temporal retinal nerve fiber layer)/PM (papillomacular) bundle thickness was significantly preserved in treated eyes and decreased in untreated eyes. Data pertaining to the change of RNFL temporal quadrant from baseline to week 48 are provided in Table 8.









TABLE 8







Secondary Efficacy Analysis


Change of RNFL Temporal Quadrant from Baseline to Week 48











RNFL Quadrant Temporal

LS Mean
95%



(μm)
n
(SE) [a]
CI [a]
p-value





Change from Baseline to
37
−0.6
−2.6, 1.4 



Week 48 All-Treated Eyes

(1.0)


Change from Baseline to
35
−3.4
−5.4, −1.3


Week 48 All-Sham Eyes

(1.0)


Difference between All-
35
2.8

0.0359 [a]


Treated Eyes and All-

(0.2,


Sham Eyes Treatment

5.4)


Effect (95% CI)


Wilcoxon Signed-Rank



0.0416 


Test






[a] A mixed model of analysis of covariance (ANCOVA) was used with change from baseline at week 48 as the response, and subject, eyes of the subject as random factor, treatment and the baseline GCL Thickness/Volume value as covariates in the model. LS mean refers to least-squares mean.







At 48 weeks, GCL (Ganglion cell layer) volume was significantly preserved in treated eyes and decreased in untreated eyes. At least these results suggested that the biological targets of Vector A were successfully engaged. Data pertaining to the change of GCL volume and topographical map from baseline to week 48 are presented in Table 9.









TABLE 9







Secondary Efficacy Analysis


Change of GCL Volume and Topographical


Map from Baseline to Week 48











GCL Macular Volume

LS Mean
95%



(mm3)
n
(SE) [a]
CI [a]
p-value





Change from Baseline to
36
−0.003
−0.028, 0.022 



Week 48 All-Treated Eyes

(0.012)


Change from Baseline to
36
−0.038
−0.062, −0.013


Week 48 All-Sham Eyes

(0.012)


Difference between All-
36
0.035

0.0189 [a]


Treated Eyes and All-

(0.006,


Sham Eyes Treatment

0.063)


Effect (95% CI)


Wilcoxon Signed-Rank



0.0448 


Test






[a] A mixed model of analysis of covariance (ANCOVA) was used with change from baseline at week 48 as the response, and subject, eyes of the subject as random factor, treatment and the baseline GCL Thickness/Volume value as covariates in the model.







At 48 weeks, visual acuity improvement was observed in both eyes (−0.21 LogMAR on average). Data pertaining to the change of LogMAR from baseline to week 48 are presented in Table 10. No statistically significant difference between treated and untreated eyes was observed.









TABLE 10







Primary Efficacy Analysis


Change of LogMAR from Baseline to Week 48













LS Mean
95%



Visual acuity (LogMAR)
n
(SE) [a]
CI [a]
p-value





Change from Baseline to
37
−0.218
−0.328, −0.108



Week 48 All-Treated Eyes

(0.055)


Change from Baseline to
37
−0.211
−0.320, −0.101


Week 48 All-Sham Eyes

(0.055)


Difference between All-
37
−0.007

0.8942 [a]


Treated Eyes and All-

(−0.118,


Sham Eyes Treatment

0.103)


Effect (95% CI)


Wilcoxon Signed-Rank



0.3875 


Test






[a] A mixed model of analysis of covariance (ANCOVA) was used with change from baseline at week 48 as the response, and subject, eyes of the subject as random factor, treatment and the baseline LogMAR value as covariates in the model.







At 48 weeks, visual field testing was performed using Humphrey® Visual Field analysis (mean deviation and foveal threshold). Data pertaining to the visual field testing are presented in Table 11 and Table 12. No difference between treated and untreated eyes was observed.











TABLE 11









Mean (SD)











VF Foveal Threshold (dB)
n
Treated eyes
n
Sham eyes














Baseline
13
19.6
14
21.9




(16.9)

(15.0)


Week 48
25
14.9
25
13.6




(11.4)

(11.6)


Change from baseline
9
0.7
11
−0.5




(8.9)

(11.9)


















TABLE 12









Mean (SD)











VF Mean Deviation (dB)
n
Treated eyes
n
Sham eyes





Baseline
37
−25.99
37
−24.94




(8.37)

(9.70)


Week 48
37
−22.83
37
−22.94




(9.43)

(9.80)


Change from baseline
37
3.15
37
2.00




(6.96)

(5.04)









At 48 weeks, contrast sensitivity was assessed using the Pelli-Robson chart (see also FIG. 5). At baseline, contrast sensitivity was worse in treated eyes (as determined by LogMAR visual acuity). At week 48, the measure of contrast sensitivity in eyes treated with Vector A almost doubled, while the measure of contrast sensitivity in sham-treated eyes remained stable. Data pertaining to contrast sensitivity assessed using the Pelli-Robson chart are provided in Table 13.











TABLE 13







Log of Contrast
Mean (SD)












Sensitivity (LogCS)
n
Treated eyes
n
Sham eyes





Baseline
37
0.25
37
0.35




(0.40)

(0.46)


Week 48
37
0.45
37
0.43




(0.50)

(0.49)


Change from baseline
37
0.20
37
0.08




(0.36)

(0.28)









Color vision was tested using the Farnsworth-Munsell 100-hue color test. At baseline, extremely poor scores for color discrimination were observed. At week 48, no difference between treated and untreated eyes was observed. Data pertaining to color vision tested are presented in Table 14.












TABLE 14









Mean (SD)












Total Error Score
n
Treated eyes
n
Sham eyes





Baseline
28
649.3
28
661.9




(420.5)

(433.7)


Week 48
28
623.6
28
622.3




(400.4)

(430.3)


Change from baseline
28
−25.7
28
−39.6




(235.6)

(172.3)









Quality of life was assessed at week 48 using the Visual Functional Questionnaire-25 (VFQ-25). Data from selected sub-scales are presented in Table 15. Although the difference in scores between scores is small, treatment of the patient's worse-seeing eye appeared to lead to improved quality of life metrics. Such a trend was observed across all sections of the questionnaire.












TABLE 15









Mean scores at Week 48 (SD)














Best-seeing

Best-seeing


Selected sub-scales
n
Treated eyes
n
Sham eyes





General Vision
16
38.8
21
42.9




(13.6)

(20.3)


Near Activities
16
32.3
21
35.3




(19.7)

(19.7)


Distant Activities
16
42.4
21
47.0




(22.3)

(24.8)









Study data were further analyzed to identify patient populations that were especially responsive to treatment with Vector A (e.g., patients for which an increase in visual acuity was observed).


Data pertaining to the change in visual acuity from baseline for on-chart best-seeing eyes treated with Vector A and for on-chart best-seeing eyes that were sham-treated are presented in Table 16. “On-chart” refers to subjects who can read at least three letters on an ETDRS chart and/or having visual acuity below 1.6 LogMAR.













TABLE 16





Change from






baseline in


95%
ETDRS


visual acuity

LS Mean
Confidence
letters


(LogMAR)
n
(SE)
Interval
equivalent







Best-seeing
12
−0.236
−0.405, −0.067
+12


treated eyes

(0.082)


Best-seeing
17
−0.075
−0.216, 0.067 
 +4*


Sham eyes

(0.069)


p-value a

0.1466






a Significance of the difference between All-treated and All-Sham with respect to change of LogMAR from baseline.



*Does not statistically differ from 0.






The difference in the change in ETDRS score relative to baseline was measured. As shown in Table 17, this difference was greater for the set of on-chart best-seeing eyes relative to the set of all on-chart eyes (+6.1 versus+4.5).














TABLE 17







Change from


Difference



baseline in
Treated
Sham
Treated -



ETDRS score
eyes
eyes
Untreated










(n = 24)
(n = 28)




All eyes
+8.8
+4.3
+4.5




(n = 13)
(n = 17)



Best-seeing eyes
+9.8
+3.7
+6.1










Among the set of on-chart eyes treated with Vector A and for which an increase in visual acuity was measured at week 48, 75% ( 12/16) had a disease duration at baseline of 6 to 9 months, while 25% ( 4/16) had a disease duration at baseline of 9 to 12 months (Cf. Table 18). Among the set of on-chart sham-treated eyes for which an increase in visual acuity was measured at week 48, 50% ( 8/16) had a disease duration at baseline of 6 to 9 months, while 50% ( 8/16) had a disease duration at baseline of 9 to 12 months.












TABLE 18









Disease duration at baseline












6 to 9 months
9 to 12 months
Total
















Treated eyes
12
4
16




(75%)
(25%)




 8
8



Sham eyes
(50%)
(50%)
16



Total
20
12 
32










In a further analysis, “responder” referred to improvement in visual acuity in on-chart patients of at least 0.25 LogMAR (+12.5 ETDRS equivalent). As shown in Table 19, 24.0% of all on-chart eyes treated with Vector A and 14.3% of all on-chart sham-treated eyes were characterized as “Responder Eyes.”












TABLE 19







All On-chart
All On-chart



Treated eyes
Sham eyes




















Responder eye
6
4




(24.0%)
(14.3%)



Non-Responder eye
19 
24 











McNemar p-value
0.5637










In a further analysis, “responder” referred to improvement in visual acuity in best-seeing eyes of on-chart patients of at least 0.25 LogMAR (+12.5 ETDRS equivalent). As shown in Table 20, 25.0% of on-chart best-seeing eyes treated with Vector A and 5.6% of best-seeing on-chart sham-treated eyes were characterized as “Responder Eyes.”












TABLE 20









On-chart eyes











Best-seeing
Best-seeing



Treated eyes
Sham eyes















Responder eye
3
1




(25.0%)
(5.6%)



Non-Responder eye
9
16 











McNemar p-value
0.2785










Study data were further analyzed using a generalized estimating equation (GEE) model to assess the effect of treatment with Vector A on achievement of a 20/200 visual acuity endpoint. Results showed that eyes treated with Vector A were significantly more likely to achieve the 20/200 visual acuity endpoint than were sham-treated eyes (p=0.0005). The odds ratio was 18.45 (lower 95% boundary=3.60).


Data pertaining to the number of eyes legally blind at baseline and, of those eyes blind at baseline, the number of eyes rescued from legal blindness are presented in Table 21. In this context, a legally-blind eye is defined as having visual acuity worse than 20/200.












TABLE 21







Treated eyes
Sham eyes




















Number of eyes legally blind at
24 
25 



baseline



Of those eyes blind at baseline,
2
1



number of eyes rescued from legal
(8.3%)
(4.0%)



blindness










Analysis of the study data indicated that the set of patients who responded better to treatment with Vector A (e.g. patients for which an increase in visual acuity was observed) included those patients having a disease duration (e.g., vision loss) at baseline of less than 9 months, for example, of 6 to 9 months, and/or with visual acuity at baseline of <1.6 LogMAR. Thus, in some embodiments, these criteria (a disease duration (e.g., vision loss) at baseline of less than 9 months, for example, of 6 to 9 months and/or visual acuity at baseline of <1.6 LogMAR) may be used to identify a patient sub-population expected to better respond to treatment with Vector A (e.g., a patient population for which an increase in visual acuity may be expected).


Example 2

The trial evaluated the safety and efficacy of a single intravitreal injection of Vector A (rAAV2/2-ND4) in 37 subjects whose visual loss due to 11778-ND4 Leber Hereditary Optic Neuropathy (LHON) commenced between 6 and 12 months prior to study treatment. Week 96 is the last of the scheduled readouts for the trial and marks the time when the data are unmasked, providing access to individual patient profiles.


At Week 96, Vector A-treated eyes showed a mean improvement of −0.308 LogMAR compared to baseline, equivalent to +15.4 ETDRS letters or 3 lines on the ETDRS vision chart (FIG. 6). This clinically meaningful level of improvement in visual acuity maintains the gain observed at Week 72 (+14.7 ETDRS letters equivalent). As in readouts at Week 48 and Week 72, best-corrected visual acuity (BCVA) in sham-treated eyes evolved on a relatively parallel trajectory, achieving a mean improvement of −0.259 LogMAR over baseline, or a gain of +12.9 ETDRS letters equivalent, at Week 96. Although lower in magnitude, the mean BCVA improvement of sham-treated eyes was not statistically significant from that of Vector A-treated eyes.


Consistent with natural history, subjects experienced an initial point of low visual acuity, or nadir. The nadir is defined as the lowest post-treatment BCVA as measured by LogMAR up to the week of measurement. Eyes of trial subjects recovered significantly. By week 96, Vector A-treated eyes had gained+28 more letters relative to their nadir.









TABLE 22







Recovery of BCVA from nadir as measured by difference from nadir


in ETDRS letters equivalent, mean and standard deviation












n
Week 48
Week 72
Week 96

















Vector A-
37
+24.1
+27.4
+28.1



treated eyes

(21.1)
(21.8)
(22.0)



Sham-treated
37
+20.3
+22.6
+23.2



eyes

(23.4)
(25.5)
(24.5)










At Week 96, low-contrast visual acuity, as measured on the Pelli-Robson chart showed a similar trend of improvement for both Vector A-treated eyes and sham-treated eyes. The trajectories of sham- and Vector A-treated eyes did not track each other as closely as BCVA. Mean contrast sensitivity showed a more robust improvement versus baseline over the course of the trial (FIG. 7).


The proportion of Vector A-treated eyes that achieved at least a −0.2 LogMAR or +10 ETDRS letters equivalent improvement versus baseline at Week 96 is statistically significantly higher than the corresponding proportion of sham-treated eyes (65% vs. 46%, p-value=0.0348). Vector A-treated eyes were also significantly more likely than sham-treated eyes to achieve another measure of treatment success improving by at least 15 ETDRS letters at Week 96 from on-chart acuity at baseline, or avoiding the US legal blindness threshold of 20/200 at Week 96 (32% vs. 16%, p=0.0196).


Based on a generalized estimating equations (GEE) model, Vector A-treated eyes were 2.8 times more likely to be at or above 20/200 than sham-treated eyes (p=0.0094). When only eyes that were strictly above the threshold were considered, the odds ratio rose to 3.6 (p=0.0032).


Additionally, 68% of trial subjects achieved a spontaneous “clinically relevant recovery (CRR)” in at least one eye at Week 96, defined by an improvement of (a) at least 10 ETDRS letters from on-chart visual acuity, or (b) an improvement from off-chart visual acuity to being able to read at least 5 ETDRS letters. Vector A-treated eyes were significantly more likely to achieve this than sham-treated eyes (62% vs. 43%, p=0.0348). In comparison, in a previous natural history study, only 15% of patients with the same 11778A mutation achieved CRR.


In terms of quality of life, improvement in visual function were reflected in scores on the National Eye Institute Visual Function Questionnaire-25 (NEI VFQ-25) survey, a validated, vision-specific quality-of-life instrument completed by trial subjects. As shown in Table 23, mean composite score and means of relevant sub-scale scores continued to improve over baseline, particularly for the ability to carry out near and distance activities. The increase over baseline of the mean sub-scale scores exceeded those that have been associated with a 15-letter improvement in BCVA in other ocular diseases.









TABLE 23







Meaningful Improvements in Quality of Life Scores Reported by Patients


(NEI VFQ-25) - Mean change from baseline (absolute score and percentage)















Composite
Near
Distance

Role
General
Mental



Score**
Activities
Activities
Dependency
Difficulties
Vision
Health

















Week 48
+7.2
+10.4
+9.6
+12.4
+14.5
+10.3
+11.2



+23.2%
+65.1%
+49.8%
+100.6%
+ 65.0%
+50.9%
+81.9%


Week 72
+8.1
+9.5
+8.2
+18.9
+15.2
+11.9
+15.2



+25.2%
+58.1%
+42.5%
+130.2%
+70.9%
+54.1%
+105.6%


Week 96
+9.5
+13.3
+10.7
+18.5
+15.9
+6.5
+16.1



+28.8%
+78.1%
+47.4%
+130.2%
+78.9%
+32.4%
+108.2%


Clinically
+3.90 to
+4.67 to
+5.15 to
+4.72 to
+3.31 to
+4.38 to
+4.70 to


Relevant
+4.34
+6.06
+5.38
+4.98
+4.70
+4.82
+4.88


Difference





**The composite score is an average of the vision-targeted sub-scale scores, excluding the general health rating question.






Structural metrics indicate that GS010-treated eyes maintained the stability achieved in previous readouts in ganglion cell volume. The differential effect of therapy was, however, more prominent in previous readouts.

Claims
  • 1. A recombinant AAV2 vector comprising: a 3′UTR Cox10 sequence comprising SEQ ID No: 1,a nucleic acid sequence encoding an NADH dehydrogenase 4 (ND4) polypeptide comprising SEQ ID No: 13, anda nucleic acid sequence encoding an MTS Cox10 polypeptide comprising SEQ ID No: 11 or SEQ ID No: 12.
  • 2. (canceled)
  • 3. A recombinant AAV2 vector comprising: a 3′UTR Cox10 sequence comprising SEQ ID No: 14,a nucleic acid sequence encoding an NADH dehydrogenase 4 (ND4) polypeptide comprising SEQ ID No: 13, anda nucleic acid sequence encoding an MTS Cox10 polypeptide comprising SEQ ID No: 11 or SEQ ID No: 12.
  • 4. (canceled)
  • 5. A recombinant AAV2 vector comprising: a 3′UTR Cox10 sequence comprising SEQ ID No: 1,a nucleic acid sequence encoding ND4 comprising SEQ ID No: 2 or SEQ ID No: 17, andan MTS Cox10 sequence comprising SEQ ID No: 3.
  • 6. (canceled)
  • 7. (canceled)
  • 8. (canceled)
  • 9. A recombinant AAV2 vector comprising: a 3′UTR Cox10 sequence comprising SEQ ID No: 14,a nucleic acid sequence encoding ND4 comprising SEQ ID No: 15 or SEQ ID No: 18, andan MTS Cox10 sequence comprising SEQ ID No: 16.
  • 10. (canceled)
  • 11. (canceled)
  • 12. (canceled)
  • 13. The recombinant AAV2 vector of claim 1, further comprising: an HBB2 intron sequence comprising SEQ ID No: 4,a CMV promoter sequence comprising SEQ ID No: 5,a first ITR sequence comprising SEQ ID No: 6, anda second ITR sequence comprising SEQ ID No: 7.
  • 14. (canceled)
  • 15. The recombinant AAV2 vector of claim 3, further comprising: an HBB2 intron sequence comprising SEQ ID No: 24,a CMV promoter sequence comprising SEQ ID No: 25,a first ITR sequence comprising SEQ ID No: 26, anda second ITR sequence comprising SEQ ID No: 27.
  • 16. (canceled)
  • 17. A recombinant AAV2 vector of claim 5, further comprising: an HBB2 intron sequence consisting of SEQ ID No: 4,a CMV promoter sequence consisting of SEQ ID No: 5,a first ITR sequence consisting of SEQ ID No: 6, anda second ITR sequence consisting of SEQ ID No: 7.
  • 18. A recombinant AAV2 vector of claim 9 further comprising: an HBB2 intron sequence consisting of SEQ ID No: 24,a CMV promoter sequence consisting of SEQ ID No: 25,a first ITR sequence consisting of SEQ ID No: 26, anda second ITR sequence consisting of SEQ ID No: 27.
  • 19. A method of treating Leber Hereditary Optic Neuroretinopathy in a patient in need thereof, comprising administering to the patient an effective amount of the recombinant AAV2 vector according to claim 1.
  • 20. A method of treating Leber Hereditary Optic Neuroretinopathy in a patient in need thereof, comprising administering to the patient an effective amount of the recombinant vector according to claim 1, wherein the patient has experienced a disease duration of less than nine months.
  • 21. A method of treating Leber Hereditary Optic Neuroretinopathy in a patient in need thereof, comprising administering to the patient an effective amount of the recombinant AAV2 vector according to claim 1, wherein the patient has experienced a disease duration of six to nine months.
  • 22. A method of treating Leber Hereditary Optic Neuroretinopathy in a patient in need thereof, comprising administering to the patient an effective amount of the recombinant AAV2 vector according to claim 1, wherein the patient has a baseline visual acuity of <about 1.6 LogMAR.
  • 23. A method of treating Leber Hereditary Optic Neuroretinopathy in a patient in need thereof, comprising administering to the patient an effective amount of the recombinant AAV2 vector according to claim 1, wherein the patient has experienced a disease duration of less than nine months and the patient has a baseline visual acuity of <about 1.6 LogMAR.
  • 24. A method of treating Leber Hereditary Optic Neuroretinopathy in a patient in need thereof, comprising administering to the patient an effective amount of the recombinant AAV2 vector according to claim 1, wherein the patient has experienced a disease duration of six to nine months and the patient has a baseline visual acuity of <about 1.6 LogMAR.
  • 25. The method according to claim 19, wherein the Leber Hereditary Optic Neuroretinopathy is ND4-related Leber Hereditary Optic Neuroretinopathy.
  • 26. The method according to claim 19, wherein the recombinant AAV2 vector is administered intravitreally.
  • 27. The method according to claim 19, wherein the recombinant AAV2 vector is administered intravitreally in an amount of about 109 to 1011 viral genomes per eye.
  • 28. The method according to claim 19, wherein the recombinant AAV2 vector is administered intravitreally in an amount of about 1010 to 1011 viral genomes per eye.
  • 29. The method according to claim 19, wherein the recombinant AAV2 vector is administered intravitreally in an amount of about 5.0×1010 to 1.0×1011 viral genomes per eye.
  • 30. The method according to claim 19, wherein the recombinant AAV2 vector is administered intravitreally in an amount of about 9.0×1010 viral genomes per eye.
Parent Case Info

This application claims priority to U.S. Application No. 62/683,501 filed Jun. 11, 2018, which is incorporated herein by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/036487 6/11/2019 WO 00
Provisional Applications (1)
Number Date Country
62683501 Jun 2018 US