The present invention belongs to the fields of molecular biology and immunology. In particular, the present invention relates to a recombinant viral vector comprising a polynucleotide encoding a fusion peptide of CD4 helper T cell epitopes, an immunogenic composition comprising the same, and use thereof.
T helper cells (Th cells) are the T cells that play an important role in the immune system, particularly in the adaptive immune system. They promote the activities of other immune cells by releasing T cell cytokines. These cells help to inhibit or modulate immune responses. They are essential in the conversion of B cell antibody classes, the activation and growth of cytotoxic T cells, and the maximization of bactericidal activity of phagocytic cells, such as macrophages.
Mature Th cells expressing the protein CD4 are known as CD4+ T cells. As helper T cells, such CD4+ T cells are typically subjected to a pre-defined process within the immune system. For example, when antigen presenting cells express an antigen on MHC class II, CD4+ cells would assist these cells by a combination of cell-to-cell interactions (e.g., CD40 (protein) and CD40L) and cytokines.
The importance of helper T cells can be seen with respect to HIV, a virus that primarily infects CD4+ T cells. In the late stage of HIV infection, loss of functional CD4+ T cells leads to a stage of infectious symptoms known as acquired immune deficiency syndrome (AIDS). When HIV virus is found early in blood or other body fluids, a continuous treatment may delay its occurrence. If AIDS occurs, the treatment can also better manage the course of AIDS. Other rare diseases, such as lymphopenia, result in loss or dysfunction of CD4+ T cells. These diseases produce similar symptoms, many of which are fatal.
Antigenic epitope, “epitope” for short, also known as “antigenic determinant”, refers to chemical groups on the surface of an antigen that determines the antigen specificity. An antigenic epitope can be recognized by the immune system, especially by antibodies, B cells or T cells. A site of an antibody capable of recognizing an antigenic epitope is referred to as a “paratope” or an “antibody determinant”. Although an antigenic epitope usually refers to a part of foreign protein or the like, an epitope that can be recognized by the autoimmune system is also classified as an antigenic epitope.
The epitopes of protein antigen are divided into conformational epitopes and linear epitopes according to their structures and interactions with a paratope. Since a conformational epitope consists of discrete portions in the amino acid sequence of an antigen, the interaction of a paratope with the antigenic epitope is based on the three-dimensional characteristics and shape of the surface or tertiary structure of the antigen. Most antigenic epitopes belong to conformational epitopes. In contrast, a linear epitope consists of a continuous amino acid sequence of an antigen, and the interaction with the antigen is based on its primary structure.
A T cell epitope consists mainly of a short peptide of 8-17 amino acids and exists on antigen-presenting cells (APC), which as an antigen epitope would bind to major histocompatibility complex (MHC) to form a complex and bind to the corresponding T cell epitope receptors, thereby activating T cells and generating a corresponding cellular immune response (Shimonikevitz et al., 1984; Babbitt et al., 1985; Buus et al., 1986; Townsend and Bodmer, 1989). There are two major classes of MHC molecules which bind to an epitope. Among them, major histocompatibility complex class I usually presents a T cell antigenic epitope consisting of a polypeptide of 8 to 11 amino acids in length, while major histocompatibility complex class II presents a relatively longer T cell antigenic epitope consisting of 13-17 amino acids.
Among T cell epitopes, helper T cell epitopes (Th epitopes) refer to a class of T cell epitopes which bind to MHC molecules and form complexes that can be recognized by CD4 helper T cell receptors. Th epitopes bind primarily to the molecules present on the surfaces of antigen-presenting cells (APC) encoded by major histocompatibility complex (MHC) class II genes. The complexes of class II molecule and peptide epitope are then recognized by the specific T cell receptors (TCR) on the surfaces of T helper lymphocytes. In this way, the T cells presenting an antigenic epitope in the context of MHC molecules can be activated and provide the essential signal for B lymphocyte differentiation. Traditionally, the source of T-helper epitope of peptide immunogen has been a carrier protein covalently coupled to a peptide, but the coupling process may involve other issues, such as modification of antigenic determinants during the coupling process and induction of an antibody against the carrier at the expense of an antibody against the peptide (Schutze, M. P., Leclerc, C. Jolivet, M. Audibert, F.
Chedid, L. Carrier-induced epitopic suppression, a major issue for future synthetic vaccines. J Immunol. 1985, 135, 2319-2322; DiJohn, D., Torrese, J. R. Murillo, J. Herrington, D. A. et al. Effect of priming with carrier on response to conjugate vaccine. The Lancet. 1989, 2, 1415-1416). In addition, the use of an irrelevant protein in the preparation may involve quality control problems. The choice of a suitable carrier protein, which is important in the design of peptide vaccine, is limited by the factors, such as toxicity and feasibility in a large-scale production. There are other limitations to this method, including the load size of peptide that can be coupled and the dose of carrier that can be safely administered (Audibert, F. a. C., L. 1984. Modern approaches to vaccines. Molecular and chemical basis of virus virulence and immunogenicity., Cold Spring Harbor Laboratory, New York.). Although carrier molecules allow to induce a strong immune response, they are also associated with the adverse effects, such as inhibition of anti-peptide antibody response (Herzenberg, L. A. and Tokuhisa, T. 1980. Carrier-priming leads to hapten-specific suppression. Nature 285: 664; Schutze, M. P., Leclerc, C., Jolivet, M., Audibert, F., and Chedid, L. 1985. Carrier-induced epitopic suppression, a major issue for future synthetic vaccines. J Immunol 135: 2319; Etlinger, H. M., Felix, A. M., Gillessen, D., Heimer, E. P., Just, M., Pink, J. R., Sinigaglia, F., Sturchler, D., Takacs, B., Trzeciak, A., and et al., 1988. Assessment in humans of a synthetic peptide-based vaccine against the sporozoite stage of the human malaria parasite, Plasmodium falciparum. J Immunol 140: 626).
In general, an immunogen must contain a helper T cell epitope in addition to an epitope to be recognized by a surface Ig or the receptors present on the cytotoxic T cells. It will be appreciated that these types of epitopes may be very different. For B-cell epitopes, the conformation is important because B-cell receptors bind directly to native immunogens. In contrast, an epitope to be recognized by T cells is independent of the conformational integrity of the epitope, and consists of a short sequence of about 9 amino acids against CTL and a slightly longer sequence (having less length restriction) against helper T cells. The only requirement for these epitopes is that they can be accommodated in the binding clefts of class I or class II molecules, respectively, and the complexes can then bind to T cell receptors. The binding sites of class II molecules are open at both ends, allowing a greater variation in the length of a peptide (Brown, J. H., T. S. Jardetzky, J. C. Gorga, L. J. Stern, R. G. Urban, J. L. Strominger and D. C. Wiley. 1993. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364: 33) that binds to a reported epitope of as short as 8 amino acid residues (Fahrer, A. M., Geysen, H. M., White, D. O., Jackson, D. C. and Brown, L. E. Analysis of the requirements for class II-restricted T-cell recognition of a single determinant reveals considerable diversity in the T-cell response and degeneracy of peptide binding to HEd J. Immunol. 1995. 155: 2849-2857).
A Th epitope can stimulate and activate helper T cells, and accordingly promote activation of CD8 T cells and B cells, ultimately increasing the immune response. In essence, a Th epitope, in addition to being able to activate an immune response against itself, is also effective in aiding the immune response to other antigens or epitopes associated therewith. Thus, a heterologous strong Th epitope can be fused to a target immunogen, thereby increasing the immunogenicity of the target immunogen. An artificial strong Th epitope called PADRE (pan HLA DR-binding Epitope) has been used in the fusion construction of multiple vaccines to increase the levels of immune responses to the relevant immunogens (del Guercio et al., Vaccine, 1997, 15: 441.; Franke, E. D. et al., Vaccine, 1999, 17:1201; Jeff Alexander et al., J Immunol, 2000, 164(3) 1625-1633; Jeff Alexander et al., Vaccine, 2004, 22: 2362.; La Rosa, Corinna et al., The Journal of infectious diseases, 2012, 205: 1294-304). In addition, as a strong Th epitope derived from tetanus toxin, P2 is also commonly used in coupling with a target immunogen to enhance the immunogenicity (Panina-Bordignon P et al., Eur J Immunol, 1989, 19: 2237-42; La Rosa, Corinna et al., The Journal of infectious diseases, 2012, 205: 1294-304).
In general, however, a Th epitope used to increase the immunogenicity is usually heterologous. In other words, a high level of immune response against the Th epitope itself will not be produced in a vaccine subject. Thus, when a vaccine subject is vaccinated with a strong Th epitope as described above, it is likely that the immune system of vaccine subject is initially exposed to such a Th epitope, the activations against both such a Th epitope and a target immunogen in the recipient immune system are substantially synchronized, and the generation time and numbers of T cells against such a Th epitope are similar to those against the target immunogen. In this way, the effect on assisting the target immunogen will be limited, accordingly. Especially for a weakly immunogenic tumor antigen, the helping effect of such a Th epitope is more difficult to exert. Indeed, the direct use of a strong Th epitope, although being capable of activating a tumor antigen, elicits a lower level of cellular immune response that do not meet the needs of a tumor vaccine (Ghaffari-Nazari H et al., PLoS ONE, 2015, 10(11): e0142563).
Thus, new Th epitope strategies are needed to enhance the immunogenicities of target immunogens, particularly some weak immunogens, such as tumor antigens.
It is an object of the present invention to provide a fusion peptide of CD4 helper T cell epitopes, by which the immunogenicity of a target immunogen is enhanced.
Further, the present invention utilizes strong Th epitopes derived from cytomegalovirus (CMV) and influenza (Flu) virus (influvirus) to obtain an epitope fusion peptide for enhancing the immunogenicity of a target immunogen.
For the purposes of the present invention, the following terms are defined below.
“Epitope fusion peptide” refers to a peptide formed by joining together several epitopes.
“Target immunogen” refers to an immunogen used for achieving a certain immune response, including a substance having an immunological activity, such as an antigen, preferably a protein.
It is another object of the present invention to provide a fusion protein of the epitope fusion peptide and a target immunogen.
To achieve the above objects, the present invention provides a fusion peptide of CD4 helper T cell epitopes, comprising a cytomegalovirus epitope and/or an influenza virus epitope. The present invention also provides a recombinant viral vector comprising a polynucleotide encoding a fusion peptide of CD4 helper T cell epitopes, the fusion peptide of CD4 helper T cell epitopes comprising a cytomegalovirus epitope and/or an influenza virus epitope.
In one embodiment of the present invention, the epitope fusion peptide comprises one or more of cytomegalovirus epitopes selected from those shown in SEQ ID NOs: 1-10, and/or one or more of influenza virus epitopes selected from those shown in SEQ ID NOs: 11-23.
In one embodiment of the present invention, the epitope fusion peptide consists of one or more of cytomegalovirus epitopes selected from those shown in SEQ ID NOs: 1-10, and/or one or more of influenza virus epitopes selected from those shown in SEQ ID NOs: 11-23. Preferably, the epitope fusion peptide consists of 5 or 10 cytomegalovirus epitopes, and/or 8 or 13 influenza virus epitopes, such as the epitope fusion peptide shown in SEQ ID NO: 34 or 44. Most preferably, the epitope fusion peptide consists of 13 influenza virus epitopes, such as the epitope fusion peptide shown in SEQ ID NO: 48 or 60.
Preferably, the epitope fusion peptide induces a humoral or cellular immune response.
Preferably, the recombinant virus vector is a vaccinia virus vector, preferably a replicative vaccinia viral vector, e.g. the vaccinia virus Tiantan strain, e.g. Strain 752-1, or a non-replicative vaccinia viral vector, e.g. the vaccinia virus attenuated vaccine Ankara strain (Modified Vaccinia Ankara, MVA).
The present invention also provides a fusion protein of the epitope fusion peptide and a target immunogen.
The present invention also provides a polynucleotide encoding the epitope fusion peptide and/or the fusion protein.
In one embodiment of the present invention, the target immunogen is any one or more immunogens. Preferably, the target immunogen is a peptide, an antigen, a hapten, a carbohydrate, a protein, a nucleic acid, an allergen, a virus or a part of a virus, a bacterium, a parasite or other whole microorganism.
In one embodiment of the present invention, the antigen is a tumor antigen or an infection-related antigen.
In one embodiment of the present invention, the tumor antigen is one or more tumor antigens selected from lung cancer antigen, testicular cancer antigen, melanoma antigen, liver cancer antigen, breast cancer antigen or prostate cancer antigen.
In one embodiment of the present invention, the tumor antigen is one or more tumor antigens selected from LAGE antigen, MAGE antigen, or NY-ESO-1 antigen. Preferably, the LAGE antigen is LAGE-1, and the MAGE antigen is MAGE-A3. Further preferably, the tumor antigen comprises LAGE-1, MAGE-A3, and NY-ESO-1. Preferably, the amino acid sequence of LAGE-1 is shown in SEQ ID NO: 24, the amino acid sequence of MAGE-A3 is shown in SEQ ID NO: 25, and the amino acid sequence of NY-ESO-1 is shown in SEQ ID NO: 26. Still further preferably, the tumor antigen comprises LAGE-1, MAGE-A3, and NY-ESO-1.
In one embodiment of the present invention, the infection-related antigen is one or more infection-related antigen selected from an HIV antigen, a Flu virus antigen or an HBV antigen.
Preferably, the fusion protein is shown in one of SEQ ID NOs: 55-58 and 62.
Preferably, the gene encoding the fusion protein is shown in SEQ ID NO:
63.
Another object of the present invention is to provide an immunogenic composition comprising a therapeutically effective amount of the epitope fusion peptide, the fusion protein, the polynucleotide and/or the recombinant viral vector according to the present invention, and a pharmaceutically acceptable carrier. Preferably, the immunogenic composition is a vaccine.
It is another object of the present invention to provide a kit comprising the epitope fusion peptide, the fusion protein, the polynucleotide, the recombinant viral vector and/or the immunogenic composition according to the present invention, and instructions for use thereof.
The present invention also provides use of the epitope fusion peptide, the fusion protein, the polynucleotide, the recombinant viral vector and/or the immunogenic composition according to the present invention in the manufacture of a medicament or a vaccine for increasing the immunogenicity of a target immunogen.
The present invention also provides a method for increasing the immunogenicity of a target immunogen using the epitope fusion peptide according to the present invention, comprising fusing a CD4 helper T cell epitope having a stronger immune response in a vaccine subject or population with a target immunogen to form a fusion protein. The method specifically comprises the following steps of:
(1) selecting one or more CD4 helper T cell epitopes, wherein a complex formed by combining the epitopes with MHC molecules can be recognized by CD4 helper T cell receptors, and a T cell immune response has been generated against at least one of the epitopes in a vaccine subject before vaccination;
(2) fusing the epitopes to prepare an epitope fusion peptide, fusing the epitope fusion peptide with a target immunogen to prepare a fusion protein, expressing the fusion protein and preparing it into a vaccine, wherein the expression vector can be in the form of a DNA vaccine vector, a protein vaccine vector, or a virus vaccine vector; and
(3) vaccinating the vaccine subject with the above vaccine, and a suitable adjuvant, such as incomplete Freund's adjuvant, complete Freund's adjuvant, or aluminum hydroxide adjuvant and the like can be selected for vaccination. Further, step (1) in the method further comprises a step of examining the MHC phenotype of the vaccine subject. Preferably, examining the MHC phenotype of the vaccine subject comprises examining the MHC class II gene subtype of the vaccine subject.
The present invention also provides a method for treating or preventing a condition in a subject in need thereof, comprising administering a therapeutically effective amount of the epitope fusion peptide, the immunogenic composition, the polynucleotide and/or the recombinant viral vector of the present invention. Preferably, the condition is one or more conditions selected from malignant tumors, and bacterial and viral infections. Preferably, the malignant tumor is breast cancer or colon cancer. Preferably, the infection is a chronic infection.
Preferably, in the method, the DNA vaccine vector is used for the prime immunization, and a protein vaccine vector is used for the boost immunization. More preferably, the pVKD1.0-CI-LMNB DNA vaccine is used for the prime immunization, and the LMNB-I13 protein is used for the boost immunization.
The epitope fusion peptide provided by the present invention can substantially improve the level of cellular immune response to a target immunogen, particularly to a weak immunogen, and is an effective means for overcoming the immune tolerance of immune system to an antigen, particularly to a tumor antigen or an infection-related antigen, and is suitable for efficiently enhancing the efficacy of vaccines.
Hereinafter, the embodiments of the present invention will be described in detail with reference to the accompanying drawings, in which:
The present invention is described in further detail below with reference to the specific embodiments. The examples are given for the purpose of illustration of the present invention only, and are not intended to limit the scope of the present invention.
The amino acid sequences of LAGE-1, MAGE-A3 and NY-ESO-1 are shown in SEQ ID NOs: 24-26, respectively. By means of an online codon optimization software (http://www.jcat.de/), the nucleotide sequences for mammalian codon usage preference as shown in SEQ ID NOs: 27-29 respectively were obtained by optimization based on the above antigen amino acid sequences. The nucleotide sequences were synthesized by Shanghai Generay Biotech Co., Ltd., and then cloned between the multiple cloning sites Sal I and BamH I on the DNA vaccine vector pVKD1.0 (provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park) by a method well known in the art to construct the DNA vaccine vector pVKD1.0-hLMN capable of expressing the fusion protein as an antigen (the plasmid map is shown in
The mammalian codon optimized sequence (SEQ ID NO: 31) of the amino acid sequence (SEQ ID NO: 30) of cholera toxin subunit B (CTB) and its eukaryotic expression vector pVKD1.0-CTB were provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park. The primers were designed by using pVKD1.0-CTB as a template (Table 2). The CTB gene fragment was amplified by PCR, and the corresponding fragment was then recovered from the gel. The CTB fragment was inserted into a corresponding position on the linearized vector pVKD1.0-hLMN by a homologous recombination method, to construct the DNA vaccine vector pVKD1.0-hLMN-CTB (the plasmid map is shown in
The strong Th epitopes derived from cytomegalovirus (CMV) and influenza (Flu) virus (see Table 4) were obtained from an immune epitope database (IEDB, http://www.iedb.org), wherein the strong Th epitopes of CMV include pp65-11, pp65-71, pp65-92, pp65-123, pp65-128, pp65-57, pp65-62, pp65-30, pp65-112 and pp65-104, and the strong Th epitopes of Flu virus include HA203, NP438, NS1-84, M1-181, HA375, NP24, NP95, NP221, HA434, HA440, NP324, M1-127 and M1-210. The selected epitopes in Table 4 cover most subtypes of MHC class II molecules in both human and mouse. The selected epitopes pp65-11, pp65-71, pp65-92, pp65-123, pp65-128, HA203, NP438, NS1-84, M1-181, HA375, NP24, NP95, and NP221 were then linked together in tandem to form an fusion peptide of CMV virus epitopes and Flu virus epitopes having the amino acid sequence shown in SEQ ID NO: 34. The epitope fusion peptide was subjected to mammal codon optimization to give the nucleic acid sequence shown in SEQ ID NO: 35, which was sent to Suzhou Synbio Technologies Co., Ltd for synthesis, and then inserted into the DNA vaccine vector pVKD1.0 (Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park) by a molecular biology method well known in the art to form the vector pVKD1.0-CI (the plasmid map is shown in
Finally, the primers were designed by using the vector pVKD1.0-hLMN-CTB in Example 2 as a template (Table 6). The target gene fragment hLMN-CTB was amplified by PCR, and then inserted between the restriction sites Not I and Bam HI on the pVKD1.0-CI vector by a molecular biology method well known in the art to construct the DNA vaccine vector pVKD1.0-CI-LMNB (the plasmid map is shown in
The amino acid sequences of LAGE-1, MAGE-A3 and NY-ESO-1 are shown in SEQ ID NOs: 24-26, respectively. By means of an online codon optimization software (http://www.jcat.de/), the nucleotide sequences for E. coli codon usage preference shown in SEQ ID NOs: 38-40 respectively were obtained through optimization based on the antigen amino acid sequences. The nucleotide sequences were synthesized by Suzhou Synbio Technologies Co., Ltd., and then inserted between the multiple cloning sites Nco I and Xho I on the prokaryotic expression vector pET-30a(+) (Novagen, Cat. No. 69909) by a molecular biology method well known in the art to construct the prokaryotic expression construct pET-30a(+)-LMN (the plasmid map is shown in
The amino acid sequence of cholera toxin subunit B (CTB) (SEQ ID NO: 30) and its prokaryotic codon optimized nucleic acid sequence (SEQ ID NO: 41) were provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park. The primers were designed (Table 9), and a nucleic acid fragment containing the CTB encoding sequence was amplified by a PCR method using the pET-30a(+)-CTB (Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park) as a template, and the instructions of Ex Taq Enzyme Reagent (Takara, Cat. No. RR001B) were referred to for the specific method. The nucleic acid fragment was then inserted into the pET-30a(+)-LMN vector by means of homologous recombination to construct the pET-30a(+)-LMN-CTB vector (the plasmid map is shown in
Ten (10) CMV-derived Th epitopes pp65-11, pp65-71, pp65-92, pp65-123, pp65-128, pp65-57, pp65-62, pp65-30, pp65-112 and pp65-104 were selected from Table 4, and linked together in tandem to form the amino acid sequence shown in SEQ ID NO: 44, wherein the sequence segment “EFELRRQ” in SEQ ID NO: 44 is formed due to the introduction of enzyme restriction site, which belongs to a common technique for fusion and construction. By means of an online codon optimization software (http://www.jcat.de/), the nucleotide sequence for E. coli codon usage preference (SEQ ID NO: 45) was obtained through optimization based on the amino acid sequence of Th epitopes. The nucleotide sequence was synthesized by Shanghai Generay Biotech Co., Ltd., and then inserted between the multiple cloning sites Nco I and Xho I on the prokaryotic expression vector pET-30a(+) (Novagen, Cat. No. 69909) by a molecular biology method well known in the art to construct the prokaryotic expression construct pET-30a(+)-CMV Th (the plasmid map is shown in
As shown in
The primers were designed (Table 12), and a nucleic acid fragment containing the LMN-CTB encoding sequence was amplified by a PCR method using pET-30a(+)-LMN-CTB in Example 5 as a template, and the instructions of Ex Taq Enzyme Reagent (Takara, Cat. No. RR001B) were referred to for the specific method. The nucleic acid fragment was then inserted between Not I and Xho I on the pET-30a(+)-CMV Th vector in Example 6 by a molecular biology method well known in the art to construct the pET-30a(+)-CMV10-LMNB vector (the plasmid map is shown in
Thirteen (13) Th epitopes derived from Flu virus, HA203, NP438, NS1-84, M1-181, HA375, NP24, NP95, NP221, HA434, HA440, NP324, M1-127 and M1-210 were selected from Table 4, and linked together in tandem to form the amino acid sequence shown in SEQ ID NO: 48.
By means of an online codon optimization software (http://www.jcat.de/), the nucleotide sequence for E. coli codon usage preference (SEQ ID NO: 49) was obtained through optimization based on the amino acid sequence containing Flu virus Th epitopes. The nucleotide sequence was synthesized by Shanghai Generay Biotech Co., Ltd., and then inserted between the multiple cloning sites Nco I and Xho I on the prokaryotic expression vector pET-30a(+) (Novagen, Cat. No. 69909) by a molecular biology method well known in the art to construct the prokaryotic expression construct pET-30a(+)-Influ Th (the plasmid map is shown in
As shown in
The primers were designed (Table 15), and a nucleic acid fragment containing the LMN-CTB encoding sequence was amplified by a PCR method using pET-30a(+)-LMN-CTB in Example 5 as a template, and the instructions of Ex Taq Enzyme Reagent (Takara, Cat. No. RR001B) were referred to for the specific method. The nucleic acid fragment was then inserted between Not I and Sal I on the pET-30a(+)-Influ Th vector in Example 7 by a molecular biology method well known in the art to construct the pET-30a(+)-Influ8-LMNB vector (containing 8 Flu virus Th epitopes; the plasmid map is shown in
As shown in
The primers were designed (Table 17), and a nucleic acid fragment containing the LMN-CTB encoding sequence was amplified by a PCR method using pET-30a(+)-LMN-CTB in Example 5 as a template, and the instructions of Ex Taq Enzyme Reagent (Takara, Cat. No. RR001B) was referred to for the specific method. This nucleic acid fragment was then inserted between Not I and Xho I on the pET-30a(+)-Influ Th vector in Example 6 by a molecular biology method well known in the art to construct the pET-30a(+)-Influ13-LMNB vector (containing 13 Flu virus Th epitopes; the plasmid map is shown in
As shown in
The prokaryotic expression vector pET-30a(+)-LMN constructed in Example 4, the prokaryotic expression vector pET-30a(+)-LMN-CTB constructed in Example 5, the prokaryotic expression vectors pET-30a(+)-CMV5-LMNB and pET-30a(+)-CMV10-LMNB constructed in Example 6, the prokaryotic expression vectors pET-30a(+)-Influ8-LMNB and pET-30a(+)-Influ13-LMNB constructed in Example 7 were respectively transformed into BL21 (DE3) competent cells (Tiangen Biotech (Beijing) Co., Ltd., Cat. No. CB105; the instructions of competent cells were referred to for the transformation method) to prepare the recombinant proteins LMN (its amino acid sequence is shown in SEQ ID NO: 59), LMNB (its amino acid sequence is shown in SEQ ID NO: 54), LMNB-C10 (its amino acid sequence is shown in SEQ ID NO: 58), LMNB-18 (its amino acid sequence is shown in SEQ ID NO: 55), and LMNB-I13 (its amino acid sequence is shown in SEQ ID NO: 56) according to the pET System Manual (TB055 8th Edition 02/99, Novagen), respectively, which were stored at −80° C. after subpackage.
The concentrations of the recombinant proteins prepared are 1 mg/mL, as detected by a BCA method (Beyotime Institute of Biotechnology, Cat. No. P0009), and the instructions of detection kit were referred to for the detection method. The contents of endotoxin in the prepared recombinant proteins were less than 1 EU/mg, as measured by a gel method (Chinese Horseshoe Crab Reagent Manufactory Co., Ltd., Xiamen, Cat. No. G011000), which meet the requirements of an animal experiment, and the instructions of horseshoe crab agent were referred to for the detection method.
The information of the vaccines prepared in Examples 2, 3 and 8 is shown in Table 19. The DNA vaccine vector pVKD1.0 was provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park, and the Flu antigen NP (NCBI reference sequence: YP_009118476.1) of the DNA vaccine pVKD1.0-NP (the expression is derived from the virus strain A/Shanghai/02/2013 (H7N9)) was provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park, and the protein vaccine VP1 (VP1 protein of enterovirus 71, see the Chinese Patent Application No. 201310088364.5) was provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park.
Sixteen (16) 6-8 weeks old female BAL B/c mice were purchased from the Laboratory Animal Center of Suzhou University and raised in the SPF animal house of the Laboratory Animal Center of Suzhou University. The experimental animal grouping and vaccination schemes are shown in Table 20. All DNA vaccines were injected into the tibialis anterior muscle of the calf at 100 jug/animal. All protein vaccines were fully emulsified with complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant (IFA), and injected subcutaneously into the back at 10 μg/animal. Two weeks after the last immunization, the mice were sacrificed, and their serums and splenocytes were collected for an enzyme-linked immunospot (ELISPOT) assay and an enzyme-linked immunosorbent assay (ELISA), respectively.
The mouse IFN-γ ELISPOT kit was purchased from BD, USA (Cat. No. 551083), and the instructions of IFN-γ ELISPOT kit from BD were referred to for the method. The stimulating peptide was NY-ESO-1 41 #peptide (WITQCFLPVFLAQPP) synthesized by Shanghai Science Peptide Biological Technology Co., Ltd., with a final stimulating concentration of 10 μg/mL. The positive stimuli phorbol-12-myristate-13-acetate (PMA) and ionomycin were purchased from Sigma, USA.
An ELISA method is well known for a person skilled in the art, and briefly described below. The 96-well ELISA plates were purchased from Jianghai Glass Instrument General Factory. Both the recombinant LMN and NY-ESO-1 were provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park. The plates were coated with the proteins in NaHCO3 buffer (pH 9.6) at 4° C. overnight at a coating concentration of 10 μg/mL, followed by blocking with 0.1% bovine serum albumin (BSA) in phosphate buffered saline (PBS) at 37° C. for 30 minutes and then washing 5 times with 0.5% Tween 20 in phosphate buffered saline (PBST). An incubation with the mouse serum at room temperature was carried out for 1 hour at an initial dilution of 1:100 and washed 5 times with PBST, and another incubation with goat anti-mouse HRP secondary antibody (Santacruz, USA) was carried out at 1: 5000 at 37° C. for 30 min. After being washing 5 times with PBST, the substrate was developed with 3,3,5,5-tetramethylbenzidine (TMB) at 37° C. for 15 min, the development was stopped with 2M dilute sulfuric acid, and then the absorbance (A) values were read at 450 nm using a microplate reader (Thermo, USA). A value which is 2.1 times greater than the negative control A value was judged to be positive, and the reciprocal of the highest dilution with respect to the positive values was defined as the serum antibody titer. A titer was defined as 50 when it was less than the initial dilution of 1: 100.
The results of cellular immune response assay are shown in
The primers were designed (Table 21), and a nucleic acid fragment containing the LMN-CTB encoding sequence was amplified by a PCR method using pET-30a(+)-LMN-CTB in Example 5 as a template, and the instructions of Ex Taq Enzyme Reagent (Takara, Cat. No. RR001B) were referred to for the specific method. The nucleic acid fragment was then inserted between Not I and Sal I on the pET-30a(+)-CMV Th vector in Example 6 by a molecular biology method well known in the art to construct the pET-30a(+)-CMV5-LMNB vector (the plasmid map is shown in
As described in Example 8, the prokaryotic expression vector pET-30a(+)-CMV5-LMNB constructed in Example 10 was transformed into BL21 (DE3) competent cells (Tiangen Biotech (Beijing) Co., Ltd., Cat. No. CB105; the instructions of competent cells were referred to for the transformation method) to prepare the recombinant protein LMNB-05 (its amino acid sequence is shown in SEQ ID NO: 57) according to the pET System Manual (TB055 8th Edition 02/99, Novagen), which was stored at −80° C. after subpackage.
The concentration of the recombinant protein prepared was 1 mg/mL, as detected by a BCA method (Beyotime Institute of Biotechnology, Cat. No. P0009), and the instructions of detection kit were referred to for the detection method. The content of endotoxin in the prepared recombinant protein was less than 1 EU/mg, as measured by a gel method (Chinese Horseshoe Crab Reagent Manufactory Co., Ltd., Xiamen, Cat. No. G011000), which met the requirements of an animal experiment, and the instructions of Horseshoe Crab agent were referred to for the detection method.
The vaccine information is shown in Table 19. The DNA vaccine pVKD1.0-CI (Example 3) was provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park.
Twenty (20) 6-8 weeks old female BAL B/c mice were purchased from the Laboratory Animal Center of Suzhou University and raised in the SPF animal house of the Laboratory Animal Center of Suzhou University. The experimental animal grouping and vaccination schemes are shown in Table 23. All DNA vaccines were injected into the tibial anterior muscle of the calf at 100 μg/animal. All protein vaccines were fully emulsified with complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant (IFA), and injected subcutaneously into the back at 10 μg/animal. Two weeks after the last immunization, the mice were sacrificed, and their serums and splenocytes were collected for an enzyme-linked immunospot (ELISPOT) assay and an enzyme-linked immunosorbent assay (ELISA), respectively.
The mouse IFN-γ ELISPOT kit was purchased from BD, USA (Cat. No. 551083), and the instructions of IFN-γ ELISPOT kit from BD were referred to for the method. The stimulating peptide was NY-ESO-1 41 #peptide (WITQCFLPVFLAQPP) synthesized by Shanghai Science Peptide Biological Technology Co., Ltd., with a final stimulating concentration of 10 μg/mL. The positive stimuli phorbol-12-myristate-13-acetate (PMA) and ionomycin were purchased from Sigma, USA.
An ELISA method is well known for a person skilled in the art and briefly described below. 96-well ELISA plates were purchased from Jianghai Glass Instrument General Factory. Both recombinant LMN and NY-ESO-1 were provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park. The plates were coated with the proteins in NaHCO3 buffer (pH 9.6) at 4° C. overnight at a coating concentration of 10 μg/mL, followed by blocking with 0.1% bovine serum albumin (BSA) in phosphate buffered saline (PBS) at 37° C. for 30 minutes and then washing 5 times with 0.5% Tween 20 in phosphate buffered saline (PBST). An incubation with mouse serum was carried out at room temperature for 1 hour at an initial dilution of 1: 100 and washed 5 times with PBST. Another incubation with goat anti-mouse HRP secondary antibody (Santacruz, USA) was carried out at 1: 5000 at 37° C. for 30 min, and washed 5 times with PBST. The substrate was then developed with 3,3,5,5-tetramethylbenzidine (TMB) at 37° C. for 15 min and the development was stopped with 2M dilute sulfuric acid, and the absorbance (A) values were read at 450 nm using a microplate reader (Thermo, USA). A value which is 2.1 times greater than the negative control A value was judged to be positive, and the reciprocal of the highest dilution with respect to the positive values was defined as the serum antibody titer. A titer was defined as 50 when it was less than the initial dilution of 1: 100.
The results of cellular immune response assay are shown in
The information of vaccines prepared in Examples 2, 3 and 8 is shown in Table 19. The DNA vaccine vector pVKD1.0 was provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park, and the Flu antigen NP (NCBI reference sequence: YP_009118476.1) of the DNA vaccine pVKD1.0-NP (the expression is derived from the virus strain A/Shanghai/02/2013 (H7N9)) was provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park, and the protein vaccine VP1 (VP1 protein of enterovirus 71, see the Chinese Patent Application No. 201310088364.5) was provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park.
Sixty (60) 6-8 weeks old female BAL B/c mice were purchased from the Laboratory Animal Center of Suzhou University and raised in the SPF animal house of the Laboratory Animal Center of Suzhou University. The experimental animal grouping and vaccination schemes are shown in Table 24. All DNA vaccines were injected into the tibials anterior muscle of the calf at 100 μg/animal. All protein vaccines were fully emulsified with complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant (IFA), and injected subcutaneously into the back at 10 μg/animal. Two weeks after the last immunization, the mice were inoculated subcutaneously with the cell line transfected stably by 4T1-hNY-ESO-1 (provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park), at an inoculation dose of 1×105 cells/mouse, and the tumor growth was continuously observed and measured after the inoculation. The tumor volume was calculated according to the following equation: tumor volume (mm3)=length×width/2. The mice were sacrificed when the tumor volume exceeded 2000 mm3.
The tumor growth of immunized mice in each group is shown in
In addition, the analysis results of tumor-free survival for the mice are shown in
Finally, the analysis results of mouse overall survival are shown in
The vaccines involved are shown in Example 9. Thirty (30) 6-8 weeks old female BAL B/c mice were purchased from the Laboratory Animal Center of Suzhou University and raised in the SPF animal house of the Laboratory Animal Center of Suzhou University. The experimental animal grouping and vaccination schemes are shown in Table 25. All DNA vaccines were injected into the tibialis anterior muscle of the calf at 100 μg/animal. All protein vaccines were fully emulsified with complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant (IFA), and injected subcutaneously into the back at 10 μg/animal. Two weeks after the last immunization, the mice were inoculated subcutaneously with the cell line transfected stably by the tumor cells 4T1-hNY-ESO-1 (provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park), at a dose of 1×105 cells/mouse, and the corresponding mice were vaccinated subcutaneously with the protein vaccines on day 1, 8 and 15 after the tumor cell inoculation, respectively. The tumor growth was continuously observed and measured after the vaccination. The tumor volume was calculated according to the following equation: tumor volume (mm3)=length×width/2. The mice were sacrificed when the tumor volume exceeded 2000 mm3.
The tumor growth of immunized mice in each group is shown in
The vaccines involved are shown in Example 9. Thirty (30) 6-8 weeks old female BAL B/c mice were purchased from the Laboratory Animal Center of Suzhou University and raised in the SPF animal house of the Laboratory Animal Center of Suzhou University. The experimental animal grouping and vaccination schemes are shown in Table 26. All DNA vaccines were injected into the tibialis anterior muscle of the calf at 100 μg/animal. All protein vaccines were fully emulsified with complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant (IFA), and injected subcutaneously into the back at 10 μg/animal. Two weeks after the last immunization, the mice were inoculated subcutaneously with the cell line transfected stably by the tumor cells CT26-hLAGE-1 (provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park), at an inoculation dose of 1×105 cells/mouse, and the corresponding mice were vaccinated subcutaneously with the protein vaccine on day 1, 8 and 15 after the tumor cell inoculation, respectively. The tumor growth was continuously observed and measured after the inoculation. The tumor volume was calculated according to the following equation: tumor volume (mm3)=length×width/2. The mice were sacrificed when the tumor volume exceeded 2000 mm3.
The tumor growth of immunized mice in each group is shown in
The amino acid sequence of 113 (SEQ ID NO: 60) comprises 8 influenza virus Th epitopes including HA203, NP438, NS1-84, M1-181, HA375, NP24, NP95 and NP221 in Table 4, and 5 influenza virus Th epitopes including HA434, HA440, NP324, M1-127 and M1-210 in Table 4. The eukaryotic codon optimized sequence of the amino acid sequence encoding 113 (SEQ ID NO: 61) was synthesized by Suzhou Genewiz Biotechnology Co., Ltd., and then inserted into the shuttle vector pSC65 (addgene, Cat. No. 30327) by a molecular biology method well known in the art to construct the shuttle vector pSC65-I13 comprising 13 influenza epitopes.
The vector pVKD1.0-hLMN-CTB expressing a fused triad of tumor antigens LAGE-1, MAGE-A3, NY-ESO-1 and cholera toxin subunit B was found in Example 2. Then the LMN-CTB fragment in the vector was digested by the enzymes Sal I and Kpn I for recovery and inserted into the aforesaid shuttle vector pSC65-I13 to construct the shuttle vector pSC65-LMNB-I13 (the plasmid map is shown in
The recombinant vaccinia viral vector was obtained from 143B cells according the following specific method. On the first day, 143B cells (provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park) were plated into a 6-well cell culture plate (JET, TCP-010-006), at 1×106 cells/well, and incubated overnight in a carbon dioxide cell incubator at 37° C. On the second day, wild vaccinia virus strains (provided by Beijing Institute of Biological Products Co., Ltd.) were added with 0.05 MOI (i.e., 5×104 PFU (plaque forming unit)/well), and then an incubation was conducted in the carbon dioxide cell incubator at 37° C. for 2 h, during which a shuttle vector/transfection reagent complex was prepared. The shuttle vector was pSC65-LMNB-I13 obtained in Example 16, the transfection reagent was Turbofect (Thermo Fisher Scientific, R0531), and the instructions of transfection reagent can be referred to for transfection dosage and complex method. After completion of the complex system, the supernatant of 143B cells was replaced with a DMEM maintenance medium containing 2% fetal bovine serum (FBS) at 2 mL/well, and then the shuttle vector/transfection reagent complex was added. After 48 h of transfection, the supernatant was removed, and the cells were collected, re-suspended in 0.5 mL the maintenance medium and frozen-thawed repeatedly for three times. Then the recombinant cell lysates were introduced into new 143B cells (with 50 μg/mL BrdU), followed by an incubation at 37° C. for 1 to 2 days. During this period, the cytopathic effects were observed, and when an appropriate number of virus plaques appeared (less than 20 plaques/well), purification of single plaque was carried out.
Purification of Single Plaque
2% low melting agarose was heated in a microwave oven (medium to high heat for about 2 min) to boiling, then transferred to a water bath at 45° C. and allowed to cool and prevented from solidification.
An appropriate amount of 2×maintenance medium (1 mL/well) was pipetted, an X-gal stock was added at a volume ratio of 1:50, followed by preheating in a water bath at 45° C.
Low melting point agarose and 2×maintenance medium containing X-gal were mixed in a ratio of equal volume to prepare a solid medium for plaque spread, the cell supernatant was removed, and the solid medium for plaque spread was carefully added. Then, the 6-well plate was transferred into a refrigerator for solidification at 4° C. for 10 min, without being moved to prevent from a non-uniform solidification during this period.
After complete solidification, the 6-well plate was transferred to a cell incubator and incubated at 37° C. for 2 to 4 h (sometimes overnight) until blue plaques appeared.
After the blue plaques appeared, the blue plaques which were well-dispersed and deeper in color were preferentially picked by using a 1 mL pipette tip (the pipette tip was trimmed by scissors in advance). The cell layer below the solid culture medium must be picked during picking, and a plurality of blue plaques were picked per well and transferred into Ep tubes containing 0.5 mL the maintenance medium, respectively.
The Ep tubes containing the virus were mixed uniformly by shaking, frozen and thawed three times repeatedly (in a refrigerator at −80° C. for about 5 min, and at room temperature for about 2 min), and finally mixed uniformly by shaking, frozen and stored at −80° C.
Six rounds of purification of single plaque were repeated until the purity reached 100%.
The recombinant vaccinia viral vector rvv-LMNB-I13 constructed in Example 17, and wild strain of vaccinia virus were amplified in Vero cells (provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park), respectively. The amplification method is as follows:
The day before, Vero monolayer cells with 100% confluence were prepared for a total of 10 dishes (1×107 cells/dish).
The supernatant was removed and replaced with the maintenance medium. The vaccinia virus to be amplified was inoculated into the cells (0.01 PFU/cell) and incubated in an incubator at 37° C. for 2-3 days. A significant cytopathic effect was observed.
The cells were scraped off and collected, centrifuged at 1800 g for 5 min, and the supernatant was removed.
5 mL the maintenance medium was used for re-suspension, and an ultrasonic cell crusher was used to for ultrasonication on the ice. The ultrasonication conditions were as follows: 50 watts, 5 s ultrasonication/5 s interval, a total of 15 min.
Freezing and thawing were repeated two times (in a refrigerator at −80° C. for about 5 min, and at room temperature for about 2 min), followed by a final uniform mixing by shaking;
Aliquoting into 1.5 mL centrifuge tubes was carried out in a Class II biosafety cabinet, at 1 mL/tube, followed by freezing at −80° C.
The vaccinia virus prepared by amplification was subjected to a titration for infection titer on Vero cells, and the specific method was as follows.
The day before, Vero cells with 100% confluence were prepared in a 24-well plate, at 3×105 cells/well.
The supernatant was removed, and 200 μL the maintenance medium was added into each well to prevent the cells from cell dryout.
100 μL of vaccinia virus to be tested was added into 900 μL the maintenance medium, and subjected to 10 fold dilutions to be serially diluted 101, 102, 103, up to 109 folds. Note: with respect to the dilution, since it was conducted from a high concentration to a low concentration, the pipette tip should be replaced before each dilution to a lower concentration.
The virus was added into a 24-well plate at 400 μL dilution per well in duplicate with the concentration from low to high (109, 108, . . . , 104), and the measurements were carried out serially for 6 dilution folds. After addition, the 24-well plate was placed and incubated in a cell incubator at 37° C. for 2 days.
The numbers of viral plaques were counted under a microscope, and the number of more than 20 was recorded as 20+. A recombinant virus titer (PFU/mL) was calculated as: an average of the numbers of plaques that can be counted as less than 20 (inclusive) in two duplicate wells×2.5 (1000 μL/400 μL)×dilution fold of the corresponding wells.
Titration results of vaccinia viral vector titer are shown in Table 28.
Twenty 6-8 weeks old female BAL B/c mice were purchased from the Laboratory Animal Center of Suzhou University and raised in the SPF animal house of the Laboratory Animal Center of Suzhou University. On day 0, all the mice were inoculated subcutaneously with a cell line stably transfected by the tumor cells CT26-MAGE-A3 expressing the MAGE-A3 tumor antigen (provided Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park), at an inoculation dose of 2×105 cells/mouse, and then randomly divided into two groups. The vaccinia viral vector prepared in Example 18 was vaccinated into the tibialis anterior muscle of calf of the corresponding mice on the 1st, 14th and 28th day after the tumor cell inoculation (the specific vaccination scheme is shown in Table 29). The tumor growth was continuously observed and measured after the vaccination. The tumor volume was calculated according to the following formula: tumor volume (mm3)=length×width/2. The mice were sacrificed when the tumor volume exceeded 10000 mm3.
The tumor growth of immunized mice in each group is shown in
The results of survival status of mice are shown by the survival curves in
Twenty 6-8 weeks old female BAL B/c mice were purchased from the Laboratory Animal Center of Suzhou University and raised in the SPF animal house of the Laboratory Animal Center of Suzhou University. On day 0, all mice were inoculated subcutaneously with a cell line stably transfected by the tumor cells CT26-LAGE-1 expressing the LAGE-1 tumor antigen (provided by Vacdiagn Biotechnology Co., Ltd., Suzhou Industrial Park), at an inoculation dose of 1×105 cells/mouse, and then randomly divided into two groups. The vaccinia viral vector prepared in Example 18 was vaccinated into the tibialis anterior muscle of calf of the corresponding mice on the 1st, 14th and 28th day after the tumor cell inoculation (the specific vaccination scheme is shown in Table 30). The tumor growth was continuously observed and measured after the vaccination. The tumor volume was calculated according to the following formula: tumor volume (mm3)=length×width/2. The mice were sacrificed when the tumor volume exceeded 10000 mm3.
The tumor growth of immunized mice in each group is shown in
In addition, the results of survival status of mice are shown by the survival curves in
A comparison between the immune effects of protein vaccines in Examples 13-15 and the treatment effects of recombinant vaccinia viral vectors in Examples 19-20 shows that the protein vaccines had a significant effect in preventing tumors (see
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2019/090877 | 6/12/2019 | WO | 00 |