RECOMBINASE COMPOSITIONS AND METHODS OF USE

Information

  • Patent Application
  • 20220396813
  • Publication Number
    20220396813
  • Date Filed
    January 18, 2022
    2 years ago
  • Date Published
    December 15, 2022
    a year ago
Abstract
Methods and compositions for modulating a target genome are disclosed.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 16, 2020, is named V2065-7003WO_SL.txt and is 2,102,102 bytes in size.


BACKGROUND

Integration of a nucleic acid of interest into a genome occurs at low frequency and with little site specificity, in the absence of a specialized protein to promote the insertion event. Some existing approaches, like CRISPR/Cas9, are more suited for small edits and are less effective at integrating longer sequences. Other existing approaches, like Cre/loxP, require a first step of inserting a loxP site into the genome and then a second step of inserting a sequence of interest into the loxP site. There is a need in the art for improved compositions (e.g., proteins and nucleic acids) and methods for inserting, altering, or deleting sequences of interest in a genome.


SUMMARY OF THE INVENTION

This disclosure relates to novel compositions, systems and methods for altering a genome at one or more locations in a host cell, tissue or subject, in vivo or in vitro. In particular, the invention features compositions, systems and methods for the introduction of exogenous genetic elements into a host genome using a recombinase polypeptide (e.g., a tyrosine recombinase, e.g., as described herein).


ENUMERATED EMBODIMENTS

1. A system for modifying DNA comprising:


a) a recombinase polypeptide comprising an amino acid sequence of Table 1 or 2, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or a nucleic acid encoding the recombinase polypeptide; and


b) a double-stranded insert DNA comprising:

    • (i) a DNA recognition sequence that binds to the recombinase polypeptide of (a),
      • said DNA recognition sequence having a first parapalindromic sequence and a second parapalindromic sequence, wherein each parapalindromic sequence is about 10-30, 12-27, or 10-15 nucleotides, e.g., about 13 nucleotides, and the first and second parapalindromic sequences together comprise the parapalindromic region of a nucleotide sequence of Table 1, or a nucleotide sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or having no more than 1, 2, 3, or 4 sequence alterations (e.g., substitutions, insertions, or deletions) relative thereto, and
      • said DNA recognition sequence further comprises a core sequence of about 5-10 nucleotides, e.g., about 8 nucleotides, wherein the core sequence is situated between the first and second parapalindromic sequences, and
    • (ii) a heterologous object sequence.


      2. A system for modifying DNA comprising:


a) a recombinase polypeptide comprising an amino acid sequence of Table 1 or 2, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or a nucleic acid encoding the recombinase polypeptide; and


b) an insert DNA comprising:

    • (i) a human first parapalindromic sequence and a human second parapalindromic sequence of Table 1 that bind to the recombinase polypeptide of (a), and
    • (ii) optionally, a heterologous object sequence.


      3. The system of embodiment 1 or 2, wherein the recombinase polypeptide comprises an amino acid sequence having at least 70% sequence identity to an amino acid sequence of Table 2.


      4. The system of embodiment 1 or 2, wherein the recombinase polypeptide comprises an amino acid sequence having at least 75% sequence identity to an amino acid sequence of Table 2.


      5. The system of embodiment 1 or 2, wherein the recombinase polypeptide comprises an amino acid sequence having at least 80% sequence identity to an amino acid sequence of Table 2.


      6. The system of embodiment 1 or 2, wherein the recombinase polypeptide comprises an amino acid sequence having at least 85% sequence identity to an amino acid sequence of Table 2.


      7. The system of embodiment 1 or 2, wherein the recombinase polypeptide comprises an amino acid sequence having at least 90% sequence identity to an amino acid sequence of Table 2.


      8. The system of embodiment 1 or 2, wherein the recombinase polypeptide comprises an amino acid sequence having at least 95% sequence identity to an amino acid sequence of Table 2.


      9. The system of embodiment 1 or 2, wherein the recombinase polypeptide comprises an amino acid sequence having at least 96% sequence identity to an amino acid sequence of Table 2.


      10. The system of embodiment 1 or 2, wherein the recombinase polypeptide comprises an amino acid sequence having at least 97% sequence identity to an amino acid sequence of Table 2.


      11. The system of embodiment 1 or 2, wherein the recombinase polypeptide comprises an amino acid sequence having at least 98% sequence identity to an amino acid sequence of Table 2.


      12. The system of embodiment 1 or 2, wherein the recombinase polypeptide comprises an amino acid sequence having at least 99% sequence identity to an amino acid sequence of Table 2.


      13. The system of embodiment 1 or 2, wherein the recombinase polypeptide comprises an amino acid sequence having 100% sequence identity to an amino acid sequence of Table 2.


      14. The system of any of embodiments 1-13, wherein (a) and (b) are in separate containers.


      15. The system of any of embodiments 1-13, wherein (a) and (b) are admixed.


      16. A cell (e.g., a eukaryotic cell, e.g., a mammalian cell, e.g., human cell; or a prokaryotic cell) comprising: a recombinase polypeptide comprising an amino acid sequence of Table 1 or 2, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or a nucleic acid encoding the recombinase polypeptide.


      17. The cell of embodiment 16, which further comprises an insert DNA comprising:


(i) a DNA recognition sequence that binds to the recombinase polypeptide, said DNA recognition sequence comprising a first parapalindromic sequence and a second parapalindromic sequence,


wherein each parapalindromic sequence is about 10-30, 12-27, or 10-15 nucleotides, e.g., about 13 nucleotides, and the first and second parapalindromic sequences together comprise the parapalindromic region of a nucleotide sequence of Table 1, or a nucleotide sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or having no more than 1, 2, 3, or 4 sequence alterations (e.g., substitutions, insertions, or deletions) relative thereto,


wherein said DNA recognition sequence further comprises a core sequence of about 5-10 nucleotides, e.g., about 8 nucleotides, and wherein the core sequence is situated between the first and second parapalindromic sequences; and


(ii) optionally, a heterologous object sequence.


18. A cell (e.g., eukaryotic cell, e.g., mammalian cell, e.g., human cell; or a prokaryotic cell) comprising:


(i) a DNA recognition sequence, said DNA recognition sequence comprising a first parapalindromic sequence and a second parapalindromic sequence,


wherein each parapalindromic sequence is about 10-30, 12-27, or 10-15 nucleotides, e.g., about 13 nucleotides, and the first and second parapalindromic sequences together comprise the parapalindromic region of a nucleotide sequence of Table 1, or a nucleotide sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or having no more than 1, 2, 3, or 4 sequence alterations (e.g., substitutions, insertions, or deletions) relative thereto,


wherein said DNA recognition sequence further comprises a core sequence of about 5-10 nucleotides, e.g., about 8 nucleotides, and wherein the core sequence is situated between the first and second parapalindromic sequences; and


(ii) a heterologous object sequence.


19. The cell of embodiment 18, wherein the DNA recognition sequence is within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, or 100 nucleotides of the heterologous object sequence.


20. The cell of embodiment 18 or 19, wherein the DNA recognition sequence and heterologous object sequence are in a chromosome or are extrachromosomal.


21. The cell of any of embodiments 16-20, wherein the cell is a eukaryotic cell.


22. The cell of embodiment 21, wherein the cell is a mammalian cell.


23. The cell of embodiment 22, wherein the cell is a human cell.


24. The cell of any of embodiments 16-20, wherein the cell is a prokaryotic cell (e.g., a bacterial cell).


25. An isolated eukaryotic cell comprising a heterologous object sequence stably integrated into its genome at a genomic location listed in column 2 or 3 of Table 1.


26. The isolated eukaryotic cell of embodiment 25, wherein the cell is an animal cell (e.g., a mammalian cell) or a plant cell.


27. The isolated eukaryotic cell of embodiment 26, wherein the mammalian cell is a human cell.


28. The isolated eukaryotic cell of embodiment 26, wherein the animal cell is a bovine cell, horse cell, pig cell, goat cell, sheep cell, chicken cell, or turkey cell.


29. The isolated eukaryotic cell of embodiment 26, wherein the plant cell is a corn cell, soy cell, wheat cell, or rice cell.


30. A method of modifying the genome of a eukaryotic cell (e.g., mammalian cell, e.g., human cell) comprising contacting the cell with:


a) a recombinase polypeptide comprising an amino acid sequence of Table 1 or 2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or a nucleic acid encoding the recombinase polypeptide; and


b) an insert DNA comprising:

    • (i) a DNA recognition sequence that binds to the recombinase polypeptide of (a), said DNA recognition sequence comprising a first parapalindromic sequence and a second parapalindromic sequence, wherein each parapalindromic sequence is about 10-30, 12-27, or 10-15 nucleotides, e.g., about 13 nucleotides, and the first and second parapalindromic sequences together comprise the parapalindromic region of a nucleotide sequence of Table 1, or a nucleotide sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or having no more than 1, 2, 3, or 4 sequence alterations (e.g., substitutions, insertions, or deletions) relative thereto,
    • wherein said DNA recognition sequence further comprises a core sequence of about 5-10 nucleotides, e.g., about 8 nucleotides, and wherein the core sequence is situated between the first and second parapalindromic sequences, and
    • (ii) a heterologous object sequence, thereby modifying the genome of the eukaryotic cell.


      31. A method of inserting a heterologous object sequence into the genome of a eukaryotic cell (e.g., mammalian cell, e.g., human cell) comprising contacting the cell with:


a) a recombinase polypeptide comprising an amino acid sequence of Table 1 or 2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or a nucleic acid encoding the polypeptide; and


b) an insert DNA comprising:

    • (i) a DNA recognition sequence that binds to the recombinase polypeptide of (a), said DNA recognition sequence comprising a first parapalindromic sequence and a second parapalindromic sequence, wherein each parapalindromic sequence is about 10-30, 12-27, or 10-15 nucleotides, e.g., about 13 nucleotides, and the first and second parapalindromic sequences together comprise the parapalindromic region of a nucleotide sequence of Table 1 or 2, and
    • wherein said DNA recognition sequence further comprises a core sequence of about 5-10 nucleotides, e.g., about 8 nucleotides, and wherein the core sequence is situated between the first and second parapalindromic sequences, and
    • (ii) a heterologous object sequence,
    • thereby inserting the heterologous object sequence into the genome of the eukaryotic cell, e.g., at a frequency of at least about 0.1% (e.g., at least about 0.1%, 0.5%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% of a population of the eukaryotic cell, e.g., as measured in an assay of Example 5.


      32. The method of embodiment 30 or 31, wherein (a) and (b) are administered separately or together.


      33. The method of embodiment 30 or 31, wherein (a) is administered prior to, concurrently with, or after administration of (b).


      34. The method of any of embodiments 30-33, wherein (a) comprises the nucleic acid encoding the polypeptide.


      35. The method of embodiment 34, wherein the nucleic acid of (a) and the insert DNA of (b) are situated on the same nucleic acid molecule, e.g., are situated on the same vector.


      36. The method of embodiment 34, wherein the nucleic acid of (a) and the insert DNA of (b) are situated on separate nucleic acid molecules.


      37. The method of any of embodiments 30-36, wherein the cell has only one endogenous DNA recognition sequence that is compatible with the DNA recognition sequence of the insert DNA.


      38. The method of any of embodiments 30-36, wherein the cell has two or more endogenous DNA recognition sequences that are compatible with the DNA recognition sequence of the insert DNA.


      39. An isolated recombinase polypeptide comprising an amino acid sequence of Table 1 or 2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.


      40. The isolated recombinase polypeptide of embodiment 39, which comprises at least one insertion, deletion, or substitution relative to a recombinase sequence of Table 1 or 2.


      41. The isolated recombinase polypeptide of embodiment 40, wherein the synthetic recombinase polypeptide binds a eukaryotic (e.g., mammalian, e.g., human) genomic locus (e.g., a sequence of Table 1).


      42. The isolated recombinase polypeptide of embodiment 40 or 41, wherein the synthetic recombinase polypeptide has at least a 2-, 3-, 4-, or 5-fold increase in affinity for the genomic locus, relative to the corresponding unmodified amino acid sequence of Table 1 or 2.


      43. An isolated nucleic acid encoding a recombinase polypeptide comprising an amino acid sequence of Table 1 or 2, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.


      44. The isolated nucleic acid of embodiment 43, which encodes a recombinase polypeptide comprising at least one insertion, deletion, or substitution relative to a recombinase sequence of Table 1 or 2.


      45. The isolated nucleic acid sequence of embodiment 43 or 44, which is codon-optimized for mammalian cells, e.g., human cells.


      46. The isolated nucleic acid of any of embodiments 43-45, which further comprises a heterologous promoter (e.g., a mammalian promoter, e.g., a tissue-specific promoter), microRNA (e.g., a tissue-specific restrictive miRNA), polyadenylation signal, or a heterologous payload.


      47. An isolated nucleic acid (e.g., DNA) comprising:


(i) a DNA recognition sequence, said DNA recognition sequence comprising a first parapalindromic sequence and a second parapalindromic sequence, wherein each parapalindromic sequence is about 10-30, 12-27, or 10-15 nucleotides, e.g., about 13 nucleotides, and the first and second parapalindromic sequences together comprise the parapalindromic region of a nucleotide sequence of Table 1, and


said DNA recognition sequence further comprises a core sequence of about 5-10 nucleotides, e.g., about 8 nucleotides, wherein the core sequence is situated between the first and second parapalindromic sequences, and


(ii) a heterologous object sequence.


48. The isolated nucleic acid of embodiment 47, which binds to a recombinase polypeptide of Table 1 or 2.


49. A method of making a recombinase polypeptide, the method comprising:


a) providing a nucleic acid encoding a recombinase polypeptide comprising an amino acid sequence of Table 1 or 2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and


b) introducing the nucleic acid into a cell (e.g., a eukaryotic cell or a prokaryotic cell, e.g., as described herein) under conditions that allow for production of the recombinase polypeptide,


thereby making the recombinase polypeptide.


50. A method of making a recombinase polypeptide, the method comprising:


a) providing a cell (e.g., a prokaryotic or eukaryotic cell) comprising a nucleic acid encoding a recombinase polypeptide comprising an amino acid sequence of Table 1 or 2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and


b) incubating the cell under conditions that allow for production of the recombinase polypeptide,


thereby making the recombinase polypeptide.


51. A method of making an insert DNA that comprises a DNA recognition sequence and a heterologous sequence, comprising:


a) providing a nucleic acid comprising:

    • (i) a DNA recognition sequence that binds to a recombinase polypeptide comprising an amino acid sequence of Table 1 or 2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, said DNA recognition sequence comprising a first parapalindromic sequence and a second parapalindromic sequence, wherein each parapalindromic sequence is about 10-30, 12-27, or 10-15 nucleotides, e.g., about 13 nucleotides, and the first and second parapalindromic sequences together comprise the parapalindromic region of a nucleotide sequence of Table 1, and
    • said DNA recognition sequence further comprises a core sequence of about 5-10 nucleotides, e.g., about 8 nucleotides, wherein the core sequence is situated between the first and second parapalindromic sequences, and
    • (ii) a heterologous object sequence, and


b) introducing the nucleic acid into a cell (e.g., a eukaryotic cell or a prokaryotic cell, e.g., as described herein) under conditions that allow for replication of the nucleic acid,


thereby making the insert DNA.


52. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the recombinase polypeptide comprises at least one insertion, deletion, or substitution relative to the amino acid sequence of Table 1 or 2.


53. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the recombinase polypeptide comprises a truncation at the N-terminus, C-terminus, or both of the N- and C-termini relative to the amino acid sequence of Table 1 or 2.


54. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the recombinase polypeptide comprises a nuclear localization sequence, e.g., an endogenous nuclear localization sequence or a heterologous nuclear localization sequence.


55. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the heterologous object sequence is inserted into the genome of the cell at an efficiency of at least about 0.1% (e.g., at least about 0.1%, 0.5%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) of a population of the cell, e.g., as measured in an assay of Example 5.


56. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the heterologous object sequence is inserted into a site within the genome of the cell (e.g., a locus listed in column 4 of Table 1, e.g., corresponding to the row for a recombinase listed in column 1 of Table 1) in at least about 1%, (e.g., at least about 1%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.9%, or 100%) of insertion events, e.g., as measured by an assay of Example 4.


57. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein, in a population of the cells (e.g., contacted with the system), the heterologous object sequence is inserted into between 1-10, e.g., 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 2-10, 2-5, 2-4, 3-10, 3-5, or 5-10 sites within the genome of the cell (e.g., a locus listed in column 4 of Table 1, e.g., corresponding to the row for a recombinase listed in column 1 of Table 1), in at least 1%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.9%, or 100%) of the cells in the population, e.g., as measured by an assay of Example 4.


58. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein, in a population of cells contacted with the system, the heterologous object sequence is inserted into exactly one site within the genome of the cell (e.g., a locus listed in column 4 of Table 1, e.g., corresponding to the row for a recombinase listed in column 1 of Table 1), in at least 1%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.9%, or 100%) of the cells in the population, e.g., as measured by an assay of Example 4.


59. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the heterologous object sequence is inserted into between 1-10, e.g., 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 2-10, 2-5, 2-4, 3-10, 3-5, or 5-10 sites within the genome of the cell (e.g., a locus listed in column 4 of Table 1, e.g., corresponding to the row for a recombinase listed in column 1 of Table 1), e.g., as measured by an assay of Example 4.


60. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the recombinase polypeptide is bound to the insert DNA.


61. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the recombinase polypeptide is provided by providing a nucleic acid encoding the recombinase polypeptide.


62. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, which results in an insert frequency of the heterologous object sequence into the genome of at least about 0.1% (e.g., at least about 0.1%, 0.5%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) of a population of the cells, e.g., as measured in an assay of Example 5.


63. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the first parapalindromic sequence comprises a sequence comprising the first 10-30, 12-27, or 10-15, e.g., 10, 11, 12, 13, 14, or 15 nucleotides of the nucleotide sequence of column 2 or column 3 of Table 1, or a sequence having no more than 1, 2, or 3 substitutions, insertions, or deletions relative thereto.


64. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of embodiment 63, wherein the second parapalindromic sequence further comprises a second sequence comprising the last 10-30, 12-27, or 10-15, e.g., 10, 11, 12, 13, 14, or 15 nucleotides of the same nucleotide sequence of column 2 or column 3 of Table 1, or a sequence having no more than 1, 2, or 3 substitutions, insertions, or deletions relative thereto.


65. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the insert DNA further comprises a core sequence comprising the 8 nucleotides situated between the parapalindromic regions of column 3 of Table 1, or a sequence having no more than 1, 2, or 3 substitutions, insertions, or deletions relative thereto.


66. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the first and second parapalindromic sequences comprise a perfectly palindromic sequence.


67. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the parapalindromic sequence comprises 1, 2, 3, 4, 5, or 6 non-palindromic positions.


68. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the parapalindromic region comprises a 5′ region of 10-30, 12-27, or 10-15, e.g., about 13 nucleotides and/or a 3′ region of 10-30, 12-27, or 10-15, e.g., about 13 nucleotides.


69. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the first and second parapalindromic sequences are the same length.


70. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the core sequence is 5-10 nucleotides (e.g., about 8 nucleotides) in length.


71. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the core sequence is capable of hybridizing to a corresponding sequence in the human genome, or the reverse complement thereof.


72. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the core sequence has at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% identity to a corresponding sequence in the human genome.


73. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the core sequence has no more than 1, 2, 3, 4, 5, 6, 7, 8, or 9 mismatches to a corresponding sequence in the human genome.


74. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the core sequence, when cleaved by the recombinase, forms a sticky end that is capable of hybridizing to a corresponding sequence in the human genome.


75. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the heterologous object sequence comprises a eukaryotic gene, e.g., a mammalian gene, e.g., human gene, e.g., a blood factor (e.g., genome factor I, II, V, VII, X, XI, XII or XIII) or enzyme, e.g., lysosomal enzyme, or synthetic human gene (e.g. a chimeric antigen receptor).


76. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the insert DNA comprises a heterologous object sequence and a DNA recognition sequence.


77. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the insert DNA comprises a nucleic acid sequence encoding the recombinase polypeptide.


78. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the insert DNA and a nucleic acid encoding the recombinase polypeptide are present in separate nucleic acid molecules.


79. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of embodiments 1-77, wherein the insert DNA and a nucleic acid encoding the recombinase polypeptide are present in the same nucleic acid molecule.


80. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the insert DNA further comprises 1, 2, 3, 4, 5, or all of:

    • (a) an open reading frame, e.g., a sequence encoding a polypeptide, e.g., an enzyme (e.g., a lysosomal enzyme), a blood factor, an exon.
    • (b) a non-coding and/or regulatory sequence, e.g., a sequence that binds a transcriptional modulator, e.g., a promoter (e.g., a heterologous promoter), an enhancer, an insulator.
    • (c) a splice acceptor site;
    • (d) a polyA site;
    • (e) an epigenetic modification site; or
    • (f) a gene expression unit.


      81. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the insert DNA comprises a plasmid, viral vector (e.g., lentiviral vector or episomal viral vector), or other self-replicating vector.


      82. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the cell does not comprise an endogenous human gene comprised by the heterologous object sequence, or does not comprise a protein encoded by said gene.


      83. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the cell is from an organism that does not comprise an endogenous human gene comprised by the heterologous object sequence, or does not comprise a protein encoded by said gene.


      84. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the cell comprises an endogenous human DNA recognition sequence.


      85. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of embodiment 84, wherein the endogenous human DNA recognition sequence is operably linked to, e.g., is situated in a site within the human genome having at least 1, 2, 3, 4, 5, 6, 7, 8 or 9 of the following criteria:


      (i) is located >300 kb from a cancer-related gene;


      (ii) is >300 kb from a miRNA/other functional small RNA;


      (iii) is >50 kb from a 5′ gene end;


      (iv) is >50 kb from a replication origin;


      (v) is >50 kb away from any ultraconserved element;


      (vi) has low transcriptional activity (i.e. no mRNA+/−25 kb); (vii) is not in copy number variable region;


      (viii) is in open chromatin; and/or


      (ix) is unique, e.g., with 1 copy in the human genome.


      86. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the cell is an animal cell, e.g., a mammalian cell, e.g., a human cell.


      87. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the cell is a plant cell.


      88. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the cell is not genetically modified.


      89. The system, cell, method, isolated recombinase polypeptide, or isolated nucleic acid of any of the preceding embodiments, wherein the cell does not comprise a loxP site.


      90. The system or method of any of the preceding embodiments, wherein the nucleic acid encoding the recombinase polypeptide is in a viral vector, e.g., an AAV vector.


      91. The system or method of any of the preceding embodiments, wherein the double-stranded insert DNA is in a viral vector, e.g., an AAV vector.


      92. The system or method of any of the preceding embodiments, wherein the nucleic acid encoding the recombinase polypeptide is an mRNA, wherein optionally the mRNA is in an LNP.


      93. The system or method of any of the preceding embodiments, wherein the double-stranded insert DNA is not in a viral vector, e.g., wherein the double-stranded insert DNA is naked DNA or DNA in a transfection reagent.


      94. The system or method of any of the preceding embodiments, wherein:


the nucleic acid encoding the recombinase polypeptide is in a first viral vector, e.g., a first AAV vector, and


the insert DNA is in a second viral vector, e.g., a second AAV vector.


95. The system or method of any of the preceding embodiments, wherein:


the nucleic acid encoding the recombinase polypeptide is an mRNA, wherein optionally the mRNA is in an LNP, and


the insert DNA is in a viral vector, e.g., an AAV vector.


96. The system or method of any of the preceding embodiments, wherein:


the nucleic acid encoding the recombinase polypeptide is an mRNA, and


the double-stranded insert DNA is not in a viral vector, e.g., wherein the double-stranded insert DNA is naked DNA or DNA in a transfection reagent.


97. The system or method of any of the preceding embodiments, wherein the insert DNA has a length of at least 1 kb, 2 kb, 3 kb, 4 kb, 5 kb, 6 kb, 7 kb, 8 kb, 9 kb, 10 kb, 20 kb, 30 kb, 40 kb, 50 kb, 60 kb, 70 kb, 80 kb, 90 kb, 100 kb, 110 kb, 120 kb, 130 kb, 140 kb, or 150 kb.


98. The system or method of any of the preceding embodiments, wherein the insert DNA does not comprise an antibiotic resistance gene or any other bacterial genes or parts.


99. The system, cell, polypeptide, nucleic acid, or method of any of the preceding embodiments, wherein the recombinase polypeptide is a recombinase selected from Rec17 (SEQ ID NO: 1231), Rec19 (SEQ ID NO: 1233), Rec20 (SEQ ID NO: 1234), Rec27 (SEQ ID NO: 1241), Rec29 (SEQ ID NO: 1243), Rec30 (SEQ ID NO: 1244), Rec31 (SEQ ID NO: 1245), Rec32 (SEQ ID NO: 1246), Rec33 (SEQ ID NO: 1247), Rec34 (SEQ ID NO: 1248), Rec35 (SEQ ID NO: 1249), Rec36 (SEQ ID NO: 1250), Rec37 (SEQ ID NO: 1251), Rec38 (SEQ ID NO: 1252), Rec39 (SEQ ID NO: 1253), Rec338 (SEQ ID NO: 1552), or Rec589 (SEQ ID NO: 1803), or a recombinase polypeptide having an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or having no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 sequence alterations (e.g., substitutions, insertions, or deletions) relative thereto.


100. The system, cell, polypeptide, nucleic acid, or method of any of the preceding embodiments, wherein when the polypeptide, system, or nucleic acid is used in a reporter gene inversion assay, e.g., an assay of Example 13, it results in reporter gene expression in at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55, or 60% of cells.


101. The system, cell, polypeptide, nucleic acid, or method of any of the preceding embodiments, wherein the reporter gene inversion assay comprises:


i) introducing the polypeptide, system, or nucleic acid into a test population of cells,


ii) introducing into the test population of cells a nucleic acid comprising from 5′ to 3′ a promoter, a first DNA recognition sequence that binds the recombinase polypeptide, a GFP gene in antisense orientation, and a second DNA recognition sequence that binds the recombinase polypeptide (e.g., wherein the first and second DNA recognition sequences each comprise one or more sequences from column 3 of Table 1 from the same row as the corresponding recombinase polypeptide),


iii) incubating the test population of cells for a time sufficient to allow for inversion of the GFP gene, e.g., for 2 days at 37° C., e.g., as described in Example 13, and


iv) determining a value for the percentage of cells in the test population that display GFP fluorescence, e.g., wherein the threshold for GFP fluorescence is at least 1.7× (1.7 times), 1.8×, 1.9×, 2×, 2.1×, 2.2×, or 2.3× (e.g., 2×) the background fluorescence, e.g., as described in Example 13.


102. The system, cell, polypeptide, nucleic acid, or method of any of the preceding embodiments, wherein when the polypeptide, system, or nucleic acid is used in a reporter gene integration assay, e.g., an assay of Example 14, it results in an average reporter gene copy number of at least 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9, or 0.95 per cell.


103. The system, cell, polypeptide, nucleic acid, or method of any of the preceding embodiments, wherein the reporter gene integration assay comprises:


i) introducing the polypeptide, system, or nucleic acid into a test population of cells,


ii) introducing into the test population of cells a nucleic acid comprising from 5′ to 3′ a first DNA recognition sequence that binds the recombinase polypeptide, a GFP gene, and a second DNA recognition sequence that binds the recombinase polypeptide (e.g., wherein the first and second DNA recognition sequences each comprise one or more sequences from column 3 of Table 1 from the same row as the corresponding recombinase polypeptide),


iii) incubating the test population of cells for a time sufficient to allow for integration of the GFP gene into the genomic DNA of the test population of cells, e.g., for 2-5 days at 37° C., e.g., as described in Example 14, and


iv) determining a value for the average copy number of GFP gene per cell in the genomic DNA of the test population of cells, e.g., wherein the threshold copy number is at least 1.7× (1.7 times), 1.8×, 1.9×, 2×, 2.1×, 2.2×, or 2.3× (e.g., 2×) the background copy number detected, e.g., as described in Example 14.


104. The system, cell, polypeptide, nucleic acid, or method of any of the preceding embodiments, wherein the nucleic acid (e.g., isolated nucleic acid), insert DNA (e.g., double-stranded insert DNA), or heterologous object sequence comprises an artificial chromosome, e.g., a bacterial artificial chromosome.


105. The system, cell, polypeptide, or nucleic acid of any of the preceding embodiments for use as a laboratory or research tool, or in a laboratory method or research method.


106. The method of any of embodiments 30-38 or 52-104, wherein the method is used as a laboratory or research method or as part of a laboratory or research method.


107. The system, cell, polypeptide, nucleic acid, or method of either of embodiments 105 or 106, wherein the laboratory or research tool or laboratory or research method is used to modify an animal cell, e.g., a mammalian cell (e.g., a human cell), a plant cell, or a fungal cell.


108. The system, cell, polypeptide, nucleic acid, or method of any of embodiments 105-107, wherein the laboratory or research tool or laboratory or research method is used in vitro.


The disclosure contemplates all combinations of any one or more of the foregoing aspects and/or embodiments, as well as combinations with any one or more of the embodiments set forth in the detailed description and examples.


Definitions

Domain: The term “domain” as used herein refers to a structure of a biomolecule that contributes to a specified function of the biomolecule. A domain may comprise a contiguous region (e.g., a contiguous sequence) or distinct, non-contiguous regions (e.g., non-contiguous sequences) of a biomolecule. Examples of protein domains include, but are not limited to, a nuclear localization sequence, a recombinase domain, a DNA recognition domain (e.g., that binds to or is capable of binding to a recognition site, e.g. as described herein), a tyrosine recombinase N-terminal domain, and a tyrosine recombinase C-terminal domain; an example of a domain of a nucleic acid is a regulatory domain, such as a transcription factor binding domain, a parapalindromic sequence, a parapalindromic region, a core sequence, or an object sequence (e.g., a heterologous object sequence). In some embodiments, a recombinase polypeptide comprises one or more domains (e.g., a recombinase domain, or a DNA recognition domain) of a polypeptide of Table 1 or 2, or a fragment or variant thereof.


Exogenous: As used herein, the term exogenous, when used with reference to a biomolecule (such as a nucleic acid sequence or polypeptide) means that the biomolecule was introduced into a host genome, cell or organism by the hand of man. For example, a nucleic acid that is as added into an existing genome, cell, tissue or subject using recombinant DNA techniques or other methods is exogenous to the existing nucleic acid sequence, cell, tissue or subject.


Genomic safe harbor site (GSH site): A genomic safe harbor site is a site in a host genome that is able to accommodate the integration of new genetic material, e.g., such that the inserted genetic element does not cause significant alterations of the host genome posing a risk to the host cell or organism. A GSH site generally meets 1, 2, 3, 4, 5, 6, 7, 8 or 9 of the following criteria: (i) is located >300 kb from a cancer-related gene; (ii) is >300 kb from a miRNA/other functional small RNA; (iii) is >50 kb from a 5′ gene end; (iv) is >50 kb from a replication origin; (v) is >50 kb away from any ultraconserved element; (vi) has low transcriptional activity (i.e. no mRNA+/−25 kb); (vii) is not in a copy number variable region; (viii) is in open chromatin; and/or (ix) is unique, with 1 copy in the human genome. Examples of GSH sites in the human genome that meet some or all of these criteria include (i) the adeno-associated virus site 1 (AAVS1), a naturally occurring site of integration of AAV virus on chromosome 19; (ii) the chemokine (C-C motif) receptor 5 (CCR5) gene, a chemokine receptor gene known as an HIV-1 coreceptor; (iii) the human ortholog of the mouse Rosa26 locus; (iv) the rDNA locus. Additional GSH sites are known and described, e.g., in Pellenz et al. epub Aug. 20, 2018 (https://doi.org/10.1101/396390).


Heterologous: The term heterologous, when used to describe a first element in reference to a second element means that the first element and second element do not exist in nature disposed as described. For example, a heterologous polypeptide, nucleic acid molecule, construct or sequence refers to (a) a polypeptide, nucleic acid molecule or portion of a polypeptide or nucleic acid molecule sequence that is not native to a cell in which it is expressed, (b) a polypeptide or nucleic acid molecule or portion of a polypeptide or nucleic acid molecule that has been altered or mutated relative to its native state, or (c) a polypeptide or nucleic acid molecule with an altered expression as compared to the native expression levels under similar conditions. For example, a heterologous regulatory sequence (e.g., promoter, enhancer) may be used to regulate expression of a gene or a nucleic acid molecule in a way that is different than the gene or a nucleic acid molecule is normally expressed in nature. In certain embodiments, a heterologous nucleic acid molecule may exist in a native host cell genome, but may have an altered expression level or have a different sequence or both. In other embodiments, heterologous nucleic acid molecules may not be endogenous to a host cell or host genome but instead may have been introduced into a host cell by transformation (e.g., transfection, electroporation), wherein the added molecule may integrate into the host genome or can exist as extra-chromosomal genetic material either transiently (e.g., mRNA) or semi-stably for more than one generation (e.g., episomal viral vector, plasmid or other self-replicating vector).


Mutation or Mutated: The term “mutated” when applied to nucleic acid sequences means that nucleotides in a nucleic acid sequence may be inserted, deleted or changed compared to a reference (e.g., native) nucleic acid sequence. A single alteration may be made at a locus (a point mutation) or multiple nucleotides may be inserted, deleted or changed at a single locus. In addition, one or more alterations may be made at any number of loci within a nucleic acid sequence. A nucleic acid sequence may be mutated by any method known in the art.


Nucleic acid molecule: Nucleic acid molecule refers to both RNA and DNA molecules including, without limitation, cDNA, genomic DNA and mRNA, and also includes synthetic nucleic acid molecules, such as those that are chemically synthesized or recombinantly produced, such as DNA templates, as described herein. The nucleic acid molecule can be double-stranded or single-stranded, circular or linear. If single-stranded, the nucleic acid molecule can be the sense strand or the antisense strand. Unless otherwise indicated, and as an example for all sequences described herein under the general format “SEQ ID NO:,” “nucleic acid comprising SEQ ID NO:1” refers to a nucleic acid, at least a portion which has either (i) the sequence of SEQ ID NO:1, or (ii) a sequence complimentary to SEQ ID NO:1. The choice between the two is dictated by the context in which SEQ ID NO:1 is used. For instance, if the nucleic acid is used as a probe, the choice between the two is dictated by the requirement that the probe be complimentary to the desired target. Nucleic acid sequences of the present disclosure may be modified chemically or biochemically or may contain non-natural or derivatized nucleotide bases, as will be readily appreciated by those of skill in the art. Such modifications include, for example, labels, methylation, substitution of one or more naturally occurring nucleotides with an analog, inter-nucleotide modifications such as uncharged linkages (for example, methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages (for example, phosphorothioates, phosphorodithioates, etc.), pendant moieties, (for example, polypeptides), intercalators (for example, acridine, psoralen, etc.), chelators, alkylators, and modified linkages (for example, alpha anomeric nucleic acids, etc.). Also included are synthetic molecules that mimic polynucleotides in their ability to bind to a designated sequence via hydrogen bonding and other chemical interactions. Such molecules are known in the art and include, for example, those in which peptide linkages substitute for phosphate linkages in the backbone of a molecule. Other modifications can include, for example, analogs in which the ribose ring contains a bridging moiety or other structure such as modifications found in “locked” nucleic acids.


Gene expression unit: a gene expression unit is a nucleic acid sequence comprising at least one regulatory nucleic acid sequence operably linked to at least one effector sequence. A first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter or enhancer is operably linked to a coding sequence if the promoter or enhancer affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be contiguous or non-contiguous. Where necessary to join two protein-coding regions, operably linked sequences may be in the same reading frame.


Host: The terms host genome or host cell, as used herein, refer to a cell and/or its genome into which protein and/or genetic material has been introduced. It should be understood that such terms are intended to refer not only to the particular subject cell and/or genome, but to the progeny of such a cell and/or the genome of the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term “host cell” as used herein. A host genome or host cell may be an isolated cell or cell line grown in culture, or genomic material isolated from such a cell or cell line, or may be a host cell or host genome which composing living tissue or an organism. In some instances, a host cell may be an animal cell or a plant cell, e.g., as described herein. In certain instances, a host cell may be a bovine cell, horse cell, pig cell, goat cell, sheep cell, chicken cell, or turkey cell. In certain instances, a host cell may be a corn cell, soy cell, wheat cell, or rice cell.


Recombinase polypeptide: As used herein, a recombinase polypeptide refers to a polypeptide having the functional capacity to catalyze a recombination reaction of a nucleic acid molecule (e.g., a DNA molecule). A recombination reaction may include, for example, one or more nucleic acid strand breaks (e.g., a double-strand break), followed by joining of two nucleic acid strand ends (e.g., sticky ends). In some instances, the recombination reaction comprises insertion of an insert nucleic acid, e.g., into a target site, e.g., in a genome or a construct. In some instances, a recombinase polypeptide comprises one or more structural elements of a naturally occurring recombinase (e.g., a tyrosine recombinase, e.g., Cre recombinase or Flp recombinase). In certain instances, a recombinase polypeptide comprises an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to a recombinase described herein (e.g., as listed in Table 1 or 2). In some instances, a recombinase polypeptide has one or more functional features of a naturally occurring recombinase (e.g., a tyrosine recombinase, e.g., Cre recombinase or Flp recombinase). In some instances, a recombinase polypeptide recognizes (e.g., binds to) a recognition sequence in a nucleic acid molecule (e.g., a recognition sequence listed in Table 1 or 2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto). In some embodiments, a recombinase polypeptide is not active as an isolated monomer. In some embodiments, a recombinase polypeptide catalyzes a recombination reaction in concert with one or more other recombinase polypeptides (e.g., four recombinase polypeptides per recombination reaction).


Insert nucleic acid molecule: As used herein, an insert nucleic acid molecule (e.g., an insert DNA) is a nucleic acid molecule (e.g., a DNA molecule) that is or will be inserted, at least partially, into a target site within a target nucleic acid molecule (e.g., genomic DNA). An insert nucleic acid molecule may include, for example, a nucleic acid sequence that is heterologous relative to the target nucleic acid molecule (e.g., the genomic DNA). In some instances, an insert nucleic acid molecule comprises an object sequence (e.g., a heterologous object sequence). In some instances, an insert nucleic acid molecule comprises a DNA recognition sequence, e.g., a cognate to a DNA recognition sequence present in a target nucleic acid. In some embodiments, the insert nucleic acid molecule is circular, and in some embodiments, the insert nucleic acid molecule is linear. In some embodiments, an insert nucleic acid molecule is also referred to as a template nucleic acid molecule (e.g., a template DNA).


Recognition sequence: A recognition sequence (e.g., DNA recognition sequence) generally refers to a nucleic acid (e.g., DNA) sequence that is recognized (e.g., capable of being bound by) a recombinase polypeptide, e.g., as described herein. In some instances, a recognition sequence comprises two parapalindromic sequences, e.g., as described herein. In certain instances, the two parapalindromic sequences together form a parapalindromic region or a portion thereof. In some instances, the recognition sequence further comprises a core sequence, e.g., as described herein, positioned between the two parapalindromic sequences. In some instances, a recognition sequence comprises a nucleic acid sequence listed in Table 1, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.


Core sequence: A core sequence, as used herein, refers to a nucleic acid sequence positioned between two parapalindromic sequences. In some instances, a core sequence can be cleaved by a recombinase polypeptide (e.g., a recombinase polypeptide that recognizes a recognition sequence comprising the two parapalindromic sequences), e.g., to form sticky ends. In some embodiments, the core sequence is about 5-10 nucleotides, e.g., about 8 nucleotides in length.


Object sequence: As used herein, the term object sequence refers to a nucleic acid segment that can be desirably inserted into a target nucleic acid molecule, e.g., by a recombinase polypeptide, e.g., as described herein. In some embodiments, an insert DNA comprises a DNA recognition sequence and an object sequence that is heterologous to the DNA recognition sequence, generally referred to herein as a “heterologous object sequence.” An object sequence may, in some instances, be heterologous relative to the nucleic acid molecule into which it is inserted. In some instances, an object sequence comprises a nucleic acid sequence encoding a gene (e.g., a eukaryotic gene, e.g., a mammalian gene, e.g., a human gene) or other cargo of interest (e.g., a sequence encoding a functional RNA, e.g., an siRNA or miRNA), e.g., as described herein. In certain instances, the gene encodes a polypeptide (e.g., a blood factor or enzyme). In some instances, an object sequence comprises one or more of a nucleic acid sequence encoding a selectable marker (e.g., an auxotrophic marker or an antibiotic marker), and/or a nucleic acid control element (e.g., a promoter, enhancer, silencer, or insulator).


Parapalindromic: As used herein, the term parapalindromic refers to a property of a pair of nucleic acid sequences, wherein one of the nucleic acid sequences is either a palindrome relative to the other nucleic acid sequence, or has at least 50% (e.g., at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to a palindrome relative to the other nucleic acid sequence, or has no more than 1, 2, 3, 4, 5, 6, 7, or 8 sequence mismatches relative to the other nucleic acid sequence. “Parapalindromic sequences,” as used herein, refer to at least one of a pair of nucleic acid sequences that are parapalindromic relative to each other. A “parapalindromic region,” as used herein, refers to a nucleic acid sequence, or the portions thereof, that comprise two parapalindromic sequences. In some instances, a parapalindromic region comprises two paralindromic sequences flanking a nucleic acid segment, e.g., comprising a core sequence.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows a diagram of an exemplary recombinase reporter plasmid. An inactive reporter plasmid containing an inverted GFP gene flanked by recombinase recognition sites (e.g., loxP) in inverted orientation can be activated by the presence of a cognate recombinase (e.g., Cre), which results in flipping of the GFP gene into an orientation in which transcription of the coding sequence is driven by the upstream promoter (e.g., CMV).



FIG. 2 shows diagrams describing exemplary recombinase-mediated integration into the human genome. In the top diagram, a recombinase expressed from the recombinase expression plasmid recognizes a first target site on the insert DNA plasmid and a second target site in the human genome and catalyzes recombination between these two sites, resulting in integration of the insert DNA plasmid into the human genome at the second target site. In the bottom diagram, primer and probe positions for a ddPCR assay to quantify genomic integration events are shown.





DETAILED DESCRIPTION

This disclosure relates to compositions, systems and methods for targeting, editing, modifying or manipulating a DNA sequence (e.g., inserting a heterologous object DNA sequence into a target site of a mammalian genome) at one or more locations in a DNA sequence in a cell, tissue or subject, e.g., in vivo or in vitro. The object DNA sequence may include, e.g., a coding sequence, a regulatory sequence, a gene expression unit.


Gene-Writer™ Genome Editors

The present invention provides recombinase polypeptides (e.g., tyrosine recombinase polypeptides, e.g., as listed in Table 1 or 2) that can be used to modify or manipulate a DNA sequence, e.g., by recombining two DNA sequences comprising cognate recognition sequences that can be bound by the recombinase polypeptide. A Gene Writer™ gene editor system may, in some embodiments, comprise: (A) a polypeptide or a nucleic acid encoding a polypeptide, wherein the polypeptide comprises (i) a domain that contains recombinase activity, and (ii) a domain that contains DNA binding functionality (e.g., a DNA recognition domain that, for example, binds to or is capable of binding to a recognition sequence, e.g., as described herein); and (B) an insert DNA comprising (i) a sequence that binds the polypeptide (e.g., a recognition sequence as described herein) and, optionally, (ii) an object sequence (e.g., a heterologous object sequence). In some embodiments, the domain that contains recombinase activity and the domain that contains DNA binding functionality is the same domain. For example, the Gene Writer genome editor protein may comprise a DNA-binding domain and a recombinase domain. In certain embodiments, the elements of the Gene Writer™ gene editor polypeptide can be derived from sequences of a recombinase polypeptide (e.g., a tyrosine recombinase), e.g., as described herein, e.g., as listed in Table 1 or 2. In some embodiments the Gene Writer genome editor is combined with a second polypeptide. In some embodiments the second polypeptide is derived from a recombinase polypeptide (e.g., a tyrosine recombinase), e.g., as described herein, e.g., as listed in Table 1 or 2.


Recombinase Polypeptide Component of Gene Writer Gene Editor System

An exemplary family of recombinase polypeptides that can be used in the systems, cells, and methods described herein includes the tyrosine recombinases. Generally, tyrosine recombinases are enzymes that catalyze site-specific recombination between two recognition sequences. The two recognition sequences may be, e.g., on the same nucleic acid (e.g., DNA) molecule, or may be present in two separate nucleic acid (e.g., DNA) molecules. In some embodiments, a tyrosine recombinase polypeptide comprises two domains, an N-terminal domain that comprises DNA contact sites, and a C-terminal domain that comprises the active site.


Tyrosine recombinases generally operate by concomitant binding of two recombinase polypeptide monomers to each of the recognition sequences, such that four monomers are involved in a single recombinase reaction. As described, for example, in Gaj et al. (2014; Biotechnol. Bioeng. 111(1): 1-15; incorporated herein by reference in its entirety), after binding of each pair of tyrosine recombinase monomers to the recognition sequences, the DNA-bound dimers then undergo DNA strand breaks, strand exchange, and rejoining to form Holliday junction intermediates, followed by an additional round of DNA strand breaks and ligation to form the recombined strands. Non-limiting examples of tyrosine recombinase include Cre recombinase and Flp recombinase, as well as the recombinase polypeptides listed in Table 1 or 2.


A skilled artisan can determine the nucleic acid and corresponding polypeptide sequences of a recombinase polypeptide (e.g., tyrosine recombinase) and domains thereof, e.g., by using routine sequence analysis tools as Basic Local Alignment Search Tool (BLAST) or CD-Search for conserved domain analysis. Other sequence analysis tools are known and can be found, e.g., at https://molbiol-tools.ca, for example, at https://molbiol-tools.ca/Motifs.htm.


Exemplary Recombinase Polypeptides


In some embodiments, a Gene Writer™ gene editor system comprises a recombinase polypeptide (e.g., a tyrosine recombinase polypeptide), e.g., as described herein. Generally, a recombinase polypeptide (e.g., a tyrosine recombinase polypeptide) specifically binds to a nucleic acid recognition sequence and catalyzes a recombination reaction at a site within the recognition sequence (e.g., a core sequence within the recognition sequence). In some embodiments, a recombinase polypeptide catalyzes recombination between a recognition sequence, or a portion thereof (e.g., a core sequence thereof) and another nucleic acid sequence (e.g., an insert DNA comprising a cognate recognition sequence and, optionally, an object sequence, e.g., a heterologous object sequence). For example, a recombinase polypeptide (e.g., a tyrosine recombinase polypeptide) may catalyze a recombination reaction that results in insertion of an object sequence, or a portion thereof, into another nucleic acid molecule (e.g., a genomic DNA molecule, e.g., a chromosome or mitochondrial DNA).


Table 1 below provides exemplary bidirectional tyrosine recombinase polypeptide amino acid sequences (see column 1), and their corresponding DNA recognition sequences (see columns 2 and 3), which were identified bioinformatically. Tables 1 and 2 comprise amino acid sequences that had not previously been identified as bidirectional tyrosine recombinases, and also includes corresponding DNA recognition sequences of tyrosine recombinases for which the DNA recognition sequences were previously unknown. The amino acid sequence of each accession number in column 1 of Table 1 is hereby incorporated by reference in its entirety.


More specifically, column 2 provides the native DNA recognition sequence (e.g., from bacteria or archaea), and column 3 provides a corresponding human DNA recognition sequence for the recombinase listed in that row. Column 4 indicates the genomic location of the human DNA recognition sequence of column 3. Column 5 provides the safe harbor score of the human DNA recognition sequence, indicating the number of safe harbor criteria met by the site.


The DNA recognition sequences of Table 1 have the following domains: a first parapalindromic sequence, a core sequence, and a second parapalindromic sequence. Without wishing to be bound by theory, in some embodiments, a tyrosine recombinase recognizes a DNA recognition sequence based on the parapalindromic region (the first and second parapalindromic sequences), and does not have any particular sequence requirements for the core sequence. Thus, in some embodiments, a tyrosine recombinase can insert DNA into a target site in the human genome, wherein the target site has a core sequence that may diverge substantially or completely from the native core sequence. Consequently, Table 1, column 2 includes Ns in these positions. In some embodiments, a core overlap sequence in an insert DNA may be chosen to match, at least partially, the corresponding sequence in the human genome. In some embodiments the recombinase only has a single human DNA recognition sequence.









TABLE 1







Exemplary tyrosine recombinases, corresponding recognition sequences, human


genomic locations thereof, and safe harbor score of the genomic location. As listed in the


DNA sequences, “N” can be any nucleotide (e.g., any one of A, C, G, or T).













1.




4. Genomic



Bidirectional
SEQ
2. Native DNA
SEQ
3. Human DNA
location of
5. Safe


Tyrosine
ID
recognition 
ID
recognition
human DNA
Harbor


Recombinase
NO:
sequence
NO:
sequence
sequence
Score
















WP_0067171
1
AATAAAGGGAATNN
608
AATAAAGGGAATAT
chr1:186448978-
3


73.1

NNNNNNATTCCCTTT

CTTATCATTCCCTTT
186449009





ATT

ATT







WP_0067185
2
AATAAAGGGAATNN
609
AATAAAGGGAATAT
chr1:186448978-
3


80.1

NNNNNNATTCCCTTT

CTTATCATTCCCTTT
186449009





ATT

ATT







WP_0067192
3
AATAAAGGGAATNN
610
AATAAAGGGAATAT
chr1:186448978-
3


34.1

NNNNNNATTCCCTTT

CTTATCATTCCCTTT
186449009





ATT

ATT







WP_1098591
4
AATAAAGGGAATNN
611
AATAAAGGGAATAT
chr1:186448978-
3


98.1

NNNNNNATTCCCTTT

CTTATCATTCCCTTT
186449009





ATT

ATT







WP_0067171
5
AATAAAGGGAATNN
612
AATAAAGGGAATAT
chr1:186448978-
3


95.1

NNNNNNATTCCCTTT

CTTATCATTCCCTTT
186449009





ATT

ATT







WP_0057157
6
AATAAAGGGAATNN
613
AATAAAGGGAATAT
chr1:186448978-
3


99.1

NNNNNNATTCCCTTT

CTTATCATTCCCTTT
186449009





ATT

ATT







WP_1201665
7
TTTTTTTGTATTNNNN
614
TTTTTTTGTATTTAA
chr15:98195234-
5


65.1

NNNNNAAAAGAAAA

AGAGGCAAAAGAA
98195266





AAA

AAAAA







WP_0613297
8
TCTCTATATATANNN
615
TCTCTATATATATAT
chr18:34123564-
5


56.1

NNNNNTATATATAGA

GAGAATATATATAG
34123595





GA

AGA







WP_0104972
9
AAAAATAAAACTGNN
616
AAAAATAAAACTGG
chr20:31321773-
5


71.1

NNNNNNNTAGTTTTA

GAAAAAAATAGTTT
31321807





TTTTT

TATTTTT







WP_0381509
10
CACTGATATATANNN
617
CACTGATATATATC
chr3:164894717-
6


96.1

NNNNTATATATCAGT

ACTGATATATATCA
164894747





G

GTG







WP_0381508
11
CACTGATATATANNN
618
CACTGATATATATC
chr3:164894717-
6


98.1

NNNNTATATATCAGT

ACTGATATATATCA
164894747





G

GTG







WP_0177400
12
CAATTTTTGAAANNN
619
CAATTTTTGAAATTT
chr4:127054362-
4


00.1

NNNNTTTCAAAAATT

TCAATTTCAAAAATT
127054392





G

G







WP_0177442
13
CAATTTTTGAAANNN
620
CAATTTTTGAAATTT
chr4:127054362-
4


57.1

NNNNTTTCAAAAATT

TCAATTTCAAAAATT
127054392





G

G







WP_0177461
14
CAATTTTTGAAANNN
621
CAATTTTTGAAATTT
chr4:127054362-
4


51.1

NNNNTTTCAAAAATT

TCAATTTCAAAAATT
127054392





G

G







WP_1260450
15
TAATGTTCTATANNN
622
TAATGTTCTATAATG
chr4:13893338-
5


42.1

NNNNNTATAAAACAC

TGGTTTATAAAACA
13893369





TA

CTA







XP_0123333
16
TGCATATACATANNN
623
TGCATATACATATAT
chr5:127323005-
6


05.1

NNNNNTATATATATG

ATGCATATATATAT
127323036





TA

GTA







WP_0730250
17
TTATGTCCAATANNN
624
TTATGTCCAATATAA
chr1:88050039-
7


39.1

NNNNNTATTGGACAT

AGCTATATTGGACA
88050070





AG

TAA







WP_0076355
18
TTATGTCCAATANNN
625
TTATGTCCAATATAA
chr1:88050039-
7


52.1

NNNNNTATTGGACAT

AGCTATATTGGACA
88050070





AG

TAA







WP_0589581
19
TGACTTCGTATANNN
626
TGACTTCGTATAAT
chr1:106584230-
6


35.1

NNNNNTATACGAAGC

AAACTTTATAGGAG
106584261





CA

GCCA







WP_0909670
20
TGACTTCGTATANNN
627
TGACTTCGTATAAT
chr1:106584230-
6


54.1

NNNNNTATACGAAGC

AAACTTTATAGGAG
106584261





CA

GCCA







WP_0103653
21
TAATGTCCAATANNN
628
TTATGTCCAATATAA
chr1:88050039-
7


36.1

NNNNNTATCGGACAT

AGCTATATTGGACA
88050070





AA

TAA







WP_0163928
22
GACCACTCCAGANNN
629
GACCACTTCAGACA
chr13:80495061-
7


93.1

NNNNNNTCTGGAGT

AGATTGGTCTGGAA
80495093





GGTG

TGGTG







WP_0478245
23
GGACATGTGATANNN
630
GGACATGTGATAAT
chr15:73681757-
7


97.1

NNNNNTATCACATGT

TCAATTTTGCACATG
73681788





TG

TTG







WP_0464074
24
GCACTAGCGATANNN
631
GCACTAGCTATAGG
chr18:26615767-
7


94.1

NNNNNTATCACTAGT

AATTGGGATCACTA
26615798





GC

GTGC







WP_0037125
25
CCCCTAACTAGANNN
632
CCCCTAATTAGAAC
chr2:211644330-
6


23.1

NNNNTCTAATTAGGG

ACATTTCTAATTATG
211644360





G

GG







WP_0050276
26
CAGCCTCTTAGANNN
633
CAGCCTCTTAGCAA
chr3:39477201-
7


58.1

NNNNTCTAAGGGGCT

AAATTTTTAAGGGG
39477231





T

CTT







WP_0211703
27
TAACTAATGATANNN
634
TAACTAGTGATAGA
chr5:110266294-
7


77.1

NNNNNNTATCACTAG

TAACAGTTATCACT
110266326





TTG

AGTTA







WP_0151699
28
CTAAAGTAAGAGANN
635
CTGAAGTAAGAAAT
chr8:82693106-
6


02.1

NNNNNNTTTCTTACT

TTGCAAATTTCTTAC
82693139





TCAG

TTCAG







WP_0894151
29
ATGACTTCGTATANN
636
ATGACTTCGTATAA
chr1:106584229-
6


06.1

NNNNNNTATACGAA

TAAACTTTATAGGA
106584262





GTCAT

GGCCAT







WP_0226242
30
TGACTTCGTATANNN
637
TGACTTCGTATAAT
chr1:106584230-
6


68.1

NNNNNTATACGAAGT

AAACTTTATAGGAG
106584261





CA

GCCA







WP_0461030
31
TGACTTCGTATANNN
638
TGACTTCGTATAAT
chr1:106584230-
6


89.1

NNNNNTATACGAAGT

AAACTTTATAGGAG
106584261





CA

GCCA







WP_0690271
32
TGACTTCGTATANNN
639
TGACTTCGTATAAT
chr1:106584230-
6


20.1

NNNNNTATACGAAGT

AAACTTTATAGGAG
106584261





CA

GCCA







WP_0106719
33
TGACTTCGTATANNN
640
TGACTTCGTATAAT
chr1:106584230-
6


27.1

NNNNNTATACGAAGT

AAACTTTATAGGAG
106584261





CA

GCCA







WP_1096537
34
TGACTTCGTATANNN
641
TGACTTCGTATAAT
chr1:106584230-
6


47.1

NNNNNTATACGAAGT

AAACTTTATAGGAG
106584261





CA

GCCA







WP_1341619
35
TGACTTCGTATANNN
642
TGACTTCGTATAAT
chr1:106584230-
6


39.1

NNNNNTATACGAAGT

AAACTTTATAGGAG
106584261





CA

GCCA







WP_1115348
36
TGACTTCGTATANNN
643
TGACTTCGTATAAT
chr1:106584230-
6


63.1

NNNNNTATACGAAGT

AAACTTTATAGGAG
106584261





CA

GCCA







WP_1280855
37
TGACTTCGTATANNN
644
TGACTTCGTATAAT
chr1:106584230-
6


08.1

NNNNNTATACGAAGT

AAACTTTATAGGAG
106584261





CA

GCCA







WP_1157646
38
TGACTTCGTATANNN
645
TGACTTCGTATAAT
chr1:106584230-
6


42.1

NNNNNTATACGAAGT

AAACTTTATAGGAG
106584261





CA

GCCA







WP_1111383
39
TGACTTCGTATANNN
646
TGACTTCGTATAAT
chr1:106584230-
6


05.1

NNNNNTATACGAAGT

AAACTTTATAGGAG
106584261





CA

GCCA







WP_0088397
40
TCATGTCCGATANNN
647
TCATGACCTATATAC
chr1:165167590-
5


47.1

NNNNNNTACCGGAC

TTCTGGTACCAGAC
165167622





ATAA

ATAA







WP_0654178
41
GATTTTTTTAACANNN
648
GATTTTTTTAACAAA
chr1:170443548-
6


88.1

NNNNNNTATTATAAA

AAATATATAATTAA
170443582





AATC

AAAATC







WP_0584139
42
TGAGACGGGATANN
649
TGAGACTGCATAAA
chr1:190843617-
6


92.1

NNNNNNNTATCCCAT

TTATAAATATCCTAT
190843649





CTGA

CTGA







WP_0992351
43
TGAGACGGGATANN
650
TGAGACTGCATAAA
chr1:190843617-
6


64.1

NNNNNNNTATCCCAT

TTATAAATATCCTAT
190843649





CTGA

CTGA







WP_0031395
44
AAGCCATAGACANNN
651
AAGCCATAAAGATG
chr1:208272467-
6


53.1

NNNNNTGTGTATGGC

GGGCCTTGTGTCTG
208272498





TT

GCTT







WP_1328984
45
GCTTGGTGCACANNN
652
GCATAGTGCACATT
chr1:212042241-
7


17.1

NNNNTGTGACCCAAG

AGACCTCTGACCCA
212042271





C

AGC







WP_1208099
46
AAAAGCGTGATANNN
653
CAAAGCAGGATATT
chr1:214115937-
5


06.1

NNNNNNTATCACGCC

ATCAGGCTATCACG
214115969





TTT

CCTTT







WP_0757581
47
CCGGCGCAAACANNN
654
CCGGCGCAGAAAG
chr1:21651977-
4


85.1

NNNNNTGTTTGCGCC

GGCCGCTTGTTCGC
21652008





GC

GCCGC







WP_0633139
48
TGGCAAGCTATANNN
655
TGGCAAGCTATAAA
chr1:217009498-
6


27.1

NNNNNNTATATCTTG

ACAAGCATAAAACT
217009530





CCA

TCCCA







WP_0382026
49
AAAGAAGCGATANN
656
AAAGAAGTGATAA
chr1:218206501-
7


23.1

NNNNNNNTATCGCTT

GAATTATTCATCTCT
218206533





TTTT

TTTTT







WP_1105609
50
CTACTTCCGATANNN
657
CTCCTTCCAATAAA
chr1:236983188-
6


45.1

NNNNNTGTCGGAAG

GCCTTGTGTTGGAA
236983219





TAG

GTAG







WP_1023257
51
CTACTTCCGATANNN
658
CTCCTTCCAATAAA
chr1:236983188-
6


37.1

NNNNNTGTCGGAAG

GCCTTGTGTTGGAA
236983219





TAG

GTAG







WP_1100959
52
CTACTTCCGATANNN
659
CTCCTTCCAATAAA
chr1:236983188-
6


79.1

NNNNNTGTCGGAAG

GCCTTGTGTTGGAA
236983219





TAG

GTAG







WP_0141069
53
CTACTTCCGATANNN
660
CTCCTTCCAATAAA
chr1:236983188-
6


07.1

NNNNNTGTCGGAAG

GCCTTGTGTTGGAA
236983219





TAG

GTAG







WP_0704062
54
CTACTTCCGATANNN
661
CTCCTTCCAATAAA
chr1:236983188-
6


27.1

NNNNNTGTCGGAAG

GCCTTGTGTTGGAA
236983219





TAG

GTAG







WP_0396836
55
TCTATATCCCATANNN
662
TCTATATACTATATA
chr1:239232551-
6


93.1

NNNNNTATAGGATAT

TAAGTATATAGTAT
239232584





AGA

ATAGA







WP_0581019
56
ATTAGTCCCACANNN
663
TTTAGTCCCACAAAT
chr1:240346758-
4


78.1

NNNNNNTGTGTGACT

TTAAAATATGTGAC
240346790





ACT

TGCT







WP_0732883
57
TTTAGGTATCATANN
664
TTTAGGCATCATGA
chr1:37227820-
6


22.1

NNNNNNNTATGATG

TGCTGGCATATGAT
37227854





CCTAAA

CCCTAAA







WP_1029063
58
TTAGGTCTCATANNN
665
TTAGGTCTCTTTTTA
chr1:44815049-
5


31.1

NNNNNTATGAGACCT

CCTTGTAAGAGACC
44815080





TA

TTA







WP_0455723
59
TCACTGTCCATANNN
666
TCACTGTCCTTATCT
chr1:58905291-
7


21.1

NNNNCATGGACAGT

ACAACATGGAGATT
58905321





GA

GA







WP_0413384
60
CAATGTCCAATANNN
667
TTATGTCCAATATAA
chr1:88050039-
7


71.1

NNNNNTATTGGACAT

AGCTATATTGGACA
88050070





TA

TAA







WP_0110437
61
CTATGTCCGATANNN
668
TTATGTCCAATATAA
chr1:88050039-
7


09.1

NNNNNTATTGGACAT

AGCTATATTGGACA
88050070





AG

TAA







WP_0417369
62
CTATGTCCGATANNN
669
TTATGTCCAATATAA
chr1:88050039-
7


50.1

NNNNNTATTGGACAT

AGCTATATTGGACA
88050070





AG

TAA







WP_0703749
63
CTATGTCCGATANNN
670
TTATGTCCAATATAA
chr1:88050039-
7


86.1

NNNNNTATTGGACAT

AGCTATATTGGACA
88050070





AG

TAA







WP_0330821
64
CTATGTCCGATANNN
671
TTATGTCCAATATAA
chr1:88050039-
7


29.1

NNNNNTATTGGACAT

AGCTATATTGGACA
88050070





AG

TAA







WP_0571809
65
CTATGTCCGATANNN
672
TTATGTCCAATATAA
chr1:88050039-
7


66.1

NNNNNTATTGGACAT

AGCTATATTGGACA
88050070





AG

TAA







WP_0517439
66
TTATGTCCGATANNN
673
TTATGTCCAATATAA
chr1:88050039-
7


15.1

NNNNNTATCGGACAT

AGCTATATTGGACA
88050070





AT

TAA







WP_0725989
67
TTATGTCCGATANNN
674
TTATGTCCAATATAA
chr1:88050039-
7


06.1

NNNNNTCTCGGACAT

AGCTATATTGGACA
88050070





AA

TAA







WP_0693376
68
TTATGTCCGATANNN
675
TTATGTCCAATATAA
chr1:88050039-
7


75.1

NNNNNTCTCGGACAT

AGCTATATTGGACA
88050070





AA

TAA







WP_0607342
69
GCTTGCGACATANNN
676
GGTTGCGACATACA
chr1:94419447-
5


94.1

NNNNNTATGTCGCAA

GGTATGTATGTCAC
94419478





AC

ATAC







WP_0363653
70
TTTGTTGGTATANNN
677
TTTGAGGGTATTTA
chr1:99638466-
NA


62.1

NNNNNTATACCAACA

TTTTGCTATACCAAC
99638497





AA

AAA







WP_0886525
71
CTATGTCCAATANNN
678
CTATGTACATTATCT
chr10:107928889-
5


86.1

NNNNNNTATTGGAC

TATATTTATTGGACA
107928921





ATGA

TGT







PLX79396.1
72
TCAGCCGGAAGANN
679
TCAGCCGGAAGGTG
chr10:111439026-
6




NNNNNTCTTGCGGCT

GAACTTCTGGCAGC
111439056





GC

TGC







WP_0128527
73
AAACCCTACAGANNN
680
AAACCCTACAGAAT
chr10:112359538-
4


32.1

NNNNNTCTGTAGGGT

TGTACTTCTGAAGG
112359569





TA

ATCA







WP_0128527
74
AAACCCTACAGANNN
681
AAACCCTACAGAAT
chr10:112359538-
4


33.1

NNNNNTCTGTAGGGT

TGTACTTCTGAAGG
112359569





TA

ATCA







WP_0659354
75
TTAGGTCTGATANNN
682
TTAGGTCTGATATA
chr10:120864993-
5


87.1

NNNNNNTATCCGACC

AATGAAGTCTTTGA
120865025





CAA

CCCAA







WP_0104523
76
TCACATGGGATANNN
683
TTACTTGGGATACA
chr10:121206254-
6


01.1

NNNNNNTACCCCGTG

AAATCTGTACCCAG
121206286





TGA

TGTGA







WP_0902087
77
TCACATGGGATANNN
684
TTACTTGGGATACA
chr10:121206254-
6


26.1

NNNNNNTACCCCGTG

AAATCTGTACCCAG
121206286





TGA

TGTGA







WP_0621521
78
TCATCGTACATANNN
685
TCCTCTTACATACTT
chr10:131836361-
5


19.1

NNNNNTATGTATGAT

TAAAATATGTATGA
131836392





GA

TTA







WP_0131963
79
TATGACTCCAGANNN
686
TATGACTTCAAACT
chr10:32990424-
7


26.1

NNNNNNTCTGGAGT

GTTATTCTCTGGAG
32990456





CACA

TCATA







WP_0135778
80
TATGACTCCAGANNN
687
TATGACTTCAAACT
chr10:32990424-
7


22.1

NNNNNNTCTGGAGT

GTTATTCTCTGGAG
32990456





CACA

TCATA







WP_0393899
81
TATGACTCCAGANNN
688
TATGACTTCAAACT
chr10:32990424-
7


14.1

NNNNNNTCTGGAGT

GTTATTCTCTGGAG
32990456





CACA

TCATA







WP_0337689
82
TGTGACTCCAGANNN
689
TATGACTTCAAACT
chr10:32990424-
7


26.1

NNNNNNTCTGGAGT

GTTATTCTCTGGAG
32990456





CATA

TCATA







WP_0567737
83
TGTGACTCCAGANNN
690
TATGACTTCAAACT
chr10:32990424-
7


90.1

NNNNNNTCTGGAGT

GTTATTCTCTGGAG
32990456





CATA

TCATA







WP_0120758
84
TTAAGTCTGATANNN
691
TTAAGTCAAATATCT
chr10:60537494-
6


09.1

NNNNNNTATCCGACC

ACTAGATATCCCAC
60537526





TAA

CTAA







WP_0339867
85
TTAAGTCTGATANNN
692
TTAAGTCAAATATCT
chr10:60537494-
6


89.1

NNNNNNTATCCGACC

ACTAGATATCCCAC
60537526





TAA

CTAA







WP_0057522
86
TTGCAAGGAACANNN
693
TTGCAAGGAACTGT
chr10:61854428-
5


18.1

NNNNNTGCTCCTTGC

TAAGAATTTTCCTTG
61854459





AT

CAT







WP_0112718
87
TTGCAAGGAACANNN
694
TTGCAAGGAACTGT
chr10:61854428-
5


67.1

NNNNNTGCTCCTTGC

TAAGAATTTTCCTTG
61854459





AT

CAT







WP_0694813
88
CTTATTAATTAATANN
695
CTTGATAATTAATA
chr10:63808356-
7


44.1

NNNNNTATTAATTAA

ATGAGGTTATTAAT
63808390





TAAG

TAATAAT







WP_0928377
89
TCACTCACGATANNN
696
TCACCCACGTCACC
chr10:86883137-
4


35.1

NNNNNNTATCGTGG

CTTGGATTATCGTG
86883169





GTAA

GGTAA







WP_0572029
90
TTACCCACGATANNN
697
TCACCCACGTCACC
chr10:86883137-
4


84.1

NNNNNNTATCGTGG

CTTGGATTATCGTG
86883169





GTAA

GGTAA







WP_0572675
91
TTACCCACGATANNN
698
TCACCCACGTCACC
chr10:86883137-
4


49.1

NNNNNNTATCGTGG

CTTGGATTATCGTG
86883169





GTAA

GGTAA







WP_0770196
92
TACGGGGAAAGANN
699
TAGGAGGAAAGAC
chr11:100278888-
5


34.1

NNNNNTCTTTCCCCG

TTTCAGTCTTTCCCC
100278918





TT

ATT







WP_0837688
93
TCAAGATGAACANNN
700
TCAAGATGAACAAA
chr11:134140724-
5


87.1

NNNNNNTGTTTATCT

CCACATATGTGTTTT
134140756





TGA

TTGA







ACZ42745.1
94
TCAAGATGAACANNN
701
TCAAGATGAACAAA
chr11:134140724-
5




NNNNNNTGTTTATCT

CCACATATGTGTTTT
134140756





TGA

TTGA







WP_0590616
95
TTAACTTGAATANNN
702
TTAATTTGAATATAA
chr11:21310918-
6


37.1

NNNNNCATTCAAGCT

TCTGTCATTCAAGTT
21310949





AA

GA







WP_0569745
96
AATCGTTGATATANN
703
AATCATTCATATATA
chr11:39698382-
6


19.1

NNNNNNTATATTAAC

TATATATATATTAAC
39698415





GTTT

ATTT







WP_0033308
97
AACAAGAGCAGANN
704
AACAGGAACACACA
chr11:72593387-
6


82.1

NNNNNNCCTGCTCTT

CTTACACCTGCTCTT
72593418





GCT

GCT







WP_0008767
98
TGAGTATTTATATAN
705
TGAGTATTTATATAT
chr11:95634315-
6


35.1

NNNNNNNTATGTAA

ACTTGAGTATATAT
95634350





ATACTCA

ATACACA







WP_0198215
99
TGATCGATAACANNN
706
TGATCAATAACACC
chr11:98224565-
5


68.1

NNNNTGTTATCGATT

AAGCCTGTCATCAA
98224595





A

TTA







WP_0112393
100
TTACATTCGATANNN
707
TTAGATTCAATATTT
chr12:103480844-
4


95.1

NNNNNNTATCGGAT

TTGAATTATTGGAT
103480876





GTAA

GTAA







WP_0136957
101
TTACTTCCGATANNN
708
TTACATCTGATAAG
chr12:105057007-
5


83.1

NNNNNNTATCGGAA

GATCTAGTATCGAA
105057039





ATAT

AATAT







YP_0091255
102
GCCCTGGTCAGANNN
709
GCCCTGGTGACAGG
chr12:119742033-
7


17.1

NNNNNTCTGACCGG

GGAGTCTCTGACCT
119742064





GGC

GGGC







WP_0620417
103
GCGTGACGCAGANN
710
GCGTGAGGAAGAG
chr12:15116187-
6


33.1

NNNNNNNTCTGCGTC

CAGCCCATTCTGCA
15116219





ACGC

TCACGC







WP_0448784
104
CACCTCCAAATANNN
711
AACCCCCAAATAGT
chr12:23398673-
4


38.1

NNNNNNTATTAGGA

TAACCTATATTAGG
23398705





GGTC

TGGTC







KPU82353.1
105
TTATTTCCGATANNN
712
TTATTTCCTATATTT
chr12:29882634-
7




NNNNNNTATCGGAA

TAAGTTTATAAGAA
29882666





AAAA

AAAA







WP_0484992
106
ATLTTTGTCAGANNN
713
ATATTTGTCAGAAA
chr12:30608656-
7


02.1

NNNNCCCGACAAAG

AAAAATCTGACAAA
30608686





AT

GAT







YP_195916.1
107
TCTATGGACATANNN
714
TCTATGTACATAGG
chr12:31904100-
6




NNNNNAATGTCCATA

TATGTCTATGTACAT
31904131





GA

AGA







WP_0133971
108
TCTATGGACATANNN
715
TCTATGTACATAGG
chr12:31904100-
6


05.1

NNNNNAATGTCCATA

TATGTCTATGTACAT
31904131





GA

AGA







WP_0575912
109
TCTATGGACATANNN
716
TCTATGTACATAGG
chr12:31904100-
6


91.1

NNNNNAATGTCCATA

TATGTCTATGTACAT
31904131





GA

AGA







WP_1140706
110
ATTAGTTATGATANN
717
ATTAGTTATGATAA
chr12:33682974-
4


45.1

NNNNNNNTATCGTA

ATATGACATAACAC
33683008





AGTAAT

AAGTAAT







WP_1201285
111
TAGAAAGCCATANNN
718
AAGAAAGCCATGG
chr12:48381088-
7


27.1

NNNNNNTATGGCTTC

ACATCAATTATGGC
48381120





CTG

TTCATG







WP_0147866
112
TTACCTCCGACANNN
719
TTCCCTCAGACAAT
chr12:50098705-
6


80.1

NNNNNTGTCGTGGG

GACTGATGTGGTGG
50098736





TAA

GTAA







WP_0656537
113
TTACTTCCGATANNN
720
GTACTTCCCATAGG
chr12:53017915-
5


36.1

NNNNNTATCGGAAG

TGTTGGTATCTGAA
53017946





TAG

GTAC







WP_0823040
114
TTACTTCCGATANNN
721
GTACTTCCCATAGG
chr12:53017915-
5


40.1

NNNNNTATCGGAAG

TGTTGGTATCTGAA
53017946





TAC

GTAC







WP_0767290
115
CAACGTCTGATANNN
722
CTAAGTCTGATAGG
chr12:61149603-
7


31.1

NNNNNNTATCAGAC

ACTTTTTTATCAGAC
61149635





GTAG

TTAG







WP_0123298
116
CAACGTCTGATANNN
723
CTAAGTCTGATAGG
chr12:61149603-
7


41.1

NNNNNNTATCAGAC

ACTTTTTTATCAGAC
61149635





GTAG

TTAG







KIU27889.1
117
CAACGTCTGATANNN
724
CTAAGTCTGATAGG
chr12:61149603-
7




NNNNNNTATCAGAC

ACTTTTTTATCAGAC
61149635





GTAG

TTAG







WP_0293617
118
CTACGTCTGATANNN
725
CTAAGTCTGATAGG
chr12:61149603-
7


46.1

NNNNNNTATCAGAC

ACTTTTTTATCAGAC
61149635





GTTG

TTAG







WP_0123298
119
CTACGTCTGATANNN
726
CTAAGTCTGATAGG
chr12:61149603-
7


56.1

NNNNNNTATCAGAC

ACTTTTTTATCAGAC
61149635





GTTG

TTAG







WP_0120104
120
AAGCATGACACANNN
727
AAGCATGAAACAGA
chr12:69370960-
5


52.1

NNNNCGTGCCATGCT

ATGTAAGTGCCATG
69370990





T

CAT







WP_0853611
121
TAGGTATTGATANNN
728
TAGGTATTGATATG
chr12:89090193-
5


67.1

NNNNNTCTCACTACC

GTTTGGTGTCCCTA
89090224





TA

CCCA







WP_0078582
122
AAATACCACAGANNN
729
AAATAACACAGCAA
chr12:90787740-
6


08.1

NNNNNTCTGCGGTAC

CTCCACTCTGGGGT
90787771





TT

ACTT







WP_0460272
123
TTAGGTTGGATANNN
730
TTAGGTTGGCTAAG
chr13:54916637-
7


27.1

NNNNNNTATCAGACC

ATAAGAAAATCAGA
54916669





TAA

CCAAA







OUV98802.1
124
ATTACTATTGATANN
731
AATAATATTGATAT
chr13:63134582-
5




NNNNNNNTATCATTA

CAACTAATTATCATC
63134616





GTAAT

AGTAAT







WP_0755008
125
ATTACTATTGATANN
732
AATAATATTGATAT
chr13:63134582-
5


61.1

NNNNNNNTATCATTA

CAACTAATTATCATC
63134616





GTAAT

AGTAAT







WP_0119065
126
GATAACAAGATANNN
733
TATAACAAGATACA
chr13:75289152-
6


04.1

NNNNNNTATCTTGTT

GCCTGTTTATCTTG
75289184





ATC

GTATA







WP_0142690
127
TATCCAATGTATANN
734
TATACATTGTATATA
chr13:82628490-
6


99.1

NNNNNNNTATACATT

CATTGTATATACATT
82628524





GGATA

GTATA







WP_0023288
128
GGAAAACGTAGANN
735
GGAAAACTTAGAAA
chr13:84656932-
6


98.1

NNNNNNTCTACGTTT

GAATCTTCCACTTTT
84656963





TCC

TCC







WP_0512794
129
CTAGTCATGATANNN
736
GTAGTCATGATATT
chr13:93786373-
5


02.1

NNNNNTATCGTGACT

TCTTACTATTATGAC
93786404





AT

TAT







WP_0580022
130
CCTTAATAGACANNN
737
CACTAATAGACATA
chr14:102832746-
5


97.1

NNNNNNTATCTATTA

GCAGTAATATATAT
102832778





AGC

TAAGC







WP_0140808
131
GGTGCAACCACANNN
738
GGTGCCACCACATG
chr14:105806860-
7


79.1

NNNNTGTGGCTGCAC

TCATGTATGGCTGC
105806890





C

CCC







WP_0344654
132
CTTTCGGACAGANNN
739
CGTTGGGACAGATG
chr14:106294549-
5


37.1

NNNNNTATGTCTGAA

TGTGTACATGTCTG
106294580





AG

AAAG







WP_0150459
133
TAATCCGTAATANNN
740
TAATCCTTAATACTA
chr14:37532388-
6


88.1

NNNNTTTAACGGATT

ACACTTTAACGCAT
37532418





A

AA







WP_1254404
134
TTAGTACCGATANNN
741
TTACTACCAATATAA
chr14:52339287-
6


93.1

NNNNNNTATCGGTAC

CAACACTACCAGTA
52339319





TAA

CTAA







TDN36797.1
135
TTAGTACCGATANNN
742
TTACTACCAATATAA
chr14:52339287-
6




NNNNNNTATCAGTAC

CAACACTACCAGTA
52339319





TAA

CTAA







WP_1336591
136
TTAGTACCGATANNN
743
TTACTACCAATATAA
chr14:52339287-
6


53.1

NNNNNNTATCAGTAC

CAACACTACCAGTA
52339319





TAA

CTAA







OUW60929.1
137
TTTTTTCCGATANNNN
744
TTTTTTCCTATAGTT
chr14:63944046-
NA




NNNNNTATCGGAAAT

TTCTGGTATTTGAA
63944078





AT

ATAT







WP_0089163
138
AAAGTACCAACANNN
745
AAAGGACCAACTTT
chr14:66956028-
5


47.1

NNNNTGTTGATACTT

GATTTTGTTGATTCT
66956058





T

TT







WP_0168003
139
CAAAAGGCGACANN
746
CAAATGTAGACAGT
chr14:67334559-
6


55.1

NNNNNTGTCGCCTTT

TTATATGTCGCCTTT
67334589





TT

TT







WP_0292037
140
CAAAAGGCGACANN
747
CAAATGTAGACAGT
chr14:67334559-
6


06.1

NNNNNTGTCGCCTTT

TTATATGTCGCCTTT
67334589





TT

TT







WP_0300647
141
TGACTCCTGATANNN
748
TAACTCCTGGTAAA
chr14:71732258-
6


47.1

NNNNNTCTCTGGAGT

CAGGTCTTTCTGGA
71732289





CA

GTCA







WP_0484742
142
CCGTCATGGATANNN
749
CCGTCATGGGGCTT
chr14:93647060-
6


44.1

NNNNNTATCCATGAA

ATAGTCTATCCATG
93647091





GC

AAGC







WP_1093140
143
TTACACATGATANNN
750
TTATACATGATATAC
chr14:94716806-
5


41.1

NNNNNNTATCATGTG

ATAACATATCATGT
94716838





TAA

ATTA







WP_0292243
144
CAAAAGGCGACANN
751
CAAAAGGAGACAG
chr14:97951200-
7


90.1

NNNNNNTGTCGCCTT

GCATATTTTTCCCCT
97951231





TTT

TTTT







WP_0106467
145
CAAAAGGCGACANN
752
CAAAAGGAGACAG
chr14:97951200-
7


15.1

NNNNNNTGTCGCCTT

GCATATTTTTCCCCT
97951231





TTT

TTTT







WP_0217104
146
CAAAAGGCGACANN
753
CAAAAGGAGACAG
chr14:97951200-
7


15.1

NNNNNNTGTCGCCTT

GCATATTTTTCCCCT
97951231





TTT

TTTT







WP_0119992
147
CAAAAGGCGACANN
754
CAAAAGGAGACAG
chr14:97951200-
7


82.1

NNNNNNTGTCGCCTT

GCATATTTTTCCCCT
97951231





TTT

TTTT







WP_0506492
148
CAAAAGGCGACANN
755
CAAAAGGAGACAG
chr14:97951200-
7


39.1

NNNNNNTGTCGCCTT

GCATATTTTTCCCCT
97951231





TTT

TTTT







WP_0519410
149
TTGAGTGCTACANNN
756
CTGGGTGCTCCAGG
chr15:23506248-
6


91.1

NNNNNNTGTAGCACT

GGCTCTCTGTAGCA
23506280





CAA

CTCAA







WP_0653470
150
TTGAGTGCTACANNN
757
CTGGGTGCTCCAGG
chr15:23506248-
6


10.1

NNNNNNTGTAGCACT

GGCTCTCTGTAGCA
23506280





CAA

CTCAA







WP_0496814
151
GAACCCTTGATANNN
758
GAACACTTTATAAG
chr15:43410177-
6


75.1

NNNNTATCAAGGGTT

TTATATATGAAGGG
43410207





T

TTT







WP_0253152
152
AACAGATCAATANNN
759
AAAAGATCAATAAA
chr15:47468716-
6


61.1

NNNNGATTGATCTGT

GCACAGATTGAATT
47468746





T

GTT







WP_0380697
153
TTATGTCCAATANNN
760
TTATTTCCAATAAAT
chr15:54938190-
8


93.1

NNNNNNTATCGGAC

CAGAATTATAGCAC
54938222





ATGA

ATGA







WP_0068610
154
AACAACCACATANNN
761
AAAAACCACATATT
chr15:58808569-
6


39.1

NNNNNTATGTGGTTG

ATAAAATATATGGT
58808600





TT

TTTT







WP_1023690
155
TCAGATGGGATANNN
762
TCAGTTGGGATACA
chr15:90749251-
7


17.1

NNNNNNTATCCCGTG

ATTAATGTAACCTG
90749283





TGA

TGTGA







WP_0032125
156
TCAGATGGGATANNN
763
TCAGTTGGGATACA
chr15:90749251-
7


74.1

NNNNNNTATCCCGTG

ATTAATGTAACCTG
90749283





TGA

TGTGA







WP_1026049
157
TCAGATGGGATANNN
764
TCAGTTGGGATACA
chr15:90749251-
7


09.1

NNNNNNTATCCCGTG

ATTAATGTAACCTG
90749283





TGA

TGTGA







WP_0084325
158
TCAGATGGGATANNN
765
TCAGTTGGGATACA
chr15:90749251-
7


17.1

NNNNNNTATCCCGTG

ATTAATGTAACCTG
90749283





TGA

TGTGA







WP_0028923
159
AAAATAGCGATANNN
766
AAAATAGGGATAAC
chr16:13245429-
5


42.1

NNNNTATCGCTATTA

AATAGTATCTCTATC
13245459





T

AT







WP_0028871
160
AAAATAGCGATANNN
767
AAAATAGGGATAAC
chr16:13245429-
5


64.1

NNNNTATCGCTATTA

AATAGTATCTCTATC
13245459





T

AT







WP_0705783
161
AAAATAGCGATANNN
768
AAAATAGGGATAAC
chr16:13245429-
5


46.1

NNNNTATCGCTATTA

AATAGTATCTCTATC
13245459





T

AT







WP_0115302
162
CTACTCCGCAGANNN
769
CTCCTCCGCAGAAG
chr16:19016625-
5


52.1

NNNNNTCTGCGGAG

TCTGTGTCTGGGGA
19016656





TAA

GCAA







WP_0058340
163
TTAGGGAGAAGANN
770
TTAGGGAGGAGAC
chr16:35081954-
5


81.1

NNNNNNNTCTTCTCC

AAGGCTGTTCTTTTC
35081986





CTAC

CCTCC







WP_1002941
164
CAAGTATCGATANNN
771
CATGTATAGATATA
chr16:48917302-
4


15.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0412342
165
CAAGTATCGATANNN
772
CATGTATAGATATA
chr16:48917302-
4


71.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0412020
166
CAAGTATCGATANNN
773
CATGTATAGATATA
chr16:48917302-
4


99.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0888689
167
CAAGTATCGATANNN
774
CATGTATAGATATA
chr16:48917302-
4


73.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0695548
168
CAAGTATCGATANNN
775
CATGTATAGATATA
chr16:48917302-
4


70.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1032520
169
CAAGTATCGATANNN
776
CATGTATAGATATA
chr16:48917302-
4


06.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1270056
170
CAAGTATCGATANNN
777
CATGTATAGATATA
chr16:48917302-
4


24.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







SIQ01063.1
171
CAAGTATCGATANNN
778
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1006458
172
CAAGTATCGATANNN
779
CATGTATAGATATA
chr16:48917302-
4


80.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1006537
173
CAAGTATCGATANNN
780
CATGTATAGATATA
chr16:48917302-
4


72.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0419154
174
CAAGTATCGATANNN
781
CATGTATAGATATA
chr16:48917302-
4


08.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1295040
175
CAAGTATCGATANNN
782
CATGTATAGATATA
chr16:48917302-
4


75.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0946984
176
CAAGTATCGATANNN
783
CATGTATAGATATA
chr16:48917302-
4


59.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1068867
177
CAAGTATCGATANNN
784
CATGTATAGATATA
chr16:48917302-
4


83.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0177853
178
CAAGTATCGATANNN
785
CATGTATAGATATA
chr16:48917302-
4


58.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1008583
179
CAAGTATCGATANNN
786
CATGTATAGATATA
chr16:48917302-
4


03.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1232461
180
CAAGTATCGATANNN
787
CATGTATAGATATA
chr16:48917302-
4


39.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0431627
181
CAAGTATCGATANNN
788
CATGTATAGATATA
chr16:48917302-
4


17.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1242494
182
CAAGTATCGATANNN
789
CATGTATAGATATA
chr16:48917302-
4


52.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0961195
183
CAAGTATCGATANNN
790
CATGTATAGATATA
chr16:48917302-
4


02.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0842026
184
CAAGTATCGATANNN
791
CATGTATAGATATA
chr16:48917302-
4


52.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0392158
185
CAAGTATCGATANNN
792
CATGTATAGATATA
chr16:48917302-
4


13.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1242514
186
CAAGTATCGATANNN
793
CATGTATAGATATA
chr16:48917302-
4


91.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0252017
187
CAAGTATCGATANNN
794
CATGTATAGATATA
chr16:48917302-
4


27.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1257299
188
CAAGTATCGATANNN
795
CATGTATAGATATA
chr16:48917302-
4


07.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0431229
189
CAAGTATCGATANNN
796
CATGTATAGATATA
chr16:48917302-
4


83.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0733502
190
CAAGTATCGATANNN
797
CATGTATAGATATA
chr16:48917302-
4


84.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1034707
191
CAAGTATCGATANNN
798
CATGTATAGATATA
chr16:48917302-
4


61.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0431348
192
CAAGTATCGATANNN
799
CATGTATAGATATA
chr16:48917302-
4


01.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1256066
193
CAAGTATCGATANNN
800
CATGTATAGATATA
chr16:48917302-
4


95.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0989840
194
CAAGTATCGATANNN
801
CATGTATAGATATA
chr16:48917302-
4


54.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1011491
195
CAAGTATCGATANNN
802
CATGTATAGATATA
chr16:48917302-
4


34.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0877557
196
CAAGTATCGATANNN
803
CATGTATAGATATA
chr16:48917302-
4


18.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0808913
197
CAAGTATCGATANNN
804
CATGTATAGATATA
chr16:48917302-
4


34.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1115878
198
CAAGTATCGATANNN
805
CATGTATAGATATA
chr16:48917302-
4


63.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







ABO90113.1
199
CAAGTATCGATANNN
806
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1032431
200
CAAGTATCGATANNN
807
CATGTATAGATATA
chr16:48917302-
4


21.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1242438
201
CAAGTATCGATANNN
808
CATGTATAGATATA
chr16:48917302-
4


12.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0428784
202
CAAGTATCGATANNN
809
CATGTATAGATATA
chr16:48917302-
4


86.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0053470
203
CAAGTATCGATANNN
810
CATGTATAGATATA
chr16:48917302-
4


25.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0420629
204
CAAGTATCGATANNN
811
CATGTATAGATATA
chr16:48917302-
4


22.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0420550
205
CAAGTATCGATANNN
812
CATGTATAGATATA
chr16:48917302-
4


87.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0751136
206
CAAGTATCGATANNN
813
CATGTATAGATATA
chr16:48917302-
4


48.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0695268
207
CAAGTATCGATANNN
814
CATGTATAGATATA
chr16:48917302-
4


84.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0505478
208
CAAGTATCGATANNN
815
CATGTATAGATATA
chr16:48917302-
4


38.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0764917
209
CAAGTATCGATANNN
816
CATGTATAGATATA
chr16:48917302-
4


68.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







SQH59660.1
210
CAAGTATCGATANNN
817
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0719101
211
CAAGTATCGATANNN
818
CATGTATAGATATA
chr16:48917302-
4


68.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







OFC44115.1
212
CAAGTATCGATANNN
819
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







AHV35191.2
213
CAAGTATCGATANNN
820
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







EKB28734.1
214
CAAGTATCGATANNN
821
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







OCA67852.1
215
CAAGTATCGATANNN
822
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







KMK90327.1
216
CAAGTATCGATANNN
823
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







APJ17493.1
217
CAAGTATCGATANNN
824
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0591677
218
CAAGTATCGATANNN
825
CATGTATAGATATA
chr16:48917302-
4


96.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







PKD25755.1
219
CAAGTATCGATANNN
826
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0521011
220
CAAGTATCGATANNN
827
CATGTATAGATATA
chr16:48917302-
4


92.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0521590
221
CAAGTATCGATANNN
828
CATGTATAGATATA
chr16:48917302-
4


26.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







AGM44110.1
222
CAAGTATCGATANNN
829
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0426547
223
CAAGTATCGATANNN
830
CATGTATAGATATA
chr16:48917302-
4


58.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0426383
224
CAAGTATCGATANNN
831
CATGTATAGATATA
chr16:48917302-
4


08.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0464007
225
CAAGTATCGATANNN
832
CATGTATAGATATA
chr16:48917302-
4


08.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







ARW82171.1
226
CAAGTATCGATANNN
833
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0424673
227
CAAGTATCGATANNN
834
CATGTATAGATATA
chr16:48917302-
4


53.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0511637
228
CAAGTATCGATANNN
835
CATGTATAGATATA
chr16:48917302-
4


65.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







KOG94732.1
229
CAAGTATCGATANNN
836
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







EKB19089.1
230
CAAGTATCGATANNN
837
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







EKB18370.1
231
CAAGTATCGATANNN
838
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0820325
232
CAAGTATCGATANNN
839
CATGTATAGATATA
chr16:48917302-
4


88.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







AEB50024.1
233
CAAGTATCGATANNN
840
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







EQC05143.1
234
CAAGTATCGATANNN
841
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







RAJ07841.1
235
CAAGTATCGATANNN
842
CATGTATAGATATA
chr16:48917302-
4




NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_1137395
236
CAAGTATTGATANNN
843
CATGTATAGATATA
chr16:48917302-
4


60.1

NNNNNTATCGATACT

TATGCATATAGATA
48917333





TA

CTTA







WP_0615205
237
CCAGCCCCTACANNN
844
CCAGCCCCTCCAGA
chr16:66346513-
6


10.1

NNNNNTGTAGGGGC

GAGCCCTGATGGG
66346544





TGT

GCTGT







WP_0069513
238
TGCAAATATTACANN
845
TGCAAATTTTACAA
chr16:66394313-
7


58.1

NNNNNNNTGTAATTT

CCTTTACTTTTAATT
66394347





TTGCA

TTTCCA







WP_0400655
239
TAAGTATCGATANNN
846
TAACTATCAATAGTT
chr17:10781706-
6


15.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1015315
240
TAAGTATCGATANNN
847
TAACTATCAATAGTT
chr17:10781706-
6


73.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0412350
241
TAAGTATCGATANNN
848
TAACTATCAATAGTT
chr17:10781706-
6


50.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0820386
242
TAAGTATCGATANNN
849
TAACTATCAATAGTT
chr17:10781706-
6


47.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1085882
243
TAAGTATCGATANNN
850
TAACTATCAATAGTT
chr17:10781706-
6


31.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







KRV94096.1
244
TAAGTATCGATANNN
851
TAACTATCAATAGTT
chr17:10781706-
6




NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0993594
245
TAAGTATCGATANNN
852
TAACTATCAATAGTT
chr17:10781706-
6


35.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1204142
246
TAAGTATCGATANNN
853
TAACTATCAATAGTT
chr17:10781706-
6


55.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1013472
247
TAAGTATCGATANNN
854
TAACTATCAATAGTT
chr17:10781706-
6


86.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1068436
248
TAAGTATCGATANNN
855
TAACTATCAATAGTT
chr17:10781706-
6


96.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1242429
249
TAAGTATCGATANNN
856
TAACTATCAATAGTT
chr17:10781706-
6


06.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0412027
250
TAAGTATCGATANNN
857
TAACTATCAATAGTT
chr17:10781706-
6


00.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1231730
251
TAAGTATCGATANNN
858
TAACTATCAATAGTT
chr17:10781706-
6


50.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1076829
252
TAAGTATCGATANNN
859
TAACTATCAATAGTT
chr17:10781706-
6


50.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1288215
253
TAAGTATCGATANNN
860
TAACTATCAATAGTT
chr17:10781706-
6


47.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0821806
254
TAAGTATCGATANNN
861
TAACTATCAATAGTT
chr17:10781706-
6


60.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0820299
255
TAAGTATCGATANNN
862
TAACTATCAATAGTT
chr17:10781706-
6


42.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0810132
256
TAAGTATCGATANNN
863
TAACTATCAATAGTT
chr17:10781706-
6


37.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0249417
257
TAAGTATCGATANNN
864
TAACTATCAATAGTT
chr17:10781706-
6


85.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0650175
258
TAAGTATCGATANNN
865
TAACTATCAATAGTT
chr17:10781706-
6


96.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0428890
259
TAAGTATCGATANNN
866
TAACTATCAATAGTT
chr17:10781706-
6


28.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1119106
260
TAAGTATCGATANNN
867
TAACTATCAATAGTT
chr17:10781706-
6


13.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1268818
261
TAAGTATCGATANNN
868
TAACTATCAATAGTT
chr17:10781706-
6


46.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0177790
262
TAAGTATCGATANNN
869
TAACTATCAATAGTT
chr17:10781706-
6


21.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0807688
263
TAAGTATCGATANNN
870
TAACTATCAATAGTT
chr17:10781706-
6


65.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0809731
264
TAAGTATCGATANNN
871
TAACTATCAATAGTT
chr17:10781706-
6


38.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0249447
265
TAAGTATCGATANNN
872
TAACTATCAATAGTT
chr17:10781706-
6


68.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1065525
266
TAAGTATCGATANNN
873
TAACTATCAATAGTT
chr17:10781706-
6


88.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1139950
267
TAAGTATCGATANNN
874
TAACTATCAATAGTT
chr17:10781706-
6


02.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1306323
268
TAAGTATCGATANNN
875
TAACTATCAATAGTT
chr17:10781706-
6


56.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1137216
269
TAAGTATCGATANNN
876
TAACTATCAATAGTT
chr17:10781706-
6


56.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0888462
270
TAAGTATCGATANNN
877
TAACTATCAATAGTT
chr17:10781706-
6


17.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0763607
271
TAAGTATCGATANNN
878
TAACTATCAATAGTT
chr17:10781706-
6


55.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1317306
272
TAAGTATCGATANNN
879
TAACTATCAATAGTT
chr17:10781706-
6


94.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1032439
273
TAAGTATCGATANNN
880
TAACTATCAATAGTT
chr17:10781706-
6


80.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0813046
274
TAAGTATCGATANNN
881
TAACTATCAATAGTT
chr17:10781706-
6


08.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1188812
275
TAAGTATCGATANNN
882
TAACTATCAATAGTT
chr17:10781706-
6


29.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0293008
276
TAAGTATCGATANNN
883
TAACTATCAATAGTT
chr17:10781706-
6


82.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1029887
277
TAAGTATCGATANNN
884
TAACTATCAATAGTT
chr17:10781706-
6


85.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0345236
278
TAAGTATCGATANNN
885
TAACTATCAATAGTT
chr17:10781706-
6


32.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0117061
279
TAAGTATCGATANNN
886
TAACTATCAATAGTT
chr17:10781706-
6


13.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0810861
280
TAAGTATCGATANNN
887
TAACTATCAATAGTT
chr17:10781706-
6


91.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0457898
281
TAAGTATCGATANNN
888
TAACTATCAATAGTT
chr17:10781706-
6


55.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1016174
282
TAAGTATCGATANNN
889
TAACTATCAATAGTT
chr17:10781706-
6


48.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0999932
283
TAAGTATCGATANNN
890
TAACTATCAATAGTT
chr17:10781706-
6


15.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1044559
284
TAAGTATCGATANNN
891
TAACTATCAATAGTT
chr17:10781706-
6


33.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0428638
285
TAAGTATCGATANNN
892
TAACTATCAATAGTT
chr17:10781706-
6


72.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0412057
286
TAAGTATCGATANNN
893
TAACTATCAATAGTT
chr17:10781706-
6


82.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0431527
287
TAAGTATCGATANNN
894
TAACTATCAATAGTT
chr17:10781706-
6


10.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1038589
288
TAAGTATCGATANNN
895
TAACTATCAATAGTT
chr17:10781706-
6


36.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1242393
289
TAAGTATCGATANNN
896
TAACTATCAATAGTT
chr17:10781706-
6


32.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1032618
290
TAAGTATCGATANNN
897
TAACTATCAATAGTT
chr17:10781706-
6


85.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1032601
291
TAAGTATCGATANNN
898
TAACTATCAATAGTT
chr17:10781706-
6


30.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1118092
292
TAAGTATCGATANNN
899
TAACTATCAATAGTT
chr17:10781706-
6


97.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0813318
293
TAAGTATCGATANNN
900
TAACTATCAATAGTT
chr17:10781706-
6


71.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0412151
294
TAAGTATCGATANNN
901
TAACTATCAATAGTT
chr17:10781706-
6


62.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_1266233
295
TAAGTATCGATANNN
902
TAACTATCAATAGTT
chr17:10781706-
6


23.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0504900
296
TAAGTATCGATANNN
903
TAACTATCAATAGTT
chr17:10781706-
6


04.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0420309
297
TAAGTATCGATANNN
904
TAACTATCAATAGTT
chr17:10781706-
6


57.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0420832
298
TAAGTATCGATANNN
905
TAACTATCAATAGTT
chr17:10781706-
6


30.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0643400
299
TAAGTATCGATANNN
906
TAACTATCAATAGTT
chr17:10781706-
6


28.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0419807
300
TAAGTATCGATANNN
907
TAACTATCAATAGTT
chr17:10781706-
6


81.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0426558
301
TAAGTATCGATANNN
908
TAACTATCAATAGTT
chr17:10781706-
6


14.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0524471
302
TAAGTATCGATANNN
909
TAACTATCAATAGTT
chr17:10781706-
6


16.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







PHS84353.1
303
TAAGTATCGATANNN
910
TAACTATCAATAGTT
chr17:10781706-
6




NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0420378
304
TAAGTATCGATANNN
911
TAACTATCAATAGTT
chr17:10781706-
6


44.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







OEG05223.1
305
TAAGTATCGATANNN
912
TAACTATCAATAGTT
chr17:10781706-
6




NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







KLV47629.1
306
TAAGTATCGATANNN
913
TAACTATCAATAGTT
chr17:10781706-
6




NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







AXV34415.1
307
TAAGTATCGATANNN
914
TAACTATCAATAGTT
chr17:10781706-
6




NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







OCA59831.1
308
TAAGTATCGATANNN
915
TAACTATCAATAGTT
chr17:10781706-
6




NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







SUU28072.1
309
TAAGTATCGATANNN
916
TAACTATCAATAGTT
chr17:10781706-
6




NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







KWR69035.1
310
TAAGTATCGATANNN
917
TAACTATCAATAGTT
chr17:10781706-
6




NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0524491
311
TAAGTATCGATANNN
918
TAACTATCAATAGTT
chr17:10781706-
6


73.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0507171
312
TAAGTATCGATANNN
919
TAACTATCAATAGTT
chr17:10781706-
6


34.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







OJW69670.1
313
TAAGTATCGATANNN
920
TAACTATCAATAGTT
chr17:10781706-
6




NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







VEG96551.1
314
TAAGTATCGATANNN
921
TAACTATCAATAGTT
chr17:10781706-
6




NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0842022
315
TAAGTATCGATANNN
922
TAACTATCAATAGTT
chr17:10781706-
6


79.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0807412
316
TAAGTATCGATANNN
923
TAACTATCAATAGTT
chr17:10781706-
6


49.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







EKB22195.1
317
TAAGTATCGATANNN
924
TAACTATCAATAGTT
chr17:10781706-
6




NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0810429
318
TAAGTATCGATANNN
925
TAACTATCAATAGTT
chr17:10781706-
6


09.1

NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







EKB14410.1
319
TAAGTATCGATANNN
926
TAACTATCAATAGTT
chr17:10781706-
6




NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







ANT70015.1
320
TAAGTATCGATANNN
927
TAACTATCAATAGTT
chr17:10781706-
6




NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







EHI53752.1
321
TAAGTATCGATANNN
928
TAACTATCAATAGTT
chr17:10781706-
6




NNNNNTATCGATACT

ACTATTATCGATAG
10781737





TG

TTG







WP_0459721
322
AGACACCTCAGANNN
929
GGACACCTCAAATC
chr17:19544976-
7


72.1

NNNNNTCTGAGGTGT

AGTCTCTCTGAGGA
19545007





TT

GTTT







WP_0736140
323
CAAGAGATCACANNN
930
CAAGAGATCAAACT
chr17:54312893-
4


59.1

NNNNTGTGGTCTCTT

CCCCTTGTAGCCTCT
54312923





T

TT







WP_0605948
324
GTGCCACAGATANNN
931
GTGCCACAGACATT
chr17:72851130-
3


81.1

NNNNNNTATCCGTG

CATGGGCCATCCGT
72851162





GCAC

AGCAC







WP_0617708
325
GCTGATTTCAGANNN
932
GCTGAGTTGAGCCC
chr18:1279099-
5


12.1

NNNNNTCTGAAATCA

AGATCTTCTGAAAT
1279130





TC

CATC







WP_0759387
326
TAAATAACGATANNN
933
AAAATAAAAATAAA
chr18:39171014-
5


37.1

NNNNNNTATCGTTAT

AATAATTTATCGTTA
39171046





TTA

TTTA







ETI84668.1
327
TAAATAACGATANNN
934
AAAATAAAAATAAA
chr18:39171014-
5




NNNNNNTATCGTTAT

AATAATTTATCGTTA
39171046





TTA

TTTA







WP_0997384
328
TGACTATCGATANNN
935
TGACTATCGAAAAT
chr18:70607702-
6


55.1

NNNNNNTATCGATAT

TGGAAGAGATCGTT
70607734





TTA

ATTTA







WP_0660138
329
TAATGTCCAATANNN
936
GAATGTCCAATAAT
chr19:11489967-
6


27.1

NNNNNNTATCGGAC

TCAATCCAATCTGA
11489999





ATTA

CATTA







WP_0061208
330
GATAATAAGATANNN
937
GATAATAAGATAAG
chr19:23120611-
3


90.1

NNNNNNCATCTTATT

TGGTTATTATCTTAT
23120643





ATC

TAAA







PQV52181.1
331
CAGCTATTGATANNN
938
TAGCTATTGATATTT
chr19:54357168-
6




NNNNNTATCAATAGT

AAATTTATCCAAAG
54357199





TG

TTG







WP_1055081
332
CAGCTATTGATANNN
939
TAGCTATTGATATTT
chr19:54357168-
6


22.1

NNNNNTATCAATAGT

AAATTTATCCAAAG
54357199





TG

TTG







EJT85494.1
333
TCAGGTTCGAGANNN
940
TCAGGTTAGAGTTA
chr19:8046629-
6




NNNNNNTCTCGAAC

ACCAAATTCTCGAA
8046661





GTCA

CATCA







WP_0354129
334
CTACTTGTGATANNN
941
CTACTTGAGATATTT
chr2:112731169-
5


14.1

NNNNNNTATCACAA

TTCAGATAACACAA
112731201





GTAG

GTAT







WP_0053316
335
AAAAGGTACTATANN
942
TAAAGCTACTATAC
chr2:126383828-
6


70.1

NNNNNNNTATAGTA

AGAGGAACTATAGT
126383862





CCTTTT

ACCATTT







WP_0107368
336
ATACAATAGACANNN
943
ATACAATATACAAT
chr2:143143340-
5


91.1

NNNNNAGCCTATTGT

TAACATAGTATATT
143143371





AT

GTAT







WP_0107523
337
ATACAATAGACANNN
944
ATACAATATACAAT
chr2:143143340-
5


16.1

NNNNNAGCCTATTGT

TAACATAGTATATT
143143371





AT

GTAT







PKP94160.1
338
AGAGTGTTGATANNN
945
AGAGTGTTGATAAA
chr2:16118225-
6




NNNNNNTATCAACAC

TTAGTGATATCAAG
16118257





TAG

TTTAG







WP_0149532
339
ATTACTATCGATANN
946
ATTATTATCGATAAT
chr2:161938519-
4


67.1

NNNNNNNTATCGTTA

AATCTATTATCGATA
161938553





GTAAT

ATAAT







WP_0659972
340
TAACTATCGATANNN
947
TTATTATCGATAATA
chr2:161938520-
6


27.1

NNNNNNTATCGATAA

ATCTATTATCGATAA
161938552





TGA

TAA







WP_0152415
341
TCACTATCGATANNN
948
TTATTATCGATAATA
chr2:161938520-
6


50.1

NNNNNNTATCGATAA

ATCTATTATCGATAA
161938552





TGA

TAA







WP_1134800
342
TCACTATCGATANNN
949
TTATTATCGATAATA
chr2:161938520-
6


34.1

NNNNNNTATCGATAA

ATCTATTATCGATAA
161938552





TGA

TAA







WP_1048400
343
TCACTATCGATANNN
950
TTATTATCGATAATA
chr2:161938520-
6


46.1

NNNNNNTATCGATA

ATCTATTATCGATAA
161938552





GTAA

TAA







PZN95492.1
344
TTACTATCGATANNN
951
TTATTATCGATAATA
chr2:161938520-
6




NNNNNNTATCGATA

ATCTATTATCGATAA
161938552





GTGA

TAA







WP_0577957
345
CTATGTCCAATANNN
952
ATATGTCCAATATG
chr2:166851262-
5


42.1

NNNNNNTATCGGAC

GGGTTAATATCTAA
166851294





ATAT

CATAT







WP_0894235
346
CTATGTCCAATANNN
953
ATATGTCCAATATG
chr2:166851262-
5


62.1

NNNNNNTATCGGAC

GGGTTAATATCTAA
166851294





ATAT

CATAT







WP_0237219
347
AAACGAATGATANNN
954
AAATAAATGATAGA
chr2:176201656-
4


97.1

NNNNNNTATCATTCG

TAAGGTCTATCATTC
176201688





TTT

ATTT







WP_0660522
348
AAAACCTCCATANNN
955
AAACCCTGCATAAA
chr2:179830412-
5


21.1

NNNNNNCATGGAGG

AAATGATTATGGAG
179830444





TTTT

GTTTT







WP_0471389
349
GGGCCCGCGAGANN
956
GGGCCCGCGAGAC
chr2:181684163-
8


03.1

NNNNNGCTCGCGGG

CGTGGGGCTCAGG
181684193





CCC

GGCCG







WP_0058241
350
ACAAACCCTATANNN
957
ACATAGCCTATATCT
chr2:190037319-
7


23.1

NNNNTATAGGGTTAC

TCATTATAGGGTTA
190037349





T

TT







WP_0008178
351
TACACGTTACATANN
958
TATACTTTACATACT
chr2:203639620-
6


56.1

NNNNNNTATGTAAAT

TTATTGTATGTAAAT
203639653





TGTA

TATA







WP_0152177
352
CTACCCAAGAGANNN
959
CTACCCAAGAGATA
chr2:21047490-
5


82.1

NNNNNNACTGTTGG

AGGTCAGAATGTTG
21047522





GTAG

AGTCG







WP_0707260
353
ATAAGTTATGATANN
960
ATAAGTAATGATAA
chr2:214027139-
6


79.1

NNNNNNNTATCATAA

AATATTAGTATGAT
214027173





CCTAT

AACCTTT







WP_0000596
354
CTATTAGCCACANNN
961
CCAGTAGCCACAAG
chr2:217887121-
6


22.1

NNNNNTGTAGCAAAT

TGATAGTCTAGCAA
217887152





AG

ATAG







WP_0153698
355
CTATTAGCCACANNN
962
CCAGTAGCCACAAG
chr2:217887121-
6


06.1

NNNNNTGTAGCAAAT

TGATAGTCTAGCAA
217887152





AG

ATAG







WP_0130588
356
TCTGTAACAAGANNN
963
TCTGTAAGAAGAAG
chr2:223156070-
8


85.1

NNNNNTCTTGTTACA

GAACACACTTCTTA
223156101





GA

CAGA







WP_0130582
357
TCTGTAACAAGANNN
964
TCTGTAAGAAGAAG
chr2:223156070-
8


63.1

NNNNNTCTTGTTACA

GAACACACTTCTTA
223156101





GA

CAGA







WP_0569221
358
GGCGGCCCGACANN
965
GGCGGCCCGGCTTG
chr2:231037589-
7


10.1

NNNNNNNTGCCGGG

CGCGCCCTGCCGAG
231037621





CCGCC

CCGCC







WP_0544480
359
AACAGCCGAAGANN
966
AACAGCCCAAGAAT
chr2:23112541-
6


37.1

NNNNNNTCTTCGGCC

TTGTGTTCCTCGGC
23112572





TTT

CATT







WP_0107446
360
CCCTTGCAAAGANNN
967
CCCTTGCAAAGGCT
chr2:236703920-
7


10.1

NNNNNNTCATTTCAA

TCAACCATCATTTCA
236703952





GGG

GGTG







WP_0161799
361
CCCTTGCAAAGANNN
968
CCCTTGCAAAGGCT
chr2:236703920-
7


37.1

NNNNNNTCATTTCAA

TCAACCATCATTTCA
236703952





GGG

GGTG







WP_0492204
362
CCCTTGCAAAGANNN
969
CCCTTGCAAAGGCT
chr2:236703920-
7


44.1

NNNNNNTCATTTCAA

TCAACCATCATTTCA
236703952





GGG

GGTG







WP_0889323
363
CCCTTGCAAAGANNN
970
CCCTTGCAAAGGCT
chr2:236703920-
7


58.1

NNNNNNTCATTTCAA

TCAACCATCATTTCA
236703952





GGG

GGTG







WP_0212680
364
GACTGGCAAAGANN
971
GACTGAGAAAGAG
chr2:25905759-
5


46.1

NNNNNGCTTTGTCAG

AAAGCCACTTTGTC
25905789





TC

AGTC







WP_0515175
365
AGCGGCGGGAGANN
972
GGCGGCGGGAGGT
chr2:29921526-
5


28.1

NNNNNNGCTCCCACC

ACCAGCTGCTACCA
29921557





GCT

CCGCT







WP_1002517
366
CTACGTCTGATANNN
973
CTACGTCTGAGAAC
chr2:36563545-
7


39.1

NNNNNNTATCAGAC

GTGCTCCTATCAAA
36563577





GCTG

CGCTT







WP_0200945
367
CTACGTCTGATANNN
974
CTACGTCTGAGAAC
chr2:36563545-
7


36.1

NNNNNNTATCAGAC

GTGCTCCTATCAAA
36563577





GCTG

CGCTT







WP_1039851
368
CTACGTCTGATANNN
975
CTACGTCTGAGAAC
chr2:36563545-
7


18.1

NNNNNNTATCAGAC

GTGCTCCTATCAAA
36563577





GCTG

CGCTT







WP_0143509
369
ATACCCCAGATANNN
976
ATATGCCAGATAAG
chr2:37280854-
8


44.1

NNNNNNTATCCGGG

GGACTAGTATCCAG
37280886





GTAT

GGTAT







WP_0245455
370
AAGCTTACGATANNN
977
AAGCTTACCATAAT
chr2:50517209-
6


67.1

NNNNNTTTCGTAAGC

CTGATTTATGGTAA
50517240





TT

GCTT







WP_0226149
371
GGTAGTAACAGANN
978
GGTAGCAACTGAAG
chr2:66826551-
7


60.1

NNNNNACTGTTACTA

GCTGGACTGTTTCT
66826581





CC

ACC







WP_0719741
372
ACATGTCCGATANNN
979
ACATGTACAATAAA
chr2:88631593-
6


81.1

NNNNNNTATTGGAC

CTGAACCTATTGGA
88631625





ATAT

AATAT







WP_0095572
373
TAGTTGGTGATANNN
980
TGGATGGTGATACA
chr2:94826665-
7


65.1

NNNNNTATCACCAAC

GATATTTATCATCAA
94826696





TC

CTC







WP_0698556
374
GGGCCTGCGAGANN
981
GAGCCTGGGAGAA
chr20:33704755-
6


69.1

NNNNNACTCGCAGG

ATGCAGACTCTCAG
33704785





CCC

GCCC







WP_0854213
375
AAACGACCGATANNN
982
AAATTACCGATAAT
chr20:34466535-
6


89.1

NNNNNNTATCGTTCA

ATTATTCTATCATTC
34466567





TTT

ATTT







WP_0624461
376
TAGTGTCTGAGANNN
983
TAGTGTCTGTGTTT
chr21:15870374-
6


29.1

NNNNNTCTCAGACAC

ATTAGCTCTCAAAC
15870405





TA

ACTA







WP_0087262
377
AGAACCCGGACANN
984
GGAACCCGGCCATC
chr22:23385516-
NA


05.1

NNNNNNGTTCCGGG

CCTCTGGTTCCTGG
23385547





TTCT

TTCT







WP_0545289
378
AGGGTGTTGATANNN
985
AGGGTGTTGACAGC
chr22:32751606-
NA


82.1

NNNNNNTATCACCAC

AGTGGGATATCACC
32751638





TCT

ACCTT







KPL69881.1
379
AGGGTGTTGATANNN
986
AGGGTGTTGACAGC
chr22:32751606-
NA




NNNNNNTATCACCAC

AGTGGGATATCACC
32751638





TCT

ACCTT







SEM26217.1
380
TTATGTCCGATANNN
987
TTAGGTCAGATACA
chr3:110856754-
5




NNNNNNTATTGGAC

TTCCAAGTATTGGA
110856786





ATAG

AATAG







WP_1061655
381
TTATGTCCGATANNN
988
TTAGGTCAGATACA
chr3:110856754-
5


51.1

NNNNNNTATTGGAC

TTCCAAGTATTGGA
110856786





ATAG

AATAG







WP_0083358
382
TTATGTCCGATANNN
989
TTAGGTCAGATACA
chr3:110856754-
5


38.1

NNNNNNTATTGGAC

TTCCAAGTATTGGA
110856786





ATAG

AATAG







WP_0290696
383
TTGGTTGGAATANNN
990
TTGGTGGGAATAAA
chr3:111817292-
5


76.1

NNNNNNTATTCAAAC

CAAACAGTATCCAA
111817324





CAA

ACCAC







WP_0118869
384
GAATACAACATANNN
991
GAATACAACAAATA
chr3:117712816-
6


69.1

NNNNNTATGTTGCAT

TTTTTCTATGTAGCA
117712847





TC

TTT







WP_0478214
385
AACTCGACAATANNN
992
AACTAGACAAGAAC
chr3:127281819-
6


48.1

NNNNTAATGTCGAGT

TTTAATAATGTCTAG
127281849





T

TT







WP_0478251
386
AACTCGACAATANNN
993
AACTAGACAAGAAC
chr3:127281819-
6


38.1

NNNNTAATGTCGAGT

TTTAATAATGTCTAG
127281849





T

TT







WP_1165468
387
ATTAACTTCATATANN
994
ATTAACCTCATATAT
chr3:150147140-
5


38.1

NNNNNNTATATGAA

GGGATCCAAAATGA
150147175





GTTAAT

AGTTAAT







WP_0869047
388
TCTACCAGTGATANN
995
TCTTCCAGTGATAA
chr3:158595931-
6


34.1

NNNNNNTATCACTGG

AACCTAAAATCAGT
158595964





TAGA

GGTAGA







WP_1331810
389
TCTACCAGTGATANN
996
TCTTCCAGTGATAA
chr3:158595931-
6


36.1

NNNNNNTATCACTGG

AACCTAAAATCAGT
158595964





TAGA

GGTAGA







WP_1092859
390
TCTACCAGTGATANN
997
TCTTCCAGTGATAA
chr3:158595931-
6


90.1

NNNNNNTATCACTGG

AACCTAAAATCAGT
158595964





TAGA

GGTAGA







WP_1139404
391
TCTACCAGTGATANN
998
TCTTCCAGTGATAA
chr3:158595931-
6


03.1

NNNNNNTATCACTGG

AACCTAAAATCAGT
158595964





TAGA

GGTAGA







ACK46586.1
392
TCTACCAGTGATANN
999
TCTTCCAGTGATAA
chr3:158595931-
6




NNNNNNTATCACTGG

AACCTAAAATCAGT
158595964





TAGA

GGTAGA







AEG11408.1
393
TCTACCAGTGATANN
1000
TCTTCCAGTGATAA
chr3:158595931-
6




NNNNNNTATCACTGG

AACCTAAAATCAGT
158595964





TAGA

GGTAGA







WP_0812484
394
TCTACCAGTGATANN
1001
TCTTCCAGTGATAA
chr3:158595931-
6


13.1

NNNNNNTATCACTGG

AACCTAAAATCAGT
158595964





TAGA

GGTAGA







WP_0122771
395
TCTACCAGTGATANN
1002
TCTTCCAGTGATAA
chr3:158595931-
6


58.1

NNNNNNTATCACTGG

AACCTAAAATCAGT
158595964





TAGA

GGTAGA







WP_0125868
396
TCTACCAGTGATANN
1003
TCTTCCAGTGATAA
chr3:158595931-
6


24.1

NNNNNNTATCACTGG

AACCTAAAATCAGT
158595964





TAGA

GGTAGA







WP_0817290
397
TCTACCAGTGATANN
1004
TCTTCCAGTGATAA
chr3:158595931-
6


30.1

NNNNNNTATCACTGG

AACCTAAAATCAGT
158595964





TAGA

GGTAGA







KZK70296.1
398
TCTACCAGTGATANN
1005
TCTTCCAGTGATAA
chr3:158595931-
6




NNNNNNTATCACTGG

AACCTAAAATCAGT
158595964





TAGA

GGTAGA







WP_0121545
399
CTACCAGTGATANNN
1006
CTTCCAGTGATAAA
chr3:158595932-
6


34.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







ABV87414.1
400
CTACCAGTGATANNN
1007
CTTCCAGTGATAAA
chr3:158595932-
6




NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0116227
401
CTACCAGTGATANNN
1008
CTTCCAGTGATAAA
chr3:158595932-
6


13.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0517141
402
CTACCAGTGATANNN
1009
CTTCCAGTGATAAA
chr3:158595932-
6


41.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0777514
403
CTACCAGTGATANNN
1010
CTTCCAGTGATAAA
chr3:158595932-
6


11.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0130514
404
CTACCAGTGATANNN
1011
CTTCCAGTGATAAA
chr3:158595932-
6


10.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_1153345
405
CTACCAGTGATANNN
1012
CTTCCAGTGATAAA
chr3:158595932-
6


56.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_1264918
406
CTACCAGTGATANNN
1013
CTTCCAGTGATAAA
chr3:158595932-
6


84.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0209126
407
CTACCAGTGATANNN
1014
CTTCCAGTGATAAA
chr3:158595932-
6


17.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0882111
408
CTACCAGTGATANNN
1015
CTTCCAGTGATAAA
chr3:158595932-
6


52.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0116261
409
CTACCAGTGATANNN
1016
CTTCCAGTGATAAA
chr3:158595932-
6


97.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0110723
410
CTACCAGTGATANNN
1017
CTTCCAGTGATAAA
chr3:158595932-
6


65.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0694554
411
CTACCAGTGATANNN
1018
CTTCCAGTGATAAA
chr3:158595932-
6


45.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0509913
412
CTACCAGTGATANNN
1019
CTTCCAGTGATAAA
chr3:158595932-
6


48.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0556473
413
CTACCAGTGATANNN
1020
CTTCCAGTGATAAA
chr3:158595932-
6


63.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_1123527
414
CTACCAGTGATANNN
1021
CTTCCAGTGATAAA
chr3:158595932-
6


96.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_1052525
415
CTACCAGTGATANNN
1022
CTTCCAGTGATAAA
chr3:158595932-
6


41.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0120892
416
CTACCAGTGATANNN
1023
CTTCCAGTGATAAA
chr3:158595932-
6


73.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0719394
417
CTACCAGTGATANNN
1024
CTTCCAGTGATAAA
chr3:158595932-
6


73.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0143580
418
CTACCAGTGATANNN
1025
CTTCCAGTGATAAA
chr3:158595932-
6


05.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_1066505
419
CTACCAGTGATANNN
1026
CTTCCAGTGATAAA
chr3:158595932-
6


61.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0764115
420
CTACCAGTGATANNN
1027
CTTCCAGTGATAAA
chr3:158595932-
6


19.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0123250
421
CTACCAGTGATANNN
1028
CTTCCAGTGATAAA
chr3:158595932-
6


03.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_1010902
422
CTACCAGTGATANNN
1029
CTTCCAGTGATAAA
chr3:158595932-
6


09.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_1151369
423
CTACCAGTGATANNN
1030
CTTCCAGTGATAAA
chr3:158595932-
6


67.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0647913
424
CTACCAGTGATANNN
1031
CTTCCAGTGATAAA
chr3:158595932-
6


49.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0121425
425
CTACCAGTGATANNN
1032
CTTCCAGTGATAAA
chr3:158595932-
6


88.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_1265205
426
CTACCAGTGATANNN
1033
CTTCCAGTGATAAA
chr3:158595932-
6


63.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_1089465
427
CTACCAGTGATANNN
1034
CTTCCAGTGATAAA
chr3:158595932-
6


65.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







WP_0374112
428
CTACCAGTGATANNN
1035
CTTCCAGTGATAAA
chr3:158595932-
6


15.1

NNNNNTATCACTGGT

ACCTAAAATCAGTG
158595963





AG

GTAG







OIO40422.1
429
CCGTACTATATANNN
1036
CGCTACTATATAAA
chr3:162275981-
5




NNNNNTATATAATGC

GAGTAATATATAAT
162276012





GG

GCAG







WP_0479148
430
GAAACGTTGATANNN
1037
GAAATGTTCATAAT
chr3:164474658-
5


82.1

NNNNNNTATTAACGT

ATTCCTTTATTAATG
164474690





TTT

TTTT







WP_0107292
431
GAAACGTTGATANNN
1038
GAAATGTTCATAAT
chr3:164474658-
5


68.1

NNNNNNTATTAACGT

ATTCCTTTATTAATG
164474690





TTT

TTTT







WP_0031719
432
AAACCCTCAACANNN
1039
AAACCCTCAACAAA
chr3:166919839-
7


84.1

NNNNTGTCAAGGGTT

CTAAGTATCAAAGG
166919869





T

TAT







WP_0336601
433
AAACCCTCAACANNN
1040
AAACCCTCAACAAA
chr3:166919839-
7


84.1

NNNNTGTCAAGGGTT

CTAAGTATCAAAGG
166919869





T

TAT







WP_0020768
434
AAACCCTCAACANNN
1041
AAACCCTCAACAAA
chr3:166919839-
7


80.1

NNNNTGTCAAGGGTT

CTAAGTATCAAAGG
166919869





T

TAT







WP_0161158
435
AAACCCTCAACANNN
1042
AAACCCTCAACAAA
chr3:166919839-
7


18.1

NNNNTGTCAAGGGTT

CTAAGTATCAAAGG
166919869





T

TAT







WP_0117361
436
TCGGTATATATANNN
1043
TCTGTATATATAAG
chr3:174585052-
5


63.1

NNNNCACATATACCG

AATAACACATATTCT
174585082





A

GA







WP_0444023
437
CATCAAGTGATANNN
1044
CTTCAAGTGATATT
chr3:27705115-
5


40.1

NNNNNTATCGCTTGA

ATATTATACCACTTG
27705146





TG

ATG







WP_0084001
438
GCAGAGTGAAGANN
1045
TCAGAGGGAAGAA
chr3:48141565-
5


48.1

NNNNNNTCCTCGCTC

TACCTGCTCCTGGC
48141596





TGC

TCTGC







WP_0568715
439
AAAAACGGCATANNN
1046
AAAAATGGTATAAG
chr3:50885338-
6


37.1

NNNNNTATGCCGTTT

CTTTTGTATGCAGTT
50885369





TT

TTT







WP_0029908
440
TTAATGAGTAGANNN
1047
TTAATGAGTACACA
chr3:54189864-
6


81.1

NNNNNTCTACTCATT

TAATTTTLTALTTTT
54189895





AA

TAA







WP_0418906
441
TTAATGAGTAGANNN
1048
TTAATGAGTACACA
chr3:54189864-
6


31.1

NNNNNTCTACTCATT

TAATTTTLTALTTTT
54189895





AA

TAA







WP_0112793
442
AGGTTAATATAGANN
1049
AGGTTAAAATAGAC
chr3:60883844-
4


65.1

NNNNNNTTTATATTA

AAATGGGATTATAT
60883877





AGCT

CAAGCT







YP_0092216
443
ATAAGACATAGANNN
1050
ATAAGCCATAGAGC
chr3:64770759-
6


49.1

NNNNNNTCTATGTCT

CCCCATCTCTGTGTC
64770791





TAT

CTAT







WP_0763847
444
CTGGCAAGCCATANN
1051
CTGGCAAGGCATAA
chr3:86065715-
5


67.1

NNNNNNNTATATCTT

AGGTACGTTATATT
86065749





GCCAG

TAGCCAG







WP_0171356
445
CTGGCAAGCCATANN
1052
CTGGCAAGGCATAA
chr3:86065715-
5


69.1

NNNNNNNTATATCTT

AGGTACGTTATATT
86065749





GCCAG

TAGCCAG







WP_1026053
446
TGACCCACGATANNN
1053
TGAACCACAATATT
chr3:95971700-
5


25.1

NNNNNNTATCGTGG

TCTCAACTATCTTGG
95971732





GTGA

GTGA







WP_0028277
447
GAAGTTGGGACANN
1054
CAGGTTGGGACCAT
chr4:108054576-
5


82.1

NNNNNNTGTTCCAAC

TTCTGCTGTTCCAAC
108054607





TTC

TTC







WP_0695521
448
TTAGGTCTGATANNN
1055
CTAGGTCTGATATC
chr4:143442555-
5


41.1

NNNNNNTATCCGACA

ACTCATGTATCCCAC
143442587





TAA

ATTA







AZE17458.1
449
TTAGGTCTGATANNN
1056
CTAGGTCTGATATC
chr4:143442555-
5




NNNNNNTATCCGACC

ACTCATGTATCCCAC
143442587





TTA

ATTA







SDY43398.1
450
TTAGGTCTGATANNN
1057
CTAGGTCTGATATC
chr4:143442555-
5




NNNNNNTATCCGACC

ACTCATGTATCCCAC
143442587





TTA

ATTA







AZD92641.1
451
TTAGGTCTGATANNN
1058
CTAGGTCTGATATC
chr4:143442555-
5




NNNNNNTATCCGACC

ACTCATGTATCCCAC
143442587





TTA

ATTA







WP_0821432
452
TTAGGTCTGATANNN
1059
CTAGGTCTGATATC
chr4:143442555-
5


26.1

NNNNNNTATCCGACC

ACTCATGTATCCCAC
143442587





TTA

ATTA







WP_1106236
453
TTAGGTCTGATANNN
1060
CTAGGTCTGATATC
chr4:143442555-
5


42.1

NNNNNNTATCCGACC

ACTCATGTATCCCAC
143442587





TTA

ATTA







RIA35947.1
454
TTAGGTCTGATANNN
1061
CTAGGTCTGATATC
chr4:143442555-
5




NNNNNNTATCCGACC

ACTCATGTATCCCAC
143442587





TTA

ATTA







AZC51718.1
455
TTAGGTCTGATANNN
1062
CTAGGTCTGATATC
chr4:143442555-
5




NNNNNNTATCCGACC

ACTCATGTATCCCAC
143442587





TTA

ATTA







WP_0034523
456
TTAGGTCTGATANNN
1063
CTAGGTCTGATATC
chr4:143442555-
5


52.1

NNNNNNTATCCGACC

ACTCATGTATCCCAC
143442587





TTA

ATTA







WP_1080997
457
TTAGGTCTGATANNN
1064
CTAGGTCTGATATC
chr4:143442555-
5


39.1

NNNNNNTATCCGACC

ACTCATGTATCCCAC
143442587





TTA

ATTA







WP_1106375
458
TTAGGTCTGATANNN
1065
CTAGGTCTGATATC
chr4:143442555-
5


60.1

NNNNNNTATCCGACC

ACTCATGTATCCCAC
143442587





TTA

ATTA







WP_0452178
459
TTAGGTCTGATANNN
1066
CTAGGTCTGATATC
chr4:143442555-
5


96.1

NNNNNNTATCCGACC

ACTCATGTATCCCAC
143442587





TTA

ATTA







WP_1283253
460
TTAGGTCTGATANNN
1067
CTAGGTCTGATATC
chr4:143442555-
5


17.1

NNNNNNTATCCGACC

ACTCATGTATCCCAC
143442587





TTA

ATTA







OWK92550.1
461
TTAGGTCTGATANNN
1068
CTAGGTCTGATATC
chr4:143442555-
5




NNNNNNTATCCGACC

ACTCATGTATCCCAC
143442587





TTA

ATTA







WP_0247174
462
TTAGGTCTGATANNN
1069
CTAGGTCTGATATC
chr4:143442555-
5


80.1

NNNNNNTATCCGACC

ACTCATGTATCCCAC
143442587





TTA

ATTA







WP_1012936
463
TTAGGTCTGATANNN
1070
CTAGGTCTGATATC
chr4:143442555-
5


15.1

NNNNNNTATCCGACC

ACTCATGTATCCCAC
143442587





TTA

ATTA







WP_0316426
464
TTAGGTCTGATANNN
1071
CTAGGTCTGATATC
chr4:143442555-
5


20.1

NNNNNNTATCCGACC

ACTCATGTATCCCAC
143442587





TTA

ATTA







WP_0429487
465
TTAGGTCTGATANNN
1072
CTAGGTCTGATATC
chr4:143442555-
5


96.1

NNNNNNTATCCGACC

ACTCATGTATCCCAC
143442587





TTA

ATTA







WP_1033260
466
TGACAGTGGATANNN
1073
TGAAAGTGGAGAA
chr4:160047452-
4


70.1

NNNNNNTATCCAATC

ATAAGAACAATCCA
160047484





TCA

ATCTCA







WP_0764496
467
TTAGTTATGATANNN
1074
TTAGTTATTATAACT
chr4:172157070-
7


57.1

NNNNGATCATAACTA

TTCCTATTATAACTA
172157100





A

A







WP_0746356
468
GCTATCTGAACANNN
1075
GCTATATGAACAGA
chr4:176324510-
4


93.1

NNNNNTGTTCAGATT

CGTTAATGTTCATAT
176324541





GA

TCA







WP_0346339
469
GATGACTTTACANNN
1076
GATGACTTTACCCT
chr4:187632588-
5


66.1

NNNNNTGTAAAGTCA

ATTTCTTGTGAAGT
187632619





TC

GATC







WP_0125492
470
CTCAATTTCACANNN
1077
CTCAATTACACACCT
chr4:46313749-
6


23.1

NNNNTGTGAAATTGA

GAGATTTGAAATTC
46313779





G

AG







WP_0161104
471
AAGGGGAACAGANN
1078
AAGAGGAACAGAT
chr4:74631209-
6


51.1

NNNNNTCCGTTCCCC

ATTCTTTCCCTTCCC
74631239





TT

ATT







WP_0486588
472
AGCTAGGTAAGANN
1079
AGATAGGTAAGATT
chr4:76517527-
6


60.1

NNNNNNTCTTACCTA

TAGGATTCTTATCCA
76517558





TGT

TGT







WP_0699453
473
GAAATCGTAATANNN
1080
GAAATATTAATAAC
chr4:80833020-
5


92.1

NNNNNTATTACGATT

TGAAAGTATTACGT
80833051





TG

TTTG







WP_0850707
474
TATTACTATTGATANN
1081
TATAACTAGTGATA
chr5:110266292-
5


31.1

NNNNNNNTATCACTA

GATAACAGTTATCA
110266328





GTAATA

CTAGTTATA







OCW82643.1
475
ATTACTATTGATANN
1082
ATAACTAGTGATAG
chr5:110266293-
5




NNNNNNNTATCACTA

ATAACAGTTATCAC
110266327





GTAAT

TAGTTAT







WP_0374128
476
ACTGAGCTAATANNN
1083
ACTGAATAAATATT
chr5:112739101-
5


68.1

NNNNTATTAATTCAG

TAAGATATTAATTC
112739131





T

AGT







WP_0765913
477
ATCACACAGGATANN
1084
AACAAACAGGATAT
chr5:114709938-
5


09.1

NNNNNNNTATCCTGT

AAAGTGGTAATCCT
114709972





TTTAT

GTTTTAT







WP_0135253
478
TAACGAACGATANNN
1085
TAACTAACGATACT
chr5:125436112-
6


33.1

NNNNNNTATCATTCG

TCTCAGATATAATTC
125436144





TTG

CTTG







WP_1274026
479
TAACGAACGATANNN
1086
TAACTAACGATACT
chr5:125436112-
6


74.1

NNNNNNTATCATTCG

TCTCAGATATAATTC
125436144





TTG

CTTG







WP_0666056
480
AGAATGGGCAGANN
1087
AGAATGGGCAGAA
chr5:129423741-
5


81.1

NNNNNNTCTGACCCT

AGAATGTTCTGGGA
129423772





TCT

CTTCT







WP_0809570
481
TAGCTCTGGAGANNN
1088
TAGCTCTGGAGATA
chr5:13238067-
7


39.1

NNNNNNTCTCCGGA

GAGAGGCCCTTCAG
13238099





GTTA

AGTTA







KKX62373.1
482
TAGCTCTGGAGANNN
1089
TAGCTCTGGAGATA
chr5:13238067-
7




NNNNNNTCTCCGGA

GAGAGGCCCTTCAG
13238099





GTTA

AGTTA







WP_0400411
483
AAGGGCTACAGANN
1090
GAGGGCTGAAGAC
chr5:13815922-
7


54.1

NNNNNTCTGTAACCC

AGAGGCTCTGTAAC
13815952





TT

CCTT







WP_0046914
484
TGTTTGTTGATANNN
1091
TCTTTGTTGATAAGT
chr5:156255946-
6


81.1

NNNNTATGGACAAAC

ATTTTTTGTACAAAC
156255976





A

A







WP_0490066
485
CCAGCGCTCAGANNN
1092
CCAGAGCACAGAG
chr5:168937193-
6


36.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_1044604
486
CCAGCGCTCAGANNN
1093
CCAGAGCACAGAG
chr5:168937193-
6


35.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_0041869
487
CCAGCGCTCAGANNN
1094
CCAGAGCACAGAG
chr5:168937193-
6


33.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_0943201
488
CCAGCGCTCAGANNN
1095
CCAGAGCACAGAG
chr5:168937193-
6


39.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_0324356
489
CCAGCGCTCAGANNN
1096
CCAGAGCACAGAG
chr5:168937193-
6


50.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_0143865
490
CCAGCGCTCAGANNN
1097
CCAGAGCACAGAG
chr5:168937193-
6


29.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_0179011
491
CCAGCGCTCAGANNN
1098
CCAGAGCACAGAG
chr5:168937193-
6


02.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_1102048
492
CCAGCGCTCAGANNN
1099
CCAGAGCACAGAG
chr5:168937193-
6


72.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_0041975
493
CCAGCGCTCAGANNN
1100
CCAGAGCACAGAG
chr5:168937193-
6


71.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_0877285
494
CCAGCGCTCAGANNN
1101
CCAGAGCACAGAG
chr5:168937193-
6


82.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_0324132
495
CCAGCGCTCAGANNN
1102
CCAGAGCACAGAG
chr5:168937193-
6


33.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_0969037
496
CCAGCGCTCAGANNN
1103
CCAGAGCACAGAG
chr5:168937193-
6


42.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_1309532
497
CCAGCGCTCAGANNN
1104
CCAGAGCACAGAG
chr5:168937193-
6


38.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







VGI65087.1
498
CCAGCGCTCAGANNN
1105
CCAGAGCACAGAG
chr5:168937193-
6




NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_0853533
499
CCAGCGCTCAGANNN
1106
CCAGAGCACAGAG
chr5:168937193-
6


66.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_0809229
500
CCAGCGCTCAGANNN
1107
CCAGAGCACAGAG
chr5:168937193-
6


91.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_1157936
501
CCAGCGCTCAGANNN
1108
CCAGAGCACAGAG
chr5:168937193-
6


42.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_0853544
502
CCAGCGCTCAGANNN
1109
CCAGAGCACAGAG
chr5:168937193-
6


69.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_1261239
503
CCAGCGCTCAGANNN
1110
CCAGAGCACAGAG
chr5:168937193-
6


82.1

NNNNNGCTGAGTGC

GCCAAGGGGTGAG
168937224





TGG

TGCTGG







WP_1079476
504
TTACCAGTGATANNN
1111
TTACCAGTGAAAGA
chr5:17974903-
6


08.1

NNNNNTATCACTGGT

AGATAATAAAACTG
17974934





AG

GTAG







WP_0839159
505
GTACAGGTGATANNN
1112
GTACAGGTGATACA
chr5:21040341-
6


96.1

NNNNNNTATCACCTG

TACTGGATATCCCC
21040373





TTG

TGATA







YP_0038569
506
GCCCTGGTCAGANNN
1113
GCCGTGGCCAGAGT
chr5:38448769-
6


19.1

NNNNNNTCTGACCG

GTGCAGCTCTGACC
38448801





GGGC

TGGGC







WP_1329781
507
TAACATGGGATANNN
1114
TAAAATATGATACC
chr5:45155486-
5


17.1

NNNNNNTATCCCATG

TTCAGTGTATCCCAT
45155518





TTA

GTTA







WP_0482200
508
CTTACGAATAGANNN
1115
CTTACGAATAAACA
chr5:45667699-
5


40.1

NNNNAATATTCGTAA

CAACTAACATTAGT
45667729





G

AAG







WP_0023515
509
AACGGCAAAATANNN
1116
AATGGCAAAATAAA
chr5:56153488-
6


52.1

NNNNNTATTTTGACG

TGGGGGTATTTTGA
56153519





TT

TATT







ORE41776.1
510
TGAGCACTGATANNN
1117
TGAGCACTAATCCC
chr5:68330222-
8




NNNNNNTATCAGTGC

AAAATCTTATCATTG
68330254





TTA

CTTA







WP_0127298
511
AAGCCCGGTAGANN
1118
TAGCCCGGTAGAGG
chr5:81344667-
6


69.1

NNNNNTCTACCGGGC

TGAGGTCTTCAGGG
81344697





TT

CTT







WP_1034222
512
CAAGTATCGATANNN
1119
TAAGTATCTATATTT
chr6:120945709-
5


07.1

NNNNNTATCGATATT

CTATATATAGATATT
120945740





TA

TA







WP_0857349
513
CAAGTATCGATANNN
1120
TAAGTATCTATATTT
chr6:120945709-
5


74.1

NNNNNTATCGATATT

CTATATATAGATATT
120945740





TA

TA







WP_0486675
514
ATAGTGTGATATANN
1121
ATAGTGTAATATAA
chr6:126292077-
6


03.1

NNNNNNTATATCACA

TATAAATTATATAAC
126292110





TTAT

AATAT







WP_0764996
515
GGCTTAGCTATANNN
1122
GGCTTAGCAATAAA
chr6:130946245-
6


65.1

NNNNNGTTAGCTAA

CCTATTGTTACATAA
130946276





GCC

GCC







WP_0458292
516
TAATAGCGAATANNN
1123
TAATAGTGAATATG
chr6:133420190-
6


69.1

NNNNNTATTCGCTAT

CATTCATATTCACTA
133420221





TG

TTA







KJV34819.1
517
TAATAGCGAATANNN
1124
TAATAGTGAATATG
chr6:133420190-
6




NNNNNTATTCGCTAT

CATTCATATTCACTA
133420221





TG

TTA







WP_0732857
518
TAAGGTATGATANNN
1125
GAAGATATTATATT
chr6:134634933-
4


21.1

NNNNNNTATCATACC

ATCTGTATATCATAC
134634965





TTA

CTTA







WP_1254233
519
TAAGGTATGATANNN
1126
GAAGATATTATATT
chr6:134634933-
4


73.1

NNNNNNTATCATACC

ATCTGTATATCATAC
134634965





TTA

CTTA







WP_0355601
520
TAAGGTATGATANNN
1127
GAAGATATTATATT
chr6:134634933-
4


63.1

NNNNNNTATCATACC

ATCTGTATATCATAC
134634965





TTA

CTTA







WP_1114806
521
TAAGGTATGATANNN
1128
GAAGATATTATATT
chr6:134634933-
4


23.1

NNNNNNTATCATACC

ATCTGTATATCATAC
134634965





TTA

CTTA







WP_1254406
522
TAAGGTATGATANNN
1129
GAAGATATTATATT
chr6:134634933-
4


09.1

NNNNNNTATCATACC

ATCTGTATATCATAC
134634965





TTA

CTTA







WP_0652356
523
TTGGGATAGATANNN
1130
CTGAGATATATATA
chr6:146027378-
4


45.1

NNNNNTATCTACCCC

CAAAGATATCTACC
146027409





AA

CCAA







WP_0094081
524
AGAGAGTAGATANN
1131
AGAGAGTATATATA
chr6:152603807-
6


53.1

NNNNNNGATCTACTC

TATATAGATATACT
152603838





TCT

ATCT







WP_1332888
525
TAACACACCATANNN
1132
AAACACACCATATT
chr6:152964488-
7


65.1

NNNNNNTATAGCGT

CCCTTCATAGAGCG
152964520





GTTA

TATTA







WP_0114150
526
AGACATGTGATANNN
1133
GGACAAGTGTTATT
chr6:153314283-
6


80.1

NNNNNNTATCACATG

TAATTCCTATCACAT
153314315





TTG

GTTG







YP_239821.1
527
TATCCCTTGATANNN
1134
AATCCCTTGAAATT
chr6:22061867-
4




NNNNNNTTTCAAGG

GTCAGTATTTCAAG
22061899





GGTA

GGTTA







WP_0186216
528
TTATCTACGATANNN
1135
TTATCTAGGATAGG
chr6:25581730-
5


39.1

NNNNNNTATCGTAG

AAATCCTTATTCTAG
25581762





ATAA

ATAA







WP_0262423
529
CTATGTCCGATANNN
1136
CTATGTCCGATTTCT
chr6:30376959-
5


20.1

NNNNNNTATCGGAC

TCTCATTATTGGACT
30376991





ATAA

TAA







AVC45611.1
530
CTATGTCCGATANNN
1137
CTATGTCCGATTTCT
chr6:30376959-
5




NNNNNNTATCGGAC

TCTCATTATTGGACT
30376991





ATAA

TAA







WP_0154946
531
TTATGTCCGATANNN
1138
CTATGTCCGATTTCT
chr6:30376959-
5


05.1

NNNNNNTATTGGAC

TCTCATTATTGGACT
30376991





GTAA

TAA







WP_0056103
532
TTATGTCCGATANNN
1139
CTATGTCCGATTTCT
chr6:30376959-
5


02.1

NNNNNNTATTGGAC

TCTCATTATTGGACT
30376991





GTAA

TAA







WP_0932201
533
TCACACGGGATANNN
1140
TCTCACAGGATACT
chr6:44113713-
7


83.1

NNNNNNTACCCCGTG

ACACTGTTACCCAG
44113745





TGA

TGTGA







WP_0655408
534
AAAAACCACAGANNN
1141
AAAAACAACAGAAC
chr6:45110522-
5


14.1

NNNNNTCTGTGGTTT

CCCTTTTCAGTGCTT
45110553





CT

TCT







WP_0445439
535
TATTGATGGATANNN
1142
TATTGATGGAAATT
chr6:48808288-
4


06.1

NNNNNTATCCATCAA

CTGCAATATCCATCC
48808319





CC

AAC







WP_0343966
536
AAAGCCCGCAGANN
1143
AAAAGCCGCAGAG
chr6:71263114-
6


20.1

NNNNNNCCTGCGGG

GGCTCAGCCTGCCG
71263145





CTTT

GCTTT







WP_0484445
537
TTATGACCGATANNN
1144
TTATGACGGATAAC
chr6:78996573-
7


47.1

NNNNNTATCGGTCAT

TGGGCATATTTGTC
78996604





AA

ATAA







WP_0034997
538
TGGTACAACATANNN
1145
AGGTACAATATAAG
chr6:82026247-
6


34.1

NNNNNTATGTTGTAT

CCAAGATATGTTTT
82026278





AA

ATAA







WP_0010669
539
TAGCATGTTACANNN
1146
TAGCAAGTTAAAGT
chr6:85617220-
7


53.1

NNNNAGTAACATGCC

ACGAAAGTAACATG
85617250





A

CAA







WP_0010669
540
TAGCATGTTACANNN
1147
TAGCAAGTTAAAGT
chr6:85617220-
7


42.1

NNNNAGTAACATGCC

ACGAAAGTAACATG
85617250





A

CAA







WP_0154697
541
ACCCCAATAAGANNN
1148
ACCCCAATGAGAAA
chr6:87787506-
6


49.1

NNNNNTCTTGTTGGG

ATACTTTCTCGTTGG
87787537





GT

GGA







WP_0121873
542
ATATGTCCGATANNN
1149
ATATGTCTGACATTC
chr6:95103635-
7


69.1

NNNNNNTATTGGAC

CTTAGGTATTGGAC
95103667





ATAG

ATAA







WP_0565151
543
GCTATGTTTTACANN
1150
AATATGTTTTACATT
chr7:106052119-
5


34.1

NNNNNNNAATAAAA

ACAACACAATATAA
106052153





CATAGC

CATAGC







WP_0514720
544
CAAGTAGCGATANNN
1151
GAAGTAGAAATAG
chr7:116214710-
8


36.1

NNNNNTATTGCTACT

GAATTTATATTGCTA
116214741





GG

CTGG







WP_0163917
545
CACCACTCCAGANNN
1152
CACCACTGCAGACT
chr7:125316538-
5


64.1

NNNNNNTCTGGAGT

GAAGTGCTCTGGTG
125316570





GGTC

TGGTA







WP_0529591
546
TGTGATTCCATANNN
1153
TGTGAGTTCATACA
chr7:152786802-
5


63.1

NNNNNNTATGGAAT

TTTCCAATATGGTAT
152786834





CACA

CACA







AGC72343.1
547
TAGCTTATGATANNN
1154
TAGCTTAAAATAGA
chr7:80489324-
6




NNNNNTATCAAAAG

TTTACCTATCAAAA
80489355





GTA

GCTA







WP_1173167
548
TAACCAACGATANNN
1155
TAACTAACAATATTC
chr7:81194736-
5


04.1

NNNNNTATCGAAGG

TTATTTATCGAAGTT
81194767





TTA

TA







WP_0207447
549
TAACCAACGATANNN
1156
TAACTAACAATATTC
chr7:81194736-
5


56.1

NNNNNTATCGAAGG

TTATTTATCGAAGTT
81194767





TTA

TA







WP_0174370
550
GGGCTACTAATANNN
1157
GGGCTACTTATAGA
chr7:82506117-
3


96.1

NNNNNNATTTAGTAG

ATTCTATATTTACTA
82506149





CCC

GACC







WP_0542920
551
GAATTCATGCATANN
1158
GAATTAATGCATAG
chr7:8610238-
7


66.1

NNNNNNTATGCATG

GTTGATATATGCAG
8610271





AAACC

AAAACC







WP_0128621
552
CATCAAACAATANNN
1159
AATCATACAATATA
chr7:86573735-
5


44.1

NNNNTATTGCTTAAT

TGACATATTGCTTA
86573765





G

ATT







WP_0226843
553
GGATATGTGATANNN
1160
GGATATGTGATTAC
chr7:86824639-
7


52.1

NNNNNTATCACATGT

CATAATTCTCACATG
86824670





TC

TAC







WP_0767979
554
GGTGTGCACAGANN
1161
GATGTGCAAAAACT
chr7:91397008-
5


08.1

NNNNNNNTTTGTGCA

TTGGCATTTTGTGC
91397040





CACC

ACACC







WP_0974526
555
CTAACTTTAAATANN
1162
CTAACTTAAATTTTA
chr8:112961297-
7


09.1

NNNNNNTATTTAAAG

CTTTTCTATTTAAAG
112961330





TTAG

TTAG







WP_0162624
556
CTAACTTTAAATANN
1163
CTAACTTAAATTTTA
chr8:112961297-
7


25.1

NNNNNNTATTTAAAG

CTTTTCTATTTAAAG
112961330





TTAG

TTAG







WP_0775433
557
CTAACTTTAAATANN
1164
CTAACTTAAATTTTA
chr8:112961297-
7


56.1

NNNNNNTATTTAAAG

CTTTTCTATTTAAAG
112961330





TTAG

TTAG







WP_0321528
558
CTAACTTTAAATANN
1165
CTAACTTAAATTTTA
chr8:112961297-
7


54.1

NNNNNNTATTTAAAG

CTTTTCTATTTAAAG
112961330





TTAG

TTAG







WP_0131603
559
GCCCTGGTGAGANNN
1166
GCCCTGGTGAGAGT
chr8:143044855-
6


48.1

NNNNTCTCACCAGGG

CCCATGCCCACAAG
143044885





C

GGC







EHJ58476.1
560
AGGGTGTTGATANNN
1167
ATGGTGATGATAAT
chr8:24207531-
5




NNNNNNTATCAACAC

AATTCCTAATCAAC
24207563





TGT

ACTGT







WP_0398585
561
AGGGTGTTGATANNN
1168
ATGGTGATGATAAT
chr8:24207531-
5


63.1

NNNNNNTATCAACAC

AATTCCTAATCAAC
24207563





TGT

ACTGT







WP_0535590
562
ATCCCCCAGATANNN
1169
ATCTCCCAGATGAT
chr8:24330870-
6


35.1

NNNNNNTATCTGGG

CTAAGATTATCTGG
24330902





GAAG

AGAAG







SEC15746.1
563
CAATGTCCGATANNN
1170
CAATCTCCTATACTT
chr8:32597229-
8




NNNNNNTATCGGAC

TGATTTTATAGGAC
32597261





ATTA

ATTA







WP_0903301
564
CAATGTCCGATANNN
1171
CAATCTCCTATACTT
chr8:32597229-
8


26.1

NNNNNNTATCGGAC

TGATTTTATAGGAC
32597261





ATTA

ATTA







WP_0250314
565
CAATGTCCGATANNN
1172
CAATCTCCTATACTT
chr8:32597229-
8


21.1

NNNNNNTATCGGAC

TGATTTTATAGGAC
32597261





ATTA

ATTA







WP_0701745
566
GCCCGCCTGAGANNN
1173
GTCTGCCTGAGAGG
chr8:40628155-
6


36.1

NNNNNACTCAAGCG

GTATAAACTCAAGA
40628186





GGC

GGGC







WP_0393287
567
TAACTTCATATANNN
1174
TACATTTATATATAA
chr8:62042573-
7


73.1

NNNNNTATATGAAGT

ATGTATATATGAAG
62042604





TG

TTG







WP_1050800
568
TAACTTCATATANNN
1175
TACATTTATATATAA
chr8:62042573-
7


92.1

NNNNNTATATGAAGT

ATGTATATATGAAG
62042604





TG

TTG







WP_0425961
569
TTTGTATGTCTATANN
1176
TTTGTATGTATATAC
chr8:62870333-
6


86.1

NNNNNNNTATAGAT

ACAAAATATATGCA
62870369





ATACTAA

TATACTAA







WP_1132334
570
TCACTATCGATANNN
1177
TCAATATCTATATAT
chr8:68696565-
5


96.1

NNNNNNTATCGATA

AGTTTATATCTATAG
68696597





GTGA

TGA







WP_1108804
571
TCACTATCGATANNN
1178
TCAATATCTATATAT
chr8:68696565-
5


04.1

NNNNNNTATCGATA

AGTTTATATCTATAG
68696597





GTGA

TGA







WP_1200192
572
TCACTATCGATANNN
1179
TCAATATCTATATAT
chr8:68696565-
5


18.1

NNNNNNTATCGATA

AGTTTATATCTATAG
68696597





GTGA

TGA







WP_0696942
573
TCACTATCGATANNN
1180
TCAATATCTATATAT
chr8:68696565-
5


92.1

NNNNNNTATCGATA

AGTTTATATCTATAG
68696597





GTGA

TGA







WP_0921773
574
TCACTATCGATANNN
1181
TCAATATCTATATAT
chr8:68696565-
5


45.1

NNNNNNTATCGATA

AGTTTATATCTATAG
68696597





GTGA

TGA







WP_0571937
575
TCACTATCGATANNN
1182
TCAATATCTATATAT
chr8:68696565-
5


06.1

NNNNNNTATCGATA

AGTTTATATCTATAG
68696597





GTGA

TGA







WP_1335653
576
TCACTATCGATANNN
1183
TCAATATCTATATAT
chr8:68696565-
5


15.1

NNNNNNTATCGATA

AGTTTATATCTATAG
68696597





GTGA

TGA







KSV89580.1
577
TCACTATCGATANNN
1184
TCAATATCTATATAT
chr8:68696565-
5




NNNNNNTATCGATA

AGTTTATATCTATAG
68696597





GTGA

TGA







WP_0583233
578
TCACTATCGATANNN
1185
TCAATATCTATATAT
chr8:68696565-
5


47.1

NNNNNNTATCGATA

AGTTTATATCTATAG
68696597





GTGA

TGA







WP_1326658
579
TCACTATCGATANNN
1186
TCAATATCTATATAT
chr8:68696565-
5


65.1

NNNNNNTATCGATA

AGTTTATATCTATAG
68696597





GTGA

TGA







WP_0696942
580
TCACTATCGATANNN
1187
TCAATATCTATATAT
chr8:68696565-
5


93.1

NNNNNNTATCGATA

AGTTTATATCTATAG
68696597





GTGA

TGA







RWE07715.1
581
TCACTATCGATANNN
1188
TCAATATCTATATAT
chr8:68696565-
5




NNNNNNTATCGATA

AGTTTATATCTATAG
68696597





GTGA

TGA







WP_0115788
582
TCACTATCGATANNN
1189
TCAATATCTATATAT
chr8:68696565-
5


06.1

NNNNNNTATCGATA

AGTTTATATCTATAG
68696597





GTGA

TGA







RWD51833.1
583
TCACTATCGATANNN
1190
TCAATATCTATATAT
chr8:68696565-
5




NNNNNNTATCGATA

AGTTTATATCTATAG
68696597





GTGA

TGA







WP_0964596
584
TCACTATCGATANNN
1191
TCAATATCTATATAT
chr8:68696565-
5


80.1

NNNNNNTATCGATA

AGTTTATATCTATAG
68696597





GTGA

TGA







RWD87033.1
585
TCACTATCGATANNN
1192
TCAATATCTATATAT
chr8:68696565-
5




NNNNNNTATCGATA

AGTTTATATCTATAG
68696597





GTGA

TGA







WP_0162108
586
CTACTTCCGATANNN
1193
CTACTTCAGATATA
chr8:92445006-
7


37.1

NNNNNTATCGGAAG

ACAAAATATCCGAA
92445037





TAA

GAAA







WP_0732881
587
TAAGTTATGATANNN
1194
TAAGTTATGATAAT
chr9:102580364-
5


06.1

NNNNNNTATCATAAC

AGAAGTTTATAATT
102580396





TTA

ACTTG







WP_0927431
588
TAAGTTATGATANNN
1195
TAAGTTATGATAAT
chr9:102580364-
5


58.1

NNNNNNTATCATAAC

AGAAGTTTATAATT
102580396





TTA

ACTTG







WP_0263515
589
TAAGTTATGATANNN
1196
TAAGTTATGATAAT
chr9:102580364-
5


76.1

NNNNNNTATCATAAC

AGAAGTTTATAATT
102580396





TTA

ACTTG







WP_0893342
590
TAAGTTATGATANNN
1197
TAAGTTATGATAAT
chr9:102580364-
5


12.1

NNNNNNTATCATAAC

AGAAGTTTATAATT
102580396





TTA

ACTTG







WP_0865970
591
TAAGTTATGATANNN
1198
TAAGTTATGATAAT
chr9:102580364-
5


10.1

NNNNNNTATCATAAC

AGAAGTTTATAATT
102580396





TTA

ACTTG







WP_0925112
592
TAACATAGGATANNN
1199
TAACATGAGATAAG
chr9:124694620-
6


77.1

NNNNNTATCCCATGT

CCACTAAATCCCAT
124694651





TA

GTTA







WP_0557393
593
GGCTTAGGGATANNN
1200
GGTTTAGGGATACA
chr9:1707914-
6


75.1

NNNNTATCTCTAAGC

TGGGCAGTCTCTAA
1707944





C

GCC







WP_0580665
594
TTTGTGGGGTAGANN
1201
TTTGTGGGGCAGG
chr9:1996891-
4


17.1

NNNNNNTCTGCCCCA

GAGATTTTCCTGCC
1996924





CAAA

CCACAAA







WP_0021875
595
AATTACCGAATANNN
1202
AATTACAGAAGAGG
chr9:20409384-
3


15.1

NNNNNNTATTTGGTT

TGAAAGATATTTGG
20409416





ATT

TTTTT







WP_1276221
596
TGACTATCGATANNN
1203
TGACTATCCATAAA
chr9:30689863-
5


66.1

NNNNNNTATCGATA

GAGGCTATAGCGAT
30689895





GTGA

AGAGA







WP_1012009
597
ATTATTCTAGATANN
1204
ATTATTATAGTTACA
chr9:42127049-
3


24.1

NNNNNNTATCTGGA

TAGTTTTATCTGGA
42127082





ATAAT

AGAAT







WP_0683316
598
TAGGTAGCGATANNN
1205
TATGTGGCTATATTT
chr9:7299781-
6


37.1

NNNNNNTATCACTAC

GTTTTCTATCACTAC
7299813





CTA

CTA







WP_0232747
599
GCTTGTAAAATANNN
1206
CCTTGTAAAATATG
chr9:83685793-
6


85.1

NNNNNNTATCTTACA

AAATGGTTATCTGA
83685825





AGC

CAATC







WP_0184094
600
CCATGTCCGATANNN
1207
CCATTTCAGATAGA
chrX:109132372-
6


63.1

NNNNNNTATCGGAC

GAACATGTATTGGA
109132404





ATGA

CATGA







WP_0103052
601
GACTTATCTAATANN
1208
GACTTATTTAATAA
chrX:123330942-
6


36.1

NNNNNNTATTAAATA

ATAGACTTATTTAAT
123330975





AATC

AAATA







WP_0087370
602
GTGGTGGGCAGANN
1209
ATGGTGGGCATAG
chrX:123955891-
6


17.1

NNNNNNNTTTGCCCA

GACTATTGTATGCC
123955923





CCAT

CACCAT







WP_0065260
603
TTGAGTGTTACANNN
1210
TTAAGTGTTACACA
chrX:140388413-
7


94.1

NNNNNNTGTTACACT

TATTTTATTTTACCC
140388445





CAC

TCAC







WP_1276571
604
TAAGATACGATANNN
1211
TAACATGCGATATA
chrX:15022673-
5


23.1

NNNNNNTATCGTATC

TACTATATATCGTAT
15022705





TAA

ATAA







WP_0718572
605
AGCTCCTTTATANNN
1212
AGCTCCTCTATGATT
chrX:16696196-
6


25.1

NNNNNTATAAATCAG

AAAACTAAAAATCA
16696227





CT

GCT







WP_1076761
606
TCACTAGCGATANNN
1213
TCACTAGAGATAGA
chrX:21966067-
5


28.1

NNNNTATCGATAGTG

CTCTTTATGCATAGT
21966097





A

GA







WP_0031322
607
AAGTTACTGACANNN
1214
AAGTTACTGAGATG
chrX:41824012-
6


98.1

NNNNTGTCAGTAACT

CAAGATGTCAAAAA
41824042





C

CTC









Non-limiting examples of amino acid sequences of tyrosine recombinases are provided in Table 1, column 1 by accession number. Table 1 further provides, in column 2, exemplary native non-human (e.g., bacterial, viral, or archaeal) recognition sequence(s) to which a given exemplary tyrosine recombinase binds. Each of the native recognition sequences listed in Table 1 typically comprises three segments: (i) a first parapalindromic sequence, (ii) a spacer (e.g., a core sequence) that generally does not include a defined nucleic acid sequence, and (iii) a second parapalindromic sequence, wherein the first and second paralindromic sequences are parapalindromic relative to each other. Table 1 further provides, in column 3, exemplary recognition sequence(s) for each exemplary tyrosine recombinase in the human genome. Generally, the human recognition sequences listed in column 3 of Table 1 each comprises three segments: (i) a first parapalindromic sequence, (ii) a spacer (e.g., a core sequence) that generally includes a defined nucleic acid sequence, and (iii) a second parapalindromic sequence, wherein the first and second paralindromic sequences are parapalindromic relative to each other. Table 1 includes, in column 4, genomic locations of the exemplary human recognition sequences in the human genome.









TABLE 2







Amino acid sequences of the tyrosine recombinases of Table 1.








SEQ



ID



NO:
Bidirectional Tyrosine Recombinase





1215
WP_006717173.1



MAKKVKPLVDTEIKKAKASDKPYTLTDGYGLFLIISPTGSKSWRFNYYRPLTKKRAKIALGVYPAITLSK



ARELREQYRQLLALKIDPQEHIKQNELLQLQRQQNTFFAIATQWKQKKVSEIKEATLKSRWRTIEKYVFP



YLGDNPIADITPQQLHDIAMPLFERGVSHTGKLVIALVNEIMGFAVNKGVIEFNKCVNVSKAFNVNRTTH



HPTIRPEQLPEFMSALRNSHIDLMVKYLIEFSLLTMTRPSEAANALWDEIDFEKSLWNIPAERMKMKKAF



TVPLSPQVLKILNKLKNISGRSRFIFOSQRYPERSLHSSSANAAIKRVGYKDQLTSHGLRSIASTYLSET



FTEMNLEILEACLSHQSKNQVRNAYNRSTYLEQRKLLMNAWGNFVEECMKKSI





1216
WP_006718580.1



MLTDTKIKSLKPKDKVYKVADRDGLYVSVSTAGTITFRYDYRINGRRETLTIGKYGADGINLAEARERLM



IARKQVSEGISPATEKRAERNKIRNADRFCVFAEKYLADVQLADSTKALRVATYERDIKDTFGNRLMTEI



TADEIRSHCEKIKERGAPSTAIFVRDLIANVYRYAIQRGHKFANPADEIANSSIATFKKRERVLTPREIK



LFFNTLEETQSDFALKKAVKFILLTMVRKGELVNATWNEVDFKNKVWTIPAERMKAKRAHNVYLSEQALD



LIIAFQIYSEGSPYLLPGRINRRQPIANSSLNRVIANCIKFINKDEQRIDEFTVHDLRRTGSTLLHEMGE



NSDWIEKSLAHEQQGVRAVYNKAEYAEQRKEMMQRWADQVDEWINDNSL





1217
WP_006719234.1



MPKITKPLTNTEVERSKPKAKEYTLTDGYGLFLLVLPTGVKSWRFNYIRPLTKKRTKVSLGTYPALSLAQ



ARSIREEYRSLLAQGIDPQEHKEQEQKAAIEHIENSLLSVANRWKAKKVQKVEAETLKKDWRRMEIYLFP



FIGDMPINEILPKVVIEALESLYNQGKGDTLKRTIRLLNEVLNFAVNYGLIAFNPCLRINEVFNFGKSTN



NPAITPKELPELIKAVMYSSAAIQTKLLFKFQLLTMVRPAEASNATWSEIDFKKSLWTIPANRMKKRHPF



VIPLSSQAMAILNKMKSISVKSEYVFQSWIKSNQPMSSQTINKMLVDLGYKNKQTAHGLRTIGHTYLADL



RIDYEVAEMCISHKTGTQTGKIYDRADFLEQRKPVMQLWGDYVEQCER





1218
WP_109859198.1



MNDLTLLDLFLNELWIGKGLSPNTVQSYRLDLTALCDWLGERKLSLLDLDSVDLQTFLGERVEQGYKATS



TARLLSAIRKLFQYLYQEKYRTDDPSAVLSSPKLPSRLPKYLTEQQVTDLLNVQSLEQPIELRDKAMLEL



LYATGLRVTELVSLHTDSISLNQGVVRVIGKGNKERIVPMGEEATHWVKQFMLFARPILLDGQSSDVLFP



SRRGTOMTRQTFWHRIKHYAVLAEIDSNMLSPHVLRHAFATHLVNHGADLRVVOMLLGHSDLSTTQIYTH



VAKERLKRLHERYHPRG





1219
WP_006717195.1



MNDLTLLDLFLNELWIGKGLSPNTVQSYRLDLTALCDWLSERKLSLLDLDSVDLQTFLGERVEQGYKATS



TARLLSAIRKLFQYLYQEKYRTDDPSAVLSSPKLPSRLPKYLTEQQVTDLLNVQSLEQPIELRDKAMLEL



LYATGLRVTELVSLHTDSISLNQGVVRVIGKGNKERIVPMGEEATHWVKQFMLFARPILLNGQSSDVLFP



SRRGTQMTRQTFWHRIKHYAVLAEIDSNMLSPHVLRHAFATHLVNHGADLRVVQMLLGHSDLSTTQIYTH



VAKERLKRLHERYHPRG





1220
WP_005715799.1



MQNELQKYLTYLRIERQVSPHTLTNYQHQLVRVIAILQDAGIQQWQQVTLSVVRYVLAQSSKQDGLKEKS



LALRLSALRRFLSYLVYQGQLKVNPAVGVSAPKQPKHLPKNIDRDQIQLLLANDSKEPIDIRDRAMIELF



YSSGLRLSELQGLNLNSINLRVREVRVIGKGNKERIVPLGRYASHAIQQWLKVRLLFNPKDDALFVSQLG



NRMSTRTIQMRLERWGIRQGLNSHLNPHKLRHSFATHMLEASSDLRAVQELLGHSHLSTTQIYTHLNFQH



LADVYDAAHPRAKRKK





1221
WP_120166565.1



MESIVLKFIEYLKNEKELSKNTIESYNRDLRQFKEYISDNKINDITGVNKTAIIKYLMHLQKIGKSTSTV



SRNLASLRSFYQYLLNKGIINQDPTLNLQSPKPEKKLPDILTPKEVDILLRQPDITTSKGIRDKAMLELL



YASGIRVSELIDLNLEDINLDLGYLVCSKNNSNERIIPIGKIALNILKTYIKDYRKKFIKDKNVKSLFVN



YHGNKMTRQGFWKIVKSYAKKANINKKITPHTLRHSFATHLLQNGADLKSVQEMLGHSDISTTQVYAQIT



KNNIKEVYKKAHPRA





1222
WP_061329756.1



MRVQEVKLENNQRRYLLVDDIGLPVIPVAKYLKYIDNSGKSFNTQKTYCYSLKLYFEYLQEIAVDYRSVN



INILSDFVGWLRNPYANNKVVNLKPTIAKRTEKTVNLTVTVVTNFYDYLYRTEELNNDMIDKLMKQVFTG



GNKHYKDFLYHINKDKPTNKNILKIKEPRRKIKVLTKEEIQSVYNATTNIRDEFLIKLLFEAGLRMGEAL



SLFIEDIIFDHNNGHRIRLVNRGELPNGARLKTGEREIHISQELIDLFDDYAYDILDELEIDTNFVFVKL



RGKNKGTPLEYQDVSDLFKRLKKKTGIDVHAHLLRHTHATIYYQTTKDIKQVQERLGHSQIQTTMNMYLH



PSDEDMRANWEIAQPSFKITKRGTNDN





1223
WP_010497271.1



MSVIKNFPAHAKPYQATYTNGSGRGRIRKIKSFVSSKDAQLWLKQMETNFINGETYAKSQMLFVDYFQEW



YRLYKAPVVSPPTLDSYYNSWRHFKEHGLGHVKMENLTRDKIQTYLNDLAYAKETTRKDLNHLRACLRDA



YDDGVISRNPAAGTLHVIADPAKSKSKDRKFMAETDFRKVQDFLLNYNYRLSDVNRAVLLVISQTALRVG



EALALRYDDLNQLNCTIRVDESWDAKHLMFGKPKTESGYRTIPVSRQAMKKIITWQNFHRRELFRRGIPN



PGNLLFLNRQKNLPRASAINSCYHQLQLRLGIEAKFSTHTMRHTLASILLGSGEVSIQYISYFLGHANVA



ITQKYYIGLLPEQVEKEDQEVVKIVGAL





1224
WP_038150996.1



MASYSISTRQKDKNWQVIVSYKDRYGRWRQKSKQGFLTKRTAKDYGDIIVKEIKENLLLTNNEELANITF



LEFSKIYFNDVKDTLRANSLITYQNLIKYVSPLYNLQLHEITPLIINTTLKNITSSTTSKKFIVSILKRI



FSHAIKEYNLLSKNPVTATVPSEKINKPIRVITNEELDLYYNTISTSNQIYVAIKILQYTGIRIGELFAL



TQDDIDYKEMTISINKQFVTVGKNKNGIGPLKTKNSYRTIPIPKSLAVILSEYTSTCTTDRIITYKSTNA



LRKHIKKHINNHAPHDFRHTYATKLLANGMDVKTVAALLGDTVTTVINTYIHYSDEMRQSAKKDIQRIFD





1225
WP_038150898.1



MKLIEKMKGATKRPYVAYKIVGYYRTYDEAVDALQNASKKYTLYQLYTSWLSTHRNSVTSTTISNYHSAI



AHATSIHNTYIDEITYIQLQSIIDTMLRNHLSYSSCKKVRSLLSQLFDYAIINNLISTNYAHYVKIGTNT



PVRPHVTFTTRQINKLWRLSSPLRDIPLILLYTGMRATELINLTSKNVNRKQRTIRITSAKTKAGIRTIP



IHDRIYDIIINRLDSQYVIEECRTYQSLAHQFNQAMKAINAKHTTHDCRHTFATRLDDVGANYNAKRLLL



GHASSNVTDGVYTHKSLVQLRKAIRMLK





1226
WP_017740000.1



MRSKKGEVSISLRNGNYQLYWRYKGEKFYLSPGLSESKVNAIAVEKLANQIKLDIIFENFDETLKKYKPE



KTVEKVNKAKKELDIDSRLENYFTVRGIKSKGTKDVYLAVVKRYKSFFYGKKEPNLTDLQKFLEHLKNEG



LSLVTIKSYLIKLAAVFDNTEPWKIIKKQIKPNPVQPKPFTKEEVFSIIENCPEHYRNFVKFLFYSGCRI



GEAINLKWENVTEDFSSVWILADKTKKARKLILTEELKAVIRDSKDKAKSNIYVFTAKTRKSEQVSRKYF



CDYIWKPLLIKLNISYRKPYYTRATMISHSLEAGLSPLKLAKITGHSQSTMWNHYYADLGIENKIPDIFN



QE





1227
WP_017744257.1



MHIVTFKGRIRFNLPRQWFGGKQQQWNLKLEATEVNMALASRVARRLEMDFQDGKLTVALPDGSTAFNKE



HYNKVLAEYNIEGNLRTDLKLITGGLPSDEIPPKPQMSLLDVWDMYCEHKFKNGKLAKTTYGQYKSQYRN



YLISAMEANGGEDAIKIKNWLLENRNREIVCKILSGLEQAYKVALRQKLVSFNPYEGIMEDVSRIKRETE



IDVTKESDEDLLNKSKAYTWDEAQVIMEYLKDSPSYGHWYHFVAFKFLTGCRTGEAIGLCWMDVKWDGQC



VVISKTWTRLKFYKPTKTEKEKRVFPMPVDGELWNLLKSLPQGNPSEPVFKSKNEKMIHIDIFGTAWRGR



ESKRNKGIIPTLIEQGKLSKYLPPYNTRHTFVTHQIFDLGRDEKIVSAWCGHSEAVSSKHYQDIADRASQ



INPELPVNNQQVQQVSNEMDEMRNIIKSLQEQLKTQSEVIASLQEQLKNK





1228
WP_O17746151.1



MYETGKPSSRVPKITPRNNNGGIIIRFQYQGKQYSISPGGKYSDKLAIANANKIASQIKTDILAGYFDPT



LEKYQPKVKQPDNVVSINKDVALSLKELWEQYKLAKRASVAETTQKEKWSQIDRCLTKVSPEILNPENAR



LLIPELLKAYSSTTLERIINDIHACSHWAFETGLISINPWRRLKQQLPDKPOSSRTKKAYSRDEVNAIIQ



AFRGDWYCNSKSAFKDSWYADFIEFLFLTGCRPEDAIALTWEQVKERVIVFDKAYSCGVLKSTKNNKARM



FPITPQIRELLDRRLTSVSTIPTKLVFPAQNGNYINLRNFTQRYTKRIIENLVSEGKVKQYLPTYNLRNT



SITHYLRQGVDIATVAALMETSEEMINQHYWSPDDDIINNNVQLPEI





1229
WP_126045042.1



MNNFININNDKNSIIVANLQEKVKDYARHAFAKNTIKNYQSDWKIFCTWCESLNINPLNITHNTLIAYIT



FLAEENYKASTIQRKISAIYKYCETKNIHINLQDKEFKIVWQGIRRKIGIVKQGKDPILLKDLEDILQHI



SKNTHMGIRDRALLTFGWFSAMRRSELVKLNWQDISFIKEGIIINIRQSKTDKFGEGQKIAILKRKIFCP



IKHLKAWQKINNNEAVFCSVNKADKVTGIRLSCIDVARITKKHSAKIDFDTSKIAGHSLRRGFVTTAVSS



GIRNHIIMKTTRHKSSKMIDDYTHDNSLLENNATNMIITSNSSSKKFNSILKNYLQFKAAYKLYNKVKTN



IKKLYFFCIPPTL





1230
XP_012333305.1



MHHIGKALCFFFILNCMDKTTSFFINKVHIFHLTTFRNGGNLTHIRKKCPNSMGVTVKRKGACLNSHDEE



EAEDIDEAETEDEEEMQEEDELEETSDVDETDASDGRLSPRSTKKVTTGGKRVKAGKIKKRKRKKKTTNA



AKCRTCNKILKPRVKFCVHCGTNVSVEKIKLKKYIEDIYLPLRKEEVSYNTYRVEKGFWNDILPKLGKYE



LHELGPNNWESFLKYLKWKNCSPRTMALYQSTYQQSLKYALYRDYLKSVHNFRKIKNSTIPRRKITPLSP



KEIELLLINSGDMHRAIFALSIGIGLRPSEVLRILWEDVNFEKKEIFIKGQKTKYSNTAIPMTNFAYNEL



VKWWEIEKKPLKGLCFYSETIKNKFNYTNTKTPLKTFKTALKGAAKRAGLEISEDGKKRRIFPYLLRHSF



ATIAATSNPPVPLPVAQAIMRHSSSKMLLDTYTKAGNNIIRDGLDNFKI





1231
WP_073025039.1



MAIHKPVALYPTFKELKEIPLDEFPELSSFLSSGPGWRKQSWLWGQEFLSYIGRNKSQHTYTRFRSEIEK



FLLWSFVIKESPCDEFRKTDILDYADFCWKPPQTWISLTNHDKFQPKGDGTYIQNKAWSPYRLVVSKGDN



STPDKKKYRPSQQTLRATFTAIIAFYKYLMDEEYCVGNPAQLAKKDCRHFIKDAQVKDVKRLSEEQWLFL



LETVTAMADDNSRFERNLFLIAALKTLFLRISEFSERPDWIPVMGHFWEDTDKNWWLKVYGKGRKLRDIT



VPSSFMPYLKRYRLYRGMSSLPLDGEKHPIVEKLRGSGGMTARQLSRLVQEVFDHAYETMKKQQGEEIAR



KFREVSTHWLRHTGASLEIERGRALKDLSEDLGHSSMATTDTVYVQSEDRKRAESGKNREV





1232
WP_007635552.1



MLLKKPVPLYPPYLDLCDFDFKDYPELKEIFSSNESWWLEQFNWGKVFLNYIGRNKSTHTYDRFRNDVER



FLLWSFIEKKKPIDQLRKTDLLEFADFCWHPPVSWIGTSNQERFKIMNGYSCANEFWFPYKIQAPKSQKT



QFIIDKKKYRPSQQTLSSMFTAIIVFYNYLMAEDFCIGNPAQIAKKDCRHFIIDSQVKEIKRLTGSQWQY



VLDTAVEMADDNPVFERNLFVIVALKTLFLRISELSERTNWSPTMGHFWQDDDENWWLKIFGKSRKIRDI



TVPIDFLPFLERYRISRGLIGLPSSNENLVLVEKIRGQGGMTSRHLRRLVQSVLDQAHENMRTSEGENKA



LKLKEASAHWLRHTGASMEIERGRPLKDISEDLGHASMATTDTVYVQSENKKRAESGKQRKVD





1233
WP_058958135.1



MTELVPLTELQMNRSGDIAERLRQFVQDKEAFSPNTWRQLLSVMRICNQWSEENQRSFLPMSADDLRDYL



TFLAESGRASSTVTSHAALISMLHRNAGLPVPNTSPQVFRAMKKINRVAVMSGERAGQAVPFRLSDLLAL



DRQWSGADSLQARRDLAFLHVAYATLLRISELSRLRVRDVMRAGDGRIILDVAWTKTVVQTGGLIKALST



RSTQRLEEWLDASGLSGQPDAYLFTAVHRSGRSLPAEKPMSTRALEQIFERAWRCAGKAGGVKANKNRYT



GWSGHSARVGAAQDMADKGYPIARIMQEGTWKKPETLMRYIRHVEAHKGAMVEFMEQHADGTLPD





1234
WP_090967054.1



MSELVPITSLEASRNSDDITERLRQFVQDKEAFSPNTWRQLLSVMRICNRWSEDNQRSFLPMSAEDLRDY



LSFLAESGRASSTITSHAALLSMLHRNAGLPVPNVSPLVFRTMKKINRVAVMNGERAGQAVPFRLTDLLA



LDGEWSGSESLQALRDLAFLHVAYATLLRISELSRLRVRDVMRAGDGRIILDVAWTKTIVQTGGLIKALS



ARSTQRLEKWIEASGLFSQPDAYLFSAVHRSGRALIAEKPISTRALEQIFSRAWLTAGKSGAVKANKNRY



TGWSGHSARVGAAQDMADKGYPIARIMQEGTWKKPETLMRYIRHVDAHKGAMVEFMEQHADTDFPG





1235
WP_010365336.1



MLSPLVDTLKQLRYQIAHIEDGTLTNEYPELESFLSHVVRSVPNARDDIEFLYQFLYVYGRKSEATFNRF



RNELERFYLWAWEWRALSVFELKREDIEAYVEFVVEPDNRWISDSVQWRFKDHEGLRVVNKLWRPFAFKE



NGVSQQTFSAMFTALNVFYKFAILEEKTFTNFIPVVKKNSPYLIVQSQIKLPDTLSNLQWEYVFGVTRDK



CEENPSLERNLFTLACLKGLYLRISELSERPQWSPVMSHFWQDPDGFWYLRIMGKGNKLRDVTLSEDFII



YLRRYRQYRALPALPRVDEPHPIIHKLRGQGGMNVRQIRRIVQQSFDLAVDSLAADGFSDESEQLKAATA



HWLRHTGATHDAQHRPLKHLSEDLGHAKIATTDQIYIQTNIKDRAKSGSKRKL





1236
WP_016392893.1



MARTVTPLSDSKCEAAKPRDKDYKLFDGQGLFLLIKPSGVKTWRFKFIRPDGREGLATFGNYPALGLKAA



RDRRADFLELLAAGRDPIEAGKVAKMDAANARINTFEALARVWHSTCARKWKPHHAATVLRRMELHLFPS



LGARPIADLKARDLLAPLKAAERRDTLETASRLRQYIAGILRMAVQHGIIDINPANDLQGATATRKTAHR



PALPLERLPELLTRMDAYNGRQLTRMAVQLSLLVFTRSSELRFARWDEIDFERALWTIPAERQPIEGVKH



STRGAKMATPHLVPLSRQALALLAEVHQLTGNYELVFAGDHHYWKPMSENTVNAALRRMGYDTKADVCGH



GFRAMACSSLVESGLWSRDAVERQMSHQERNGVRAAYIHKAEHIEERRLMCQWWADYLDASRKKYATPYD



FANCGRDAGNVVSIMRG





1237
WP_047824597.1



MAPETALDDDRPDRGEALSLSRDLALVAHGPGAGPSPELLAAYVRAAAPNTLRAFRSDVLAFDAWCRSRG



EKSIPASPQIVADWLSTRASGGAAPASLSRYKASIARLHRLCGLADPTGDELVRLTLAAYRREKGVAQKQ



ARALRFRGAVKDPLSDTPRGINVRAVLASLGDGLTDLRDKALLSLAYDTGLRASELVAVQVEDIGEAIDA



DARLLAIPRSKGDQEGEGATAYLSPRTVRALEAWLKAAVIGEGPVFRRVVVRRYAARQARKARNGKERGW



NARWVPERFAAKDAEPVRIESDVGEGALHPGSITPLIRSMLRRAFDVGAFGDLDAATFEKQVREISAHST



RVGVNQDYFAAGEDLAGIMDALRWKSPRMPLQYNRNLAAEQGAAGRLLGKLR





1238
WP_046407494.1



MNALLPFADDVTGSGIVAIDADVIDAARRAMSPNSWRALRADIRVFAGWCAARGLMTLPALPATVATFLA



DQADHGKKAATLARYTASIARLHALADQPDPTRTERVRLELKAQRRALGVRQRQARGLRFRGEVADPLAA



AGPVGVCVEAMLAATGDDLPGQRNRALLSLAFDTGLRRSEIVAIRWPHVERGGAGGGRLFVPRSKADQEG



AGAYAYLSARTMTALGEWRAACGGRSDGALFRRLHRTRDKSGADIWSVGAALSAQSVTLIYRAMLDAAHA



AGLLGMIDSADFDIWRASLTAHSTRVGLTQDLFASGQDLAGIMQALRWKSPAQPARYAQALAVESNAAAK



VVGKL





1239
WP_003712523.1



MKQLVLPIKDSNVLHEVQDTLLNNFRFGRRNYTIFQFGKATLLRVSDVLALRRNEIFTDDGLIKKNAYIR



DKKTNKPNILYLKPIKQDLSQYYSWLDENSIHSEWLFPSLKHPERHISEKQFYKEKQFYKIMAKTGDLLN



INYLGTHTMRKTGAYRVYTQTNFNIGLVMSLLNHSSEAMTLKYLGLDQVSREQMLDEVKFD





1240
WP_005027658.1



MPLTDTHIRSLKPDVKPRKYFDGGGLFLFVPANGSKLWRMAYRFDGKSKLLSFGEYPTISLKDARERREE



AKRMLSKGIDPSDHKRQLRQARAIAERDSFQNIAREWHETRMAEFSEKHQGTVMYRLETYIFPAIGKTHI



AKLETRDVMEVVKPLEQRGNYETSRRVLQIISQVFRYAVITGRAKHNVAADLRGALRPRKTVHRAAVLEP



EKVGQLLRDIDAYEGYFPLVCALKLAPLVFTRPTELRAAQWKEFDLEAGEWRIPAERMKMRRQHLVPLSR



QAMSILRELQKCSGEGKYLFPSIRTEARSISDATMLNALRRMGYQKHEMSVHGFRSIASTLLNELGYNRD



WIERQLAHGEQDEVRAAYNYAEYLPERRKMMQAWADYLDGLRNTQQKRIREEA





1241
WP_021170377.1



MNSNDKDFVLRKNNFIQNNKKLSIKSKKRLQKSKSDNTLRAYEADWMDFYDWCTYHSLQALPAEPETIVN



YINDLADHAKANTVSRRVSAISENHKAAGCVDNNPCRGGLVRNALDAIRREKGTLQRGKAPILMEDLRNI



TAYFDTTDIAGIRDKALLLVGFMGAFRRSELVQIDIEDLTFTQEGVIILVAQSKGDQLGQGAQVAIPYSS



NLDICAVTALKSWIHRANLASGPLFRPVNKYKQIRNRRLTNQSVAIIVKKYTKLSGLNPDNFAGHSLRRG



FATSAAQHDVDERSIMQQTRHKSEKMVRRYIEQGNLFKNNPLNKMF





1242
WP_015169902.1



MAKNNRHGQAEILKDLELDRIYRQLQSDSHRLFFNIARYTGERFGAICQLQVCDVYVCYSGIKEPLNEIT



FRAMTRKASPNGERKTRQAYVCDRLREYLSSYRGELGKVYLFPSSIKKDDPITFSAADKWLRTAVDRAGL



EHRGISTHTFRRSFITKLYEEGALDIYAIQQLIGHASILTTQRYLGVSKQKIQSAMNRIYN





1243
WP_089415106.1



MSELVPLTPLTVDRNSDITERLRQFVQDKEAFSPNTWRQLLSVMRICNRWSEDNQRSFLPMSADDLRDYL



SFLAESGRASSTVTSHAALISMLHRNAGLPVPNVSPLVFRTMKKINRVAVINGERAGQAVPFRLSDLLAL



DEEWSGSDNLQALRDLAFLHVAYATLLRISELSRLRVRDVMRAGDGRIILDVAWTKTIVQTGGLIKALSA



RSTQRLEEWIEASGLSSQPDAWLFTAVHRSGRPLIAEKPMSTRALEQIFSRAWRTAGKEGAVKANKNRYT



GWSGHSARVGAAQDMADKGYPIARIMQEGTWKKPETLMRYIRHVDAHKGAMVEFMEQYGDPDYPG





1244
WP_022624268.1



MSELVPLTPLTVDRNSDITERLRQFVQDKEAFSPNTWRQLLSVMRICNRWSEDNQRSFLPMSADDLRDYL



SFLAESGRASSTVTSHAALISMLHRNAELPVPNVSPLVFRTMKKINRVAVINGERAGQAVPFRLSDLLAL



DKEWSGSDNLQALRDLAFLHVAYATLLRISELSRLRVRDVMRAGDGRIILDVAWTKTIVQTGGLIKALSA



RSTQRLEEWIEASGLSSQPDAWLFTAVHRSGRPLIAEKPMSTRALEQIFSRAWRTAGKEGAVKANKNRYT



GWSGHSARVGAAQDMADKGYPIARIMQEGTWKKPETLMRYIRHVDAHKGAMVEFMEQYGDPDYPG





1245
WP_046103089.1



MTELVPLTELQMNRSGDIAERLRQFVQDKEAFSPNTWRQLLSVMRICNQWSEENQRSFLPMSADDLRDYL



TFLAESGRASSTVTSHAALISMLHRNAGLPVPNTSPQVFRAMKKINRVAVMSGERAGQAVPFRLTDLLAL



DRQWSGADSLQARRDLAFLHVAYATLLRISELSRLRVRDVMRAGDGRIILDVAWTKTVVQTGGLIKALST



RSTQRLEEWLDASGLSGQPDAYLFTAVHRSGRSLPAEKPMSTRALEQIFERAWRCAGKAGGVKANKNRYT



GWSGHSARVGAAQDMADKGYPIARIMQEGTWKKPETLMRYIRHVEAHKGAMVEFMEQHADDALPD





1246
WP_069027120.1



MSELVPLTPLTVDRNSDITERLRQFVQDKEAFSPNTWRQLLSVMRICNCWSEDNQRSFLPMSADDLRDYL



SFLAQSGRASSTVTSHAALISMLHRNAGLPVPNVSPLVFRTMKKINRVAVINGERAGQAVPFRLTDLLAL



DKEWAGSDNLQALRDLAFLHVAYATLLRISELSRLRVRDVMRAGDGRIILDVAWTKTIVQTGGLIKALST



RSTQRLEEWIEASGISSQPDAWLFTAVHRSGRPQIAEKPMSTRSLEQIFSRAWRTAGKEGAVKANKNRYT



GWSGHSARVGAAQDMADKGYPIARIMQEGTWKKPETLMRYIRHVDAHKGAMVEFMEQYSDPDYPG





1247
WP_010671927.1



MSELVPLTPLTVDRNSDITERLRQFVQDKEAFSPNTWRQLLSVMRICNRWSEDNQRSFLPMSADDLRDYL



SFLAESGRASSTVTSHAALISMLHRNAGLPVPNVSPLVFRTMKKINRVAVINGERAGQAVPFRLSDLLAL



DKEWSGSDNLQALRDLAFLHVAYATLLRISELSRLRVRDVMRAGDGRIILDVAWTKTIVQTGGLIKALSA



RSTQRLEEWIEASGLSSQPDAWLFTAVHRSGRPLIAEKPMSTRALEQIFSRAWRTAGKEGAVKANKNRYT



GWSGHSARVGAAQDMADKGYPIARIMQEGTWKKPETLMRYIRHVDAHKGAMVEFMEQYGDPDYPG





1248
WP_109653747.1



MSELVPLTPLTVDRNSDITERLRQFVQDKEAFSPNTWRQLLSVMRICNRWSEDNQRSFLPMSADDLRDYL



SFLAESGRASSTVTSHAALISMLHRNAGLPVPNVSPLVFRTMKKINRVAVINGERAGQAVPFRLTDLLAL



DKEWAGSDNLQALRDLAFLHVAYATLLRISELSRLRVRDVMRAGDGRIILDVAWTKTIVQTGGLIKALST



RSTQRLEEWIEASGISSQPDAWLFTAVHRSGRPLIAEKPMSTRSLEQIFSRAWRTAGKEGAVKANKNRYT



GWSGHSARVGAAQDMADKGYPIARIMQEGTWKKPETLMRYIRHVDAHKGAMVEFMEQYSDPDYPG





1249
WP_134161939.1



MSELVPLTPQTVDRNSDITERLRQFVQDKEAFSPNTWRQLLSVMRICNRWSEDNQRSFLPMSADDLRDYL



SFLAESGRASSTVTSHAALISMLHRNAGLPVPNVSPLVFRTMKKINRVAVINGERAGQAVPFRLTDLLAL



DKEWAGSDNLQALRDLAFLHVAYATLLRISELSRLRVRDVMRAGDGRIILDVAWTKTIVQTGGLIKALST



RSTQRLEEWIEASGISSQPDVWLFTAVHRSGRPLIAEKPMSTRSLEQIFSRAWRTAGKEGAVKANKNRYT



GWSGHSARVGAAQDMADKGYPIARIMQEGTWKKPETLMRYIRHVDAHKGAMVEFMEQYSDPDYPG





1250
WP_111534863.1



MSELVPLTPLTVDRNSDITERLRQFVQDKEAFSPNTWRQLLSVMRICNRWSEDNQRSFLPMSADDLRDYL



SFLAESGRASSTVTSHAALISMLHRNAGLPVPNVSPLVFRTMKKINRVAVINGERAGQAVPFRLSDLLAL



DEEWSGSDNLQALRDLAFLHVAYATLLRISELSRLRVRDVMRAGDGRIILDVAWTKTIVQTGGLIKALSA



RSTQRLEEWIEASGLSSQPDAWLFTAVHRSGRPLIAEKPMSTRALEQIFSRAWRTAGKEGAVKANKNRYT



GWSGHSARVGAAQDMADKGYPIARIMQEGTWKKPETLMRYIRHVDAHKGAMVEFMEQYGDPDYPD





1251
WP_128085508.1



MRESASLINLTVNRSDDIAERLRQFVQDKEAFSPNTWRQLISVMRICHQWSEVNQRTFLPMRAEDLRDYL



AFLAESGRASSTVTSHAALISMLHRNAGLDVPNASPLVFRTMKKINRVAVINGERAGQAVPFRLRDLLMV



DRHWSGSENLQSLRDLAFLHVAYATLLRISELSRLRVRDVMRAGDGRIILDVAWTKTIVQTGGLIKALSR



HSTQRLEEWITVSGLASHPDAYLFSAVHRSGRAQITDKPMTTRALEQIFSRAWAIAGKSGAVKANKNRYT



GWSGHSARVGAAQDMADKGYSIARIMQEGTWKKPETLMRYIRHVDAHKGAMVEFMEQIADGDHSGOSS





1252
WP_115764642.1



MSELVPLTPLMVDRNSDITERLRQFVQDKEAFSPNTWRQLLSVMRICNRWSEDNQRSFLPMSADDLRDYL



SFLAESGRASSTVTSHAALISMLHRNAGLPVPNVSPLVFRTMKKINRVAVINGERAGQAVPFRLTDLLAL



DKEWAGSENLQSLRDLAFLHVAYATLLRISELSRLRVRDVMRAGDGRIILDVAWTKTIVQTGGLIKALST



RSTQRLEEWIEASGISSQPDAWLFTAVHRSGRPLIAEKPMSTRSLEQIFSRAWRTAGKEGAVKANKNRYT



GWSGHSARVGAAQDMADKGYPIARIMQEGTWKKPETLMRYIRHVDAHKGAMVEFMEQYSDPDYPG





1253
WP_111138305.1



MRKSAPLTNLTVTRNSDIAERLRQFVQDKEAFSPNTWRQLISVMRICHQWSEDNQRTFLPMSAEDLRDYL



AFLAESGRASSTVTSHAALISMLHRNAGLAVPNASPLVFRAMKKINRVAVINGERAGQAVPFRLGDLLLL



DQRWSGSDNPQWLRDLAFLHVAYATLLRISELSRLRVRDVMRAADGRIILDVAWTKTVVQTGGLIKALSS



RSTQRLEEWMEVSGLAAHPDAYLFCAVHRSGRAQIMEKPMSTRALEQIFSRAWDIAGKCGAIKANKNRYT



GWSGHSARVGAAQDMADKGYPIARIMQEGTWKKPETLMRYIRHVDAHKGAMVEFMEQIADSDVPG





1254
WP_008839747.1



MQDARKTDDTADDDLPDIVDLVVEMGHVAGSPARVDTLVEAATGFAKPARSENTQAAYAKDWRHFTGWCR



REGFDPLPPSSQVIGLYIGACAAGDPKHGAPALSVATIERRLSGLAWNFAHRGQPMDRVDGHIATVLAGV



RKKHAKAPRQKEPLLGDDLLAMIAMLGQDLRGMRDRAILLLGFAGSLRRSEIVGLDVVRNENGDGAGWVE



IYPDKGALVTLRDRTGWREVEVGRGSSDQSCPVVALETWIKFGRIARGPLFRRISKDNKTVYVERLSDKH



VARLVKKTALAAGIRADLAEGEREQLFAGHSLRAGLASSAEIEVRVQEQWGHASAGMTQKYQRRRDRFRV



NRTKASGL





1255
WP_065417888.1



METVNGVLKYAQKSKLIYNLPTDIEKQPMNKPKVEFWAKEEIDFYLDKIHDSYLYTPILIEIFTGLRVGE



LCGLRWCDIDFEDRYLTVNNQVIYDRELKMLVFSKILKTDTSHRKITMPKILTDYLKSIKSDALDTDFVV



LDREGSMCNPRNLSMNFTKSIHKYKKSIDDLKIEDRSIPENYMQLKQITFHALRHTHATLLIFNGENIKV



ISERLGHKNISTTLDTYTHVMEDMKNSTADLLDNIFRYIPSTT





1256
WP_058413992.1



MSDLDRYLNAATRDNTRRSYRAAIEHFEVSWGGFLPATSDSVARYLVAHAGVLAVNTLKLRLSALAQWHT



SQGFPDPTKAPVVRKVLKGIRAVHPAREKQAEPLQLKHLEQVVGFLQEDANAAREAYDQPRLLRAKRDTA



LILLGFWRGFRSDELCRLAIEHVQATPGAGISLYLPRSKSDRENIGKTYQTPALLRLCPVQAYSEWLSAS



ALVRGPVFRAVDRWGNLGEEGLHPNSVIPLLRQALERAGIPADQYTSHSLRRGFASWAHRSGWDLKSLMS



YVGWSDIKSAMRYVEAAPFLGMTLATPALV





1257
WP_099235164.1



MSDLDRYLNAATRDNTRRSYRAAIEHFEVSWGGFLPATSDSVARYLVAHAGVLAVNTLKLRLSALAQWHT



SQGFPDPTKAPVVRKVLKGIRAVHPAREKQAEPLQLKHLEQVVGFLQEDANAAREADDQPRLLRAKRDTA



LILLGFWRGFRSDELCRLAIEHVQATPGAGISLYLPRSKSDRENLGKTYQTPALLRLCPVQAYSEWLSAS



ALVRGPVFRAVDRWGNLGEEGLHPNSVIPLLRQALERAGIPADQYTSHSLRRGFASWAHRSGWDLKSLMS



YVGWSDIKSAMRYVEAAPFLGMTLATPALI





1258
WP_003139553.1



MASARYRQRGKKKLWLVEIRQGDKTLDSKSGFRTKKDAQKYAEPILQKIRNGNTLRPDMTLVDLYQEWLD



LKIIPSSRQQTTINKFILRKKIIKKYFGNKKVSEIKPSDYQKAMNEYGNHINRNGLGRLNNDIHNAISMA



IADKVLIDDFTINVELYSTKVAQAVDDKYLQSEADYNAVIEFITQKLDYHKSVVPYVIYFLFRTGMTYAE



LIAVTWKDIDFTKSVLKTYRRYNTGTHKFVPPKNKTSIRTVPIDAKSLIILKSLQSQQKKANQELGVDNN



ENFIFQHHSLRYDIPLIETVSKAIKEMLKTLKITPLLSTKGARHTYGSVLLHRGIDMGVIAKLLGHKDIS



MLIEVYGHTLQERVEEEYQEVRNVLK





1259
WP_132898417.1



MSDDLDDTALTRISSTPLIPLLLDEEIEAARAYVAAARAPATRRAYESDWRIFLAWCAAHAIDPLPAAPG



AVAIFLSGEAQEGARPSTIGRRLAAIGYMHAQAGLDPPQQQAGAIAIRNVVAGIRRTHGVKKVQKRAADG



DMLRDMLRACDGDSIRDVRDRALLAIGMAAALRRSELVALNIDDVAITPDGLLITIRKSKTDQEGEGATI



AVPEGRRIRPKALLLAWIACAGFGDGPVFRKLTPQGRITAKPMSDRGVALVVKARASGAGYDSAHVAGHS



LRAGFLTEAARQGATVFKMKEVSRHKSLEILSDYVRNHELFRDHAGERFL





1260
WP_120809906.1



MEKIAHYLAAATRDNTRRSYAAAIRHFEVEWGGFLPATADSMARYLADHAETLSVSTLKQRLAALAQWHQ



QQGFPDPTKAPVVRQVLKGIRALHPAQQKQALPLQIRQLEQLLAWLDGAIELAIQQQDHAARLRCRRDKA



LLLLGFWRGFRGDELLRLQIENIALVAGEGMNCYLAQSKGDRQLQGRVFRVPQLSRLCPVSAYGEWLADS



GLREGAVFRGISRWGVIGEDGLHINSLIPLLRRLFAAAGLAEAARFSGHSFRRGFANWASANGWDLKTLM



AYVGWKDIQSAMRYIDAADPFARQRIENSLPPAPALPPVAD





1261
WP_075758185.1



MAKRANGEGTICKRKDGLWTGAVTIGRDAETGKLIRKYFYGKSKTEVQEKKAAQLEKTKGLAYLDADKLS



VSQWLNKWLTLYARTTVRQNTLEGYQFIVDNHVIPALGAVKLGKLQSNQIQGMVNAILDKGGSPRLAEFS



FAVLRRSLRQALKEELIYRDPTLAVSLPKKQKKEIVPLTDEEWTALLATAAKPVFRSLYAALLLEWGTGI



RRSELLGLRWPDIDFARGAVSICHAAISTKDGPQLAEPKSKKSRRTLPVPPTVLAELKKHKSRQAARQLK



AKTWENNNLVFPTRSGGLQDPRVFSRRFARLVKAAGITSGLTFHGLRHDHATRLFAQGEHPRDVQDRLGH



ASITLTMDTYTHSMPSRQQAIASRLEANLPGRKPQADTAAAETAATAPTAAAVQQPVLQ





1262
WP_063313927.1



MVSKADRYLEASVRQNTSKSYAAALSHFEVTWGGFLPTTTESVVRYIAEYADQLALSTLKQRLAALANWH



QSNGFPDPTKAPKVRQLLKGIRAVHPVQQKQAAPLALLHLEKAVAHLEDEVVQAKAAGNMGALLKATRDI



ALLTIGFWRGFRGDELARLTIENTHAERYVGIRFYLGSSKGDRHNTGREYKTPSLSKLCPVEAYLNWIEA



AGLTRGGIFRGIDRWGNISDRPLAAHSLVPLLRDTLNRCGLPSEIYSAHSIRRGFATWAASSGWDIKTLM



EYVGWSDMKSALRYVEPAQQFGGLIRKLEG





1263
WP_038202623.1



MPIYKRSNKYWIDVSAPNGERIRRSTGTEDKLKAQEYHDKVKHELWQLERLDKQPERYFEEMIIMALRDA



EPQSCFANKQIYARYFLSIFKGRKISSITSEEITNSLPTHSNETKSKLSNATQNRYRAFIMRSFSLAYKM



GWITKPHHVTRLREAKVRVRWLERHQAVELINNLSLDWMKKLVSFALLTGARKGEIFSLIWRNVNLDRRI



AVITAENAKSGKARAVPLNDEVVSILRNLPRECEFVFSSNAKRIKQISRTDFDRALKKSGIDDFRFHDLR



HTWASWHAQSGTPLMALKEMGGWETLEMVNKYAHLSGEHLAKYSGVVTFLTQTDKCSSQKQHLKLLTG





1264
WP_110560945.1



MLSDVRILGTSRQAQAALHARVDPLTQQRLAETQDPARWREILSTARFTPPLPLLLAGIELPDGSYSPDT



PLAQDVPYASAAQQMAQDHVADIPSGFELAIGLEIDDGTPCFLAWFRPLQPVGSCSGTVDAAPPAPVGQP



AAAVAQWFSVVSAQPVPEHDGRLATARQAADAYMHRSKAENTLRTYRAAVRSWCRWAAGHALPALPARSE



DVAAYLADMALQGRRTSTIDLHRAALRYLHHLAQTAVPTAHPMVTATLAGIRREAKETLPRQKTALTWDR



LVRVVEAISPHDLVGARDRAILLLGFAGAFRRSELAALKVEDITVDEDGMQIRLGRSKGDPQRKGALIGI



PRGLTRNCPVRAYETWLRQAGITEGPVFRRIWSARDRRAGATPVGTPPRIGPHALSDRAVTDIIRKRCGD



THLEGDFGGHSLRRGAITTGAKDGYDLLELKRFSRHKSLQVVETYIDEASIKARHPGRSRF





1265
WP_102325737.1



MLSDVRILGASKRAQAALHDRVDPLTRQRLAETQDPARWREILSTARFTPPLPLLLAGIELPDGTYSPDT



PLAQNVPYASAAQQMAQDHVADIPSGFELAVGLEIDDGTPCFLAWFRPLQPVEPCPGMADAAPPPAPVGQ



PAAAVAQWFSVVSAQPVPEHDGRLATARQAADAYMHRSKAENTLRTYRAAVRSWCRWAAGHALPALPARS



EDVAAYLADMALQGRRTSTIDLHRAALRYLHHLAQIAVPTAHPMVTATLAGIRREAKETLPRQKTALTWD



RLVRVVEAISPHDLVGARDRAILLLGFAGAFRRSELAALKVDDITVDEDGMQIRLGRSKGDPQRKGTLIG



IPRGLTRNCPVLAYETWLRQAGITEGPVFRRIWSARGHRAGATPVGTSPRIGPHALSDRAVTDIIRKRCG



DTHLEGDFGGHSLRRGAITTGAKDGYDLLELKRFSRHKSLQVVETYIDEASIKARHPGRSRF





1266
WP_110095979.1



MLSDVRILGSSRRAQAALHARVDPLTRQRLAETQDPARWREILSTACFTPPLPLLLAGIELPDGSYSPDT



PLAQGVPYASAAQQMAQDHVADIPSGFELAVGLEIDDGVPSFLAWFRPLQSVGSRSETADAAPPAPVGQP



AAAVAQWFSVVSAQPLPEHDGRLATARQAADAYMHRSKAENTLRTYRAAVRSWCRWAAGHALPALPARSE



DVAAYLADMALQGRRTSTIDLHRAALRYLHHLAQIAVPTAHPMVTATLAGIRREAKETLPRQKTALTWDR



LVRVVEAISSHDLVGARDRAILLLGFAGAFRRSELAALKVDDITVDEDGMQIRLGRSKGDPQRKGTLIGI



PRGLTRNCPVLAYETWLRQAGITEGPVFRRIWSARDRRAGATPVGAPPRIGPHALSDRAVTDIIRRRCGD



THLEGDFGGHSLRRGAITTGAKDGYDLLELKRFSRHKSLQVVETYIDAACIKARHPGRSRF





1267
WP_014106907.1



MLSDVRILGTSRRAQAALHARVDPLTQQRLAETQDPARWREILSTARFTPPLPLLLAGIELPDGTYSPDT



PLAQNVPYASAAQQMAQDHVADIPSGFELAVGLEIDDGMPSFLAWFRPLQSVGACPGTADAAPPAPVGQP



AAAVAQWFSVVSAQPVPEHDGRLATARQAADAYMHRSKAENTLRTYRAAVRSWCRWAASHALPALPARSE



DVAAYLADMALQGRRTSTIDLHRAALRYLHHLAQIAVPTAHPMVTATLAGIRREAKEVLPRQKTALTWDR



LVRVVEAISSHDLVGARDRVILLLGFAGAFRRSELAALKVDDITVDEDGMQIRLGRSKGDPQRKGTLIGI



PRGLTRNCPVLAYETWLRQAGITEGPVFRRIWSARGYRAGATPVGTPPRIGPHALSDRAVTDIIRKRCGD



THLEGDFGGHSLRRGAITTGAKDGYDLLELKRFSRHKSLQVVETYIDAASIKARHPGRSRF





1268
WP_070406227.1



MLSDVRVLGSAVHARRALLKRVDPRTQARLDGVDPLAAAPILSSARFTPPLPLLLAGHALADGNETPDYM



IGAAFPDAATAEQAARRHLGDAPSGFDVAVGLEIEVDAPRFVAWLRRQERVSVHASDPPSLPPAPVGQAP



ATVARWFALVSSQPVPQPDGTLRTARQAVEAYVQRSKAVNTLRSYRAAVRSWCQWASAHDLPALPARSED



VAAYLADMALRQRKTRTLDLHRAALRYLHHLAHITVPTSHPLVSATLAGIRREADHPAPLQKTALTWEKL



TQAIDAMEGDDLVALRDRAILLLGFAGAFRRSELAGLAIQDIAIDEEGLQIRLTRSKGDPSAKGVFIGIP



RGITRHCPVRAYEAWLRASCLTEGPVFRRVWRSRLPTPGVVPPRSKIGAAALSDRSVAEIVRQRCGGAGL



EGDFSGHSLRRGAISTGAQDGYDLLELKRFSRHKSLQVVETYVDAASVKKRHPGRSRF





1269
WP_039683693.1



MTEGALVLASRWSNAANRRREGLRAAHEQNADALTDLLVTYMRLKSSRGARVSQLTLDHYCESVRRFLAF



TGPPESPERALNQLAAEDFEVWMLTMQQASLSASSIKRHLYGVRNLMKALVWAGALASDPSAGVRPPSDT



TPAHAKKQALSVARYAELLALPASMHPGDTLRAHRDTLLLELGGSLGLRAAELVGLNATDIDLNERQLRV



LGKGSKGRTVPMTARVERSLRLWLMSRSSLQALNKLETPALLVSLSGRNYGGRLTTKGARTIAATYYQEL



GLAPELWGLHTLRRTAGTHLYRATRDLHVVADVLGHASVNTSAIYAKMDTEVRREAMEAMERLRDSND





1270
WP_058101978.1



MARRKTPTVEYTINGVTRERKKRTETFGTLEMLKSGKWRVKYYLNGHRYATSAFDDKMEAERYRAELEAE



RRAGTLKPPAAIKATNFKEYAHTWIEQHRTSKGKPLAPRTKAEILRMLEHGLSYFDPYSLTVIDAPLIRK



WHAKRCKDAGATTAGNEARVLKAILQTAVNDDVLEKNPVPGELTRSKTGKEHRAPTTGELKRILDHLEGQ



WRVAVLIAAFGGLRAGELSALERQDIEVRNGRVVIHVTKQAQWLDGEWIVKPPKSVDGVRFVTLPEWITP



DVETHLRRNVSQFPNCRVFVTSRGAKYVSTATWGRVLHKAMADAGIDAPIHWHDLRHFFGTNLAKSGVGI



KELQAALGHGTPAASLSYLEQEHGLTAELANRLPRLDDSSSLIVFPRKATA





1271
WP_073288322.1



MSTEITRIPDEPQALGSQLSTAAANVARYIKAGLEGADNTVLAYSADLKSFGDFCQLHGLNQLPADVATL



ARYVADLADIPRKLSTIRRHLAAIHKHHQLRGYLSPVRADELALVMEGITRTLGKRQKQAPAFTVEELKE



SIRRLDVTTTAGLRDRALLLLGFAGAFRRSELVALDVEHLEFTEKALIVHLAKSKTNQAGEVEDKAVFYA



ATSAFCPVRCTRAWLQQLGRNTGPLFVSLKRGKVKGQAMPTLKRLSPLRVNELVQLHLNHDEDGHKVPEK



NYSAHSLRVSFITISVLRGQSNRFIKNQTKQKTDAMIDRYSRLDDVVSFNAAQNLGL





1272
WP_102906331.1



MQPDSLPAVLSVHPVLDPARLSRLTEESARELIRQGQSANTRASYQGAMRYWAAWFAARYGQELKLPMPV



PVVVQFIVDHAERELVLEDADEAAAPAGKKTRRKVAKKVPLVFDLPPEVDQVLVAHGYKKKLGAYAQNTL



VHRLAVLSKAHQNVNVDNPCNHTQVRELIKNVRSGNAKRGVKPHKQAALTKAPMDALLATCDDSPRGKRD



RALLLFAWASGGRRRSEVADAIMENLRKVDSRGYLYKLGHSKTNQDGKENPDDAKPVSGKAAAAMDAWLE



VSGITEGPIFRRILKGGKVLDEPLDPTAVRKIVKRRCLQAGLPGDFSAHSLRSGFVTEAGRRKMDPADAM



AMTGHRHYETFMGYYRAEDPLDRKASRMLDGDDAAVE





1273
WP_045572321.1



MTYLVYSSDVFKETELRKLDDGTFHCQPTNDNIGSLPTLFYQNGIFNYEANSYLFYLKAIKKAEDLSPCA



QALRAYYQFLEDNGLNWDNFPPVKRLKPTYLFRSHLLKQIKQGELAHSTASVRMNQIVNYYKWLMHDGYL



CIKNEKEAPFKMEFVSIQNNGTLAHISPTFTIETSDLRIKVPRDADSKNIRPLSPLSIDALSVLTHHLLR



TSEELRLQSLLAIDTGMRIEEVATFTLDALDTAIPLAESQYRFEMLLCPRSTGVQTKFLKTRTVEISSNL



LQLLNQYRVSERRLKRVAKLNEKIEQLDNEVPPFTQKKIELLDRSKRHEPLFISQQGNPVTGKIIESRWV



EFRAEIRQAEPSFSHRFHDLRATYGTYRLNDLLEANLPVVECMELLMGWMGHKNESTTWKYLRFLKRKEA



FKVKFGILDSIMHEALGGEDE





1274
WP_041338471.1



MTSKARFPGYPLFDTAELIHEQADLELYPGLQAALMALPQSHRDDFHIAQRFLVKYSDVSGTYNRFRSEI



QRFLNYTWHIAKRHLSQADSDLLSSYFSFLKTPPASWVSRGIYPAFFDSNDQRHQNPDWRPMAQRSKDSN



APYSVTQASLNASRTALQTFFKYLMAQDYLQRNPLLDVRKRDRNAKPSLDKDADAEVRRLTDWQWSYLLE



TLTQLASANPKCERNLFVIVTMKSLFLRVSELAPRPVDRGQMRTPSFSDFRRTIVDGEAYWIYSIFGKGD



KTRQVTLPDAYLSYLKRWRLHLGLTSPLPVPGESTPILPSAKGDAIGKRQVQRIYEQSIVATADRMEQEG



YGDEARQLLAIRTETHYLRHTGASQAIEAGGDIRHISEELGHANATFTESVYVNSEQARRRTEGRRRLV





1275
WP_011043709.1



MARKVKPLTNTEVKQAKPKDKIYKLSDGDGLQLRIMPNGSKQWLLDYFKPYTKKRTSFSLGSYPDVTLAN



ARAKRASSRELLAQDIDPKEHKEDHHREQLLIASHTLKSVAEDWFAIKKTTITEVTAKSLWRKFENHVFP



KLGHRPIDKILAPEAIEALKPLAAKGNLETTGKIIGHLNNIMTHAVNTGILHHNPLSGIRSAFSAPKVTN



MPTIKPNELGKLMKVISYASIKLVTRCLIEWQLHTMTRPSESAKAEWSEIDLENRLWVIPAERMKMRLEH



KVPLTKQSIEILERLKPITGHRTHLFPSHINHHKHCNVETANKALIRMGYKNRLVAHGLRALASTTLNEQ



EFNADVIESALSHVDKNEVRRAYNRAEYLDSRRELMCWWSEHIEQAVSGNLPVSTLKEQKIICNE





1276
WP_041736950.1



MLLTKPVPLYPPYIDLCDFDFDDYPQLDKIFSSNEPWWLEQFNWGKIFLTYIGRNKSAHTYERFRNDVER



FLLWSFIVKKKPIDQLRKSDLLEYADFCWQPPVDWIGTSNQERFKITNGYSAANELWFPYKIQAPKSLKS



QFVIDKKKYRPSQQTLSSMFTAIIVFYNYLMAEDFCIGNPAQIAKKDCRHFIIDSQVKEIKRLTGSQWQF



VLDTAVEMADENAMFERNLFVIASLKTLFLRISELSERPNWSPTMGHFWQDDDENWWLKIFGKSRKLRDI



TVPIDFLPFLERYRASRGLLGLPSSNENSILVEKVRGQGGMTSRHLRRLVQSVFDQAHENMRRSEGENKA



LKLKEASAHWLRHTGASMEIERGRPLKDISEDLGHASMATTDTVYVOSENKKRAESGKRRKVD





1277
WP_070374986.1



MPIKSKITVTNIKNLVPSDKRLNDTDISGFHARITPLGLITYYLFYRLNGKQVNYRLGVDGQMTPAQARD



LAKSKIADVTQGVDVQALRKQERTSTKYSKLSSLQYFLDEKYTPWLKSRNPKTAEKTVKAFKSSFPKLMD



FQLSDINAWEIEKWRNKRLADGVKPATTNRQINTIKGCLSRAVEWGVIDSHDLRNVKTLTVDNSKVRYLS



KDEESRLRESLKSCDTAFLEVIVLLAMNTGMRKGELLSLQWHDINFDNKILTVDFQNAKSGNTRHLPLNT



EAFNQLIHWQKLSGSEGYVFKGRNNEPLKDFPSLWAEILDEANITHFRFHDLRHHFASKLVMASVDLNTV



RELLGHSDLKMTLRYAHLAPEHKAAAVNLIG





1278
WP_033082129.1



MSLTKPIPLYPPYIDLCDFVLEDYPQLEKIFSSNEPWWLEQFNWGKLFLTYIGRNKSNHTYDRFRNDVER



FLLWSFIEKKKPIDQLRKSDLLEYADFCWQPPVTWIGTSNQERFKITNGYSAANEFWFPFKIQAPKSLKS



QYIIDKKKYRPSQQTLSSMFTALIVFYNHLMAEDFCIGNPAQIAKKDCRHFIIDSQVKEIKRLTASQWQY



VLDTAVEMADGDPVFERSLFVIASLKTLFLRISELSERPTWSPTMGHFWQDDDENWWLKIFGKSRKIRDI



TVPIDFLPFLERYRGSRGLLGLPARNENSVLVEKVRGQGGMTSRHLRRIVQSVFDLAHDNMRRSEGENRA



LKLKEASAHWLRHTGASMEIERGRPLKDISEDLGHASMATTDTVYVOSENKKRAESGKRRKVD





1279
WP_057180966.1



MKLTELSLADLNVVVPSKHQEAANKYFTDIFNLLPANTQRSYKSDLKQYYDFCFANDMPGLTPDMDLTET



SIKAYVLAMCESQLAHNTIRHRMATLSKFMAIAKFPNPLKNSEYLRDFIKLQMKAHDIYARANQAPALRL



RDLEEINTHVIPKTLLDFRDLAMINIMFDGLLRADEVAPVQLKHIDYKQNKLLVPTSKTDQSGKGSLRYI



SNTSISYVTAYIAEANIDRKSKREKVKDDPTRINKGILFRGISPKGTTMLPFDETVTRLAHMQKIAYVNI



YKSLKRIAKKAGIDLPITCHSPRVGAAVTMAENGVSMKKIQDAGDWKSPDMPARYTEQADIGNGMSDIAN



IFKR





1280
WP_051743915.1



MASEAPDPDGTLPATVPQSALPDILRADLERAAAYKKAARSSATHRAYGSDWTIYTDWCAARGLAPMPAH



PEQIAAFVANQADAGFKPTTIERRVAAIGHYHRASNYPAPTAHPEAGGLREALAGIRNDKRVKKVRKNAA



DASALRHMLAEIKGASLRALRDRAILAIGMAAALRRSELVALTLQSVGILEHGLELYLGATKTDQAGEGA



TIAIPEGTRIRPKSLLLDWITAVRALEADVERAPADEAAMPLFRRLTRSDQLTGEPMSDKAVARLVKRYA



ASAGYDASKFSGHSLRAGFLTEAASQGATIFKMQEVSRHKTVQILSEYVRSADRFRDHAGDKFL





1281
WP072598906.1



MASDDPSDTGNLPVTVPQPALPDILRAEVDRAADYAKASRSAATQRAYASDWDIFTAWCDVRGMESLPAT



PAAVATFLASEADSGLKVPTIGRRLAAIGYHHRQAGFDPPQEMAGASAIKEVLAGIRREVGTRPERKAPA



DADALRDMIRTIEGDDLRAVRDRAMLAIGMAAALRRSELAGLLIDDVELPPEGLRLLIGRSKTDQSGEGA



VIAIPEGRRIRPKALLLAWIDAAMEAARNLNNPLITFESGPLFRRLTRGGELTADPVSDRAVARLVQRCA



AAAGFDPTDYAGHSLRSGFLTEAARQGASIFKMRDVSRHKSVQVLADYVRDFEMFRDHAGEKFL





1282
WP_069337675.1



MASDDPSGSDNLPATVLQPTLPDILRAEVERAATYAKASRSPATQRAYASDWEIFTAWCDARGLASLPTT



PAIVATFLAFEADRGIKANTIGRRLAAIGYHHRQADVDPPQEQSGAGAMLEVLAGIRNALGTRKDRKTPA



HADALGAMLATIIGNDLRALRDRAVLAIGMAAALRRSELVALWIEDVELPTEGLRLWIGRSKTDQTGEGA



VIAIPEGRRIRPKALLLAWTEAAMAGARELNNPLITFETGPLFRRLTRGGELTADPMSDRAVARLVQRCA



ANAGFNPAEFAGHSLRSGFLTEAARQGASIFKMRDVSRHKSVQVLSDYVRDAELFRDHAGEKFL





1283
WP_060734294.1



MVPRPDMVVASPELDGRSGSNRAVRRSLLTAETDREAIDAWVSSYDSPNTRETYRREAYRLWLWAVLECR



KAFSSLGHEDLLEYRGFLLDPQPAHLWVSEGGQKFPRADPRWRPFYRKLNKAGQQQAMTILNVLFSWLVE



SRYLEGNPLSLSRRRKKPTEPQVHRHLSPEMWRQTLEYVEELPRGTSREQRHYHRARWLVSLFYLTGARI



SEVVSTSMGQFYAAQGEDGEIRWWLRIQGKGEKARDVPATSDLMAELAVYRESYGLSPIPHRDEVIPLMM



RYGERMLPMTRSSAHVAIKQVFKGAAVRLRAKGPEWKNRADLLEAASAHWFRHTAGSHMASKMNLVTVRD



NLGHGNISTTNTYLHTGNDARHQETEQHFKIEWPRPVK





1284
WP_036365362.1



MLTDTAIKRLKPSTDCTPNKPDKYSDGNGLQLIVRPTGTKVWLVAYRYHGRQTNITLGRYPTISLQQARL



QALEIKQKLAQGIDPKTAKPNTVLFGDIANEYHTQRDRNNPINKGKYTVSKVTHKKDLSQYNNDIAPHIA



HLDINAVTPVMILDIAKRIEKRGAYDMAKRAIRQIGAIFRHARDKGLYDRLPPTDGLEKRLTKRKQEHFA



RLEFHELPQFFSHVHHSTCEPLTKLAFKFICLTFVRTIEMRFMQWAEIDWDNYLWRIPPERMKMDKPHIV



PLAPQAIEILHQIKAMGLSDEFVFYNPKTKKPVSENFLTQALKRLGYQGRMTGHGFRGIASTKLHELQYN



HECIELQLAHAKADKVSMAYNGAEHLPYRVQMMKEWAKLIEHACQ





1285
WP_088652586.1



MPSEAEKSTSAPSGDFEDARIDDRDHDERGDIALPAHVAGTGTLDRLVNTARDYARVASSENTLKAYATD



WTHFTRWCRMKGAEPLPPSPEIVALYLADLASGSGPSPALAVSTIDRRLSGLAWNYAQRGFILDRKNRHI



ATVLAGIKRKHARPSVQKEAILAEDILAMVATLTYDLRGLRDRAILLLGYAGGLRRSELVSLDVHKDDTP



DSGGWVEIMEKGALLTLNAKTGWREVEIGRGSKDQTCPVHALEQWLHFAKIDFGPVFVGTSRDGKRASKT



RLNDKHVARLIKRTVLDAGIRSELPEKDRLALFSGHSLRAGLASSAEVDERYVQKHLGHASAEMTRRYQR



RRDRFRVNLTKAAGL





1286
PLX79396.1



MTADSDPVLLSFKCYLRDERNLSPHTRSAYMRDLLEFRQVITSLSGRENGFDWVAVDHLTIRRYLAYLHK



RNRRTTIARKLSALRTCFRFLVREGVVQSNPADLVATPRRETFLPQTMTIDEVFALLEGKGLGESSRLRD



KAIFELLYSSGLRIGELTSLDIGRVDMEQRLVRVVGKGSKERIVPIGSKAREALVAYLEARSWPAEKEPL



FLNFRGGRLSARSVQRHLKQLLLAAGLSTELTPHSLRHSFATHLLDGGADLRAIQELLGHSSLSTTQRYT



HVSMEQLTAVYDKAHPRSRKK





1287
WP_012852732.1



MDGPTLQDLAERWLDHKRASGRGMSDNTEAAYRADLNAWGRALADHHAIDTPDQTRPLEALHTGHLTAEA



LTAAAASFYREGKTAATRSRRISALRGWCAWLVRTGHLTADPTTDLETPRLPRRLPVALTDAQLAAIVQA



ASTPWQGARAQWVRLDRALLALFAGAGARTGEVVALRVGDVICEEDGGGLLRLRGKGGAHRNVPLHADAM



QPVTDYLDERRALLGPFDAEDPLLVARNGKAITTGMIEYRVDQWFRRAAVRRPEGELAHVFRHTYAVGVL



QNGASLNELQAVLGHQNLATTSIYTKVAAEGLKDVARVAPVLRHLRATRPAPTSAPPG





1288
WP_012852733.1



MRPAEFEPICVQEAVDRYVEMVRAKALTGQFSPATAEVYCRDMAVFAELAGPGRLLDDLDGADVDAVLLA



FARRPDGRRRRHDPPPAGRALQSAASQARFRRSVSVFFRYAATAGWVRLDPMRAVTVMPRQRGGLRAERR



ALTAEQAGGLVQAARRLAECGPAEARTGRAARRDQRTEIRDGLVVLLLATVGPRVSELTGANVEDFFVND



GRWYWRIFGKGGRTRDVPLPEAVARVLQAYLERGRPLLDRGVEPKALLLSWRGRRLARGDVQAVIDRVLA



RVEPSRRRAVTPHGLRHTTATHLLAAATDMDAVRRVLGHADLATLSRYRDELPGELEAAMRVHPLLKDQA



PGG





1289
WP_065935487.1



MDVLNITNQISQVDETPLDLHFLTLNAQEAAADFIAAGTAANTVRSYRSALAYWSAWLQLRYGHALGDTH



LPVEVAVQFVVDHLARPTDDGKWVHLLPASIDAALIRAKVKAKPGALAYNTVSHRLSVLGKWHRLNSWDS



PTDAPVLKSLLREARKAQSRQGLSVRKKTAIVIESLQALLATCTDGLRGQRDRALLLLAWSGGGRRRSEV



VNLQISDVRQLDTDTWLYALGVTKTNTGGVRREKPLRGPAAEALSAWLLAAPAESGPLFRRMYKGDKVGS



TGLSADQVARIVQRRAKLAGLKGDWAAHSLRSGFVTEAGRQGVPLGDVMAMTEHRSVSTVMGYFQAGALL



ESRATTLLKFSTVENEDTSGGHHLASDSKNQA





1290
WP_010452301.1



MSELDRYLHAATRDNTRRSYQAAIEHFEVGWGGFLPATSDSVARYLAAHAGVLSINTLKLRLSALAQWHN



SQGFADPTKSPVVRQVFKGIRALHPVQEKQAQPLQLQHLEQVIASLDGEVQAALALQDRPRLLRARRDTA



LILLGFWRGFRSDELCRLEVGNVMAQAGAGITLYLPRSKSDRDNLGRRYQTPALQRLCPVQAYIEWINCA



ALVHGPVFRGIDRWGNLGEEGLHANSIIPLLRQALGRAGIAAEHYTSHSLRRGFATWAHRSGWDLKSLMS



YVGWKDLKSAMRYVEASPFEGMSLAVEKPVAQES





1291
WP_090208726.1



MGKADLYLKAGARENTRKSYRAAIEHFEMDWGGYLPTTGDGIVRYLANYAGHHSINTLKQRLAALSQWHI



TQGFPDPTKTPDVRRVLKGIRAVHPAKTKQAAPLQLSQLQQVVGWLDTEANGAHHRGDHKCEVRHRRSIA



LVLIGFWRGFRGDELARLEIEHTHAVSGEGISFFLPYTKSDREHQGATYHTPALKMLCPVEAYINWITIA



GLASGPVFRGIDRWGNLSTEGINPHSLIPMLRRILAEAGLPAAMYSSHSLRRGFATWATANGWDIKALMT



YVGWKDMQSALRYIDASASFAGLAVGKRGSELQIGR





1292
WP_062152119.1



MATSSTFIVPAIVADTSDDAGERFLEFFAATIRNANTRSAYMRAVEHFLGWRGVAGLASLGDIRPLHIAA



YIEECQGLFSAPTVKLRLAGLRSLFDWLVRTGVMASNPTTSVRGPSHDVQRGKTPILAADEAKRLIASIP



ADTPVGLRDRALIALMTYSFARVSAATGMNVEDLIQTAGRSWVRLHEKRGKVHELPVHHKLLDHLDAYLA



VAGHRDQPKAPLFRSAKGRSGALSNGRLSRHDAYAMVRRRAVAAGIVAKIGNHSFRGTGITTFLLNEGTL



ELAQEMANHSSPRTTKLYDSRRDGITQDAIERIRIE





1293
WP_013196326.1



MAALKRATGNDVITDSTITAARSAHVGRHVLIWLEQVKAASLSELDNFGDEGTVEQVMKVWVKLSLLISR



RRPEIAVSSLLKHVLPNIGSQPLKTLNRLRLNRLYNILIADGKKEEARRVFALTKQFLAWAEMQGYLDHS



PIASMKKRDVAGRATPPRSRQLTDAEIWVFWHGLDNWALSEQARWALRLCLVSARRPDEIVQAQKGEFDL



QLGLWMQGTRNKSQREHVLPISPLMRQCIEALLNAADPDSPWLVSAPRDPQQPLSKGALNQALRRMIRAP



RGLGLEPFTPRDLRRTARSKLSALDTPNDVARKIMNHALEGIDRVYDTHDYLSQMRSAMNTFSDAVKQI1



ECESYHLLRHRYDGETLILSNLSIMAMSR





1294
WP_013577822.1



MSKIGSVTTVEGDFAAGNVGQHVLAYLQNVKMTPLAKLDDFDEEGNATVGQVINIWIRLSLILTRRRPEI



AVSSLMKHVLPVIGEVPLNKITRLRLNRLFNVLLADGKVSEAKRVFALCKQFFGWAETQGYLAHSPLSTM



KRRDVGGRNTPPRERTLTDAEIWVFWHSLDLWDISEQCRWALRLCLLTARRPDEVVRARKDEFHLQIGIW



RQGTRNKSARDHNLPLTPLMITCINALLSASPKHSPWLVPSPLDAQRPLSRGAVTQVIRRLLRAERGPGI



DAFTTRDLRRTARSKLSSLNVPNDVARKIMNHSLEGIDRVYDTHDYLPQMKQALEAFSDNIQGIIDAPDY



YDLRHHFEGESLHVRESSLLFMER





1295
WP_039389914.1



MTPDLTQIPARSAHVGRHVLIWLEQVKKASLSELDNFGDEGTVEQVMKVWVKLSLLISRRRPEIAISSLL



KHVLPNIGSQPLKTLNRLRLNRLYNILIADGKKEEARRVFALTKQFLAWAEMQGYLDHSPIASMKKRDVA



GRATPPRSRQLTDAEIWVFWHGLDNWALSEQARWALRLCLVSARRPDEIVQAQKAEFDLQLGLWMQGTRN



KSQREHVLPISPLMRLCIEALLRAADPDSPWLVPAPRDPQQPLSKGALNQALRRMIRAPRGLGLEAFTPR



DLRRTARSKLSALDTPNDVARKIMNHALEGIDRVYDTHDYLSQMRSAMTIFSNAVEQIIRCESYHLLRHR



YDGETLTLDDLSVMAMSR





1296
WP_033768926.1



MTPDLTQIPARSAHVGRHVLIWLEQVKKASLSELDNFGDEGSVEQVMKVWVKLSLLISRRRPEIAISSLL



KHVLPNIGSQPLKTLNRLRLNRLYNILIADGKKEEARRVFALTKQFLAWAEMQGYLDHSPIASMKKRDVA



GRATPPRSRQLTDAEIWVFWHGLDNWALSEQARWALRLCLVSARRPDEIVQAQKAEFDLQLGLWMQGTRN



KSQREHVLPISPLMRQCIEALLRAADPASPWLVPAPRDPQQPLSKGALNQALRRMNRAPRGLGLEAFTPR



DLRRTARSKLSALDTPNDVARKIMNHALEGIDRVYDTHDYLSQMRSAMTIFSDAVEQIIECESYHLLRHR



YDGETLTLDDLSLMAMSR





1297
WP_056773790.1



MTEQISETETDFAAENVGRHVLVYLQQIKATPLAKLDDFDEEGNATVGQVINVWIRLSLILTRRRPEIAV



SSIMKHVLPVIGDVPLNKITRLRLSRLFNVLLAEGKISEAKRVFALCKQFFSWAETQGYLPHSPLGSMKR



RDVGGRNTPPRERTLTDAEIWIFWHGLDLWDISEQCRWALRLCLLTARRPDEVVRARKDEFNLRISVWRQ



GKRNKSARDHSLPLTPLMLVCINALIAASPKNSPWLVPSPKDPGKPLSRGAITQVIRRMLRAERGLGIAP



FTTRDLRRTARSKLSALDVSNDVARKIMNHSLEGIDRVYDTHDYLPQMKQALDAFSDNIHDIINAPDYLS



LRHKFDGEFLQIPQISLLYMEN





1298
WP_012075809.1



MNTTLLPLHSGIAPLSVDRLDADARTAAAAFVAAGTAANTVRSYRSALAYWAGWLQLRYHRHLEDSALPE



AVAVQFILDHLARPADGDWVHLLPPEQDAALVDAGVKAKLGALSYNTVRHRLAVLAKWHDLKSWPSPTET



VAVKTLLRDARKAQARQGVSVRKKTAAVREPLEAMLATCTDGVRGLRDRALLLLAWSGGGRRRSEVVGLQ



VGDVRQLDADTWLYALGVTKTETEGMRREKPLRGPAAQALAAWLAVAPAATGPLFRRLYRGGRVGTAGLS



SDQVARIVQRRAKLAGLEGDWAAHSLRSGFVSEAGRQGVPLGEVMTMTEHRSVPTVMGYFQAGTLLGSRA



TRLLALPLEVPDYPEE





1299
WP_033986789.1



MNNTIPLLSGDSPLLAVDRLDAEARAAAAAFVAAGTAANTVRSYRSALAYWAGWLQVRYGQTLEMGPLAD



TVAVQFILDHLARPADGDWVHLLPPALDAALVDAGVKAKLGALRYNTVRHRLAVLAKWHDLKSWPSPTDS



AAVKALLREARKAQARQGVSVRKKTAAVREPLEAMLATCSDGVRGLRDRALLLLAWSGGGRRRSEVVGLQ



IGDVRQLDADTWLYSLGVTKTETEGMRREKPLRGPAAQALAAWLAVAPAATGPLFRRLYRGGRVGTAGLS



NDQVARIVQRRAKLAGLEGDWAAHSLRSGFVSEAGRQGVPLGEVMAMTEHRSVPTVMGYFQAGTLLGSRA



TRLLALPLEVPDYPEE





1300
WP_005752218.1



MQEQLDKYWNYLRIERQVSPHTLTNYQRQLYRIVDILAENGITSWQAVTPSIVRFILAQSNKDGLKERSL



ALRLSVLRRFFTYLVQQQDINVNPATGVSAPKQNRHLPKNIDAEQVQQLLNNDSKEPIDIRDRAILELLY



SSGLRLSELQSLNLNSINTRVREVRVMGKGNKERIVPFGRYASHAIQQWLKVRILFNPKDEALFVSQLGN



RLTHRAIQQRLEVWGIKQGLSSHLNPHKLRHSFATHMLEASSDLRAVQELLGHSNLSTTQIYTHLNFQHL



AEVYDSAHPRAKRKK





1301
WP_011271867.1



MKSYEKAIRQLQKNCSIQYPDEISDSLILQWRKRVVGQSIIEVTWNSYIRQLKTIFKFGIEKQLLPFTKN



PFDGLFIREGKKKRKVYTSSDLKKLSFGITESKHLPSILRPLWFTKTIIMTFRYTAIRRSQLNKLRIKDV



DLLNQVIHIPSEINKNHEYHILPISTTLYPYLKKLLTELSKLNQPVESQLFNINLFSNAVKRKGEKMTND



QVSYIFKVISKYTGIISSPHRFRHTAATNLMKKPENLYIAKQLLGHKDVKVTLSYIEDNIDSIREYTELL





1302
WP_069481344.1



MITLKDAWNRYILLLQSLKKSAATMKQYNMDGQHFLSFAHEKNYLYVDHQFQELLLIYCHYLKETYSNIN



TFNHKIATMRGFVDFIFLREWMEPFDYQHILQPRKRQKEALQVLTTKQIGQMANVWPTYFQYAKTVEHAW



LARRNGCIVQVLMETGCKPAELVRMKWSHFQKEKSTLFIANQNGRREVKCSPILMDMLAHYKEETEAMHD



KEVEEWVWVSEASMTKPITTKTVERIFQTMSKDIGKNVRATDLRYTVMQRAFQEEKTLEHIQQEMGYVRK



WVLTERQQRFE





1303
WP_092837735.1



MPLPKPGNLPALQPEMLSDATAQAVEELMREGESANTLASYRSALRYWAAWFNLRYGQPITLPVPPAAVL



QFIVDHAQRSSADGLLHELPPAIDAVLVQAGFKGKPGPMALNTLVHRIAVLSKTHQLKEVENPCQDAKIR



DLLAKTRRAYGKRGDLPRKKDALTKDPLMAMLETCDLSTLKGLRDRALLLFAFASGGRRRSEVAGADMKH



LRRHGVSSFTFVLAHSKTNQHAADRPENYKPIAGMAGEALQAWVEAARITEGPVFRRVLKGGRLAGALSP



AAVRDIVKERARAAGLSEDYSAHSLRSGFVTEAASQNVPLADTMAMTGHRSVATVMGYFRSTGSSQAAHL



LDPKAPPDRS





1304
WP_057202984.1



MRLPALKTHAALEPGVLSDMTALAVDQLMREGESANTLASYRSAVRYWAAWFNVRYGQPITLPLPPSAVL



QFIVDHAQRTTAEGLAHELPQAIDAVLVDAGFKGKPGPMALSTLVHRVSVLSKAHQVRDMKNPCQDAQVR



ELLSKTRRAYAKRGALPQKKNALTKDPLMAILATCDATTLKGLRDRALLLFAFASGGRRRSEVASAQMRH



LQRSGPTSFVYTLAHSKTNQTGSDRPENHKPIQGMAGEALQAWLEATGITEGPIFRRVRKGGRLGEALSA



AAVRDIVQERARAAGLPDVFSAHSLRSGFVTEAATQKVPMADTMAMTGHRSVASLLGYFRVSDASQAARL



LEEEGPQA





1305
WP_057267549.1



MRLPALKTHAALEPGVLSDMTALAVDQLMREGESANTLASYRSALRYWAAWFNVRYGLPITLPLPPSAVL



QFIVDHAQRTTAEGLAHELPQAIDAMLVKAGFKGKLGPMALSTLVHRVSVLSKAHQVRDMKNPCQDAQVR



ELLSKTRRAYAKRGALPQKKNALTKDPLMAILATCDATTLKGLRDRALLLFAFASGGRRRSEVASAQIRH



LRQSGPAAFVYTLAHSKTNQTGSDRPENHKPIQGMAGEALQAWLAATGITEGAIFRRVRKGGRLGEALSA



AAVRDIVQERSRAAGLPDVFSAHSLRSGFVTEAATQKVPMADTMAMTGHRSVASLLGYFRVSDASQAARL



LEEEDPQA





1306
WP_077019634.1



MAALTKTPSGTWKATIRRVGWPTVAKTFRTKRDAEDWARRTEDEMVRGVFIQRAPSEKTTVADALDRYER



EIVPTKKASTQRREGARIRELKEHFGKYSLAAVTPDLVGRYRDDRLAQGKANNTVRLELALLGHLFNVAI



KEWHIGLIFNPVSNIRKPRPGEGRNRRLSGREQATLLTAVDEHTNPMLGWIVRLAIETGMRQSEILGLRR



GQVDLERRVVRLTDTKNNDARTVPLTKLAASVLQSALANPVRPIDTDLVFFGEPGRDKKRRAYQFTKVWN



GIKKRTGLVDFRFHDLRHEAVSRLVEAGLSDQEVASISGHKSMQMLRRYTHLRAEELVGKLDALSAAR





1307
WP_083768887.1



MIECFWVYFTNRREPLFDGLSSVEEFISHLESERHFSNNTTAAYKNDILQFHDWLQGKDHINSWAAVTSS



DIQDYLLYLKGNQDRAYAPSTQARKMAAIKSFFQFLVAKSVVDQNPASDLISPRVQKYWPKAISVQEVNM



LLAAASDSETPEGIRDRAMLEVLYRTGLRVSELVSLNVDDINLDESHLKCIGRGKTRKVPLSQPAVDVLK



LYLERSRPLLVRGQDEQALFVNHRGQRLTRQGFWLILKAYASEAGIKGITPHTLRHSFAAHMIDGGIDLR



QVQEWLGHASITTTQVYRQIKSNSHSEKIIDIKSREERIPEEVAK





1308
ACZ42745.1



MFDGLSSVEEFISHLESERHFSNNTTAAYKNDILQFHDWLQGKDHINSWAAVTSSDIQDYLLYLKGNQDR



AYAPSTQARKMAAIKSFFQFLVAKSVVDQNPASDLISPRVQKYWPKAISVQEVNMLLAAASDSETPEGIR



DRAMLEVLYRTGLRVSELVSLNVDDINLDESHLKCIGRGKTRKVPLSQPAVDVLKLYLERSRPLLVRGQD



EQALFVNHRGQRLTRQGFWLILKAYASEAGIKGITPHTLRHSFAAHMIDGGIDLRQVQEWLGHASITTTQ



VYRQIKSNSHSEKIIDIKSREERIPEEVAK





1309
WP_059061637.1



MASIFKRKNKDGTTHWRAVIRVKGYPTVCNHFARKQEADDWAIDVERQIKQGQFNFSKHKNQHTFSELVD



HFINNGALEHHRSAKDSLRHLNYWRERLGNYALVHLTPERLGKERLLLIETPTNRGEKRSSATVNRYMAT



LSSVLSYACRQLRWIDDNPCFNLIKLKENPGRDRVLTQEEVQRLMAACRQSRNGYLYCIVLLAFTTGMRQ



GEILSLTWNQIDFDNKLAHLKETKNGTPRSVPLVEAVIDELR





1310
WP_056974519.1



MASIIKRGKSYRVEISNYKHGKNKRISKTFKTKSEAQRWAMQNEIAKGNGVDLALRKDKFSDFYSNWIYL



VKKNDVRSATFLNYTRTIPIVKKLFKNITLGELNDLVVQMKIDEYGETHSRKTTTELLLKIRTSLRYAYG



RGLITSDFAGLIKTRGKELSKRNSALSISDFKKLRSYLLKHHEKDFYILVLLALETGARRGELLGLTNKD



IFKYGISINRSISPSSSDTRLKTKRSKRNISINENVYDILKTVTEKSNGYLFSFDGFQQSAKLARLLKKL



DIPKTTFHGLRDTHASFLFSNDNIRIDYISQRLGHSNLQTTMNYYLELMPEKKHLQDADALSLLDSL





1311
WP_003330882.1



MASFRKRGCTCEKKKCTCGAKWEYRIKYVDRQTGKTKEKSKGGFTSKKEAQLAAAEEELKINQFGFAENG



NEVVLNYFSEWLEVFKKPNVKPITYSVQERNVRLNILPRWGKYRLKDITRTEYQKWINELRDHYSEGTVR



RIHSIFSSAIHDAVHEFHIIRENPIQKIKIPKDVENTNRVQYFSKEQLEKFLNSLKTPQKNAKYKHSIQY



YVLFSLMARTGIRIGEALALTWDDFNEKEKSISITKTLVYPLNSTPYISTPKSLKSVRIVKLDEQTVKLL



KKHKINQNEVILRYKNYKASKDNVMFHQHDGRWLRTNVVREYFKEVCKRTDLPVLSPHALRHSHAVHLLE



AGANIKYVSERLGHASTKVTADTYLHITEKIENEALELYSQYIKF





1312
WP_000876735.1



MKYNKTKYPNIYYYETAKGKRYYVRRSFFFRGKKREKSKSGLTTLPQARAALVELEQQIQEQELGINTNL



TLDQYWDIYSEKRLSTGRWNDTSYYLNDNLYKNHIKAKFGSTLLKNLDRNEYELFIAEKLQNHTRYTVQT



LNSSFMALLNDAVKNGNLLSNRLKGVFIGQSDIPAANKKVTLKEFKTWIAKAEEIMPKQFYALTYLTIFG



LRRGEVFGLRPMDITQNDSGRAILHLRDSRSNQTLKGKGGLKTKDSERYVCLDDIGTDLIYYLIAEASKI



KRKLGIIKEQHKDYITINEKGGLINPNQLNRNFNLVNEATGLHVTPHMMRHFFTTQSIIAGVPLEQLSQA



LGHTKVYMTDRYNQVEDELAEATTDLFLSHIR





1313
WP_019821568.1



MPNKKSSRRKKFERKARNFFNFHYFGLGKNKKEAKGKLRSQSTLFRHVETAAFIQERMGASMLIDITPOM



ALDYLSSRVGKVCSKMLANERRVLERIVYLHEPERRLYIEEKLDPREWVNRAYTHEQIHQIMTHQTPENQ



LATALCFTAGLRVQELLTLQRFDEASASKDRKWRSDLFSGLQGEKYVVKGKGGLYRAVMIPHCLAKKLER



HRLSEPRQIKDRKCTITNRYNITGGKKFTDAFSQLSKRVLGWSHGAHGLRYTYAQDRLNRSIPDKSYEEK



LEIISQELGHFRKEITPHYLHRGTCS





1314
WP_011239395.1



MNLDDMLPALASNVAVMDPDALDPLTQQAVDEILAEGTSANTDVSYRTALRYWAAWFALRYRKPLKFPVP



VPAVIQFIVDHAQRSTPGGLRCDLPDSLDEVLVEKGYKAKLGPMALSTLNHRVSVLSSLHKRSPELENPC



RSPAVRDLIARTRRSYAKRGERPKGKAALTRELLEQLVGTCDDSLKGLRDRAILLLGWASGGRRRSEIVS



LRVEDLKRVGPDEFIFELGASKTNQSGTVKADDLKPVVGAAGSALADWLAATGLASGPLFRQIDKSGSLR



GALSASAVRTIVRERCLLAGLDGDFSAHSLRSGFVTEAAKQLIPLGETMALTGHRSIPSVMRYFRAGSVT



TSKAAKLFDEGDKTE





1315
WP_013695783.1



MSNIINKLNELEKETNLNLGSSKSLNTLRAYRSDFSDFKNFCSDLNLPYLPTHIKAVSLYMTHLSKSNKY



STLKRRLASINVIHSLKGFHIDTKNPLIKDNLEGIKRKIGIYQNGKKPLLINNLHKIIDVIDYYKIQKYV



RSTRDKAIILIGFSGGFRRSEIVNLKKNDLEFVEEGLKISLRRSKGDQYGEGMIKAIPYFNNKKYCAIIA



LQDWLSARTNNNDLIFPYSDKTVSLILKKYLNIIGLDSRLYSGHSLRSGFATSTASHGADERSIMAMTGH



KSTEMVRRYIKDSNLFKNNALNKLND





1316
YP_009125517.1



MASIRSVSRKDGTTFTQVRYRLNGKQTSTSFDDGAHAVEFKRMVEQLGAAKALEVLETTDAASRNFTLAG



WLKHYLDHKTGVEKSTIYDYRKMVEKDITPVLGAIPLAALTAEDVAKWVQGLADKGLAGKTIANKHGFLS



SALNVAASAGHIKANPAVGGAGLVAVPRTERAEMVFLTADQYAKLHDNMPLRWQPLVEFLVASGARWGEV



TALRPSDVNRAEGTVRISRAWKRTYARGGYELGAPKTNKSRRTINVDTAVLDRLDYSGEWLFTNVRGGPV



RGHNFHENHWQPALKKAGLDGLDVKPRIHDLRHTCASWLIAAGVPLPAIQQHLGHESIQVTIGVYGHLDR



SSGRTVAAAIAAALGR





1317
WP_062041733.1



MGKTYDVRIWSVRQRKDRGQTSAELRWKTGETPHSQTFRTKTLAEGRRAELLRAAHAGEPFDESTGVPLS



ELRQRNDVSWYQHAREYIEMKWQHSPGSTRRTLAEAMATVTPALVKDTKGMADATTVRTALYSWAFNVSR



RDQDPPDEVAAVLAWFERKSLPTSALADRMQVRAALDTLTRKLDGTTAAASTIRRKRAIFHNALGYAVDA



GRLTDNPLPQVQWKAPEQVAEELDPASVPDPRQALALLDAVRTQSPRGRRLVAFFGCMYYAAARPAEVIG



LRLQDCDLPRRGWGTLQLRETRPRSGSAWTDSGEAHDRRGLKHRPRKAVRTVPIPPDLVNLLRWHVMAYG



VAPDGRLFRTQRGGLIQDTGYGEVWAEARARALTPAQCASLLAKRPYDLRHAAVSTWLSSGVEPQEVAAR



AGHSVAVLFRVYAKCLDGGAATANARIERALKNGS





1318
WP_044878438.1



MLLKFAYQDFLDDRRFKNTTEKNIRNYQTMLGAFVEYCIQHEVVSVEDITYNHVRQHLMECQERGNKAGS



INTKIMRIRAFLNYMVECEVITKNPAKRVKMQKEDVKINVFTDEQIRQMLNFYRRIKQRDKSYVAYRDYM



MIVTILGTGIRRGEIISLQWSDIDFVNQTIAVFGKSRRKDTLPITDKLSKELAAYQIFCKQHWGDLSDYV



FVKRDNNQMTENALMLVFKYLGQKMNFKDVRVSAHTFRHTFCHRLAMSGMSAFAIQKLMRHQNIVVTMRY



VAMWGNELREQNDKYNPLNSLNI





1319
KPU82353.1



MNKLVVDIKSLELDTLKNLSNAKADNTLRAYKADYRDFLEFCTKHSFKSMPTEPKIVALYLTHLSKYSKF



STLKRRLASISVIHKLKGHYIDTKHPLIMENLLGIKRLRGSNQKAKKPLLINELKTIIDVIDKSKNKFLK



KTRNKSLILLGFAGGFRRSELVSIDYDDIDFVSEGVKIFIKRSKTDQSGEGMIKAIPYFINEQYCPVKNL



KNWINLSDIKTGKVFDISDKSVSLLIKKYAALAGLDEKKYSGHSLRSGFATSTAESGAEERNIMAMTGHK



STQMVRRYIKEANLFKNNALKKLKV





1320
WP_048499202.1



MNKKTISQIVEFWKADKKMYVKKSTLSAYILLIENHLIPEFGSNSEIEEEQVQKFVFQKLEQGLSQKTVK



DILIVLKMILKFGAKNKWIQFSPFQIQYPTVRENQQIEVLSRTHQKKVMNFIQEHFTFRNLGIYICLSSG



IRIGEICALTWEDIDTDNGIIHIRKTIQRIYVIENGERRTELLLDSPKTKNSIREIPMSRELLRMLKPFK



KIVNPTFFVLTNDSKPTEPRTYRSYYKNLMRQLEIPEIKFHGLRHSFATRCIESKCDYKTVSVLLGHSNI



STTLNLYVHPNLEQKKKAIDQMFRALK





1321
YP_195916.1



MNALVSLDQMMVPAPPDGRKGRNRATSRSQLAAVDDRSAVLAWLARYTDSPATLASYRKEAERLLLWCVL



QRGAALSDLTHEDLLLYQRFLADPQPAERWVMEPGQKPGRNSPRWRPFAGPLWASSLRQALSILNAMFSW



LVEAGHLAGHPLALSRRKRRQAAPRVSRFLPEEHWDVVKAAIEAMPVGSERERLHASRCRWLFSLLYIGG



LRVSEICDARMGGFFSRRGADGRERWWLRNHRQQAARPAWCRPRAILMTELMRYRKAHALSPLPLEGRRH



AIGDDADRPGQAYGTSAIHELVKGVMQAAAAALRRRGSDFGAAAAHLEQASTHWIRHTAGSHLSEKVDLK



VVRDNLGHANISTTSIYLHTEDDARHDATAAGHRVGWRSP





1322
WP_013397105.1



MNALVSLDQMMVPAHLDGRKGRNRATSRSQLAAVDDRSAVLAWLARYTDSPATLASYRKEAERLLLWCVL



QRGAALSDLTHEDLLLYQRFLADPQPAERWVMEPGQKPGRNSPRWRPFAGPLGPSSLRQALSILNAMFSW



LVEAGHLAGNPLALSRRKRRQAAPRVSRFLPEEHWDVVKAAIEAMPVGSERERLHASRCRWLFSLLYIGG



LRVSEICDARMGGFFSRRGADGRERWWLEITGKGSKTRLVPATGELMTELMRYRKAHALSPLPLEGEDMP



LVMTLIAPVKPMARSAIHELVKGVMQAAAAALRRRGSDFGAAAAHLEQASTHWIRHTAGSHLSEKVDLKV



VRDNLGHANISTTSIYLHTEDDARHDATAAGHRVGWRSP





1323
WP_057591291.1



MNTLVSLDRMMVPIHLDGSRGRNRASSRSQLAAVDDRSAVLAWLARYADSPATLSSYRKEAERLLLWCVL



QRGAALSDLAHEDLLLYQRFLGDPQPAERWVMEPGQKPGRSSSRWRPFAGPLGPSSLRQALSILNAMFSW



LVDAGYLAGNPLALSRRKRRQAAPRVSRFLPEEHWNVVKAAIEAMPVGGERERLHASRCRWLFSLLYIGG



LRVSEICGASMGGFFSRRGSDGRERWWLEITGKGSKTRLVPATGELMSELMRYRKAHALSALPLEGEGTP



LVMTLIAPIKPMARSAIHELVKGVMHAAAAALRQRGSDFEAAATHLEQASTHWIRHTAGSHLSEKVDLKV



VRDNLGHANISTTSIYLHTEDDARHDATAAGHRVGWRSP





1324
WP_114070645.1



MKENTVSQNVQATSPNTQLPHVLVGKVADYVRKGLEGSDNTQRAYRSDVYYFIEWCRENGQSEFPATTPT



LSAYVSHLADTHKWASINRKLAAIRKLHELNNVELPTNDRGFKAVMEGIKRTKGIRQKQAPAFQMNELKK



VLRTMETETHAGMRDKSLILLGFAGAYRRSELVDLNIENVEFNEDGAIITLTKSKTNQYGEAEEKAFFYS



PEASLCPIRNLKNWIMRLERTTGPLFVRVRKGDRLTTDRLNDMTVYTTVKKYLGEKYSAHSLRASFITIA



KINGANDSEIMRQSKHKTSLMIQRYTRIEDIKKHNAATKLGL





1325
WP_120128527.1



MRRRPRFRGENAMEKADRYLNAGTRENTKKSYRAAIEHFEVTWGGYLPTTGDGIVRYLAEYADQHAISTL



KQRLAALAQWHITQGFPDPTKTPNVRQMIKGIRVIHPARVKQAAPLLLTHLERAINWLENEAAAAQARND



YKVLLRHRRSIAMVLVGFWRGFRGDELTRLTVENTQAYSGEGITFYLPYTKGDRQHEGTTFETPALKTLC



PVEAYLNWITVAGIATGPVFRRIDRWGNLSDKAIQPHSLVPMLRRIFREAGLPEDLYSSHSMRRGFATWA



SANGWDIKALMSYVGWKDMKSALRYVDSSVSFGGLAVRSASARLSNP





1326
WP_014786680.1



MTESTEIALWVSQEPETASQAPGLTPAQLQLRQMVLDSVTSPHSRRNYAKALDLLFAFAASRPLTRALLL



EFRTSMEDLAPSTVNVRLAAVRKLVSEARKNGMLSHEDAANLTDIPNVKEKGTRLGNWLTKEQARELLGV



PDRSTLKGKRDYAILALLVGCALRRRELASLTVEDIQMRENRWVIIDLVGKGGRVRTVAIPVWVKKGIDA



WQAAGSIEKGPLLRSVSKGGKIGESLSDWAIWSVVTEAAKEIGIERFGAHDLRRTCAKLCRKAGGDLEQI



KFLLGHSSIQTTERYLGSEQEIAIAVNDSLGL





1327
WP_065653736.1



MSNKSIKKIMIAESGAAISTTLSSSSRQFLENTLAQATKRGYAADLKIFFAWAEAHQTAAIPATAETIAN



FLADQASGILSVWLRQESQLINGRPVSVATLRRRLAAIKYAHKLNKIEPSPTDTAEVRETLKGIRRTLGA



KPNAKSALMSQDIQLLIKYIPETITGQRDRAILLLGFAGALRRSELTSLELSDIEVQENGMLVYIRSSKT



DQEQQGQVIGIARSENKANCPVGAIEQWLQSSMILSGPIFRRIFANGKIAITTLSDRTIYNIVKNYCQLA



GLDASRFGAHSLRRGFVTSAAKAKVDPFRIMAVTRHKRLETVKRYVDEANLISDYPGADLLK





1328
WP_082304040.1



MSNKSIKKIMIAESGAAISTTLSSSSRQFLENTLAQATKRGYAADLKIFFSLGSEAHQTAAIPATAETIA



NFLADQASGILSVWLRQESQLINGRPVSVATLRRRLAAIKYAHKLNKIEPSPTDTAEVRETLKGIRRTLG



AKPNAKSALMSQDIQLLIKYIPETITGQRDRAILLLGFAGALRRSELTSLELSDIEVQENGMLVYIRSSK



TDQEQQGQVIGIARSENKANCPVGAIEQWLQSSMILSGPIFRRIFANGKIAITTLSDRTIYNIVKNYCQL



AGLDASRFGAHSLRRGFVTSAAKAKVDPFRIMAVTRHKRLETVKRYVDEANLISDYPGADLLK





1329
WP_076729031.1



MTLPATLAARARAFADEALSENSRRAYRADWQHYADWCRTHDLEPLPAGPEQVASYLTSMAETHKRATIE



RRLVTIGQAHKLQGLPWVPAHPAVRAALRGMFRRYGRPKKQAAALGVPETLQIVAACEGTVAALRDRALF



LMSFAGAFRRSEIARIRFEDVAFREGAVDVFLPQSKGDQEGEGTIVTVLAGENVATCPVAALRRWLKAAP



TENHIFRAVRADGTVMEAGLHPDSIGRIVQKRAAEAGLVAGPRERISAHGFRAGFITEAYKRGSRDEEIM



SHSRHRDLKTMRGYVRRAKLSDAHPGRNLGL





1330
WP_012329841.1



MELDAADPAPGPSRDSFAAPVPFADALPPGLELLIERLEQHARAARGAFADNTLRALAADSRIFAAWCRE



AGRAMLPATPETVAAFIDAQAETKARATVERYRSSVAALHRAAGLQNPCADEIVRLAVKRMNRAKGRRQK



QAEPLNRTSIARMLEVKTPGRLHRRVTEAKREVPLIALRNAALVAVAYDTLLRRSELVSLYIGDLQKGAD



GSGTVLVRRSKADQEGEGAIKYLAPDTVEHIDAWLAAAQLTSGPLFRPLTKGGQVGAGALGAGEVARVFR



EVATAAGLKLARLPSGHSTRVGATQDMFAAGFELLEVMQAGSWKTPAMPARYGERLRAQRGAARKLATLQ



NRA





1331
KIU27889.1



MTLPATLAARARAFADEALSENSRRAYRADWQHYADWCRTHDLEPLPAGPEQVASYLTSMAETHKRATIE



RRLVTIGQAHKLQGLPWIPAHPAVRAALRGMFRRYGRPKKQAAALGVPETLQIVAACEGTVAALRDRALF



LMSFAGAFRRSEIARIRFEDVAFREGAVDVFLPQSKGDQEGEGTIVTVLAGENVATCPVAALRRWLKAAP



TENHIFRAVRADGTVMEAGLHPDSIGRIVQKRAAEAGLVAGPRERISAHGFRAGFITEAYRRGSRDEEIM



SHSRHRDLKTMRGYVRRAKLSDAHPGRKLGL





1332
WP_029361746.1



MTLPATLAARARAFADEALSENSRRAYRADWQHYADWCRTHDLKPLPAGPEQVASYLTSMAETHKRATIE



RRLVTIGQAHKLQGLPWIPAHPAVRAALRGMFRRYGRPKKQAAALGVPETLQIVAACEGTVAALRDRALF



LMSFAGAFRRSEIARIRFEDVAFREGAVDVFLPQSKGDQEGEGTIVTVLAGENVATCPVAALQRWLKAAP



TENHIFRAVRADGTVMEAGLHPDSIGRIVQKRAAEAGLVAGPRERISAHGFRAGFITEAYKRGSRDEEIM



SHSRHRDLKTMRGYVRRAKLSDAHPGRNLGL





1333
WP_012329856.1



MTLPATLAARARAFADEALSENSRRAYRADWQHYADWCRTHDLEPLPAGPEQVASYLTSMAETHKRATIE



RRLVTIGQAHKLQGLPWIPAHPAVRAALRGMFRRYGRPKKQAAALGVPETLQIVAACEGTVAALRDRALF



LMSFAGAFRRSEIARIRFEDVAFREGAVDVFLPQSKGDQEGEGTIVTVLAGENVATCPVAALRRWLKAAP



TENHIFRAVRADGTVMEAGLHPDSIGRIVQKRAAEAGLVAGPRERISAHGFRAGFITEAYRRGSRDEEIM



SHSRHRDLKTMRGYVRRAKLSDAHPGRNLGL





1334
WP_012010452.1



MNDQLSDFIHFMTVERGLSENTIVSYKRDLQNYLSFLMTHEQLSDIKDVTRLHIIHYLKQLKEEGKSSKT



SVRHLSSIRSFHQFLLREKVTKDDPSWNIETQKTERKLPKVLSLGEVEKLLDTPNQHTPFDYRDKAMLEL



LYATGIRVSEMLDLTLADVHLTMGFIRCFGKGRKERIVPIGEAAASAIEEYLEKGRGKLLKKQPADALFL



NHHGKKMSRQGFWKNLKKRALEAGIQKELTPHTLRHSFATHLLENGADLRAVQEMLGHADISTTQIYTHV



TKTRLKDVYHKFHPRA





1335
WP_085361167.1



MTSVPVLADAVSLPATIAPDLAAAVSYAKAEKAPATRRAYETDFRLFRTYCEEKAASSLPALPETVAAYL



AHGVQEGAKASTLGRRLAAIRYAHKLASLPTPTDSEAVKATLRGIRRTIGAAKVKKAPAVASRIKAMVAA



CPSTIAGKRDRALLLLGFGGAFRRSELVALDVEHIEETSEGLLILIAKSKTDQDAEGVTIAVARGSAETC



PVVALRDWLDAAGIDAGPVFRPINKAGVVSAERLTDQSVALIVKAYARRVGLDAGVFSGHSLRRGFLTSS



AAAGKSIFRMKDVSRHKSVDTLAGYIQEAELFKEHAGAGLL





1336
WP_007858208.1



MEKTGREITQELLSGFCIHLEESGYAKATVNKYKADLMQYILFLEGAPVCEEGLSRYREYLEQQYRTSSA



NSKIAAVNAFFKSVGWEYLIPALEPGESLPVMGEELTLSEYRQLLKEAKQQGNLRLYYLIQILSSTKINI



SEHRYVTVEAVSRGYMVIPRGKRSRVIFIPDRLRRQILTYCKKQEIQSGPVFVNWKGTPLDRSNVHKYLK



RLSQNAGVDPEKVNPRSLTRVVEFSSAVYMLDEKMAGEVQDP





1337
WP_046027227.1



MDVSNNTNQPISATETRLELTEIASSTQATAEAFIAAGTAANTVRSYRSALAYWEAWLHLRYDRALGDGA



LPAPVVVQFIVDHLARPTPDGTWHHLLPPNIDLALCQTRVKGKPGPLAFNTVSHRLAVLAKWHKLQHWDN



PCAASAVVTLLREAGKAQVRQGVGVRKKTAMTREPLQAMLATCTDGLRGVRDKALLLLAWSGGGRRRSEV



VNLQVGDVRKLDDDTWLYTLGATKTDTGGVRREKPLRGPAAQALSAWLAVAPADCGPLFRRMYKGNKVGV



APLSADQVARIVQRRAKLADLEGDWAAHSLRSGFVTEAGRQGVPLGEVMAMTEHRSVATVMGYFQTGSLL



SSRATELLPKADSKEQGE





1338
OUV98802.1



MNKLTTDLKLLHEETLNNLRSSKANNTLRAYKSDFKDFGIFCAKHGLNALPTEPKIVSLYITYLSKNSKI



STLRRRLVSISMVHKLKGHYLDTKNPVIVENLMGIRRVKGSIQKGKKPILIKHLKS1INIINDQKIDEIK



KLRDKSIILIGFGGGFRRTELISIDYEDLEFVPEGLKINIKRSKTDQFGEGMIKGLPLFINEVYCPVSNL



RKWLEVSKIKSGPIFTRFSKGLSLTNKRLTDQSVVLLIKEYLKLAGIENTNFAGHSLRSGFATVAAESGA



DERSIMAMTGHKTTQMVRRYIKEANIFKNNALNKVKI





1339
WP_075500861.1



MNELTTELKSLHEATLNNLKSSKANNTLRAYKSDFKDFGIFCAKHGLKTLPSEPKIVSLYLTHLSKNSKI



STLRRRLVSISMVHKLKGHYLDTKHPIIVENLMGIRRVKGSIQKGKKPILISHLKSIINVIDEQKIENIK



KFRDKSLILIGFGGGFRRTELISIDHEDLEFVPEGLKITIRKSKTDQLGEGMIKGLPYFTNETYCPIVNL



KKWLEISKIKSGPIFRRFSKGLSLTDKRLTDQSVVLLMKEYLKLAGIENKNFAGHSLRSGFATVAADSGA



DERSIMAMTGHKSTQMVRRYIREANIFKNNALNKVKI





1340
WP_011906504.1



MILMPQDDPALNVIPAGLSPEDDFLPVLAGGELPLSPARAYLLSLNSPRSRQTMASFLNIVAGMLGAASL



ETCSWGSLRRHHVMGVTELLRDTGRATATVNTYLSALKGVAKEAWMLKLMDVESFQHIRAVRNLRGSRLP



RGRALPAEEIGKLFAVCEADATYLGVRDAALLGVILGCGLRRSETVGLSLSDVVTHERALRVLGKGNKER



LAYMPAGTWQRLQTWIDQVRGEAAGPLFTRIRRFDTLTNDRLTDQAVYHILQMRQRQAQIERCAPHDLRR



TFATAMLDNGEDLITVKDAMGHASVTTTQQYDRRGEERLRQARDRLNLT





1341
WP_014269099.1



MIASAPFTLCKLSKNDRIYWYALFRDPQTGKRTNKKSVEKLRKELGIQSTQPIKRRDEAILICKQALDAG



LLFGKKTPTTLFDYLSLFFDWEKSPYVEKRNLLDPGSLSQDYISTRQNLVSNHVLPLIHHNLLLSVVTTR



YMEQLQLSLVKKGKLSHATVNICMQAVTMAVREAQRAGLIDASVSIALRPLKCTHRMRGILSEDELSNFM



QYLKTSGEKRMYLACLLSLLTGMRSGELRGLHASSISSGLITVEFAYANKAGLKEPKGKKTRLVPCPAFL



CEELLLLGRSNPFGNGNDLVFWSRRTGSYVSSHYFSEKLQGALVRSKVLEKQEILDRNITFHSLRHMANT



LLRGSVDEHVLRMTIGHSSEQLSDLYTHLSQRGLKSVELAQQNNILPLLGENRE





1342
WP_002328898.1



MKNTEIYQKIDTIILHMPDYIKDFVQDREDKDQSPRTTLEYLKNYKLFYEWLLSESIVPDTSITSIRHLT



AYDLNLYKSHLKRRAKENVKKDTTKAKLEDNNNLGLSTSTINRNITALKVLFKYLSKSSNNPLGKPYLED



NPMDQVATITDKTTLAARANAIEKKLFLDEDTQNYLDYIANEYKNTLSKRALIYYHRDVERDLAINALIL



GSGLRLSEVVNINLDDLSLDKNNVVVTRKGNKRDAVNIAAFAMEYLANYLAIRKERYKVTENEKALFLAI



YQGEAKRISGIAIERMVAKYSKGFRVQVSPHKLRHTLATRLYQQTNSLVLTAQQLGHSSTNTTTLYTHID



NAATIDALNSL





1343
WP_051279402.1



MTTLTPQPSFSGVPAELQKSFEAAIGYLRAQLAPATLRAYQSDFRIFCDWCERFKLATTPATPETLALFL



SDQADSGVAAVTLERRLASIRYVHQMKELPSPTDHPLVRGTLTGIRRIHGTLPRNQKEPILDHQVFRMLQ



LTPDTLLGLRDRAIIALGFAGAFRRSELAALDVSDLKFDQAGNLVCLIRRGKTDQGGSGFEKPILNGRRL



QPVTHLKAWLSTAGIDEGAVFRRVDWAGAATEQRLSAQWMARVVKNYANQIGLGFTEFGAHSLRSGFITS



AGERDVQLYKIMEVTGQKDPRTVLRYLRRANLFKDHAGEDFL





1344
WP_058002297.1



MLDRLKDFIHFMVVEKGLSKNTIVSYERDLKSYLTYMVKVEQIQSLNEITRIHIVHFLHHLKQQGKSAKT



LARHVASIRSFHQFLLREKVTENDPSVHIETPQTERSLPKVLSLTEVEALLDAPSEKGPLPLRDKAMLEL



LYATGIRVSELINLNLDDLHLTMGFVRCIGKGNKERIIPIGKTATVVLEEYIKDGRPKLSSKQRQTEALE



LNHHGNRLTRQGFWKILKGLAKKANIEKELTPHTLRHSFATHLLENGADLRAVQEMLGHADISTTQIYTH



VTKTRLKDVYAKHHPRA





1345
WP_014080879.1



MKLPNSYGSVIKLGGKRRKPYAVRISKLVEDDTGKVKRKYTYLAYFSKPEMAYTYLAEYNSGAVVPEHMK



YSDSPTFAEMYEKWKKYRKSLKNQISDSTWRNYEIAFHHFSELHDRKFISIRTNDLQQCLNAYNHKSQTT



ISSMRAVLKAMYQYAKLNEYIDRDLTEGLVYEWTNSTEQIHDRYSDEEIKTLWSKLYEINNVDIILIMIY



TGLRPTELLEIQTENVHLDEKYMVGGMKTEAGKDRIIPLNDKIIPLVKNRYDPNKKYLINNKFGNHYTYG



TYMNGNFNTCMGKLKMKHLPHDGRHTFASLMDSAGANDVCIKLIMGHSMKNDTTKGTYTHKTLEELLTEV



NKI





1346
WP_034465437.1



MATEKITKRIVDALKAPKPSRDGVKVREHFVWDRELRGFGVQVMPSGLKSFVIQYRTPEGRNRRAVIGRY



GLMTVEEARKLAHEKLVAVSKGVDPVAEEAKAAGLLTVAEVCDWYLAEAEAGRILGRRRRPIKPSTLAMD



RSRIEAHIKPLLGRRQVASLKLGDVEGAQADIAAGKTSKPRAGSRGGATTGGDGVAARTMSTLHSIFEHA



VRLGKIEANPAKGVRRLASAPRERRLSRSEIERLGKTLRAAAQEGEHPTGLAAIRFLLLTGFRRMEALGL



QRTWLDEEECAIRFPDTKSGAQIRVIGQAAIDLLLDQPKTKSPFFFPADWGEGHFIGVVRVLDRVCQKAG



LADITPHTLRHTYASLAGDLGFSELTIAALLGHSARGVTQRYVHIDEALRMTADQVADEMADLLDGRATP



SRSRSSRRGRSERKLEATGA





1347
WP_015045988.1



MAKSGQARVPTAEQQQHLFQVIQEHRHPEKNTAIMQISFKLGLRAQEIALLQIKEVAKLNSLGSGFKLLE



VMSLPAAYTKGADAMNRSKTVYQRRTVSFDVETFNKIIKQVEILAKSGAAVNPEDFYPPLKKHKGKSRDL



PMVDGSLREALTNYIQMRIAKGEVLKPSSPLFITQKGGSYSPNTLQEHMALMLRDWAGIEKASSHSGRRA



LITHIIHKQRKSVKIAQKIAGHVNPSTTLIYEDPPEAVLEDALNDLN





1348
WP_125440493.1



MENSSLLPVVVPTRSHSLVELPPSVARYVEAGLHGAENTKRGYAADLRSFQDYCEHHQVLHLPAEVTTVA



GYVSQMADRGMKLATIRRHVAAIAKLHQLAGQPSPTGHEALQVVLDGIARLVGKRQRQAPAFTVAELKQS



IRAMDVTTPTGLRDRALLLLGFAGAFRRSELVALNVEDVELTRQALVIHLRQSKTNQYGLEEDKAVFYSP



SADFCPVRAVQEWIESLGRTSGPLFTRMSRGTQVRPAQPGQHRLTDQSVNDLVQRHLGISYSAHSLRASF



VTIAVEAGQSNKAIKNQTKQKTDAMIERYARLDDVKRFNAAQYLGL





1349
TDN36797.1



MENPSSLPVIVPTRSHSLVEMPASVGRYVEAGLQGAANTKRGYAADLRSFEDYCQHHQLSYLPADVSTVA



GYVSQLADRGKKYATIRRHVAAIAKLHQLAGQPSPTSHEALGVVLDGVARVHGKRQRQAPAFTVAELKQA



IRALDLSTPTGLRDRALLLLGFAGAFRRSELVALNVEDVELTRLALVIHLRRSKTNQYGEEEDKAVFYAP



SADYCPVRAVQDWLAVLARPAGPLFTRMSRGTSRRPAQPGTARLSDOSVNDLVQRHLGSSYTAHSLRASF



VTVAVEAGQSNKAIKNQTKQKTDAMIERYARLDDVKRFNAAQYLGL





1350
WP_133659153.1



MPASVGRYVEAGLQGAANTKRGYAADLRSFEDYCQHHQLSYLPADVSTVAGYVSQLADRGKKYATIRRHV



AAIAKLHQLAGQPSPTSHEALGVVLDGVARVHGKRQRQAPAFTVAELKQAIRALDLSTPTGLRDRALLLL



GFAGAFRRSELVALNVEDVELTRLALVIHLRRSKTNQYGEEEDKAVFYAPSADYCPVRAVQDWLAVLARP



AGPLFTRMSRGTSRRPAQPGTARLSDQSVNDLVQRHLGSSYTAHSLRASFVTVAVEAGQSNKAIKNQTKQ



KTDAMIERYARLDDVKRFNAAQYLGL





1351
OUW60929.1



MKSLVTDLKSLELETLKNLKNSKADNTLRAYESDFKDFAAFCKSNGFSSLPTEPRILALYLTHLSVNSKY



STLKRRLASISVIHRLKGHYIDTKHPLIIENLLGIKRRKGSSQKSKKPILISDLKLIIKAIDQSELKYLK



KLRNKALILTGFSGGFRRSELVAIEHEDIEFVSEGVKIYVKRSKTDQSGEGMIKAIPYFDNEDFCPVTNL



KNWISQGNIQNGKIFNISDKNVVLIIKKFAGLAGLDQNKYAGHSLRSGFATSTAESGAEERSIMSMTGHK



TTOMVRRYIKEANLFKNNALNKIKL





1352
WP_008916347.1



METKQINPLIEHFLDTIWLEQDLAENTLASYRIDLQLLDKWLEANELNLENVQSIDLQSFLAERIESGYK



AASSARLLSSIRRLFQYFYREKIRLDDPSAVIAAPKIPQRLPKDLSEQQVEDLLNAPATEDPLELRDKAM



LEVLYACGLRVSELVGLTFSDISLRQGVIRVVGKGDKERLVPLGEEAIYWIEKYIQEGRPDLLKGKASDV



LFPSKRGTKMTRQTFWHRIKHYAVIANIDSESLSPHVLRHAFATHLLNHGADLRVVQMLLGHSDLSTTQI



YTHVATERLRTLHEQHHPRG





1353
WP_016800355.1



MRKTVPILTDFVTINSFVEKLNSKATIEIIDELTGHQYSHNSLLGIYSDWNRYHAFCTKHRINTLPASIT



AVRRFLETESNDRKYASLKRYTATLSLLHTVLNFANPIKHRQVRFTLLHLQAQMAGDAKQTNAMTSAHLT



ELNMLLSHQKANLKEVRDIAIYNVMFECALKRSELKALKMNDIESYDEGYQITIKDSAYKLSQVASVALQ



RWLSFTGSEDELPMFRAIDKHENIRLQPLDDSSIYRILRRASDILGLADNHHFSGNSIRVGAAQELSKQG



LKVREIQDFGRWLSPAMPAQYVGYTGTAESEKMKFKAIVPWQ





1354
WP_029203706.1



MSIRNLKDGSTKPWLCECYPNGRTGKRVRKKFTTKGEAKAFELHTMKEIDDKPWMGSKTDHRRMSELLDT



WWTIHGHTLKSGKQARELIAKTIEELGNPIASHLKERDYLDYRAARIPYRGKNKSIKISPTTHNTELIYL



KGMFKKLIKYNQWKYPNPLEAIETIKTSEKNLAYLTKPQIEEFLVNLKNFNRVITVSIPQLIVISKICLA



TGARISEALTLTRSQVAEFKLTYTETKGKRNRSVPISPALYQEILDIAVSDHEIFNTSYKDAWRYIKKAL



PEHVPSGQATHVLRHTFASHFMMNKGDILVLQRILGHTKIEQTMAYSHFAPEHLIQAVHLNPLEN





1355
WP_030064747.1



MTEIEHYTPAAPPAVRQLSPEAQAALAAGRADSTRRAYAEDRSAYLAWCAERGEQPLPASQDLLVEYVTH



LTLTPRPRTGRPSAPSSLERMLSAITTMHAELDLPKPVTKGARTVIAGYKHKLALDKKPGGKQRQVKPAL



PPALRKMLDALDRDTLIGKRDAAMLLLGYSAATRSSELVGLDIGEPVECDEGYLVSIYRVKMKKFTESAI



PYGKNPATCPVRALRSLIAAMREAGRTEGPLFVRIDRHGRIAPPMVRHGKPIGDPSGRLTADAASDVIER



LAEAAGFMGRWRGHSLRRGFATAAQRGGAPMVRVARQGGWADNSTSLARYFDEGDPWEDNPVTGL





1356
WP_048474244.1



MPRSDSQPESPVVAYPGWFTDFLDDRVIRKPSPHTTKAYRQDFEAIATLVAGQAEDVVNLEAAALDKDTL



RAAFAVYARTHSAASIRRCWSTWNTLCTYLFTAELLGANPMPLIGRPKVPKSLPKSYSDNTVTGLVTAID



ADTGSARDSDWPERDRAIVFTALLAGPRAEELIRADIGDVRRTDDGGGVLHVRGKGNKDRRIPFGKELLD



VIEQYLESRVVRFPPARRRVPDSDTLSRFSSNAPLFVGVDGERITRGTLQYRILRAFKRAGINSERPAGA



LVHGLRHTFATELANAHVSVYTLMKLLGHESMVTSQRYVDGAGTETRSATDKNPLYRFLSPRTEYSNQPV



DSRGVQGS





1357
WP_109314041.1



MSTHAPYLPAASPALSVEDQEALTDLYVRGTPANTLRAYERDLLYVTAWKTARFDLALRWPESEATALAF



ILDHARDLSDAPSDDHSRQVAEVLIAQGLRKSLACPAPSTLDRRIASWLAFHRMKNLESPFGSPQVNQAR



SKARRAAARPPTPKSAHPITRDILELLLATCRGSRRDCRDRAILILGWASGGRRRSEITGLMFEDVSLKE



FGEKSLVWISLLETKTTAKGKTPPLVLKGRAALALVHWIEVGQIKNGPLFRPVSKADRVLKRRLSPDGIY



QIVKHRLRLAGLPEDFASPHGLRSGFLTQAALDGAPIQTAMRLSLHRSMAQAQKYYDDVDVAENPATDLL



G





1358
WP_029224390.1



MSIRNLKDGSTKPWLCECYPNGRTGKRVRKKFTTRGEAKAFELHTMKEIDDKPWMGSKPDHRRMSELLDA



WWTIHGHTLKSGKQARELIAKTIEELGNPIASHLKERDYLDYRAARIPYRGKNKSIKISPTTHNTELIYL



KGMFKKLIKYNQWKYPNPLEAIETIKTSEKNLAYLTKPQIEEFLVNLKNFNRVITVSIPQLIVISKICLA



TGARISEALTLTRSQVAEFKLTYTETKGKRNRSVPISPALYQEILDIAVSDHEIFNTSYKDAWRYIKRAL



PEHVPSGQATHVLRHTFASHFMMNKGDILVLQRILGHTKIEQTMTYSHFAPEHLIQAVHLNPLEN





1359
WP_010646715.1



MSTVQAISDKRVVKKAEKYLKRHHDEVYWLIWRIGIETGLRITDITKLSYDNINFESGEVTVIESKGTLA



RQARARHKVLKSVKNELLNYYKRDHAKLLSVYVCDYRNIVDLVPRSWKHSIEVRLEEATKSAPVKKRVAY



LSSRTLTALKKRRKLWLGKDSGLIFSRATLASNRAKRQRGVISRQACWRVFSCLSCCIDELRQHKIGCHS



LRKIFARHLYHSSDMDIGLVATIIGHQSVSTTLRYIGISDEDTKRAQLRLFDYFFA





1360
WP_021710415.1



MSIRNLKDGSKKPWLCECYPYGRTGKRVRKRFTTKGEAKAFELHTMKEIDDKPWMGIKPDNRRMSELLET



WWTIHGHTLKSGKQARDLISKTIEELGNPIACQFKERDYLAYRAARIPYRGKNKSIEISPTTHNLELIYL



KGMFKKLIKYNQWKYPNPLEAIEPIKTSEKHLAYLTKPQIEEFFDNLQNCNRVIKASIPQIIVIAKICLA



TGARISEALTLTRTQITELKLTYTDTKGKRNRSVPISPSLYQEILDIAVSDHDIFNTSYKDAWRYIKRAL



PEHVPNGQATHVLRHTFASHFMMNKGDILVLQRILGHTKIEQTMAYSHFAPEHLIQAVHLNPLEN





1361
WP_011999282.1



MSVRNLKDGSTKPWICECYPNGRAGKRVRKKFATKGEAKAFELHTMKEIDDKPWMGIKPDNRRMSELLEN



WWTIHGHTLKSGKQAKDLISKTIEELGNPIACQFKERDYLAYRAARTPYRGKNKSIEISPTTHNLELIYL



KGMFKKLIKYNQWKYPNPLEAIEPIKTSEKHLAYLTKPQIDEFFDELQNCKRVIKASIPQIIVIAKICLA



TGARISEALTLTRTQITEFKLTYTDTKGKRNRSVPISPSLYQEILDIAVSDHDIFNTSYKDAWRYIKRAL



PEHVPNGQATHVLRHTFASHFMMNKGDILVLQRILGHTKIEQTMAYSHFAPEHLMQAVHLNPLEN





1362
WP_050649239.1



MSVRNLKDGSTKPWICECYPNGRTGKRVRKKFATKGEAKAFELHTMKEIDDKPWMGIKPDHRRMSELLDT



WWNIHGHTLKSGKQARDLIAKTIEELGNPIACQFKERDYLAYRAARIPYRGKNKSIEISPTTHNLELIYL



KGMFKKLIKYNQWKHPNPVESIEPIRTSEKNLAYLTKPQIEEFLFNLKNFNRVITVSIPQLIVISKICLA



TGARISEALTLTRSQVAEFKLTYTETKGKRNRSVPISPALYHEILDIAVNDHKIFDTTYKDAWRYIKRAL



PNHVPSGQATHVLRHTFASHFMMNKGDILVLQRILGHTKIEQTMAYSHFAPEHLMQAVHLNPLEN





1363
WP_051941091.1



MIPQDQPLEDTKQGSTLPSAGLEPAAQQAVRELLREGESTNTRNSYQSAMRYWAAWHALRFERQMQLPLD



VPCVLQFIIDHALRQTGAGLASEMPAHMDRALVEAGYKAREGPLSHNTLVHRMAVLSKAHQVHGLANPCQ



DGAVRELMSRTRKAYARRGEQPAKKDALTRDLLEQLLQTCDDSLRGRRDRALLLFAWSSGGRRRSEVAGA



DMRHLRAVGPQEFIYTLAHSKTNQSGRDAPENHKPVTGRAAQALADWLRAAAIQEGPIFRRIRKGGHVGE



PLSPAAVRDIVKQRCALAGVEGDFSAHSLRSGFVTEAGRQNVPLPDTMALTGHSSVNTVLGYFRADSALS



NRAARLLDAGDDDAAAAAQGSGRPQS





1364
WP_065347010.1



MGTITTRKRADGSQSYTAQIRLKEGGQIIYSEAQTFSRKVLASEWLRRREYELEQERASGQALHKKVSVG



ELLRDYVSAAENVTEWGRSKKADIARVQASGLADLQATKLTVQDLMGYAKKRRTEDEAGPATVLNDMVWL



RQVFLHASAARGIDAPLQVLDRAKSELLRTRVIAKPAQRSRRLLPEEEAKLLEHFSSRDGRASIPMSDIM



QFALLTARRQEEICRLRWVDVDFEKGVAWLDDVKHPRMKKGNRRCFRVLNAAADIIKSQSREEGVEFVFP



YNNRSVGAAFTRACHVLGIEDLHFHDLRHEATSRLFEKGYSIQEVAQFTLHESWATLKRYTHLRPENVQE



R





1365
WP_049681475.1



MNDLTNFNHLTSEQYLTQLQNKLEHRHLLDEHRNLSLSDSSEQDFLELFFSEKVFTPDKEFSPHTIRAYR



SDAKTLLQFLMEHSLSFRNIGFPEVKVYNKYIKEKYAPKSAIRKLEFFRRLLDFGYETQFYKAHLSTWIS



KPTSKKGHYIIEETRLEAEQTRVQVRELNQKDAEYLISCFPKIVKANTNREQLEKRNLLIGYLLYTTGLR



ASELVSLNWGSFRYNRQGHLYADVIGKGKKPRSIPVKDETIELLFDYRKSLGESVEINPEDVNPLFFALY



NKKEPCEHKKRLTYPSLYKIVKEAVHLAGKNSKVSPHWFRHTFVTMLLENDVPLAVVKDWAGHSDISTTN



IYLERVNQDNTHVYLNKVNVFK





1366
WP_025315261.1



MAVLTDYKINASKSKAKEYTLKDGNGLFLNIHPNGSKYWLFRFSWNGKQTRMSFGTYPTVDIKQARYLCE



QANFKLLSGIDPRLKENPTIDPVDEVLDEEPKCTFAQFAQHWLEFKMKKLNAKPSKDKKNNGRGSTEIQI



RRAFTNDIFPVLKDKSIHKVTRNDLLCIIRKVEKRGALSVAEKIRSWLDEIFRYAVVTEGLEINPAADLD



IASLPYRRNNRYPFIDVSELPELLVKLSTYQGSRLTILGLRLLLLTGVRTGELRFSEAWQFDLKNALWRI



PASDVKQLQQVIEKVDNRVPDYIVPLSRQALDIVKELLSYHMRGQRYLIANRTNPLEAMSENTLNQALKN



MGFKRRLCTHGIRHTISTALNDLKYDKDFIEAQLSHSDTNKVRATYNHAQYIEPRREMMQEWADLLDKWE



QEVLDKINNK





1367
WP_038069793.1



MSENNEKSSSSAPNGSSVNEDNERDHRDGDALSLPSFVAGSGTLDRLVDTARDYARAAASDKTLKAYAKD



WAHFARWCRMKGAEPLPPSPEMIGLYLADLASGSGLSPALSVSTIERRLSGLGWNYAQRGFTLDRKNRHI



ATVLAGIKRKHARPPVQKEAILAEDILAMVATLAFDLRGLRDRAILLLGYAGGLRRSEIVSLDVHKDDTP



DSGGWIEIFDKGALLTLNAKTGWREVEIGRGSKDQTCPVHALEQWLHFAKIDFGPIFVGTSRDGKRALET



RLNDKHVARLIKRTVLDAGIRSDLPEKDRLALFSGHSLRAGLASSAEVDERYVQKQLGHASAEMTRRYQR



RRDRFRVNLTKAAGL





1368
WP_006861039.1



MDKNQLTYHEQVKVDNTLRMREILKTMPGFARDYFRAIEPTTSTRTRISYAYDIRVFFQFLLEENPSLRG



KEMTDITLDILDKIKPVDIEEYLEYLKVYQSEDGLKTNGERALKRKMVALRGFYAYYFKREMIKTNPTLL



VDMPKIHDKAIVRLDTDETASLLDYIEHAGDSLSGQKKVYWEKTKRRDLALVTLLLGTGIRVSECVGLDI



GDVDFKNNGIKVVRKGGNEMVVYFGDEVEKALRDYLEERCGITPVAGSENALFLSTQRKRIGVQAVENLV



KKYARQITTTKKITPHKLRSTYGTSLYQETNDIYLVADVLGHKDVNTTKKHYAAMDDQRRRSAASAVHLR



EP





1369
WP_102369017.1



MSELDRYLNAATRDNTRRSYRAAIEHFEVNWGGFLPATSDSVARYLVAHAGVLSVNTLKLRLSALAQWHT



SQGFPDPTKAPVVRKVLKGIRALHPAQEKQAEPLQLQHLEQVIQFLEQEGHDARGAEDHPRWLRAKRDAA



LILLGFWRGFRSDELCRLNIEHVQAVPGSGITLYLPRSKSDRENIGRTYQTPALLRLCPVQAYSEWLSAS



ALVRGPVFRGIDRWGNLGEEGLHANSVIPLLRQALERAGIAADQYTSHSLRRGFATWAHRSGWDLKSLMT



YVGWKDMKSAMRYVEATPFLGMTRASLE





1370
WP_003212574.1



MSELDRYLNAATRDNTRRSYRAAIEHFEVNWGGFLPATSDSVARYLVAHAGVLSVNTLKLRLSALAQWHT



SQGFPDPTKAPVVRKVLKGIRALHPAQEKQAEPLQLQHLEQVIQFLEQEGHDARGAEDHPRWLRAKRDAA



LILLGFWRGFRSDELCRLNIEHVQAVPDSGITLYLPRSKSDRENIGRTYQTPALLRLCPVQAYSEWLSAS



ALVRGPVFRGIDRWGNLGEEGLHANSVIPLLRQALERAGIAADQYTSHSLRRGFATWAHRSGWDLKSLMT



YVGWKDMKSAMRYVEATPFLGMTRASLE





1371
WP_102604909.1



MSELDRYLNAATRDNTRRSYRAAIEHFEANWGGFLPATSDSVARYLVAHAGVLSVNTLKLRLSALAQWHT



SQGFPDPTKAPVVRKVLKGIRALHPAQEKQAEPLQLQHLEQVIQFLEQEGHDARRAEDHPRWLRAKRDAA



LILLGFWRGFRSDELCRLNIEHVQAVPGSGITLYLPRSKSDRENIGRTYQTPALLRLCPVQAYSEWLSAS



ALVRGPVFRGIDRWGNLGEEGLHANSVIPLLRQALERAGIAADQYTSHSLRRGFATWAHRSGWDLKSLMT



YVGWKDMKSAMRYVEATPFLGMTRASLE





1372
WP_008432517.1



MSELDRYLNAATRDNTRRSYRAAIEHFEVNWGGFLPATSDSVARYLVAHAGVLSVNTLKLRLSALAQWHT



SQGFPDPTKAPVVRKVLKGIRALHPAQEKQAEPLQLQHLEQVIQFLEQEGHDARRAEDHPRWLRAKRDAA



LILLGFWRGFRSDELCRLNIEHVQAVPGSGITLYLPRSKSDRENIGRTYQTPALLRLCPVQAYSEWLSAS



ALVRGPVFRGIDRWGNLGEEGLHANSVIPLLRQALERAGIAADQYTSHSLRRGFATWAHRSGWDLKSLMT



YVGWKDMKSAMRYVEATPFLGMTRASLE





1373
WP_002892342.1



MKQETLMKNINGLLEIMPWYVKEYYQAKLVIPYSYKTLYEYLKEYRRFFEWLIRDHEKLGKTARYADYDT



IADVHIDELAHLPKSIIEAYFVYLRENTERRSISEVSIVRTKDALSSLFKYLTQETEDDEGEPYFYRNVM



VKVKIKKPKDTLASRADNMKEKLFLNDTQSFLDYIDNEHEKKISKRAQVSFVKNKERDLAVIALLLSTGV



RLSELVNLDMQDVNLATRTITVIRKGGKKDVVNIAPFGIPYIERYLEIRKGRYAASDSDKAFFLTTQNKV



PARLGTRSVELLVKKLSTAYGKPTTPHKLRHTLATRLYEQTKDSLLVSQQLGHKGTAMVEVYAHVAAETT



KEALSDL





1374
WP_002887164.1



MSKQKDKYLALKRQLPDIIDEYISYLQVDVEEPSPKMVERLSVIQKFLNSYAITIDKEGASLSLTDLEKL



PREFVQNYLANLRLKPAGKRFILYTLAAFWNYLTNTSFTIERGMPLFYRNVFNEWKIVYKESYHNIIYSE



SKKKTILYTQEELEGLLDFMANSYVTTLPTQKKADNWEKEKERNIAIFAIIIGTGASTQEVVNLTVRDID



MRKKGIWVVRNNEKQFIRFLPFTIPYIAPFVKERRGRWDLDPSIPPLFLTMLKKPMGRNTIGHLAKNIGH



AYGKVITPSILKDSHASIVYKETGDIKKVAEIQGYSLDKNHLIRFID





1375
WP_070578346.1



MSKQKDKYLALRRQLPDIIDEYISYLQVDVEESSPKMVERLSVIQKFLNSYAITIDKEGASLSLTDLEKL



PREFVQNYLANLRLKPAGKRFILYTLAAFWSFLTNTSFTVERGMPLFYRNVFDEWKIVYKESYHNIIYSE



SKKNTILYTQQELESLLDFMANSYVTTLPTQKKADNWEKEKERNIAIFAIIIGTGASTQEVVNLTVRDID



MRKKGIWVVRNNEKQFIRFLPFTIPYIAPFVKERRGRWDLDPSIPSLFLTMLKKPMGRNTIGHLAKNIGH



AYGKAIAPSILKDSHASIVYKETGDIKKVAEIQGYSLDKNHLIRFID





1376
WP_011530252.1



MSVQPGTALQLASKWSRPENRRREGLRAAHTQDADTLIDLLNTYIRLKSSRKGRTSALTLKAYAESVRQF



LAFTGPPESPSRALNQLSAEDFEVWLLHLQEAGLKPNTIKRHLYGVRNLMKALVWANVLKADPSAGVSPP



TDPTPAHAKKRALTQAQMRALLALPGELHPEDSVQASRDALLLALGGTLGLRAAEIVGLDLADVDLATGT



LTVRGKGGKTRVVPLPAGVKALLQRWLPARQTVNPKVPALLVSLSSLNRGGRLSTDGARFIAHAYYRQLG



LPPEMWGLHTLRRTAGTHLYRATRDLHVVADLLGHASVTTSAIYAKMDADVRREAVEALERLQQEGSAAV



QPSRIEQQEDAQQQGGQVA





1377
WP_005834081.1



MNQEDVRVSFYLKKSEADEQGECPIMGRLNVGKYSEAAFSMKMTAPESAWLSGRATGKSARSREINRQLD



EIRASALSIYQDLFALREKVSAEEVKCILLGMAYGQETLVAFFLSFIKKFEKKVGINREESTATSYKYAC



GQLMQFLNKEYNLSDIPFTALDRSFIDKYDLYLRTDCQLSAGTILLLTTQLMTVIRKAKSAGILTSNPFA



GYEAERPAREIKYLTEHELERIMSTPLHNRKLYHIRDLFLFSCFTGIPYGDMCRLSDEDLVAVEDGTLWI



KTSRKKTKISYEVPLLDIPLYILEKYRDAAPEGKLLPMYSNSELNNALKTIADLCGIKQRLVFHQARHTS



ATTVLLSNGVPLETVSKILGHERISTTQIYAHVTDDKVENDTRMLDAKIAERFSVAI





1378
WP_100294115.1



MTYPDISGSAYSSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGVEPLQASHHHIMN



FLADQADGVLADWVWLDKAEGKGELRHGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPDIKEMMRGIV



RLGDNHKRKTGALTLEPLAKVLDGIDTHDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVLALNNWLKKSRINSGPLFRRMNRWGQITPDPLGPQGINLMIKRRTG



HSIDYLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFADHALDGLL





1379
WP_041234271.1



MAYPSLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWIWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKHKTGALTLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1380
WP_041202099.1



MAYPSLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFMGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1381
WP_088868973.1



MAYPTLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDSGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVRQGIRLR



LKPSKHQLHETEIALIPGKHYCPVSALKKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1382
WP_069554870.1



MAYPSLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTRDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1383
WP_103252006.1



MAYPSLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHNIMN



FLADQADGVLADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKHKTGALTLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1384
WP_127005624.1



MAYPTLSNPAHQSLQTVFDAQLNSRARRFLRSAKAVSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLAAWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGLRLR



LKPSKHQLHETEIALIPGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFADHALDGLL





1385
SIQ01063.1



MAYPTLSNPAYQSLQTVFDAQLNSRARRFLRSAKAVSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGLRLR



LKPSKHQLHETEIALIPGKHYCPVSALQNWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1386
WP_100645880.1



MAYPTLSNPAHQSLQTVFDAQLNSRARRFLLSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWIWLDKEEGKGELRNGEPRKPATLVRRIAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTRDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFMGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1387
WP_100653772.1



MTYPTLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPLPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTSDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1388
WP_041915408.1



MAYPSLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLANWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1389
WP_129504075.1



MAYPTLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWVWLDKEEGNGELRNGEPRKPATLVRRLAGIRYAFRQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGLRLR



LKPSKHQLHETEIALIPGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEITRHKDMRTLQEYFDDAHKFSDHALDGLL





1390
WP_094698459.1



MNYPRISNPVQQPLQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGDPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVNDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRINEGALFRRMNRWGQLTQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMKKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1391
WP_106886783.1



MAYPTISPPAHQSLQTVFDPALNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTSHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLTRVLDEIDTTNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVTALSRWLKASRISQGPLFRRMTRWGQLTAEPLGPQGINLMIKRRTG



QVIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALAGLL





1392
WP_017785358.1



MNYPRISNPVOQPLQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGDPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1393
WP_100858303.1



MTYPSISNPVHQSLQTVFDPQLNSRARRFLRSAKADSTLNAYEADTRIFVYWCQLQQLDPLQTTHHDIMN



FLADQADGILADWVWLDKREGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGRHHCPVSALRRWLQKSRINEGPLFRRMNRWGQLMPDPLGPQGINLMIKRRTG



QVIDSLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1394
WP_123246139.1



MNYPRISNPVOQPLQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGDPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDASNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRIHEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1395
WP_043162717.1



MNYPHIQAQTQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLARVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGLGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRINRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1396
WP_124249452.1



MNYPRISNPVOQPLQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHELDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGDPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1397
WP_096119502.1



MAYPTVLPPVYQSLQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLGRVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSDPLGPQGINLMIKRRTG



QAIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1398
WP_084202652.1



MTHSTFPSPAQHSLQAVFDSQLNSRARRFLRSAKAGSTLNAYQADTRIFVFWCQLHGLDPLQSTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLTPLACVLDEIDTNSLAGLRDYTLLLLMFSGALRRSEAARIEVDDLQFVGQGIRLR



LKPSKHQLHESEIALIPGQHYCPVSALQCWLKKSRIEAGPLFRRMNRWGQLTADPLGPQGINLMIKRRTG



QAIDDLHVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALAGLL





1399
WP_039215813.1



MNYPHIQVQTQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVCWCQLHELDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHSEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSSISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1400
WP_124251491.1



MNYPHIQAQTQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWIWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1401
WP_025201727.1



MNYPHIQAQTQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHHIMN



FLADQADGILADWIWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDVIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1402
WP_125729907.1



MAYPTVSPPVYQSLQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLARVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTG



QAIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1403
WP_043122983.1



MNYPHIQAQTQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLVLMFSGALRRSEAARIEVDDLNFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1404
WP_073350284.1



MNYPHIQSQTQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHHIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMPEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1405
WP_103470761.1



MAYPTLSPSAHQSLQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLARVLDEIDTSSLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSDPLGPQGINLMIKRRTG



QAIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1406
WP_043134801.1



MAYPTLAPSAHQSLQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLARVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTG



QAIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1407
WP_125606695.1



MAYPTVSPPVCQSLQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLARVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTG



QAIDDLHVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1408
WP_098984054.1



MAYPTLAPSAHQSLQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLARVLDEIDTSSLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTG



QAINDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1409
WP_101149134.1



MNYPHIQAQTQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVCWCQLHGLDPLQTTHHHIMN



FLADQADGILADWVWLDKEEGRGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIAMVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1410
WP_087755718.1



MAYPTVSPPIYQSLQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLARVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSDPLGPQGINLMIKRRTG



QVIDDLHVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1411
WP_080891334.1



MNYPHIQAQTQQALQSVFDPQLNSRARRFLRGAKADSTLNAYQADTRIFVFWCQLHGLDPLLTTHHHIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSTLARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1412
WP_111587863.1



MAYPTVSPPVYQSLQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKSIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLARVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSDPLGPQGINLMIKRRTG



QAIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1413
ABO90113.1



MAYPTVSPPVYQSLQTVFDPQLNSRARRFLRSAKAVSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLGRVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTG



HRRSLCQWPQPATGIHHLGRHRRQAHEQDH





1414
WP_103243121.1



MNYPRLQNPVQQSLQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLEPLQTTHHDIMN



FLADQADGILANWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTSNLAGLRDYTLLLLMFSGALRRSEAARIEVDDVQFVGQGIRLR



LKPSKHQLHESEIALIPGTRYCPVSALQQWLKKSRIAEGPLFRRMNRWGQLMADPLGPQGINLMIKRRTG



QAIDDLHVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSEHALDGLL





1415
WP_124243812.1



MNYPRLQNPVQQSLQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLDPLQTTHHDIMN



FLADQADGILANWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDAIDTSNLAGLRDYTLLLLMFSGALRRSEAARIEVDDVQFVGQGIRLR



LKPSKHQLHESEIALIPGTRYCPVSALQQWLKRSRIAEGPLFRRMNRWGQLMADPLGPQGINLMIKRRTG



QAIDDLHVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1416
WP_042878486.1



MNYPRLQNPVQQSLQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLDPLQTTHHDIMN



FLADQADGILANWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGNNRKRKTGALTLKPLACVLDEIDTSNLAGLRDYSLLLLMFSGALRRSEAARIEVNDVQFVGQGIRLR



LKPSKHQLHESEIALIPGTRYCPVSALQQWLKKSRIAEGPLFRRMNRWGQLMADPLGPQGINLMIKRRTG



QAIDDLHVSGHSLRRGFITFAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1417
WP_005347025.1



MGRPRKSDTWLPPRVYRGKSAFEFHPRSGGAIRLAPLAATQSAVWAAYEHMMAEQDGDTIKRLVHEFFES



ADFNDLSATTQKDYRKYSIPVIKVFGGMDPARVESPHIRKYMDKRGQNSKVQANREKAFFSRVFRWAYER



GKVKSNPCQGVRQFKEKARTRYITDLEFQAVMDAARPAVRVAMELSYLCAARKGDVLAMRWSQVGEEGIT



IQQSKTSKIQIKAWSPRLIAAIEQAKQLAGSVVRSSYVICKPNGTPYTDNGFNAAWREAVLTAREQTGWP



MDFTFHDIKAKAISDVEGSSRDKQRISGHKTEAQVAAYDRSIEVVPAVDSVKKR





1418
WP_042062922.1



MQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGAL



TLQPLTQVLDGIDTHDLSGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKHYCPVSALQNWLRKSRISEGPLFRRMNRWGQLMTEPLGPQGINLMIKRRTGQAIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1419
WP_042055087.1



MQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADW



VWLDKEEGKGKLRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGAL



TLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKQYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTGQTIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1420
WP_075113648.1



MQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGAL



TLQPLTQVLDGIDTHDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKHYCPVSALQNWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTGQAIDNLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSEHALDGLL





1421
WP_069526884.1



MQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADW



IWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGAL



TLQPLTQVLDGIDTHDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTGQTIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1422
WP_050547838.1



MQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADW



IWLDKEGGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGAL



TLQPLIQVLDGIDTNDLAGLRDHTLILLMFSGALRRSEAARIEVSDLDFMGQGIRLRLKPSKHQLHETEI



ALIPGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTGQTIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1423
WP_076491768.1



MQTVFDAQLNSRARRFLRSAKAVSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGAL



TLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGLRLRLKPSKHQLHETEI



ALIPGKHYCPVSALQNWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTGQTIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1424
SQH59660.1



MQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLDPLQTTHHDIMNFLADQADGILANW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLKPLACVLDEIDTSNLAGLRDYTLLLLMFSGALRRSEAARIEVNDVQFVGQGIRLRLKPSKHQLHESEI



ALIPGTRYCPVSALQQWLKKSRIAEGPLFRRMNRWGQLMADPLGPQGINLMIKRRTGQAIDDLHVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1425
WP_071910168.1



MQTVFDAQLNSRARRFLRSAKANSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADW



VWLNKEEGRGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGAL



TLQPLTQVLDGIDTNDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKHYCPVAAIGNWLKKSRINEGPLFRRMNRWGQLTPDPLGPQGINLMIKRRTGQAIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1426
0FC44115.1



MQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVCWCQLHELDPLQTTHHDIMNFLADQADGILADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHSEIKEMMRGIVRLGDNRKRKTGAL



TLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLRLKPSKHQLHETEI



ALVPGKQYCPVSALARWLKQSSISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTGQAIDDLQVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1427
AHV35191.2



MQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHHIMNFLADQADGILADW



IWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLKPLACVLDVIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLRLKPSKHQLHETEI



ALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTGQAIDDLQVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1428
EKB28734.1



MQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGILADW



VWLDKEEGKGELRNGDPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLQPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLRLKPSKHQLHETEI



ALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTGQAIDDLQVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1429
OCA67852.1



MQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGILADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLKPLACVLDEIDTGNLAGLRDYTLLVLMFSGALRRSEAARIEVDDLNFVGQGIRLRLKPSKHQLHETEI



ALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTGQAIDDLQVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1430
KMK90327.1



MQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGILADW



VWLDKEEGKGELRNGDPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TQQPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLRLKPSKHQLHETEI



ALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTGQAIDDLQVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1431
APJ17493.1



MQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHHIMNFLADQADGILADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLRLKPSKHQLHETEI



ALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMPEPLGPQGINLMIKRRTGQAIDDLQVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1432
WP_059167796.1



MQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGILADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLQPLAKVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTGQAIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1433
PKD25755.1



MQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVCWCQLHGLDPLQTTHHHIMNFLADQADGILADW



VWLDKEEGRGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLRLKPSKHQLHETEI



AMVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTGQAIDDLQVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1434
WP_052101192.1



MQAVFDPQLNSRARRFLRSAKADSTLNAYEADTRIFVYWCQLQQLDPLQTTHHDIMNFLADQADGILADW



VWLDKQEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLQPLIRVLDDIDTSTLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKQYCPVSALANWLKKSRIGEGPLFRRMNRWGQLMPEPLGPQGINLMIKRRTGQVIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1435
WP_052159026.1



MQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGILADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLQPLARVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTGQAIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1436
AGM44110.1



MQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHHIMNFLADQADGILADW



VWLDKEEGRGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLRLKPSKHQLHETEI



ALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTGQAIDDLQVSGHSL



RRGFITSAVTAGKPMNKIIEITRHKDIRTLQEYFDDAHKFSDHALDGLL





1437
WP_042654758.1



MQAVFDPALNNRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTSHHDIMNFLADQADGILADW



VWLDREEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLQPLTRVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKQHCPVSALSRWLKASRLSQGPLFRRMTRWGQLTADPLGPQGINLMIKRRTGQAIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALEGLL





1438
WP_042638308.1



MQAVFDPQLNSRARRFLRSAKADSTLNAYEADTRIFVYWCQLQQLDPLQTSHHDIMNFLADQADGILADW



VWLDKQEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLQPLIRVLDDIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKQYCPVSALANWLKKSRIGEGPLFRRMNRWGQLMPEPLGPQGINLMIKRRTGQVIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1439
WP_046400708.1



MQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGILADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLQPLARVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTGQAIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDYAHKFSDHALDGLL





1440
ARW82171.1



MQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGILADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLQPLARVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSDPLGPQGINLMIKRRTGQVIDDLHVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1441
WP_042467353.1



MQTVFDPQLNSRARRFLRSAKAVSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGILADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLQPLGRVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTGQAIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1442
WP_051163765.1



MQTVFDPQLNSRARRFLRSAKAVSTLNAYQADTRIFVFWCQLHWLDPLQTTHHDIMNFLADQADGILADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLQPLGRVLDEIDTSNLAGLRDHTLLLLMFSGALCRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTGQAIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1443
KOG94732.1



MQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLDPLQTTHHDIMNFLADQADGILANW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLKPLACVLDEIDTSNLAGLRDYTLLLLMFSGALRRSEAARIEVNDVQFVGQGIRLCLKPSKHQLHESEI



ALIPGTRYCPVSALQQWLKKSRIAEGPLFRRMNRWGQLMTDPLGPQGINLMIKRRTGQAIDDLHVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1444
EKB19089.1



MRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADWIWLDKEEGKGELRNGE



PRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKHKTGALTLQPLTQVLDGIDTGD



LAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEIALIPGKQYCPVSALQK



WLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTGQTIDDLYVSGHSLRRGFITSAVTAGKPMN



KIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1445
EKB18370.1



MRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADWVWLDKEEGKGELRNGE



PRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGALTLQPLTQVLDGIDTGD



LAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFMGQGIRLRLKPSKHQLHETEIALIPGKHYCPVSALQK



WLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTGQTIDDLYVSGHSLRRGFITSAVTAGKPMN



KIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1446
WP_082032588.1



MRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADWIWLDKEEGKGELRNGE



PRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGALTLQPLTQVLDGIDTHD



LAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGKGIRLRLKPSKHQLHETEIALIPGKHHCPVSALQK



WLHKSRISEGALFRRMNRWGQLMAEPLGPQGINLMIKRRTGQTIDDLYVSGHSLRRGFITSAVTAGKPMN



KIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1447
AEB50024.1



MRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLANWVWLDKEEGKGELRNGE



PRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGALTLQPLTQVLDGIDTGD



LAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEIALIPGKQYCPVSALQK



WLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTGQTIDDLYVSGHSLRRGFITSAVTAGKPMN



KIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1448
EQC05143.1



MRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGILADWVWLDKEEGKGELRNGE



PRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGALTLQPLARVLDEIDTSN



LAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEIALIPGKQYCPVSALHT



WLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTGQAIDDLYVSGHSLRRGFITSAVTAGKPMN



KIIEVTRHKDMRTLQEYFDYAHKFSDHALDGLL





1449
RAJ07841.1



MRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGILADWVWLDKEEGKGELRNGE



PRKPATLVRRLAGIRYAFKQKSIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGALTLQPLARVLDEIDTSN



LAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEIALIPGKQYCPVSALHT



WLKKSRIGEGALFRRMNRWGQLMSDPLGPQGINLMIKRRTGQAIDDLYVSGHSLRRGFITSAVTAGKPMN



KIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1450
WP_113739560.1



MAFPTLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHRLDPLQTTHHDIMN



FLADQADGVLADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTHDLAGLRDHTLLLLMFSGALRRSEAARIEVTDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1451
WP_061520510.1



MAENVNFFLKLFVEYLQIEKNYSQYTIVNYVNSIEEFEMFLHTQNINGMKEAAYHDVRIFLTEAYEKGLS



RKTISKKISALRSFYKFLMREKLVEENPFQLVHLPKQEKRIPKFLYQKELEELFAVSDKSQPSGMRDQAL



LELLYATGMRVSECCLLTVSDLDLFMDTVLVHGKGKKQRYIPFGSYAREALELYINSGRQCLLEKAKEPH



DVLFVNQRGGPLTARGIRYILSGLVKKASGTLHIHPHMLRHTFATHLLNEGADLRSVQELLGHSNLSSTQ



IYTHVSKEMLRNTYMSHHPRAFKEN





1452
WP_006951358.1



MIIKRNIIFTLESRKKDGILIIENVPIRMRVNFASKRIEFTTGYRIDAAKWDADKQRVKNGCSNKLKQSA



SEINASLLGYYTKIQEIFKKFEVKEIMPTQEQIKEAFNALHKPIKEEVKPKKSTPNAFYKVFNEFVRDCG



RQNDWTDSTYEKFAAVKNHLMNFHDELTFDFFDEKGLNDYVTYLRDVKEMRNSTIGKQLSFLKWFLRWAF



KKGIHQNNAYDSYKPKLKSTQKKIIFLTWEELNRLREFEIPTSKQALDRVRDVFLFQCFTGLRYSDVFNL



RRSDIKGDHIEVTTVKTSDSLIIELNNHSKAILDKYKDVAFEDDKVLPVITNQKMNDYLKELAELAGIDE



PVRQTYYRGNERIDEVTPKYALLGTHAGRRTFICNALALGIPPQVVMKWTGHSDYKAMKPYIDIADDIKA



NAMSKFNQL





1453
WP_040065515.1



MAYPSLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWIWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKHKTGALTLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1454
WP_101531573.1



MAYPTLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWVWLDKEEGNGELRNGEPRKPATLVRRLAGIRYAFRQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGLRLR



LKPSKHQLHETEIALILGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1455
WP_041235050.1



MAYPSLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALILGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLLAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1456
WP_082038647.1



MNYPRISNPVOQPLQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGDPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLTQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1457
WP_108588231.1



MAYPSLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWIWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKHKTSALTLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFMGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1458
KRV94096.1



MAYPTLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQTDTRIFVFWCQLHELEPLKTTHHDIMN



FLADQADGVLADWVWLDKDEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1459
WP_099359435.1



MNYPRILNPVQQPLQSVFDPQLNSRARRFLRSAKADATLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWIWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1460
WP_120414255.1



MTYPTLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTNDLAGLRDHTLILLMFSGALRRSEAARIEVSDLDFMGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVSALQKWLHKSRISEGALFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1461
WP_101347286.1



MAFPTLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGINPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTRVLDGIDTTNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKHHCPVSALQHWLRKSRISEGHLFRRMNRWGQLMTDPLGPQGINLMIKRRTG



QAIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1462
WP_106843696.1



MAYPSLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGIDPLQTTHHDIMN



FLADQADGVLADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVSALQNWLRKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QAIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1463
WP_124242906.1



MSHPSISGSAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQTDTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLANWVWLNKEEGRGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTNDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVAAIGNWLKKSRINEGPLFRRMNRWGQLTPDPLGPQGINLMIKRRTG



QAIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1464
WP_041202700.1



MAYPSLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLANWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVSALQNWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1465
WP_123173050.1



MTYPTLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTRDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVSALQNWLSKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALNGLL





1466
WP_107682950.1



MAYPTLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1467
WP_128821547.1



MAYPTLSSPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTHDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVSALQNWLRKSRINEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QAIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1468
WP_082180660.1



MNYPRLQNRVQQSLQSIFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLDPLQTTHHDIMN



FLADQADGVLANWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTCNLAGLRDYTLLLLMFSGALRRSEAARIEVNDVQFVGQGIRLR



LKPSKHQLHESEIALIPGTRYCPVAALQQWLKKSRIAEGPLFRRMNRWGQLMADPLGPQGINLMIKRRTG



QAIDDLHVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1469
WP_082029942.1



MAYPTISPPAHQSLQTVFDPALNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTSHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLTRVLDEIDTSTLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVTALGRWLKASRISQGPLFRRMTRWGQLTADPLGPQGINLMIKRRTG



QVIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALAGLL





1470
WP_081013237.1



MNYPRISNPVOQPLQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGDPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRIHEGALFRRMNRWGQLTQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1471
WP_024941785.1



MNYPRISNPVOQPLQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGDPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTSNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRIHEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1472
WP_065017596.1



MNYPRISNPVOQPLQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGDPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLNFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRIHEGALFRRMNRWGQLTQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1473
WP_042889028.1



MNYPRISNPVOQPLQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGDPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTSTLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRIHEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1474
WP_111910613.1



MAYPTISQPVOQSLQTVFDPALNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTSHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLARVLDEIDTSTLAGLRDHTLLLLMFSGALRRSEAARIEVGDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVTALSRWLKASRISQGPLFRRMTRWGQLTAEPLGPQGINLMIKRRTG



QVIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALAGLL





1475
WP_126881846.1



MNYPRISNPVOQPLQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGDPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRIHEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1476
WP_017779021.1



MNYPRISSPVOQPLQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGDPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRIHEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1477
WP_080768865.1



MNYPHIQAQTQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQAEGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLVGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDNAHKFSDHALDGLL





1478
WP_080973138.1



MNYPHIQPQTQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLF





1479
WP_024944768.1



MNYPHIQAQTQQALQSVFDPQLNSRAKRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWIWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1480
WP_106552588.1



MNYPHIQAQAQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1481
WP_113995002.1



MNYTHIQAQTQQALQSVFDPQLNNRARRFLRSAKADSTLNAYQADTRIFVCWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1482
WP_130632356.1



MNYPHIQAQTKQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1483
WP_113721656.1



MAYPTVSPPVYQSLQTVFDPLLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLGRVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTG



QAIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1484
WP_088846217.1



MAYPTVSPPVYQSLQTVFDPQLNSRARRFLRSAKAVSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLGRVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTG



QAIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHGVLGIFPSKVT





1485
WP_076360755.1



MNYPHIQAQTQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLASVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMPEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1486
WP_131730694.1



MAYPTVSPPIYQSLQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLAKVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTG



QAIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1487
WP_103243980.1



MATTPAVTDMPDTGSAPAIRTAVTPQDDHNHAARHRVFLAAATSDNTRQAYRSAVKHYLDWGGVLPANEP



AVIRYLVRYADTLNPRTLALRLTALSQWHVHQGFADPAATPTVRKTLAGIARTNGRPKKKAKALPIEDLE



LIVANLASLGTLKAARDNALLQVGFFGGFRRSELVGIKVDHITWEAQGITLTLPRSKTDQTGEGVAKAIP



YSAGPCCPATALRTWLDAAGVASGPVFRSISKWGVVGADRLNPASVNTILAGAAQLAKLGYVPELSSHSL



RRGMATSAHRAGAEFRDIKKQGGWRHDGTVQGYIEEAGLFEENAAGSLLRSRTRTSG





1488
WP_081304608.1



MNYQQ1QAQTHQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHHIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1489
WP_118881229.1



MNYPHIQAQTQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEERKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1490
WP_029300882.1



MNYPHIQAQTQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLAYVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVGDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1491
WP_102988785.1



MNYPHIQAQTQQALQSVFDPQLNSRARRFLRSAKADSTLSAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1492
WP_034523632.1



MAYPTVSPPVYQSLQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLARVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTG



QAIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDYAHKFSDHALDGLL





1493
WP_011706113.1



MNYPDIQAQTQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHHIMN



FLADQADGILADWVWLDKEEGRGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1494
WP_081086191.1



MNYPHIQAQTQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHHIMN



FLADQADGILADWVWLDKEEGRGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIAMVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1495
WP_045789855.1



MNYPHIQAQTQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLLTTHHHIMN



FLADQADGILADWIWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMPEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1496
WP_101617448.1



MNYPHIQAQTQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDIGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALALWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEITRHKDIRTLQEYFDDAHKFSDHALDGLL





1497
WP_099993215.1



MAYPTVSPPVYQSLQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHMLDPLQTTHHDIMN



FLADQADGILADWVWLDKEAGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLARVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQYCPVSALHTWLKKSRIGEGALFRRMNRWGQLMPDPLGPQGINLMIKRRTG



QAIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1498
WP_104455933.1



MNYPRLQNPVOQSLOSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLDPLQTTHHDIMN



FLADQADGILANWVWLDKEEGKGELRNGKPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTSNLAGLRDYTLLLLMFSGALRRSEAARIEVDDVQFVGQGIRLR



LKPSKHQLHESEIALIPGTRYCPVSALQQWLKKSRIAEGPLFRRMNRWGQLMTDPLGPQGINLMIKRRTD



QAIDDLHVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1499
WP_042863872.1



MNYPSLQNPVOQSLOSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLDPLQTTHHDIMN



FLADQADGILANWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTSNLAGLRDYTLLLLMFSGALRRSEAARIEVNDVQFVGQGIRLR



LKPSKHQLHESEIALIPGTRYCPVSALQQWLKKSRIAEGPLFRRMNRWGQLMTDPLGPQGINLMIKRRTG



QAIDDLHVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1500
WP_041205782.1



MNYPSLQNPVOQSLOSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLEPLQTTHHDIMN



FLADQADGILANWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTSNLAGLRDYTLLLLMFSGALRRSEAARIEVDDVQFVGQGIRLR



LKPSKHQLHESEIALIPGTRYCPVSALQQWLKRSRIAEGPLFRRMNRWGQLMADPLGPQGINLMIKRRTG



QGIDDLHVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1501
WP_043152710.1



MNYPRLQNPVOQSLOSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLEPLQTTHHDIMN



FLADQADGILANWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDAIDTSNLAGLRDYTLLLLMFSGALRRSEAARIEVNDVQFVGQGIRLR



LKPSKHQLHESEIALIPGIRYCPVSALQQWLKKSRIAEGPLFRRMNRWGQLMADPLGPQGINLMIKRRTG



QAIDDLHVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1502
WP_103858936.1



MNYPRLQNPVOQSLOSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLDPLQTTHHDIMN



FLADQADGVLANWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTSNLAGLRDYTLLLLMFSGALRRSEAARIEVDDVQFVGQGIRLR



LKPSKHQLHESEIALIPGIRYCPVSALQQWLKKSRIAEGPLFRRMNRWGQLMADPLGPQGINLMIKRRTG



QAIDDLHVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1503
WP_124239332.1



MAYPTFSNPAHQSLQTIFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQITHHDIMN



FLADQADGVLADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFQQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLARVLSGIDTSTLAGLRDYTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVQGLQHWLEKSRIKEGALFRRMNRWGQLTEEPLGPQGINQMIKRRTG



QAIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDANKFSDHALDGLL





1504
WP_103261885.1



MNYPSLQNPVOQSLOSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLDPLQTTHHDIMN



FLADQADGILANWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTCNLAGLRDYTLLLLMFSGALRRSEAARIEVNDVQFVGQGIRLR



LKPSKHQLHESEIALIPGTRYCPVSALQQWLKKSRIAEGPLFRRMNRWGQLMADPLGPQGINLMIKRRTG



QAIDDLHVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1505
WP_103260130.1



MNYPRLQNPVOQSLOSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLDPLQTTHHDIMN



FLADQADGVLANWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTSNLAGLRDYTLLLLMFSGALRRSEAARIEVDDVQFVGQGIRLR



LKPSKHQLHESEIALIPGTRYCPVSALQQWLKKSRIAEGPLFRRMNRWGQLMADPLGPQGINLMIKRRTG



QAIDDLHVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1506
WP_111809297.1



MAYPTVSPPVYQSLQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLIQVLNGIDTHDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVSALQNWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QAIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1507
WP_081331871.1



MNYPRLQNPVOQSLOSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLEPLQTTHHDIMN



FLADQADGILANWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTSNLAGLRDYTLLLLMFSGALRRSEAARIEVDDVQFVGQGIRLR



LKPSKHQLHESEIALIPGTRYCPVSALQQWLKRSRIAEGPLFRRMNRWGQLMADPLGPQGINLMIKRRTG



QAIDDLHVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1508
WP_041215162.1



MNYPRLQNPVOQSLOSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLDPLQTTHHDIMN



FLADQADGILANWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDEIDTSNLAGLRDYTLLLLMFSGALRRSEAARIEVNDVQFVGQGIRLR



LKPSKHQLHESEIALIPGTRYCPVSALQQWLKKSRIAEGPLFRRMNRWGQLMADPLGPQGINLMIKRRTG



QAIDDLHVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1509
WP_126623323.1



MAYPTVSPPVHQSLQAVFDPALNNRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTSHHDIMN



FLADQADGILADWVWLDREEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLQPLTRVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKQHCPVSALSRWLKASRLSQGPLFRRMTRWGQLTADPLGPQGINLMIKRRTG



QAIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALEGLL





1510
WP_050490004.1



MQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADW



VWLNKEEGRGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGAL



TLQPLTQVLDGIDTNDLAGLRDHTLLLLMFSGALRRSEAARIEMSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKHYCPVAAIGNWLKKSRINEGPLFRRMNRWGQLTPDPLGPQGINLMIKRRTGQAIDGLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1511
WP_042030957.1



MQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADW



VWLNKEEGRGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGAL



TLQPLTQVLDGIDTNNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKHYCPVAAIGNWLKKSRINEGPLFRRMNRWGQLTPDPLGPQGINLMIKRRTGQAIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1512
WP_042083230.1



MQTVFDTQLNSRARRFLRSAKADSTLNAYQADTRIFVCWCQLHGLDPLQTTHHDIMNFLADQADGVLADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGAL



TLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTGQTIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1513
WP_064340028.1



MQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGAL



TLQPLTQVLDGIDIGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKHYCPVSALQNWLRKSRISEGPLFRRMNRWGQLMTEPLGPQGINLMIKRRTGQAIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1514
WP_041980781.1



MQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLANW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGAL



TLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKQYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTGQTIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1515
WP_042655814.1



MQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGAL



TLQPLTQVLDGIDTHDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKHYCPVSALQNWLRKSRINEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTGQAIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1516
WP_052447116.1



MQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADW



IWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKHKTGAL



TLQPLTQVLDGIDTGDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTGQTIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1517
PHS84353.1



MQSVFDPQLNSRARRFLRSAKADATLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGILADW



IWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLQPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLRLKPSKHQLHETEI



ALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTGQAIDDLQVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1518
WP_042037844.1



MQTVFDAQLNSRARRFLRGAKADSTLNAYQADTRIFVFWCLLHGLDPLQTTHHDIMNFLADQADGVLADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLQPLTQVLDGIDTTALAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKHYCPVSALQNWLRKSRISDGPLFRRMNRWGQLMTEPLGPQGINLMIKRRTGQTIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1519
OEG05223.1



MQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLEPLQTTHHDIMNFLADQADGILANW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLKPLACVLDEIDTSNLAGLRDYTLLLLMFSGALRRSEAARIEVDDVQFVGQGIRLRLKPSKHQLHESEI



ALIPGTRYCPVSALQQWLKRSRIAEGPLFRRMNRWGQLMADPLGPQGINLMIKRRTGQAIDDLHVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1520
KLV47629.1



MQSIFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLDPLQTTHHDIMNFLADQADGVLANW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLKPLACVLDEIDTCNLAGLRDYTLLLLMFSGALRRSEAARIEVNDVQFVGQGIRLRLKPSKHQLHESEI



ALIPGTRYCPVAALQQWLKKSRIAEGPLFRRMNRWGQLMADPLGPQGINLMIKRRTGQAIDDLHVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1521
AXV34415.1



MQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGILADW



VWLDKEERKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLRLKPSKHQLHETEI



ALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTGQAIDDLQVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1522
OCA59831.1



MQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGILADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLQPLGRVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKQYCPISALHTWLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTGQAIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1523
SUU28072.1



MQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHHIMNFLADQADGILADW



VWLDKEEGRGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLRLKPSKHQLHETEI



ALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTGQAIDDLQVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1524
KWR69035.1



MQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHHIMNFLADQADGILADW



VWLDKEEGRGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLKPLACVLDEIDTGNLAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLRLKPSKHQLHETEI



AMVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTGQAIDDLQVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1525
WP_052449173.1



MQTVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGILADW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLQPLARVLDEIDTSSLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEI



ALIPGKQYCPVSALHSWLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTGQAIDDLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1526
WP_050717134.1



MQAVFDPQLNSRARRFLRSAKADSTLNAYEADTRIFVYWCHLQQLDPLQTTHHDIMNFLADQADGILADW



VWLDKQEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGVHPMPTEHAEIKEMMRGIVRLGDNRKRKTGAL



TLQPLTQVLDEIDTNNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLEFVGQGVRLRLKPSKHQLHETEI



ALIPGKHHCPVRALQNWLKKSRISEGPLFRRMNRWGQLMPDPLGPQGINLMIKRRTGQVIDSLYVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1527
OJW69670.1



MQSIFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVSWCQLHGLDPLQTTHHDIMNFLADQADGILANW



VWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGNNRKRKTGAL



TLKPLACVLDEIDTSNLAGLRDYTLLLLMFSGALRRSEAARIEVNDVQFVGQGIRLCLKPSKHQLHESEI



ALIPGTRYCPVSALQQWLKKSRIAEGPLFRRMNRWGQLMTDPLGPQGINLMIKRRTGQAIDDLHVSGHSL



RRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1528
VEG96551.1



MFDPALNNRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTSHHDIMNFLADQADGILADWVWL



DREEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGALTLQ



PLTRVLDEIDTSNLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEIALI



PGKQHCPVSALSRWLKASRLSQGPLFRRMTRWGQLTADPLGPQGINLMIKRRTGQAIDDLYVSGHSLRRG



FITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALEGLL





1529
WP_084202279.1



MRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADWVWLDKEEGKGELRNGE



PRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGALTLQPLTQVLDGIDISD



LAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEIALIPGKHYCPVSALQN



WLRKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTGQTIDDLYVSGHSLRRGFITSAVTAGKPMN



KIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1530
WP_080741249.1



MRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADWVWLDKEEGKGELRNGE



PRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGALTLQPLTQVLDGIDTGD



LAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFLGQGLRLRLKPSKHQLHETEIALIPGKHYCPVSALQN



WLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTGQTIDDLYVSGHSLRRGFITSAVTAGKPMN



KIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1531
EKB22195.1



MRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLADWVWLDKEEGKGELRNGE



PRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGALTLQPLTQVLDGIDTGD



LAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEIALILGKHYCPVSALQK



WLHKSRISEGPLFRRMNRWGQLLAEPLGPQGINLMIKRRTGQTIDDLYVSGHSLRRGFITSAVTAGKPMN



KIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1532
WP_081042909.1



MRSAKADSTLNAYQTDTRIFVFWCQLHELEPLKTTHHDIMNFLADQADGVLADWVWLDKDEGKGELRNGE



PRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGALTLQPLTQVLDGIDTGD



LAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEIALIPGKHYCPVSALQK



WLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTGQTIDDLYVSGHSLRRGFITSAVTAGKPMN



KIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1533
EKB14410.1



MRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGVLANWVWLDKEEGKGELRNGE



PRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIVRLGDNRKRKTGALTLQPLTQVLDGIDTGD



LAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEIALIPGKQYCPVSALQN



WLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTGQTIDDLYVSGHSLRRGFITSAVTAGKPMN



KIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1534
ANT70015.1



MRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHHIMNFLADQADGILADWVWLDKEEGKGELRNGE



PRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGALTLKPLACVLDEIDTGN



LAGLRDYTLLLLMFSGALRRSEAARIEVDDLDFVGQGIRLRLKPSKHQLHETEIALVPGKQYCPVSALAR



WLKQSRISEGALFRRMNRWGQLMQEPLGPQGINLMIKRRTGQAIDDLQVSGHSLRRGFITSAVTAGKPMN



KIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1535
EHI53752.1



MRSAKAVSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMNFLADQADGILADWVWLDKEEGKGELRNGE



PRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIVRLGDNRKRKTGALTLQPLGRVLDEIDTSN



LAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLRLKPSKHQLHETEIALIPGKQYCPVSALHT



WLKKSRIGEGALFRRMNRWGQLMSEPLGPQGINLMIKRRTGHRRSLCQWPQPATGIHHLGRHRRQAHEQD



H





1536
WP_045972172.1



MAAELNKLSDKKLKNLHGKERDNIEFFADGAGLSAKASKVGGISWVFTYRLDGKKLNRLTIGRYPDMSLK



LARDMRDKCRNWLASGKDPKLQFDLTMQESLKPVTVKEAMEYWIENYAKDSRENIDKHVSQLKKHIYPYI



GNMALADCETRYWLQCFDRTKKTAPVGAGYILQMCKQALKFCRVRRFAISNALDDLTISDVGRKQSKGKR



YLEDNELSQLWQSLNTNMYLPYYSNLLRILIVFGCRSQEARLSKWSEWDFDSMLWTVPKENSKSDDKIIR



PIPECLKPFLEKLIYQNHKSGYLLGELKSPESVSQCGRNIWRRLEHGEEWSLHDLRRTFATKLNDMGIAP



HIVEQLLGHALPGIMAIYNKSQYLPEKLDALNKWCERLDVLAGNYENVVILKAVQ





1537
WP_073614059.1



MQHLPAPIHHARDIAQLPVAIDYPAALALRQMSMVHDELPKYLLAPEVSALLHYVPDLRRKMLLATLWNT



GARINEALALTRGDFSLTPPYPFVQLATLKQRTEKAARTAGRMPAGQQTHRLVPLSDTWYVSQLQTMVAT



LKIPMERRNKRTGRTEKARIWEVTDRTVRTWIGEAVAAAAADGVTFSVPVTPHTFRHSYAMHMLYAGIPL



KVLQSLMGHKSISSTEVYTKVFALDVAARHRVQFLMPESDAVTMLKNRQA





1538
WP_060594881.1



MLSSGITVRAAGDGFLDSIRSPNTRRSYAIAVDKTTARLGEARPLANVADDEIGETLETLWGEAAVNTWN



ARRAAVASWLAWCREHGHLAPAVPAWVKRSTPPDSATPVRSRTAIDRLITRRDIDLRDKTLWRMLYETCA



RTEELLQVNIEDLDLAGRCCPVKSKGAKPRTRRRGAAHHEYAHELVYWDAGTARLLPRLTKGRTRGPLFV



THRRPGPRKAVADRDICPHTGLARLSYGQARALLDAATATNGPGTGWDLHELRHSGLTHLGEAGASLLEL



MAKSRHRKPDNLRRYFKPSPAAMRGITSLLGPDRGHR





1539
WP_061770812.1



MTGKRKNSDDNWMPPRVYRGRSAYEFKHHNGSVIRLCSLDCTQSVVWAEYEKYIEQQKDNDTFKKLVGRF



LISAEFTDLAFETQKDYHKYARKLIPVFGDVQPNDIRPEHVQRYMDKRGLKSKTQANREKTFMSRVFGWG



YERGYVKGNPCKGVRQYKEKSRERYITDAEYAAVFAAAPDMVRAVMELAYLCCARQRDVLALTRNQILED



GIYICQGKTGAKQIKAWSDRLRAAVALADSVPISTGIASAYVIHQQNGNRYTRDGFNSKWRNAKLAAKAA



NPAMNIDFTFHDLKAKGISDLEGSLVEKQAISGHKNSSQTAIYDRKVKIVPVVGNQKK





1540
WP_075938737.1



MAKHFYLRDNQRIQNNSLLSSGSKELFTLEKSHSTIDAYESDWSDFCDWCNYRGIYFFPATPETIVNYIH



DLSAYAKANTIARRVSALSENFTAGGLIKDNPCLSPLVKAAMKGIRRKIGTYQQGKSPLLKEDLEAIVOM



MDIKDLTQHLDKTVLVIGFMGAFRRSELSSIRYEDVHFVRQGIEIFIPRSKADQEGEGNIVALPNLTQKE



LCPVTTLKSWLSRTKITSGPVFRSPTKTGKLRKNALSDOMVNRIVKRWAEKIGLDPADYGAHSLRHGFAT



SAALAGIEERRIMQQTRHHSVEMVRHYINEADRFEHNPLRDMFSAK





1541
ETI84668.1



MAKHFYLRDNQRIQNNSLLSSGSKELFTLEKSHSTIDAYESDWSDFCDWCSYRGIHYFPATPETIVNYIH



DLSAYAKANTIARRVSALSENFTAGGLIKDNPCLSPLVKAAMKGIRRKIGTYQQGKSPLLKEDLEAIVOM



MDIKDLTQHLDKTVLVIGFMGAFRRSELSSIRYEDVHFVRQGIEIFIPRSKADQEGEGNIVALPNLTQKE



LCPVTTLKSWLSRTKITSGPVFRSPTKTGKLRKNALSDQMVNRIVKRWAEKIGLDPADYGAHSLRHGFAT



SAALAGIEERRIMQQTRHHSVEMVRHYINEADRFEHNPLRDMFSSK





1542
WP_099738455.1



MSNKHSTISVAGKSHTRKTVKNITNRITKNKIVKSGSVQEYMDASQAGATKRAYGSDLRHFLAHGGAMPC



TPKRLAKYLAESANDGLAVATLERRVTAIHKAHVDQKHGSPAHSEIVRQVMQGIRRTLGTKQRQVKPLTK



DDLLPALETIESVHMPVRAARDRAILLIGFASAMRRSELVGVCVEHLTFSPAGLEIELPVSKTDQEQHGR



TVFIPRANGSHCPVTALMCWLKTAGIRTGHVFRSVNRYDGIATQGLTPQSVALIVKGAMAQAGADARIFS



GHSLRAGYCTTAAEQGLPSWQIRMQTGHKSDVTLARYIRKSDWQKAQSLL





1543
WP_066013827.1



MPSETEKSTSAPSAEHEVSRGDDRGHKESTSIALPAHVAGSGALDRLVDTARAYARAAASDNTLRAYAKD



WAHFTRWCRMKGTDPLPPSPDIIGLYLADLASGSGALPSASRPLSVSTIERRLSGLTWNCAQRGFSLDRK



NRHIAAVLAGIRRKHARPPVQKAAILAEDIVAMVATLPYDLRGLRDRAILFLGYAGGLRRSEIVSLDVHK



DDTPESGGWIEILDKGALLTLNAKTGWREVEIGRGSTDQTCPVHALEQWLHFAKIDFGPVFVSTSRDGKC



AYETRLNDKHVARLIKRTVLHAGIRPDLPETERLALFSGHSLRAGLASSAEVDERHVQKHLGHASAEMTR



RYQRRRDRFRVNLTKAAGL





1544
WP_006120890.1



MMTASLPSLPGEYFQHTSRLPVAIDYPAALALRQMAAQLDDYPKYLLAPEVSALLHYIPDLYRKTLVDTL



WNSGARINEALALGRTDFLLQPPYPFVQLATLKQRTEKSARTAGRAPAGSQAHRLVPLSDVNYVSQLEMM



VATLKIPLERRNKRTGRTEKARIWEVTDRTVRTWLAEAVDAAAADGVTFSVPVTPHTFRHSYAMHMLYNG



IPLKVLQSLLGHRSISSTEIYTKVFALDVAARHRVQFHMPGADAVAMIKGC





1545
PQV52181.1



MPNRLMPIARTDRRQLTAAEFHQLANVPPEAEWFGNLDNPRTRRAYQVDLRDFMAFIGIARPDEFRTVTR



AHVLAWRKHLEARQLSGATIRRKLAALSSLFDYLCERNAVSLNPVAGVKRPKNNGNEGKTPALGDHQARA



LLDAPDPVTLKGKRDRAMLAVLLYHGLRREELCLLKVRDIHDRRGTPHLRIHGKGSKLRYVPLHPASAER



LHTYLESAGHDTVPDAPLFQPIRKTGTAITADGVYKCVLAWAVHAKIAVEGFGVHSLRATAATNALDHEA



DIAKVQEWLGHANIATTRLYDRRKQRPEDSPTFKVAY





1546
WP_105508122.1



MPIARTDRRQLTAAEFHQLANVPPEAEWFGNLDNPRTRRAYQVDLRDFMAFIGIARPDEFRTVTRAHVLA



WRKHLEARQLSGATIRRKLAALSSLFDYLCERNAVSLNPVAGVKRPKNNGNEGKTPALGDHQARALLDAP



DPVTLKGKRDRAMLAVLLYHGLRREELCLLKVRDIHDRRGTPHLRIHGKGSKLRYVPLHPASAERLHTYL



ESAGHDTVPDAPLFQPIRKTGTAITADGVYKCVLAWAVHAKIAVEGFGVHSLRATAATNALDHEADIAKV



QEWLGHANIATTRLYDRRKQRPEDSPTFKVAY





1547
EJT85494.1



MSDAERYQQAARRASTARRYAQAIEHFEGEWGGLLPASSASVVRYLAAFGPQLSASTLRTHLAALAQWHQ



RRGFVDPTKAAQVRDTLRGIQALHPQPVKQAPALQLKVLEASIEGLSADLHSALPVLRLRAARDQALILL



GFWRAFRGDELCRLQAEHVRIEAGEGMQLFLPSSKTDRDNRGRNLTMPALKRLCPVQATEQWLLLSGIEQ



GPLFRGIDRWGHINAQPLNANSVSRLLRRALLRSGIEAEGYSAHSLRRGFATWASRNQWSTEALMAYVGW



RDVQSAARYIESHAPFGEWAR





1548
WP_035412914.1



MEEEMRNEVEIREAAALAFADSRERLLAVLEDDHLNMEALSDLEIFELFWATELFPIYSQKSPHTKRAYK



QDLDYILRFFVTKTQGVKQLTILNLHEYLKDVHDQYAPRTVKRRNAMLRRFLRFLHVNDYHARDLSLQVK



DQMKPEPLRREIDFDEMEAIALAFRHTVKQKKNRELLQLRNETMGYLLLTTGMRASELLSLQFNQIYQSK



EFNYIEIKGKREKWRRIPLSEKTYYLLKYLNEKLISENILNPYVCFNINSTFSSITYETLRLITHEAAKV



MGSEGNTPHWFRRSFITKMLTNNSPLIEVMKLSGHESITTTNKYLQDLKNERTINLPYN





1549
WP_005331670.1



MNYVKIYTKTYRDNSARYIELPSLLIEQDGETKVFEQLLKYQIKYSHKSKTWHNKLIQSVSLLFDYMNAN



PNNYVSAKDFFELFAEAIYSGTIDEEGNDPSGLYWLPKKAQTANTLLSSLSDFSDWLYINYKTEQLNPWR



EATRYEERLKYMALINRSERSFLGHLDDIHDISETAKTVRNVVTHKNPYAVRNGTKAFPEDKIEKLLREG



FKKTRKGYELDLIDGYNWRDIAITILMHYGGLRHSEPFHLWVQDVIPDPEDPDMAIVRIYHPSEGKAPHD



FKNPSTGKYVTDRASYLKLKYGLIPRNQYASSNKRFAGWKNPRLDDEDNMYMNVYWFPREAGYVFMYVWK



KYLQQRIRYGIKDTHPFAFVSFDPRYLGEMMPPRTQTEAHNKACESIGLEISKFNGTTNHGHRHAYGQRM



KNAGIDKKVRQVAMHHKSEESQNVYTEPTVTEVTNALSLATYSLNKGIALPMKSEISSWYEEEKKLAKKY



MMRKK





1550
WP_010736891.1



MAQIKPYKKQDGTINYMFDFYVGINPKTGKKQKTTRRGFKTEEEASLALAELSLLVATEQYVPKKHHTFN



EIFTLWYKQYCNLVKESTAVTAKCEFKYAILPKFQEMRIQDITPIYCQQIVNEWYKDKPKRASRFIYYFN



RVMEHAMFLELIYQNPMANVKKTVTNLNLNHYEEFSNFFTKEELIEFLRFTKENFDSERYAFFRTLAFTG



LRKGEAFALTWEDVNFDEKYLEVTKTVAKGDRNKILIHPPKTKAGFRRISLDNATLESLKTWREKQAIKF



GLPKINPNQIIFSNYKNTYLESGITKEWFLTIQRLYRKKTGKEIKTITMHGFRHTHASLLYKANIPIKEA



QERLGHSNVKTTLNIYTHLSKDQRDKTANRFAEFMNEI





1551
WP_010752316.1



MAKFEQYKKKNGEKAWKFQAYLGINPETGKPVKTTRRNFKTQREAKLALARLQSEYEDNLLKNDKPKTYK



DVYDLWMTEYKRTVRGSTLLKTERIFKNHVLEELGDIYISEITPIKIQKLMDKWANKYDTAPKMMNYTGL



VFKYAVRFGIIESNPTDAIRKPKRRKKATVEEPFYDKKQLKLFLDELYNQPNLKIQAFFRLLAMTGMRKQ



EAGALEWRDIDFKAKTVNIYKAVTRTANGLEIDTTKTVGSSRIISIDQGTLDKLLEWKEAVLPPSDEWLV



FGHSSAKNPHDIMSLDTSRKWLLNIQDQMDKKQKKKLPRITVHGFRHTQASLLIEMGASLKEVQFRLGHE



DIQTTMNTYAHVSKLAKEQLADKFNKFIDL





1552
PKP94160.1



MVDRRTVDLVVQDVRGLVGPAVLLDTELVAAAVRGWSHNTRRAFRSDLCLWGDWCRRQRVAPASADAGVV



AAWIRALAGMDPSGETVRAMATIERYVVNVGWAYRMAGLDDPTAAPLVRLEKKAARKHLGVRQRQARAIR



FKGDIADFDSPASGVCLAHLLKACRRDLLGFRDEALLRTAYDSAGRRSELVAIDVDHIEGPDGQGAGTLF



IPTSKTDRQGEGAYAYLAPSTMTAIARWREAGHIDRGALFRRVETHFDGSVAGVGRAALHPNSITLIYKR



LIRAAHAKKLLGAMGEAELERWVSAVSSHSIRVGVAQDNFAADESLPAIMQAYRWRDPRTVMRYGAKLAP



KSGASARMAKRFSES





1553
WP_014953267.1



MSNLTTDLKAIQEETLLNLKASKSNNTIRAYKSDFHDFGLFCVKNGFKSLPSNPKTVSLYLTYLATKNMK



ISTIKRRLVSIAVVHKMKGHYLDNKHPSIIENLLGIKRRKGIKQKGKKPLLINNLKQIINVIDENNSSEI



KIYRDRSIILLGFGGGFRRNELVSLNFDDLDFVNEGLKVSIRKSKTDQYGEGSIKALPYFDNPQYCPVKS



LQKWLEISKIKEEAIFRKFHKGTKISNIRLSDQSVALLIKYYLNKAGIDSSDYSGHSLRSGFATSAAEAG



AEERSIMEMTGHKSTEMVRRYIKEANLFKNNALNKIKL





1554
WP_065997227.1



MRGIRTISNSADVLRRAEALDALDAVLPFDRREFLAEILSDDDVETLRHLAREGIGENSMRALASDLAYL



EAWCRAATSDPLPWPAPEALLLKFLAHHLWDPARRETDPTHGMPADVSAALMQAGLLRAKGPHSPSTVRR



RLSSWSTLTQWRGLQGKFNAPRLRNATKLAVRASLRPRHRKSAKAVTADVLGALLKACAGDRLVDVRDRA



LLMVAFASGGRRRSEVSSLRIAQLMEQDPVPADPDNPHSALLPCVSIHLGRTKTTEADDSAFVLLIGRPV



AALDDWLARAGITEGAVFRRIDRWGHLERRALTPQAVNLILKRRILQCGLDPQEFSAHGLRAGFLTEAAR



RGIPLPEAMQQSQHRSVQQASRYYNDAERRHGKAARLIV





1555
WP_015241550.1



MAKTPPSPSEDVHRRAEELDALDAILPFDRRDQLAALLTDDDVETLKHLASEGMGENTLRALASDLGYLE



AWCRLATGAPLPWPAPEALLLKFVAHHLWDPVKRAEDPAHGMPADVEAGLRAERLLRSPGPHAPGTVQRR



LTSWSILTRWRGLTGAFAAPSLKSTLRLAVRASARPRQRKSKKAVTVDILAKLLQACAGDRLVDLRDHAL



LLTAFASGGRRRSEVAALRVEDLTDEEPVRADPSDKNSPPLPCLSIRLGRTKTTTADENEHVLLIGRPVA



ALKTWLAEAQIKDGPVFRRIDQWGNIDRRALTPQSVNLILKARCEQAGLDPALFSAHGLRSGYLTEAANR



GIPLPEAMQQSLHKSVTQAASYYNNAERKNGRAARLIV





1556
WP_113480034.1



MAKTTPSDAIHRRAEELDALDSILPFDRRDQLASLLTDDDVVTLKHLAGEGMGDNTLRALASDLGYLEAW



CQLAIGGPLPWPAPESLLLKFVAHHLWDPVKRAEDADHGMPADVEAGLRDSRLLRAKGPHAPDTVRRRLT



SWSVLTRWRGLTGAFNGPSLKSALRLAVRASARPRQRKSKKAVTADILAKLLQACAGERLVDLRDRALLL



TAFASGGRRRSEIAGLRVADLVDEEAVRADPNDANSPRLPCLSIRLGRTKTTTSDDDEHVVLIGRPVVAL



KHWFEQANVKDGPVFRRIDQWGNIDRRALTPQSVNLILKTRCKQAGLDPALFSAHGLRSGYLTEAANRGI



PLPEAMQQSLHKSVTQAARYYNDSERKQGRAARLMI





1557
WP_104840046.1



MIKQHRTADSNSQALHRRAEELDALDAILPFDRRDQLAALLTDDDVATLKHLASEGMGGNTLKALASDLG



YLEAWCRLATGSPLPWPAPEALLLKFVAHHLWDPVKRAEEPAHGMPADVEAGLRCEGLLRAKGPHAPGTV



RRRLTSWSILTRWRGLSGAFGAPSLKSALRLAVKASSRPRQRKSKNAVTGDVLAKLLATCAGDRLVNRRD



MALLLTAFASGGRRRSEVAGLRVEDLNDDEPVHADPADKTSPPLPCLSIRLGRTKTTTSDDDEHVLLIGR



PVAALKRWLEDAGIKDGPVFRRIDQWGNVDRRALTPQSINLILKTRCKQAGLDPVLFSAHGLRSGYLTEA



ANRGIPLPEAMQQSLHKSVTQAASYYNNAERKNGRAARLI1





1558
PZN95492.1



MPGSPASPPKIGDLAVARINGGQPDIAEPDMETGAAAPATLISARLEALVETATGYAKAASSENTRAAYA



KDWRHFSSWCRREGLEPLPPSSQVIGLYISACAAGEPKRGLPSLSVATIERRLSGLGWNFNQRGQPMDRA



DRHISTVLAGIRRKHAKPPRQKEAVLGDDLLAMIATLGHDLRGLRDRAILLLGFAGGLRRSEIVGLDVVR



DENSDGAGWIEIYADKGVLVTLRGKTGWREVEVGRGSSDHTCPVVALETWVRFGRIARGPLFRRIFKDNK



TVDVERLSDKHVARLVKQTALEAGVRSDLPEGERALLFAGHSLRSGLASSAEIEERYVQKHLGHASAEMT



RKYQRRRDRFRTNLTKASGL





1559
WP_057795742.1



MDSETEKSTSAPSGAVDDARGDESEQEAPNSIALPAHVAGSGTLDRLVDTARDYARAAASENTLKAYAKD



WAHFARWCRMKGAEPLPPSPEMIGLYLADLASGSGPSPALAVSTIDRRLSGLAWNYAQRGFTLDRENRHI



ATVLAGIKRKHARPPVQKAAILAEDILAMVATLPFDLRGLRDRAILLIGYAGGLRRSEIVSLDVGKDDTP



DSGGWVEILEKGALLTLNAKTGWREVEIGRGSKKQSCPVHALEQWLHFARIDFGPVFVGTSRDGKRASET



RLNDKHVARLIKRTALGAGIRADLPEKDRLALFSGHSLRAGLASSAEVDERYVQKQLGHASAEMTRRYQR



RRDRFRVNLTKAAGL





1560
WP_089423562.1



MPSETEKSTSAPSDTNKDAPLDERDQKESDSIALPTHVAGSGTLDRLVYTARDYARAAASENTLKAYAKD



WAHFARWLRMKGADPLPPSPEMIGLYLADLASGSGPSASQSASRPLSVSTIERRLSGLAWNYTQRGFTLD



RNNRHVATVLAGIKRKHARPPVQKEAILAEDILVMVATLPYDLRGLRDRAILLLGYAGGLRRSEIVSLDV



HKDDTPDSGGWIEIFDKGALLTLNAKTGWREVEIGRGSKDQTCPVHALERWLHFAKIDFGPVFVGSSRDG



KRPSDTRLNDKHVARLIKRTVLNAGIRSELPEKERLALFSGHSLRAGLASSAEVDERYVQKHLGHASAEM



TRRYQRRRDRFRVNLTKAAGL





1561
WP_023721997.1



MPDIVDVVDIISTEMGRGEASDEAPFHALRPAPGLPAHLERLADRARDYVDAASSANTRRAYASDWKHFC



AWARRQHLEVLPPDPQTVGLYITACASGKVTGDKKPNSVATIERRLSSLAWNYTQRGEPLDRKDRHIATV



LAGIRKSHAKPSVQKEAILPEDLIAMLQTLDRGTLRGLRDRAMLLLGFAGGLRRSEIVGLDVGRDQTDDG



RGWVEILDKGALVTLRGKTGWREVEIGRGSADATCPVVALQTWLKLARIAHGPLFRRVTGQGKAVGAERL



NDQEVARLVKRAALATGVRGDLSEGERQQKFAGHSLRAGLASSAEVDERYVQKQLGHASAEMTRKYQRRR



DRFRVNLTKASGL





1562
WP_066052221.1



MERAVNEFASYLRNDKHSSENTVLSYIRDLRGFTEFMRVCGVSDALMVNYTNVMSYIYELQSKKKAGATV



SRNIASIRAFYNYLIRQGAITDNPAANLELPKIEKKMPGILTLDKVEQLLEQPQGVDPKGIRDKAMLELL



YATGIRVSELISLKVSDVNLPLEYIRCGVERKSRIIPIGSQAKAALRKYIEKGRSRMILADDEEMLFVNC



NGKPMTRQGFWKIIKCYAKKAGIDEEITPHMLRHSFAAHLIENGADLKSVQEMLGHSDISSTQIYVKLTN



QKLKSVYAKAHPRA





1563
WP_047138903.1



MRRTVLTYDVRVYSIETRKDRPKPYRLHWLVGDRKHSKSYTLRAQADGRRSELMTAARKGEQFDRDTGLP



VSELRAQRGSVTWYQHTRAYIDRKWAAAPAKSRKNYADALATITPALVKAAKGRPDAALLRAALYGWAYN



RNRWDLTPPEEIAAALAWVQKNSLPVSELEEAKTVRAALDALSLKLDGTPAAPRTARRKRACLSEVLGLA



VEEKYFTVPVNPITTVKWTPPKSVEEVDPDSVANPRQVRALLRAVREQGPRGAHLEAFFGCLYYASMRPA



EATALTLAQCHLPASGWGTLTLRKGAVRAGRGWTNDGSAHEARHLKARAEKDSRPVPIPQHFVRQLRQHV



AVHGTAPDGRLFRTNRGGLLQETGYGEVWAAARQSALTEPEAASLLARRPYDLRHAGVSFWLSSGVDPME



CARRAGHSVAVLLRVYAKVLARTQERANKRIEEAMRAWNEPE





1564
WP_005824123.1



MKKSTLSQQLFSQYFSDWVATYKEGAIRLVTMKKYRSTLHWIETLAPKLRVGDLSRITYQKLLNDYAQTH



ERQTTMDFHHQLKGAILDAVDEGLLDTDPTRKAIIKGKAPKSKKIKYLNQFELQALLNSLELEQKINWDW



FILLVAKTGMRFSEALAITPEDFDFAHQTLQVNKTWNYKEKGGFSPTKNRSSIRKIQLDWQTVIQFSQLI



KDLPPDKPIFPCDTAIYNSTINGMLARICRKAKVSTISIHGLRHTHASLLLFAGVSIASVARRLGHSSMT



TTQHTYLHIIQELENQDTDIVMRHLAGLC





1565
WP_000817856.1



MKREILLERIDKLKQIMPWYVLEYYQSKLAVPYSFTTLYEYLKEYDRFFSWVLESGISNADKMSDIPLSV



LENMSKKDMEAFILYLRERPLLNANTTKQGVSQTTINRTLSALSSLYKYLTEEVENDLGEPYFYRNVMKK



VSTKKKKETLAARAENIKQKLFLGDETEGFLTYIDQEYPQQLSNRALSSFNKNKERDLAIIALLLASGVR



LSEAVNLDLRDLNLKMMVIDVTRKGGKRDSVNVAAFAKPYLENYLAIRNQRYKTEKTDTALFLTLYRGVP



NRIDASSVEKMVAKYSEDFKVRVTPHKLRHTLATRLYDATKSQVLVSHQLGHASTQVTDLYTHIVNDEQK



NALDSL





1566
WP_015217782.1



MLINRNGQAKVLTKSEIQQLFHNGFKSSRDKALFAVAFYTACRISEARKMFIIDAFYDGKVRDEIIIRKA



HSKGKQGTRSIPTHPNLKKILQEYYDNSAKLVEMKKMIGDWSEKSFNCEGKIIINLAHQCPRCQFAGIFK



NGVCNNQQRYKCKKCRHEFFERELPKTDLASENSSAIEFDPLGVTCSTLYGFLLEKSDNPFLFPGRRSKG



YISLRNAMSIFVYAFDKLGIDGASTHSCRRTALTMMHREGVILKVLQEISGHKDLGALQKYLEVSEEQAR



AAINIL





1567
WP_070726079.1



MSEDLSIVPASNATPTVSTQLARASAKVAGFLETGLQGAANTERAYTSDLKSYGAFCEHHGFVALPADVE



TLTEYVAFLATEKPEPTLGDGREKKKGQQPLTRPHSLATIKRHLAAIRKAHQLAGHRLPATLDALNIVME



GIARTLGKRQDQAQAFTVEELKQAILRIDLETSAGLRDRALLLLGFSGAFRRSELVDLNIEQLEFTERAL



LVHLAKSKTNQYGAVEDKAIFYAPNADFCPVRCLRTWLNLLGWTTGPLFVKIPRAAPGQMAAPSDKRLSD



ISINKLVQKRLGPAYSAHSLRVSFVTVAVLNGQSHKAIKNQTKQKTDAMIERYTQLNNVVSYNAAQALGL





1568
WP_000059622.1



MSLTDAKIRTLKPSDKPFKVSDSHGLYLLVKPGGSRHWYLKYRISGKESRIALGAYPAISLSDARQQREG



IRKMLALNINPVQQRAAERGSRTPEKVFKNVALAWHKSNRKWSQNTADRLLASLNNHIFPVIGNLPVSEL



KPRHFIDLLKGIEEKGLLEVASRTRQHLSNIMRHAVHQELIDTNPAANLGGVTTPPVRRHYPALPLERLP



ELLERIGAYHQGRELTRHAVLLMLHVFIRSSELRFARWSEIDFTNRVWTIPATREPIIGVRYSGRGAKMR



MPHIVPLSEQSIAILKQIKDITGNNELIFPGDHNPYKPMCENTVNKALRVMGYDTKKDICGHGFRAMACS



ALMESGLWAKDAVERQMSHQERNTVRMAYIHKAEHLEARKAMMQWWSDYLEACRESYAPPYTIGKNKFIP





1569
WP_015369806.1



MAISKGAKRTDGLESADQVKLVVEEIAKKSQTVADLFLLGVETQLRGVDMRSWRWVELDIGSKVLRITOD



KTKEAVEVELTETAREVLKARYNERGENVYVFQNDSNRSKGKPISRSKIHAEIQYAVDKLKMRGLLPQDA



VISMHSSRKTIASIAHAQGEDLEVISKMLGHRSTEHTRAYLGITQAKVDALRTKYSTGIKRVTLR





1570
WP_013058885.1



MEFVKDVLNSFLEYLQIEKNYSKYTVDCYEKDIGIFMSFMQEEQIQNLOSVTYADARLFLTRLYEKQYSK



RSMSRKISCLRTFYRYLNREELVEDNPFALVTLPKKEERNPRFLYEEEIVKLFQMNDLTTPLGQRNQSLL



ELLYATGIRVSECASIKLSDIDFSLQTLLVYGKGKKQRYVPFGCYAKGALRVYIDNGRKLLLKKAPSDTH



SLFLNYKGTPLTDRGIRLVIDQLVKKTAENIHISPHVLRHTFATHMLNEGADLRTVQEMLGHEHLSTTQI



YTHVTKDRLKAVYMNHHPRA





1571
WP_013058263.1



MKKNSLEVIPLIDDFSQWLIESGKSDNTIKTYRAVLNQFHEWLLSEGRHLDQVTKNNVQTYMINLESNNK



SASTIEKAFVTISVFARFLEKPEIVQNIERKRKEKNNEVVPQSLEASELDRLLSEVKQQGNLRDIAIVYT



LLHTGVRVSEICALNHKDVEINKSDGFLIIRNAKGCKKRFVPLSTEARNSLKKYIDSLDSNHEALFVSNE



DRRMSPRTVQYMLKKYNVNPHKLRHTFCHELVKKGIDIATVAELAGHSDVNVTKRYLKSSTRDLENAITQ



TFL





1572
WP_056922110.1



MLPRIGGLRLRELTTPVVDRFVLDVYQDVGAATARTCRSIVSGALSLAVRQGAIAANPARELERLEGTRA



KEPRALTSEEQAKWFMGMTGDQVAVRQDLVDFSAFLLATGLRIGEALAVLWTEVDLDTGALTVTSTLIRV



TGQGLLRKTTKSKAGQRALLLPTWCVAMLRRRSEVGVAPDEPIFATVDGRFRDPRNVSRQLADARDRLGF



GWVTSHTWRKTMATILDGGGASPRMIADQLGHSRVSMSLDFYLGRRSVDPRVLAALEAVDPRRFTLESGG



QSGGSVAQGEGT





1573
WP_054448037.1



MTRYPKRGKGARWTVKELEAVPAEWAGDHLADGDGLTGEIRIQRGTMAVVWRYAYRLGDKVKRFYCGSWP



ERTLDEIRTARNKARADIKAGRNPSAVRDLEKAQAREAVAAESAAVTAAEEAATTDALSVREMYKSWLES



GVKRADGNTEVMRIVEKDVLPLIGDTAVRSIREKDIERVIRSIVGRGCNRLAEVTFQILGQMFHWAEKRQ



PWRKLLSEGNPVELVELGVLLADDYDPDNVRERVLPPIEIVELQTRYRELEEQYLTSDDKRKRKPPSEAL



QAVSWICLSTLCRIGELHLTEIAHLDLREGTWFIPKANVKGRKSQKRDHLVFLSPFAIKHFETLVSLAGS



SRWLLPSRDNDAEVDQPMYKQAFTKQIKDRQAMFNGKSKARRASDNSLVLGKGQSGNWTPHDLRRTGSTI



MESLGIDPNIIDRCQNHAIHTGKNRVRRHYQLYDYADEKQAAWAKLGEYLERLLSGAMAPAELQKRLTTK



QLLAA





1574
WP_010744610.1



MDEQITEYLHYLSIERGLSDNTRISYQRDLHQYLSFLNDQGVTDWQAVDRYTVVAFLTSLTEAGKASTTI



TRMISSLRRFHQFLRQERYTDHDPMQHIDSPKKAQKLPQTLSLTEVERLIAAPDTTTDLGIRDRAILEVM



YATGLRVSELIGLRLGDIHLEMGLLQTIGKGDKERIVPLGDYAIHWLERYLSEVRPLLTKKTPNEMFLFV



NNHGHGMSRQGIWKNLKQYVIKAEITKDVTPHTLRHSFATHLLENGADLRTVQELLGHADISTTQIYTHI



TKRRMTEVYKEFFPRA





1575
WP_016179937.1



MDEQITEYLHFLTIERGLSENTRVSYQRDLHQYLSFLSEQGVTEWQAVDRYIVVAFLANLTEAGKASTTI



TRMISSLRRFHQFLRQERYTDHDPMQHIDSPKKAQKLPQTLSLAEVERLIAAPDTTTDLGIRDRAILEVM



YATGLRVSELIGLKLGDIHLEMGLLQTVGKGDKERIVPLGDYAIHWLERYLTEVRPLLTKKTPNVMFLFV



NNHGHGMSRQGIWKNLKQYVIKAEIMKDVTPHTLRHSFATHLLENGADLRTVQELLGHADISTTQIYTHI



TKRRMTEVYKEFFPRA





1576
WP_049220444.1



MDEQITEYLHFLTIERGLSENTRVSYQRDLYQYLSFLSEQGVTEWQAVDRYIVVAFLANLTEAGKASTTI



TRMISSLRRFHQFLRQERYTDHDPMQHIDSPKKAQKLPQTLSLAEVGRLIAAPDTTTDLGIRDRAILEVM



YATGLRVSELIGLKLGDIHLEMGLLQTVGKGDKERIVPLGDYAIHWLERYLTEVRPLLTKKTPNVMFLFV



NNHGHGMSRQGIWKNLKQYVIKAEIMKDVTPHTLRHSFATHLLENGADLRTVQELLGHADISTTQIYTHI



TKRRMTEVYKEFFPRA





1577
WP_088932358.1



MDEQITEYLHYLSIERGLSENTRISYQRDLQQYLSFLTDQGVSEWQAVDRYMVVSFLTNLTEAGKASTTI



TRMISSLRRFHQFLRQERYTDHDPMQHIDSPKKAQKLPQTLSLAEVERLIATPDTTTDLGIRDRAILEVM



YATGLRVSELIGLRLGDIHLEMGLLQTVGKGDKERIVPLGDYAIHWLERYLAEVRPILTKKTPNETFLFV



NNHGHGLSRQGIWKNLKQYVIKAEIMKDVTPHTLRHSFATHLLENGADLRTVQELLGHADISTTQIYTHI



TKRRMTEVYKEFFPRA





1578
WP_021268046.1



MAIRCYEKDGKKLYQVYVNARSKTDRKLRVQKTVSDLKSLSLARREENRINQELGKKLTELEGLCDTWES



VIDKWEHEARSGFLGTYNPATIMDHVASLRNWTKSWLKTPASELGKANGRDLVKRMTNAEKSISFIKKVK



NTVNLVYNFGIEEGLIKGVHQSPVYGIKLHHKKEKVPDILTLEEIKQFLYEARRQEHPWYPIWATALLTG



MRSGELYALEWNDVDFENEIVRVSKSFNKRTNEIKSTKAGYWRNVPMSPELKELFISLKSSSKDKFVLPR



FNDWRRGDQSKILKMFLIGNGLPKIKFHALRACFATQLLAKGTPAAIVMKICGWRDLKTMELYIRVAGVD



EKGATDCLSILPSEVDVADNVVSLFHS





1579
WP_051517528.1



MTLIAQSTQAALDPIQLVLDSVTSPLTKAAYKKALTDFFVWWEEQGRPPLSKAVVQRHVALLVEQGLSPS



SINVRLSALRKLVREAADNGLLGAFEAETIARVKGVKQQGRRSGTWLSKAQAQALLLAPDTTTLRGLRDR



AILAVLLGCGLRRSELVGLTFAHLQQREGRWVILDLTGKHGRTRTVPMPAWCKAAVDAWTRTAGLSTGHV



FRPTAPRGEHVLARQRLSHEAVALIVRKYGRQLGHNHLTPEDLEGVRLAPHDLRRTFAKLAHKGGAPIDQ



IQLSLGHASIQTTEVYLGVDQDLESAPCDVLGLSLKGG





1580
WP_100251739.1



MTLPATLAARARAFADEALSENSRRAYRADWQHYARWCGGHDLAPLPAGPEQVASYLTSMAETHKRATIE



RRLVTIGQAHKLQGLPWVPAHPAVRAALRGMFRRYGRPKKQAAALGVPETLRIVAACEGTVAALRDRALF



LLSFAGAFRRSEVARIRHEDLAFRDGAVDVFLPHSKGDQDGEGTVVTVLAGGSPATCPIAALRRWLQAAP



ADGYVFRAVRADGTVMDDGLHPDSVGRIVQKRAAEAGLVAGPRERISAHGFRAGFITEAYRRGSRDEEIM



AHSRHRDLKTMRGYVRRAKLADAHPGRNLGL





1581
WP_020094536.1



MTLPATLAARARAFADEALSENSRRAYRADWQHYARWCSGHDLAPLPAGPEQVASYLTSMAETHKRATIE



RRLVTIGQAHKLQGLPWVPAHPAVRAALRGMFRRYGRPKKQAAALGVPETLRIVAACEGTVAALRDRALF



LLSFAGAFRRSEVARIRHEDLAFRDGAVDVFLPHSKGDQDGEGTVVTVLAGGSPATCPVAALRRWLQAAP



ADGYVFRAVRADGTVMDDGLHPDSVGRIVQKRAAEAGLVAGPRERISAHGFRAGFITEAYRRGSRDEEIM



AHSRHRDLKTMRGYVRRAKLADAHPGRNLGL





1582
WP_103985118.1



MTLPATLAARARAFADEALSENSRRAYRADWQHYARWCGGHDLAPLPAGPDQVASYLTSMAETHKRATIE



RRLVTIGQAHKLQGLPWIPAHPAVRAALRGMFRRYGRPKKQAAALGVPETLRIVAACEGTVAALRDRALF



LLSFAGAFRRSEVARIRHEDLAFRDGAVDVFLPHSKGDQDGEGTVVTVLAGGSPATCPIAALRRWLQAAP



ADGYVFRAVRADGTVMDDGLHPDSVGRIVQKRAAEAGLVAGPRERISAHGFRAGFITEAYRRGSRDEEIM



AHSRHRDLKTMRGYVRRAKLADAHPGRNLGL





1583
WP_014350944.1



MTEDTGALALPDPVRAQLRRGVRSVLVDTAALREVRQRFADDQAATLARYLEASQSANTVRAYRTDWIAW



TAWCAAEGRQALPADALDVAVYLAAAADARTDDGAPAFAPATLERKSAAIAAVHAANGLPSPTRSDVVRL



TLRGIRRTRRARPVRKRPILLHTLEQLLDGLPAPGWPTEPARRRDTLALLIGFAGALRRSELAALRVGDV



HVTQDHTTGEPVLLIHLPTSKTDPTGITEQRVALPRGTRPHTCPVCAFADWIALLAVYTSAPGRLREQLT



AAPQPDPNIHRCHGFTGLPPALLPDQPLFPAVTRHGGIGSTPISGRAIAELVKRYAARAGLDPALFSGHS



LRAGFATQAALGGAADREIMRQGRWSNPRTVHRYIRTANPLDDNAVTKLGL





1584
WP_024545567.1



METSLAQPSPFSVPTDNPDILSQLLENQKSPHTWRAYKKDIRDFFRFVADANEPTPILIEALLKLEQPQA



LALVLRYKNHLRDVRCLKEATINRRLAALKALVRLANQLGQCRYTLDGIRGEKVIHYRDTTGVSQNIYRQ



ILKMPDQSTTKGKRDYAILRLLWDNALRRNEVVQTNLGDLDLERRSLDILGKGKGNQKEQITLSRATVTA



LESWLTVRPGPKEKNQPLFVALDRAHQGHRLTGTAIYQLVRSTARAAGVQKVLSPHRIRHAGITAALDAT



NGDVRKVQKFSRHADLNTLMIYDDNRRDVQGEITDLLAGLI





1585
WP_022614960.1



MTNLKKSNPFKNRVVRRADGISKNANEKALKKRSALSEAPSFKHYRKMLDTIYLYNPVLSLLFEMQSLTG



LRYSDASTLIRNDFYDEVTGNFKPHFEFTPLKTYSLALDRIKNKDKNNSSSDDIEAKARNEAILTIFTND



RIREVIDEVEELNGHIDSQFLFASEHVFSGGNPISIQYANRLLKRLHVDHPDLGFKETGTHSWRKYFATS



MVELNGANLVQVQALLGHRDVNTTAKYVSKKKSDLQELIMQMKTEAA





1586
WP_071974181.1



MTRNDEKLRPEPPNAATTDGHNADGAALTLPAHVAGSGTLDRLVDTARDYARAAASENTLKAYAKDWAHY



TRWCRMKGTEPLPPAPEMIGLYLADLAAGSGPSPSQAAHRPLSVSTIERRLSGLAWNVAQRGFTLDRRNR



HIATVLAGIRRRHARPPVQKEAILADDIRAMVATLPHDLRGLRDRAILLLGYAGGLRRSEIVSLDVHKDD



TPDSGGWIEIFDKGALLTLDAKTGWREVEIGRGSRDQTCPVHALEQWLHFAKIDFGPVFTGTSRDGRRAL



DTRLNDKHVARLIKRTVLDAGIRSDLPDQERLKLFSGHSLRAGLASSAEVDERYVQKQLGHASAEMTRRY



QRRRDRFRVNLTKAAGL





1587
WP_009557265.1



MPKRRAERGTVQFNNCNGSLRLLWTYQGERYSLALGLRNTPYHQKLANDRALWLTREIQYGRFNLEKLDQ



YREFLRGENVSLSELPTVKAPPLSQLWQQYLEVRNLGKSPSTIRQYNWVTRHIDRLPTKDTRQPQAILDA



IAKLSPDVQKRLLTQFCACAKWAQKSGLLTDNPFLGAAAAVKLPQRGTVEDEIHPFSRAERDQIIQAFRN



DLHYQHYANLVAFLFFTGARPSEVVPLQWGHVKANYILFEKSRVDTVTGYQTKQGLKTQNCRRFPVNEQL



RAILVGMERSDDESLVFPSVKGTYIQWNNFTNRAWKSVLSKLPEIEYRNPYQMRHSFVSHCRSLNVPSIQ



VAEWIGNSVEMVDRVYAQVTESHSVPLL





1588
WP_069855669.1



MSSSRSVPAPATWENGVAAAAPPVLTDAMTARITESMAASRAESTTRAYASAWRRFEGWCTANGHVALPA



HPASVAAYLVDAADTFTPDGERAYAPATFSKWIAAISHVHGRSGHTSPTTHETVRATLSGIRRSYASAGD



RPRKQRAPLLVSDIVTMVTVARDSVTAWASEVLERRDSALLLMGFAGAFRRSELVGLNCGDVVVHRLDGL



HIRLRKSKTDQDGDGAIRALPFTNSHTSCPPCAALRWWELVAAHERGGRAALIRTLRNAPAFDGHVCRGA



LPKISPHAPFFRAIAKNGNLSTTALSAAAVHGAVRRRAGAAGYDESLVAALGGHSLRAGFVTQAFRNGAD



AHAIMRQTGHKTPAMLEVYARENAPLIGNAVTDIGL





1589
WP_085421389.1



MTRIVDQNPENYPQEHSAASDSTADSADVSAPGASAGLPSPLPDANAGLPAHLQDLSDRARSYVEAASSA



NTRKAYASDWKHFAAWCRRQNLSPLPPDPQVVGLYITACASGTAERGMKQNSVSTIERRLAAIGWNCSQR



GMPLDRRDRAIATVMAGIRNRHAAPPRQKEAILPEDLIAMLETLDRGTLRGLRDRAMLLIGFAGGLRRSE



ITGLDLGRDQTDDGRGWIEIFEKGLLVMLRGKTGWREVEIGRGSSDATCPVAAVETWIRFAKLAKGPLFR



RVTSGGKDVGPDRLNDQEVARLVKKTALAAGVRGDLSEGGRAEKFAGHSLRAGLASSAEVDERYVQKQLG



HASAEMTRRYQRRRDRFRVNLTKAAGL





1590
WP_062446129.1



MFPETISAVLQGASDRLVLAARSPATLRAYRTDWVAFVAWCSAQNVTALPAQPETVSAWIASRLEQGRKA



GTLARGVAAVSCAHELAGFEGFSRSRVVQDALRGMRRTLGTAPTRKAPATVDLLRRMLDVQPNTLIGLRN



RALLALGFAGALRRSELATLEVGDLVPQEGGALLTLRRSKTDPDGAGQTIGILNGSTIRALDHLAAWCEA



ARITSGRLFRSVDRHGRTGESLSDRSVARIIKTAAEAVGLDPERFSGHSLRAGFITSGAEAGADALLIAE



TSRHQSLDVLRTYVRRASLLKAHAGQRFL





1591
WP_008726205.1



MTATPKLQPNHTLDLFEKYLVARNKSPNTICVYRYAVEQFYHLYPQLTPRNLQLYKVYLLEHYKPQTVNL



RIRALNCFMEYRQTSITPITMIKIQQKTYLDKIISQADYEYLKRKLVENEEFTYYFIVRLITTTGVRVSE



LITFQIEDIDRGHKDIYSKGNKMRRIYVPTQLGIEFKQWFQHIGRRSGHLFLNRFGSPLSPSGIRAQFKV



FAARYHLDPEVMYPHSFRHRFAKNFIEKCGDITLLSDLLGHESIETTRIYLRRSSSEQYRIINKVVDW





1592
WP_054528982.1



MNADAPEPPAQPSPAAALPVPFPDPFVAEVVEDVRDLVGAGVRLDAELVSAAVRGWSDNTRRAFRSDLTV



WGDWCRRHGVVPARATPSHVAAFIRALSGIDPSAEEIRAMATIERYVSYIGRAYRLAGLPDPTSGELITF



EKKAARKKRGVRQRQARAIRFKGDIADFDSPASGVCLAHLLKAVRRDEMGLRDEALMRVAYDVAARRSEV



VAIDVDHIHGPDAQGAGALFIPSSKTDQEGEGAWGYLSPATMKAIARWREAARIDKGPLFRRIETHFDGS



IAAIGTKRLHPNSINLIYKRLVQRAFDKKLLGPMSEAEVARWVAAVSSHSLRVGVAQDNFAAREPLPAIM



QAYRWRDPKTVLRYGAQLAVKSGAAARMAARVNES





1593
KPL69881.1



MPVPFPDPFVAEVVEDVRDLVGAGVRLDAELVSAAVRGWSDNTRRAFRSDLTVWGDWCRRHGVVPARATP



SHVAAFIRALSGIDPSAEEIRAMATIERYVSYIGRAYRLAGLPDPTSGELITFEKKAARKKRGVRQRQAR



AIRFKGDIADFDSPASGVCLAHLLKAVRRDEMGLRDEALMRVAYDVAARRSEVVAIDVDHIHGPDAQGAG



ALFIPSSKTDQEGEGAWGYLSPATMKAIARWREAARIDKGPLFRRIETHFDGSIAAIGTKRLHPNSINLI



YKRLVQRAFDKKLLGPMSEAEVARWVAAVSSHSLRVGVAQDNFAAREPLPAIMQAYRWRDPKTVLRYGAQ



LAVKSGAAARMAARVNES





1594
SEM26217.1



MLSGMAENIEKSSSEAANVSSSNDDNERDRQDGEALSLPSSVAGSGALDRLVETARDYARAAASENTLKA



YAKDWTHFARWCRMKGAEPLPPSPEMIGLYLADLASGSGPSSTLSVSTIDRRLSGLAWNYAQRGFTLDRK



NRHIATVLAGIKRKHARPPAQKEAILAEDILAMVATLPYDLRGLRDRAILLIGYAGGLRRSEIVSLDVGK



DNTPNSGGWIEILENGVILTLNAKTGWREVEIGRGSSEQTCPVHALEQWLHFAKIDFGPVFVRTSRDGKK



ALEARLSDKHVARLIKRTVLDAGIRSDLPEKDRLALFSGHSLRAGLASSAEVDERYVQKQLGHASAEMTR



RYQRRRDRFRVNLTKAAGL





1595
WP_106165551.1



MASETERSTSARSDELDDAPLDERDQRNSNYIALPSHVAASGALDRLVDTARNYARAAASDNTLKAYAKD



WAHFARWCRMKGAEPLPPAPEMIGLYLADLASGSGPSPSRSASRSLSVSTIDRRLSGLGWNFAQRGFTLN



RKNRHIATVLAGIKRKHARPPVQKAAILAEDILAMVATLPFDLRGLRDRAILLLGYAGGLRRSEIVSLDV



HKDDTPDSSGWIEIMEKGALLTLNAKTGWREVEICRGSKDQTCPVHALEQWLRFAKIDFGPVFVGTSRDG



KRALETRLNDKHVARLIKRTVLDAGIRSDLPDSERLALFSGHSLRAGLASSAEVDERYVQKQLGHASAEM



TRRYQRSRDRFRVNLTKAAGL





1596
WP_008335838.1



MPSETEKSSSTPSDELNDARVDERAREESDDIALPSHVAGSGTLDRLVDTARDYARAAASDNTLKAYAKD



WAHFTHWSRMKGAEPLPPSTEMVGLYLADLASGSGLSPALSVSTIDRRLSGLAWNYAQRGFTLDRKNRHI



ATVLAGIKRKHARPPVQKEAILAEDILAMVATLPYDLRGLRDRAILLVGYAGGLRRSEIVSLDVHKDDTP



GSGGWIEIFDKGALLTLNAKTGWREVEIGRGSKEQTCPVHALKQWLDFAKIDFGPVFVGTSRDGKRTSET



RLNDKHVARLIKRTVLDAGIRSELPEQERMALFSGHSLRAGLASSAEVDERFVQKHLGHTSAEMTRRYQR



RRDRFRVNLTKAAGL





1597
WP_029069676.1



MVNPMESHLTSTHTGPLAFPSEHDVLRLVDHSRSDNTHRTYDVGVRSWARFASTYSYQAFPADPAEVALW



LSALFDEGKSTATAKTYLQSLRDHHRERGSSALNDIEGLRRVMQGIQRLNRERDARKARALSPTELMMLV



GQSRMSGTLRGTRDTAWWLLCTSLGLRYSDAAILERRDIRFVEEKGAVVTLRFSKTDQFARGTDLALARA



RFAHVDPVMALTDLLKALPEDPHTPVFQSVLKSNRWSGRSLTNTGLNKAIRRLADDTGINGERLTAHSAR



VTFATNAYAAGIDESAIAITGRWKSLSVQRSYRRVDDESLFDKRSTASYWLEETLSR





1598
WP_011886969.1



MAGSIEKRGKNSYRLVYSMGFDANGKRIKRTKTVHVKTKKEAEKELAKFIAEIEAGEYIKPAKMSLSDFI



QLWRDNYAEKQLSPKTFETYNNYINTRIIPQLGHLQLADIKPIHLIRFLNNLKKDETRLDGKKGSLSEAT



INYYRRILKNIFNRAVEWKFLQVNPAEKLPKEKEDIGKGDVYDENETRLLLKCLEKEDLKWRLYFTLALT



CGLRKGELLALQWEDIDLESGTLYVKHSLSYTKEKGFFLKEPKSKKSKREIAIPSFVLPLLKKYKNVRLR



EKEKLQDEWEGGNYNFVFATWNGKPHHHSYPRTKWERFLKRNNLRYIRPHDLRHTSATIMLNNGVNYKTV



SERLGHSSTRITFDFYVHRTKEADRSAAECFDNQFGA





1599
WP_047821448.1



MPLTDTRVRQLKHTGKPTGDKYTDSRSLHLLVKEAGKYWRMSYRFDGKQRTLALGVYPSVTLAKARQLRD



QARQLLSEGVDPVEAKRRDKVAKESAAKHSFEAVARDLLKLRACSLAPSTIRKNTAWLEKNVFPEMGMMP



ISKIEPRDVLFMLRKIEARGAIESTHKIRQLCGQVFRFAVASGLASRDVTFDLRDALPSVPEVHYAAITE



PKQAAALMRSISNYSGHPYSRAALRLAPLFFVRPGVLRAAEWSEFDLDRGVWFIPATKMKIRQPHIVPLA



RQAVGILRSMHQLTGHAKYVFPSIRAKDRCMSENTINAALRAMGYSKDMMTGHGFRAMARTILDEVLGER



VDLIEHQLAHAVRDANGRAYNRTTHLPARIEMMQRWADYLDQIALPQATS





1600
WP_047825138.1



MPNFTPIDLGPSAPEEITSSPSGRAHVKMYRLADDAITEATTDIELAREFIAHGELSAKSIQNSQKELYR



FLTWCREEARKTLVQLNVADLNAYKDFLKNPPPEWISRTKWPRSDPRYRPFTGPLSDPSRRQAMIAVKGL



MGFAEQTGYLRRNPGALVRNVRAPSASRITRYLTQNAIALALQTVSARPADTPAAFRRRARDRFLLIAFA



HTGARLNEIVSASMGSIYTEGNGRWWLDVLGKGNKPRRLPVPPDMLEAFQSYRQAFELLPQSSRTDRTPL



VLSSRSRELARITDEAAAEAIKAVFADAARAADAQGDQDTAATLRQASAHWLRHSMLTNHANNGVQLKTL



QDTAGHANIATTAAYLHKTDNERHDEIIRSANGNGIL





1601
WP_116546838.1



MALSQHQQALSQLQSFNALPLHLRSMATAHQQFTRYAEDSYSANTLRMVDFAEKHWAHWLAKQTDLPAEC



WHEQQLLLYPIWPDILCRYIDELSESMSLNSVQTYINLLNFKNKKLGFPSLLQHTHVQWAMRRATNRALD



AGEQIGQAQPFRLHDLELLLQIFADTDDPKLMRDLLLVWIAYESLLRESELVNIRCNDLLPGRQYSIRVR



KTKTTKTLEDNEVLLSEPCSQWLHRYMTHFGLPLSSSGYLFRRLKKNGELFHSEENCKKLSGRTVDDIFR



FFYWQIDPDARAELQNSIHAADASRYQTWTGHSARVGAAIDLFVYGASVHEIMRLGRWRNDQTVMRYIRR



VSMQELPMNRMVTERLKR





1602
WP_086904734.1



MSKSIIHYSTGGSAPSRSSGIASNFTSSDKQIDTPFFEESSLPQSVHSDFFNAAAETEYE1SINTRRVYR



TSFGLFEQYCATHQLQSLPADPRSIISFIGHQKELLQASSGTQLSKQTLTTRLAAIRYYHIQAGFPSPTE



HPLVIRVMRGLSRNHHRQVQDYDQQPIMYDEVELLIQAIEQQPHPLLRSRDKAIIQLGLQGGFRRSELAN



LKVQYLSFMRDKLKVRLPFSKSNQQGLREWKNLPDSEPFAAYNAVKDWLNESKITEGHLFRSISRDGKTL



RPYQVSDNVTSKSSLIRNSGFLNGDDIYRIIKQYCLKAGLPAQYYGAHSLRSGCVTQLHENNKDTLYIMA



RTGHTDPRSLRHYLKPKED





1603
WP_133181036.1



MSKSLNHYFAGDNTPTRISGMASTITPVYKQTDSPFFEESSLPQSVHSDFFNAAAETEYEISSNTRRVYR



TSFGLFEQYCATHQLQSLPADPRSIISFIGHQKELLQASNGTQLSKQTLITRLAAVRYYHIQAGFPSPTE



HPQVIRVMRGLSRNHHRQVQDYDQQPIMYDEVELLIQAIEQQPHPLLRTRDKAIIQLGLQGGFRRSELAN



LKVQYLSFMRDKLKVRLPFSKSNQQGLREWKNLPESEPFAAYNAIKDWLHESKITEGHLFRSISRDGKSL



RPYQVSDKVTSKSSLVRNSGFLNGDDIYRIIKQYCVKAGLPAQYYGAHSLRSGCVTQLHENNKDTFYIMA



RTGHTDPRSLRHYLKPKED





1604
WP_109285990.1



MSKSIIHYSTGGSAPSRSSGIASNFTASDKKMDTPFFEESSLPQSVHSDFFNAAAETEYEISINTRRVYR



TSFGLFEQYCVAHQLQSLPADPRSIISFIGHQKELLQASSGTQLSKQTLTTRLAAIRYYHIQAGFPSPTE



HPLVIRVMRGLSRNHHRQVQDYDQQPIMYDEVELLIQAIEQQPHPLLRSRDKAIIQLGLQGGFRRSELAN



LKVQYLSFMRDKLKVRLPFSKSNQQGLREWKNLPDSEPFAAYNAVKDWLKESQITDGHLFRSISRDGKTL



RPYQISDKVTCKSSLVRNSGFLNGDDIYRIIKQYCVKAGLPSQYYGAHSLRSGCVTQLHENNKDTLYIMA



RTGHTDPRSLRHYLKPKED





1605
WP_113940403.1



MSKMIRTNSNAQNNTNVTNERVTGSDHHNNNRAEQPRFFEETFLPQSVRSDYLSAAEETEYEISANTRRV



YNTSFSLFSRYCAEHQLQALPADPRSVISFIGYQKELIQESTGVQLSKQTLTTRLAAIRYHHIQAGFHSP



TEHPLVIRVMRGLSRNQSRHVSDYDQQPIMYDEVEMLIQAIDEQVQPLTRARDKAIIQLGLQGGFRRSEL



ADIKVQYVSFLRNKLKVRLPYSKSNQQGQREWKDLPDHEPFAALNAVKNWLSLANIEDGHLFRSLSRDGK



YLRPYQIVEHHSEANSSLHKNSGFLTGDDIYRIIKKYCTKAGLPAKFYGAHSLRSGCVTQLHENDKDHLY



IMARTGHTDPRSLRHYLKPRD





1606
ACK46586.1



MSKMIRTNSNAQNNTNISNERVIGSGHHHNNRAEQPRFFEESFLPQSVRSDYLSAAEETEYEISVNTRRV



YNTSFSVFSRYCAEHQLQALPADPRSVISFIGHQKELIQESTGVQLSKQTLTTRLAAIRYHHIQAGFHSP



TEHPLVIRVMRGLSRNQSRHVSDYDQQPIMYDEVEMLIQAIDEQVQPLTRARDKAIIQLGLQGGFRRSEL



ADIKVQYVSFLRNKLKVRLPYSKSNQQGQREWKDLPDHEPFAALDAVKNWLSLANIEDGHLFRSLSRDGK



KLRPYQMKNRHSGSNSLLNKNSGFLTGDDIYRIIKKYCTKAGLPAKFYGAHSLRSGCVTQLHENNKDHLY



IMARTGHTDPRSLRHYLKPRD





1607
AEG11408.1



MSKMIRTNSNAQNNANISNEIATGSGHHHNNRAEQPRFFEETFLPQSVRSDYLSAAEETEYEISVNTRRV



YNTSFNVFSRYCAEHQLQALPADPRSVISFIGHQKELIQESTGVQLSKQTLTTRLAAIRYHHIQAGFHSP



TEHPLVIRVMRGLSRNQSRHVSDYDQQPIMYDEVEMLIQAIDEQVQPLTRARDKAIIQLGLQGGFRRSEL



ADIKVHYVSFLRNKLKVRLPYSKSNQQGQREWKDLPDHEPFAALDAVKNWLSLANIEDGHLFRSLSRDGK



NLRPYQMKDRHSGSSSLLNKNSGFLTGDDIYRIIKKYCTKAGLPAKFYGAHSLRSGCVTQLHENNKDHLY



IMARTGHTDPRSLRHYLKPRD





1608
WP_081248413.1



MSRMIRTNINAQNNTNISNERVIGSGHHHNNRAEQPRFFEESFLPQSVRSDYLSAAEETEYEISVNTRRV



YNTSFSVFSRYCAEHQLQALPADPRSVISFIGHQRELIQESTGVQLSRQTLTTRLAAIRYHHIQAGFHSP



TEHPLVIRVMRGLSRNQSRHVSDYDQQPIMYDEVEMLIQAIDEQVQPLTRARDRAIIQLGLQGGFRRSEL



ADIRVQYVSFLRNRLRVRLPYSRSNQQGQREWRDLPDHEPFAALDAVRNWLSLANIEDGHLFRSLSRDGR



NLRPYQMRDRHSGSSSLLNRNSGFLTGDDIYRIIRRYCTRAGLPARFYGAHSLRSGCVTQLHENNRDHLY



IMSRTGHTDPRSLRHYLRPRD





1609
WP_012277158.1



MNSEQQCPRQVPSLNEQEHALGHFSGGLTNGHSTQHAPSQNPNERFFQEQQLPISILDDYRSAASETQYE



ISDNTRRVYRSSFAIFRNYCDQHNLSALPADPRSVISFIGHQREIYQERSGHQLSRQTINTRLAAIRFFH



IQAAHHSPTEHPLVIRVMRGLMRNQYRQISDYDQQPITYDELEMLLDVIERQPQQLTRLRDRAILQLGLQ



GGFRRSELAEIRVEHISFLRERLRVRVPYSRSNQQGQREWRDLPRQELFSAYEAVQQWLDATRIRQGHLF



RSLSRDGNSVRDYQITQARMGRGFLRGDDIYQMIRRYCDRAGLNSRFYGAHSLRSGCVTQLHENDRDHLY



IMARTGHTDPRSLRHYLRPRD





1610
WP_012586824.1



MASYSIQRRERADGTVRHRCLVRVRRNGRILYTEQRTFTRYAAAEAWGRDRVIDIESNGFATEDTAPITL



GSIISRALTDENIDSSIGRSRRFCLRLLSDCDIARLNLTDIRPHHIIDHCRLRRSAGTGPSTIAVDVSVI



RWLLRIARSNFGHEVSQISVIEAYDALYSQDLIARSGRRSRRPTTDEIERLRVGLAARADQRAAHIPYID



LLDFSILSCMRIGEVCRITWDDVDEAQRAVIVRDRRDPRRRAGNHMLVPLLGGAWEILQRQPRNDARVFP



YNERSVTAGFQRVRNELGIEDLRYHDLRREGASRLFERGYSIDEVAQVTGHRNINTLWQVYTELFPRRLH



DRDC





1611
WP_081729030.1



MTGSDHHNNNRAEQPHFFEETFLPQSVRSDYLSAAEETEYEISANTRRVYNTSFSLFSRYCAEHQLQALP



ADPRSVISFIGHQKELIQESTGVQLSKQTLTTRLAAIRYHHIQAGFHSPTEHPLVIRVMRGLSRNQSRHV



SDYDQQPIMYDEVELLIQAIDEQVQPLTRARDKAIIQLGLQGGFRRSELADIKVQYVSFLRNKLKVRLPY



SKSNQQGQREWKDLPDHEPFAALSAVKNWLSLANIEDGHLFRSLSRDGKYLRPYQIVEHHSEANSSLHKN



SGFLTGDDIYRIIKKYCTKAGLPAKFYGAHSLRSGCVTQLHENDKDHLYIMARTGHTDPRSLRHYLKPRD





1612
KZK70296.1



MIGSGHHHNNRAEQPRFFEESFLPQSVRSDYLSAAEETEYEISVNTRRVYNTSFSVFSRYCAEHQLQALP



ADPRSVISFIGHQKELIQESTGVQLSKQTLTTRLAAIRYHHIQAGFHSPTEHPLVIRVMRGLSRNQSRHV



SDYDQQPIMYDEVEMLIQAIDEQVQPLTRARDKAIIQLGLQGGFRRSELADIKVQYVSFLRNKLKVRLPY



SKSNQQGQREWKDLPDHEPFAALDAVKNWLSLANIEDGHLFRSLSRDGKNLRPYQMKDRHSGSSSLLNKN



SGFLTGDDIYRIIKKYCTKAGLPAKFYGAHSLRSGCVTQLHENNKDHLYIMSRTGHTDPRSLRHYLKPKD





1613
WP_012154534.1



MANSTKQLTATQVSNAKPKEKEYNLADGRGLSLRVKTGGSKFWLLNYTRPVTQKRANLGLGTYPDVPLAE



ARKRREAARELLAQGIDPQHHQQQQKAAIKTDAENTLKSVTNAWFEIKKQKVSENHGQKLYRRLELYLFP



ALGGTPISVLTAPQVIQVLKPAEAKGNIETCKRVISWLNEVMTFAVNTGLIHSNPLIGIAAAFGVPEKRQ



MPTLKPAELPEFIEALTYSSIKKTTRCLIEIQLHTMTRPAEAAKAKWTEIDFDKQLWTIPAERMKMKREH



IIPLTPQVISLLNRMHEISGDLEYIFPADRNKHHHTNTETANMAIKRMGYKGRLVAHGLRALASTTLNEQ



GFDAELIEVSLAHVDKNTVRAAYNRADYIERRRELMCWWSEHVQITPNQLNSVITQQLLK





1614
ABV87414.1



MLDLTSLLQIKAKDLKMNSEQNFPEIEGFSQIEDSDLIENAPQEVAIVDGESALTRFNSGLAESRTSQFD



HNEKFFKEQQLPISILDDYKSAAGETQYEISANTRRVYRSSFTIFKNYCDQHNLSPLPADPRSVISFIGH



QKELYQEKNGHQLSKQTINTRLAAIRFFHIQAALHSPTEHPLVIRVMRGLMRNQYRHVSDYDQQPITYDE



LEMLLAVIDQQPKELTRLRDKAILQLGLQGGFRRSELAEVRIEHISFLREKLKVRVPYSKSNQQGQREWK



DLPKQELFSAYDAVQQWLDATKIKQGHLFRSLSRDGNSVREYQITQEKIGKGFLKGDDIYQMIKKYCDKA



GLNSRFYGAHSLRSGCVTQLHENDKDHLYIMARTGHTDPRSLRHYLKPKD





1615
WP_011622713.1



MSKSIIHYSTGGNAPSRSSGIASNFTSSDKOMDTPFFEESSLPOSVHSDFFNAAAETEYEISINTRRVYR



TSFGLFEQYCTAHQLQSLPADPRSIISFIGHQKELLQASSGTQLSKQTLTTRLAAIRYYHIQAGFPSPTE



HPLVIRVMRGLSRNHHRQVQDYDQQPIMYDEVELLLQAIEQQPHPLLRSRDKAIIQLGLQGGFRRSELAN



LKVQYLSFMRDKLKVRLPFSKSNQQGLREWKNLPDSEPFAAYNAVKDWLNESKITEGHLFRSISRDGKTL



RPYQVSDNVTSKSSLIRNSGFLNGDDIYRIIKQYCLKAGLPAQYYGAHSLRSGCVTQLHENNRDTLYIMA



RTGHTDPRSLRHYLKPKED





1616
WP_051714141.1



MSKTNRFYPIDVNQQSVGVNTHLTKKLTQADNAFFEESALPQSVHNDFYNAAAETEFEISSNTRRVYQTS



FSLFAQYCLEHRLQSLPTDPRSVISFIGHQKELLMADTGMQLSKQTLTTRLAAIRYYHIQAGFPSPTEHP



LVLRVMRGLSRNHNRRVQDYDQQPIMYDDVELLLQAVEQQPHPLLRSRDKAIIQLGLQGGFRRSELANLK



VQYLSFMRDKLKVRLPFSKSNQQGLREWKNLPDSEPFAAYHAVKAWLHESQISDGHLFRSISRDGKTLRP



YQVKDNNKSNTTFNRNSGFLNGDDIYRIIKQYCVKAGLPAQYYGAHSLRSGCVTQLHENNKDTLYIMART



GHTDPRSLRHYLKPKED





1617
WP_077751411.1



MNKLSINQNHRQQVTGDKSFFEEQELPISIFDDFKSAASETEYEVAPNTRRVYRSSFNIFTQYCQHHGLN



NLPADPRSVISFIGHQKEQVHKKTGAQFSKQTITTRLAAIRFYHIQAGFHSPTEHPLVIRVMRGLSRNKH



RVITDYDQQPIMYDELELLLQTIDKQGQELTKARDKAIIQLGFQGGFRRSELAEIQVKHINFLRNKLKVR



LPYSKSNQQGHREWKDLPGSELFSAFGAVKHWLDVSQLSQGHLFRSLSRDGQSLRPYSVVNQANLNTDEN



PPQLNRGFLRGDDIYQMIKKYCSKAGLSPEFYGAHSLRSGCVTQLHENDKDHLYIMARTGHTDPRSLRHY



LKPKD





1618
WP_013051410.1



MNKLSINQFNRPAITSDKSFFQEQELPISILDDFKSAASETEYEVADNTRRVYRSSFNIFTEYCQHHGLN



HLPADPRSVISFIGHQKEQVHHRTGMQFSKQTITTRLAAIRFYHIQAGFHSPSEHPLVIRVMRGLSRNKH



RLTSDYDQQPIMYEELELLLQTIDKQEQELTRARDKAIIQLGFQGGFRRSELAEIQVNHVNFLRNKLKVR



LAYSKSNQQGHKEWKDLPESEQFSAFSAVRHWLEVSQLTQGHLFRSLTRDGQRLRPYSVASRVNLNSHDN



LPQVNRGFLRGDDIYQMIKKYCRKAGLSPEFYGAHSLRSGCVTQLHENDKDHLYIMARTGHTDPRSLRHY



LKPKD





1619
WP_115334556.1



MSKMIRTNSNAQNNANISNERATGSDHHHNNRVEQPRFFEETFLPQSVRSDYLSAAEETEYEISVNTRRV



YNTSFNVFSRYCAEHQLQALPADPRSVISFIGHQKELIQESTGVQLSKQTLTTRLAAIRYHHIQAGFHSP



TEHPLVIRVMRGLSRNQSRHVSDYDQQPIMYDEVEMLIQAIDEQVQPLTRARDKAIIQLGLQGGFRRSEL



ADIKVQYVSFLRNKLKVRLPYSKSNQQGQREWKDLPDHEPFAALDAVKNWLSLANIEDGHLFRSLSRDGK



NLRPYQMKDRHCGSSSLLNKNSGFLTGDDIYRIIKKYCTKAGLPAKFYGAHSLRSGCVTQLHENNKDHLY



IMARTGHTDPRSLRHYLKPKD





1620
WP_126491884.1



MSKMIRTNSNAQNNANISNERVKESDHHHNNRAEQPRFFEESFLPQSVRSDYLSAAEETEYEISVNTRRV



YNTSFSVFSRYCAEHQLQALPADPRSVISFIGHQKELIQESTGVQLSKQTLTTRLAAIRYHHIQAGFHSP



TEHPLVIRVMRGLSRNQSRHVSDYDQQPIMYDEVEMLIQAIDEQMQPLTRARDKAIIQLGLQGGFRRSEL



ADIKVQYVSFLRNKLKVRLPYSKSNQQGQREWKDLPDHEPFAALDAVKNWLSLANIEDGHLFRSLSRDGK



NLRPYQMKDRHSGSSSLLNKNSGFLTGDDIYRIIKKYCTKAGLPAKFYGAHSLRSGCVTQLHENNKDHLY



IMARTGHTDPRSLRHYLKPKD





1621
WP_020912617.1



MSRKHISPISNKVSSTSSNNDFYQEAELPISMLNDFESAAKETRYEISNNTRRVYRSSFGIFKAYCDAHG



RSSIPADPRTVISFIGHQKDFYQAKSGHQLSTQTINSRLAAIRFYHIQSGTPSPTEHPLVTRVMRGLMRN



HTRIVSDYDQQPIMYEELEILIQAIENQSQPLTQKRDKAIILLGFQGGFRRSELANIKVNHLSFLRDKLK



VRLPYSKSNQQGQREWKVLPKGETFSAYEPIKDWLNAAKIKEGHLFRSLTRDGRYIRDYQVLDANSGKGF



LRGDDIYQLIKRYCNKADLDPKFYGAHSLRSGCVTQLHENNKDHLYIMGRTGHTDPRSLNHYLKPND





1622
WP_088211152.1



MSKSIIHYSTGGSAPSRSSGITSNITSSDKQMDPPFFEESSLPQSVHSDFFNAAAETEYEISINTRRVYR



TSFGLFEQYCATHQLQSLPADPRSIISFIGHQKELLQASNGTQLSKQTLTTRLAAIRYYHIQAGFPSPTE



HPLVIRVMRGLSRNHHRQVQDYDQQPIMYDEVELLIQAIEQQPHPLLRLRDKAIIQLGLQGGFRRSELAN



LKVQYLSFMRDKLKVRLPFSKSNQQGLREWKNLPDSEPFAAYNAVKDWLHESKITEGHLFRSISRDGKTL



RPYQVSDKVTSKSSLVRNSGFLNGDDIYRIIKQYCLKAGLPAQYYGAHSLRSGCVTQLHENNKDTLYIMA



RTGHTDPRSLRHYLKPKED





1623
WP_011626197.1



MSKSIIHYSTGGSAPSRSSGIASNITASDKKMDTPFFEESSLPQSVHSDFFNAAAETEYEISINTRRVYR



TSFGLFEQYCATHQLQSLPADPRSIISFIGHQKELLQASSGTQLSKQTLTTRLAAIRYYHIQAGFPSPTE



HPLVIRVMRGLSRNHHRQVQDYDQQPIMYDEVELLIQAIEQQPHPLLRLRDKAIIQLGLQGGFRRSELAN



LKVQYLSFMRDKLKVRLPFSKSNQQGLREWKNLPDSEPFAAYNAVKDWLKESQITDGHLFRSISRDGKTL



RPYQISDNVTCKSSLVRNSGFLNGDDIYRIIKQYCVKAGLPSQYYGAHSLRSGCVTQLHENNKDTLYIMA



RTGHTDPRSLRHYLKPKED





1624
WP_011072365.1



MSKSIQIYTADDSHSHQAVGISANLTKPFTQGDKTFFEESSLPQSVHADFYNAASETEYEISNNTRRVYR



ISFSFFEQYCLEHNLQSLPADPRSIISFIGHQKELLQASTGMQLSKQTLTTRIAAIRFYHIQAGFPTPTE



HPQVIRVMRGLSRNHHRLVQDYDQQPIMYDEVELLIQAVDQQPHPLLRLRDKAIIQLGLQGGFRRSELAN



LKVHYLSFMRDKLKVRLPFSKSNQQGLREWKSLPDSEPFAAYHAVKSWLNESQITDGHLFRSISRDGKTL



RPYHVNDNSKPKSTFSRNSGFLNGDDIYRIIKQYCLKAGLPAQYYGAHSLRSGCVTQLHENNKDILYIMA



RTGHTDPRSLRHYLKPKED





1625
WP_069455445.1



MSKTNRFYPIDVNQQPVGVNTHLTKNLTQAGNAFFEESALPQSVHNDFYNAAAETEFEISSNTRRVYQTS



FSLFAQYCLEHRLQSLPTDPRSVISFIGHQKELLMADTGMQLSKQTLTTRLAAIRYYHIQAGFPSPTEHP



LVLRVMRGLSRNHNRRVQDYDQQPIMYDEVELLLQAVEQQPHPLLRSRDKAIIQLGLQGGFRRSELANLK



VQYLSFMRDKLKVRLPFSKSNQQGLREWKNLPDSEPFAAYHAVKAWLHESQISDGHLFRSISRDGKTLRP



YQVKDNNKSNTTFNRNSGFLNGDDIYRIIKQYCVKAGLPAQYYGAHSLRSGCVTQLHENNKDTLYIMART



GHTDPRSLRHYLKPKED





1626
WP_050991348.1



MSKTNRFYPIDVNQQPVGVNTHLTKKLTQADNAFFEESALPQSVHNDFYNAAAETEFEISSNTRRVYQTS



FSLFAQYCLEHRLQSLPTDPRSVISFIGHQKELLMADTGMQLSKQTLTTRLAAIRYYHIQAGFPSPTEHP



LVLRVMRGLSRNHNRRVQDYDQQPIMYDEVELLLQAVEQQPHPLLRSRDKAIIQLGLQGGFRRSELANLK



VQYLSFMRDKLKVRLPFSKSNQQGLREWKNLPDSEPFAAYHAVKAWLNESQISDGHLFRSISRDGKTLRP



YQVKDNNKSNTTFNRNSGFLNGDDIYRIIKQYCVKAGLPAQYYGAHSLRSGCVTQLHENNKDTLYIMART



GHTDPRSLRHYLKPKED





1627
WP_055647363.1



MSKTNRFYPIDVNQQPVGVNTHLTKKLTQADNAFFEESALPQSVHNDFYNAAAETEFEISSNTRRVYQTS



FSLFAQYCLEHRLQSLPTDPRSVISFIGHQKELLMADTGMQLSKQTLTTRLAAIRYYHIQAGFPSPTEHP



LVLRVMRGLSRNHNRRVQDYDQQPIMYDEVELLLQAVEQQPHPLLRSRDKAIIQLGLQGGFRRSELANLK



VQYLSFMRDKLKVRLPFSKSNQQGLREWKNLPDSEPFAAYHAVKAWLHESQISDGHLFRSISRDGKTLRP



YQVKDNNKSNTTFNRNSGFLNGDDIYRIIKQYCVKAGLPAQYYGAHSLRSGCVTQLHENNKDTLYIMART



GHTDPRSLRHYLKPKED





1628
WP_112352796.1



MNKLSINQYHPRQVTSDKSFFEETELPISILDDFKSAASETEYELAPNTRRVYRASFNIFTQYCQHHGLS



NLPADPRAVISFIGHQKEQVQQKTGMQFSKQTITTRLAAIRFYHIQAGFHSPTEHPLVIRVMRGLSRNKH



RLTKDYDQQPIMYDELELLLQTIDKQGQELTRARDKAIIQLGFQGGFRRSELADIQVNHINFMRKKLKVR



LAYSKSNQQGHKEWKDLPESELFSAFSAVKHWLQVSQLTQGHLFRSLSRDGQRLRPYSVANKSSVDSYAN



PPQVNRGFLRGDDIYQMIKKYCAKAGLSPEFYGAHSLRSGCVTQLHENDKDHLYIMARTGHTDPRSLRHY



LKPKD





1629
WP_105252541.1



MSKMIRTNSNAQNNTNVTNERVTGSDHHNNNRAEQPRFFEETFLPQSVRSDYLSAAEETEYEISANTRRV



YNTSFSLFSRYCAEHQLQALPADPRSVISFIGHQKELIQESTGVQLSKQTLTTRLAAIRYHHIQAGFHSP



TEHPLVIRVMRGLSRNQSRHVSDYDQQPIMYDEVEMLIQAIDEQVQPLTRARDKAIIQLGLQGGFRRSEL



ADIKVQYVSFLRNKLKVRLPYSKSNQQGQREWKDLPDHEPFAALNAVKNWLSLANIEDGHLFRSLSRDGK



YLRPYQIVEHHSEANSSLHKNSGFLTGDDIYRIIKKYCTKAGLPAKFYGAHSLRSGCVTQLHENDKDHLY



IMARTGHTDPRSLRHYLKPRD





1630
WP_012089273.1



MSKMIRTNSNAQNNANISNERATGSDHHHNNRAEQPRFFEESFLPQSVRSDYLSAAEETEYEISVNTRRV



YNTSFSVFSRYCAEHQLQALPADPRSVISFIGHQKELIQESTGVQLSKQTLTTRLAAIRYHHIQAGFHSP



TEHPLVIRVMRGLSRNQSRHVSDYDQQPIMYDEVEMLIQAIDEQVQPLTRARDKAIIQLGLQGGFRRSEL



ADIKVQYVSFLRNKLKVRLPYSKSNQQGQREWKDLPDHEPFAALDVVKNWLSLANIEDGHLFRSLSRDGK



NLRPYQMKDRHCGSSSLLNKNSGFLTGDDIYRIIKKYCTKAGLPAKFYGAHSLRSGCVTQLHENNKDHLY



IMARTGHTDPRSLRHYLKPKD





1631
WP_071939473.1



MSKMIRTNSNAQNNTNVSNERANESGHHHNNRAEQTRFFEETFLPQSVRSDYLSAAEETEYEISVNTRRV



YNTSFSVFSRYCAEHQLQALPADPRSVISFIGHQKELIQESTGVQLSKQTLTTRLAAIRYHHIQAGFHSP



TEHPLVIRVMRGLSRNQSRHVSDYDQQPIMYDEVEMLIQAIDEQVQPLTRARDKAIIQLGLQGGFRRSEL



ADIKVQYVSFLRNKLKVRLPYSKSNQQGQREWKDLPDHEPFAALDAVKNWLSLANIEDGHLFRSLSRDGK



NLRPYQMKDRHSGSSSLLNKNSGFLTGDDIYRIIKKYCTKAGLPAKFYGAHSLRSGCVTQLHENNKDHLY



IMARTGHTDPRSLRHYLKPKD





1632
WP_014358005.1



MSKMIRTNSNAQNNTNISNERATGSGHHHNNRAEQPRFFEETFLPQSVRNDYLSAAEETEYEISVNTRRV



YNTSFSVFSRYCAEHQLQALPADPRSVISFIGHQKELIQESTGVQLSKQTLTTRLAAIRYHHIQAGFHSP



TEHPLVIRVMRGLSRNQSRHVSDYDQQPIMYDEVEMLIQAIDEQVQPLTRARDKAIIQLGLQGGFRRSEL



ADIKVQYVSFLRNKLKVRLPYSKSNQQGQREWKDLPDHEPFAALDAVKNWLSLANIEDGHLFRSLSRDGK



NLRPYQMKDRHSGSSSLLNKNSGFLTGDDIYRIIKKYCTKAGLPAKFYGAHSLRSGCVTQLHENNKDHLY



IMARTGHTDPRSLRHYLKPKD





1633
WP_106650561.1



MSKIIRTNTNAQNNTYMSNERATESEHHQNNRAEQPRFFEESFLPQSVRSDYLSAAEETEYEISVNTRRV



YNTSFSVFSRYCAEHQLQVLPADPRSVISFIGHQKELIQESTGVQLSKQTLTTRLAAIRYHHIQAGFHSP



TEHPLVIRVMRGLSRNQSRYVSDYDQQPIMYDEVEMLIQAIDEQEQPLTRARDKAIIQLGLQGGFRRSEL



ADIKVQYVSFLRNKLKVRLPYSKSNQQGLREWKDLPDHEPFAALDAVKNWLSLANIEDGHLFRSLSRDGK



NLRPYQMKDRHSGASSLLNKNSGFLTGDDIYRIIKKYCTKAGLPARFYGAHSLRSGCVTQLHENNKDHLY



IMARTGHTDPRSLRHYLKPKD





1634
WP_076411519.1



MSKLTQHLPNSFVSNNGHQQKLTEDNLFFEEQALPISILDDFKSAASETQYEISYNTRRAYQTSFNIFSR



YCEQHGLNTLPADPRSVISFIGQQKELINQKTGAQLSKQTLTTRLAAIRFFHIQAGFHSPTEHPLVLRVM



RGLSRNQLRVTSDYDQQPILYDELELLIQTIDNQKQTLTKARDKAIIQLGFQGGFRRSELASIQVSHVNF



LRNKLKVRLAYSKSNQQGHKEWKDLPEAEPFSAMSAVKLWLDESQIKQGHLFRSLSRDGESLRPYFQAKS



DLDQDAGVQKNSGFLRGDDIYQIIRKYCHKAGLSSDLYGAHSLRSGCVTQLHENDKDHLYIMGRTGHTDP



RSLRHYLKPKD





1635
WP_012325003.1



MNKMTPFQTGSLLSRPANTEEKQFYEERELPLSILDDYKSAASETEYEISANTRRAYTSSFSLFSNYCSE



HRLNTLPADPRTVISFIGYQKELIQSRSGAQLSRQTLTSRLAAIRYFHIQAGYHSPTEHPLVIRVMRGLS



RNKQRTVSDYDQQPIMYDELEMLLNVIELQPHAITRARDKAIIQLGFQGGFRRSELADIRVNHLSFLRDK



LKVRLPYSKSNQQGQREWKNLPQSEPFAAFDAVKHWLTVSKIQDGHLFRSLTRDGRQVRDYSVATQGIES



KKRNSGFLRGDDIYQMIRKYCTKAGLSHEFYGAHSLRSGCVTQLHENDKDHLYIMARTGHTDPRSLKHYL



KPKD





1636
WP_101090209.1



MSGKRISPISNKALKTVSDDGFYQEHELPLSILNDFESAAKETRYEISHNTRRVYQSSFGIFVTYCESHG



LSSLPADPRSVISFIGHQKDIYQANSGHQLSTQTINSRLAAIRFFHIQSGSPSPTEHPLVIRVMRGLMRN



QNRTVADYDQQPIMYDELELLIQTIDERNQNLTKKRDKAILQLGFQGGFRRSELANIKVNHLSFLRDKLK



VRLPYSKSNQQGQREWKVLPKEEPFSAFDAVKEWLSAAEIKEGHLFRSLTRDGNQIRDYQITDTNLGKGF



LRGDDIYQLIKRYCNKAGLDPQYYGAHSLRSGCVTQLHENKKDHLYIMGRTGHTDPRSLNHYLKPNE





1637
WP_115136967.1



MNNQVPEQYHQESNLPSSILDDFHNAAAETEFEVSANTRRNYATSFSIFQDYCQHHGMSALPADPRAVIS



FIGHQKDLYLESGVQLSKATLISRLAAIRFYHLQAGFRTPTDHPMLLRIMRGISRNQYRQQAHYDQQPIM



YTELSRLLSAVDSQQSALLKMRDKALITLGFQGGFRRSELASLQTQHLTFLHDRLRVRLAFSKSNQQGGK



EWKDLPYSEQFAAADYVRRWLEISQLSSGHLFRSISRCGKFTRPYERKMPGSSGRNSGFLNGDDVYRTVR



KYCKIAGLGESWFGAHSLRSGCVTQLHENDKDTLYIMGRTGHTDPRSLRHYLKPK





1638
WP_064791349.1



MNKMTPFQTGSLLSRPANTEEKQFYEERELPLSILDDYKSAASETEYEISANTRRAYTSSFSLFSNYCSE



HRLNTLPADPRTVISFIGYQKELIQSRSGAQLSRQTLTSRLAAIRYFHIQAGYHSPTEHPLVIRVMRGLS



RNKQRTVSDYDQQPIMYDELEMLLNVIEQQPHAITRARDKAIIQLGFQGGFRRSELADIRVNHLSFLRDK



LKVRLPYSKSNQQGQREWKNLPQSEPFAAFDAVKHWLTVSKIQDGHLFRSLTRDGRQVRDYSVATQGIES



KKRNSGFLRGDDIYQMIRKYCTKAGLSHEFYGAHSLRSGCVTQLHENDKDHLYIMARTGHTDPRSLKHYL



KPKD





1639
WP_012142588.1



MSKSACHTINSILTPNTSIVPSGTNGNSNASDEKFFEETQLPLSILDDYKSAASETEYEISENTRRVYTS



SYAIFNRYCLEHGLSPLPADPRSVISFIGHQKESIQQSSGAQLSRQTLTSRLAAIRYHHIQAGFHSPTEH



PLVIRVMRGLSRNKYRKVADYDQQPIMYDELEMLIDVINQQPQPMTRARDKAIIQLGFQGGFRRSELADI



QVNHLSFLRNKLKVRLPYSKSNQQGQREWKDLPQTEPFAAFDAVKEWIEVSKIKQGHLFRSISRDGSQIR



PYSVSDTTNRKINQTSMDNEELPLSRSNRNCGFLRGDDIYQMIKKYCARSGLSPEFYGAHSLRSGCVTQL



HENDKDHLYIMARTGHTDPRSLRHYLKPKD





1640
WP_126520563.1



MVPSGTNGNRNASDEQFFEETQLPLSILDDYKSAASETEYEISENTRRVYTSSYAIFNRYCLEHGLSPLP



ADPRSVISFIGHQKESIQQSSGAQLSRQTLTSRLAAIRYHHIQAGFHSPTEHPLVIRVMRGLSRNKYRKV



ADYDQQPIMYDELEMLIDVINQQPQPMTRARDKAIIQLGFQGGFRRSELADIQVNHLSFLRNKLKVRLPY



SKSNQQGQREWKDLPQTEPFAAFDAVKEWIEVSKIKQGHLFRSISRDGSQIRPYSVSDITNRKINQTSMD



AKEHSLPRLNRNSGFLRGDDIYQMIKKYCARSGLSPEFYGAHSLRSGCVTQLHENDKDHLYIMARTGHTD



PRSLRHYLKPKD





1641
WP_108946565.1



MKGQIQFNQALVSQQHVDNDSSEKFFQEQQLPISILDDFKSAASETQYEISANTRRVYQSSFAIFKSYCE



LHNLSALPADPRSVISFIGHQKEVYQEKSGHQLSKQTINTRLAAIRFFHIQAAHHSPTEHPLVIRVMRGL



MRNQYRHTSDYDQQPITYDELEMLLAVIDQQPQQLTRLRDKAILQLGLQGGFRRSELAEVKIEHISFLRD



KLKVRVPYSKSNQQGQREWKDLPKHEDFSAYDAVQHWLDATKLKQGHLFRSLSRDGNSIRDYQITQGKNG



KGFLKGDDIYQMIKKYCDKAGLNSRFFGAHSLRSGCVTQLHENDKDHLYIMARTGHTDPRSLRHYLKPKD



GYS





1642
WP_037411215.1



MKGQIQFNQALVSQQQVDSDSSEKFFQEQQLPISILDDFKSAASETQYEISANTRRVYQSSFAIFKSYCE



LHNLSALPADPRSVISFIGHQKEVYQEKSGHQLSKQTINTRLAAIRFFHIQAAHHSPTEHPLVIRVMRGL



MRNQYRHTSDYDQQPITYDELEMLLAVIDQQPQQLTRLRDKAILQLGLQGGFRRSELAEVKIEHISFLRD



KLKVRVPYSKSNQQGQREWKDLPKHEDFSAYDAVQHWLDATKLKQGHLFRSLSRDGNSIRDYQITQGKNG



KGFLKGDDIYQMIKKYCDKAGLNSRFFGAHSLRSGCVTQLHENDKDHLYIMARTGHTDPRSLRHYLKPKD





1643
01040422.1



MDKYISRFTNYLKVEKNYSGHTVKNYLVDLKAFKGFAQDTDIAKIDHLFLRRYLASMRSSGYSKRTIARK



LATLRSFFRFLCTDGYLKDNPISGISTPKLDKKLPIFLDVDTVFRLLESPGRDISGLRDRAIMETLYSTG



IRVSELAGLKMENVDFIGEVIKVFGKGRKERMIPIGNKAVNSIRAYMDERGRLGIDRKELFLNKSKRPLS



IRGIRRVIDKHIKNTSAKEHVSPHTLRHSFATHLLDRGADLRSIQELLGHMNLSTTQIYTHVTTERLKSV



YDKTHPRA





1644
WP_047914882.1



MNIEKIARKGKPTVEKRTKQDGSISYRYTGYYLGIDEVTRKKVNATITGQTLKELDRNMIKARLDFERNG



HTKKEQLQITLFSELAEEWFVSYKLITSSENTNNRVRGYLDTYIIPRFGDYLPDKIKPIDVQKWVNECAA



KARQVAAEGRRAKKGEAKDFGAALYKLRDIFDYGITNFGLKKNPATTVQVPPKPKENKVKVKVLHDDELK



IWLKHLSSLPNNQANRRFKLICETLLASGIRINELLALTIDDLNFETSELDINKTLMWKAADKKTGIKGK



VICKPSPKSDAGCRKVDVPPKILERLKAWHDEVSERFEKIGLDKPSLIFPTVYGAYMCDRNERTTLKKQL



TACGLPLYGFHIFRHTHASLLLNAGTNWKELQVRMGHKSIATTMDLYAELAPKKKAEAVNIYLDKIDELT



A





1645
WP_010729268.1



MPTKLSNGKYKTNLRYPKRFKEITGIASEKYQKTFPNRQLAIKAENDMKKKIEKVLREENANSLELKGKI



TFKKFYESKWLPRYELGQTIRSNRPPSDITISNTKDIFRLHILPMFGEYAMNYLNINTEIISDELTKKSK



EYANIKIIKGYVRSMFDIAEILNYIEFNRTTKIIQSITAPKKNALEEKRIQEGKQALSSKELTNWIEAVN



DDFNNHLLTFHDYTLFMITLYLGDRKSETYALQWKYIDFEKQTVRLKHTLDKYQRKKFTKGRKDTVIQVP



EVVMTLLSEWKSVQADQLLKLKIKQTLDQYLFTYTKPSGEVNCPVHADYLNYRINSIKRRHPDLVHLSPH



KLRHTYATIARQGGADMNQISNALTHSDISTTKIYVNTPDIVDKAVFEAFQRGLNKCD





1646
WP_003171984.1



MRSEDIPLFLKTSYQYNYIYYIFFKALLNTGMRKGEAAALQWKDINLKEHTIIISKTLDFTAKTKEELFG



dtktftskrtimipkslvdellahkkwqnanklvlqdayeheldlvfsrvdgkflpkstlfnafsrilkk



ANLPRLEIHSLRHTHAVLLLESGASMKYIQDRLGHKSIEITSNVYSHISDKINKDSISGFEAYMNNVLG





1647
WP_033660184.1



MRSEDIPLFLKTSYQYNYIYYIFFKALLNTGMRKGEAATLQWKDINLKEHTITISKTLDFTAKTKEELFG



dtktftskrtimipktlvdellahkkwqnanklvlqdayeheldlvfsrvdgnflpkstlfnafsrilkk



ANLPRLEIHSLRHTHAVLLLESGASMKYIQDRLGHKSIEITANVYSHISDKINKDSISGFEAYMNNVLG





1648
WP_002076880.1



MCSSYQRAPDLVKTSYQYNYIYYIFFKALLNTGMRKGEAAALQWKDINLKEHTITISKTLDFTAKTKEEL



FGDTKTFTSKRTIMIPKSLVDELLEHKKWQNANKLVLQDAYEHELDLVFSRVDGNFLPKSTLFNAFSRIL



KKANLPRLEIHSLRHTHAVLLLESGASMKYIQDRLGHKSIEITANVYSHISDKINKDSISGFEAYMNNVL



G





1649
WP_016115818.1



MASFRKYQTKDGAKWLYKIYTTIDPKTGKKKQTTKRGFKTKKEAQLHAAKAETELSNGTFIEDKNVMIST



FLNDWLITYKKGKVRNHTYNLHKTAINKHIVPFFGSYKVFDITPSLCQKFVNHLLEEGYSENSVKNYTAP



LKGALLKAVDLQLIQQTPFRGIVIAKSDTEDKKIKHLEGQEVNTFVQKLKDTEPHYFSLFFTLLHTGIRK



GEALALRWDDIDLEEGTISIRHTFTYDYKNLDNLFAKPKTKASYRTIILADFLIQILKNHKLEQNKCKLK



LGGLYHDLSLVFARENGLPYPKSTLQRAMTRILKKANVTNITIHGLRHTHAVLLLDAGYSMKEVQERLGH



DSIQITSDIYAHISKEMNKKSLNKYEAFAKRNLL





1650
WP_011736163.1



MPKRIAPLSDLQVRNAKPKEKQVTLFDGGGLYLLITPTGGKLWRLKYSLFGKEKLLALGTYPEISLADAR



QRREDARKQVANGIDPGEVKKAQKVSSGEGDENSFEVIAREWHGKFLLNKSESYRDKMLSNFERDVFPWI



GRVAVKNLKAPELLSALRRIEGRGALETAHRTRSACSQVLRYAVATGRAERDCASDLIGALPPYKKGHRA



ALTDPKEVAPLLRAIDDYQGTFPVKCALKLAPLLFVRPGELRKAEWSEVDFKATEWRIPGDKMKMKNDHI



VPLASQAVEILKELYPLTGHSKFLFPSPRSPLRPMSDNAILSALRRMGFEKDEMSGHGFRAMARTILDEV



LHVRPDFIEHQLAHAVRDPNGRAYNRTAHLAERKKMMQAWADYLDDLKTRNGI





1651
WP_044402340.1



MAKVTVRKETGKLVMDFTYCNVRCREQTALPDTLQNRKRVEAVLEKIKKALKNGTFQYRDYFPESALASR



FDQATTVDAGKAMQSPVNSPSPLFQDFATQWFKEHEIEWRRSHIRSLRSTLDGRLIPHFGQKVVSSITKS



DILAYRATLAKVKGRGDKEGLSPKRINEIIGTLCQIIDEAADRFEFTTPTTNIKRLRVRKVDVDPFSLQD



VQSILATVRADYRNYFTVRFFTGMRTGEVHGLKWRYVDFERRLIRVRETVVLGEDEYTKTDGSQRDIQMS



QPVVEALTKQYEVTGKLSDYVFCNLMGAPLDNKNFTDRVWYPLLRHLGLTERRPYQMRHTAATLWLASGE



APEWIARQLGHTSTEMLFRVYSRYVPNLTRQDGSAMERLLASRLATGKVLRMDRAHLQQVGDSNLFAEAG



GSERATMPVPKPRGVAVGALERARTNWSRTSQDITLPERHAGEDPQPPPPGAMRTHVRRLNPLHA





1652
WP_008400148.1



MAKGSVRKKGKKWYYRFYVEDASGNLVQKECVGTESKSETEKLLRQAMDDYEKKKFVAKAENLTVGQLLD



VWAEEELKTGTLSNGTVENYLGTIRNIKKHPLAERKLKNVTSEHLQSFFDLLSFGGVHPDGKERKGYSKD



YIHSFSAVMQQSFRFAVFPKQYITFNPMQYIKLRYQTDEVDLFSDEDMDGNIQPISREDYERLLAYLQKK



NPAAILPIQIAYYAGLRIGEACGLAWQDVNLEEQCLTIRRSIRYDGSKRKYIIGPTKRKKVRIVDFGDTL



VEIFRNARKEQLKNRMQYGELYHTNYYKEVKEKNRVYYEYYCLDRTEEVPADYKEISFVCLRPDGCLELP



TTLGTVCRKVAKTLEGFEGFHFHQLRHTYTSNLLANGAAPKDVQELLGHSDVSTTMNVYAHSTRDAKRKS



VRLLDKVVGND





1653
WP_056871537.1



MSAYINSKISNWEMFMLHQQSLGKPTTLNIAIGYFKGNAEVTLFGFWEEQLRLWEYEKKPATIKSYKSTL



NILRHFNNKLNFGDLTYDCIQKFDLYLRKERNNATNGCFVKHKCLKHMIKESISKGFMDKSPYEHFKVRS



TKGTRMFLTIDEVNAIDDLQISKDNTFLQKSKDLFLFSCFTGLRYSDVVNLTWGNIKQNPDRIEIKIIKT



EKPLLVPLISKAKDILNKYSKLTIKTDSLKALPQQANQVVNRNLKEIMMLAGIKKSISFHCARHSFASNL



VEMNTPILYVKDLLGHQKIEQTMIYAKSIVGNLFDSMNNLNEKYHHVNKHVG





1654
WP_002990881.1



MSTKIWQNTLQSYIHYLKLERGLAENSIESYELDLLKFVQFLSHSEIEVAPKNVTPAHVNEFVYQLSTVL



APTSQARIISGLKSFFTFLLVDGQIEKAPTDLLEIPKLGRKLPEVLAMEEIDALLATLDLSTNEGYRNKV



MLELLYSCGLRVSELVNLRLSDLFFEEGFIRVIGKGSKHRFVPIDPDTMELIIMYKQSIRNHMQVKKEDT



DIVFLNRRGGRLTRAMIFTIVKQAAQEANIQKNVSPHSFRHSFATYLLENGADIRMIQLMLGHESILTTE



IYTHISREKLKGVMDRYHPRSRQ





1655
WP_041890631.1



MNITLKQRKLPSGRISLLIEYTKGVEVTSTGKKKYIREFENLKLFLHGAPNSPKERKENKEALQMAENIL



AIRQSENLRGKYGIKNKHKGQRCFLDFFLEKTEEKYESPKNYGNWTASFLHLKRCISPTLTFDEVDDDFL



KRVREYIDKKALTKSKLPLSLNSKYSYLNKFRAALRLAFEEGYLTINYAQKVKSFKQAESQREYLTFNEV



QRLVETDCKYEVLKRAFLFSCLTGLRWSDINKLVWSEVRDEDDVCRVIYRQEKTEGVEYLYISKQARELL



GERESLNQLVFTNLKYSAIYNNEIVRWCNRAGIHKHITFHSARHTNAVLLLENGADIYTVSKRLGHREIR



TTQIYAKIIDSKMKEASELIPELKFGE





1656
WP_011279365.1



MSRDRAVQQRQPKALAVDDEPAYMTEFRQAMLARGLATRTRNAYVRDLRSCELTNHAALTRWQPEDVLCC



LSILTQDGKTPRTQARMLSSLRQFYLWMIASNLREDNPCERIKSPKLGRPLPKDLAEADVDNLLAAPDSS



TALGLRDKAMLEVLYACGLRVSELVNLSLEQVNLNSGWLQITGKGNKTRLVPLGEYASDALEDYLTHGRG



DLIAHLKAGNCQAVFLTAQGGYMTRQNFWYLLKKYAKVASIDKALSPHTLRHAFATHLLNHGADLRSVQL



LLGHSNLSTTQIYTHVATARLQKLHAEHHPRG





1657
YP_O09221649.1



MNAFIRKRNKNYVVYLEFRDDESGKRKQKNMGAFDKKRDANKRLAEVKDSIYKDSFLVPNEITLAGFLLD



FLEKYKDNISASTYKSYIAICKNHINPSIGKYRLQELRNIHIQNYIDDLAGNLNPQTIKVHINVLRLAIK



RAYRIKLIKENIIDGIESPRIKKFKNEIYDKEHMLKLLEVAKGTNLELPISLAIGLGLRLSEVLGLTWDN



IDFDENTITVNKITSRLDGSVILKEPKTESSVRKIFAPIELMNLLKNYRLEQNKKLLRSIVRNEYNLLFF



DRKGNPIAEDVMSKKFRKFLENNDLPHIRFHDLRHSHVTLLINSKVPIKVISERVGHSNINTTLNVYSHV



LKEMDKEASDRISENLFKAN





1658
WP_076384767.1



MDKAQRYLTAGTRENTRKSYRAAVEHFEVTWGGYLPATAEGIVRYLAEYAETLSLSTLRQRLAALAQWHV



SQGFPDPTKAPHVRQMLKGIRVVHPTRQKQAAPLQLRHLEKAVNWLNSKAADAVESGDYRALMRYRRDAA



LLLIGFWRGFRSDELARLQVEDTQAEAGIGITFYLPYTKADRDHQGSTFHTPALKKLCPVEAYINWITVA



GMTRGPVFRKLDRWGNLSEKGFKSTSLIPLLRRILEEAGIPAQSYSSHSMRRGFATWASANGWDIKGLMS



YVGWKDMKSALRYVDASNSFGGLAAFSPGRIDHDDPESSS





1659
WP_017135669.1



MVEVASKADRYLEANIRENTSKSYAAALTHFEVTWGGYLPTTTESVVRYIAEYADQLALSTLKQRLAALA



NWHQSNGFPDPTKAPKVRQLLKGIRAVHPVQQKQAAPLALLHLEKAVAYLEDEVAQARAVGNMAALLKGT



RDIALLTIGFWRGFRGDELARLTIENTHAERYVGIRFYLGSTKGDRQNIGREYKTPSLSKLCPVEAYLTW



IEAAGLTRGGVFRAIDRWGNISDCPIAAHSLIPLLRDTLDRCGLPSEIYSAHSIRRGFATWAASSGWDIK



TLMEYVGWSDMKSALRYVEPAQQFGGLIRKLEG





1660
WP_102605325.1



MTANNKDEGVPSILFGERAAQARTHGTLATPEQLAQQHQRFLAAATSDNTRRTYRSAIRHFQAWGGGLPC



DEALVIRYLLAFAEVLNPRTLALRLTALGQWHRYQGFPDPAASATVRKTLRGIERVNGRPRQKAKALLLG



DLELIVAHLDTLEGLAALRDSALLQVGYFGAFRRSELVTLEVRDLQWEREGLRITLPRSKTDQEGEGLER



AIPYGDSLCCPAKALRSWLEAAQIEQGPLFRRISRWGVVGKVALYEGSVNSILAARAGAAGLLYVPEMSS



HSLRRGLATSAYRAGADFLEIKRQGGWRHDATVHSYIEEARAFEENAAGSLLRRKPST





1661
WP_002827782.1



MKLPKGIDLMPSGKYKATASIGSGNTRKRKSKSFTTVSDAKAWLLEMNADMHSGTTYVGDDAKITDAYNE



WVATFVTSKVSPATEKGYYFTGKILAKYCEGWLVKTLDRRHCQKLFNQLIADNYTKNTIKKIKVHVGKYC



RSLVTEGVIKRNPMQEIDIRGARLGKDANQKFISISQYKQLLQALKQRPISQMTPYTMVILVILCTGMRV



SEAIDLRQDDLDEIKLTLRVDSSYSRTVHDSKAPKTKNSYRTIPIPKFLLQRLREWRFEQNRLLMLNGHR



NHEQHLFITKFGNVPDASSVNYYVQKLEHTICQIPVGQTTSTHSLRHTYASYLLSREGGNQSLQYVANVL



GDTQAMVQEVYAHLMPEEKASQANVVRDALEVI





1662
WP_069552141.1



MLNVLNITDQLPLVDETLLEPHFLALNAQEAAAAFIAAGTAANTVRSYRSALAYWSAWLQLRYGQALGDA



PLPVAVAVQFVLDHLARPLADGAWAHLLPPSIDTALVAAGIKARLGPLAFNTVSHRLAVLGKWHRIKGWD



SPSEASVLKTLLREARKAQSRQGVNVRKKSAIVLEPLQALLATCTDGARGVRDRALLLLAWSGGGRRRSE



VVGLQVSDVRQLDADTWLYALGTTKTDTTGVRREKPLRGQAAQALAAWLAAAPAESGPLFRRLYKGGKIG



TSGLSADQVARIVQRRAQLAGLEGDWAAHSLRSGFVTEAGRQGVPLGEVMAMTEHRSVTTVMGYFQAGAL



LESRASQLYGEPPPAEVLINKPKVEAD





1663
AZE17458.1



MKDYPTLFGRYWNYNTLNVIDITDQLPLVDEIPLDPHALALNAQEAAAAFIAAGTAANTVRSYRSALAYW



SAWLQLRYGQTLGDAALPPTVAVQFVVDHLARPLANGNWTHLLPPSVDAALVAARVKAKPGPLAYNTVSH



RLAVLGKWHRLNGWDSPTEAPALKTLLRDARKAQSRQGITVRKKTAVVVEPLQALLATCSDGVRGVRDRA



LLLLAWSGGGRRRSEVVGLQIGDVRRLDADTWLYALGATKTDTGGIRREKPLRGPAAQALTAWLTVAPAD



DGPLFRRLFKGGKVGTQGLSADQVARIVQRRAQLAGLDGDWAAHSLRSGFVTEAGRQGVPLGEVMAMTEH



RSVSTVMGYFQAGSMLSSRATCLLEDEERHRSDQNA





1664
SDY43398.1



MKDYPTLFGQYWNYNTLDVIDITDQLPLVDEMPLDPHALALNAQEAAAAFIAAGTAANTVRSYRSALAYW



SAWLQLRYGQALGDAPLPPTVAVQFVVDHLARPLADGNRAHLLPPSVDAALVAARVKAKPGPLAYNTVSH



RLAVLGKWHRLNAWNSPTEAPALKTLLRDARKAQSRQGITVRKKTAVVVEPLQALLATCTDGVRGVRDRA



LLLLAWSGGGRRRSEVVGLQIGDIRKLDADTWLYALGATKTDTGGVRREKPLRGPAAQALTTWLAAAPAE



SGPLFRRLHKGGKVGATGLSADQVARIVQRRAQLAGLEGDWAAHSLRSGFVTEAGRQGVPLGEVMAMTEH



RSVSTVMGYFQAGSLLGSRATQLLGPTQIASEAALEQTAGSTVFCEPTMTSTGD





1665
AZD92641.1



MNVIDITDQLPLVDEIPLDPHALALNAQEAAAAFIAAGTAANTVRSYRSALAYWSAWLQLRYGQTLGDAA



LPPTVAVQFVVDHLARPLANGNWTHLLPPSVDAALVAARVKAKPGPLAYNTVSHRLAVLGKWHRLNGWDS



PTEAPALKTLLRDARKAQSRQGITVRKKTAVVVEPLQALLATCSDGVRGVRDRALLLLAWSGGGRRRSEV



VGLQIGDVRRLDADTWLYALGATKTDTGGIRREKPLRGPAAQALTAWLTVAPADDGPLFRRLFKGGKVGT



QGLSADQVARIVQRRAQLAGLDGDWAAHSLRSGFVTEAGRQGVPLGEVMAMTEHRSVSTVMGYFQAGSML



SSRATCLLEDEERHRSDQNA





1666
WP_082143226.1



MGYWRIIPCHNPFNRQCTCHQYEKAPMSDLDRYLNAATRDNTRRSYRAAIEHFEVSWGGFLPATSDAVAR



YLVAHAGVLAVNTLKLRLSALAQWHTSQGFPDPTKAPVVRKVLKGIRAVHPVREKQAEPLQLKHLEQVVA



FLETDALQASATQDPPRLLRAKRDTALILLGFWRGFRSDELCRLSIEHVQAVPGAGISLYLPRSKSDRDN



LGRTYQTPALLRLCPVQAYSEWLSASALVRGPVFRGIDRWGNLGEEGLHPNSVIPLLRQALERAGIPAEQ



YTSHSLRRGFATWAHRSGWDLKSLMSYVGWNDMKSAMRYVEATPFLGMTLATPALI





1667
WP_110623642.1



MNVLDITDQLSLVNETSLHPQFLALNAQEAAAAFIAAGTAANTVRSYRSALAYWSAWLQLRYGHVLGDAP



LPAAVAVQFVVDHLARPTADGEWVHLLPASIDAALITAKVKAKPGAQAYNTVCHRLAVLGKWHRLNSWDS



PTEVPALKSLLREARKAQSRQGLSVRKKTAIVLEPLQALLATCTDGLRGQRDRALLLLAWSGGGRRRSEV



VNLQISDVRQLDTDTWLYTLGATKTDTGGIRREKPLRGPAAEALTAWLKAAPAQSGPLFRRMYKGDKVGA



TGLSADQVARIVQRRAKLAGLDGDWAAHSLRSGFVTEAGRQGVPLGEVMAMTEHRSVSSVMGYFQAGALL



ESRATTLLKSSTVGDEGPLKSLYVGANEDAEHP





1668
RIA35947.1



MNVLNITEYLSLANETQLDLHSLAINAQEAAAAFIASGTAANTLRSYRSALAYWSAWLQLRYGQALGDAA



LPSSVAVQFVVDHLARPTADGGWAHLLPPTIDAALVAARVKAKLGPLAYNTVSHRLAVLGKWHRINGWGS



PTETVALKALMREARKAQSRHGVSVRKKTAIILEPLQALLATCTDGVRGVRDRALLLLAWSGGGRRRSEV



VGLQIGDVRRLDADTWLYALGTTKTDTGGLRREKPLRGPAALALAAWLEVAPAESGPLFRRIYRGGKVGP



QGLSADQVARIVQRRAQLAGLDGDWAAHSLRSGFVTEAGRQSVPLGEVMAMTEHRSVTTVMNYFQAGSLL



SSQASQLLGPAVGATASAERSDSDSSP





1669
AZC51718.1



MNVIDITDQLPLVDEMPLDPHVLALNAQEAAAAFIAAGTAANTVRSYRSALAYWSAWLQLRYGQVLGDAP



LPPAVAVQFIVDHLARPEAGGSWTHLLPPSIDAALVTARVKAKVGPLAYSTVSHRLAVLAKWHRLKDWDN



PGDAPAVKTLLREARKTQTRQGVNVRKKTAIVLEPLQAMLATCTDGVRGVRDRALLLLAWSGGGRRRSEV



IGLLVEDLRRLDANTWLYALGATKTDTGGVRREKPLQGPVAQALAAWLAAAPASSGPLFRRLYKGGRVGS



AGLSGDQVARIVKRRAALAGLDGDWAAHSLRSGFVTEAGRQGVPLGEVMAMTEHRSVSTVMGYFQAGSLL



GSRASQLLPITQEDDGGNSELLTTGDSH





1670
WP_003452352.1



MNVLNITEHLSLANETQLDLHSLAINAQEAAAAFIAAGTAANTLRSYRSALAYWSAWLQLRYGQALGDAA



LPSSVAIQFVVDHLARPTAGGGWVHLLPPTIDAALVAARVKAKLGPLAYNTVSHRLAVLGKWHRINGWGS



PTETAALKALLREARKAQSRHGVSVRKKTAIILEPLQALLATCTDGVRGIRDRALLLLAWSGGGRRRSEV



VGLQIGDVRRLDADTWLYALGTTKTDTGGLRREKPLRGPAALALAAWLEVAPAESGPLFRRIYRGGKVGT



QGLSADQVARIVQRRAQLAGLDGDWAAHSLRSGFVTEAGRQSVPLGEVMAMTEHRSVTTVMNYFQAGSLL



SSQASQLLGPAVGATASEERSDSDRSP





1671
WP_108099739.1



MNVLEITQQLPLSDEPLLEPHLLAESAQEAAKAFIAGGTAANTVRSYQSALTYWSAWLRLRYGVALGDKA



LPAELVIQFIVDHLARPLEDGSWTHLLPASIDAALVAARVKAKPGPLAHSTVSHRLAVLSKWHRLNDWDS



PVEMPAVKTLLRDARKAQVRQGITVRKKTAVVAEPLQAMLATCTDGVRGIRDRSLLLLTWSGGGRRRSEV



VAMQIGDVRALDADTWLYALGATKTDSSGARREKPLRGQAAVALAEWLAVAPADSGPLFRRMFKGDKVST



LGLSTDQVARIVKRRAKLADLDGNWAAHSLRSGFVTEAGRQGVPLAEVMAMTEHRSVGTVMGYFQVGTLL



NSRATTLLAEPLTPPDQREHEHG





1672
WP_110637560.1



MNNTDALQARFDNPLALHEIADTTRAAAEAFIAAGTAVNTVRSYRSALAYWAAWLRLRYGRALGDGALPP



EVAVQFIVDHLARPNADGTWSHLLPANVDAALVAAGVKGKLGALAFSTVSHRLAVVAKWHRLKDWDNPCE



AAAVKTLLREARKAQARQGMAVRKKTAVVLEPLQRMLTTCTDGVRGIRDRALLLLAWSGGGRRRSEVVGL



QIEDLRRLDTDTWLYALGATKTETSGIRREKPLRGPAAQALAAWLAIAPAVSGPLFRRLYKGGKVGTAAL



SADQVARIVQRRAQLAGLEGDWAAHSLRSGFVTEAGRQGVPLGEVMAMTEHRSVNTVTGYFQAGAMLSSR



ATCLLGDEELHRPDQNA





1673
WP_045217896.1



MNNTILPLHGEIAPLAVDRLDAEARAAAAAFVAAGTAANTVRSYRSALAYWAGWLQLRYRRHLEDGALPE



AVAVQFLVDHLARPVEGDWQQLLPPALDAALVESGVKAKPGPLSYNTVRHRLAVLAKWHDLKSWPSPTDS



AAVKTLLREARKAQSRQGVSVRKKTAAVREPLEAMLATCTDGVRGLRDRALLLLAWSGGGRRRSEVVGLQ



IGDVRPLDADTWLYALGATKTKTEGVRRELPLRGSAAQALTEWLAAAPATTGPLFRRVYKGGRVGTDELS



GDQVARIVKRRAVLAGLPGDWAAHSLRSGFVSEAGRQGVPLGEVMAMTEHRSIPTVMGYFQAGTLLNSRA



AHLLALPLNTQADASKSSETRQA





1674
WP_128325317.1



MNNTLPLDGLPNTPLALHGLADSTRAAAEAFISAGTAANTVRSYQSALSYWSAWLQLRYRRSLGDGALPP



DVAVQFIVDHLARPDGDGNWSQLLPPQLDAALVAAGVKGKLGALAFSTVSHRLAVLAKWHRLNAWDNPCE



ASAVKTLLREARKAQARQGVALRKKTAVVLEPLQAMLATCSDGVRGIRDRALLLLAWSGGGRRRSEVVGL



QVEDLRRLDADTWLYALGVTKTDTGGVRREKPLQGPAAHALQGWLEAAPARSGPLFRRLYKGGRVGSAGL



SGDQVARIVKRRAALAGLEGDWAAHSLRSGFVTEAGRQGVPLGEVMAMTEHRSVNTVMGYFQAGSLLGSR



AANLMGNESVDTERAPDHTTTHTKPNH





1675
OWK92550.1



MNNTESLQPSIDTPLAPHELAASTRAAAEAFIAAGTAANTVRSYQSALAYWSAWLRLRYRRALGDAALPP



EVAVQFIVDHLARPGADGGWSHLLPADLDAALVVMGVKGKLGALAFSTVSHRLAVLAKWHRLKQWDNPTE



TPAVKTLLREARKAQVRQGVAQRKKTAVVLEPLQAMLATCSDGVRGVRDRALLLLAWSGGGRRRSEVIGL



QIEDLRRLDADTWLYTLGATKTDTGGVRREKPLQGPAAQALSAWLEAAPACRGPLFRRLYKGGRVAPHGL



SGDQVARIVKRRAAMAGLDGDWAAHSLRSGFVTEAGRQGVPLGEVMAMTEHRSVSTVMGYFQAGALLDSR



ASKLLGSTPGASEPPPE





1676
WP_024717480.1



MNNTESLQPSIDTPLAPHELAASTRAAAEAFIAAGTAANTVRSYQSALAYWSAWLRLRYRRALGDAALPP



EVAVQFIVDHLARPGADGGWSHLLPADLDAALVAMGVKGKLGALAFSTVSHRLAVLAKWHRLKQWDNPTE



TPAVKTLLREARKAQVRQGVAQRKKTAVVLEPLQAMLATCSDGVRGVRDRALLLLAWSGGGRRRSEVIGL



QIEDLRRLDADTWLYTLGATKTDTGGVRREKPLQGPAAQALSAWLEAAPACRGPLFRRLYKGGRVAPHGL



SGDQVARIVKRRAAMAGLDGDWAAHSLRSGFVTEAGRQGVPLGEVMAMTEHRSVSTVMGYFQAGALLDSR



ASKLLGSTPGASEPPPE





1677
WP_101293615.1



MNNTDPFEVLPIAPLALHGLADSTQAAAEAFIAAGTAANTVRSYRSALAYWAAWLQLRYGRAIGDGALPS



DVAVQFIVDHLARPDADGDWSQLLPAQLDAALVAAGVKGKLGALAFNTVNHRLAVLAKWHRLNDWDNPCE



APTVKTLLREARKAQARQGVALRKKTAMVLEPLQAMLATCTDGVRGVRDRALLLLAWSGGGRRRSEVTAL



RVEDLRRLDADTWLYALGATKTDTGGVRREKPLRGPAAQALNAWLAAAPASSGPLFRRLYKGGRVGSASL



SGDQVARIVKRRAQLAGLEGDWAAHSLRSGFVTEAGRQGVPLGEVMAMTEHRSVTTVMGYFQAGALLESR



ASLLFGESPVAETVNEAPPTDVQT





1678
WP_031642620.1



MQPSIDTPLAPHELAASTRAAAEAFIAAGTAANTVRSYQSALAYWSAWLRLRYRRALGDAALPPEVAVQF



IVDHLARPGADGGWSHLLPADLDAALVVMGVKGKLGALAFSTVSHRLAVLAKWHRLKQWDNPTETPAVKT



LLREARKAQVRQGVAQRKKTAVVLEPLQAMLATCSDGVRGVRDRALLLLAWSGGGRRRSEVIGLQIEDLR



RLDADTWLYTLGATKTDTGGVRREKPLQGPAAQALSAWLEAAPACRGPLFRRLYKGGRVAPHGLSGDQVA



RIVKRRAAMAGLDGDWAAHSLRSGFVTEAGRQGVPLGEVMAMTEHRSVSTVMGYFQAGALLDSRASKLLG



STPGASEPPPE





1679
WP_042948796.1



MQPSIDTPLAPHELAASTRAAAEAFIAAGTAANTVRSYQSALAYWSAWLRLRYRRALGDAALPPEVAVQF



IVDHLARPGADGGWSHLLPADLDAALVAMGVKGKLGALAFSTVSHRLAVLAKWHRLKQWDNPTETPAVKT



LLREARKAQVRQGVAQRKKTAVVLEPLQAMLATCSDGVRGVRDRALLLLAWSGGGRRRSEVIGLQIEDLR



RLDADTWLYTLGATKTDTGGVRREKPLQGPAAQALSAWLEAAPASRGPLFRRLYKGGRVAPHGLSGDQVA



RIVKRRAAMAGLDGDWAAHSLRSGFVTEAGRQGVPLGEVMAMTEHRSVSTVMGYFQAGALLDSRASKLLG



STPGASEPPPE





1680
WP_103326070.1



MSELDRYLQAATRDNTRRSYRAAIEHFEVQWGGFLPATAEGVARYLAAYAGELSINTLKLRLSALAQWHN



SQGFVDPTKAPVVRQVLKGIRAVHPAQEKQAVPLQLQDLERVASWLDEQASQALAERCQAGLLRARRDRA



LILLGFWRGFRSDELCRVQVEHVQAHAGSGISLYLPRSKGDRDNLGRTYSTPALQRLCPVQAYIEWINTA



ALVRGPVFRAIDRWGNLGEQGLHANSVIPLLRQVLEQAGIAAECYTSHSLRRGFATWAQRSGWDLKSLMA



YVGWKDLKSAMRYVEAEPFAGMAQLREKAVAP





1681
WP_076449657.1



MLDWKVALEALDGAYSDATMRAYFADVQAYVSWCDETVCDPLPGSVAQICAFIEDQGRNKAPSTVRRRLY



AIRKVHRLLGLPDPTEDEAINLALRRVRRANPVRPQQARGLNASDLERFLAVQPKTPWGLRNAAMLALGY



ELMTRRSELIALRDSDLELRSDGTLRVLIRRSKADQEGQGRLAFTSVKTADRVRFWQEWRGCVTDWLFCP



IYQGQPIDRGLSDTTVKTVIKTAAKRAGFPPEDVRAFSGHSMRVGAAQDLLKRGFDTSAIMRAGGWKSVS



VLARYLEVAEQNVWEM





1682
WP_074635693.1



MPQIIERKRKDGSTAYVAQINIRRNGKWAHRESRTFDKHSSASAWFKKRMKEITAAGADLTAINSKGRTL



STAIDRYITESVKEIGRTKAQVLRSIREYDIASMNCNDIQSHDIVQFAKELGATRTPATVGNYLSHLGAI



FAVARPAWGIPLDQQAMKDAFVVCNRLGITGKAKRRDRRPTLDELDALLTMFEDKHRRRPNSLPMHRVVG



FALFSTRRQEEITRVAWKGLDQTHNRVFIKDMKHPGDKVGNDVWYDLPAPAINIAMAMPRKKPLVFPYHS



DTISAAFTRACKVLEIEDLRFHDLRHEGVTRLFETGETIPQVAAVSGHRSWSSLQRYTHIKQTGDKYEDW



KWLQRLTTSN





1683
WP_034633966.1



MGVILMKVITLLTKEGKTRYMLLDHNNEPVQPVLHYLKFKDNSGASRNTLRSFSYHLKLFFEFLEQINKD



YRDIGIDEMADFIRWLQNPHQDVKVSPIFPKQPIRKAKTVNIIINTVLGFYDYLMRHEDYSIQLTERLKK



QVPGSRKGFKSFLHHINKNKSFTSHILKLKVPKQQPKTLSKDQIALIMNACVNMRDLFLIQLLWESSMRI



GEALTLWLEDFEVDARKIHIRDRGELSNLAEIKTVCSPRSIDVSEDLINMYFDYIAQFHTDEVDTNHVFI



KLTGENKGQPLEYTDVVALVQRLRKKTGIYFTPHMLRHTSLTELRKAGWRDEHLMNRAGHAHIQTTMQMY



IHPSDEDIRKDWENAQDRMKINKENKENNE





1684
WP_012549223.1



MATVAIEKVIGKKAIKYKARVRLTSNRKRIFEQSKTFTKESEAKNWATKLAKQLNKSGVPTEKQKTILIG



DLITKYLIDPVTSASIGRSKYAVLSRLRAYDIALIQADLLTAHDLINHCRVRKEESTHPLPQTIYHDITY



LKSVIDVAEPMFGYIANTKAHHDAIPTLVRYDLIGRSQRRERRPTNKELVTMEQGLTRRQSHRCANIPLV



DIEHLSIMTCMRLGEITRITWDDVDFKASTLTIRDRKDPRNKHGNNCIIPLYQKVKEIIERQPKVGTLIF



PYKKESIGAAWQRVCKEEGIEDLHYHDLRAEGACQLFERGLNIVEVSKITGHKDINVLNNVYLRLGISEI



HHNLSS





1685
WP_O16110451.1



MEFDIIKINNQTSLKQIEKYKKRFANILSLWNDNVLDEAELRKETNERDDKQTYEGFSDEEILYYYLNRQ



THFDKEKRIKDNSRTLYARDLSQFYFFIKQSKEFLQQDVKDYEEGYMWGNLRKRHIRSYQKWLSQEAISY



QSNQRYKPSTVSRKLGIIRSFLKWLYEIQYIQDPLHVEILSTTVAKLHKPKRDLSYEEVKQLLNYYKGNE



INYALVSFLATTGLRIAEVAHAKWKDIEYDSVRNRYYLRVDTKGDDERIVSINKEIFQRIISFRIRRRLT



IDLGNQDGGTIFQTKNHTAYRENYLSQYITKIIKDTGLPFTKNIRITPHFFRHFYVQYLYDYKGLPPHLI



AAAVGHKDDRTTKENYLKQRLTKDSDAGNLIGENEF





1686
WP_048658860.1



MILKKNANYYSSLAPNQVFDSERKAMQLEKRLALKLERECAGKDFRTLDELITLWYRMHGKTLRDHIRLR



KSLYRISERLGNPIASDFTSKDFAHYREQRSIEVTTTTINREHAYLRAMFNELERLGVIEFENPLIKIRQ



FKEREKELRYLAHDEIARLLESCQTFSNQSLSFIVKICLATGARWGEAESLKPSQIKNNQITFLNTKSSK



NRTVPINKTLYDELTALESISEERMFLNSLSAFRKAVAEAKIDLPKGQMTHVLRHTFASHYVMSGGNIVK



LRDVLGHSEITTTMRYAHLAPEHLEETLTLNPLNQHQNTTDS





1687
WP_069945392.1



MKYHPITDTIELQALQRDILDSQEFKSVYPTLSEYIDSFEQQGIPAKNDLKQLLNFLVTGLSNAKGTQSR



FRNEAERFTLFCWHERGKSVLDIKLEDIKLYIDWIWSPPKNLIADTTISSRFKYRSNSDIRVVNPEWRPF



VHRTPKANRKIESLIAPGKASSIKHAYKLSQTSLRNSYASLNIFFKWLIDAELVMRNYLADAKKNCKYLI



KGKIYQPPHTFDDEVWDIFIQCLTDAADENPKFEIHRFVVLSLKVLFLRISELSSRDYYTPLFNHFRPDP



SNEGWVLHVVGKGKKERVVTVPDSYIENVLGRYRESMDLAPLPRIDEDTPILPSTKTGKPLKQDSVNNIV



EEAFDLVISTLMKSGKKQQALDIAGASSHWLRHTGATQALDELNETMLAEELGHASVKTTVEIYVAPAHR



DRIRKGSQRKL





1688
WP_085070731.1



MNELTTDLKLLHEATLNNLKNSKANNTLRAYKSDFKDFGAFCAKNGLNSLPTEPKIVSLYLTHLSKNSKI



STLRRRLVSISMVHKMKGHYLDTKHPIIVENLMGIRRVKGSIQRGKKPLLINHLKLLIDTINEQKTEEIK



KFRDKSLILIGFGGGFRRTELISIDHEDLEFVPEGLKITIKKSKTDQYGEGMIKGIPYFSTENYCPVKNL



NKWLEISKIKSGPIFRRFSKGLSLTDKRLTDQSVVLLMKEYLNLAGIENTNFAGHSLRSGFATVAAESGA



DERSIMAMTGHKTTQMVRRYIREANIFKNNALNKVKF





1689
OCW82643.1



MNEITTDLKSLHEATLNNLKSSKANNTLRAYKSDFKDFGAFCAKHGLNPLPTEPKIVSLYLTHLSKNTKI



STLRRRLVSISMVHRLKGHYLDTKHPIIVENLMGIRRIKGSIQKGKKPLLINHLKLIINVINEQKTEEIK



KLRDKSIILIGFGGGFRRTELISIDHEDLEFVSEGLKITIKRSKTDQFGEGMIKGLPYFDNEIYCPVTNL



QKWLEISKIKSGPIFRRFSKGLSLTDKRLTDQSVVLLMKEYLKLAGIENKNFAGHSLRSGFATVAADSGA



DERSIMAMTGHKTTQMVRRYIREANIFKNNALNKIKV





1690
WP_037412868.1



MAPFLGPNAKGPKIEGPKMAKIAKKLTDTEIKNTKPAEKEINLFDGDGLMLRIAPLSKGGKKNWYFRYAV



PVTKKRTKMSLGTYPHLTLAKARALRDEYLSLLANGIDPQIHNNDKANALKDATEHTLQAVARKWLDEKV



KTSGISPDHAEDIWRSLERNIFPGLGNVPIKEIRPKLLKQHLDPIEQRGVLETLRRIISRLNEIFRWAAT



EELIEFNPADNLGHRFSKPKKQNMPALPPNELPRFMLAISNASIRLETRLLIEWQLLTWVRPGEAVRARW



SDIDEDNRFWNIPGEFMKMKRPHKIPLSKEAMRILESIKPISGHREWVFPSIKAPLNHMHEQTANAAIIR



MGFGGELVAHGMRSIARTAAEESGKFRTEVLESALAHTKNNEIIAAYNRSEYLAERTELMQWWGDYVQAQ



KYKAIAA





1691
WP_076591309.1



MNNVDHYLHAATRENTRKSYQAAVRHFEVEWGGFLPATANSVARYLADHAELLSANTLRQRLAALGQWHI



DQGFPDPTKAPIVRNVFRGIRASHPSQEKQAKPLLLAEVEQVATSLSAFAAQAQEKGDRSLSLRLKRNNA



LLLIGFWRGFRADELTRLAVESISVVPGEGMICYLPHTKGDRQYRGTPFKVPALAKLCPVSAYQDWQNSA



QLTDGPVFRAIDRWGHVGERGMHVDSIGPLLRSILSENGVVSSELYSSHSLRRGFANWAISSGWDIKTLM



SYVGWKDVQSAARYVDAADPFGNHLLSSAS





1692
WP_013525333.1



MAPIVDLSRENRPEESKAPSHSTTAIASTSPPSPPADDLPDIVDIVMEMAQAPCEPQNAPPLPAHLEGLA



ERARDYVEAASSANTRRAYAADWKHFCAWARRQHLDVLPPDPQVVGLYITACASGKVTGDKKPNAVSTIE



RRLSSITWNFSQRGQPLDRKDRHIATVLAGIRNTHASPPRQKEAILTEDLIAMLETLDRGTLRGLRDRAM



LLLGFAGGLRRSEIVGLDVARDQTQDGRGWIEVLDKGVLVALRGKTGWREVEIGRGSSDATCPVVAVQTW



LKLARVGHGPLFRRVTGNGKAVAAERLNDQEVARLVKRTALAAGVRGDLSEGDRAEKFSGHSLRAGLASS



AEVDERYVQKQLGHTSAEMTRRYQRRRDRFRVNLTRASGL





1693
WP_127402674.1



MAPIVDLSRENRPEESKAPSHSTTAIASTSPPSPPADDLPDIVDIVMEMAQAPCEPQNAPPLPAHLEGLA



ERARDYVEAASSANTRRAYAADWKHFCAWARRQHLDVLPPDPQVVGLYITACASGKVTGDKKPNAVSTIE



RRLSSITWNFSQRGQPLDRKDRHIATVLAGIRTTHASPPRQKEAILTEDLIAMLETLDRGTLRGLRDRAM



LLLGFAGGLRRSEIVGLDVARDQTQDGRGWIEVLDKGVLVALRGKTGWREVEIGRGSSDATCPVVAVQTW



LKLARVGHGPLFRRVTGNGKAVAAERLNDQEVARLVKRTALAAGVRGDLSEGDRAEKFSGHSLRAGLASS



AEVDERYVQKQLGHTSAEMTRRYQRRRDRFRVNLTRASGL





1694
WP_066605681.1



MTPALSERWRQHLALDRRRSVHTVRAYVATAERLIAFLEQHRGEGVSPATLAHIDQAELRAFLASRRTDG



IGNLSAARELSAVRGFLRFVGGDDARVPLLKGPRVKRGLPRPISPDEAVALAQDIAETAREGWIGARDWA



VLLLLYGAGLRIGEAMGLHGDILPLGDTLRVTGKRGKTRIVPLLPQVRAAIDAYVDACPYPPARDQPLFR



GARGGPLSPALIRRAVQGARGRLGLSDRTTPHALRHSFATHLLGRGADLRSLQELLGHASLSSTQVYTQV



DAAHLLDIYRNAHPRA





1695
WP_080957039.1



MLISPELGSIFSQWGFFAVREEGSPMTDPADRYLRPVQRDSTQRRYQGVLRYFEQGWGACLPASGDTVVR



YLVEHAESLSSSTLGLHLAALAQWHHSHGFDDPTKNAQVRQVLRSIRAQXPRLVKQAEPLPLIELERCVT



GLQQRIASDHPVVRLRASRDQALILMGFWRAFRADELCRLRVEHNALCRGKQLEVFLGSSKTDREYRGQV



VLLPALKRLCPVQAYEDWLAISELQEGPVFRPINQWGHISPLGLKPDGVTYVLREAFACSGLDGAAYTGH



SLRRGFATWANNDSWTTKQLMDYVGWRDVKSAMRYIDTTAPFGDLRR





1696
KKX62373.1



MTDPADRYLRPVQRDSTQRRYQGVLRYFEQGWGACLPASGDTVVRYLVEHAESLSSSTLGLHLAALAQWH



HSHGFDDPTKNAQVRQVLRSIRAQXPRLVKQAEPLPLIELERCVTGLQQRIASDHPVVRLRASRDQALIL



MGFWRAFRADELCRLRVEHNALCRGKQLEVFLGSSKTDREYRGQVVLLPALKRLCPVQAYEDWLAISELQ



EGPVFRPINQWGHISPLGLKPDGVTYVLREAFACSGLDGAAYTGHSLRRGFATWANNDSWTTKQLMDYVG



WRDVKSAMRYIDTTAPFGDLRR





1697
WP_040041154.1



MPKLQPKQLEAQRAGDNGKTLRDDGGLFGRVRAKADGTVSISFYYRYRFDGKLKDYACGTWPRESLSKIR



TTRDAAKLLVKQHIDPSSHQKVAKQDAKDAVTARLAEIERQKSEALTFQDLFDTWLLDGVRRADGNAELK



RSFNADVLPKLGKKQIKELTEHDLRGVLRAIVTRGANRTAVVMRNNLTQMFVWAEKRQPWRKLLVDGNPM



DLIEIEKVVSTDYDMNNRRERLLAEEEIRELHDIFQRMQAAYDAAPKKRTAAQPVEKTTQCAIWIMLATL



CRVGETSKARWEHINFDTGEWFIPQDDTKGKRSELTVFLSDFALDQFRQLYKLTGHSEWCFPAKNREGHV



CEKSISKQVGDRQCRFKKGKDGNPRKPMKRRRHDDTLVLANGKNGAWTPHDMRRTGATMMQSLGIALDI1



DRCQNHVLEGSKVRRHYLHHDYAPEKREAWRLLGEQLTLILSASTHNKAPQQSSQREAPSRSH





1698
WP_004691481.1



MSTKLKNGQSRYQSKAKVVTIKKFQLSTLRKAADRLNDAAFEKHGDAYLEFPVIIQGDGNPSEIFNLYLL



KKLEQTIQYDFKTFASIAHQLVDFQRFLEDEQLDCLKFHKLKQLNAIFKYRTRLIEQANAGLISASSARG



RINAVVNFYRFLVTEDLVDHQRYGLPFQDVYKYIAVDNEFGARRKMAIKSHDLAIHVPAKAQNSEAILDG



GELSPLTVEEQAVVLKALQKSSLEYQLMFYLALFTGARLQTICTLRIKCLFNRESDNHGFIRLPVGAGTG



VDTKFQKPMTLLIPHWLALDLKIYINSEQAQQRRQKSNYADSDENYVFLTKLGTPFYTSKAEQQELTDKI



KASDSFGARLKLYEGEAVRSYLKGVLLPEIRLIDPQFQSFKFHDLRASFGMNLLESQLQHLPEGHSAMTA



VEYVQARMGHRNISTTLQYLNYKSRLQWRNKIQHEYESSLMKYVMSSVNPVGDFS





1699
WP_049006636.1



MTDKTKLVAISRTDDISALDALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFPDFRNVLIKALVQVWRARENEKKIVTGQALPFLISDLNILRRSLHK



SDDLRDIRDLAMIWVGFETLLRNVEIRRIKTGDLKWQDDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYTDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSEGLLTQLQNESKVSR



EDVGMLSSNSLNQAFARLWGIAGKVSDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDI





1700
WP_104460435.1



MTDKTKLVAISRTDDISALDALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFPDFRNVLIKALVQVWRTRENEKKIVTGQALPFLISDLNILRRSLHK



SDDLRDIRDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYTDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSEGLLTQLQNESKVSR



EDVGMLSSNSLNQAFARLWGIAGKVSDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDI





1701
WP_004186933.1



MTDKTKLVAISRTDDISALDALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFPDFRNVLIKALVQVWRARENEKKIVTGQALPFLISDLNILRRSLHK



SDDLRDIRDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYTDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSEGLLTQLQNESKVSR



EDVGMLSSNSLNQAFARLWGIAGKVSDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDI





1702
WP_094320139.1



MTDKTKLVAISRTDDMSALDALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFPDFRNVLIKALVQVWRARENEKKIVTGQALPFLISDLNILRRSLHK



SDDLRDIRDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYTDTDTFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSEGLLTQLQNESKVSR



EDVGMLSSNSLNQAFARLWGIAGKVGDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDI





1703
WP_032435650.1



MTDKTKLVAISRTDDMSALDALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFPDFRNVLIKALVQVWRARENEKKIVTGQALPFLISDLNILRRSLHK



SDDLRDIRDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYTDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSEGLLTQLQNESKISR



EDVGMLSSNSLNQAFARLWGIAGKVGDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDI





1704
WP_014386529.1



MTDKTKLVAISRTDDMSALDALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFPDFRNVLIKALVQVWRARENEKKIVTGQALPFLISDLNILRRSLHK



SDDLRDIRDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYTDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSEGLLTQLQNESKVSR



EDVGMLSSNSLNQAFARLWGIAGKVGDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDI





1705
WP_017901102.1



MTDKTKLVAISRTDDMSALDALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFPDFRNVLIKALVQVWRARENEKKIVTGQALPFLISDLNILRRSLHK



SDDLRDIRDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYTDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSEGLLTQLQNESKVSR



EDVGMLSSNSLNQAFARLWGIAGKVSDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDI





1706
WP_110204872.1



MTDKTKLVAISRTDDMSALDALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFPDFRNVLIKALVQVWRARENEKKIVTGQALPFLISDLNILRRSLHK



SDDLRDIRDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHI



RRLIETVEYTDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSEGLLTQLQNESKVSR



EDVGMLSSNSLNQAFARLWGIAGKVGDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDL





1707
WP_004197571.1



MTDKTKLVAISRTDDMSALDALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFPDFRNVLIKALVQVWRARENEKKIVTGQALPFLISDLNILRRSLHK



SDDLRDIRDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYTDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSQGLLTQLQNESKVSR



EDVGMLSSNSLNQAFARLWGIAGKVGDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDI





1708
WP_087728582.1



MTDKTKLVAISRTDDMSALDALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFPDFRNVLIKALVQVWRARENEKKIVTGQALPFLISDLNILRRSLHK



SDDLRDIRDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYTDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSEGLLTQLQNESKVSR



EDVGMLSSNSLKQAFARLWGIAGKVGDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDI





1709
WP_032413233.1



MTDKTKLVAISRTDDMSALDALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFPDFRNVLIKALVQVWRARENEKKIVTGQALPFLISDLNILRRSLHK



SDDLRDIRDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYTDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSEGLLTQLQNESKVSR



EDVGMLSSNSLNQAFARLWGIAGKVGDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDL





1710
WP_096903742.1



MTDKTKLVAIARTDDMSALEALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFPDFRNVLIKALVQVWRARENEKKIVTGQALPFLISDLNILRRSLHK



SDDLRDIRDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYTDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSEGLLTQLQNESKVSR



EDVGMLSSNSLNQAFARLWGIAGKVSDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDI





1711
WP_130953238.1



MTDKTKLVAISRTDDMSALDALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFPDFRNVLIKALVQVWRARENEKKIVTGQALPFLISDLNILRRSLHK



SDDLRDKRDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYTDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSEGLLTQLQNESKVSR



EDVGMLSSNSLNQAFARLWGIAGKVGDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDI





1712
VGI65087.1



MTDKTKLVAISRTDDMSALDALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFPDFRNVLIKALVQVWRARENEKKTVTGQALPFLISDLNILRRSLHK



SNDLRDIRDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYIDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKTGFSERLLTQLQNESKVSR



EDVGMLSSNSLNQAFARLWGIAGKVSDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDI





1713
WP_085353366.1



MTDKTKLVAISRTDDMSALDALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFQDFRNVLIKALVQVWRARENEKKIVTGQALPFLISDLNILRRSLHK



SDDLRDIRDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYTDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSEGLLTQLKNESKVSR



EDVGMLSSNSLNQAFARLWGIAGKVGDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDI





1714
WP_080922991.1



MTDKTKLVAISRTDDMSALDALKLLRFRRYHTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFPDFRNVLIKALVQVWRARENEKKIVTGQALPFLISDLNILRRSLHK



SDDLRDIRDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYTDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSEGLLTQLQNESKVSR



EDVGMLSSNSLNQAFARLWGIAGKVGDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDI





1715
WP_115793642.1



MTDKTKLVAISRTDDMSALDALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFPDFRNVLIKALVQVWRARENEKKIVTGQALPFLISDLNILRRSLHK



SXDLRDIRDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYTDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSEGLLTQLQNESKVSR



EDVGMLSSNSLNQAFARLWGIAGKVGDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDI





1716
WP_085354469.1



MTDKTKLVAISRTDDMSALDALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFQDFRNVLIKALVQVWRARGNEKKNVTGQGLPFLISDLNILRRSLHK



SDDLRDIRDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYTDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSEGLLTQLKNESKVSR



EDVGMLSSNSLNQAFARLWGIAGKVGDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDI





1717
WP_126123982.1



MTDKTKLVAIARTDDMSALEALKLLRFRRYNTARSQLRVTSVWSAWCARHGLTPFPVTAVDVERYINGLN



GSVKMATISHFIACLSSVNSSLGFPDFRNVLIKALVQVWRARENEKKIVTGQALPFLISDLNILRRSLHK



SDDLRDIQDLAMIWVGFETLLRNVEIRRIKTGDLKWQNDTSCYLLDVMRTKTSLSSNLTFQLSPQCSQHV



RRLIETVEYTDTETFGHRFLFQPVNIHTNRYFPSTSSKLSRGKSIDRMLVKAGFSEGLLTQLQNESKVSR



EDVGMLSSNSLNQAFARLWGIAGKVSDSNRQSGRYRTWTGHSVRVGGAIELFKAGYSLEKITEMGNWSDP



KMVFRYIRGYLASEKAMVSFMRNHLDDI





1718
WP_107947608.1



MSKMIRTNSNAQNNANISNERATGSDHHHNNRAEQPRFFEESFLPQSVRSDYLSAAEETEYEISVNTRRV



YNTSFSVFSRYCAEHQLQALPADPRSVISFIGHQKELIQESTGVQLSKQTLTTRLAAIRYHHIQAGFHSP



TEHPLVIRVMRGLSRNQSRHVSDYDQQPIMYDEVEMLIQAIDEQVQPLTRARDKAIIQLGLQGGFRRSEL



ADIKVQYVSFLRNKLKVRLPYSKSNQQGQREWKDLPDHEPFAALDAVKNWLSLANIEDGHLFRSLSRDGK



NLRPYQMKDRHSGSSSLLNKNSGFLTGDDIYRIIKKYCTKAGLPAKFYGAHSLRSGCVTQLHENNKDHLY



IMARTGHTDPRSLRHYLKPKD





1719
WP_083915996.1



MTQLPAVSLADTYAREALSKATARAYRADWNHFLDWCESREVSGLPATVQTICDYLASMAETHARATIER



RVVTIAQAHKIKGLPWVSGQPRIRATLRGMFRLHGRPQVKSAAIEVDELRAILSSMPASTVGLRDRAIFL



LTFAGAMRRSEVARLRRQDVVIGKDGLRILVSRSKSDQVGEGHVLAIPRGANMATCPVEALTRWLRAAPA



DDAIFRSIRADGTVLDHPLHPNSIGEIVKRCAARAGVSATSPNERISAHGLRAGCITSLYRKGVSDEAIM



GHSRHRDLKTMRGYVRRGKLMTESPAKELGL





1720
YP_003856919.1



MASLRTSSRKDGSTYTSVLYRLNGKQTSTSFDDPVQAVEFKRMVEQLGAAKALEVIETTDAAARHYTLSE



WLRHYLDHKTGVEKSTIYDYEKVVAKDIDPALGPIPLAALTGDDIAKWVQALADRGLKGKTISNKHGFLS



SALNAAVRAGRIPGNPAAGARLPRTEKAEMVFLTREQYAKLHDNITLPWQPLVEFLVASGARWGEVVALR



PSDVNRDASTVRISRASKRTYEKGSYALGAPKTLKSRRTINVDASVLGKLDYSGEYLFTNTVGNPVRHNN



FHANVWQPALKRAGLDVKPRVHDLRHTCASWLIAAGVPLPAIRDHLGHESIKITVDTYGHLDRSSGQIVA



AAIAAQLDPARG





1721
WP_132978117.1



MTSVDRYLEAATRTNTRRGYRSAIRHFEEVWGGFLPATADAVARYLADHAESLALNTLRLRLAALSQWHL



EQGFPDPTKASVVRKVLKGIGELHPAREQQARPLQIEELARLDDWLAARIQESANHDEQAARRRATRDRA



LILLGFWRAFRGDELNRLRVEHIQVIPGEGMTLYLPRTKTDHSARGSEFKVPALSRLCPVDAYLDWISLT



QLTEGPVFRRINRWGAVGDEALHPNSLIPLLRKRFVEAGLAMPEHYSGHSLRRGFASWANANHWDVKSLM



DYVGWKDMKSALRYIERPDAFGRERIERALAQT





1722
WP_048220040.1



MNIKRFQFNSGESYSILLDDDLLPMYYPNLFVTLYHRNRSDTANTCYKEFEHIKLFYEIMDILDIDIENR



CKRGVFLERNEVEGITGLAKYHSAILKEVNFTFLNNSLKKKKPSPGKIEGARFSPVINKENLVSSKTCYN



RLTTFANYIGWLENMLFHSTQADTKHLFIVLRPKRKERINIIDNHAVKVVDLLDKNGVKIPLENSDYNDD



YRSLSENQLAQIFEVVKVENNRNPWQRSDVRFRNQLLIHLLSSTGMRRGEVIRIKITDLGRSTTTGRYYL



LVRVGEDMEDKRINKPSAKTSGRRVPLHQNLYHMIEEYIIFHRSKITNVEKTPYLLVAHSSGRNQKGDNG



LSLVSVNKICLQISVVVGFTVHPHMFRHTWNDRFSKHVENLIREGKTTEAKAESDRRKLMGWSSESEMGA



RYARKYEEERAIKTGLKLQDKSYNQEDDSQ





1723
WP_002351552.1



MPTKLSNGKYKTNLRYPKKFREITGITSEKYQKVFPTRQLAIKAENAMKRKIETVLREENANSLELKGKI



KFKEFYESKWLPRYELGQTTRSKRAPSYVTISNTKDIFRLHILPMFGEYAMNYLNSNTEIISDELTKKSK



EYANIKIIKGYVRSMFDIAEILNYIEFNRTTKIIQCITVPKKIALEERRIREGNQALSSEELIAWIEAVN



TDLNNHLLTLHDYTLFMLTLYLGDRKSETYALQWKYIDFEKQTVRLKHALDKYQKKKFTKGRKDTVIQVP



EIVMALLSKWKSVQAEQLLRLKINQTPDQYLFTYTKPSGEVNCPVHADYLNYRINSIKRRHPELAHLSPH



KLRHTYATIARQGGANMNQISNALTHSDISTTKIYVNTPDVVDKTVFEAFQKGLKN





1724
ORE41776.1



MSDVGRYMAAGRRKNTVRSYESGLRHYEVEWKGLLPATVDNVCQYLATYAAELSVPTLKHRLAALSKWHK



ENRFTDPTKDSRVGQVLRGIKAVHPHTPQQAAALGIADLARVVQVLECAAAEANESGDRKTLLQQKRDLA



FLLIGFWRGFRGNELCNLQVQNVHAERGIGLEIVVHGSKGDRANDGVTFSTPALPKLCPVGAYLDWIEAA



ELKEGPVFRSISRWGVVGESALSLTNVSKLLREILERGGLDASKYSSHSLRHGFAHWAANHGWDLAETMD



YVGWSDPKSALRYMPKKTPFERMANSAYSPPAIEHQSKRLK





1725
WP_012729869.1



MAALTKTPSGTWKATIRRVGWPTAAKTFRTKRDAEDWARRTEDEMVRGVFIQRAPSEKTTVADALDRYER



EIVPTKKASTQRREGARIRELKANFGKYSLAAVTPDLVSRYRDDRLARGKANNTVRLELALLGHLFNVAI



KEWHIGLIFNPVANIRKPSPGEGRNRRLSESEQAKLLATVDQHSNPMLGWIVRLAIETGMRQSEILGLRR



GQVDLERRVVRLTDTKNNAARTVPLTKLAALVLQNALGNPVRPIDTDLVFFGEPGRDGKRRAYQFTKVWN



GLKKRTGLIDFRFHDLRHEAVSRLVEAGLTDQEVASISGHKSMQMLRRYTHLRAEDLVSKLDAFASSRR





1726
WP_103422207.1



MTYPTLSNPAHQSLQTVFDAQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGVLADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHPEIKEMMRGIV



RLGDNRKRKTGALTLQPLTQVLDGIDTNDLAGLRDHTLLLLMFSGALRRSEAARIEVSDLDFVGQGIRLR



LKPSKHQLHETEIALIPGKHYCPVSALQKWLHKSRISEGPLFRRMNRWGQLMAEPLGPQGINLMIKRRTG



QTIDDLYVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDMRTLQEYFDDAHKFSDHALDGLL





1727
WP_085734974.1



MNYPHIQAQTQQALQSVFDPQLNSRARRFLRSAKADSTLNAYQADTRIFVFWCQLHGLDPLQTTHHDIMN



FLADQADGILADWVWLDKEEGKGELRNGEPRKPATLVRRLAGIRYAFKQKGIHPMPTEHAEIKEMMRGIV



RLGDNRKRKTGALTLKPLACVLDQIDTGNLAGLRDYTLLLLMFSGALRRSEAAKIEVDDLDFVGQGIRLR



LKPSKHQLHETEIALVPGKQYCPVSALARWLKQSRISEGALFRRMNRWGQLMPEPLGPQGINLMIKRRTG



QAIDDLQVSGHSLRRGFITSAVTAGKPMNKIIEVTRHKDIRTLQEYFDDAHKFSDHALDGLL





1728
WP_048667503.1



MSHSNLPTRKQSQVTLSHFQSTEKTLQQWEEQKEKLSRFKLNFPDLTDSFDPDWTSLPPVLTHLREFEEH



RGGLSTHTLRMLAFVIRKWDVYCKSKEAYSFPIHAPVLLIWFKELKLSQNIKINTLKQYRAQLSLFHKIM



NTDDITKLPVIATFFKSLPKDEMEITGSQVIELQAKPFRKHHLTHLMEVWGNKKRAVPFRDLAVLTLSYG



TLLREGEVGKIRKKHIKFLENGDLNIERVTSKTTISPEPKRLTGRFSSIVKCYLDTYCTCLDDEDFVFCW



LTVKGSRPAGYRQTPMSGMTIDRIYQRAHEVLLESGDIVISGDGHRDVWSGHSSRVGALQDGYHAGLSLT



QLIQLGDWKSNEMVLRYLRGLDNDMSPNVLLQKK





1729
WP_076499665.1



MKKLDLKNDCIGKNPIIRIEFPYDFELKELVKQFPGCNWDIKKKVWWVSYADNRLTELITFFKGKVWLDY



SQLKKVEIPKAQPVLPPLIASLEIEINKFEDWMRNKRYSESTIKTYKDAVIIFLRFLENKAIVEIENEDL



EKFNKEYILARGYSSSYQNQVVNGIKLFFQNRRGIKFNPEIVYRPKREKLLPNVLSKEEVKSILDSHQNL



KHRAMLCLIYSCGLRRGELLNLKIMDIDSKRNILIIRQTKGKKDRVVPLSPKIIELLREYFKAYKPTIYL



FEGHKSQGKYSEKSLESVLKQALVKSGIKKPVTLHWLRHSYATHLLERGTDLRHIQELLGHNSSKTTEIY



THVSIRSLQKVWSPFDDL





1730
WP_045829269.1



MKDISTIPSLAQPAASLALPIHLAQQAADAVRELLAEAAADNTTRSYASALRYWAGWHAARYGVDMTLPV



PEATVLQFVVDHVVRRSSDGELVWELPPSVDQALVAAGLKAKRGPWTLATVRHRVAVLSTAHRLKHVTNP



CEQPAIRTVLSRAARAAVKRGERPRKKTAITIAELEAMLATCDDSIEGLRDRALLCFGFASGGRRRSEVA



AADLRDLRRIGSQGFIYRLEHSKTQQAGVTPTSTPDKPVLDRAARALEAWLAAAGIIEGAIFRRLWKQRV



GPALSPAAVGEIVQRRARLAGLEGDFGGHSLRSGFVTEASRQGVALPAIMQLTEHRSVSSVIGYFQMGGA



TENPAARLLEDG





1731
KJV34819.1



MREPRAALATSVDQVLTRLASWSTDFAAGSASATVKAVRSDWAQYLVWCDTSGNSPLPASVLQLEAFLVD



AIDRGRKRATVDRYLYTVGLVHAAAGLPSPSKDPDWSVKWKKLTRRLKTTGGHMRKQAAELDMGGVSAIL



ATLGDSPRDLRDAALLSLASDTLCRESELVAIEVAHLHLNRRRNTWSLHVPFSKTNQDGESPDFRFVSQE



TIVRVRAWQATSGITEGALFRPVGGRPKLAGDASPALLPQEVARIFRRRAKAAGLEGAAAISGHSARIGS



ANDLAENGATSTQIQQAGGWKTERMVTHYTRKSLAGRGAMQDLRRTDPAKTSD





1732
WP_073285721.1



MSTVPVVPPSPASTSLAHLAEQTARYVEAGLQGAPNTARAYAGDWRRFTAWCTEHGQVALPASVDTLAGF



VTHLAEAGKKVATIQRHCAAISKAHALRDLASPTDDKKFKVLLEGISRVKGTRQKQAPAFSLANFKRTVK



HIDASTPGGLRDRVILLLGFTGAFRRSELSALDLEDLTFSDDGLTIDLKRSKTNQLGEAEEKAIFYSPDP



SLCPIRTLQAWMRMLGRTAGPVLVSLRKGGRLTERRLTDVHLNKIVQRHLGPKFTAHSLRASFVTVAKLN



GADDSEVMNQTKHKTSSMIRRYTRLDNVRQHNAAQKLGL





1733
WP_125423373.1



MSTVPVVPPSPTSTGLAHLAEQTARYVEAGLQGAPNTARAYAGDWRRFSAWCTEHGQVALPASVDTLAGF



VTHLAEAEKKVATIQRHCAAISKAHALRDLASPTDDKKFKVLLEGISRLKGTRQKQAPAFSLASFKRTVK



HIDASTPAGLRDRVILLLGFTGAFRRSELSALDLEDLTFSDEGLTIDLKRSKTNQLGEAEEKAIFYSPDP



SLCPIRTLQTWLRMLGRTTGPVLVSLRKGGRLTERRLTDVHLNKIVQRHLGPKFTAHSLRASFVTVAKLN



GADDSEVMNQTKHKTSSMIRRYTRLDNVRQHNAAQKLGL





1734
WP_035560163.1



MSSVPVAPASPSSVGLAHLTEHTTRYVEAGLQGAPNTARAYAGDWRRFTTWCTAHGQVALPASVETLAGF



VTHLAEAGKKVSTIQRSCAAISKAHALRDLASPTDDKKFKVLMDGISRLKGVRQKQAPAFSLASFKRTIK



HIDATTPAGLRDRVILLLGFTGAFRRSELSALDLDDLTFSEDGLTINLKRSKTNQLGEAEEKAIFYSPDP



TLCTIRTLQAWLRLLERTSGPILVSFRKGGRLTDRRLTDVHLNKIVQRHLGPKFTAHSLRASFVTVAKLN



GADDSEVMNQTKHKTSEMIRRYTRLDNVRQHNAAQKLGL





1735
WP_111480623.1



MAHLTEHTTKYVEAGLQGAPNTARAYAGDWRRFTEWCTAHAQVALPASVDTLAGFVTHLAEAGKKVSTIQ



RSCAAISKAHALRDLASPTDDKKFKVLMDGISRLKGVRQKQAPAFSLASFKRTLKHLDATTPAGLRDKVI



LLLGFTGAFRRSELSALDMDDLSFSEDGLTINLKRSKTNQLGGAEEKAIFYSPDPALCPIRTLQAWLRLL



ERTSGPILVSFRKGGRLTDRRLTDVHLNKIVQRHLGPKFTAHSLRASFVTVAKLNGADDSEVMNQTKHKT



SEMIRRYTRLDNVRQHNAAQKLGL





1736
WP_125440609.1



MAHLTEHTTRYVEAGLQGAPNTARAYAGDWRRFTEWCTTHGQVALPASVETLAGFVTHLAETGKKVSTIQ



RSCAAISKAHALRDLASPTDDKKFKVLMEGISRLKGVRQKQAPAFSLASFKRTLKHLDASTPAGLRDKVI



LLLGFTGAFRRSELSALDLDDLTFSEEGLTINLKRSKTNQLGQAEEKAIFYSPDPALCPIRTLQAWLRLL



ERTSGPILVSFRKGSRLTDRRLTDVHLNKIVQRHLGPKFTAHSLRASFVTVAKLNGADDSEVMNQTKHKT



SEMIRRYTRLDNVRQHNAAQKLGL





1737
WP_065235645.1



MRKALMEHALNLLNDKNDKNRKFGVDKVFHPLDVHFDTNSLSAWLSFYFQVHVKGAPEKTVQAKQKDLSK



FLNFFQVEVGHDQVDNWTPAVSKQFQRSLCNTISEKTGKAYKATSINRTMATIRHAGRWLYQQRPLIAGD



PLSGVKDLQTDAPEWNGLNSKQLMRLKAACEQRAKICTRKNQNALLETAVFYVLLGTGLRESELVSLNVH



QYHSKGLHSVVRHKSKRVTTKIPLPQESREHLEHYLKSRVSEPDEPLFINRAGNRINTRNIFRICQRVLK



QVLALLPENERFEFTPHKLRHTFLKKVTDKHGVHFAQELSGNVSIKEIFRYAKPSQDEMQETIEELFES





1738
WP_009408153.1



MVTFWLAGAGKSTLKLVVSSWGYEYPQMSGVRASDDPDSPMPGKENVPQAHKREAKARHARIIQLTELQL



ATGLRASEARQITWADVTQDDHGVVWVTVRPEISKTKVGRTIPVLVPEVGKRLLARKGKDEELVIPQPNS



GKPWDKAGVHKAVRDYYEGVAGTSEDLAFLKKIRSHAWRGALNTITAPHLRPDIRAAYFGHTEKVNARAY



TDHVNVRPMMKAVEALTQRE





1739
WP_133288865.1



MATDGQDTEAGPGAGGANPPAQGRGSSTPPAPAAVPAVSGEPSEGTAAALPAAGREALDEALRYARAALS



DNTRLAYAVDWQDFAAWCTAAGLAPLPAAAETVAAYLAALARTHAIATLRRRLVSIAKAHRVAGHTGFWA



AHPVISETLRGITRTRGRPQRRAAALTTPDIRRLVATCGPDLAGLRDRALLLLGYAAALRRAELIAVEVE



HLKFDAQGLRLHIPRSKGDQAGEGEELGIPRGQRRDTCPVRAIEAWMVASEAQYGPLFRKVNRWGGLEPG



RLHPSSVRQILLRRAEQAGIAGTALEPISPHGLRAGFVTQAYKAGLRDEEIMQHSRHRDLRTMRRYVRRA



KLLEDSPAKRLDL





1740
WP_011415080.1



MSDISPPSALPGSALAALETDLALALRAPNVAVDRELLAAYVEAAAPNSIRALRQDVEAFDLWCRRSDAR



AFPATPGMVADWLKHRASEGAAPASLVRYKASIAKAHRLLDLDDPTKHEICRLAIAAHRRNVGSRQKQAR



PLRFRGAVKDPVQATPRGIHIRAILGACDNTPTGLRNRALLSVAYDTGLRASELVAVAAEDIVEALDPDA



RLLRIGRHKGDQEGEGSTAYLSPRSVQALQAWLHAADISEGPVFRRVIVRRYADRPARRRIDPNTISGRA



IWDPRKFAAKAAVAARTEYNVGEKALHPGSVTPIVRGMIASAIDAGAFGDLDKEQARKLVAGFSAHSTRV



GLNQDLFAIGETLAGIMDALRWKSPKMPLAYNRNLAAEAGAAGRLLSKLD





1741
YP_239821.1



MKTRCYDGKKWQYEFKHEGKRYRKKGFRTKREANSAGLDKLNELRQGFNFENNLTFEDYFKNWIETYKEN



IVSENTFRHYRFTLKHIQRHKIGKVEISKINKQMYQKFINDFSENRAKETIRKTNGAIKSALEDAVYDGL



IAKNPTYKITFKAGKTTKSEEEKYISLEEYKALKEYLKDKSSKSALALYIMICTGCRVSGVRSMKLEYIN



EFRSELYIDEHKTDSSPRYVAVGKNDLRHIINVIKNSTISYDGYIFKDSGKLISINAINKTLKKACESLG



INYITSHALRHTHCSYLLAKDISIYYISKRLGHKNISITTSIYSHLLEEKFSEEEQKTKNILDAM





1742
WP_018621639.1



METGESLPAVYSQITTDGQRLPGLNEQQQKAREFYESGLYGAPNSKKAYQSDVKQYLAWYHHKGYEALPS



TSQALAEYMTELSTDKGYFTLQRRLASIAKYHRIHNLPSPTIHEQFKLFMKGVRREKTIRQKQAMAFTLD



EFRQAVDSQPLTPTGLRNRLILLLGFTGAFRRQELVDINVENLECRSDGILITINHSKTNQDGVEEAKFV



AKAKQEAYCPLRTLQQWLTLIGRAEGPLFVRIRKGERPTLDRLSDDYVNLLTKAAFGQYYSAHSMRASFV



TISKDAGVDNRKIQNQTKHKTTOMIDRYDRRRDVIYQNASTELDL





1743
WP_026242320.1



MQNPPANMPEIADDHRDGDLPDSVDLVTETGASASPASARVEALVATATAYANAASSENTRSAYAKDFSH



FTAWCRREGFEPLPPSSQVIGLYIGACASGSVVDTAAGKPKRTAPALSVATIERRLSGLAWNFTQRGMPM



DRSDRHIATVLAGIRRKHGTPPRQKEAVLGEDIRAMINTLGHDLRGLRDRAILLLGFAGGLRRSEIVGLD



IARDDKSDGHGWIEIFPDQGVLVTLRGKTGWRQVEVGRGASSETCPVAALESWIRFGRIARGPLFRRIFK



DNKTVDVERLSDKHVARLVKQTALAAGVRSDLPEGERALLFSGHSLRAGLASSADIEERYVQKQLGHASA



EMTRKYQRRRDRFRTNLTKASGL





1744
AVC45611.1



MPEIADDHRDGDLPDSVDLVTETGASASPASARVEALVATATAYANAASSENTRSAYAKDFSHFTAWCRR



EGFEPLPPSSQVIGLYIGACASGSVVDTAAGKPKRTAPALSVATIERRLSGLAWNFTQRGMPMDRSDRHI



ATVLAGIRRKHGTPPRQKEAVLGEDIRAMINTLGHDLRGLRDRAILLLGFAGGLRRSEIVGLDIARDDKS



DGHGWIEIFPDQGVLVTLRGKTGWRQVEVGRGASSETCPVAALESWIRFGRIARGPLFRRIFKDNKTVDV



ERLSDKHVARLVKQTALAAGVRSDLPEGERALLFSGHSLRAGLASSADIEERYVQKQLGHASAEMTRKYQ



RRRDRFRTNLTKASGL





1745
WP_015494605.1



MLSHLVPLSRTGVKYPNVRQQGRSSIDPLEEKKTRRIEPTVADLASDWLDVHASGLKSEQAIRSLIGGDL



VKAIGRMKVTDVRRRDVIEAVEAKATTAPRQAALMLSYARMLLDYATDRDIVRANPVAGLKPASIKVAGK



RDPLKPVVRLRVLDAEEIKSMWVNVESCGLHLLTGLALKLVLVTGQRPGEVAGMHENEISGRLWTIPASR



RGKTSTTQTVYLTDTALNIITVAKAELERLQGRRKGALSGYIFEAKGGSSITNSALPRGVQRSHEALGVK



DNETWGHWTPHDLRRTMRTGLSACKIAPHIAELTIGHTKRGIVATYDQHTFDSERRDAMMAWELRLMTIV



AGNNPDAIVDNVLKLEAKA





1746
WP_005610302.1



MPPKSHSQLNNEEPSTSEFSQDLSENTRKAYATDWALYMQWCRMQGIPPLSATPDHIARYLTEISASSGL



SSASVRRRLAGLVWNYHQRGFRLDRNSPLIADALSEITTNEQCATVIKDAITPQEIRAMVATLPFDLRGL



RDRAILLTGYIGGLGRSDLIGLDLHQYDTEGGTGWIELHSEGILLTIRSKTGWRKVQIACGNTDLTCPVY



TLTKWLHFAKIRSGPAFVRTSRDDKRALSTRLNDRHIPRLVKSTILKAGIRAELPEKERLALFSGHSLKK



GLSVSVDQSSGNQIEVNLTKAAGF





1747
WP_093220183.1



MTELDRYLQAATRDNTRRSYRAAIEHFEVTWGGFLPATADSVARYLVAHAGVLSINTLKLRLSALAQWHN



SQGFADPTKAPVVRKVFKGIRALHPAQEKQAEPLQLQHLEQVVGRLEQEIQAAKAQADRPGLLRARRDLA



LILLGFWRGFRSDELCRLQIEHVQAVAGSGITLYLPRSKSDRENLGKTFQTPALQRLCPVQAYIDWITEA



ALVRGPVFRGIDRWGHLGEEGLHANSVIPLLRQALGRAGIAAEQYTSHSLRRGFATWAHQSGWDMKSLMG



YVGWKDMKSAMRYIDASPFAGMALSAEKPVAAQIPNSSINTVG





1748
WP_065540814.1



MRRDIITRAMIEEFQNYLWEHEKAKLTIQKYISEIENLKEFLQGQPIGKSRLLEYRGQLQERYKARTVNA



KLSAINAYLVFSGMEACKVKLLKIQHCSFIEENKELSEAEYRRLLSSAGKLKNKRMYYLLLTFGGTGIRV



SELPFITVEAVRTGRADINLKGKNRTVILPKKLTDKLSRYAKEQGIHTGAVFCTSSGKKLDRSNICHDMK



KLCKEANVDVHKVSPHNFRHLFARCFYAVHKNLAHLADILGHSSVETTRIYVQTSIREHERIISKMKLVV





1749
WP_044543906.1



MTPEPRALNDDESRYPGWFLAFMADRAVRKPSPHTLKAYRQDFIAIATQLAAAPDRVAYLTPDAITRDAM



QAAFAAYADTHEAASIRRCWSNWNTLCDFLYTDDLITANPMPLIGRPKVPKSLPKGLGAETVSGLLEAIE



ADSGSQRRSNWPERDAALVLTAVLAGLRADELLHADVGDIRATTEGGGVIQVRGKGNKDRRIPVEQGLIK



VLECYLDSRAVRFPADTKRRGPSAGIGAWPATAALFVGSDGHRITRGVLQYRVLRAFKNAGLNGQRAAGA



LVHALRHTFATELANSDVNVYMLMKLLGHESMVTSQRYVDGAGTQNRAAAAQNPLYGLIKQSREP





1750
WP_034396620.1



MDSSKPSPFPVPVIFDANRLQIQDVLESALAPKAHEAIKELMHEGESSNTRSSYQSAMRYWAAWHLLRLG



QPMQLPLRASTVLQFIIDHAQRQSGAGLLHEMPPEIDEALVAAGYKGKKGAPSHSTLVHRMAVMSKAHQV



HAMPNPCQDGAVKELMSRTRKAYARRGELPQKKEALTRDVLEELLASCDDSLRGLRDRALLLFAWASGGR



RRSEVAGADMRFLRTVANGEFIYTLSHSKTNQSGTDAPENHKPVTGRAAIALKAWLDGARITEGPIFRRI



RKGGHVAEPLTPAAVRNIVKERCALAGVEGDFSAHSLRSGFVTEAGRRNLPLADTMALTGHHSVNTVLGY



FRADSALNNQAARMLDED





1751
WP_048444547.1



MDLDRADPTPESPLEALALPVPPAAGLPPTDEILIERLEGHARAAHGAFADNTVRAFAADSRIFAAWCRE



AGRTMLPATPETIAAFIDAQAETKSRATVERYRSSIAALHRAAGLANPCADEIVRLAVKRMNRAKGRRQK



QAEPLNRTSIDRMIAVKAVERLHRRVSEGEHGAPLIALRNIALVAVAYDTLLRRSELVSLSIEDLERGAD



GSGTVLVRRSKADQEGEGAIKYLAPDTMAHVEAWLAAAGLESGPLFRPLTKSGKVGARALGDRDVARIYR



ALASAAGLKIPRLPSGHSTRVGATQDMFAAGFELLEVMQAGSWKTPAMPARYGERLRAQRGAARKLATLQ



NRA





1752
WP_003499734.1



MTTYVITAEMEILFGEYLEQDEKSKNTIEKYRRDLRKFVEYIDGEEVTKELVIGFKEYLVEHYAVNSVNS



IIASLNRFMQFAGWQEFRVKQLKKQRQVYCPEEKELTKQEYFELIRTAKREGKEKIGLIIQTIGSTGIRI



SELPSITVQAVKNGVAQVDCKGKNRQVLLPRKLLVKLMHYIRKEHIQCGPIFITKQGNPLDRSNIWKEMK



KICRLAGVNEKKVFPHNLRHLFAYSFYQMEKDIAKLADLLGHSNINTTRIYIVSSGVEHRKQIEKMNLLL





1753
WP_001066953.1



MNNVIPLQNSPERVSLLPIAPGVDFATALSLRRMATSTGATPAYLLAPEVSALLFYMPDQRHHMLFATLW



NTGMRIGEARMLTPESFDLNGVRPFVRILSEKVRARRGRPPKDEVRLVPLTDISYVRQMESWMITTRPRR



REPLWAVTDETMRNWLKQAVRRAEADGVHFSIPVTPHTFRHSYIMHMLYHRQPRKVIQALAGHRDPRSME



VYTRVFALDMAATLAVPFTGDGRDAAEILRTLPPLR





1754
WP_001066942.1



MNNVIPLQNSPERVSLLPIAPGVDFATALSLRRMATSTGATPAYLLAPEVSALLFYMPDQRHHMLFATLW



NTGMRIGEARMLTPESFDLDGVRPFVRILSEKVRARRGRPPKDEVRLVPLTDISYVRQMESWMITTRPRR



REPLWAVTDETMRNWLKQAVRRAEADGVHFSIPVTPHTFRHSYIMHMLYHRQPRKVIQALAGHRDPRSME



VYTRVFALDMAATLAVPFTGDGRDAAEILRTLPPLR





1755
WP_015469749.1



MDHSLWIDFFDDLQNVRGRSKNTVMAYRRDLELYKKFTEKSKRVIEFFDFMKKEGLSTRSQARVISSVRT



YLKFCESKGMKCPDLRELRPPKVKTGLPKAVSVEEFEKLFRACAVEGEARTARNQLTLLFLYGLGCRVSE



LIGLSLHDFSPTERWVKVLGKGSKERLIPLTDTLYNALEEYLKNHRSELMMDNKSNAALLLNDRGHRPSR



VDIWRWLASWSAKAGFDEPVHPHRFRHGCATALLEGGADLRSIQVMLGHASIQTTQVYTAVTTNTATKAI



DEHHPLSKIKDFSG





1756
WP_012187369.1



MEETPEIQPPDAEKSTSAPSDSNNQAQRDERDQVSTDPIALPAHVAGSGTLDRLVDTARDYARASTAENT



NKAYAADWKHFARWCRLKGTDPLPPSPEMIGLYLTDLAAPAKGTPALSVSTIERRLSGLAWNYAQRGFSL



DRKDRHIANVLAGIKRRHARPPVQKEAILPEDILAMVATLPFDLRGLRDRAILLIGFAGGLRRSEVVSLD



VSKDDTPDSSGWIDVFEDGAVLTLNAKTGWREVEIGRGSSEQTCPVHALEQWLHFAKIDFGPVFTRTSRD



GKRAMDERLNDKHVARLIKKTVLKSGIRAELPENERLALFSGHSLRAGLASSAEVDERFVQKQLGHASAE



MTRRYQRRRDRFRVNLTKAAGL





1757
WP_056515134.1



MATFRQRKDSWRVEVSVKGVRDSGTFDTKTQAKAWAAKRETELRDQANGKLPSFTLQNAIDRYVREVSIN



KKAHYKEIARIKVFCKSYPNLCKKQISKITTDDLVQWRDSRLKEVQGATVRREATILSGIFTVAKKEWKW



IYESPLTDLSMPPIAKSRDRRVTQDEIDRLCLAAMWDESTPTTSTQQTIIAFLLALETAMRAGEILTLTW



DRVFLEERYVALDETKNGTKRNVPLSKRAVELIVHLKPLDKTMVFTCKRSSFSALWIDLKKKCKIEDLHF



HDSRHEACTRLARKLDVLDLARMIGHKDLKSLMVYYNATATEIAHRLD





1758
WP_051472036.1



MADAETTPDLDVEVVDALPTVVPSHLPGELQDLLDAAREYADAATAPNTVKAYQSDWRGFTAWCAQHRLQ



PLPADSMTVALYLTAMAKNGRKVTTIRRHTAAIARAHRDNGLPNPMWDPTAALVLEGIARTHRSAPKKKV



ALLRDPMVQLIDRIETDTPAGLRDRALLLLGFALGLRRSELVQILIEDLSPNADGLTIRLATSKTDQTGH



GHEFLLPYAEPGRPCPVRAIRAWLDHTGLTHGPLIRRLHRNGIPGEALSPQSVALIVKRRAKAAGLNPAD



FAGHSLRAGFATQASRDGHRTEQITDVTRHRDRRTLDGYVRAGKGAEDVARVL





1759
WP_016391764.1



MGAQATRLSDLKVKAAKPKEKDYTLTDGNGLQMRVRINGSKLWNFNYIHPVTKKRINMGLGTFPEVSLAQ



ARKRTVEAREIVAQGLDPKEQRDAERQAKKAATEHTFENVTTAWFELKKDSVTPAYAEDIWRSLTLHIFP



DLGTTPISAINAPKVIDLLRPLETKGSLETVKRLTQRLNEVMTYGVNSGLIHANPLSGIRSVFKKPKKKN



MAALPPDELKELMVAIANASIKRTTRCLIEWQLHTMTRPAEAATTRWADIDIEKKVWTIPAERMKKRRIH



IVPLTDQALDLLEAIKPYSGHREYVFPADRNPRTHCNSQTANMALKRMGFEGRLVSHGMRSMASTILNEH



AWDPELIEVALAHVDKDEVRSAYNRADYIERRRPMMKWWSEHIQEAATGNLSMSAVQNNRDRKVVSIR





1760
WP_052959163.1



MQLNTVYSYSVTEAQVYNSFDIDRASENCSAETVEYLKQCQALTGKQIISLRGDSSFDEAFMLFTRLSLL



VTRRRPELGVHCILIHAMPVIGGMKVEDMNRLAINRLINALVLDGKLVQSRRVFSVIKQFLGWCEFQGI1



ESSPLATMSLNKVAGGAKPKPRERVLSDDELEKFWHMWDFAEVSESTRWAARFILCSARRPDEVLRARRD



EFDLHKDVWNQGERNKSGRDHSLPISPIMRMCIDKMIDAAGDSEWLVPSPKTTAKPASKVMVAQASRRIM



AKKYLSDALPEPFEIRDLRRTARSSLSRLNVDQDVARKIMNHSLEGIDRVYNRHDYMDRMIEAMLAYSDF



LMEKCKINQ





1761
AGC72343.1



MTELATITTNTIQPIINLVCNAVTSDHTKRAYSRALTDFIAWHSSTGQQGFGKATVQAHVTALRDAGVSA



SSINQRLTAIRKLAVELADNEVIDHSAAQAVGRVEGVRKEGKRLGNWLTKEQAQQLLTLQPIATVKGLRD



RAILAVLLGCGLRREECTGLAVGNIQQREGRWVIVDLVGKRSKTRSVPMPAWCKYAIDAYLLAAAVTDGV



LFRSVRRGDHITGQGMTAQAIFDVVKDYAKEIGVDVRPHDLRRTFAKLAHKGNAPIEQIQLSLGHSSVQT



TERYIGVQQDLSSAPCDALGLRI





1762
WP_117316704.1



MSYLATSPIDGFVSVYKEAVNKYFKDIFTKLPHNTQRAYVSDFNEFAIFCEQEGLTGFNDSMQNNEDCIK



RYVEVLCHSPLAYRTIKRRLSALSKFLGIAQLPNPIVNSVYLKDFVKLSLSQNEKYQLSSHQAVPLTVDI



LEKINNNVIPDTLLEMRDLAIINLMFDGLLRADEVVRVRTEHINKRNNALLVLTSKSDQTGKGSYRFISN



STVAMIDEYINEANYNKALQQERDSSDPRRINHGILFRRVSNRGHALLPYDEQLKGKHSPILEYSSIYRV



WKRIADMAKVKENITPHSGRVGGAVSLAENGATLPEMQLAGGWHSPEMPGHYGQQAAVGKGGMAKLAQLK



GR





1763
WP_020744756.1



MNTKPPKMATDLALRNEESNQIAHRESESLRHYLQAATSDNTRKAYRSAIRQFEKWGGRLPTDRDTVVRY



LLARAESLNARTLDLHLTAISQWHHYQGVTDPVRDPLVRKTMEGIRRTHGQPKRKAKALRLEHIAQMVDY



LRCLPDSKKKHRDIALVLTGFFGAFRRSELVAIQISDLNWEPEGLIIRLPRSKTDQQAAGLARALPFGTP



GCCPATAIKAWMDSAEIDSGPLFRPANRWDQVTPRPLNPGAINDLLKTLGKACQFDFVPELSSHSFRRGL



STSAARERVDFELIKKQGGWKSDATVWEYIEEGQQLSNNASLILMEKLVTLIDPV





1764
WP_017437096.1



MENSKIALQLFIEYLQIEKNYSQYTIVCYRQDIEQFFEFMNEQGIQHLHEVTYSDVRLYLTKLYGQKQSS



RSISRKMSSLRSFYKFLLRERKVKENPFALAALPKKEQKIPNFLYPQELECLFHVNDVNTAIGQRNQALL



ELLYATGVRISECCHIQLSDIDFSVSTILIHGKGSKQRYVPFGRFAKEALERYIRQGRRELLENAKTEHA



YLFVNARGNPLTPRGARYILDEIVKKAALTQHISPHVLRHTFATHLLNEGADMRTVQELLGHAHLSSTQV



YTHVTKDRLRHIYLHTHPRA





1765
WP_054292066.1



MRIVGGYRYQDHVLLLLDAQDAFFLARKPRKDSPHTTAAYRRDLSGITTLLAGTTGRPVEHLTIQDLTVQ



ALRTAFGDFADGHAKSSVARAWSTWNQFLNFCVADGMLDGNPMGAVVRPKAPLPSPKPLRGEDTPERLIA



AAAAGARKARDPWPERDVLVIALGLVAGLRSAEVRALQRCSIVGRPGEQRLHVQGKANRERSIPIEAPLE



RVIGAYLASCEVRFPHQRFGPVSALLLDYQGKPIGRGALDYLVKTSYQWAGIRDQVPTGANLHALRHTFA



TRLAEDGANAAEIMALLGHANLNTSQNYIEATGRERRAAAAGNRTYRALSGLEPGTTSPDS





1766
WP_012862144.1



MENKTVAMEFLDYLRYEKGSSENTLSSYKRDLNLFFSEVPKNFQSIEDEEVIEYVDKLSKTVKRNTVLRK



IASIRAFYKFCYINKYITDNPTESLKNLKREFKLPEVLKLSEIKDIIDAIPNTPEGVRDKIIIKILVATG



ARISEVLTLDIKDVENQDYEFIRVLGKGSKYRLIPIYSQLEEEIKAYIENDRKILVLERKEKESENKNKK



KGHELEYKLFLGTRRENFWKRLKKYAKNAKIEKNVYPHIFRHSVATMLINNGADIRIVQEILGHVNISTT



EIYTHVGKRELKEIYNKVKIGDEE





1767
WP_022684352.1



MGTDTAREERESVVAAAETALTPIAPFGDLPWAIVQMRAVEPIVVNEALIAAYQAASSPHSVRALRSDIE



AFDAWCRRTQRIALPATPEMVADYLDARAGEGAKPASLGRYKASIAKVHQLLELKDPTQAPLVKLRLAAI



RRRTGTAQKQARPLRFKGPVKDVERDQARGLNIRALLEACGDDLPGLRDRALLSAAYDTGLRASELVAVA



VEHIVDALDPEARLLEIPRSKADQEGEGATAFISPRSVRAIAAWRAASGIAAGPLFRRVQVRRYKARLAD



PGRPIASISGREAWDLRKTLPKRAMAARVEYDVGEAALHPGSIGPIWRRIIQRAFDRGALGDLTADDLVR



LLKGISAHSTRVGLNQDLFASGEGLTGIMDALRWKSPRMPLAYNRNLAAEQGAAGRLMAKLG





1768
WP_076797908.1



MASIWERKKADGSTSFTVRWRNPKTRKQEGITFSTAAEAQTLKRLLDANDQSFEIAQHAMVKNQTKAPTV



AAVIQEHIDLLVRPSVGTVHTYQTMLKLHIADVIGHIPVDKLDYRHVTHWIKSMQAKGRSPKTIKNNHAL



IYGAMETAVMLRYRKDNPCQRVQLPSSEKAEDEARFLTHAEFGLILECMGERYKAFTEFLVMTGLRFGEA



TAVTVGDIDLMSKPATMRINKAWKRGTNSEFYIGATKTGAGKRTVSLNPQLVEILVPLVASRPGSDLLFT



TPKGERIIHKLYWHHYWVPAVAAAQARGLKKSPRIHDLRHTHASWLIQDGVSLFTVSRRLGHASTRTTEQ



VYGHLMPQALQDAADAVERSAVIWRS





1769
WP_097452609.1



MGELVIPGGSGGFLRDIGTEYQEAAKNFMQFMNDQGAYAPNTLRDLRLVFHSWARWCNSRQRPWFPITPE



MAREYLLQLHEADLASTTIDKHYAMLNMLLSQCGLPPLSDDKSVSLAMRRIRREAATEKGERTGQAIPLR



WDDLKLLDVLLSRSERLVDLRNRAFLFVAYNTLMRMSEISRIRVGDLDQTGDTVTLHISHTKTITTAAGL



DKVLSRCTTAVLNDWLEVSGLREHPDAVLFPPIHRSNKARITTTPLTAPAMEKIFSDAWGLLNKRDATPN



KGRYRTWTGHSARVGAAIDMAEKQVSMVEIMQEGTWKKPETLMRYLRRSGASVGANSRLMDS





1770
WP_016262425.1



MGELVISGGSGGFLRDIGTEYQEAAKNFMQFMNDQGAYAPNTLRDLRLVFHSWARWCNSRQHPWFPITPE



MAREYLLQLHEADLASTTIDKHYAMLNMLLSQCGLPPLSDDKSVSLAMRRIRREAATEKGERTGQAIPLR



WDDLKLLDVLLSRSERLVDLRNRAFLFVAYNTLMRMSEISRIRVGDLDQTGDTVTLHISHTKTITTAAGL



DKVLSRYTTAVLNDWLEVSGLREHPDAVLFPPIHRSNKARITTTPLTAPAMEKIFSDAWGLLNKRDATPN



KGRYRTWTGHSARVGAAIDMAEKQVSMVEIMQEGTWKKPETLMRYLRRSGASVGANSRLMDS





1771
WP_077543356.1



MGELVISGGSGGFLRDIGTEYQEAAKNFMQFMNDQGAYAPNTLRDLRLVFHSWARWCNSRQRPWFPITPE



MAREYLLQLHEADLASTTIDKHYAMLNMLLSQCGLPPLSDDKSVSLAMRRIRREAATEKGERTGQAIPLR



WDDLKLLDVLLSRSERLVDLRNRAFLFVAYNTLMRMSEISRIRVGDLVQTGDTVTLHISHTKTITTAAGL



DKVLSRYTTAVLNDWLEVSGLREHPDAVLFPPIHRSNKARITTTPLTAPAMEKIFSDAWGLLNKRDATPN



KGRYRTWTGHSARVGAAIDMAEKQVSMVEIMQEGTWKKPETLMRYLRRSGASVGANSRLMDS





1772
WP_032152854.1



MGELVISGGSGGFLRDIGTEYQEAAKNFMQFMNDQGAYAPNTLRDLRLVFHSWARWCNSRQRPWFPITPE



MAREYLLQLHEADLASTTIDKHYAMLNMLLSQCGLPPLSDDKSVSLAMRRIRREAATEKGERTGQAIPLR



WDDLKLLDVLLSRSERLVDLRNRAFLFVAYNTLMRMSEISRIRVGDLDQRGDTVTLHISHTKTITTAAGL



DKVLSRYTTAVLNDWLEVSGLREHPDAVLFPPIHRSNKARITTTPLTAPAMEKIFSDAWGLLNKRDATPN



KGRYRTWTGHSARVGAAIDMAEKQVSMVEIMQEGTWKKPETLMRYLRRSGASVGANSRLMDS





1773
WP_013160348.1



MAGKRAFGQIDRLPSGNYRARYVGPDLVLHKAPHTFTNKSHAERWLLDEQDLISRDVWEAPEVRTAKPRA



LTVGEWISKVIERRANRTRRPLAQTTIDLYRKDYRLRISETLCAVRLADLTPAMVATWWHALPDTPTQNA



RAYALLRSAMSDAMEDELIERDPCRLKEAGKPTPAHTGEAITVPELFTYLEAVPESRRLPLMIAALCGLR



SGEVRGLRRRDVDLKAGMLHVEQAVSRVRADNHRWEWRIAPPKTAAGVRTVALPSPVTDALRTWLKEAPV



NGWDGLLFPATDGHSPMPGTVLRDAHVKGREAIGRQTLTIHDLRRTAATLAAQGGATTKELMRLLGHTTV



SVAMLYQVADEERDRARAQRLTQQLREGQAGQ





1774
EHJ58476.1



MTALILVPMTTDPPEPLALPSPAAAPPDPSVAQVVEDVRDLVGAGIRLDQELVAAAVRGWSNNTRRAFCS



DLKVWGDWCRRHGIAPVRATQSDVAAYIRALSGIDPSAEKVRAMATIERYVSYIGRAYRMAGLADPTAGE



LVTLEKKAARKKRGVRQRQARAIRFKGDIADFDSPPSGVCLAHLIKAVRRDVMGLRDEALLRVAYDVGAR



RSELVAIDVDHIHGPDAGGAGALFVPTSKTDQEGEGAWAYLSPATMKAIARWREAAHIDKGPLFRRIETH



FDGSIAAIGTKRLHPNSITLLYKRLVQRAFDKKLLGPMSEAEVARWVAAVSSHSLRVGVAQDNFAARESL



PAIMQAYRWRDPKTVLRYGAQLAAKSGASARMAVRVGE





1775
WP_039858563.1



MTTDPPEPLALPSPAAAPPDPSVAQVVEDVRDLVGAGIRLDQELVAAAVRGWSNNTRRAFCSDLKVWGDW



CRRHGIAPVRATQSDVAAYIRALSGIDPSAEKVRAMATIERYVSYIGRAYRMAGLADPTAGELVTLEKKA



ARKKRGVRQRQARAIRFKGDIADFDSPPSGVCLAHLIKAVRRDVMGLRDEALLRVAYDVGARRSELVAID



VDHIHGPDAGGAGALFVPTSKTDQEGEGAWAYLSPATMKAIARWREAAHIDKGPLFRRIETHFDGSIAAI



GTKRLHPNSITLLYKRLVQRAFDKKLLGPMSEAEVARWVAAVSSHSLRVGVAQDNFAARESLPAIMQAYR



WRDPKTVLRYGAQLAAKSGASARMAVRVGE





1776
WP-053559035.1



MPTVVQLPAGKVLTVRAAADAFLDSLRNPNTVRSYGVGVGKTAERIGEARPLGSVADDEIGEALELLWGT



AAVNTWNARRAAVLSWLGWCAEYGYDSPSVPAWTKRLAVPDSETPARSKMAVDRLIARREVHLREKTLWR



MLYETCARAEEILGVNIEDLDLAARRCPVKAKGARSKARRRGQAREDFVLETVYWDAGTARLLPRLLKGR



TRGPVFVTHRRPGPGKVVSPRDVCPDTGLARLSYGQARALLDERTAVHGPGTGWDLHEYRHSGLTELGVQ



GASLLMLMAKSRHKKPENVRRYFHPSPEAISELTSLLAPGDGRR





1777
SEC15746.1



MSSDNEQNPRMPGMIQPAAPERPSNRVAASGNDGTSALKSGKPAGDHSDLPDLIDVVLAMDEEPPSPTRR



SPALPSNVDPLVETARSYARAARSEATQRAYAADWRHFASWCRRSGFQPLPADPQVVGLYLTACASANPR



PTVSTLERRLSGLSQGYSQRGDRLDRKDPHIAEVFAGIRRKHGRPPAQKEALLAEDILAMLETLPHDLRG



LRDRAILLVGFAGGLRRSEIVGLDAGVDQTEDGNGWAELFDKGILITLRGKTGWREVEIGRGSADRSCPV



EALRTWTRLARIAHGPLFRRIRGQKTVEDSRLNDRHIARLVKRTAFDAGLRPDLPEKERERLFSGHSLRA



GLASSAEVDERFVQKQLGHTSAEMTRRYQRRRDRFRVNLTRASGL





1778
WP_090330126.1



MPGMIQPAAPERPSNRVAASGNDGTSALKSGKPAGDHSDLPDLIDVVLAMDEEPPSPTRRSPALPSNVDP



LVETARSYARAARSEATQRAYAADWRHFASWCRRSGFQPLPADPQVVGLYLTACASANPRPTVSTLERRL



SGLSQGYSQRGDRLDRKDPHIAEVFAGIRRKHGRPPAQKEALLAEDILAMLETLPHDLRGLRDRAILLVG



FAGGLRRSEIVGLDAGVDQTEDGNGWAELFDKGILITLRGKTGWREVEIGRGSADRSCPVEALRTWTRLA



RIAHGPLFRRIRGQKTVEDSRLNDRHIARLVKRTAFDAGLRPDLPEKERERLFSGHSLRAGLASSAEVDE



RFVQKQLGHTSAEMTRRYQRRRDRFRVNLTRASGL





1779
WP_025031421.1



MPGMIQPAAPERPSNRVAASGNDGASALKSGKPAGDHSDLPDIIDVVLAMDEETPSPTRRSHALLSNVDP



LVETARSYARAARSEATQRAYAADWRHFASWCRRSGFRPLPADPQVVGLYLSACASASPRPTVSTLERRL



SGLSQGYSQRGDRLDRKDPHIAEVFAGIRRKHGRPPAQKEALLAEDILAMLETLPHDLRGLRDRAILLVG



FAGGLRRSEIVGLDAGVDQTEDGNGWAELFDKGILITLRGKTGWREVEIGRGSADRSCPVEALRTWIRLA



RIAHGPLFRRIRGQKTVEDSRLNDRHIARLVKRTAFDAGLRPDLPEKERERLFSGHSLRAGLASSAEVDE



RFVQKQLGHTSAEMTHRYQRRRDRFRVNLTRASGL





1780
WP_070174536.1



MQSPFINAVYEFMMLKRYAKRTIQSYLVWIADFIRFHKYQHPKTMGDQEVSLYLTHLSVKRNLSASTQAS



ALNALVFLYNKYLLQPLSKEMEFVNSGRKPKLPTVLTISEVQQLLTNIPERQSLPVSMLYGSGLRLMECV



RLRVKDIDFDYRCVRIWQGKGGKHRVVTLSDTLIAPLKTQKEKVRHLLERDCSNPEFAGVWMPHQLAKKY



KSANKSLEWQYLFPASKTSIDPESALRRRHHIDEKQLQRAVRQTAQEIGLQKSVTPHTLRHSFATHLLLK



GADIRTVQEQLGHSDVRTTQIYTHILQRGGSAVVSPLESI





1781
WP_039328773.1



MTELTPFSGPLIPGDADMADRLREFVQDREAFSDNTWRQLLSVMRTGSRWADEHGRRFLPMTPADLRDYL



LWLQATGRASSTITTHAALISMLHRNAGLVPPNRSPVVFRAVKRIHRTAVISGERAGQAVPFRIGDLLTL



DKSWCFSDRLQQLRDLAFLHVAYATLLRVSELGRLRVRDISRAPDGRIVLDVAWTKTIVMTGGLIKGLGD



LSSQRLTAWLTVSGLIAEPDAFIFGPVHRTNRALPATEKPLTTRALEDIFARAWQEAGPGQDAKPNKNRY



RGWSGHSTRVGAAIDMATKKYSTAQIMQEGTWKKAETVMRYIRHVDAHAGAMVEFMDKHYSGN





1782
WP_105080092.1



MDDFRPHLPVSDAQLPGQADVVAQLREFVQDREAFSDNTWRQLLSVMRICAGWAKEYGRTFLPMTPECLR



DYLMWLQANGRASSTIGTHLALISMLHRNAGLTPPHASPLVFRAMKKISRTAVVSGERTGQAIPFRLTDL



LTLDARWSGSDSLQHQRDLAFLHVGYSTLLRVSELGRLRVRDVSHASDGRIVLDVGWTKTIVMTGGLIKG



LGALSTQRLREWLNASGLINEPDAFIFSPVHRTNRAKINTDRPLSTRSMEDIFARAWHEAGPAADVKPNK



NRYRRWSGHSARVGAAIDMATNKYSTAQIMQEGTWKKAETVMRYIRHVDAHSGAMVDFMDAHVGR





1783
WP_042596186.1



MSNREKQVYQARVERHKEKMPWYIIEYIEEKTNLSPTTLYGYLIEYEIFLQWLISSHLATSDGEVVTKIH



EVPIETLEHLPLKQVKRFKSYLERQGNKTKAVIRTFSALKSLFNYLTSNTEDDNGECYFYRNVMAKMEIH



KEKIDAAARAKEISEVIFHNNDDIKFMRFLSNEYEOMLQETAPGKLRFFKRDRERDIAILSLILGTGLRV



SEVASLTISSINFRTRYIKVIRKGDKKSSILATQTALDDVQEYLKVRANRYKCPDDEDILFVTNYKGSYA



QISVNAIQKLTEKYTRAYDEKKSPHKLRHTYATNHYNENKDLVLLANQMGHNSMETTSLYTNIDDTKRRA



AIERLEQRQFEDTKEK





1784
WP_113233496.1



MPKPKALPSPADPVLARAEELDALDAILPFARRDQLAALLTDEDVATLKHLAKEGMGDNTLRALASDLGY



LEAWCELSTGAPLPWPAPESLLLKFVAHHLWDPVERAEDPSHGMPDDVEMGLRAKGLLRADGPHAPDTVR



RRLTSWSILTRWRGLTGSFTAPSLKSALRLAVRASARPRRRKSKKAVTGQILAKLLATCDGERLVDLRDR



ALLLTAFASGGRRRSEVAGLRVEDLVDEEPVHADPRNAASPLLPCLTINLGRTKTMTAEDRVHVVLIGRP



VEALKQWTEEARIDAGPVFRRIDQWGNIDRRALTPQSVNLILKTRCSQAGLDPELFSAHGLRSGYLTEAA



NRGVPLQEAMQQSLHKSVAQAASYYNNAERKNGRAARLVI





1785
WP_110880404.1



MAKTTPSDAIHRRAEDLDALDSILPFDRRDQLAALLTDDDVATLKHLANEGMGDNTLRALTSDLGYLEAW



CQLATGSPLPWPAPESLLLKFVAHHLWDPAKRAEDADHGMPADVEAGLRDSRLLRAKGPHAPDTVRRRLT



SWSILTRWRGLTGTFNGPSLKSALRLAVRASARPRQRKSKKAVTADILAKLLQACAGDRLVDLRDQALLL



TAFASGGRRRSEIAGLRVADLVDEEPVRADPNDANSPALPCLSIRLGRTKTTTSDDDEHVVLIGRPVVAI



KHWLEQANVKDGPVFRRIDQWGNIDRRSLTPQSVNLILKTRCKQAGFDPALFSAHGLRSGYLTEAANRGI



PLPEAMQQSLHKSVTQAARYYNDAERKQGRAARLMI





1786
WP_120019218.1



MPKNPARAGGRQSTELVARRAEALDALDSVLPFDRRDFLAGLLTDDDVATLRHLAKEGIGANSLRALASD



LGYLEAWSLAATGFSLPWPAPEALLIKFVAHHLWDLAKRETDPAHGMPADVAATLKSQALLRTDGPHAPA



TVRRRLSSWSTLTKWRGLRGKFNAPGLQSAIKLAVRASARPRGRKSKKAVTADILTALLKACAGDRLVDV



RDRALLITAFASGGRRRSEMASLRFEQIVEEEPVPAEPKAPDSSDKLPCLSIRLGRTKTTQADSDAFVLL



VGRPVLALKGWLERAGITEGAVFRGIDRWGNLEKRALTPQAVNLLLKRRIAEAGLDPQAFSAHGLRSGYL



TETARRGIPLPEAMQQSQHRSVQQASNYYNDAERTLGRAARVI1





1787
WP_069694292.1



MPSSQASPPKIDGMAVARINGEQPDIAEPVIEIGAAEPATLIPARLEALVETATGYAKAASSENTRAAYA



KDWRHFSSWCRREGLEPLPPSSQVIGLYISACAAGEPKRGLPSLSVATIERRLSGLGWNFNQRGQPMDRA



DRHISTVLAGIRRKHAKPPRQKEAVLGDDLLAMIATLGHDLRGLRDRAILLLGFAGGLRRSEIVGLDVVR



DDNSDGAGWIEIYADKGVLVTLRGKTGWREVEVGRGSSDHTCPVVALESWVRFGRIARGPLFRRIFKDNK



TVDVERLSDKHVARLVKQTVLEAGVRSDLPEGERALLFAGHSLRSGLASSAEIEERYVQKHLGHASAEMT



RKYQRRRDRFRTNLTKASGL





1788
WP_092177345.1



MTSIALLSTETETRRALQLDALAGILPLERRDKLAHILTDDDVATLRHLAREGMGENSLRALASDLAYLE



AWSLASTGSALPWPAPEALVLKFVAHHLWDPAQRESDPAHGMPAEVDEVLRAGDHLRSAGPHASSTVKRR



LAHWATLHRWKGLESPLGTPAIRTSVRLAVRASAKPRRRKSKRAVTRDILDRLIATCQSDRLADTRDLAI



LLVAFASGGRRRSEVARLRLEQLTLEADVPLDPDDPNSARLPCMAIALGRTKNSQADDDARVLLIGPPVE



ALREWLERAAISKGAVFRAIDRWEAIDDRALTPQAINLILKRRCALAGLDPVAFSAHGLRSGYLTEAARN



GVALPAAMRQSQHRSVQQAARYYNDADQALGKAARLAI





1789
WP_057193706.1



MTSTSLLSAETETRRALQLDALAGILPLERRDKLATILTDDDVATLRHLAKEGMGENSLRALASDLAYLE



AWSFASTGSALPWPAPEALVLKFVAHHLWDPTQRESDPAHGMPAEVDAALRAGDHLRSEGPHAPSTVKRR



LAHWATLHRWKGLESPLGTPAIRTSMRLAVRASAKPRRRKSKRAVTRDILDRLIATCQTDRLADTRDLAI



LLVAFASGGRRRSEVARLRLEQLTLEADVPLDPDDPNSPRLPCMAIALGRTKTAQADDDARVLLIGPPVA



ALREWIERAAIKTGAVFRAIDRWEAIDDRALTPQAINLILKRRCAMAGLEPIEFSAHGLRSGYLTEAART



GVTLPAAMRQSQHRSVQQAARYYNDADQALGKAARLAI





1790
WP_133565315.1



MTTTALLSADSETRRALQLDALAAILPLERRDQLAKILTDDDVATLRHLAQEGLGENSLRALASDLAYLE



AWSLASTGSALPWPAPEALVLKFVAHHLWDPAQRETDPAHGMPAEVDAVLRSGDHLRSDGPHAPSTVKRR



LAHWATLHRWKGLMGPFAAPSLRTAMRLAVRASARPRRRKSQRAVTREILDRLLATCRSDRLSDTRDLAL



LLTAFGSGGRRRSEIARLRVEQLSEEAPVPLDPEDLNSPRLPCLAITLGRTKTAMANDDARVLIVGPPVE



ALREWLERANISKGAVFRAIDRWEGLSDRALTPQAVNLILKRRCAQAGLNPWEFSAHGLRSGYLTEAARN



GVSLPAAMQQSQHRSVQQAASYYNEADRQLSKAARLAL





1791
KSV89580.1



MVSAVESPSPLPAHLEDLADRARGYVEAASSANTRKAYASDWKHFSAWCRRQNLAPLPPDPHVVGLYITA



CASGTTERSVKANSVSTIERRLSAIAWNCTQRGQPLDRKDRAIATVMAGIRNRHAAPPRQKEAILPEDLI



AMLETLERGTLRGLRDRAILLIGFAGGLRRSEITGLDLGRDQTEDGRGWIEILDKGLLLTLRGKTGWREV



EIGRGSADTTCPLVAVETWIRFAKLAKGPLFRRVTGRGKDVGPDRLNDKAVARLVKSAALAAGLHGDLGE



DERAARFSGHSLRAGLASSAEVDERHVQKQLGHASAEMTRKYQRRRDRFRVNLTKASGL





1792
WP_058323347.1



MAQIVAQNRKNHAKETSAPSDSTAHSGDDPALVSAVESPSPLPAHLEDLADRARGYVEAASSANTRKAYA



SDWKHFSAWCRRQNLAPLPPDPHVVGLYITACASGTTERSVKANSVSTIERRLSAIAWNCTQRGQPLDRK



DRAIATVMAGIRNRHAAPPRQKEAILPEDLIAMLETLERGTLRGLRDRAILLIGFAGGLRRSEITGLDLG



RDQTEDGRGWIEILDKGLLLTLRGKTGWREVEIGRGSADTTCPLVAVETWIRFAKLAKGPLFRRVTGRGK



DVGPDRLNDKAVARLVKSAALAAGLHGDLGEDERAARFSGHSLRAGLASSAEVDERHVQKQLGHASAEMT



RKYQRRRDRFRVNLTKASGL





1793
WP_132665865.1



MMADNTNLNADMPRPAPSPSLPGHLQDLTDRARGYVEAASSANTRKAYASDWKHFAAWCRRSSLPLLPPH



PQTIGLYITACSSGTAERGGKPNSVSTIGRRLSSLSWNYTQRGQQLDRKDRHIATVMAGIRNSHARPPVQ



KEAVMAADIIAMIETLDRSTLRGMRDRAMLLVGYAGGLRRSEIVGLDVKADQTEDGRGWIEIFDKGMLVT



LRGKTGWRQVEVGRGSSDATCPVVAVETWIRFAKLGHGPLFRRVTGQGKSIGAERLNDKEIARLVKRAVV



AAGVRGDLSELERALKFSGHSLRAGLASSADVDERYVQKQLGHASAEMTRRYQRRRDRFRINLTKAAGL





1794
WP_069694293.1



MTSIALLSTESDTRRALQLDALAGILPLERRDQLAKILTDEDVATLRHLAREGMGENSLRALASDLAYLE



AWSLASTGSALPWPAPEALALKFIAHHLWDPARRAEDFSHGMPADVEASLRAGDHLRSDGPHASSTVKRR



LAHWATLHRWKGLESPLGTPAIRTGLRLAVRASAKPRRRKSKRAVTRDILDRLIATCQSDRLADSRDLAI



LLVAFGSGGRRRSEVARLRLEQLTIEADVPLDPDDQDSARLPCMAIALGRTKNSQADDDARVLLIGPPVE



ALREWLERAAISKGAVFRAIDRWEAIDDRALTPQAINLILKRRCAQAGLDPIAFSAHGLRSGYLTEAARN



GVALPAAMRQSQHRSVQQAARYYNDADQALGKAARLAI





1795
RWE07715.1



MENPPSKPAKKDLPAADRPDGDLPDIVDLVMEMGRTAPRVPAHVEDLVETAKGYANAASSENTRDAYAKD



WRHFTSSCRRTGFDPLPPDSKTIGLYISACARGEPKHGSPPLSVATIERRLSGLAWNFIQRGFVMDRADR



HIATVLAGIRRKHAKPPRQKEAVLGDDLLAMIATLGHDLRSLRDRAILLLGFAGGLRRSEIVGLDVTREE



TSDGAGWIEIFPDKGVLVTLRGKTGWREVEVGRGSSDLSCPVAALESWIRFGRIARGPLFRRIFKDNKTV



DVGRLSDKHVARLVKKTALAAGVRSDLPEGERGLLFAGHSLRSGLASSAEIEERYVQKQLGHASAEMTRK



YQRRRDRFRTNLTKASGL





1796
WP_011578806.1



MASHIDQNSENRTRHRSAQPQETPPGVDETAPAGSAEHDASIADDMPDIIDVVLEMGRAPEEPPDGAPSP



ALPVVSTPRLPAHLDALADRARDYVEAASSSNTRRAYASDWKQFASWCRRQGVEMFPPDPQVVGLYIAAC



ASGKATGDRKPNSVSTIERRLSALTWNYAQRGQPLDRKDRHIATVMAGIRNKHAAPPRQKEAVLPEDLIA



MLETLDRGTLRGLRDRAMLLLGFAGGLRRSEVVGLDCGRDQTEDSSGWIEILDKGMLLRLRGKTGWREVE



VGRGSSDTTCPVVALETWLKLARIAHGPLFRRVTGQGKKVGADRLNDQEVARLVKRTALAAGVRGDLPEG



ERGMKFAGHSLRAGLASSAEVDERYVQKQLGHSSAEMTRKYQRRRDRFRVNLTKASGL





1797
RWD51833.1



MPSVDEARATASLVDQNPENRARRSSAQPQETATPVDQDAVDQTAAAPSAEPNGSSTDDLPDIIDVVMEM



GRAPEQPSADAPSALPVVANARLPAHLDALADRARGYVEAASSANTRRAYASDWKQFASWCRRQGVEMFP



PDPQVVGLYVTACASGKATGDKKPNSVSTIERRLSSLTWNYAQRGQPLDRKDRHIATVMAGIRNKHAAPP



RQKEAVLPEDLIAMLETLDRGTLRGLRDRAMLLLGFGGGLRRSEVVGLDVGRDQTEDSSGWIEILDKGML



LRLRGKTGWREVEVGRGSSDTTCPVVALETWLKLARIAHGPLFRRVTGQGKSVGADRLNDQEVARLVKRT



ALAAGVRGDLPEGERGMMFAGHSLRAGLASSAEVDERYVQKQLGHTSAEMTRKYQRRRDRFRVNLTKASG



L





1798
WP_096459680.1



MASLVDQNPEKHTQHGSAQPQETAPGVDQIAQAGSAGHDTPIADDLPDIIDVVLEMGRAPEEAPADTPSP



LPVVANPRLPAHLDALAGRARDYVEAASSANTRRAYASDWKQFASWCRRQGVEMFPPDPQVVGLYITACA



SGKAPGEKKPNSVSTIERRLSSLTWNYAQRGQPLDRKDRHIATVMAGIRNKHAAPPRQKEAVLPEDLIAM



LETLDRGTLRGLRDRAMLLLGFAGGLRRSEVVGLDCGREQTEDSSGWIEILDKGMLLRLRGKTGWREVEV



GRGSSDTTCPVVALETWLRLARIAHGPLFRRVTGQGKAVGADRLNDQEVARLVKRTALAAGVRGDLPEGE



REKLFAGHSLRAGLASSAEVDERYVQKQLGHTSAEMTRRYQRRRDRFRVNLTKASGL





1799
RWD87033.1



MNQPTADDLPDIVDLVMEMGQPVRPPAHVEALVETAKGYAKAASSENTRNAYAKDWRHFTSWCRRQGFEP



LPPDPKIIGLYISACAAGEPKHGAPALSVSTIERRLSGLAWNFTQRGFAIDRADRHISSVLAGIRRKHAK



PPRQKEAVLSDDIKAMVNTLGHDLRSLRDRAILLLGFAGGLRRSEIVGLDVVRDDHSDGNGWIEFFPGQG



VLVTLRGKTGWREVEVGRGASDQTCPVAALESWIRFGRIARGPLFRRIFKDNKTVDVERLSDKHVARLVK



RTALAAGVRSDLPEGERAGLFSGHSLRAGLASSADIEERYVQKQLGHASAEMTRKYQRRRDRFRTNLTKA



SGL





1800
WP_016210837.1



MSSKQIKKIMTAESRTEISTTLSSSSRQFLENTLAQATKRGYAADLKIFFAWAEAHQTAAIPATAETIAN



FLADQASGVLSVWLRQESQLINGRPVSVATLRRRLAAIKYAHKLNKIEPSPTDTAEVRETLKGIRRTLGA



KPNAKSALMSQDIQLLMRYIPETITGQRDRAILLLGFAGALRRSELTSLELSDIEVQENGMLVYIRSSKT



DQEQQGQVIGIARSENKANCPVGAIEQWLQSSMILSGPIFRRIFANGKIAITTLSDRTIYNIVKNYCQLA



GLDASRFGAHSLRRGFVTSAAKAKVDPFRIMAVTRHKRLETVKRYVDEANLINDYPGADLLK





1801
WP_073288106.1



MSEDLSLLPASDASHSLSHHLGRASAKVAGFLEAGLQGAANTERAYTSDLKSYVTFCEQHGFVAVPAEVE



TITEYVAYLASEKVEPAPGGSRGKKKGQQPLTGPHALATIKRHLAAIRKAHQLAGHRLPATLDALNIVME



GIARTLGKRQEQAQAFTVEELKQAIRRIDLETSAGLRDRALLLLGFAGAFRRSELVDLNIEQLEFTERAL



LVHLAKSKTNQYRAVEDKAIFYAPNADYCPVRCLRAWLGLLGRTTGPLFVKIPRASPGQMAAPSDKRLSD



ISINKLVQKRLGPDYSAHSLRVSFVTVAVLNGQSHKAIKNQTKQKTDAMIERYTQLNNVVSYNAAQALGL





1802
WP_092743158.1



MREDLTIVPASTVPPTVSTQLARASAKVASFLEVGLQGAANTERAYTSDLKSYVGFCERHGLRALPADVE



TLTEYVAYLATEKPTPEPSDGGRGEKKKRKGQQPLTRPHSLATIKRHLAAIRKAHQLAGHRLPVTLDALN



VVMEGIARTLGKRQDQAQAFTAEELKQAIRRIDLETSAGLRDRALLLLGFAGAFRRSELVELNIEQLEFT



ERALLVHLAKSKTNQYGAVEDKAIFYAPTMDFCPVRCLRAWLNLLGRNTGPLFVKIPRATPGQMAAPSDK



RLSDISINKLVQKRLGPAYSAHSLRVSFVTVAVLNGQSHKAIKNQTKQKTDAMIERYTQLNNVVSYNAAQ



SLGL





1803
WP_026351576.1



MREDLSIVPASTVPPTVSTQLARASAKVAGFLEVGLQGAANTERAYTSDLKSYVGFCERHGLRALPADVE



TLTEYVAYLATEKPIPEPGTGGRGEKKKRKGQQPLTRPHSLATIKRHLAAIRKAHQLAGHRLPATLDALN



VVMEGIARTLGKRQDQAQAFTVEELKQAIRRIDLETSAGLRDRALLLLGFAGAFRRSELVELNIEQLEFT



ERALLVHLTKSKTNQYGAVEDKAIFYAPTMDFCPVRCLRAWLNLLGRTTGPLFVKIPRAAAGQMAAASEK



RLSDISINKLVQKRLGLGYSAHSLRVSFVTVAVLNGQSHKAIKNQTKQKTDAMIERYTQLNNVVSYNAAQ



ALGL





1804
WP_089334212.1



MSEDLSLVASSPAGQSVGAQLARASAKVAGFLEVGLQGAANTERAYTSDLKSYVTFCEQHGFVAVPADVD



TLTEYVAYLASEKPVSDTMGGGGKKKRKGQQPLTRPHSLATIKRHLAAIRKAHQLAGHRLPATLDALNIV



MEGIARTLGKRQDQAPAFTVEELKQAIRRMDLETSAGLRDRALLLLGFAGAFRRSELVDLNIEQLDFTER



ALLVHLAKSKTNQYGAVEDKAIFYAPNADYCPVRCLRAWLHLLGRTTGALFVKIPRAAPGQMAVPSDKRL



SDISINKLVQKRLGPDYSAHSLRVSFVTVAVLNGQSHKAIKNQTKQKTDAMIERYTQLNNVVSYNAAQAL



GL





1805
WP_086597010.1



MNEDLSLIPAANANQSISAQLARASAKVAGFLEAGLQGAANTERAYTADLKSYVAFCEQHGLQAVPADVD



TLTEYVAYLASEKPEPAPGEGTRKKGQQPLTGPHALATIKRHLAAIRKAHQLAGYRLPATLDALNLVMEG



ITRTLGKRQEQAQAFTVEELKQAIRRIDLDTSAGIRDRALLLLGFAGAFRRSELVELNIEQLEFTERALL



VHLAKSKTNQYGAIEDKAIFYAPTMDYCPVRCLRAWLYLLGRTTGPLFVKIPRTIPGQLAVPSTKRLSDI



SINKLVQKRLGPAYSAHSLRVSFVTTAVLNGQSHKAIKNQTKQKTDAMIEHYTQLHNVVSYNAAQALGL





1806
WP_092511277.1



MAGGLSLIDQEVVFIPDNPELNEDVLRNLHAFMKDKEAFADNTWQQLMKASRLWCQWCIGKGRPYLPVDA



DYLRDYLWELHENGLAPATISNYAAMLNLLHRQAGLIPAGDSQKVKRILKKIHRVAIVHGEKAGQAIPFR



IADLNQVDTAWQDSASLKERRNLAFLFVAYNTLLRISNLARLKVGDVTFNPDGSVMLHIGYTKTQVDGQG



SIKALSPRASASLRHWLQVSGLIEHPDAYIFCRVHRSNQAIVATEKPMDEFNLSQVFSAAWSVVHGDKKA



ARNKGRYATWTGHSARVGAAQDMTESGYSLAQIMHEGAWKKPETVLGYIRNIEAKKSVMIELVEGKS





1807
WP_055739375.1



MEDRLQDFIHFMVVEKGLSKNTILSYERDLKNYLLYIQKVEQITSLNDITRVHIVHFLHHLKKQGKSAKT



LARHVASVRSFHQFLLREKATEHDPSVHIESPQIEKTLPKVLNLSEVEALLESPDEDSPLGIRDRAMLEL



LYATGIRVSELIQLNLDDLHLTMGFIRCIGKGNKERIIPIGKTASNVIEKYISIGRPKLKSKQNSTEALF



LNHHGNRLTRQGFWKILKGLAKKANIEKDLTPHTLRHSFATHLLENGADLRAVQEMLGHADISTTQIYTH



VTKIRLKDVYSKHHPRA





1808
WP_058066517.1



MSSTTQAKASLEAELAKHPGIEIHGNSIRVVFMWRRRRYRETLGLPLTKANIKHAALLRAAVLHDIKIGT



FDYGRHFPNSRNATNFSNTKDERLHALLERYKPLKAVDITTETQSRYFAALDICVDLLGGNRLGSILLPE



DIQKLRVELIAGRATSTTNHYLATLAGFLNWCESNGYCRKGLAEACTRFTMTDRDPDPLTKSEFEALLDK



GCLHPMDHAAITLAVYTGLRPGELCALAREDVDMANGLIHVNRSITSSGTFKLPKTGKKRTVMLFPPALE



ACRVLLGIKHGIAPQKLAIELNRHESVQETVTPLLTPLVQARRKQINTWFVPTAWNTKWHNIQRRAKIRP



RRPYQTRHTYACWCLVARGNLAFIAKQMGHKDFTMLVQVYAKWMDDESPNELSSIWAGMSR





1809
WP_002187515.1



MSISSNVILISDHRKKKYKKSLNNDSGSMFGKGLTDEMMSYLTKEFANPVSERAYRNRAIFLILSQTALR



AKETVNLRFSDLLKAPTNETLARYVKKGGRIAYSVISESCLKSVQEYHSKFNLKSDYFFLSLPRRNQNWR



SNLSTRGLQLIVNSWNVRTCSGRISRPHCFRHTAGTKLLETSGSIAAQLTLGHSSPIITSKYYTKRYYNA



SMFLTWE





1810
WP_127622166.1



MIDNQRAARSDSQAVHRRAEELDALDAILPFDRRDQLSALLTDDDVATLKHLAQEGMGENTLRALSSDLG



YLEAWCRLATGDPLPWPAPEALLLKFVAHHLWDPVKRAEDPAHGMPADVEAGLRAERLLRSPGPHAPGTV



RRRLTSWSILTRWRGLAGAFGAPSLKSALRLAVRASARPRQRKSKKAVTVDILVQLLQACAGDRLVDVRD



RALLLAAFASGGRRRSEVAALRVEDLADEELVRADPSDKTSPPLPCLSIRLGRTKTTTADENEHVLLIGR



PVAALKTWLAEAQIKDGPVFRCIDRWGNIDRRALTPQSVNLILKARCEQAGLDPALFSAHGLRSGYLTEA



ANRGIPLPEAMQQSLHKSVTQAASYYNNAERKNGRAARLIV





1811
WP_101200924.1



MTDLMSVSDISDETVRSQVLANLEEFKHDLLDDMASNTKRAYLSDFEHYLSFCLKHGLVSMSDDWRVTKD



TIKTYFVSLMASDLKNASIKRKLSSIKFFIGIAELPDPFKHSKLLRDFITNKLKKKPAAQTQANPVTAEV



LVALNETFNPLSLLDIRNKLLVNLAFDSLFRASNLAEIEVAHIDREHGSVFASYSKTDQEGQGSYGYISP



KTIILLDEWLNASGITERFIFRTLSPKQTVQQKTMGYQAIYKTFKNFGGSRYLDNKISYSCHSTRVGATV



SMTEQNRPLIKIIQAGNWKSERMAIRYGQRTNVAKGGMVDI1





1812
WP_068331637.1



METDTALLANPVGHGLAHHTGAAARYVEAGLNGAPNTTRAYTAHLKRFGGWCAAHGHQPLPASVDALVGF



CTHLAEAGKKVGTLQQHCAAISKAHAVRGVDSPTDDKQFKIFMDGVRRVHGVRQKQAPAFSLAQFKQLVR



GLDTTTVAGLRDRAILLLGFTGAFRRSELTALNVQDLRFTEDCLVVSLGRSKTNQLGDYEEKAIFYSPES



AVCPIRSLKAWLAQLERSEGPVFVMLRKGNRLTTNRLSDQTINTLVQRYLGAGYTAHSLRASFVTVAKLN



GADDSKIMNQTKHKTSAMIRRYTRLDNVQQHNAAKELGL





1813
WP_023274785.1



MKIPKPRKRGDSFRIELMYEGRRISATRDTEKECEQWAALKLLEFKTGKAQEEKGIKPSFPFKKLCEKYF



LEKGSKLKSSHVIRNKLDNLERITGELANKSIYDFKPNDIVRWRNRRVLEVKSSTALREFAMFSAIFTYA



QKELFLIENNVWNTVVKPDKGKGRSQRISPEDQEKIFKRSKWDNETAPFYSQHYVGWSLLFALETAMRQG



EILAMKRKDVRDGFIHLPITKNGESRDVPLSKEAKRLLSLLPVENDILVPVKVKTFKRTWIRMRDEAGLS



HINFHDTRHEAITRMVRNRKLPVEVLAKITGHKTINILINTYYNPNYECKFFPRVSHDIHQ





1814
WP_018409463.1



MTKIDDDLESGGAPLAERPSAPHLAALSEKARDYARNARSDNTRRAYDADWRQFAAWLRRQGLDPLPPEP



QTVGLYLTACMEGVLGREPVSVATLERRLAGICWHYRQCGAPLDTSDRHIATVLAGIRRAHSRPPLQKEA



IFADELLAMLSVLEMDLRGIRDRAILAIGFSGGLRRSEIVGLDCGPDQTEDGAGWVEIFPPAGPGNEGGA



VLQISGKTGWREVEIGRGSRPETCPVALLETWMRLGRISHGPLFRPIARKNGGVSSERLTDKHVARLVQK



TALAAGIRGDLTEGERRLAFGGHSLRAGLASSAQIEEAHVQKHLGHASAEMTRRYQRKRDRFRVNLTKAA



GL





1815
WP_010305236.1



MGYKIKKFIMSSGERGHLILDKETELPVYYQNLFLTENVRNRNATASTVEVVATNLLIFSNFLDSRKINI



VERIEAKKYLSIAEINDLIRYAKQRFDKQKITNIRQMNKMFIAKRTFSYRIHVFSSYLKWLCILVHSTKG



IHDRYEVDNFIESIKAYIPRKSSLNMNDRSDKSLDEGEIRILFNLLKVDGNNNPFQKDVQIRNRLIFSLL



FNLGLRAGELLNLKIDDFDLRDNTLSIIRRHDSKEDRRSYQPLVKTGERVIPLSDELASDIFRYISDSRE



KMTKRKKHNFLLVAHYTGKTAGEPLSISAYEKIISTLKRASPELSKLSGHRLRHSWNYIYSKEMDVSNLE



FGRKKELRNYCQGWSKGSKMSENYNFKYISQQEKEVILRIYGSINKIISGA





1816
WP_008737017.1



MTTPLSVRAIESMRPGDSPRTDVGETQGLRVTCAKSGVRTFIYRYRSPETGKLVQLKLGHYPGLKLAEAR



MQVVRMKELQRAGVCPKAQQERELAAQREEEEKARREQEAAAFLVADLIELYLTEVIEDRMIKDARTGKP



KRVAGSRKPKGQAEVRRTLYNDPVRVLGDMPAGEVTRKHVVDLVRKILARGANVQAGNVLRELTAAYEYA



IAMEKLPEDFANPAMLAKGSLRTARVKLSSEKGRRALSDEDLRALLAWLPGSGFSVTQKNVIRLTLWTGC



RTGEVCEAEWRDVDLEKGVWHMRDSKNGAERYVQLSRQAVEFLRQLKLNGTTYVFPSSRSGRPIQQKSLS



EAKWQLKHPEQVQNRRVYRPEQRWLTTIEDWSPHDLRRTVRTGLSRLGCPSEVAEAVLGHSRKGIEGTYD



LHRYEDQCKVWLQKWADHLDTLLRQKG





1817
WP_006526094.1



MRQLRRLQRTKGYLRKTDDKHGREIVKPFIKSDFDEMVRCCLNHRDKHNPSSWKYRVWYRNYILLILGVN



TGNRIETLIELTPRDIAGGQYTCKEMKTGKVQQFNMNADVYATVREYIERYNIQMNEYIFESRQGFKGYP



ITRQQAWRIIKQLADEAGIKYPVACHSLRKSYGRWYWDSTHDLLTTQKLLMHESAAETMLYIMLEPSDIQ



EVRESINHTEKWG





1818
WP_127657123.1



MPNLVTPRETNLDDEALEALSDLFVRGTPANTIRAYERDLAYITAWKMAAFGTDLAWPEEEAVAMRFVLD



HSRDLQDISGDAARVAQSLISQGLRRSLECPAPSTLDRRIASWRSFHRMRNLPSPFDAPLIRQARSKARR



AAGRPAAPKSANPITREIVDEMCAAAGPGLRGIRDRAILLLGWASGGRRRSEIATLRREDVDLGDFDSDG



IVWLRLRDTKTTRQEQTPKLVLKGRAARAVTAWIDAAEIRDGALFRKIGTTGRPGTRALSPAGIGQIVKR



CLEQSGRGADFASAHGLRSGFLTQAALDGAPLQAAMRLSLHKSAAQAQAYYGDVEITDNPATDLLDKS





1819
WP_071857225.1



MNQQEANRRMEEEIQFFPWFIQNYFRKKSGDQYSSITLYEYAKEYRRFLNWLIQESFSSADKISEVTLTE



FANLWPEDLEFYKAHLVKAPKILKETTQKRLEENDQSLPLRQNATVQRGITALRSLFNYLNDAVDRNSGK



PYLEHNMMAKVANVKDNKTMAERGAAIEKKLFLDEEAIDFLDYIEHRYIDTLETRQAITAFKKNQVRDLA



IIALFLGTGMRLSELVNMNVQDLDLTSGEARVYRKGGKWDMVVISSIAMEFLTNYLAQRENLYQPAETET



ALFLTRYRGKAKRIASGAVEAMVGKYSESFKIKISPHKLRHSVATQLYSKTNSLIQVAEQLGQSGTSATT



VYTHIAGKQKRDAMNDLWT





1820
WP_107676128.1



MQNPPANTPKIDDSADSALPAGVELVVEMDAASRPARLEALVETATAYANAASSENTRDAYAKDWRHFTT



WCRREGFEPMPPSSQVIGLYIGACASGDPKRNTPALSVATIERRLSGLAWNFTQRGIPMDRSNRHIATVL



AGIRRKHAKPPRQKEAVLGEDIKAMVDTLGHHLRGLRDRAILLLGFAGGLRRSEIVGLDIVRDDHSDGHG



WIEIFPSQGVLVTLRGKTGWRQVEVGRGASEQTCPVVALESWIRFGRIVRGPLFRRIFKDNKTVDVERLS



DKHVARLVKQTALAAGVRSDLPEGERALLFAGHSLRAGLASSAEIEERYVQKQLGHASAEMTRKYQRRRD



RFRTNLTKASGL





1821
WP_003132298.1



MTITKNKNGTWRVDISDGINPLTGIQGRHRKYDCKTKKEAIEYEAKYRLEELGEFKRKDKLSIDSLYALL



KKEDVLRGNRQSTKDTQDSYYRIYVSKFFQNADMRLVKTSDIKAFRDWLIKTPSVKGGNLSASNINTIMI



FVGKLFDISMMNDLRKDNPCKALKRLPQQHKEMFYYTPEQFKQFISLFDESEYHFQLLYKILMFTGARIG



EALALTWEQINLEIGYIDIKSSAHYRKSKVTIAETKTTQSIRRIYIHKALIDELSKWKQRQFQLLIKYIS



TPEQLQIYQNTPKVLTAPDVSNFKKEKLKKRAELINLKLIRNHDFRHSHAAFLISQGLRKGEGKDYLFFT



LMKRLGHSSITTTINTYSHLFPTQQKEIANAFDDF









In some embodiments, a recombinase polypeptide (e.g., comprised in a system or cell as described herein) comprises an amino acid sequence as listed in Table 2, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity thereto, or having no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 sequence alterations (e.g., substitutions, insertions, or deletions) relative thereto. In some embodiments, a recombinase polypeptide (e.g., comprised in a system or cell as described herein), or a portion thereof, has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of a DNA binding domain, recombinase normal, N-terminal domain, and/or C-terminal domain of a recombinase polypeptide as listed in Table 2, or having no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 sequence alterations (e.g., substitutions, insertions, or deletions) relative thereto. In some embodiments, a recombinase polypeptide (e.g., comprised in a system or cell as described herein) has one or more of the DNA binding activity and/or the recombinase activity of a recombinase polypeptide comprising an amino acid sequence as listed in Table 2, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity thereto, or an amino acid sequence having no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 sequence alterations (e.g., substitutions, insertions, or deletions) relative thereto.


In some embodiments, an insert DNA (e.g., comprised in a system or cell as described herein) comprises a nucleic acid recognition sequence as listed in column 2 or 3 of Table 1, or a nucleic acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or having no more than 1, 2, 3, 4, 5, 6, 7, or 8 sequence alterations (e.g., substitutions, insertions, or deletions) relative thereto. In some embodiments, an insert DNA (e.g., comprised in a system or cell as described herein) comprises one or more (e.g., both) parapalindromic sequences of a nucleic acid recognition sequence as listed in column 2 or 3 of Table 1, or a nucleic acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or having no more than 1, 2, 3, 4, 5, 6, 7, or 8 sequence alterations (e.g., substitutions, insertions, or deletions) relative thereto. In some embodiments, an insert DNA (e.g., comprised in a system or cell as described herein) comprises a spacer (e.g., a core sequence) of a nucleic acid recognition sequence as listed in column 3 of Table 1, or a nucleic acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or having no more than 1, 2, 3, 4, 5, 6, 7, or 8 sequence alterations (e.g., substitutions, insertions, or deletions) relative thereto. In certain embodiments, the insert DNA further comprises a heterologous object sequence.


In some embodiments, an insert DNA (e.g., comprised in a system or cell as described herein) comprises a nucleic acid recognition sequence as listed in column 2 or 3 of Table 1, or a nucleic acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or having no more than 1, 2, 3, 4, 5, 6, 7, or 8 sequence alterations (e.g., substitutions, insertions, or deletions) relative thereto, that is the cognate to a human recognition sequence (e.g., as listed in column 3 of Table 1, e.g., in the same row as that listing the nucleic acid recognition sequence in column 2), or a nucleic acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or having no more than 1, 2, 3, 4, 5, 6, 7, or 8 sequence alterations (e.g., substitutions, insertions, or deletions) relative thereto. In certain embodiments, the cognate human recognition sequence is located in the human genome at a position listed in column 4 of Table 1 (e.g., corresponding to the cognate human recognition sequence listed in the same row in column 3).


In some embodiments, an insert DNA or recombinase polypeptide used in a composition or method described herein directs insertion of a heterologous object sequence into a position having a safe harbor score of at least 3, 4, 5, 6, 7, or 8. In some embodiments, an insert DNA or recombinase polypeptide used in a composition or method described herein directs insertion of a heterologous object sequence into a genomic safe harbor site that is unique, with 1 copy in the human genome. By way of example, a unique site may be present at 1 copy in the haploid human genome, such that a diploid cell may comprise 2 copies of the site, situated on a homologous chromosome pair. As a further example, a unique site may be present at 1 copy in the diploid human genome, such that a diploid cell comprises 1 copy of the site, situated on only one chromosome of a homologous chromosome pair.


In some embodiments the three base pairs in the parapalindromic sequence directly adjacent to the core sequence (a “core adjacent motif”) comprise AAA, AGA, ATA, or TAA. In some embodiments, the core adjacent motif comprises at least one A (e.g., comprises 2 or 3 As). In some embodiments, the core adjacent motif is ANA or NAA (where N is any nucleotide). In some embodiments, a DNA recognition site described herein comprises a first core adjacent motif in the first parapalindromic sequence and a second core adjacent motif in the second parapalindromic sequence. In some embodiments, the first core adjacent motif and the second core adjacent motif have the same nucleotide sequence, and in other embodiments, the first core adjacent motif and the second core adjacent motif have different sequences.


In some embodiments, the DNA recognition sequence on the insert DNA has 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more mismatches as compared to the human DNA recognition sequence. Without wishing to be bound by theory, it is contemplated that the mismatches between the DNA recognition sequences may, in some embodiments, bias recombinase activity towards integration over excision, for example, as described in Araki et al., Nucleic Acids Research, 1997, Vol. 25, No. 4, 868-872, incorporated herein by reference in its entirety. In some embodiments, the DNA recognition sequences on the insert DNA and/or the human DNA recognition sequences each comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more mismatches as compared to the native recognition sequence recognized by the recombinase polypeptide. In certain embodiments, recombination between the insert DNA and the human DNA recognition sequence results in the formation of an integrated nucleic acid molecule comprising two recognition sequences flanking the integrated sequence (e.g., the heterologous object sequence). In certain embodiments, one or both of the two recognition sequences of the integrated nucleic acid molecule comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more mismatches as compared to one or more of (e.g., one, two, or all three of): (i) the native recognition sequence, (ii) the recognition sequence on the insert DNA, and/or (iii) the human DNA recognition sequence. In some embodiments the mismatches are all present on the same parapalindromic sequence. In some embodiments the mismatches are present on different parapalindromic sequences. In embodiments, one or both of the two recognition sequences of the integrated nucleic acid molecule comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more mismatches as compared to the native recognition sequence. In some embodiments the mismatches are present in the core sequence. It is contemplated that, in some embodiments, these differences between the recognition sequence(s) of the integrated nucleic acid molecule and the native recognition sequence, the insert DNA recognition sequence, and/or the human DNA recognition sequence result in reduced binding affinity between the recombinase polypeptide and the recognition sequences of the integrated nucleic acid molecule, compared to the recognition sequence(s) of the integrated nucleic acid molecule and the native recognition sequence.


In some embodiments, a human recognition sequence (e.g., a human DNA recognition sequence, e.g., as listed in column 3 of Table 1) is located in or near (e.g., within 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, or 10,000 nucleotides of) a genomic safe harbor site. In some embodiments, the human recognition sequence is located at a position in the genome that meets 1, 2, 3, 4, 5, 6, 7, 8 or 9 of the following criteria: (i) is located >300 kb from a cancer-related gene; (ii) is >300 kb from a miRNA/other functional small RNA; (iii) is >50 kb from a 5′ gene end; (iv) is >50 kb from a replication origin; (v) is >50 kb away from any ultraconserved element; (vi) has low transcriptional activity (i.e. no mRNA+/−25 kb); (vii) is not in a copy number variable region; (viii) is in open chromatin; and/or (ix) is unique, with 1 copy in the human genome. In some embodiments, a genomic location listed in column 4 of Table 1 is located in or near (e.g., within 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, or 10,000 nucleotides of) a genomic safe harbor site. In some embodiments, a genomic location listed in column 4 of Table 1 is at a position in the genome that meets 1, 2, 3, 4, 5, 6, 7, 8 or 9 of the following criteria: (i) is located >300 kb from a cancer-related gene; (ii) is >300 kb from a miRNA/other functional small RNA; (iii) is >50 kb from a 5′ gene end; (iv) is >50 kb from a replication origin; (v) is >50 kb away from any ultraconserved element; (vi) has low transcriptional activity (i.e. no mRNA+/−25 kb); (vii) is not in a copy number variable region; (viii) is in open chromatin; and/or (ix) is unique, with 1 copy in the human genome.


In embodiments, a cell or system as described herein comprises one or more of (e.g., 1, 2, or 3 of): (i) a recombinase polypeptide as listed in a single row of column 1 of Table 1 or 2, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity thereto; (ii) an insert DNA comprising a DNA recognition sequence as listed in column 2 and the same row of Table 1, or a nucleic acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or having no more than 1, 2, 3, or 4 sequence alterations (e.g., substitutions, insertions, or deletions) relative thereto, optionally wherein the insert DNA further comprises an object sequence (e.g., a heterologous object sequence); and/or (iii) a genome comprising a human DNA recognition sequence sequence as listed in column 3 and the same row of Table 1, or a nucleic acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or having no more than 1, 2, 3, or 4 sequence alterations (e.g., substitutions, insertions, or deletions) relative thereto; preferably wherein the human DNA recognition sequence is located in the genome at the location listed in column 4 and the same row of Table 1 corresponding to the listing of the human DNA recognition sequence.


In some embodiments, the protein component(s) of a Gene Writing™ system as described herein may be pre-associated with a template (e.g., a DNA template). For example, in some embodiments, the Gene Writer™ polypeptide may be first combined with the DNA template to form a deoxyribonucleoprotein (DNP) complex. In some embodiments, the DNP may be delivered to cells via, e.g., transfection, nucleofection, virus, vesicle, LNP, exosome, fusosome. Additional description of DNP delivery is found, for example, in Guha and Calos J Mol Biol (2020), which is herein incorporated by reference in its entirety.


In some embodiments, a polypeptide described herein comprises one or more (e.g., 2, 3, 4, 5) nuclear targeting sequences, for example a nuclear localization sequence (NLS). In some embodiments, the NLS is a bipartite NLS. In some embodiments, an NLS facilitates the import of a protein comprising an NLS into the cell nucleus. In some embodiments, the NLS is fused to the N-terminus of a Gene Writer described herein. In some embodiments, the NLS is fused to the C-terminus of the Gene Writer. In some embodiments, the NLS is fused to the N-terminus or the C-terminus of a Cas domain. In some embodiments, a linker sequence is disposed between the NLS and the neighboring domain of the Gene Writer.


In some embodiments, an NLS comprises the amino acid sequence MDSLLMNRRKFLYQFKNVRWAKGRRETYLC (SEQ ID NO: 1822), PKKRKVEGADKRTADGSEFESPKKKRKV (SEQ ID NO: 1823), RKSGKIAAIWKRPRKPKKKRKV KRTADGSEFESPKKKRKV (SEQ ID NO: 1824), KKTELQTTNAENKTKKL (SEQ ID NO: 1825), or KRGINDRNFWRGENGRKTR (SEQ ID NO: 1826), KRPAATKKAGQAKKKK (SEQ ID NO: 1827), or a functional fragment or variant thereof. Exemplary NLS sequences are also described in PCT/EP2000/011690, the contents of which are incorporated herein by reference for their disclosure of exemplary nuclear localization sequences.


In some embodiments, the NLS is a bipartite NLS. A bipartite NLS typically comprises two basic amino acid clusters separated by a spacer sequence (which may be, e.g., about 10 amino acids in length). A monopartite NLS typically lacks a spacer. An example of a bipartite NLS is the nucleoplasmin NLS, having the sequence KR[PAATKKAGQA]KKKK (SEQ ID NO: 1828), wherein the spacer is bracketed. Another exemplary bipartite NLS has the sequence PKKKRKVEGADKRTADGSEFESPKKKRKV (SEQ ID NO: 1829). Exemplary NLSs are described in International Application WO2020051561, which is herein incorporated by reference in its entirety, including for its disclosures regarding nuclear localization sequences.


DNA Binding Domains


In some embodiments, a recombinase polypeptide (e.g., comprised in a system or cell as described herein), e.g., a tyrosine recombinase, comprises a DNA binding domain (e.g., a target binding domain or a template binding domain).


In some embodiments, a recombinase polypeptide described herein may be redirected to a defined target site in the human genome. In some embodiments, a recombinase described herein may be fused to a heterologous domain, e.g., a heterologous DNA binding domain. In some embodiments, a recombinase may be fused to a heterologous DNA binding domain, e.g., a DNA binding domain from a zinc finger, TAL, meganuclease, transcription factor, or sequence-guided DNA binding element. In some embodiments, a recombinase may be fused to a DNA binding domain from a sequence-guided DNA binding element, e.g., a CRISPR-associated (Cas) DNA binding element, e.g., a Cas9. In some embodiments, a DNA binding element fused to a recombinase domain may contain mutations inactivating other catalytic functions, e.g., mutations inactivating endonuclease activity, e.g., mutations creating an inactivated meganuclease or partially or completely inactivate Cas protein, e.g., mutations creating a nickase Cas9 or dead Cas9 (dCas9).


In some embodiments, a DNA binding domain comprises a Streptococcus pyogenes Cas9 (SpCas9) or a functional fragment or variant thereof. In some embodiments, the DNA binding domain comprises a modified SpCas9. In embodiments, the modified SpCas9 comprises a modification that alters protospacer-adjacent motif (PAM) specificity. In embodiments, the PAM has specificity for the nucleic acid sequence 5′-NGT-3′. In embodiments, the modified SpCas9 comprises one or more amino acid substitutions, e.g., at one or more of positions L1111, D1135, G1218, E1219, A1322, of R1335, e.g., selected from L1111R, D1135V, G1218R, E1219F, A1322R, R1335V. In embodiments, the modified SpCas9 comprises the amino acid substitution T1337R and one or more additional amino acid substitutions, e.g., selected from L1111, D1135L, S1136R, G1218S, E1219V, D1332A, D1332S, D1332T, D1332V, D1332L, D1332K, D1332R, R1335Q, T1337, T1337L, T1337Q, T1337I, T1337V, T1337F, T1337S, T1337N, T1337K, T1337H, T1337Q, and T1337M, or corresponding amino acid substitutions thereto. In embodiments, the modified SpCas9 comprises: (i) one or more amino acid substitutions selected from D1135L, S1136R, G1218S, E1219V, A1322R, R1335Q, and T1337; and (ii) one or more amino acid substitutions selected from L1111R, G1218R, E1219F, D1332A, D1332S, D1332T, D1332V, D1332L, D1332K, D1332R, T1337L, T1337I, T1337V, T1337F, T1337S, T1337N, T1337K, T1337R, T1337H, T1337Q, and T1337M, or corresponding amino acid substitutions thereto.


In some embodiments, the DNA binding domain comprises a Cas domain, e.g., a Cas9 domain. In embodiments, the DNA binding domain comprises a nuclease-active Cas domain, a Cas nickase (nCas) domain, or a nuclease-inactive Cas (dCas) domain. In embodiments, the DNA binding domain comprises a nuclease-active Cas9 domain, a Cas9 nickase (nCas9) domain, or a nuclease-inactive Cas9 (dCas9) domain. In some embodiments, the DNA binding domain comprises a Cas9 domain of Cas9 (e.g., dCas9 and nCas9), Cas12a/Cpf1, Cas12b/C2c1, Cas12c/C2c3, Cas12d/CasY, Cas12e/CasX, Cas12g, Cas12h, or Cas12i. In some embodiments, the DNA binding domain comprises a Cas9 (e.g., dCas9 and nCas9), Cas12a/Cpf1, Cas12b/C2c1, Cas12c/C2c3, Cas12d/CasY, Cas12e/CasX, Cas12g, Cas12h, or Cas12i. In some embodiments, the DNA binding domain comprises an S. pyogenes or an S. thermophilus Cas9, or a functional fragment thereof. In some embodiments, the DNA binding domain comprises a Cas9 sequence, e.g., as described in Chylinski, Rhun, and Charpentier (2013) RNA Biology 10:5, 726-737; incorporated herein by reference. In some embodiments, the DNA binding domain comprises the HNH nuclease subdomain and/or the RuvC1 subdomain of a Cas, e.g., Cas9, e.g., as described herein, or a variant thereof. In some embodiments, the DNA binding domain comprises Cas12a/Cpf1, Cas12b/C2c1, Cas12c/C2c3, Cas12d/CasY, Cas12e/CasX, Cas12g, Cas12h, or Cas12i. In some embodiments, the DNA binding domain comprises a Cas polypeptide (e.g., enzyme), or a functional fragment thereof. In embodiments, the Cas polypeptide (e.g., enzyme) is selected from Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas5d, Cas5t, Cas5h, Cas5a, Cas6, Cas7, Cas8, Cas8a, Cas8b, Cas8c, Cas9 (e.g., Csn1 or Csx12), Cas10, Cas10d, Cas12a/Cpf1, Cas12b/C2c1, Cas12c/C2c3, Cas12d/CasY, Cas12e/CasX, Cas12g, Cas12h, Cas12i, Csy1, Csy2, Csy3, Csy4, Cse1, Cse2, Cse3, Cse4, Cse5e, Csc1, Csc2, Csa5, Csn1, Csn2, Csm1, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csx1, Csx1S, Csx11, Csf1, Csf2, CsO, Csf4, Csd1, Csd2, Cst1, Cst2, Csh1, Csh2, Csa1, Csa2, Csa3, Csa4, Csa5, Type II Cas effector proteins, Type V Cas effector proteins, Type VI Cas effector proteins, CARF, DinG, Cpf1, Cas12b/C2c1, Cas12c/C2c3, Cas12b/C2c1, Cas12c/C2c3, SpCas9(K855A), eSpCas9(1.1), SpCas9-HF1, hyper accurate Cas9 variant (HypaCas9), homologues thereof, modified or engineered versions thereof, and/or functional fragments thereof. In embodiments, the Cas9 comprises one or more substitutions, e.g., selected from H840A, D10A, P475A, W476A, N477A, D1125A, W1126A, and D1127A. In embodiments, the Cas9 comprises one or more mutations at positions selected from: D10, G12, G17, E762, H840, N854, N863, H982, H983, A984, D986, and/or A987, e.g., one or more substitutions selected from D10A, G12A, G17A, E762A, H840A, N854A, N863A, H982A, H983A, A984A, and/or D986A. In some embodiments, the DNA binding domain comprises a Cas (e.g., Cas9) sequence from Corynebacterium ulcerans, Corynebacterium diphtheria, Spiroplasma syrphidicola, Prevotella intermedia, Spiroplasma taiwanense, Streptococcus iniae, Belliella baltica, Psychroflexus torquis, Streptococcus thermophilus, Listeria innocua, Campylobacter jejuni, Neisseria meningitidis, Streptococcus pyogenes, or Staphylococcus aureus, or a fragment or variant thereof.


In some embodiments, the DNA binding domain comprises a Cpf1 domain, e.g., comprising one or more substitutions, e.g., at position D917, E1006A, D1255 or any combination thereof, e.g., selected from D917A, E1006A, D1255A, D917A/E1006A, D917A/D1255A, E1006A/D1255A, and D917A/E1006A/D1255A.


In some embodiments, the DNA binding domain comprises spCas9, spCas9-VRQR, spCas9-VRER, xCas9 (sp), saCas9, saCas9-KKH, spCas9-MQKSER, spCas9-LRKIQK, or spCas9-LRVSQL.


In some embodiments, the DNA-binding domain comprises an amino acid sequence as listed in Table 3 below, or an amino acid sequence having at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity thereto. In some embodiments, the DNA-binding domain comprises an amino acid sequence that has no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 differences (e.g., mutations) relative to any of the amino acid sequences described herein.









TABLE 3







Each of the Reference Sequences are incorporated by reference in their entirety








Name
Amino Acid Sequence or Reference Sequence






Streptococcus pyogenes




Cas9






Exemplary Linker
SGSETPGTSESATPES (SEQ ID NO: 1830)





Exemplary Linker Motif
(SGGS)n (SEQ ID NO: 1831)





Exemplary Linker Motif
(GGGS)n (SEQ ID NO: 1832)





Exemplary Linker Motif
(GGGGS)n (SEQ ID NO: 1833)





Exemplary Linker Motif
(G)n





Exemplary Linker Motif
(EAAAK)n (SEQ ID NO: 1834)





Exemplary Linker Motif
(GGS)n





Exemplary Linker Motif
(XP)n





Cas9 from Streptococcus
NCBI Reference Sequence: NC_002737.2 and Uniprot



pyogenes

Reference Sequence: Q99ZW2





Cas9 from Corynebacterium
NCBI Refs: NC_015683.1, NC_017317.1



ulcerans







Cas9 from Corynebacterium
NCBI Refs: NC_016782.1, NC_016786.1



diphtheria







Cas9 from Spiroplasma
NCBI Ref: NC_021284.1



syrphidicola







Cas9 from Prevotella
NCBI Ref: NC_017861.1



intermedia







Cas9 from Spiroplasma
NCBI Ref: NC_021846.1



taiwanense







Cas9 from Streptococcus
NCBI Ref: NC_021314.1



iniae







Cas9 from Belliella baltica
NCBI Ref: NC_018010.1





Cas9 from Psychroflexus
NCBI Ref: NC_018721.1



torquisI







Cas9 from Streptococcus
NCBI Ref: YP_820832.1



thermophilus







Cas9 from Listeria innocua
NCBI Ref: NP_472073.1





Cas9 from Campylobacter
NCBI Ref: YP_002344900.1



jejuni







Cas9 from Neisseria
NCBI Ref: YP_002342100.1



meningitidis







dCas9 (D10A and H840A)






Catalytically inactive Cas9



(dCas9)






Cas9 nickase (nCas9)






Catalytically active Cas9






CasY
((ncbi.nlm.nih.gov/protein/APG80656.1)



>APG80656.1 CRISPR-associated protein CasY [uncultured



Parcubacteria group bacterium])





CasX
uniprot.org/uniprot/F0NN87; uniprot.org/uniprot/F0NH53





CasX
>tr|F0NH53|F0NH53_SULIR CRISPR associated protein, Casx



OS = Sulfolobus islandicus (strain REY15A) GN = SiRe_0771



PE = 4 SV = 1





Deltaproteobacteria CasX






Cas12b/C2c1
((uniprot.org/uniprot/T0D7A2#2) sp|T0D7A2|C2C1_ALIAG



CRISPR- associated endonuclease C2c1 OS = Alicyclobacillus




acido-terrestris (strain ATCC 49025/DSM 3922/CIP 106132/




NCIMB 13137/GD3B) GN = c2c1 PE = 1 SV = 1)





BhCas12b (Bacillus
NCBI Reference Sequence: WP_095142515



hisashii)







BvCas12b (Bacillus sp. V3-
NCBI Reference Sequence: WP_101661451.1


13)






Wild-type Francisella




novicida Cpf1








Francisella novicida Cpf1




D917A







Francisella novicida Cpf1




E1006A







Francisella novicida Cpf1




D1255A







Francisella novicida Cpf1




D917A/E1006A







Francisella novicida Cpf1




D917A/D1255A







Francisella novicida Cpf1




E1006A/D1255A







Francisella novicida Cpf1




D917A/E1006A






SaCas9






SaCas9n






PAM-binding SpCas9






PAM-binding SpCas9n






PAM-binding SpEQR Cas9






PAM-binding SpVQR Cas9






PAM-binding SpVRER



Cas9






PAM-binding SpVRQR



Cas9






SpyMacCas9









In some embodiments, the Cas polypeptide binds a gRNA that directs DNA binding. In some embodiments, the gRNA comprises, e.g., from 5′ to 3′ (1) a gRNA spacer; (2) a gRNA scaffold. In some embodiments:

    • (1) Is a Cas9 spacer of ˜18-22 nt, e.g., is 20 nt
    • (2) Is a gRNA scaffold comprising one or more hairpin loops, e.g., 1, 2, of 3 loops for associating the template with a nickase Cas9 domain. In some embodiments, the gRNA scaffold carries the sequence, from 5′ to 3′,









(SEQ ID NO: 1835)


GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAA


CTTGAAAAAGTGGGACCGAGTCGGTCC.






In some embodiments, a Gene Writing system described herein is used to make an edit in HEK293, K562, U20S, or HeLa cells. In some embodiment, a Gene Writing system is used to make an edit in primary cells, e.g., primary cortical neurons from E18.5 mice.


In some embodiments, a system or method described herein involves a CRISPR DNA targeting enzyme or system described in US Pat. App. Pub. No. 20200063126, 20190002889, or 20190002875 (each of which is incorporated by reference herein in its entirety) or a functional fragment or variant thereof. For instance, in some embodiments, a GeneWriter polypeptide or Cas endonuclease described herein comprises a polypeptide sequence of any of the applications mentioned in this paragraph, and in some embodiments a guide RNA comprises a nucleic acid sequence of any of the applications mentioned in this paragraph.


In some embodiments, the DNA binding domain (e.g., a target binding domain or a template binding domain) comprises a meganuclease domain, or a functional fragment thereof. In some embodiments, the meganuclease domain possesses endonuclease activity, e.g., double-strand cleavage and/or nickase activity. In other embodiments, the meganuclease domain has reduced activity, e.g., lacks endonuclease activity, e.g., the meganuclease is catalytically inactive. In some embodiments, a catalytically inactive meganuclease is used as a DNA binding domain, e.g., as described in Fonfara et al. Nucleic Acids Res 40(2):847-860 (2012), incorporated herein by reference in its entirety. In embodiments, the DNA binding domain comprises one or more modifications relative to a wild-type DNA binding domain, e.g., a modification via directed evolution, e.g., phage-assisted continuous evolution (PACE).


Inteins


In some embodiments, as described in more detail below, Intein-N may be fused to the N-terminal portion of a polypeptide (e.g., a Gene Writer polypeptide) described herein, e.g., at a first domain. In embodiments, intein-C may be fused to the C-terminal portion of the polypeptide described herein (e.g., at a second domain), e.g., for the joining of the N-terminal portion to the C-terminal portion, thereby joining the first and second domains. In some embodiments, the first and second domains are each independently chosen from a DNA binding domain and a catalytic domain, e.g., a recombinase domain. In some embodiments, a single domain is split using the intein strategy described herein, e.g., a DNA binding domain, e.g., a dCas9 domain.


In some embodiments, a system or method described herein involves an intein that is a self-splicing protein intron (e.g., peptide), e.g., which ligates flanking N-terminal and C-terminal exteins (e.g., fragments to be joined). An intein may, in some instances, comprise a fragment of a protein that is able to excise itself and join the remaining fragments (the exteins) with a peptide bond in a process known as protein splicing. Inteins are also referred to as “protein inons.” The process of an intein excising itself and joining the remaining portions of the protein is herein termed “protein splicing” or “intein-mediated protein splicing.” In some embodiments, an intein of a precursor protein (an intein containing protein prior to intein-mediated protein splicing) comes from two genes. Such intein is referred to herein as a split intein (e.g., split intein-N and split intein-C). For example, in cyanobacteria, DnaE, the catalytic subunit a of DNA polymerase III, is encoded by two separate genes, dnaE-n and dnaE-c. The intein encoded by the dnaE-n gene may be herein referred as “intein-N.” The intein encoded by the dnaE-c gene may be herein referred as “intein-C.”


Use of inteins for joining heterologous protein fragments is described, for example, in Wood et al., J. Biol. Chem. 289(21); 14512-9 (2014) (incorporated herein by reference in its entirety). For example, when fused to separate protein fragments, the inteins IntN and IntC may recognize each other, splice themselves out, and/or simultaneously ligate the flanking N- and C-terminal exteins of the protein fragments to which they were fused, thereby reconstituting a full-length protein from the two protein fragments.


In some embodiments, a synthetic intein based on the dnaE intein, the Cfa-N (e.g., split intein-N) and Cfa-C (e.g., split intein-C) intein pair, is used. Examples of such inteins have been described, e.g., in Stevens et al., J Am Chem Soc. 2016 Feb. 24; 138(7):2162-5 (incorporated herein by reference in its entirety). Non-limiting examples of intein pairs that may be used in accordance with the present disclosure include: Cfa DnaE intein, Ssp GyrB intein, Ssp DnaX intein, Ter DnaE3 intein, Ter ThyX intein, Rma DnaB intein and Cne Prp8 intein (e.g., as described in U.S. Pat. No. 8,394,604, incorporated herein by reference.


In some embodiments, Intein-N and intein-C may be fused to the N-terminal portion of the split Cas9 and the C-terminal portion of a split Cas9, respectively, for the joining of the N-terminal portion of the split Cas9 and the C-terminal portion of the split Cas9. For example, in some embodiments, an intein-N is fused to the C-terminus of the N-terminal portion of the split Cas9, i.e., to form a structure of N—[N-terminal portion of the split Cas9]-[intein-N]˜C. In some embodiments, an intein-C is fused to the N-terminus of the C-terminal portion of the split Cas9, i.e., to form a structure of N-[intein-C]˜[C-terminal portion of the split Cas9]-C. The mechanism of intein-mediated protein splicing for joining the proteins the inteins are fused to (e.g., split Cas9) is described in Shah et al., Chem Sci. 2014; 5(1):446-461, incorporated herein by reference. Methods for designing and using inteins are known in the art and described, for example by WO2020051561, WO2014004336, WO2017132580, US20150344549, and US20180127780, each of which is incorporated herein by reference in their entirety.


In some embodiments, a split refers to a division into two or more fragments. In some embodiments, a split Cas9 protein or split Cas9 comprises a Cas9 protein that is provided as an N-terminal fragment and a C-terminal fragment encoded by two separate nucleotide sequences. The polypeptides corresponding to the N-terminal portion and the C-terminal portion of the Cas9 protein may be spliced to form a reconstituted Cas9 protein. In embodiments, the Cas9 protein is divided into two fragments within a disordered region of the protein, e.g., as described in Nishimasu et al., Cell, Volume 156, Issue 5, pp. 935-949, 2014, or as described in Jiang et al. (2016) Science 351: 867-871 and PDB file: 5F9R (each of which is incorporated herein by reference in its entirety). A disordered region may be determined by one or more protein structure determination techniques known in the art, including, without limitation, X-ray crystallography, NMR spectroscopy, electron microscopy (e.g., cryoEM), and/or in silico protein modeling. In some embodiments, the protein is divided into two fragments at any C, T, A, or S, e.g., within a region of SpCas9 between amino acids A292-G364, F445-K483, or E565-T637, or at corresponding positions in any other Cas9, Cas9 variant (e.g., nCas9, dCas9), or other napDNAbp. In some embodiments, protein is divided into two fragments at SpCas9 T310, T313, A456, S469, or C574. In some embodiments, the process of dividing the protein into two fragments is referred to as splitting the protein.


In some embodiments, a protein fragment ranges from about 2-1000 amino acids (e.g., between 2-10, 10-50, 50-100, 100-200, 200-300, 300-400, 400-500, 500-600, 600-700, 700-800, 800-900, or 900-1000 amino acids) in length. In some embodiments, a protein fragment ranges from about 5-500 amino acids (e.g., between 5-10, 10-50, 50-100, 100-200, 200-300, 300-400, or 400-500 amino acids) in length. In some embodiments, a protein fragment ranges from about 20-200 amino acids (e.g., between 20-30, 30-40, 40-50, 50-100, or 100-200 amino acids) in length.


In some embodiments, a portion or fragment of a Gene Writer polypeptide, e.g., as described herein, is fused to an intein. The nuclease can be fused to the N-terminus or the C-terminus of the intein. In some embodiments, a portion or fragment of a fusion protein is fused to an intein and fused to an AAV capsid protein. The intein, nuclease and capsid protein can be fused together in any arrangement (e.g., nuclease-intein-capsid, intein-nuclease-capsid, capsid-intein-nuclease, etc.). In some embodiments, the N-terminus of an intein is fused to the C-terminus of a fusion protein and the C-terminus of the intein is fused to the N-terminus of an AAV capsid protein.


In some embodiments, a Gene Writer polypeptide (e.g., comprising a nickase Cas9 domain) is fused to intein-N and a polypeptide comprising a polymerase domainis fused to an intein-C.


Exemplary nucleotide and amino acid sequences of interns are provided below:










DnaE Intein-N DNA:



(SEQ ID NO: 1836)



TGCCTGTCATACGAAACCGAGATACTGACAGTAGAATATGGCCTTCTGCCAATCGGG






AAGATTGTGGAGAAACGGATAGAATGCACAGTTTACTCTGTCGATAACAATGGTAA





CATTTATACTCAGCCAGTTGCCCAGTGGCACGACCGGGGAGAGCAGGAAGTATTCG





AATACTGTCTGGAGGATGGAAGTCTCATTAGGGCCACTAAGGACCACAAATTTATG





ACAGTCGATGGCCAGATGCTGCCTATAGACGAAATCTTTGAGCGAGAGTTGGACCTC





ATGCGAGTTGACAACCTTCCTAAT





DnaE Intein-N Protein:


(SEQ ID NO: 1837)



CLSYETEILTVEYGLLPIGKIVEKRIECTVYSVDNNGNIYTQPVAQWHDRGEQEVFEYCL






EDGSLIRATKDHKFMTVDGQMLPIDEIFERELDLMRVDNLPN





DnaE Intein-C DNA:


(SEQ ID NO: 1838)



ATGATCAAGATAGCTACAAGGAAGTATCTTGGCAAACAAAACGTTTATGATATTGG






AGTCGAAAGAGATCACAACTTTGCTCTGAAGAACGGATTCATAGCTTCTAAT





Intein-C:


(SEQ ID NO: 1839)



MIKIATRKYLGKQNVYDIGVERDHNFALKNGFIASN






Cfa-N DNA:


(SEQ ID NO: 1840)



TGCCTGTCTTATGATACCGAGATACTTACCGTTGAATATGGCTTCTTGCCTATTGGAA






AGATTGTCGAAGAGAGAATTGAATGCACAGTATATACTGTAGACAAGAATGGTTTC





GTTTACACACAGCCCATTGCTCAATGGCACAATCGCGGCGAACAAGAAGTATTTGA





GTACTGTCTCGAGGATGGAAGCATCATACGAGCAACTAAAGATCATAAATTCATGA





CCACTGACGGGCAGATGTTGCCAATAGATGAGATATTCGAGCGGGGCTTGGATCTC





AAACAAGTGGATGGATTGCCA





Cfa-N Protein:


(SEQ ID NO: 1841)



CLSYDTEILTVEYGFLPIGKIVEERIECTVYTVDKNGFVYTQPIAQWHNRGEQEVFEYCL






EDGSIIRATKDHKFMTTDGQMLPIDEIFERGLDLKQVDGLP





Cfa-C DNA:


(SEQ ID NO: 1842)



ATGAAGAGGACTGCCGATGGATCAGAGTTTGAATCTCCCAAGAAGAAGAGGAAAGT






AAAGATAATATCTCGAAAAAGTCTTGGTACCCAAAATGTCTATGATATTGGAGTGGA





GAAAGATCACAACTTCCTTCTCAAGAACGGTCTCGTAGCCAGCAAC





Cfa-C Protein:


(SEQ ID NO: 1843)



MKRTADGSEFESPKKKRKVKIISRKSLGTQNVYDIGVEKDHNFLLKNGLVASN







Insert DNAs


In some embodiments, an insert DNA as described herein comprises a nucleic acid sequence that can be integrated into a target DNA molecule, e.g., by a recombinase polypeptide (e.g., a tyrosine recombinase polypeptide), e.g., as described herein. The insert DNA typically is able to bind one or more recombinase polypeptides (e.g., a plurality of copies of a recombinase polypeptide) of the system. In some embodiments the insert DNA comprises a region that is capable of binding a recombinase polypeptide (e.g., a recognition sequence as described herein).


An insert DNA may, in some embodiments, comprise an object sequence for insertion into a target DNA. The object sequence may be coding or non-coding. In some embodiments, the object sequence may contain an open reading frame. In some embodiments the insert DNA comprises a Kozak sequence. In some embodiments the insert DNA comprises an internal ribosome entry site. In some embodiments the insert DNA comprises a self-cleaving peptide such as a T2A or P2A site. In some embodiments the insert DNA comprises a start codon. In some embodiments the insert DNA comprises a splice acceptor site. In some embodiments the insert DNA comprises a splice donor site. In some embodiments the insert DNA comprises a microRNA binding site, e.g., downstream of the stop codon. In some embodiments the insert DNA comprises a polyA tail, e.g., downstream of the stop codon of an open reading frame. In some embodiments the insert DNA comprises one or more exons. In some embodiments the insert DNA comprises one or more introns. In some embodiments the insert DNA comprises a eukaryotic transcriptional terminator. In some embodiments the insert DNA comprises an enhanced translation element or a translation enhancing element. In some embodiments the insert DNA comprises a microRNA sequence, a siRNA sequence, a guide RNA sequence, a piwi RNA sequence. In some embodiments the insert DNA comprises a gene expression unit composed of at least one regulatory region operably linked to an effector sequence. The effector sequence may be a sequence that is transcribed into RNA (e.g., a coding sequence or a non-coding sequence such as a sequence encoding a micro RNA). In some embodiments, the object sequence may contain a non-coding sequence. For example, the insert DNA may comprise a promoter or enhancer sequence. In some embodiments the insert DNA comprises a tissue specific promoter or enhancer, each of which may be unidirectional or bidirectional. In some embodiments the promoter is an RNA polymerase I promoter, RNA polymerase II promoter, or RNA polymerase III promoter. In some embodiments the promoter comprises a TATA element. In some embodiments the promoter comprises a B recognition element. In some embodiments the promoter has one or more binding sites for transcription factors.


In some embodiments the object sequence of the insert DNA is inserted into a target genome in an endogenous intron. In some embodiments the object sequence of the insert DNA is inserted into a target genome and thereby acts as a new exon. In some embodiments the insertion of the object sequence into the target genome results in replacement of a natural exon or the skipping of a natural exon. In some embodiments the object sequence of the insert DNA is inserted into the target genome in a genomic safe harbor site, such as AAVS1, CCR5, or ROSA26. In some embodiment the object sequence of the insert DNA is added to the genome in an intergenic or intragenic region. In some embodiments the object sequence of the insert DNA is added to the genome 5′ or 3′ within 0.1 kb, 0.25 kb, 0.5 kb, 0.75, kb, 1 kb, 2 kb, 3 kb, 4 kb, 5 kb, 7.5 kb, 10 kb, 15 kb, 20 kb, 25 kb, 50, 75 kb, or 100 kb of an endogenous active gene. In some embodiments the object sequence of the insert DNA is added to the genome 5′ or 3′ within 0.1 kb, 0.25 kb, 0.5 kb, 0.75, kb, 1 kb, 2 kb, 3 kb, 4 kb, 5 kb, 7.5 kb, 10 kb, 15 kb, 20 kb, 25 kb, 50, 75 kb, or 100 kb of an endogenous promoter or enhancer. In some embodiments the object sequence of the insert DNA can be, e.g., 50-50,000 base pairs (e.g., between 50-40,000 bp, between 500-30,000 bp between 500-20,000 bp, between 100-15,000 bp, between 500-10,000 bp, between 50-10,000 bp, between 50-5,000 bp. In some embodiments the object sequence of the insert DNA can be, e.g., 1-50 base pairs (e.g., between 1-10, 10-20, 20-30, 30-40, or 40-50 base pairs).


In certain embodiments, an insert DNA can be identified, designed, engineered and constructed to contain sequences altering or specifying the genome function of a target cell or target organism, for example by introducing a heterologous coding region into a genome; affecting or causing exon structure/alternative splicing; causing disruption of an endogenous gene; causing transcriptional activation of an endogenous gene; causing epigenetic regulation of an endogenous DNA; causing up- or down-regulation of operably liked genes, etc. In certain embodiments, an insert DNA can be engineered to contain sequences coding for exons and/or transgenes, provide for binding sites to transcription factor activators, repressors, enhancers, etc., and combinations of thereof. In other embodiments, the coding sequence can be further customized with splice acceptor sites, poly-A tails.


The insert DNA may have some homology to the target DNA. In some embodiments the insert DNA has at least 3, 4, 5, 6, 7, 8, 9, 10 or more bases of exact homology to the target DNA or a portion thereof. In some embodiments, the insert DNA has at least 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 140, 160, 180, 200 or more bases of at least 50%, 60%, 70%, 80%, 85%, 90%, 95%, 97%, 98%, 99% or 100% homology to the target DNA, or a portion thereof.


As an alternative to other methods of delivery described herein, in some embodiments, a nucleic acid (e.g., encoding a recombinase, or a template nucleic acid, or both) delivered to cells is designed as a minicircle, where plasmid backbone sequences not pertaining to Gene Writing™ are removed before administration to cells. Minicircles have been shown to result in higher transfection efficiencies and gene expression as compared to plasmids with backbones containing bacterial parts (e.g., bacterial origin of replication, antibiotic selection cassette) and have been used to improve the efficiency of transposition (Sharma et al. Mol Ther Nucleic Acids 2:E74 (2013)). In some embodiments, the DNA vector encoding the Gene Writer™ polypeptide is delivered as a minicircle. In some embodiments, the DNA vector containing the Gene Writer™ template is delivered as a minicircle. In some embodiments of such alternative means for delivering a nucleic acid, the bacterial parts are flanked by recombination sites, e.g., attP/attB, loxP, FRT sites. In some embodiments, the addition of a cognate recombinase results in intramolecular recombination and excision of the bacterial parts. In some embodiments, the recombinase sites are recognized by phiC31 recombinase. In some embodiments, the recombinase sites are recognized by Cre recombinase. In some embodiments, the recombinase sites are recognized by FLP recombinase. In some embodiments, minicircles are generated in a bacterial production strain, e.g., an E. coli strain stably expressing inducible minicircle assembling enzymes, e.g., a producer strain as according to Kay et al. Nat Biotechnol 28(12):1287-1289 (2010). Minicircle DNA vector preparations and methods of production are described in U.S. Pat. No. 9,233,174, incorporated herein by reference in its entirety.


In addition to plasmid DNA, minicircles can be generated by excising the desired construct, e.g., recombinase expression cassette or therapeutic expression cassette, from a viral backbone, e.g., an AAV vector. Previously, it has been shown that excision and circularization of the insert DNA sequence from a viral backbone may be important for transposase-mediated integration efficiency (Yant et al. Nat Biotechnol 20(10):999-1005 (2002)). In some embodiments, minicircles are first formulated and then delivered to target cells. In other embodiments, minicircles are formed from a DNA vector (e.g., plasmid DNA, rAAV, scAAV, ceDNA, doggybone DNA) intracellularly by co-delivery of a recombinase, resulting in excision and circularization of the recombinase recognition site-flanked nucleic acid, e.g., a nucleic acid encoding the Gene Writer™ polypeptide, or DNA template, or both. In some embodiments, the same recombinase is used for a first excision event (e.g., intramolecular recombination) and a second integration (e.g., target site integration) event. In some embodiments, the recombination site on an excised circular DNA (e.g., after a first recombination event, e.g., intramolecular recombination) is used as the template recognition site for a second recombination (e.g., target site integration) event.


Linkers


In some embodiments, domains of the compositions and systems described herein (e.g., the recombinase domain and/or DNA recognition domains of a recombinase polypeptide, e.g., as described herein) may be joined by a linker. A composition described herein comprising a linker element has the general form S1-L-S2, wherein S1 and S2 may be the same or different and represent two domain moieties (e.g., each a polypeptide or nucleic acid domain) associated with one another by the linker. In some embodiments, a linker may connect two polypeptides. In some embodiments, a linker may connect two nucleic acid molecules. In some embodiments, a linker may connect a polypeptide and a nucleic acid molecule. A linker may be a chemical bond, e.g., one or more covalent bonds or non-covalent bonds. A linker may be flexible, rigid, and/or cleavable. In some embodiments, the linker is a peptide linker. Generally, a peptide linker is at least 2, 3, 4, 5, 6, 7, 8, 9, 10 or more amino acids in length, e.g., 2-50 amino acids in length, 2-30 amino acids in length.


The most commonly used flexible linkers have sequences consisting primarily of stretches of Gly and Ser residues (“GS” linker). Flexible linkers may be useful for joining domains that require a certain degree of movement or interaction and may include small, non-polar (e.g. Gly) or polar (e.g. Ser or Thr) amino acids. Incorporation of Ser or Thr can also maintain the stability of the linker in aqueous solutions by forming hydrogen bonds with the water molecules, and therefore reduce unfavorable interactions between the linker and the other moieties. Examples of such linkers include those having the structure [GGS]≥1 or [GGGS]≥1 (SEQ ID NO: 1844). Rigid linkers are useful to keep a fixed distance between domains and to maintain their independent functions. Rigid linkers may also be useful when a spatial separation of the domains is critical to preserve the stability or bioactivity of one or more components in the agent. Rigid linkers may have an alpha helix-structure or Pro-rich sequence, (XP)n, with X designating any amino acid, preferably Ala, Lys, or Glu. Cleavable linkers may release free functional domains in vivo. In some embodiments, linkers may be cleaved under specific conditions, such as the presence of reducing reagents or proteases. In vivo cleavable linkers may utilize the reversible nature of a disulfide bond. One example includes a thrombin-sensitive sequence (e.g., PRS) between the two Cys residues. In vitro thrombin treatment of CPRSC results in the cleavage of the thrombin-sensitive sequence, while the reversible disulfide linkage remains intact. Such linkers are known and described, e.g., in Chen et al. 2013. Fusion Protein Linkers: Property, Design and Functionality. Adv Drug Deliv Rev. 65(10): 1357-1369. In vivo cleavage of linkers in compositions described herein may also be carried out by proteases that are expressed in vivo under pathological conditions (e.g. cancer or inflammation), in specific cells or tissues, or constrained within certain cellular compartments. The specificity of many proteases offers slower cleavage of the linker in constrained compartments.


In some embodiments the amino acid linkers are (or are homologous to) the endogenous amino acids that exist between such domains in a native polypeptide. In some embodiments the endogenous amino acids that exist between such domains are substituted but the length is unchanged from the natural length. In some embodiments, additional amino acid residues are added to the naturally existing amino acid residues between domains.


In some embodiments, the amino acid linkers are designed computationally or screened to maximize protein function (Anad et al., FEBS Letters, 587:19, 2013).


Genomic Safe Harbor Sites

In some embodiments, a Gene Writer targets a genomic safe harbor site (e.g., directs insertion of a heterologous object sequence into a position having a safe harbor score of at least 3, 4, 5, 6, 7, or 8). In some embodiments the genomic safe harbor site is a Natural Harbor™ site. In some embodiments, a Natural Harbor™ site is derived from the native target of a mobile genetic element, e.g., a recombinase, transposon, retrotransposon, or retrovirus. The native targets of mobile elements may serve as ideal locations for genomic integration given their evolutionary selection. In some embodiments the Natural Harbor™ site is ribosomal DNA (rDNA). In some embodiments the Natural Harbor™ site is 5S rDNA, 18S rDNA, 5.8S rDNA, or 28S rDNA. In some embodiments the Natural Harbor™ site is the Mutsu site in 5S rDNA. In some embodiments the Natural Harbor™ site is the R2 site, the R5 site, the R6 site, the R4 site, the R1 site, the R9 site, or the RT site in 28S rDNA. In some embodiments the Natural Harbor™ site is the R8 site or the R7 site in 18S rDNA. In some embodiments the Natural Harbor™ site is DNA encoding transfer RNA (tRNA). In some embodiments the Natural Harbor™ site is DNA encoding tRNA-Asp or tRNA-Glu. In some embodiments the Natural Harbor™ site is DNA encoding spliceosomal RNA. In some embodiments the Natural Harbor™ site is DNA encoding small nuclear RNA (snRNA) such as U2 snRNA.


Thus, in some aspects, the present disclosure provides a method comprising comprises using a GeneWriter system described herein to insert a heterologous object sequence into a Natural Harbor™ site. In some embodiments, the Natural Harbor™ site is a site described in Table 4 below. In some embodiments, the heterologous object sequence is inserted within 20, 50, 100, 150, 200, 250, 500, or 1000 base pairs of the Natural Harbor™ site. In some embodiments, the heterologous object sequence is inserted within 0.1 kb, 0.25 kb, 0.5 kb, 0.75, kb, 1 kb, 2 kb, 3 kb, 4 kb, 5 kb, 7.5 kb, 10 kb, 15 kb, 20 kb, 25 kb, 50, 75 kb, or 100 kb of the Natural Harbor™ site. In some embodiments, the heterologous object sequence is inserted into a site having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity to a sequence shown in Table 4. In some embodiments, the heterologous object sequence is inserted within 20, 50, 100, 150, 200, 250, 500, or 1000 base pairs, or within 0.1 kb, 0.25 kb, 0.5 kb, 0.75, kb, 1 kb, 2 kb, 3 kb, 4 kb, 5 kb, 7.5 kb, 10 kb, 15 kb, 20 kb, 25 kb, 50, 75 kb, or 100 kb, of a site having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity to a sequence shown in Table 4. In some embodiments, the heterologous object sequence is inserted within a gene indicated in Column 5 of Table 4, or within 20, 50, 100, 150, 200, 250, 500, or 1000 base pairs, or within 0.1 kb, 0.25 kb, 0.5 kb, 0.75, kb, 1 kb, 2 kb, 3 kb, 4 kb, 5 kb, 7.5 kb, 10 kb, 15 kb, 20 kb, 25 kb, 50, 75 kb, or 100 kb, of the gene.









TABLE 4







Natural Harbor ™ sites. Column 1 indicates a retrotransposon that inserts into the


Natural Harbor ™ site. Column 2 indicates the gene at the Natural Harbor™ site. Columns 3


and 4 show exemplary human genome sequence 5’ and 3’ of the insertion site (for example, 250


bp). Columns 5 and 6 list the example gene symbol and corresponding Gene ID.
















Example



Target
Target


Gene
Example


Site
Gene
5' flanking sequence
3' flanking sequence
Symbol
Gene ID





R2
28S
CCGGTCCCCCCCGC
GTAGCCAAATGCCT
RNA28SN1
106632264



rDNA
CGGGTCCGCCCCCG
CGTCATCTAATTAG






GGGCCGCGGTTCCG
TGACGCGCATGAAT






CGCGGCGCCTCGCC
GGATGAACGAGATT






TCGGCCGGCGCCTA
CCCACTGTCCCTAC






GCAGCCGACTTAGA
CTACTATCCAGCGA






ACTGGTGCGGACCA
AACCACAGCCAAG






GGGGAATCCGACTG
GGAACGGGCTTGGC






TTTAATTAAAACAA
GGAATCAGCGGGG






AGCATCGCGAAGGC
AAAGAAGACCCTGT






CCGCGGCGGGTGTT
TGAGCTTGACTCTA






GACGCGATGTGATT
GTCTGGCACGGTGA






TCTGCCCAGTGCTC
AGAGACATGAGAG






TGAATGTCAAAGTG
GTGTAGAATAAGTG






AAGAAATTCAATGA
GGAGGCCCCCGGCG






AGCGCGGGTAAAC
CCCCCCCGGTGTCC






GGCGGGAGTAACTA
CCGCGAGGGGCCCG






TGACTCTCTTAAG
GGGCGGGGTCCGCC






(SEQ ID NO: 1845)
G (SEQ ID NO: 1856)







R4
28S
GCGGTTCCGCGCGG
CGCATGAATGGATG
RNA28SN1
106632264



rDNA
CGCCTCGCCTCGGC
AACGAGATTCCCAC






CGGCGCCTAGCAGC
TGTCCCTACCTACT






CGACTTAGAACTGG
ATCCAGCGAAACCA






TGCGGACCAGGGG
CAGCCAAGGGAAC






AATCCGACTGTTTA
GGGCTTGGCGGAAT






ATTAAAACAAAGCA
CAGCGGGGAAAGA






TCGCGAAGGCCCGC
AGACCCTGTTGAGC






GGCGGGTGTTGACG
TTGACTCTAGTCTG






CGATGTGATTTCTG
GCACGGTGAAGAG






CCCAGTGCTCTGAA
ACATGAGAGGTGTA






TGTCAAAGTGAAGA
GAATAAGTGGGAG






AATTCAATGAAGCG
GCCCCCGGCGCCCC






CGGGTAAACGGCG
CCCGGTGTCCCCGC






GGAGTAACTATGAC
GAGGGGCCCGGGG






TCTCTTAAGGTAGC
CGGGGTCCGCCGGC






CAAATGCCTCGTCA
CCTGCGGGCCGCCG






TCTAATTAGTGACG
GTGAAATACCACTA






(SEQ ID NO: 1846)
CTC (SEQ ID NO:







1857)







R5
28S
TCCCCCCCGCCGGG
CCAAATGCCTCGTC
RNA28SN1
106632264



rDNA
TCCGCCCCCGGGGC
ATCTAATTAGTGAC






CGCGGTTCCGCGCG
GCGCATGAATGGAT






GCGCCTCGCCTCGG
GAACGAGATTCCCA






CCGGCGCCTAGCAG
CTGTCCCTACCTAC






CCGACTTAGAACTG
TATCCAGCGAAACC






GTGCGGACCAGGG
ACAGCCAAGGGAA






GAATCCGACTGTTT
CGGGCTTGGCGGAA






AATTAAAACAAAGC
TCAGCGGGGAAAG






ATCGCGAAGGCCCG
AAGACCCTGTTGAG






CGGCGGGTGTTGAC
CTTGACTCTAGTCT






GCGATGTGATTTCT
GGCACGGTGAAGA






GCCCAGTGCTCTGA
GACATGAGAGGTGT






ATGTCAAAGTGAAG
AGAATAAGTGGGA






AAATTCAATGAAGC
GGCCCCCGGCGCCC






GCGGGTAAACGGC
CCCCGGTGTCCCCG






GGGAGTAACTATGA
CGAGGGGCCCGGG






CTCTCTTAAGGTAG
GCGGGGTCCGCCGG






(SEQ ID NO: 1847)
CCC (SEQ ID NO:







1858)







R9
28S
CGGCGCGCTCGCCG
TAGCTGGTTCCCTC
RNA28SN1
106632264



rDNA
GCCGAGGTGGGATC
CGAAGTTTCCCTCA






CCGAGGCCTCTCCA
GGATAGCTGGCGCT






GTCCGCCGAGGGCG
CTCGCAGACCCGAC






CACCACCGGCCCGT
GCACCCCCGCCACG






CTCGCCCGCCGCGC
CAGTTTTATCCGGT






CGGGGAGGTGGAG
AAAGCGAATGATTA






CACGAGCGCACGTG
GAGGTCTTGGGGCC






TTAGGACCCGAAAG
GAAACGATCTCAAC






ATGGTGAACTATGC
CTATTCTCAAACTT






CTGGGCAGGGCGA
TAAATGGGTAAGAA






AGCCAGAGGAAAC
GCCCGGCTCGCTGG






TCTGGTGGAGGTCC
CGTGGAGCCGGGCG






GTAGCGGTCCTGAC
TGGAATGCGAGTGC






GTGCAAATCGGTCG
CTAGTGGGCCACTT






TCCGACCTGGGTAT
TTGGTAAGCAGAAC






AGGGGCGAAAGAC
TGGCGCTGCGGGAT






TAATCGAACCATCT
GAACCGAACGCC






AG (SEQ ID NO: 1848)
(SEQ ID NO: 1859)







R8
18S
GCATTCGTATTGCG
TGAAACTTAAAGGA
RNA18SN1
106631781



rDNA
CCGCTAGAGGTGAA
ATTGACGGAAGGGC






ATTCTTGGACCGGC
ACCACCAGGAGTGG






GCAAGACGGACCA
AGCCTGCGGCTTAA






GAGCGAAAGCATTT
TTTGACTCAACACG






GCCAAGAATGTTTT
GGAAACCTCACCCG






CATTAATCAAGAAC
GCCCGGACACGGAC






GAAAGTCGGAGGTT
AGGATTGACAGATT






CGAAGACGATCAG
GATAGCTCTTTCTC






ATACCGTCGTAGTT
GATTCCGTGGGTGG






CCGACCATAAACGA
TGGTGCATGGCCGT






TGCCGACCGGCGAT
TCTTAGTTGGTGGA






GCGGCGGCGTTATT
GCGATTTGTCTGGT






CCCATGACCCGCCG
TAATTCCGATAACG






GGCAGCTTCCGGGA
AACGAGACTCTGGC






AACCAAAGTCTTTG
ATGCTAACTAGTTA






GGTTCCGGGGGGAG
CGCGACCCCCGAGC






TATGGTTGCAAAGC
GGTCGGCGTCCC






(SEQ ID NO: 1849)
(SEQ ID NO: 1860)




R4-
tRNA-


TRD-
100189207


2_SRa
Asp


GTC1-1






LIN25_
tRNA-


TRE-
100189384


SM
Glu


CTC1-1






R1
28S
TAGCAGCCGACTTA
ACCTACTATCCAGC
RNA28SN1
106632264



rDNA
GAACTGGTGCGGAC
GAAACCACAGCCA






CAGGGGAATCCGAC
AGGGAACGGGCTTG






TGTTTAATTAAAAC
GCGGAATCAGCGG






AAAGCATCGCGAA
GGAAAGAAGACCC






GGCCCGCGGCGGGT
TGTTGAGCTTGACT






GTTGACGCGATGTG
CTAGTCTGGCACGG






ATTTCTGCCCAGTG
TGAAGAGACATGA






CTCTGAATGTCAAA
GAGGTGTAGAATAA






GTGAAGAAATTCAA
GTGGGAGGCCCCCG






TGAAGCGCGGGTAA
GCGCCCCCCCGGTG






ACGGCGGGAGTAA
TCCCCGCGAGGGGC






CTATGACTCTCTTA
CCGGGGCGGGGTCC






AGGTAGCCAAATGC
GCCGGCCCTGCGGG






CTCGTCATCTAATT
CCGCCGGTGAAATA






AGTGACGCGCATGA
CCACTACTCTGATC






ATGGATGAACGAG
GTTTTTTCACTGAC






ATTCCCACTGTCCC
CCGGTGAGGCGGG






T (SEQ ID NO: 1850)
GGG (SEQ ID NO:







1861)







R6
28S
CCCCCCGCCGGGTC
AAATGCCTCGTCAT
RNA28SN1
106632264



rDNA
CGCCCCCGGGGCCG
CTAATTAGTGACGC






CGGTTCCGCGCGGC
GCATGAATGGATGA






GCCTCGCCTCGGCC
ACGAGATTCCCACT






GGCGCCTAGCAGCC
GTCCCTACCTACTA






GACTTAGAACTGGT
TCCAGCGAAACCAC






GCGGACCAGGGGA
AGCCAAGGGAACG






ATCCGACTGTTTAA
GGCTTGGCGGAATC






TTAAAACAAAGCAT
AGCGGGGAAAGAA






CGCGAAGGCCCGCG
GACCCTGTTGAGCT






GCGGGTGTTGACGC
TGACTCTAGTCTGG






GATGTGATTTCTGC
CACGGTGAAGAGA






CCAGTGCTCTGAAT
CATGAGAGGTGTAG






GTCAAAGTGAAGA
AATAAGTGGGAGG






AATTCAATGAAGCG
CCCCCGGCGCCCCC






CGGGTAAACGGCG
CCGGTGTCCCCGCG






GGAGTAACTATGAC
AGGGGCCCGGGGC






TCTCTTAAGGTAGC
GGGGTCCGCCGGCC






C (SEQ ID NO: 1851)
CTG (SEQ ID NO:







1862)







R7
18S
GCGCAAGACGGAC
GGAGCCTGCGGCTT
RNA18SN1
106631781



rDNA
CAGAGCGAAAGCA
AATTTGACTCAACA






TTTGCCAAGAATGT
CGGGAAACCTCACC






TTTCATTAATCAAG
CGGCCCGGACACGG






AACGAAAGTCGGA
ACAGGATTGACAGA






GGTTCGAAGACGAT
TTGATAGCTCTTTCT






CAGATACCGTCGTA
CGATTCCGTGGGTG






GTTCCGACCATAAA
GTGGTGCATGGCCG






CGATGCCGACCGGC
TTCTTAGTTGGTGG






GATGCGGCGGCGTT
AGCGATTTGTCTGG






ATTCCCATGACCCG
TTAATTCCGATAAC






CCGGGCAGCTTCCG
GAACGAGACTCTGG






GGAAACCAAAGTCT
CATGCTAACTAGTT






TTGGGTTCCGGGGG
ACGCGACCCCCGAG






GAGTATGGTTGCAA
CGGTCGGCGTCCCC






AGCTGAAACTTAAA
CAACTTCTTAGAGG






GGAATTGACGGAA
GACAAGTGGCGTTC






GGGCACCACCAGG
AGCCACCCGAG






AGT (SEQ ID NO:
(SEQ ID NO: 1863)






1852)








RT
28S
GGCCGGGCGCGACC
AACTGGCTTGTGGC
RNA28SN1
106632264



rDNA
CGCTCCGGGGACAG
GGCCAAGCGTTCAT






TGCCAGGTGGGGAG
AGCGACGTCGCTTT






TTTGACTGGGGCGG
TTGATCCTTCGATG






TACACCTGTCAAAC
TCGGCTCTTCCTAT






GGTAACGCAGGTGT
CATTGTGAAGCAGA






CCTAAGGCGAGCTC
ATTCACCAAGCGTT






AGGGAGGACAGAA
GGATTGTTCACCCA






ACCTCCCGTGGAGC
CTAATAGGGAACGT






AGAAGGGCAAAAG
GAGCTGGGTTTAGA






CTCGCTTGATCTTG
CCGTCGTGAGACAG






ATTTTCAGTACGAA
GTTAGTTTTACCCT






TACAGACCGTGAAA
ACTGATGATGTGTT






GCGGGGCCTCACGA
GTTGCCATGGTAAT






TCCTTCTGACCTTTT
CCTGCTCAGTACGA






GGGTTTTAAGCAGG
GAGGAACCGCAGG






AGGTGTCAGAAAA
TTCAGACATTTGGT






GTTACCACAGGGAT
GTATGTGCTTGGC






(SEQ ID NO: 1853)
(SEQ ID NO: 1864)







Mutsu
5S
GTCTACGGCCATAC
TGAACGCGCCCGAT
RNA5S1
100169751



rDNA
CACCC (SEQ ID NO:
CTCGTCTGATCTCG






1854)
GAAGCTAAGCAGG







GTCGGGCCTGGTTA







GTACTTGGATGGGA







GACCGCCTGGGAAT







ACCGGGTGCTGTAG







GCTTT (SEQ ID NO:







1865)







Utopia/
U2
ATCGCTTCTCGGCC
TCTGTTCTTATCAGT
RNU2-1
6066


Keno
snRNA
TTTTGGCTAAGATC
TTAATATCTGATAC






AAGTGTAGTA (SEQ
GTCCTCTATCCGAG






ID NO: 1855)
GACAATATATTAAA







TGGATTTTTGGAGC







AGGGAGATGGAAT







AGGAGCTTGCTCCG







TCCACTCCACGCAT







CGACCTGGTATTGC







AGTACCTCCAGGAA







CGGTGCACCC (SEQ







ID NO: 1866)









Additional Functional Characteristics for Gene Writers™

A Gene Writer as described herein may, in some instances, be characterized by one or more functional measurements or characteristics. In some embodiments, the DNA binding domain (e.g., target binding domain) has one or more of the functional characteristics described below. In some embodiments, the template binding domain has one or more of the functional characteristics described below. In some embodiments, the template (e.g., template DNA) has one or more of the functional characteristics described below. In some embodiments, the target site altered by the Gene Writer has one or more of the functional characteristics described below following alteration by the Gene Writer.


Gene Writer Polypeptide


DNA Binding Domain


In some embodiments, the DNA binding domain is capable of binding to a target sequence (e.g., a dsDNA target sequence) with greater affinity than a reference DNA binding domain. In some embodiments, the reference DNA binding domain is a DNA binding domain from the Cre recombinase of bacteriophage P1. In some embodiments, the DNA binding domain is capable of binding to a target sequence (e.g., a dsDNA target sequence) with an affinity between 100 pM-10 nM (e.g., between 100 pM-1 nM or 1 nM-10 nM).


In some embodiments, the affinity of a DNA binding domain for its target sequence (e.g., dsDNA target sequence) is measured in vitro, e.g., by thermophoresis, e.g., as described in Asmari et al. Methods 146:107-119 (2018) (incorporated by reference herein in its entirety).


In embodiments, the DNA binding domain is capable of binding to its target sequence (e.g., dsDNA target sequence), e.g, with an affinity between 100 pM-10 nM (e.g., between 100 pM-1 nM or 1 nM-10 nM) in the presence of a molar excess of scrambled sequence competitor dsDNA, e.g., of about 100-fold molar excess.


In some embodiments, the DNA binding domain is found associated with its target sequence (e.g., dsDNA target sequence) more frequently than any other sequence in the genome of a target cell, e.g., human target cell, e.g., as measured by ChIP-seq (e.g., in HEK293T cells), e.g., as described in He and Pu (2010) Curr. Protoc Mol Biol Chapter 21 (incorporated herein by reference in its entirety). In some embodiments, the DNA binding domain is found associated with its target sequence (e.g., dsDNA target sequence) at least about 5-fold or 10-fold, more frequently than any other sequence in the genome of a target cell, e.g., as measured by ChIP-seq (e.g., in HEK293T cells), e.g., as described in He and Pu (2010), supra.


Template Binding Domain


In some embodiments, the template binding domain is capable of binding to a template DNA with greater affinity than a reference DNA binding domain. In some embodiments, the reference DNA binding domain is a DNA binding domain from the Cre recombinase of bacteriophage P1. In some embodiments, the template binding domain is capable of binding to a template DNA with an affinity between 100 pM-10 nM (e.g., between 100 pM-1 nM or 1 nM-10 nM). In some embodiments, the affinity of a DNA binding domain for its template DNA is measured in vitro, e.g., by thermophoresis, e.g., as described in Asmari et al. Methods 146:107-119 (2018) (incorporated by reference herein in its entirety). In some embodiments, the affinity of a DNA binding domain for its template DNA is measured in cells (e.g., by FRET or ChIP-Seq).


In some embodiments, the DNA binding domain is associated with the template DNA in vitro with at least 50% template DNA bound in the presence of 10 nM competitor DNA, e.g., as described in Yant et al. Mol Cell Biol 24(20):9239-9247 (2004) (incorporated by reference herein in its entirety). In some embodiments, the DNA binding domain is associated with the template DNA in cells (e.g., in HEK293T cells) at a frequency at least about 5-fold or 10-fold higher than with a scrambled DNA. In some embodiments, the frequency of association between the DNA binding domain and the template DNA or scrambled DNA is measured by ChIP-seq, e.g., as described in He and Pu (2010), supra.


Target Site


In some embodiments, after Gene Writing, the target site surrounding the integrated sequence contains a limited number of insertions or deletions, for example, in less than about 50% or 10% of integration events, e.g., as determined by long-read amplicon sequencing of the target site, e.g., as described in Karst et al. (2020) bioRxiv doi.org/10.1101/645903 (incorporated by reference herein in its entirety). In some embodiments, the target site does not show multiple insertion events, e.g., head-to-tail or head-to-head duplications, e.g., as determined by long-read amplicon sequencing of the target site, e.g., as described in Karst et al. (2020), supra. In some embodiments, the target site contains an integrated sequence corresponding to the template DNA. In some embodiments, the target site contains a completely integrated template molecule. In some embodiments, the target site contains components of the vector DNA, e.g., AAV ITRs. In some embodiments, e.g., when a template DNA is first excised from a viral vector by a first recombination event prior to integration, the target site does not contain insertions resulting from non-template DNA, e.g., endogenous or vector DNA, e.g., AAV ITRs, in more than about 1% or 10% of events, e.g., as determined by long-read amplicon sequencing of the target site, e.g., as described in Karst et al. (2020), supra. In some embodiments, the target site contains the integrated sequence corresponding to the template DNA.


In some embodiments, a Gene Writer described herein is capable of site-specific editing of target DNA, e.g., insertion of template DNA into a target DNA. In some embodiments, a site-specific Gene Writer is capable of generating an edit, e.g., an insertion, that is present at the target site with a higher frequency than any other site in the genome. In some embodiments, a site-specific Gene Writer is capable of generating an edit, e.g., an insertion in a target site at a frequency of at least 2, 3, 4, 5, 10, 50, 100, or 1000-fold that of the frequency at all other sites in the human genome. In some embodiments, the location of integration sites is determined by unidirectional sequencing. The incorporation of unique molecular identifiers (UMI) in the adapters or primers used in library preparation allows the quantification of discrete insertion events, which can be compared between on-target insertions and all other insertions to determine the preference for the defined target site.


In some embodiments, a Gene Writing system is used to edit a target DNA sequence that is present at a single location in the human genome. In some embodiments, a Gene Writing system is used to edit a target DNA sequence that is present at a single location in the human genome on a single homologous chromosome, e.g., is haplotype-specific. In some embodiments, a Gene Writing system is used to edit a target DNA sequence that is present at a single location in the human genome on two homologous chromosomes. In some embodiments, a Gene Writing system is used to edit a target DNA sequence that is present in multiple locations in the genome, e.g., at least 2, 3, 4, 5, 10, 20, 50, 100, 200, 500, 1000, 5000, 10000, 100000, 200000, 500000, 1000000 (e.g., Alu elements) locations in the genome.


In some embodiments, a Gene Writer system is able to edit a genome without introducing undesirable mutations. In some embodiments, a Gene Writer system is able to edit a genome by inserting a template, e.g., template DNA, into the genome. In some embodiments, the resulting modification in the genome contains minimal mutations relative to the template DNA sequence. In some embodiments, the average error rate of genomic insertions relative to the template DNA is less than 10−4, 10−5, or 10−6 mutations per nucleotide. In some embodiments, the number of mutations relative to a template DNA that is introduced into a target cell averages less than 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 nucleotides per genome. In some embodiments, the error rate of insertions in a target genome is determined by long-read amplicon sequencing across known target sites, e.g., as described in Karst et al. (2020), supra, and comparing to the template DNA sequence. In some embodiments, errors enumerated by this method include nucleotide substitutions relative to the template sequence. In some embodiments, errors enumerated by this method include nucleotide deletions relative to the template sequence. In some embodiments, errors enumerated by this method include nucleotide insertions relative to the template sequence. In some embodiments, errors enumerated by this method include a combination of one or more of nucleotide substitutions, deletions, or insertions relative to the template sequence.


Efficiency of integration events can be used as a measure of editing of target sites or target cells by a Gene Writer system. In some embodiments, a Gene Writer system described herein is capable of integrating a heterologous object sequence in a fraction of target sites or target cells. In some embodiments, a Gene Writer system is capable of editing at least 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9% or 100% of target loci as measured by the detection of the edit when amplifying across the target and analyzing with long-read amplicon sequencing, e.g., as described in Karst et al. (2020). In some embodiments, a Gene Writer system is capable of editing cells at an average copy number of at least 0.1, e.g., at least 0.1, 0.5, 1, 2, 3, 4, 5, 10, or 100 copies per genome as normalized to a reference gene, e.g., RPP30, across a population of cells, e.g., as determined by ddPCR with transgene-specific primer-probe sets, e.g., as according to the methods in Lin et al. Hum Gene Ther Methods 27(5):197-208 (2016).


In some embodiments, the copy number per cell is analyzed by single-cell ddPCR (sc-ddPCR), e.g., as according to the methods of Igarashi et al. Mol Ther Methods Clin Dev 6:8-16 (2017), incorporated herein by reference in its entirety. In some embodiments, at least 1%, e.g., at least 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9% or 100%, of target cells are positive for integration as assessed by sc-ddPCR using transgene-specific primer-probe sets. In some embodiments, the average copy number is at least 0.1, e.g., at least 0.1, 0.5, 1, 2, 3, 4, 5, 10, or 100 copies per cell as measured by sc-ddPCR using transgene-specific primer-probe sets.


Additional Gene Writer Characteristics


In some embodiments, the Gene Writer system may result in complete writing without requiring endogenous host factors. In some embodiments, the system may result in complete writing without the need for DNA repair. In some embodiments, the system may result in complete writing without eliciting a DNA damage response.


In some embodiments, the system does not require DNA repair by the NHEJ pathway, homologous recombination repair pathway, base excision repair pathway, or any combination thereof. Participation by a DNA repair pathway can be assayed, for example, via the application of DNA repair pathway inhibitors or DNA repair pathway deficient cell lines. For example, when applying DNA repair pathway inhibitors, PrestoBlue cell viability assay can be performed first to determine the toxicity of the inhibitors and whether any normalization should be applied. SCR7 is an inhibitor for NHEJ, which can be applied at a series of dilutions during Gene Writer™ delivery. PARP protein is a nuclear enzyme that binds as homodimers to both single- and double-strand breaks. Thus, its inhibitors can be used in the test of relevant DNA repair pathways, including homologous recombination repair pathway and base excision repair pathway. The experiment procedure is the same with that of SCR7. Cell lines with deficient core proteins of nucleotide excision repair (NER) pathway can be used to test the effect of NER on Gene Writing™. After the delivery of the Gene Writer™ system into the cell, ddPCR can used to evaluate the insertion of a heterologous object sequence in the context of inhibition of DNA repair pathways. Sequencing analysis can also be performed to evaluate whether certain DNA repair pathways play a role. In some embodiments, Gene Writing™ into the genome is not decreased by the knockdown of a DNA repair pathway described herein. In some embodiments, Gene Writing™ into the genome is not decreased by more than 50% by the knockdown of the DNA repair pathway.


Evolved Variants of Gene Writers

In some embodiments, the invention provides evolved variants of Gene Writers. Evolved variants can, in some embodiments, be produced by mutagenizing a reference Gene Writer, or one of the fragments or domains comprised therein. In some embodiments, one or more of the domains (e.g., the catalytic or DNA binding domain (e.g., target binding domain or template binding domain), including, for example, sequence-guided DNA binding elements) is evolved, One or more of such evolved variant domains can, in some embodiments, be evolved alone or together with other domains. An evolved variant domain or domains may, in some embodiments, be combined with unevolved cognate component(s) or evolved variants of the cognate component(s). e.g., which may have been evolved in either a parallel or serial manner.


In some embodiments, the process of mutagenizing a reference Gene Writer, or fragment or domain thereof, comprises mutagenizing the reference Gene Writer or fragment or domain thereof. In embodiments, the mutagenesis comprises a continuous evolution method (e.g., PACE) or non-continuous evolution method (e.g., PANCE). e.g., as described herein. In some embodiments, the evolved Gene Writer, or a fragment or domain thereof (e.g., a DNA binding domain, e.g., a target binding domain or a template binding domain), comprises one or more amino acid variations introduced into its amino acid sequence relative to the amino acid sequence of the reference Gene Writer, or fragment or domain thereof. In embodiments, amino acid sequence variations may include one or more mutated residues (e.g., conservative substitutions, non-conservative substitutions, or a combination thereof) within the amino acid sequence of a reference Gene Writer, e.g., as a result of a change in the nucleotide sequence encoding the gene writer that results in, e.g., a change in the codon at any particular position in the coding sequence, the deletion of one or more amino acids (e.g., a truncated protein), the insertion of one or more amino acids, or any combination of the foregoing. The evolved variant Gene Writer may include variants in one or more components or domains of the Gene Writer (e.g., variants introduced into a catalytic domain, DNA binding domain, or combinations thereof).


In some aspects, the invention provides Gene Writers, systems, kits, and methods using or comprising an evolved variant of a Gene Writer, e.g., employs an evolved variant of a Gene Writer or a Gene Writer produced or producible by PACE or PANCE. In embodiments, the unevolved reference Gene Writer is a Gene Writer as disclosed herein.


The term “phage-assisted continuous evolution (PACE),” as used herein, generally refers to continuous evolution that employs phage as viral vectors. Examples of PACE technology have been described, for example, in International PCT Application No. PCT/US 2009/056194, filed Sep. 8, 2009, published as WO 2010/028347 on Mar. 11, 2010; International PCT Application, PCT/US2011/066747, filed Dec. 22, 2011, published as WO 2012/088381 on Jun. 28, 2012; U.S. Pat. No. 9,023,594, issued May 5, 2015; U.S. Pat. No. 9,771,574, issued Sep. 26, 2017; U.S. Pat. No. 9,394,537, issued Jul. 19, 2016; international PCT Application, PCT/US2015/012022, filed Jan. 20, 2015, published as WO 2015/134121 on Sep. 11, 2015; U.S. Pat. No. 10,179,911, issued Jan. 15, 2019; and International PCT Application, PCT/US2016/027795, filed Apr. 15, 2016, published as WO 2016/168631 on Oct. 20, 2016, the entire contents of each of which are incorporated herein by reference.


The term “phage-assisted non-continuous evolution (PANC II)” as used herein, generally refers to non-continuous evolution that employs phage as viral vectors. Examples of PANCE technology have been described, for example, in Suzuki T. et al, Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase, Nat Chem Biol. 13(12): 1261-1266 (2017), incorporated herein by reference in its entirety, Briefly, PANCE is a technique for rapid in vivo directed evolution using serial flask transfers of evolving selection phage (SP), which contain a gene of interest to be evolved, across fresh host cells (e.g., E. coli cells). Genes inside the host cell may be held constant while genes contained in the SP continuously evolve. Following phage growth, an aliquot of infected cells may be used to transfect a subsequent flask containing host E. coli. This process can be repeated and/or continued until the desired phenotype is evolved, e.g., for as many transfers as desired.


Methods of applying PACE and PANCE to Gene Writers may be readily appreciated by the skilled artisan by reference to, inter alia, the foregoing references. Additional exemplary methods for directing continuous evolution of genome-modifying proteins or systems, e.g., in a population of host cells e.g., using phage particles, can be applied to generate evolved variants of Gene Writers. or fragments or subdomains thereof. Non-limiting examples of such methods are described in International PCT Application, PCT/US2009/056194, filed Sep. 8, 2009, published as WO 2010/028347 on Mar. 11, 2010; International PCT Application, PCT/US2011/066747, filed Dec. 22, 2011, published as WO 2012/088381 on Jun. 28, 2012; U.S. Pat. No. 9,023,594, issued May 5, 2015; U.S. Pat. No. 9,771,574, issued Sep. 26, 2017: U.S. Pat. No. 9,394,537, issued Jul. 19, 2016: International PCT Application, PCT/US2015/012022, filed Jan. 20, 2015, published as WO 2015/134121 on Sep. 11, 2015; U.S. Pat. No. 10,179,911, issued Jan. 15, 2019; International Application No. PCT/US2019/37216, filed Jun. 14, 2019, International Patent Publication WO 2019/023680, published Jan. 31, 2019, International PCT Application, PCT/US2016/027795, filed Apr. 15, 2016, published as WO 2016/168631 on Oct. 20, 2016, and International Patent Publication No. PCT/US2019/47996, filed Aug. 23, 2019, each of which is incorporated herein by reference in its entirety.


In some non-limiting illustrative embodiments, a method of evolution of a evolved variant Gene Writer, of a fragment or domain thereof, comprises: (a) contacting a population of host cells with a population of viral vectors comprising the gene of interest (the starting Gene Writer or fragment or domain thereof), wherein: (1) the host cell is amenable to infection by the viral vector; (2) the host cell expresses viral genes required for the generation of viral particles; (3) the expression of at least one viral gene required for the production of an infectious viral particle is dependent on a function of the gene of interest; and/or (4) the viral vector allows for expression of the protein in the host cell, and can be replicated and packaged into a viral particle by the host cell. In some embodiments, the method comprises (b) contacting the host cells with a Mutagen, using host cells with mutations that elevate mutation rate (e.g., either by carrying a mutation plasmid or some genome modification—e.g., proofing-impaired DNA polymerase, SOS genes, such as UmuC, UmuD′, and/or RecA, which mutations, if plasmid-bound, may be under control of an inducible promoter), or a combination thereof. In some embodiments, the method comprises (c) incubating the population of host cells under conditions allowing for viral replication and the production of viral particles, wherein host cells are removed from the host cell population, and fresh, uninfected host cells are introduced into the population of host cells, thus replenishing the population of host cells and creating a flow of host cells. In some embodiments, the cells are incubated under conditions allowing for the gene of interest to acquire a mutation. In some embodiments, the method further comprises (dl) isolating a mutated version of the viral vector, encoding an evolved gene product (e.g., an evolved variant Gene Writer, or fragment or domain thereof), from the population of host cells.


The skilled artisan will appreciate a variety of features employable within the above-described framework. For example, in some embodiments, the viral vector or the phage is a filamentous phage, for example, an M13 phage, e.g., an M13 selection phage. In certain embodiments, the gene required for the production of infectious viral particles is the M13 gene III (gIII). In embodiments, the phage may lack a functional gIII but otherwise comprise gI, gII, gIV, gV, gVI, gVII, gVIII, gIX, and a gX. In some embodiments, the generation of infectious VSV particles involves the envelope protein VSV-G. Various embodiments can use different retroviral vectors, for example, Murine Leukemia Virus vectors, or Lentiviral vectors. In embodiments, the retroviral vectors can efficiently be packaged with VSV-G envelope protein, e.g., as a substitute for the native envelope protein of the virus.


In some embodiments, host cells are incubated according to a suitable number of viral life cycles, e.g., at least 10, at least 20, at least 30, at least 40, at least 50, at least 100, at least 200, at least 300, at least 400, at least, 500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 1250, at least 1500, at least 1750, at least 2000, at least 2500 at least 3000, at least 4000, at least 5000, at least 7500, at least 10000, or more consecutive viral life cycles, which in on illustrative and non-limiting examples of M13 phage is 10-20 minutes per virus life cycle. Similarly, conditions can be modulated to adjust the time a host cell remains in a population of host cells, e.g., about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 21, about 22, about 23, about 24, about 25, about 30, about 35, about 40, about 45, about 50, about 55, about 60, about 70, about 80, about 90, about 100, about 120, about 150, or about 180 minutes. Host cell populations can be controlled in part by density of the host cells, or, in some embodiments, the host cell density in an inflow, e.g., 103 cells/ml, about 104 cells/ml, about 105 cells/ml, about 5-105 cells/ml, about 106 cells/ml, about 5-106 cells/ml, about 107 cells/ml about 5-107 cells/ml about 108 cells/ml, about 5-108 cells/ml, about 109 cells/ml about 5·109 cells/ml about 1010 cells/ml, or about 5·1010 cells/ml.


Nucleic Acids
Promoters

In some embodiments, one or more promoter or enhancer elements are operably linked to a nucleic acid encoding a Gene Writer polypeptide or a template nucleic acid, e.g., that controls expression of the heterologous object sequence. In certain embodiments, the one or more promoter or enhancer elements comprise cell-type or tissue specific elements. In some embodiments, the promoter or enhancer is the same or derived from the promoter or enhancer that naturally controls expression of the heterologous object sequence. For example, the ornithine transcarbomylase promoter and enhancer may be used to control expression of the ornithine transcarbomylase gene in a system or method provided by the invention for correcting ornithine transcarbomylase deficiencies. In some embodiments, the promoter is a promoter of Table 33 or a functional fragment or variant thereof.


Exemplary tissue specific promoters that are commercially available can be found, for example, at a uniform resource locator (e.g., invivogen.com/tissue-specific-promoters). In some embodiments, a promoter is a native promoter or a minimal promoter, e.g., which consists of a single fragment from the 5′ region of a given gene. In some embodiments, a native promoter comprises a core promoter and its natural 5′ UTR. In some embodiments, the 5° UTR comprises an intron. In other embodiments, these include composite promoters, which combine promoter elements of different origins or were generated by assembling a distal enhancer with a minimal promoter of the same origin. In some embodiments, a tissue-specific expression-control sequence(s) comprises one or more of the sequences in Table 2 or Table 3 of PCT Publication No. WO2020014209 (incorporated herein by reference in its entirety).


Exemplary cell or tissue specific promoters are provided in the tables, below, and exemplary nucleic acid sequences encoding them are known in the art and can be readily accessed using a variety of resources, such as the NCBI database, including RefSeq, as well as the Eukaryotic Promoter Database (http://epd.epfl.ch//index.php).









TABLE 5







Exemplary cell or tissue-specific promoters










Promoter
Target cells







B29 Promoter
B cells



CD14 Promoter
Monocytic Cells



CD43 Promoter
Leukocytes and platelets



CD45 Promoter
Hematopoeitic cells



CD68 promoter
macrophages



Desmin promoter
muscle cells



Elastase-1
pancreatic



promoter
acinar cells



Endoglin promoter
endothelial cells



fibronectin
differentiating cells,



promoter
healing tissue



Flt-1 promoter
endothelial cells



GFAP promoter
Astrocytes



GPIIB promoter
megakaryocytes



ICAM-2 Promoter
Endothelial cells



INF-Beta promoter
Hematopoeitic cells



Mb promoter
muscle cells



Nphs 1 promoter
podocytes



OG-2 promoter
Osteoblasts, Odonblasts



SP-B promoter
Lung



Syn1 promoter
Neurons



WASP promoter
Hematopoeitic cells



SV40/bAlb
Liver



promoter




SV40/bAlb
Liver



promoter




SV40/Cd3
Leukocytes and platelets



promoter




SV40/CD45
hematopoeitic cells



promoter




NSE/RU5′
Mature Neurons



promoter

















TABLE 6







Additional exemplary cell or tissue-specific promoters









Promoter
Gene Description
Gene Specificity





APOA2
Apolipoprotein A-II
Hepatocytes (from hepatocyte




progenitors)


SERPINA
Serpin peptidase inhibitor, clade A
Hepatocytes


1 (hAAT)
(alpha-1
(from definitive endoderm



antiproteinase, antitrypsin), member 1
stage)



(also named alpha 1 anti-tryps in)



CYP3A
Cytochrome P450, family 3,
Mature Hepatocytes



subfamily A, polypeptide



MIR122
MicroRNA 122
Hepatocytes




(from early stage embryonic




liver cells)




and endoderm







Pancreatic specific promoters









INS
Insulin
Pancreatic beta cells




(from definitive endoderm stage)


IRS2
Insulin receptor substrate 2
Pancreatic beta cells


Pdx1
Pancreatic and duodenal
Pancreas



homeobox 1
(from definitive endoderm stage)


A1x3
Aristaless-like homeobox 3
Pancreatic beta cells




(from definitive endoderm stage)


Ppy
Pancreatic polypeptide
PP pancreatic cells




(gamma cells)







Cardiac specific promoters









Myh6
Myosin, heavy chain 6, cardiac
Late differentiation marker of cardiac


(aMHC)
muscle, alpha
muscle cells (atrial specificity)


MYL2
Myosin, light chain 2, regulatory,
Late differentiation marker of cardiac


(MLC-2v)
cardiac, slow
muscle cells (ventricular specificity)


ITNNl3
Troponin I type 3 (cardiac)
Cardiomyocytes


(cTnl)

(from immature state)


ITNNl3
Troponin I type 3 (cardiac)
Cardiomyocytes


(cTnl)

(from immature state)


NPPA
Natriuretic peptide precursor A (also
Atrial specificity in adult cells


(ANF)
named Atrial Natriuretic Factor)



Slc8a1
Solute carrier family 8
Cardiomyocytes from early


(Ncx1)
(sodium/calcium exchanger), member
developmental stages



1








CNS specific promoters









SYN1
Synapsin I
Neurons


(hSyn)




GFAP
Glial fibrillary acidic protein
Astrocytes


INA
Internexin neuronal intermediate
Neuroprogenitors



filament protein, alpha (a-internexin)



NES
Nestin
Neuroprogenitors and ectoderm


MOBP
Myelin-associated oligodendrocyte
Oligodendrocytes



basic protein



MBP
Myelin basic protein
Oligodendrocytes


TH
Tyrosine hydroxylase
Dopaminergic neurons


FOXA2
Forkhead box A2
Dopaminergic neurons (also used as a


(HNF3

marker of endoderm)


beta)









Skin specific promoters









FLG
Filaggrin
Keratinocytes from granular layer


K14
Keratin 14
Keratinocytes from granular




and basal layers


TGM3
Transglutaminase 3
Keratinocytes from granular layer







Immune cell specific promoters









ITGAM
Integrin, alpha M (complement
Monocytes, macrophages, granulocytes,


(CD11B)
component 3 receptor 3 subunit)
natural killer cells







Urogential cell specific promoters









Pbsn
Probasin
Prostatic epithelium


Upk2
Uroplakin 2
Bladder


Sbp
Spermine binding protein
Prostate


Fer114
Fer-1-like 4
Bladder







Endothelial cell specific promoters









ENG
Endoglin
Endothelial cells







Pluripotent and embryonic cell specific promoters









Oct4
POU class 5 homeobox 1
Pluripotent cells


(POU5F1)

(germ cells, ES cells, iPS cells)


NANOG
Nanog homeobox
Pluripotent cells




(ES cells, iPS cells)


Synthetic
Synthetic promoter based on a Oct-4
Pluripotent cells (ES cells, iPS cells)


Oct4
core enhancer element



T
Brachyury
Mesoderm


brachyury




NES
Nestin
Neuroprogenitors and Ectoderm


SOX17
SRY (sex determining region Y)-box
Endoderm



17



FOXA2
Forkhead box A2
Endoderm (also used as a marker of


(HNFJ

dopaminergic neurons)


beta)




MIR122
MicroRNA 122
Endoderm and hepatocytes




(from early stage embryonic liver cells~









Depending on the host/vector system utilized, any of a number of suitable transcription and translation control elements, including constitutive and inducible promoters, transcription enhancer elements, transcription terminators, etc. may be used in the expression vector (see e.g., Bitter et al. (1987) Methods in Enzymology, 153:516-544; incorporated herein by reference in its entirety).


In some embodiments, a nucleic acid encoding a Gene Writer or template nucleic acid is operably linked to a control element. e.g., a transcriptional control element, such as a promoter. The transcriptional control element may, in some embodiment, be functional in either a eukaryotic cell, e.g., a mammalian cell; or a prokaryotic cell (e.g., bacterial or archaeal cell). In some embodiments, a nucleotide sequence encoding a polypeptide is operably linked to multiple control elements, e.g., that allow expression of the nucleotide sequence encoding the polypeptide in both prokaryotic and eukaryotic cells.


For illustration purposes, examples of spatially restricted promoters include, but are not limited to, neuron-specific promoters, adipocyte-specific promoters, cardiomyocyte-specific promoters, smooth muscle-specific promoters, photoreceptor-specific promoters, etc. Neuron-specific spatially restricted promoters include, but are not limited to, a neuron-specific enolase (NSE) promoter (see, e.g., EMBL HSENO2, X51956); an aromatic amino acid decarboxylase (AADC) promoter, a neurofilament promoter (see, e.g., GenBank HUMNFL, L04147); a synapsin promoter (see, e.g., GenBank H UMSYNIB, M55301); a thy-1 promoter (see, e.g., Chen et al. (1987) Cell 51:7-19; and Llewellyn, et al. (2010) Nat. Med. 16(10):1161-1166); a serotonin receptor promoter (see, e.g., GenBank S62283); a tyrosine hydroxylase promoter (TIH) (see, e.g., Oh et al. (2009) Gene Ther 16:437; Sasaoka et al. (1992) Mol. Brain Res. 16:274; Boundy et al. (1998) J. Neurosci. 18:9989; and Kaneda et al. (1991) Neuron 6:583-594); a GnR H promoter (see, e.g., Radovick et al. (1991) Proc. Natl. Acad. Sci. USA 88:3402-3406); an L7 promoter (see, e.g., Oberdick et al. (1990) Science 248:223-226); a DNMT promoter (see, e.g., Bartge et al. (1988) Proc. Natl. Acad. Sci. USA 85:3648-3652); an enkephalin promoter (see, e.g., Comb et al. (1988) EMBO J. 17:3793-3805); a myelin basic protein (MBP) promoter, a Ca2+-calmodulin-dependent protein kinase II-alpha (CamKIIa) promoter (see, e.g., Mayford et al. (1996) Proc. Nati. Acad. Sci. USA 93:13250; and Casanova et al. (2001) Genesis 31:37); a CMV enhancer/platelet-derived growth factor-β promoter (see. e.g., Liu et al. (2004) Gene Therapy 11:52-60); and the like.


Adipocyte-specific spatially restricted promoters include, but are not limited to, the aP2 gene promoter/enhancer, e.g., a region from −5.4 kb to +21 bp of a human aP2 gene (see, e.g., Tozzo et al. (1997) Endocrinol. 138:1604; Ross et al. (1990) Proc. Natl. Acad. Sci. USA 87:9590; and Pavjani et al. (2005) Nat. Med. 11:797); a glucose transporter-4 (GLUT4) promoter (see, e.g., Knight et al. (2003) Proc. Natl. Acad. Sci. USA 100:14725); a fatty acid translocase (FAT/CD36) promoter (see, e.g., Kuriki et al. (2002) Biol. Pharm. Bull. 25:1476; and Sato et al. (2002) J. Biol. Chem. 277:15703); a stearoyl-CoA desaturase-1 (SCD1) promoter (Tabor et al. (1999) J. Biol. Chem. 274:20603); a leptin promoter (see. e.g., Mason et al. (1998) Endocrinol. 139:1013; and Chen et al. (1999) Biochem. Biophys. Res. Comm. 262:187); an adiponectin promoter (see, e.g., Kita et al. (2005) Biochem. Biophys. Res. Comm. 331:484; and Chakrabarti (2010) Endocrinol. 151:2408); an adipsin promoter (see, e.g., Platt et al. (1989) Proc. Natl. Acad. Sci. USA 86:7490); a resistin promoter (see, e.g., Seo et al. (2003) Molec. Endocrinol. 17:1522); and the like.


Cardiomyocyte-specific spatially restricted promoters include, but are not limited to, control sequences derived from the following genes: myosin light chain-2, α-myosin heavy chain, AE3, cardiac troponin C, cardiac actin, and the like. Franz et al. (1997) Cardiovasc. Res. 35:560-566; Robbins et al. (1995) Ann. N.Y. Acad. Sci. 752:492-505; Linn et al. (1995) Circ. Res. 76:584-591: Parmacek et al. (1994) Mol. Cell. Biol. 14:1870-1885; Hunter et al. (1993) Hypertension 22:608-617; and Sartorelli et al. (1992) Proc. Natl. Acad. Sci. USA 89:4047-4051.


Smooth muscle-specific spatially restricted promoters include, but are not limited to, an SM22α promoter (see, e.g., Akyürek et al. (2000) Mol. Med. 6:983; and U.S. Pat. No. 7,169,874); a smoothelin promoter (see, e.g., WO 2001/018048); an α-smooth muscle actin promoter; and the like. For example, a 0.4 kb region of the SM22α promoter, within which lie two CArG elements, has been shown to mediate vascular smooth muscle cell-specific expression (see. e.g., Kim, et al. (1997) Mol. Cell. Biol. 17, 2266-2278; Li, et al., (1996) J. Cell Biol. 132, 849-859; and Moessler, et al. (1996) Development 122, 2415-2425).


Photoreceptor-specific spatially restricted promoters include, but are not limited to, a rhodopsin promoter; a rhodopsin kinase promoter (Young et al. (2003) Ophthalmol. Vis. Sci. 44:4076); a beta phosphodiesterase gene promoter (Nicoud et al. (2007) J. Gene Med. 9:1015); a retinitis pigmentosa gene promoter (Nicoud et al. (2007) supra); an interphotoreceptor retinoid-binding protein (IRBP) gene enhancer (Nicoud et al. (2007) supra); an IRBP gene promoter (Yokoyama et al. (1992) Exp Eye Res. 55:225); and the like.


Nonlimiting Exemplary Cell-Specific Promoters


Cell-specific promoters known in the art may be used to direct expression of a Gene Writer protein. e.g., as described herein. Nonlimiting exemplary mammalian cell-specific promoters have been characterized and used in mice expressing Cre recombinase in a cell-specific manner. Certain nonlimiting exemplary mammalian cell-specific promoters are listed in Table 1 of U.S. Pat. No. 9,845,481, incorporated herein by reference.


In some embodiments, the cell-specific promoter is a promoter that is active in plants. Many exemplary cell-specific plant promoters are known in the art. See, e.g., U.S. Pat. Nos. 5,097,025; 5,783,393; 5,880,330; 5,981,727; 7,557,264; 6,291,666; 7,132,526; and 7,323,622; and U.S. Publication Nos. 2010/0269226; 2007/0180580; 2005/0034192; and 2005/0086712, which are incorporated by reference herein in their entireties for any purpose.


In some embodiments, a vector as described herein comprises an expression cassette. The term “expression cassette”, as used herein, refers to a nucleic acid construct comprising nucleic acid elements sufficient for the expression of the nucleic acid molecule of the instant invention. Typically, an expression cassette comprises the nucleic acid molecule of the instant invention operatively linked to a promoter sequence. The term “operatively linked” refers to the association of two or more nucleic acid fragments on a single nucleic acid fragment so that the function of one is affected by the other. For example, a promoter is operatively linked with a coding sequence when it is capable of affecting the expression of that coding sequence (e.g., the coding sequence is under the transcriptional control of the promoter). Encoding sequences can be operatively linked to regulatory sequences in sense or antisense orientation. In certain embodiments, the promoter is a heterologous promoter. The term “heterologous promoter”, as used herein, refers to a promoter that is not found to be operatively linked to a given encoding sequence in nature. In certain embodiments, an expression cassette may comprise additional elements, for example, an intron, an enhancer, a polyadenylation site, a woodchuck response element (WRE), and/or other elements known to affect expression levels of the encoding sequence. A “promoter” typically controls the expression of a coding sequence or functional RNA. In certain embodiments, a promoter sequence comprises proximal and more distal upstream elements and can further comprise an enhancer element. An “enhancer” can typically stimulate promoter activity and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue-specificity of a promoter. In certain embodiments, the promoter is derived in its entirety from a native gene. In certain embodiments, the promoter is composed of different elements derived from different naturally occurring promoters. In certain embodiments, the promoter comprises a synthetic nucleotide sequence. It will be understood by those skilled in the art that different promoters will direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions or to the presence or the absence of a drug or transcriptional co-factor. Ubiquitous, cell-type-specific, tissue-specific, developmental stage-specific, and conditional promoters, for example, drug-responsive promoters (e.g., tetracycline-responsive promoters) are well known to those of skill in the art. Examples of promoter include, but are not limited to, the phosphoglycerate kinase (PKG) promoter, CAG (composite of the CMV enhancer the chicken beta actin promoter (CBA) and the rabbit beta globin intron.), NSE (neuronal specific enolase), synapsin or NeuN promoters, the SV40 early promoter, mouse mammary tumor virus LTR promoter: adenovirus major late promoter (Ad MLP); a herpes simplex virus (HSV) promoter, a cytomegalovirus (CMV) promoter such as the CMV immediate early promoter region (CMVIE). SFFV promoter, rous sarcoma virus (RSV) promoter, synthetic promoters, hybrid promoters, and the like. Other promoters can be of human origin or from other species, including from mice. Common promoters include, e.g., the human cytomegalovirus (CMV) immediate early gene promoter, the SV40 early promoter, the Rous sarcoma virus long terminal repeat, [beta]-actin, rat insulin promoter, the phosphoglycerate kinase promoter, the human alpha-1 antitrypsin (hAAT) promoter, the transthyretin promoter, the TBG promoter and other liver-specific promoters, the desmin promoter and similar muscle-specific promoters, the EF1-alpha promoter, the CAG promoter and other constitutive promoters, hybrid promoters with multi-tissue specificity, promoters specific for neurons like synapsin and glyceraldehyde-3-phosphate dehydrogenase promoter, all of which are promoters well known and readily available to those of skill in the art, can be used to obtain high-level expression of the coding sequence of interest. In addition, sequences derived from non-viral genes, such as the murine metallothionein gene, will also find use herein. Such promoter sequences are commercially available from, e.g., Stratagene (San Diego, Calif.). Additional exemplary promoter sequences are described, for example, in WO2018213786A1 (incorporated by reference herein in its entirety).


In some embodiments, the apolipoprotein E enhancer (ApoE) or a functional fragment thereof is used, e.g., to drive expression in the liver. In some embodiments, two copies of the ApoE enhancer or a functional fragment thereof is used. In some embodiments, the ApoE enhancer or functional fragment thereof is used in combination with a promoter, e.g., the human alpha-1 antitrypsin (hAAT) promoter.


In some embodiments, the regulatory sequences impart tissue-specific gene expression capabilities. In some cases, the tissue-specific regulatory sequences bind tissue-specific transcription factors that induce transcription in a tissue specific manner. Various tissue-specific regulatory sequences (e.g., promoters, enhancers, etc.) are known in the art. Exemplary tissue-specific regulatory sequences include, but are not limited to, the following tissue-specific promoters: a liver-specific thyroxin binding globulin (TBG) promoter, a insulin promoter, a glucagon promoter, a somatostatin promoter, a pancreatic polypeptide (PPY) promoter, a synapsin-1 (Syn) promoter, a creatine kinase (MCK) promoter, a mammalian desmin (DES) promoter, a α-myosin heavy chain (a-MHC) promoter, or a cardiac Troponin T (cTnT) promoter. Other exemplary promoters include Beta-actin promoter, hepatitis B virus core promoter, Sandig et al., Gene Ther., 3:1002-9 (1996); alpha-fetoprotein (AFP) promoter. Arbuthnot et al., Hum. Gene Ther., 7:1503-14 (1996)), bone osteocalcin promoter (Stein et al., Mol. Biol. Rep., 24:185-96 (1997)); bone sialoprotein promoter (Chen et al., J. Bone Miner. Res., 11:654-64 (1996)), CD2 promoter (Hansal et al., J. Immunol., 161:1063-8 (1998); immunoglobulin heavy chain promoter: T cell receptor α-chain promoter, neuronal such as neuron-specific enolase (NSI) promoter (Andersen et al., Cell. Mol. Neurobiol., 13:503-15 (1993)), neurofilament light-chain gene promoter (Piccioli et al., Proc. Nati. Acad. Sci. USA. 88:5611-5 (1991)), and the neuron-specific vgf gene promoter (Piccioli et al., Neuron. 15:373-84 (1995)), and others. Additional exemplary promoter sequences are described, for example, in U.S. patent Ser. No. 10/300,146 (incorporated herein by reference in its entirety). In some embodiments, a tissue-specific regulatory element, e.g., a tissue-specific promoter, is selected from one known to be operably linked to a gene that is highly expressed in a given tissue, e.g., as measured by RNA-seq or protein expression data, or a combination thereof. Methods for analyzing tissue specificity by expression are taught in Fagerberg et al. Mol Cell Proteomics 13(2):397-406 (2014), which is incorporated herein by reference in its entirety.


In some embodiments, a vector described herein is a multicistronic expression construct. Multicistronic expression constructs include, for example, constructs harboring a first expression cassette, e.g. comprising a first promoter and a first encoding nucleic acid sequence, and a second expression cassette, e.g. comprising a second promoter and a second encoding nucleic acid sequence. Such multicistronic expression constructs may, in some instances, be particularly useful in the delivery of non-translated gene products, such as hairpin RNAs, together with a polypeptide, for example, a gene writer and gene writer template. In some embodiments, multicistronic expression constructs may exhibit reduced expression levels of one or more of the included transgenes, for example, because of promoter interference or the presence of incompatible nucleic acid elements in close proximity. If a multicistronic expression construct is part of a viral vector, the presence of a self-complementary nucleic acid sequence may, in some instances, interfere with the formation of structures necessary for viral reproduction or packaging.


In some embodiments, the sequence encodes an RNA with a hairpin. In some embodiments, the hairpin RNA is a guide RNA, a template RNA, shRNA, or a microRNA. In some embodiments, the first promoter is an RNA polymerase I promoter. In some embodiments, the first promoter is an RNA polymerase II promoter. In some embodiments, the second promoter is an RNA polymerase III promoter. In some embodiments, the second promoter is a U6 or H1 promoter. In some embodiments, the nucleic acid construct comprises the structure of AAV construct B1 or B2.


Without wishing to be bound by theory, multicistronic expression constructs may not achieve optimal expression levels as compared to expression systems containing only one cistron. One of the suggested causes of lower expression levels achieved with multicistronic expression constructs comprising two or more promoter elements is the phenomenon of promoter interference (see, e.g., Curtin J A, Dane A P, Swanson A, Alexander I E, Ginn S L. Bidirectional promoter interference between two widely used internal heterologous promoters in a late-generation lentiviral construct. Gene Ther. 2008 March; 15(5):384-90; and Martin-Duque P, Jezzard S. Kaftansis L. Vassaux G. Direct comparison of the insulating properties of no genetic elements in an adenoviral vector containing two different expression cassettes. Hum Gene Ther. 2004 October; 1510):995-1002: both references incorporated herein by reference for disclosure of promoter interference phenomenon). In some embodiments, the problem of promoter interference may be overcome, e.g., by producing multicistronic expression constructs comprising only one promoter driving transcription of multiple encoding nucleic acid sequences separated by internal ribosomal entry sites, or by separating cistrons comprising their own promoter with transcriptional insulator elements. In some embodiments, single-promoter driven expression of multiple cistrons may result in uneven expression levels of the cistrons. In some embodiments, a promoter cannot efficiently be isolated and isolation elements may not be compatible with some gene transfer vectors, for example, some retroviral vectors.


MicroRNAs

miRNAs and other small interfering nucleic acids generally regulate gene expression via target RNA transcript cleavage/degradation or translational repression of the target messenger RNA (mRNA), miRNAs may, in some instances, be natively expressed, typically as final 19-25 non-translated RNA products, miRNAs generally exhibit their activity through sequence-specific interactions with the 3′ untranslated regions (UTR) of target mRNAs. These endogenously expressed miRNAs may form hairpin precursors that are subsequently processed into an miRNA duplex, and further into a mature single stranded miRNA molecule. This mature miRNA generally guides a multiprotein complex, miRISC, which identifies target 3′ UTR regions of target mRNAs based upon their complementarity to the mature miRNA. Useful transgene products may include, for example, miRNAs or miRNA binding sites that regulate the expression of a linked polypeptide. A non-limiting list of miRNA genes; the products of these genes and their homologues are useful as transgenes or as targets for small interfering nucleic acids (e.g., miRNA sponges, antisense oligonucleotides), e.g., in methods such as those listed in U.S. Ser. No. 10/300,146, 22:25-25:48, incorporated by reference. In some embodiments, one or more binding sites for one or more of the foregoing mi RNAs are incorporated in a transgene, e.g., a transgene delivered by a rAAV vector, e.g., to inhibit the expression of the transgene in one or more tissues of an animal harboring the transgene. In some embodiments, a binding site may be selected to control the expression of a transgene in a tissue specific manner. For example, binding sites for the liver-specific miR-122 may be incorporated into a transgene to inhibit expression of that transgene in the liver. Additional exemplary miRNA sequences are described, for example, in U.S. patent Ser. No. 10/300,146 (incorporated herein by reference in its entirety).


A miR inhibitor or miRNA inhibitor is generally an agent that blocks miRNA expression and/or processing. Examples of such agents include, but are not limited to, microRNA antagonists, microRNA specific antisense, microRNA sponges, and microRNA oligonucleotides (double-stranded, hairpin, short oligonucleotides) that inhibit miRNA interaction with a Drosha complex. MicroRNA inhibitors, e.g., miRNA sponges, can be expressed in cells from transgenes (e.g., as described in Ebert, M. S. Nature Methods. Epub Aug. 12, 2007; incorporated by reference herein in its entirety). In some embodiments, microRNA sponges, or other miR inhibitors, are used with the AAVs, microRNA sponges generally specifically inhibit miRNAs through a complementary heptameric seed sequence. In some embodiments, an entire family of miRNAs can be silenced using a single sponge sequence. Other methods for silencing miRNA function (derepression of miRNA targets) in cells will be apparent to one of ordinary skill in the art.


In some embodiments, a miRNA as described herein comprises a sequence listed in Table 4 of PCT Publication No. WO2020014209, incorporated herein by reference. Also incorporated herein by reference are the listing of exemplary miRNA sequences from WO2020014209.


5′ UTR and 3′ UTR

In certain embodiments, a nucleic acid comprising an open reading frame encoding a Gene Writer polypeptide (e.g., as described herein) comprises a 5′ UTR and/or a 3′ UTR. In embodiments, a 5′ UTR and 3′ UTR for protein expression, e.g., mRNA (or DNA encoding the RNA) for a Gene Writer polypeptide or heterologous object sequence, comprise optimized expression sequences. In some embodiments, the 5′ UTR comprises GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACC (SEQ ID NO: 1867) and/or the 3′ UTR comprising UGAUAAUAGGCUGGAGCCUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCCC AGCCCCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAAUAAAGUCUGA (SEQ ID NO: 1868), e.g., as described in Richner et al. Cell 168(6): P1114-1125 (2017), the sequences of which are incorporated herein by reference.


In some embodiments, an open reading frame of a Gene Writer system, e.g., an ORF of an mRNA (or DNA encoding an mRNA) encoding a Gene Writer polypeptide or one or more ORFs of an mRNA (or DNA encoding an mRNA) of a heterologous object sequence, is flanked by a 5′ and/or 3′ untranslated region (UTR) that enhances the expression thereof. In some embodiments, the 5′ UTR of an mRNA component (or transcript produced from a DNA component) of the system comprises the sequence 5′-GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACC-3′ (SEQ ID NO: 1869). In some embodiments, the 3′ UTR of an mRNA component (or transcript produced from a DNA component) of the system comprises the sequence 5′-UGAUAAUAGGCUGGAGCCUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCCC AGCCCCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAAUAAAGUCUGA-3′ (SEQ ID NO: 1870). This combination of 5′ UTR and 3′ UTR has been shown to result in desirable expression of an operably linked ORF by Richner et al. Cell 168(6): P1114-1125 (2017), the teachings and sequences of which are incorporated herein by reference. In some embodiments, a system described herein comprises a DNA encoding a transcript, wherein the DNA comprises the corresponding 5′ UTR and 3′ UTR sequences, with T substituting for U in the above-listed sequence). In some embodiments, a DNA vector used to produce an RNA component of the system further comprises a promoter upstream of the 5′ UTR for initiating in vitro transcription, e.g, a T7, T3, or SP6 promoter. The 5′ UTR above begins with GGG, which is a suitable start for optimizing transcription using T7 RNA polymerase. For tuning transcription levels and altering the transcription start site nucleotides to fit alternative 5′ UTRs, the teachings of Davidson et al. Pac Symp Biocomput 433-443 (2010) describe T7 promoter variants, and the methods of discovery thereof, that fulfill both of these traits.


Viral Vectors and Components Thereof

Viruses are a useful source of delivery vehicles for the systems described herein, in addition to a source of relevant enzymes or domains as described herein, e.g., as sources of recombinases and DNA binding domains used herein, e.g., Cre recombinase, lambda integrase, or the DNA binding domains from AAV Rep proteins. Some enzymes may have multiple activities. In some embodiments, the virus used as a Gene Writer delivery system or a source of components thereof may be selected from a group as described by Baltimore Bacteriol Rev 35(3):235-241 (1971).


In some embodiments, the virus is selected from a Group I virus, e.g., is a DNA virus and packages dsDNA into virions. In some embodiments, the Group I virus is selected from, e.g., Adenoviruses, Herpesviruses, Poxviruses.


In some embodiments, the virus is selected from a Group II virus, e.g., is a DNA virus and packages ssDNA into virions. In some embodiments, the Group II virus is selected from, e.g., Parvoviruses. In some embodiments, the parvovirus is a dependoparvovirus, e.g., an adeno-associated virus (AAV).


In some embodiments, the virus is selected from a Group III virus, e.g., is an RNA virus and packages dsRNA into virions. In some embodiments, the Group III virus is selected from, e.g., Reoviruses. In some embodiments, one or both strands of the dsRNA contained in such virions is a coding molecule able to serve directly as mRNA upon transduction into a host cell, e.g., can be directly translated into protein upon transduction into a host cell without requiring any intervening nucleic acid replication or polymerization steps.


In some embodiments, the virus is selected from a Group IV virus, e.g., is an RNA virus and packages ssRNA(+) into virions. In some embodiments, the Group IV virus is selected from, e.g., Coronaviruses, Picornaviruses, Togaviruses. In some embodiments, the ssRNA(+) contained in such virions is a coding molecule able to serve directly as mRNA upon transduction into a host cell, e.g., can be directly translated into protein upon transduction into a host cell without requiring any intervening nucleic acid replication or polymerization steps.


In some embodiments, the virus is selected from a Group V virus, e.g., is an RNA virus and packages ssRNA(−) into virions. In some embodiments, the Group V virus is selected from, e.g., Orthomyxoviruses, Rhabdoviruses. In some embodiments, an RNA virus with an ssRNA(−) genome also carries an enzyme inside the virion that is transduced to host cells with the viral genome, e.g., an RNA-dependent RNA polymerase, capable of copying the ssRNA(−) into ssRNA(+) that can be translated directly by the host.


In some embodiments, the virus is selected from a Group VI virus, e.g., is a retrovirus and packages ssRNA(+) into virions. In some embodiments, the Group VI virus is selected from, e.g., Retroviruses. In some embodiments, the retrovirus is a lentivirus, e.g., HIV-1, HIV-2, SIV, BIV. In some embodiments, the retrovirus is a spumavirus, e.g., a foamy virus, e.g., HFV, SFV, BFV. In some embodiments, the ssRNA(+) contained in such virions is a coding molecule able to serve directly as mRNA upon transduction into a host cell, e.g., can be directly translated into protein upon transduction into a host cell without requiring any intervening nucleic acid replication or polymerization steps. In some embodiments, the ssRNA(+) is first reverse transcribed and copied to generate a dsDNA genome intermediate from which mRNA can be transcribed in the host cell. In some embodiments, an RNA virus with an ssRNA(+) genome also carries an enzyme inside the virion that is transduced to host cells with the viral genome, e.g., an RNA-dependent DNA polymerase, capable of copying the ssRNA(+) into dsDNA that can be transcribed into mRNA and translated by the host.


In some embodiments, the virus is selected from a Group VII virus, e.g., is a retrovirus and packages dsRNA into virions. In some embodiments, the Group VII virus is selected from, e.g., Hepadnaviruses. In some embodiments, one or both strands of the dsRNA contained in such virions is a coding molecule able to serve directly as mRNA upon transduction into a host cell, e.g., can be directly translated into protein upon transduction into a host cell without requiring any intervening nucleic acid replication or polymerization steps. In some embodiments, one or both strands of the dsRNA contained in such virions is first reverse transcribed and copied to generate a dsDNA genome intermediate from which mRNA can be transcribed in the host cell. In some embodiments, an RNA virus with a dsRNA genome also carries an enzyme inside the virion that is transduced to host cells with the viral genome, e.g., an RNA-dependent DNA polymerase, capable of copying the dsRNA into dsDNA that can be transcribed into mRNA and translated by the host.


In some embodiments, virions used to deliver nucleic acid in this invention may also carry enzymes involved in the process of Gene Writing. For example, a virion may contain a recombinase domain that is delivered into a host cell along with the nucleic acid. In some embodiments, a template nucleic acid may be associated with a Gene Writer polypeptide within a virion, such that both are co-delivered to a target cell upon transduction of the nucleic acid from the viral particle. In some embodiments, the nucleic acid in a virion may comprise DNA, e.g., linear ssDNA, linear dsDNA, circular ssDNA, circular dsDNA, minicircle DNA, dbDNA, ceDNA. In some embodiments, the nucleic acid in a virion may comprise RNA, e.g., linear ssRNA, linear dsRNA, circular ssRNA, circular dsRNA. In some embodiments, a viral genome may circularize upon transduction into a host cell, e.g., a linear ssRNA molecule may undergo a covalent linkage to form a circular ssRNA, a linear dsRNA molecule may undergo a covalent linkage to form a circular dsRNA or one or more circular ssRNA. In some embodiments, a viral genome may replicate by rolling circle replication in a host cell. In some embodiments, a viral genome may comprise a single nucleic acid molecule, e.g., comprise a non-segmented genome. In some embodiments, a viral genome may comprise two or more nucleic acid molecules, e.g., comprise a segmented genome. In some embodiments, a nucleic acid in a virion may be associated with one or proteins. In some embodiments, one or more proteins in a virion may be delivered to a host cell upon transduction. In some embodiments, a natural virus may be adapted for nucleic acid delivery by the addition of virion packaging signals to the target nucleic acid, wherein a host cell is used to package the target nucleic acid containing the packaging signals.


In some embodiments, a virion used as a delivery vehicle may comprise a commensal human virus. In some embodiments, a virion used as a delivery vehicle may comprise an anellovirus, the use of which is described in WO2018232017A1, which is incorporated herein by reference in its entirety.


Production of Compositions and Systems

As will be appreciated by one of skill, methods of designing and constructing nucleic acid constructs and proteins or polypeptides (such as the systems, constructs and polypeptides described herein) are routine in the art. Generally, recombinant methods may be used. See, in general, Smales & James (Eds.), Therapeutic Proteins: Methods and Protocols (Methods in Molecular Biology), Humana Press (2005); and Crommelin, Sindelar & Meibohm (Eds.), Pharmaceutical Biotechnology: Fundamentals and Applications, Springer (2013). Methods of designing, preparing, evaluating, purifying and manipulating nucleic acid compositions are described in Green and Sambrook (Eds.), Molecular Cloning: A Laboratory Manual (Fourth Edition), Cold Spring Harbor Laboratory Press (2012).


Exemplary methods for producing a therapeutic pharmaceutical protein or polypeptide described herein involve expression in mammalian cells, although recombinant proteins can also be produced using insect cells, yeast, bacteria, or other cells under control of appropriate promoters. Mammalian expression vectors may comprise non-transcribed elements such as an origin of replication, a suitable promoter, and other 5′ or 3′ flanking non-transcribed sequences, and 5′ or 3′ non-translated sequences such as necessary ribosome binding sites, a polyadenylation site, splice donor and acceptor sites, and termination sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, splice, and polyadenylation sites may be used to provide other genetic elements required for expression of a heterologous DNA sequence. Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts are described in Green & Sambrook, Molecular Cloning: A Laboratory Manual (Fourth Edition), Cold Spring Harbor Laboratory Press (2012).


Various mammalian cell culture systems can be employed to express and manufacture recombinant protein. Examples of mammalian expression systems include CHO, COS, HEK293, HeLA, and BHK cell lines. Processes of host cell culture for production of protein therapeutics are described in Zhou and Kantardjieff (Eds.), Mammalian Cell Cultures for Biologics Manufacturing (Advances in Biochemical Engineering/Biotechnology), Springer (2014). Compositions described herein may include a vector, such as a viral vector, e.g., a lentiviral vector, encoding a recombinant protein. In some embodiments, a vector, e.g., a viral vector, may comprise a nucleic acid encoding a recombinant protein.


Purification of protein therapeutics is described in Franks, Protein Biotechnology: Isolation, Characterization, and Stabilization, Humana Press (2013); and in Cutler, Protein Purification Protocols (Methods in Molecular Biology), Humana Press (2010).


RNAs (e.g., a gRNA or an mRNA, e.g., an mRNA encoding a GeneWriter) may also be produced as described herein. In some embodiments, RNA segments may be produced by chemical synthesis. In some embodiments, RNA segments may be produced by in vitro transcription of a nucleic acid template, e.g., by providing an RNA polymerase to act on a cognate promoter of a DNA template to produce an RNA transcript. In some embodiments, in vitro transcription is performed using, e.g., a T7, T3, or SP6 RNA polymerase, or a derivative thereof, acting on a DNA, e.g., dsDNA, ssDNA, linear DNA, plasmid DNA, linear DNA amplicon, linearized plasmid DNA, e.g., encoding the RNA segment, e.g., under transcriptional control of a cognate promoter, e.g., a T7, T3, or SP6 promoter. In some embodiments, a combination of chemical synthesis and in vitro transcription is used to generate the RNA segments for assembly. In embodiments, the gRNA is produced by chemical synthesis and the heterologous object sequence segment is produced by in vitro transcription. Without wishing to be bound by theory, in vitro transcription may be better suited for the production of longer RNA molecules. In some embodiments, reaction temperature for in vitro transcription may be lowered, e.g., be less than 37° C. (e.g., between 0-10 C, 10-20 C, or 20-30 C), to result in a higher proportion of full-length transcripts (see Krieg Nucleic Acids Res 18:6463 (1990), which is herein incorporated by reference in its entirety). In some embodiments, a protocol for improved synthesis of long transcripts is employed to synthesize a long RNA, e.g., an RNA greater than 5 kb, such as the use of e.g., T7 RiboMAX Express, which can generate 27 kb transcripts in vitro (Thiel et al. J Gen Virol 82(6):1273-1281 (2001)). In some embodiments, modifications to RNA molecules as described herein may be incorporated during synthesis of RNA segments (e.g., through the inclusion of modified nucleotides or alternative binding chemistries), following synthesis of RNA segments through chemical or enzymatic processes, following assembly of one or more RNA segments, or a combination thereof.


In some embodiments, an mRNA of the system (e.g., an mRNA encoding a Gene Writer polypeptide) is synthesized in vitro using T7 polymerase-mediated DNA-dependent RNA transcription from a linearized DNA template, where UTP is optionally substituted with 1-methylpseudoUTP. In some embodiments, the transcript incorporates 5′ and 3′ UTRs, e.g., GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACC (SEQ ID NO: 1871) and UGAUAAUAGGCUGGAGCCUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCCC AGCCCCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAAUAAAGUCUGA (SEQ ID NO: 1872), or functional fragments or variants thereof, and optionally includes a poly-A tail, which can be encoded in the DNA template or added enzymatically following transcription. In some embodiments, a donor methyl group, e.g., S-adenosylmethionine, is added to a methylated capped RNA with cap 0 structure to yield a cap 1 structure that increases mRNA translation efficiency (Richner et al. Cell 168(6): P1114-1125 (2017)).


In some embodiments, the transcript from a T7 promoter starts with a GGG motif. In some embodiments, a transcript from a T7 promoter does not start with a GGG motif. It has been shown that a GGG motif at the transcriptional start, despite providing superior yield, may lead to T7 RNAP synthesizing a ladder of poly(G) products as a result of slippage of the transcript on the three C residues in the template strand from +1 to +3 (Imburgio et al. Biochemistry 39(34):10419-10430 (2000). For tuning transcription levels and altering the transcription start site nucleotides to fit alternative 5′ UTRs, the teachings of Davidson et al. Pac Symp Biocomput 433-443 (2010) describe T7 promoter variants, and the methods of discovery thereof, that fulfill both of these traits.


In some embodiments, RNA segments may be connected to each other by covalent coupling. In some embodiments, an RNA ligase, e.g., T4 RNA ligase, may be used to connect two or more RNA segments to each other. When a reagent such as an RNA ligase is used, a 5′ terminus is typically linked to a 3′ terminus. In some embodiments, if two segments are connected, then there are two possible linear constructs that can be formed (i.e., (1) 5′-Segment 1-Segment 2-3′ and (2) 5′-Segment 2-Segment 1-3′). In some embodiments, intramolecular circularization can also occur. Both of these issues can be addressed, for example, by blocking one 5′ terminus or one 3′ terminus so that RNA ligase cannot ligate the terminus to another terminus. In embodiments, if a construct of 5′-Segment 1-Segment 2-3′ is desired, then placing a blocking group on either the 5′ end of Segment 1 or the 3′ end of Segment 2 may result in the formation of only the correct linear ligation product and/or prevent intramolecular circularization. Compositions and methods for the covalent connection of two nucleic acid (e.g., RNA) segments are disclosed, for example, in US20160102322A1 (incorporated herein by reference in its entirety), along with methods including the use of an RNA ligase to directionally ligate two single-stranded RNA segments to each other.


One example of an end blocker that may be used in conjunction with, for example, T4 RNA ligase, is a dideoxy terminator. T4 RNA ligase typically catalyzes the ATP-dependent ligation of phosphodiester bonds between 5′-phosphate and 3′-hydroxyl termini. In some embodiments, when T4 RNA ligase is used, suitable termini must be present on the termini being ligated. One means for blocking T4 RNA ligase on a terminus comprises failing to have the correct terminus format. Generally, termini of RNA segments with a 5-hydroxyl or a 3′-phosphate will not act as substrates for T4 RNA ligase.


Additional exemplary methods that may be used to connect RNA segments is by click chemistry (e.g., as described in U.S. Pat. Nos. 7,375,234 and 7,070,941, and US Patent Publication No. 2013/0046084, the entire disclosures of which are incorporated herein by reference). For example, one exemplary click chemistry reaction is between an alkyne group and an azide group (see FIG. 11 of US20160102322A1, which is incorporated herein by reference in its entirety). Any click reaction may potentially be used to link RNA segments (e.g., Cu-azide-alkyne, strain-promoted-azide-alkyne, staudinger ligation, tetrazine ligation, photo-induced tetrazole-alkene, thiol-ene, NHS esters, epoxides, isocyanates, and aldehyde-aminooxy). In some embodiments, ligation of RNA molecules using a click chemistry reaction is advantageous because click chemistry reactions are fast, modular, efficient, often do not produce toxic waste products, can be done with water as a solvent, and/or can be set up to be stereospecific.


In some embodiments, RNA segments may be connected using an Azide-Alkyne Huisgen Cycloaddition, reaction, which is typically a 1,3-dipolar cycloaddition between an azide and a terminal or internal alkyne to give a 1,2,3-triazole for the ligation of RNA segments. Without wishing to be bound by theory, one advantage of this ligation method may be that this reaction can initiated by the addition of required Cu(I) ions. Other exemplary mechanisms by which RNA segments may be connected include, without limitation, the use of halogens (F—, Br—, I—)/alkynes addition reactions, carbonyls/sulfhydryls/maleimide, and carboxyl/amine linkages. For example, one RNA molecule may be modified with thiol at 3′ (using disulfide amidite and universal support or disulfide modified support), and the other RNA molecule may be modified with acrydite at 5′ (using acrylic phosphoramidite), then the two RNA molecules can be connected by a Michael addition reaction. This strategy can also be applied to connecting multiple RNA molecules stepwise. Also provided are methods for linking more than two (e.g., three, four, five, six, etc.) RNA molecules to each other. Without wishing to be bound by theory, this may be useful when a desired RNA molecule is longer than about 40 nucleotides, e.g., such that chemical synthesis efficiency degrades, e.g., as noted in US20160102322A1 (incorporated herein by reference in its entirety).


By way of illustration, a tracrRNA is typically around 80 nucleotides in length. Such RNA molecules may be produced, for example, by processes such as in vitro transcription or chemical synthesis. In some embodiments, when chemical synthesis is used to produce such RNA molecules, they may be produced as a single synthesis product or by linking two or more synthesized RNA segments to each other. In embodiments, when three or more RNA segments are connected to each other, different methods may be used to link the individual segments together. Also, the RNA segments may be connected to each other in one pot (e.g., a container, vessel, well, tube, plate, or other receptacle), all at the same time, or in one pot at different times or in different pots at different times. In a non-limiting example, to assemble RNA Segments 1, 2 and 3 in numerical order, RNA Segments 1 and 2 may first be connected, 5′ to 3′, to each other. The reaction product may then be purified for reaction mixture components (e.g., by chromatography), then placed in a second pot, for connection of the 3′ terminus with the 5′ terminus of RNA Segment 3. The final reaction product may then be connected to the 5′ terminus of RNA Segment 3.


In another non-limiting example, RNA Segment 1 (about 30 nucleotides) is the target locus recognition sequence of a crRNA and a portion of Hairpin Region 1. RNA Segment 2 (about 35 nucleotides) contains the remainder of Hairpin Region 1 and some of the linear tracrRNA between Hairpin Region 1 and Hairpin Region 2. RNA Segment 3 (about 35 nucleotides) contains the remainder of the linear tracrRNA between Hairpin Region 1 and Hairpin Region 2 and all of Hairpin Region 2. In this example, RNA Segments 2 and 3 are linked, 5′ to 3′, using click chemistry. Further, the 5′ and 3′ end termini of the reaction product are both phosphorylated. The reaction product is then contacted with RNA Segment 1, having a 3′ terminal hydroxyl group, and T4 RNA ligase to produce a guide RNA molecule.


A number of additional linking chemistries may be used to connect RNA segments according to method of the invention. Some of these chemistries are set out in Table 6 of US20160102322A1, which is incorporated herein by reference in its entirety.


Vectors

The disclosure provides, in part, a nucleic acid, e.g., vector, encoding a Gene Writer polypeptide described herein, a template nucleic acid described herein, or both. In some embodiments, a vector comprises a selective marker, e.g., an antibiotic resistance marker. In some embodiments, the antibiotic resistance marker is a kanamycin resistance marker. In some embodiments, the antibiotic resistance marker does not confer resistance to beta-lactam antibiotics. In some embodiments, the vector does not comprise an ampicillin resistance marker. In some embodiments, the vector comprises a kanamycin resistance marker and does not comprise an ampicillin resistance marker. In some embodiments, a vector encoding a Gene Writer polypeptide is integrated into a target cell genome (e.g., upon administration to a target cell, tissue, organ, or subject). In some embodiments, a vector encoding a Gene Writer polypeptide is not integrated into a target cell genome (e.g., upon administration to a target cell, tissue, organ, or subject). In some embodiments, a vector comprising a template nucleic acid (e.g., template DNA) is not integrated into a target cell genome (e.g., upon administration to a target cell, tissue, organ, or subject). In some embodiments, if a vector is integrated into a target site in a target cell genome, the selective marker is not integrated into the genome. In some embodiments, if a vector is integrated into a target site in a target cell genome, genes or sequences involved in vector maintenance (e.g., plasmid maintenance genes) are not integrated into the genome. In some embodiments, if a vector is integrated into a target site in a target cell genome, transfer regulating sequences (e.g., inverted terminal repeats, e.g., from an AAV) are not integrated into the genome. In some embodiments, administration of a vector (e.g., encoding a Gene Writer polypeptide described herein, a template nucleic acid described herein, or both) to a target cell, tissue, organ, or subject results in integration of a portion of the vector into one or more target sites in the genome(s) of said target cell, tissue, organ, or subject. In some embodiments, less than 99, 95, 90, 80, 70, 60, 50, 40, 30, 20, 10, 5, 4, 3, 2, or 1% of target sites (e.g., no target sites) comprising integrated material comprise a selective marker (e.g., an antibiotic resistance gene), a transfer regulating sequence (e.g., an inverted terminal repeat, e.g., from an AAV), or both from the vector.


AAV Vectors


In some embodiments, the vector encoding a Gene Writer polypeptide described herein, a template nucleic acid described herein, or both, is an adeno-associated virus (AAV) vector, e.g., comprising an AAV genome. In some embodiments, the AAV genome comprises two genes that encode four replication proteins and three capsid proteins, respectively. In some embodiments, the genes are flanked on either side by 145-bp inverted terminal repeats (ITRs). In some embodiments, the virion comprises up to three capsid proteins (Vp1, Vp2, and/or Vp3), e.g., produced in a 1:1:10 ratio. In some embodiments, the capsid proteins are produced from the same open reading frame and/or from differential splicing (Vp1) and alternative translational start sites (Vp2 and Vp3, respectively). Generally, Vp3 is the most abundant subunit in the virion and participates in receptor recognition at the cell surface defining the tropism of the virus. In some embodiments, Vp1 comprises a phospholipase domain, e.g., which functions in viral infectivity, in the N-terminus of Vp1.


In some embodiments, packaging capacity of the viral vectors limits the size of the base editor that can be packaged into the vector. For example, the packaging capacity of the AAVs can be about 4.5 kb (e.g., about 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, or 6.0 kb), e.g., including one or two inverted terminal repeats (ITRs), e.g., 145 base ITRs.


In some embodiments, recombinant AAV (rAAV) comprises cis-acting 145-bp ITRs flanking vector transgene cassettes, e.g., providing up to 4.5 kb for packaging of foreign DNA. Subsequent to infection, rAAV can, in some instances, express a protein described herein and persist without integration into the host genome by existing episomally in circular head-to-tail concatemers. rAAV can be used, for example, in vitro and in vivo. In some embodiments, AAV-mediated gene delivery requires that the length of the coding sequence of the gene is equal or greater in size than the wild-type AAV genome.


AAV delivery of genes that exceed this size and/or the use of large physiological regulatory elements can be accomplished, for example, by dividing the protein(s) to be delivered into two or more fragments. In some embodiments, the N-terminal fragment is fused to a split intein-N. In some embodiments, the C-terminal fragment is fused to a split intein-C. In embodiments, the fragments are packaged into two or more AAV vectors.


In some embodiments, dual AAV vectors are generated by splitting a large transgene expression cassette in two separate halves (5 and 3 ends, or head and tail), e.g., wherein each half of the cassette is packaged in a single AAV vector (of <5 kb). The re-assembly of the full-length transgene expression cassette can, in some embodiments, then be achieved upon co-infection of the same cell by both dual AAV vectors. In some embodiments, co-infection is followed by one or more of: (1) homologous recombination (HR) between 5 and 3 genomes (dual AAV overlapping vectors); (2) ITR-mediated tail-to-head concatemerization of 5 and 3 genomes (dual AAV trans-splicing vectors); and/or (3) a combination of these two mechanisms (dual AAV hybrid vectors). In some embodiments, the use of dual AAV vectors in vivo results in the expression of full-length proteins. In some embodiments, the use of the dual AAV vector platform represents an efficient and viable gene transfer strategy for transgenes of greater than about 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, or 5.0 kb in size. In some embodiments, AAV vectors can also be used to transduce cells with target nucleic acids, e.g., in the in vitro production of nucleic acids and peptides. In some embodiments, AAV vectors can be used for in vivo and ex vivo gene therapy procedures (see, e.g., West et al., Virology 160:38-47 (1987); U.S. Pat. No. 4,797,368; WO 93/24641; Kotin, Human Gene Therapy 5:793-801 (1994); Muzyczka, J. Clin. Invest. 94:1351 (1994); each of which is incorporated herein by reference in their entirety). The construction of recombinant AAV vectors is described in a number of publications, including U.S. Pat. No. 5,173,414; Tratschin et al., Mol. Cell. Biol. 5:3251-3260 (1985); Tratschin, et al., Mol. Cell. Biol. 4:2072-2081 (1984); Hermonat & Muzyczka, PNAS 81:6466-6470 (1984); and Samulski et al., J. Virol. 63:03822-3828 (1989) (incorporated by reference herein in their entirety).


In some embodiments, a Gene Writer described herein (e.g., with or without one or more guide nucleic acids) can be delivered using AAV, lentivirus, adenovirus or other plasmid or viral vector types, in particular, using formulations and doses from, for example, U.S. Pat. No. 8,454,972 (formulations, doses for adenovirus), U.S. Pat. No. 8,404,658 (formulations, doses for AAV) and U.S. Pat. No. 5,846,946 (formulations, doses for DNA plasmids) and from clinical trials and publications regarding the clinical trials involving lentivirus, AAV and adenovirus. For example, for AAV, the route of administration, formulation and dose can be as described in U.S. Pat. No. 8,454,972 and as in clinical trials involving AAV. For Adenovirus, the route of administration, formulation and dose can be as described in U.S. Pat. No. 8,404,658 and as in clinical trials involving adenovirus. For plasmid delivery, the route of administration, formulation and dose can be as described in U.S. Pat. No. 5,846,946 and as in clinical studies involving plasmids. Doses can be based on or extrapolated to an average 70 kg individual (e.g. a male adult human), and can be adjusted for patients, subjects, mammals of different weight and species. Frequency of administration is within the ambit of the medical or veterinary practitioner (e.g., physician, veterinarian), depending on usual factors including the age, sex, general health, other conditions of the patient or subject and the particular condition or symptoms being addressed. In some embodiments, the viral vectors can be injected into the tissue of interest. For cell-type specific Gene Writing, the expression of the Gene Writer and optional guide nucleic acid can, in some embodiments, be driven by a cell-type specific promoter.


In some embodiments, AAV allows for low toxicity, for example, due to the purification method not requiring ultracentrifugation of cell particles that can activate the immune response. In some embodiments, AAV allows low probability of causing insertional mutagenesis, for example, because it does not substantially integrate into the host genome.


In some embodiments, AAV has a packaging limit of about 4.4, 4.5, 4.6, 4.7, or 4.75 kb. In some embodiments, a Gene Writer, promoter, and transcription terminator can fit into a single viral vector. SpCas9 (4.1 kb) may, in some instances, be difficult to package into AAV. Therefore, in some embodiments, a Gene Writer is used that is shorter in length than other Gene Writers or base editors. In some embodiments, the Gene Writers are less than about 4.5 kb, 4.4 kb, 4.3 kb, 4.2 kb, 4.1 kb, 4 kb, 3.9 kb, 3.8 kb, 3.7 kb, 3.6 kb, 3.5 kb, 3.4 kb, 3.3 kb, 3.2 kb, 3.1 kb, 3 kb, 2.9 kb, 2.8 kb, 2.7 kb, 2.6 kb, 2.5 kb, 2 kb, or 1.5 kb.


An AAV can be AAV1, AAV2, AAV5 or any combination thereof. In some embodiments, the type of AAV is selected with respect to the cells to be targeted; e.g., AAV serotypes 1, 2, 5 or a hybrid capsid AAV1, AAV2, AAV5 or any combination thereof can be selected for targeting brain or neuronal cells; or AAV4 can be selected for targeting cardiac tissue. In some embodiments, AAV8 is selected for delivery to the liver. Exemplary AAV serotypes as to these cells are described, for example, in Grimm, D. et al, J. Virol. 82: 5887-5911 (2008) (incorporated herein by reference in its entirety). In some embodiments, AAV refers all serotypes, subtypes, and naturally-occurring AAV as well as recombinant AAV. AAV may be used to refer to the virus itself or a derivative thereof. In some embodiments, AAV includes AAV1, AAV2, AAV3, AAV3B, AAV4, AAV5, AAV6, AAV6.2, AAV7, AAVrh.64R1, AAVhu.37, AAVrh.8, AAVrh.32.33, AAV8, AAV9, AAV-DJ, AAV2/8, AAVrhlO, AAVLK03, AV10, AAV11, AAV 12, rhlO, and hybrids thereof, avian AAV, bovine AAV, canine AAV, equine AAV, primate AAV, nonprimate AAV, and ovine AAV. The genomic sequences of various serotypes of AAV, as well as the sequences of the native terminal repeats (TRs), Rep proteins, and capsid subunits are known in the art. Such sequences may be found in the literature or in public databases such as GenBank. Additional exemplary AAV serotypes are listed in Table 7.









TABLE 7







Viral delivery modalities









Target Tissue
Vehicle
Reference





Liver
AAV (AAV81, AAVrh.81,
1. Wang et al., Mol. Ther. 18,



AAVhu.371, AAV2/8,
118-25 (2010)



AAV2/rh102, AAV9, AAV2,
2. Ginn et al., JHEP Reports,



NP403, NP592,3, AAV3B5,
100065 (2019)



AAV-DJ4, AAV-LK014,
3. Paulk et al., Mol. Ther. 26,



AAV-LK024, AAV-LK034,
289-303 (2018).



AAV-LK194
4. L. Lisowski et al., Nature.



Adenovirus (Ad5, HC-AdV6)
506, 382-6 (2014).




5. L. Wang et al., Mol. Ther.




23, 1877-87 (2015).




6. Hausl Mol Ther (2010)


Lung
AAV (AAV4, AAV5,
1. Duncan et al., Mol Ther



AAV61, AAV9, H222)
Methods Clin Dev (2018)



Adenovirus (Ad5, Ad3,
2. Cooney et al., Am J Respir



Ad21, Ad14)3
Cell Mol Biol (2019)




3. Li et al., Mol Ther Methods




Clin Dev (2019)


Skin
AAV61, AAV-LK192
1. Petek et al., Mol. Ther.




(2010)




2. L. Lisowski et al., Nature.




506, 382-6 (2014).


HSCs
HDAd5/35++
Wang et al. Blood Adv (2019)









In some embodiments, a pharmaceutical composition (e.g., comprising an AAV as described herein) has less than 10% empty capsids, less than 8% empty capsids, less than 7% empty capsids, less than 5% empty capsids, less than 3% empty capsids, or less than 1% empty capsids. In some embodiments, the pharmaceutical composition has less than about 5% empty capsids. In some embodiments, the number of empty capsids is below the limit of detection. In some embodiments, it is advantageous for the pharmaceutical composition to have low amounts of empty capsids, e.g., because empty capsids may generate an adverse response (e.g., immune response, inflammatory response, liver response, and/or cardiac response), e.g., with little or no substantial therapeutic benefit.


In some embodiments, the residual host cell protein (rHCP) in the pharmaceutical composition is less than or equal to 100 ng/ml rHCP per 1×1013 vg/ml, e.g., less than or equal to 40 ng/ml rHCP per 1×1013 vg/ml or 1-50 ng/ml rHCP per 1×1013 vg/ml. In some embodiments, the pharmaceutical composition comprises less than 10 ng rHCP per 1.0×1013 vg, or less than 5 ng rHCP per 1.0×1013 vg, less than 4 ng rHCP per 1.0×1013 vg, or less than 3 ng rHCP per 1.0×1013 vg, or any concentration in between. In some embodiments, the residual host cell DNA (hcDNA) in the pharmaceutical composition is less than or equal to 5×106 pg/ml hcDNA per 1×1013 vg/ml, less than or equal to 1.2×106 pg/ml hcDNA per 1×1013 vg/ml, or 1×105 pg/ml hcDNA per 1×1013 vg/ml. In some embodiments, the residual host cell DNA in said pharmaceutical composition is less than 5.0×105 pg per 1×1013 vg, less than 2.0×105 pg per 1.0×1013 vg, less than 1.1×105 pg per 1.0×1013 vg, less than 1.0×105 pg hcDNA per 1.0×1013 vg, less than 0.9×105 pg hcDNA per 1.0×1013 vg, less than 0.8×105 pg hcDNA per 1.0×1013 vg, or any concentration in between.


In some embodiments, the residual plasmid DNA in the pharmaceutical composition is less than or equal to 1.7×105 pg/ml per 1.0×1013 vg/ml, or 1×105 pg/ml per 1×1.0×1013 vg/ml, or 1.7×106 pg/ml per 1.0×1013 vg/ml. In some embodiments, the residual DNA plasmid in the pharmaceutical composition is less than 10.0×10 5 pg by 1.0×1013 vg, less than 8.0×105 pg by 1.0×1013 vg or less than 6.8×10 5 pg by 1.0×1013 vg. In embodiments, the pharmaceutical composition comprises less than 0.5 ng per 1.0×1013 vg, less than 0.3 ng per 1.0×1013 vg, less than 0.22 ng per 1.0×1013 vg or less than 0.2 ng per 1.0×1013 vg or any intermediate concentration of bovine serum albumin (BSA). In embodiments, the benzonase in the pharmaceutical composition is less than 0.2 ng by 1.0×1013 vg, less than 0.1 ng by 1.0×1013 vg, less than 0.09 ng by 1.0×1013 vg, less than 0.08 ng by 1.0×1013 vg or any intermediate concentration. In embodiments, Poloxamer 188 in the pharmaceutical composition is about 10 to 150 ppm, about 15 to 100 ppm or about 20 to 80 ppm. In embodiments, the cesium in the pharmaceutical composition is less than 50 pg/g (ppm), less than 30 pg/g (ppm) or less than 20 pg/g (ppm) or any intermediate concentration.


In embodiments, the pharmaceutical composition comprises total impurities, e.g., as determined by SDS-PAGE, of less than 10%, less than 8%, less than 7%, less than 6%, less than 5%, less than 4%, less than 3%, less than 2%, or any percentage in between. In embodiments, the total purity, e.g., as determined by SDS-PAGE, is greater than 90%, greater than 92%, greater than 93%, greater than 94%, greater than 95%, greater than 96%, greater than 97%, greater than 98%, or any percentage in between. In embodiments, no single unnamed related impurity, e.g., as measured by SDS-PAGE, is greater than 5%, greater than 4%, greater than 3% or greater than 2%, or any percentage in between. In embodiments, the pharmaceutical composition comprises a percentage of filled capsids relative to total capsids (e.g., peak 1+peak 2 as measured by analytical ultracentrifugation) of greater than 85%, greater than 86%, greater than 87%, greater than 88%, greater than 89%, greater than 90%, greater than 91%, greater than 91.9%, greater than 92%, greater than 93%, or any percentage in between. In embodiments of the pharmaceutical composition, the percentage of filled capsids measured in peak 1 by analytical ultracentrifugation is 20-80%, 25-75%, 30-75%, 35-75%, or 37.4-70.3%. In embodiments of the pharmaceutical composition, the percentage of filled capsids measured in peak 2 by analytical ultracentrifugation is 20-80%, 20-70%, 22-65%, 24-62%, or 24.9-60.1%.


In one embodiment, the pharmaceutical composition comprises a genomic titer of 1.0 to 5.0×1013 vg/mL, 1.2 to 3.0×1013 vg/mL or 1.7 to 2.3×1013 vg/ml. In one embodiment, the pharmaceutical composition exhibits a biological load of less than 5 CFU/mL, less than 4 CFU/mL, less than 3 CFU/mL, less than 2 CFU/mL or less than 1 CFU/mL or any intermediate contraction. In embodiments, the amount of endotoxin according to USP, for example, USP <85> (incorporated by reference in its entirety) is less than 1.0 EU/mL, less than 0.8 EU/mL or less than 0.75 EU/mL. In embodiments, the osmolarity of a pharmaceutical composition according to USP, for example, USP <785> (incorporated by reference in its entirety) is 350 to 450 mOsm/kg, 370 to 440 mOsm/kg or 390 to 430 mOsm/kg. In embodiments, the pharmaceutical composition contains less than 1200 particles that are greater than 25 m per container, less than 1000 particles that are greater than 25 m per container, less than 500 particles that are greater than 25 m per container or any intermediate value. In embodiments, the pharmaceutical composition contains less than 10,000 particles that are greater than 10 m per container, less than 8000 particles that are greater than 10 m per container or less than 600 particles that are greater than 10 pm per container.


In one embodiment, the pharmaceutical composition has a genomic titer of 0.5 to 5.0×1013 vg/mL, 1.0 to 4.0×103 vg/mL, 1.5 to 3.0×101 vg/ml or 1.7 to 2.3×1013 vg/ml. In one embodiment, the pharmaceutical composition described herein comprises one or more of the following: less than about 0.09 ng benzonase per 1.0×1013 vg, less than about 30 pg/g (ppm) of cesium, about 20 to 80 ppm Poloxamer 188, less than about 0.22 ng BSA per 1.0×1013 vg, less than about 6.8×105 pg of residual DNA plasmid per 1.0×1013 vg, less than about 1.1×105 pg of residual hcDNA per 1.0×1013 vg, less than about 4 ng of rHCP per 1.0×1013 vg, pH 7.7 to 8.3, about 390 to 430 mOsm/kg, less than about 600 particles that are >25 μm in size per container, less than about 6000 particles that are >10 m in size per container, about 1.7×1013-2.3×1013 vg/mL genomic titer, infectious titer of about 3.9×108 to 8.4×1010 IU per 1.0×1013 vg, total protein of about 100-300 pg per 1.0×1013 vg, mean survival of >24 days in A7SMA mice with about 7.5×1013 vg/kg dose of viral vector, about 70 to 130% relative potency based on an in vitro cell based assay and/or less than about 5% empty capsid. In various embodiments, the pharmaceutical compositions described herein comprise any of the viral particles discussed here, retain a potency of between ±20%, between ±15%, between ±10% or within ±5% of a reference standard. In some embodiments, potency is measured using a suitable in vitro cell assay or in vivo animal model.


Additional methods of preparation, characterization, and dosing AAV particles are taught in WO2019094253, which is incorporated herein by reference in its entirety.


Additional rAAV constructs that can be employed consonant with the invention include those described in Wang et al 2019, available at: //doi.org/10.1038/s41573-019-0012-9, including Table 1 thereof, which is incorporated by reference in its entirety.


Kits, Articles of Manufacture, and Pharmaceutical Compositions

In an aspect the disclosure provides a kit comprising a Gene Writer or a Gene Writing system, e.g., as described herein. In some embodiments, the kit comprises a Gene Writer polypeptide (or a nucleic acid encoding the polypeptide) and a template DNA. In some embodiments, the kit further comprises a reagent for introducing the system into a cell, e.g., transfection reagent, LNP, and the like. In some embodiments, the kit is suitable for any of the methods described herein. In some embodiments, the kit comprises one or more elements, compositions (e.g., pharmaceutical compositions), Gene Writers, and/or Gene Writer systems, or a functional fragment or component thereof, e.g., disposed in an article of manufacture. In some embodiments, the kit comprises instructions for use thereof.


In an aspect, the disclosure provides an article of manufacture, e.g., in which a kit as described herein, or a component thereof, is disposed.


In an aspect, the disclosure provides a pharmaceutical composition comprising a Gene Writer or a Gene Writing system, e.g., as described herein. In some embodiments, the pharmaceutical composition further comprises a pharmaceutically acceptable carrier or excipient. In some embodiments, the pharmaceutical composition comprises a template DNA.


Chemistry, Manufacturing, and Controls (CMC)

Purification of protein therapeutics is described, for example, in Franks, Protein Biotechnology: Isolation, Characterization, and Stabilization, Humana Press (2013); and in Cutler, Protein Purification Protocols (Methods in Molecular Biology), Humana Press (2010).


In some embodiments, a Gene Writer™ system, polypeptide, and/or template nucleic acid (e.g., template DNA) conforms to certain quality standards. In some embodiments, a Gene Writer™ system, polypeptide, and/or template nucleic acid (e.g., template DNA) produced by a method described herein conforms to certain quality standards. Accordingly, the disclosure is directed, in some aspects, to methods of manufacturing a Gene Writer™ system, polypeptide, and/or template nucleic acid that conforms to certain quality standards, e.g., in which said quality standards are assayed. The disclosure is also directed, in some aspects, to methods of assaying said quality standards in a Gene Writer™ system, polypeptide, and/or template nucleic acid. In some embodiments, quality standards include, but are not limited to, one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12) of the following:


(i) the length of the template DNA or the mRNA encoding the GeneWriter polypeptide, e.g., whether the DNA or mRNA has a length that is above a reference length or within a reference length range, e.g., whether at least 80, 85, 90, 95, 96, 97, 98, or 99% of the DNA or mRNA present is greater than 100, 125, 150, 175, or 200 nucleotides long;


(ii) the presence, absence, and/or length of a polyA tail on the mRNA, e.g., whether at least 80, 85, 90, 95, 96, 97, 98, or 99% of the mRNA present contains a polyA tail (e.g., a polyA tail that is at least 5, 10, 20, 30, 50, 70, 100 nucleotides in length);


(iii) the presence, absence, and/or type of a 5′ cap on the mRNA, e.g., whether at least 80, 85, 90, 95, 96, 97, 98, or 99% of the mRNA present contains a 5′ cap, e.g., whether that cap is a 7-methylguanosine cap, e.g., a O-Me-m7G cap;


(iv) the presence, absence, and/or type of one or more modified nucleotides (e.g., selected from pseudouridine, dihydrouridine, inosine, 7-methylguanosine, 1-N-methylpseudouridine (1-Me-P), 5-methoxyuridine (5-MO-U), 5-methylcytidine (5mC), or a locked nucleotide) in the mRNA, e.g., whether at least 80, 85, 90, 95, 96, 97, 98, or 99% of the mRNA present contains one or more modified nucleotides;


(v) the stability of the template DNA or the mRNA (e.g., over time and/or under a pre-selected condition), e.g., whether at least 80, 85, 90, 95, 96, 97, 98, or 99% of the DNA or mRNA remains intact (e.g., greater than 100, 125, 150, 175, or 200 nucleotides long) after a stability test;


(vi) the potency of the template DNA or the mRNA in a system for modifying DNA, e.g., whether at least 1% of target sites are modified after a system comprising the DNA or mRNA is assayed for potency;


(vii) the length of the polypeptide, first polypeptide, or second polypeptide, e.g., whether the polypeptide, first polypeptide, or second polypeptide has a length that is above a reference length or within a reference length range, e.g., whether at least 80, 85, 90, 95, 96, 97, 98, or 99% of the polypeptide, first polypeptide, or second polypeptide present is greater than 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500, 1600, 1700, 1800, 1900, or 2000 amino acids long (and optionally, no larger than 2500, 2000, 1500, 1400, 1300, 1200, 1100, 1000, 900, 800, 700, or 600 amino acids long);


(viii) the presence, absence, and/or type of post-translational modification on the polypeptide, first polypeptide, or second polypeptide, e.g., whether at least 80, 85, 90, 95, 96, 97, 98, or 99% of the polypeptide, first polypeptide, or second polypeptide contains phosphorylation, methylation, acetylation, myristoylation, palmitoylation, isoprenylation, glipyatyon, or lipoylation, or any combination thereof;


(ix) the presence, absence, and/or type of one or more artificial, synthetic, or non-canonical amino acids (e.g., selected from ornithine, β-alanine, GABA, 6-Aminolevulinic acid, PABA, a D-amino acid (e.g., D-alanine or D-glutamate), aminoisobutyric acid, dehydroalanine, cystathionine, lanthionine, Djenkolic acid, Diaminopimelic acid, Homoalanine, Norvaline, Norleucine, Homonorleucine, homoserine, O-methyl-homoserine and O-ethyl-homoserine, ethionine, selenocysteine, selenohomocysteine, selenomethionine, selenoethionine, tellurocysteine, or telluromethionine) in the polypeptide, first polypeptide, or second polypeptide, e.g., whether at least 80, 85, 90, 95, 96, 97, 98, or 99% of the polypeptide, first polypeptide, or second polypeptide present contains one or more artificial, synthetic, or non-canonical amino acids;


(x) the stability of the polypeptide, first polypeptide, or second polypeptide (e.g., over time and/or under a pre-selected condition), e.g., whether at least 80, 85, 90, 95, 96, 97, 98, or 99% of the polypeptide, first polypeptide, or second polypeptide remains intact (e.g., greater than 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500, 1600, 1700, 1800, 1900, or 2000 amino acids long (and optionally, no larger than 2500, 2000, 1500, 1400, 1300, 1200, 1100, 1000, 900, 800, 700, or 600 amino acids long)) after a stability test;


(xi) the potency of the polypeptide, first polypeptide, or second polypeptide in a system for modifying DNA, e.g., whether at least 1% of target sites are modified after a system comprising the polypeptide, first polypeptide, or second polypeptide is assayed for potency; or


(xii) the presence, absence, and/or level of one or more of a pyrogen, virus, fungus, bacterial pathogen, or host cell protein, e.g., whether the system is free or substantially free of pyrogen, virus, fungus, bacterial pathogen, or host cell protein contamination.


In some embodiments, a system or pharmaceutical composition described herein is endotoxin free.


In some embodiments, the presence, absence, and/or level of one or more of a pyrogen, virus, fungus, bacterial pathogen, and/or host cell protein is determined. In embodiments, whether the system is free or substantially free of pyrogen, virus, fungus, bacterial pathogen, and/or host cell protein contamination is determined.


In some embodiments, a pharmaceutical composition or system as described herein has one or more (e.g., 1, 2, 3, or 4) of the following characteristics:


(a) less than 1% (e.g., less than 0.5%, 0.4%, 0.3%, 0.2%, or 0.1%) DNA template relative to the RNA encoding the polypeptide, e.g., on a molar basis;


(b) less than 1% (e.g., less than 0.5%, 0.4%, 0.3%, 0.2%, or 0.1%) uncapped RNA relative to the RNA encoding the polypeptide, e.g., on a molar basis;


(c) less than 1% (e.g., less than 0.5%, 0.4%, 0.3%, 0.2%, or 0.1%) partial length RNAs relative to the RNA encoding the polypeptide, e.g., on a molar basis;


(d) substantially lacks unreacted cap dinucleotides.


Exemplary Heterologous Object Sequences

In some embodiments, the systems or methods provided herein comprise a heterologous object sequence, wherein the heterologous object sequence or a reverse complementary sequence thereof, encodes a protein (e.g., an antibody) or peptide. In some embodiments, the therapy is one approved by a regulatory agency such as FDA.


In some embodiments, the protein or peptide is a protein or peptide from the THPdb database (Usmani et al. PLoS One 12(7):e0181748 (2017), herein incorporated by reference in its entirety. In some embodiments, the protein or peptide is a protein or peptide disclosed in Table 8. In some embodiments, the systems or methods disclosed herein, for example, those comprising Gene Writers, may be used to integrate an expression cassette for a protein or peptide from Table 8 into a host cell to enable the expression of the protein or peptide in the host. In some embodiments, the sequences of the protein or peptide in the first column of Table 8 can be found in the patents or applications provided in the third column of Table 8, incorporated by reference in their entireties.


In some embodiments, the protein or peptide is an antibody disclosed in Table 1 of Lu et al. J Biomed Sci 27(1):1 (2020), herein incorporated by reference in its entirety. In some embodiments, the protein or peptide is an antibody disclosed in Table 9. In some embodiments, the systems or methods disclosed herein, for example, those comprising Gene Writers, may be used to integrate an expression cassette for an antibody from Table 9 into a host cell to enable the expression of the antibody in the host. In some embodiments, a system or method described herein is used to express an agent that binds a target of column 2 of Table 9 (e.g., a monoclonal antibody of column 1 of Table 9) in a subject having an indication of column 3 of Table 9.









TABLE 8







Exemplary protein and peptide therapeutics.









Therapeutic peptide
Category
Patent Number





Lepirudin
Antithrombins and Fibrinolytic
CA1339104



Agents



Cetuximab
Antineoplastic Agents
CA1340417


Dor se alpha
Enzymes
CA2184581


Denileukin diftitox
Antineoplastic Agents



Etanercept
Immunosuppressive Agents
CA2476934


Bivalirudin
Antithrombins
US7582727


Leuprolide
Antineoplastic Agents



Peginterferon alpha-2a
Immunosuppressive Agents
CA2203480


Alteplase
Thrombolytic Agents



Interferon alpha-n1
Antiviral Agents



Darbepoetin alpha
Anti-anemic Agents
CA2165694


Reteplase
Fibrinolytic Agents
CA2107476


Epoetin alpha
Hematinics
CA1339047


Salmon Calcitonin
Bone Density Conservation
US6440392



Agents



Interferon alpha-n3
Immunosuppressive Agents



Pegfilgrastim
Immunosuppressive Agents
CA1341537


Sargramostim
Immunosuppressive Agents
CA1341150


Secretin
Diagnostic Agents



Peginterferon alpha-2b
Immunosuppressive Agents
CA1341567


Asparagi se
Antineoplastic Agents



Thyrotropin alpha
Diagnostic Agents
US5840566


Antihemophilic Factor
Coagulants and Thrombotic agents
CA2124690


A kinra
Antirheumatic Agents
CA2141953


Gramicidin D
Anti-Bacterial Agents



Intravenous
Immunologic Factors



Immunoglobulin




Anistreplase
Fibrinolytic Agents



Insulin Regular
Antidiabetic Agents



Tenecteplase
Fibrinolytic Agents
CA2129660


Menotropins
Fertility Agents



Interferon gamma-1b
Immunosuppressive Agents
US6936695


Interferon alpha-2a,

CA2172664


Recombi nt




Coagulation factor VIIa
Coagulants



Oprelvekin
Antineoplastic Agents



Palifermin
Anti-Mucositis Agents



Glucagon recombi nt
Hypoglycemic Agents



Aldesleukin
Antineoplastic Agents



Botulinum Toxin Type B
Antidystonic Agents



Omalizumab
Anti-Allergic Agents
CA2113813


Lutropin alpha
Fertility Agents
US5767251


Insulin Lispro
Hypoglycemic Agents
US5474978


Insulin Glargine
Hypoglycemic Agents
US7476652


Collage se




Rasburicase
Gout Suppressants
CA2175971


Adalimumab
Antirheumatic Agents
CA2243459


Imiglucerase
Enzyme Replacement Agents
US5549892


Abciximab
Anticoagulants
CA1341357


Alpha-1-protei se inhibitor
Serine Protei se Inhibitors



Pegaspargase
Antineoplastic Agents



Interferon beta-1a
Antineoplastic Agents
CA1341604


Pegademase bovine
Enzyme Replacement Agents



Human Serum Albumin
Serum substitutes
US6723303


Eptifibatide
Platelet Aggregation Inhibitors
US6706681


Serum albumin iodo ted
Diagnostic Agents



Infliximab
Antirheumatic Agents, Anti-
CA2106299



Inflammatory Agents, Non-




Steroidal, Dermatologic Agents,




Gastrointesti 1 Agents and




Immunosuppressive Agents



Follitropin beta
Fertility Agents
US7741268


Vasopressin
Antidiuretic Agents



Interferon beta-1b
Adjuvants, Immunologic and
CA1340861



Immunosuppressive Agents



Interferon alphacon-1
Antiviral Agents and
CA1341567



Immunosuppressive Agents



Hyaluronidase
Adjuvants, Anesthesia and




Permeabilizing Agents



Insulin, porcine
Hypoglycemic Agents



Trastuzumab
Antineoplastic Agents
CA2103059


Rituximab
Antineoplastic Agents,
CA2149329



Immunologic Factors and




Antirheumatic Agents



Basiliximab
Immunosuppressive Agents
CA2038279


Muromo b
Immunologic Factors and




Immunosuppressive Agents



Digoxin Immune Fab
Antidotes



(Ovine)




Ibritumomab

CA2149329


Daptomycin

US6468967


Tositumomab




Pegvisomant
Hormone Replacement Agents
US5849535


Botulinum Toxin Type A
Neuromuscular Blocking Agents,
CA2280565



Anti-Wrinkle Agents and




Antidystonic Agents



Pancrelipase
Gastrointesti 1 Agents and Enzyme




Replacement Agents



Streptoki se
Fibrinolytic Agents and




Thrombolytic Agents



Alemtuzumab

CA1339198


Alglucerase
Enzyme Replacement Agents



Capromab
Indicators, Reagents and




Diagnostic Agents



Laronidase
Enzyme Replacement Agents



Urofollitropin
Fertility Agents
US5767067


Efalizumab
Immunosuppressive Agents



Serum albumin
Serum substitutes
US6723303


Choriogo dotropin alpha
Fertility Agents and Go dotropins
US6706681


Antithymocyte globulin
Immunologic Factors and




Immunosuppressive Agents



Filgrastim
Immunosuppressive Agents,
CA1341537



Antineutropenic Agents and




Hematopoietic Agents



Coagulation factor ix
Coagulants and Thrombotic




Agents



Becaplermin
Angiogenesis Inducing Agents
CA1340846


Agalsidase beta
Enzyme Replacement Agents
CA2265464


Interferon alpha-2b
Immunosuppressive Agents
CA1341567


Oxytocin
Oxytocics, Anti-tocolytic Agents




and Labor Induction Agents



Enfuvirtide
HIV Fusion Inhibitors
US6475491


Palivizumab
Antiviral Agents
CA2197684


Daclizumab
Immunosuppressive Agents



Bevacizumab
Angiogenesis Inhibitors
CA2286330


Arcitumomab
Diagnostic Agents
US8420081


Arcitumomab
Diagnostic Agents
US7790142


Eculizumab

CA2189015


Panitumumab




Ranibizumab
Ophthalmics
CA2286330


Idursulfase
Enzyme Replacement Agents



Alglucosidase alpha
Enzyme Replacement Agents
CA2416492


Exe tide
Hypoglycemic Agents
US6872700


Mecasermin

US5681814


Pramlintide

US5686411


Galsulfase
Enzyme Replacement Agents



Abatacept
Antirheumatic Agents and
CA2110518



Immunosuppressive Agents



Cosyntropin
Hormones and Diagnostic Agents



Corticotropin




Insulin aspart
Hypoglycemic Agents and
US5866538



Antidiabetic Agents



Insulin detemir
Antidiabetic Agents
US5750497


Insulin glulisine
Antidiabetic Agents
US6960561


Pegaptanib
Intended for the prevention of




respiratory distress syndrome




(RDS) in premature infants at high




risk for RDS.



Nesiritide




Thymalphasin




Defibrotide
Antithrombins



tural alpha interferon OR




multiferon




Glatiramer acetate




Preotact




Teicoplanin
Anti-Bacterial Agents



Ca kinumab
Anti-Inflammatory Agents and




Monoclo 1 antibodies



Ipilimumab
Antineoplastic Agents and
CA2381770



Monoclo 1 antibodies



Sulodexide
Antithrombins and Fibrinolytic




Agents and Hypoglycemic Agents




and Anticoagulants and




Hypolipidemic Agents



Tocilizumab

CA2201781


Teriparatide
Bone Density Conservation
US6977077



Agents



Pertuzumab
Monoclo 1 antibodies
CA2376596


Rilo cept
Immunosuppressive Agents
US5844099


Denosumab
Bone Density Conservation
CA2257247



Agents and Monoclo 1 antibodies



Liraglutide

US6268343


Golimumab
Antipsoriatic Agents and Monoclo




1 antibodies and TNF inhibitor



Belatacept
Antirheumatic Agents and




Immunosuppressive Agents



Buserelin




Velaglucerase alpha
Enzymes
US7138262


Tesamorelin

US5861379


Brentuximab vedotin




Taliglucerase alpha
Enzymes



Belimumab
Monoclo 1 antibodies



Aflibercept
Antineoplastic Agents and
US7306799



Ophthalmics



Asparagi se erwinia
Enzymes



chrysanthemi




Ocriplasmin
Ophthalmics



Glucarpidase
Enzymes



Teduglutide

US5789379


Raxibacumab
Anti-Infective Agents and




Monoclo 1 antibodies



Certolizumab pegol
TNF inhibitor
CA2380298


Insulin, isophane
Hypoglycemic Agents and




Antidiabetic Agents



Epoetin zeta




Obinutuzumab
Antineoplastic Agents



Fibrinolysin aka plasmin

US3234106


Follitropin alpha




Romiplostim
Colony-Stimulating Factors and




Thrombopoietic Agents



Luci ctant
Pulmo ry surfactants
US5407914


talizumab
Immunosuppressive agents



Aliskiren
Renin inhibitor



Ragweed Pollen Extract




Secukinumab
Inhibitor
US20130202610


Somatotropin Recombi nt
Hormone Replacement Agents
CA1326439


Drotrecogin alpha
Antisepsis
CA2036894


Alefacept
Dermatologic and




Immunosupressive agents



OspA lipoprotein
Vaccines



Uroki se

US4258030


Abarelix
Anti-Testosterone Agents
US5968895


Sermorelin
Hormone Replacement Agents



Aprotinin

US5198534


Gemtuzumab ozogamicin
Antineoplastic agents and
US5585089



Immunotoxins



Satumomab Pendetide
Diagnostic Agents



Albiglutide
Drugs used in diabetes; alimentary




tract and metabolism; blood




glucose lowering drugs, excl.




insulins.



Alirocumab




Ancestim




Antithrombin alpha




Antithrombin III human




Asfotase alpha
Enzymes Alimentary Tract and




Metabolism



Atezolizumab




Autologous cultured




chondrocytes




Beractant




Bli tumomab
Antineoplastic Agents
US20120328618



Immunosuppressive Agents




Monoclo 1 antibodies




Antineoplastic and




Immunomodulating Agents



C1 Esterase Inhibitor




(Human)




Coagulation Factor XIII A-




Subunit (Recombi nt)




Conestat alpha




Daratumumab
Antineoplastic Agents



Desirudin




Dulaglutide
Hypoglycemic Agents; Drugs




Used in Diabetes; Alimentary




Tract and Metabolism; Blood




Glucose Lowering Drugs, Excl.




Insulins



Elosulfase alpha
Enzymes; Alimentary Tract and




Metabolism



Elotuzumab

US2014055370


Evolocumab
Lipid Modifying Agents, Plain;




Cardiovascular System



Fibrinogen Concentrate




(Human)




Filgrastim-sndz




Gastric intrinsic factor




Hepatitis B immune




globulin




Human calcitonin




Human Clostridium tetani




toxoid immune globulin




Human rabies virus




immune globulin




Human Rho(D) immune




globulin




Hyaluronidase (Human

US7767429


Recombi nt)




Idarucizumab
Anticoagulant



Immune Globulin Human
Immunologic Factors;




Immunosuppressive Agents; Anti-




Infective Agents



Vedolizumab
Immunosupressive agent,
US2012151248



Antineoplastic agent



Ustekinumab
Deramtologic agent,




Immunosuppressive agent,




antineoplastic agent



Turoctocog alpha




Tuberculin Purified Protein




Derivative




Simoctocog alpha
Antihaemorrhagics: blood




coagulation factor VIII



Siltuximab
Antineoplastic and
US7612182



Immunomodulating Agents,




Immunosuppressive Agents



Sebelipase alpha
Enzymes



Sacrosidase
Enzymes



Ramucirumab
Antineoplastic and
US2013067098



Immunomodulating Agents



Prothrombin complex




concentrate




Poractant alpha
Pulmo ry Surfactants



Pembrolizumab
Antineoplastic and
US2012135408



Immunomodulating Agents



Peginterferon beta-1a




Ofatumumab
Antineoplastic and
US8337847



Immunomodulating Agents



Obiltoxaximab




Nivolumab
Antineoplastic and
US2013173223



Immunomodulating Agents



Necitumumab




Metreleptin

US20070099836


Methoxy polyethylene




glycol-epoetin beta




Mepolizumab
Antineoplastic and
US2008134721



Immunomodulating Agents,




Immunosuppressive Agents,




Interleukin Inhibitors



Ixekizumab




Insulin Pork
Hypoglycemic Agents,




Antidiabetic Agents



Insulin Degludec




Insulin Beef




Thyroglobulin
Hormone therapy
US5099001


Anthrax immune globulin
Plasma derivative



human




Anti-inhibitor coagulant
Blood Coagulation Factors,



complex
Antihemophilic Agent



Anti-thymocyte Globulin
Antibody



(Equine)




Anti-thymocyte Globulin
Antibody



(Rabbit)




Brodalumab
Antineoplastic and




Immunomodulating Agents



C1 Esterase Inhibitor
Blood and Blood Forming Organs



(Recombi nt)




Ca kinumab
Antineoplastic and




Immunomodulating Agents



Chorionic Go dotropin
Hormones
US6706681


(Human)




Chorionic Go dotropin
Hormones
US5767251


(Recombi nt)




Coagulation factor X
Blood Coagulation Factors



human




Dinutuximab
Antibody, Immunosuppresive
US20140170155



agent, Antineoplastic agent



Efmoroctocog alpha
Antihemophilic Factor



Factor IX Complex
Antihemophilic agent



(Human)




Hepatitis A Vaccine
Vaccine



Human Varicella-Zoster
Antibody



Immune Globulin




Ibritumomab tiuxetan
Antibody, Immunosuppressive
CA2149329



Agents



Lenograstim
Antineoplastic and




Immunomodulating Agents



Pegloticase
Enzymes



Protamine sulfate
Heparin Antagonists, Hematologic




Agents



Protein S human
Anticoagulant plasma protein



Sipuleucel-T
Antineoplastic and
US8153120



Immunomodulating Agents



Somatropin recombi nt
Hormones, Hormone Substitutes,
CA1326439, CA2252535,



and Hormone Antagonists
US5288703, US5849700,




US5849704, US5898030,




US6004297, US6152897,




US6235004, US6899699


Susoctocog alpha
Blood coagulation factors,




Antihaemorrhagics



Thrombomodulin alpha
Anticoagulant agent, Antiplatelet




agent
















TABLE 9







Exemplary monoclonal antibody therapies.









mAb
Target
Indication





Muromonab-CD3
CD3
Kidney transplant rejection


Abeiximab
GPIIb/IIIa
Prevention of blood clots in angioplasty


Rituximab
CD20
Non-Hodgkin lymphoma


Palivizumab
RSV
Prevention of respiratory syncytial virus




infection


Infliximab
TNFα
Crohn's disease


Trastuzumab
HER2
Breast cancer


Alemtuzumab
CD52
Chronic myeloid leukemia


Adalimumab
TNFα
Rheumatoid arthritis


Ibritumomab
CD20
Non-Hodgkin lymphoma


tiuxetan




Omalizumab
IgE
Asthma


Cetuximab
EGFR
Colorectal cancer


Bevacizumab
VEGF-A
Colorectal cancer


Natalizumab
ITGA4
Multiple sclerosis


Panitumumab
EGFR
Colorectal cancer


Ranibizumab
VEGF-A
Macular degeneration


Eculizumab
C5
Paroxysmal nocturnal hemoglobinuria


Certolizumab
TNFα
Crohn's disease


pegol




Ustekinumab
IL-12/23
Psoriasis


Canakinumab
IL-1β
Muckle-Wells syndrome


Golimumab
TNFα
Rheumatoid and psoriatic arthritis, ankylosing




spondylitis


Ofatumumab
CD20
Chronic lymphocytic leukemia


Tocilizumab
IL-6R
Rheumatoid arthritis


Denosumab
RANKL
Bone loss


Belimumab
BLyS
Systemic lupus erythematosus


Ipilimumab
CTLA-4
Metastatic melanoma


Brentuximab
CD30
Hodgkin lymphoma, systemic anaplastic large


vedotin

cell lymphoma


Pertuzumab
HER2
Breast Cancer


Trastuzumab
HER2
Breast cancer


emtansine




Raxibacumab

B. anthrasis PA

Anthrax infection


Obinutuzumab
CD20
Chronic lymphocytic leukemia


Siltuximab
IL-6
Castleman disease


Ramucirumab
VEGFR2
Gastric cancer


Vedolizumab
α4β7 integrin
Ulcerative colitis, Crohn disease


Blinatumomab
CD19, CD3
Acute lymphoblastic leukemia


Nivolumab
PD-1
Melanoma, non-small cell lung cancer


Pembrolizumab
PD-1
Melanoma


Idarucizumab
Dabigatran
Reversal of dabigatran-induced anticoagulation


Necitumumab
EGFR
Non-small cell lung cancer


Dinutuximab
GD2
Neuroblastoma


Secukinumab
IL-17α
Psoriasis


Mepolizumab
IL-5
Severe eosinophilic asthma


Alirocumab
PCSK9
High cholesterol


Evolocumab
PCSK9
High cholesterol


Daratumumab
CD38
Multiple myeloma


Elotuzumab
SLAMF7
Multiple myeloma


Ixekizumab
IL-17α
Psoriasis


Reslizumab
IL-5
Asthma


Olaratumab
PDGFRα
Soft tissue sarcoma


Bezlotoxumab

Clostridium

Prevention of Clostridium difficile infection




difficile enterotoxin B

recurrence


Atezolizumab
PD-L1
Bladder cancer


Obiltoxaximab

B. anthrasis PA

Prevention of inhalational anthrax


Inotuzumab
CD22
Acute lymphoblastic leukemia


ozogamicin




Brodalumab
IL-17R
Plaque psoriasis


Guselkumab
IL-23 p19
Plaque psoriasis


Dupilumab
IL-4Rα
Atopic dermatitis


Sarilumab
IL-6R
Rheumatoid arthritis


Avelumab
PD-L1
Merkel cell carcinoma


Ocrelizumab
CD20
Multiple sclerosis


Emicizumab
Factor IXa, X
Hemophilia A


Benralizumab
IL-5Rα
Asthma


Gemtuzumab
CD33
Acute myeloid leukemia


ozogamicin




Durvalumab
PD-L1
Bladder cancer


Burosumab
FGF23
X-linked hypophosphatemia


Lanadelumab
Plasma kallikrein
Hereditary angioedema attacks


Mogamulizumab
CCR4
Mycosis fungoides or Sézary syndrome


Erenumab
CGRPR
Migraine prevention


Galcanezumab
CGRP
Migraine prevention


Tildrakizumab
IL-23 p19
Plaque psoriasis


Cemiplimab
PD-1
Cutaneous squamous cell carcinoma


Emapalumab
IFNγ
Primary hemophagocytic lymphohistiocytosis


Fremanezumab
CGRP
Migraine prevention


Ibalizumab
CD4
HIV infection


Moxetumomab
CD22
Hairy cell leukemia


pasudodox




Ravulizumab
C5
Paroxysmal nocturnal hemoglobinuria


Caplacizumab
von Willebrand factor
Acquired thrombotic thrombocytopenic purpura


Romosozumab
Selerostin
Osteoporosis in postmenopausal women at




increased risk of fracture


Risankizumab
IL-23 p19
Plaque psoriasis


Polatuzumab
CD79β
Diffuse large B-cell lymphoma


vedotin




Brolucizumab
VEGF-A
Macular degeneration


Crizanlizumab
P-selectin
Sickle cell disease









Applications

By integrating coding genes into a DNA sequence template, the Gene Writer system can address therapeutic needs, for example, by providing expression of a therapeutic transgene (e.g., comprised in an object sequence as described herein) in individuals with loss-of-function mutations, by replacing gain-of-function mutations with normal transgenes, by providing regulatory sequences to eliminate gain-of-function mutation expression, and/or by controlling the expression of operably linked genes, transgenes and systems thereof. In certain embodiments, an object sequence (e.g., a heterologous object sequence) comprises a coding sequence encoding a functional element (e.g., a polypeptide or non-coding RNA, e.g., as described herein) specific to the therapeutic needs of the host cell. In some embodiments, an object sequence (e.g., a heterologous object sequence) comprises a promoter, for example, a tissue specific promotor or enhancer. In some embodiments, a promotor can be operably linked to a coding sequence.


In embodiments, the Gene Writer™ gene editor system can provide an object sequence comprising, e.g., a therapeutic agent (e.g., a therapeutic transgene) expressing, e.g., replacement blood factors or replacement enzymes, e.g., lysosomal enzymes. For example, the compositions, systems and methods described herein are useful to express, in a target human genome, agalsidase alpha or beta for treatment of Fabry Disease; imiglucerase, taliglucerase alfa, velaglucerase alfa, or alglucerase for Gaucher Disease; sebelipase alpha for lysosomal acid lipase deficiency (Wolman disease/CESD); laronidase, idursulfase, elosulfase alpha, or galsulfase for mucopolysaccharidoses; alglucosidase alpha for Pompe disease. For example, the compositions, systems and methods described herein are useful to express, in a target human genome factor I, II, V, VII, X, XI, XII or XIII for blood factor deficiencies.


Administration

The composition and systems described herein may be used in vitro or in vivo. In some embodiments the system or components of the system are delivered to cells (e.g., mammalian cells, e.g., human cells), e.g., in vitro or in vivo. The skilled artisan will understand that the components of the Gene Writer system may be delivered in the form of polypeptide, nucleic acid (e.g., DNA, RNA), and combinations thereof.


In some embodiments, the system and/or components of the system are delivered as nucleic acids. For example, the recombinase polypeptide may be delivered in the form of a DNA or RNA encoding the recombinase polypeptide. In some embodiments the system or components of the system (e.g., an insert DNA and a recombinase polypeptide-encoding nucleic acid molecule) are delivered on 1, 2, 3, 4, or more distinct nucleic acid molecules. In some embodiments the system or components of the system are delivered as a combination of DNA and RNA. In some embodiments the system or components of the system are delivered as a combination of DNA and protein. In some embodiments the system or components of the system are delivered as a combination of RNA and protein. In some embodiments the recombinase polypeptide is delivered as a protein.


In some embodiments the system or components of the system are delivered to cells, e.g. mammalian cells or human cells, using a vector. The vector may be, e.g., a plasmid or a virus. In some embodiments delivery is in vivo, in vitro, ex vivo, or in situ. In some embodiments the virus is an adeno associated virus (AAV), a lentivirus, an adenovirus. In some embodiments the system or components of the system are delivered to cells with a viral-like particle or a virosome. In some embodiments the delivery uses more than one virus, viral-like particle or virosome.


In one embodiment, the compositions and systems described herein can be formulated in liposomes or other similar vesicles. Liposomes are spherical vesicle structures composed of a uni- or multilamellar lipid bilayer surrounding internal aqueous compartments and a relatively impermeable outer lipophilic phospholipid bilayer. Liposomes may be anionic, neutral or cationic. Liposomes are biocompatible, nontoxic, can deliver both hydrophilic and lipophilic drug molecules, protect their cargo from degradation by plasma enzymes, and transport their load across biological membranes and the blood brain barrier (BBB) (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi:10.1155/2011/469679 for review).


Vesicles can be made from several different types of lipids; however, phospholipids are most commonly used to generate liposomes as drug carriers. Methods for preparation of multilamellar vesicle lipids are known in the art (see for example U.S. Pat. No. 6,693,086, the teachings of which relating to multilamellar vesicle lipid preparation are incorporated herein by reference). Although vesicle formation can be spontaneous when a lipid film is mixed with an aqueous solution, it can also be expedited by applying force in the form of shaking by using a homogenizer, sonicator, or an extrusion apparatus (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi:10.1155/2011/469679 for review). Extruded lipids can be prepared by extruding through filters of decreasing size, as described in Templeton et al., Nature Biotech, 15:647-652, 1997, the teachings of which relating to extruded lipid preparation are incorporated herein by reference.


Lipid nanoparticles are another example of a carrier that provides a biocompatible and biodegradable delivery system for the pharmaceutical compositions described herein. Nanostructured lipid carriers (NLCs) are modified solid lipid nanoparticles (SLNs) that retain the characteristics of the SLN, improve drug stability and loading capacity, and prevent drug leakage. Polymer nanoparticles (PNPs) are an important component of drug delivery. These nanoparticles can effectively direct drug delivery to specific targets and improve drug stability and controlled drug release. Lipid-polymer nanoparticles (PLNs), a new type of carrier that combines liposomes and polymers, may also be employed. These nanoparticles possess the complementary advantages of PNPs and liposomes. A PLN is composed of a core-shell structure; the polymer core provides a stable structure, and the phospholipid shell offers good biocompatibility. As such, the two components increase the drug encapsulation efficiency rate, facilitate surface modification, and prevent leakage of water-soluble drugs. For a review, see, e.g., Li et al. 2017, Nanomaterials 7, 122; doi:10.3390/nano7060122.


Exosomes can also be used as drug delivery vehicles for the compositions and systems described herein. For a review, see Ha et al. July 2016. Acta Pharmaceutica Sinica B. Volume 6, Issue 4, Pages 287-296; https://doi.org/10.1016/j.apsb.2016.02.001.


In some embodiments, at least one component of a system described herein comprises a fusosome. Fusosomes interact and fuse with target cells, and thus can be used as delivery vehicles for a variety of molecules. They generally consist of a bilayer of amphipathic lipids enclosing a lumen or cavity and a fusogen that interacts with the amphipathic lipid bilayer. The fusogen component has been shown to be engineerable in order to confer target cell specificity for the fusion and payload delivery, allowing the creation of delivery vehicles with programmable cell specificity (see, for example, the sections relating to fusosome design, preparation, and usage in PCT Publication No. WO/2020014209, incorporated herein by reference in its entirety).


A Gene Writer system can be introduced into cells, tissues and multicellular organisms. In some embodiments the system or components of the system are delivered to the cells via mechanical means or physical means.


Formulation of protein therapeutics is described in Meyer (Ed.), Therapeutic Protein Drug Products: Practical Approaches to formulation in the Laboratory, Manufacturing, and the Clinic, Woodhead Publishing Series (2012).


In some embodiments, a Gene Writer™ system described herein is delivered to a tissue or cell from the cerebrum, cerebellum, adrenal gland, ovary, pancreas, parathyroid gland, hypophysis, testis, thyroid gland, breast, spleen, tonsil, thymus, lymph node, bone marrow, lung, cardiac muscle, esophagus, stomach, small intestine, colon, liver, salivary gland, kidney, prostate, blood, or other cell or tissue type. In some embodiments, a Gene Writer™ system described herein is used to treat a disease, such as a cancer, inflammatory disease, infectious disease, genetic defect, or other disease. A cancer can be cancer of the cerebrum, cerebellum, adrenal gland, ovary, pancreas, parathyroid gland, hypophysis, testis, thyroid gland, breast, spleen, tonsil, thymus, lymph node, bone marrow, lung, cardiac muscle, esophagus, stomach, small intestine, colon, liver, salivary gland, kidney, prostate, blood, or other cell or tissue type, and can include multiple cancers.


In some embodiments, a Gene Writer™ system described herein described herein is administered by enteral administration (e.g. oral, rectal, gastrointestinal, sublingual, sublabial, or buccal administration). In some embodiments, a Gene Writer™ system described herein is administered by parenteral administration (e.g., intravenous, intramuscular, subcutaneous, intradermal, epidural, intracerebral, intracerebroventricular, epicutaneous, nasal, intra-arterial, intra-articular, intracavernous, intraocular, intraosseous infusion, intraperitoneal, intrathecal, intrauterine, intravaginal, intravesical, perivascular, or transmucosal administration). In some embodiments, a Gene Writer™ system described herein is administered by topical administration (e.g., transdermal administration).


In some embodiments, a Gene Writer™ system as described herein can be used to modify an animal cell, plant cell, or fungal cell. In some embodiments, a Gene Writer™ system as described herein can be used to modify a mammalian cell (e.g., a human cell). In some embodiments, a Gene Writer™ system as described herein can be used to modify a cell from a livestock animal (e.g., a cow, horse, sheep, goat, pig, llama, alpaca, camel, yak, chicken, duck, goose, or ostrich). In some embodiments, a Gene Writer™ system as described herein can be used as a laboratory tool or a research tool, or used in a laboratory method or research method, e.g., to modify an animal cell, e.g., a mammalian cell (e.g., a human cell), a plant cell, or a fungal cell.


In some embodiments, a Gene Writer™ system as described herein can be used to express a protein, template, or heterologous object sequence (e.g., in an animal cell, e.g., a mammalian cell (e.g., a human cell), a plant cell, or a fungal cell). In some embodiments, a Gene Writer™ system as described herein can be used to express a protein, template, or heterologous object sequence under the control of an inducible promoter (e.g., a small molecule inducible promoter). In some embodiments, a Gene Writing system or payload thereof is designed for tunable control, e.g., by the use of an inducible promoter. For example, a promoter, e.g., Tet, driving a gene of interest may be silent at integration, but may, in some instances, activated upon exposure to a small molecule inducer, e.g., doxycycline. In some embodiments, the tunable expression allows post-treatment control of a gene (e.g., a therapeutic gene), e.g., permitting a small molecule-dependent dosing effect. In embodiments, the small molecule-dependent dosing effect comprises altering levels of the gene product temporally and/or spatially, e.g., by local administration. In some embodiments, a promoter used in a system described herein may be inducible, e.g., responsive to an endogenous molecule of the host and/or an exogenous small molecule administered thereto.


Treatment of Suitable Indications

In some embodiments, a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein), is used to treat a disease, disorder, or condition. In some embodiments, the Gene Writer™ system described herein, or component or portion thereof, is used to treat a disease, disorder, or condition listed in any of Tables 10-15. In some embodiments, the Gene Writer™ system described herein, or component or portion thereof, is used to treat a hematopoietic stem cell (HSC) disease, disorder, or condition, e.g., as listed in Table 10. In some embodiments, the Gene Writer™ system described herein, or component or portion thereof, is used to treat a kidney disease, disorder, or condition, e.g., as listed in Table 11. In some embodiments, the Gene Writer™ system described herein, or component or portion thereof, is used to treat a liver disease, disorder, or condition, e.g., as listed in Table 12. In some embodiments, the Gene Writer™ system described herein, or component or portion thereof, is used to treat a lung disease, disorder, or condition, e.g., as listed in Table 13. In some embodiments, the Gene Writer™ system described herein, or component or portion thereof, is used to treat a skeletal muscle disease, disorder, or condition, e.g., as listed in Table 14. In some embodiments, the Gene Writer™ system described herein, or component or portion thereof, is used to treat a skin disease, disorder, or condition, e.g., as listed in Table 15.


Tables 10-15: Indications Selected for Trans Gene Writers to be Used for Recombinases









TABLE 10







HSCs








Disease
Gene Affected





Adrenoleukodystrophy (CALD)
ABCD1


Alpha-mannosidosis
MAN2B1


Fanconi anemia
FANCA; FANCC; FANCG


Gaucher disease
GBA


Globoid cell leukodystrophy (Krabbe disease)
GALC


Hemophagocytic lymphohistiocytosis
PRF1; STX11; STXBP2; UNC13D


Malignant infantile osteopetrosis-autosomal
TCIRG1; Many genes implicated


recessive osteopetrosis



Metachromatic leukodystrophy
ARSA; PSAP


MPS 1S (Scheie syndrome)
IDUA


MPS2
IDS


MPS7
GUSB


Mucolipidosis II
GNPTAB


Niemann-Pick disease A and B
SMPD1


Niemann-Pick disease C
NPC1


Pompe disease
GAA


Sickle cell disease (SCD)
HBB


Tay Sachs
HEXA


Thalassemia
HBB
















TABLE 11







Kidney










Disease
Gene Affected







Congenital nephrotic syndrome
NPHS2



Cystinosis
CTNS

















TABLE 12







Liver








Disease
Gene Affected





Acute intermittent porphyria
HMBS


Alagille syndrome
JAG1


Carbamoyl phosphate synthetase I deficiency
CPS1


Citrullinemia I
ASS1


Crigler-Najjar
UGT1A1


Fabry
LPL


Familial chylomicronemia syndrome
GLA


Gaucher
GBE1


GSD IV
GBA


Heme A
F8


Heme B
F9


HoFH
LDLRAP1


Methylmalonic acidemia
Type Ia: BCKDHA



Type Ib: BCKDHB



Type II: DBT


MPS II
MMUT


MPS III
IDS


MPS IV
Type IIIa: SGSH



Type IIIb: NAGLU



Type IIIc: HGSNAT



Type IIId: GNS


MPS VI
Type IVA: GALNS



Type IVB: GLB1


MSUD
ARSB


OTC Deficiency
OTC


Polycystic Liver Disease
PRKCSH


Pompe
GAA


Primary Hyperoxaluria 1
AGXT (HAO1 or LDHA for CRISPR)


Progressive familial intrahepatic cholestasis type 1
ATP8B1


Progressive familial intrahepatic cholestasis type 2
ABCB11


Progressive familial intrahepatic cholestasis type 3
ABCB4


Propionic acidemia
PCCB; PCCA


Wilson's Disease
ATP7B
















TABLE 13







Lung










Disease
Gene Affected







Alpha-1 antitrypsin deficiency
SERPINA1



Cystic fibrosis
CFTR



Primary ciliary dyskinesia
DNAI1



Primary ciliary dyskinesia
DNAH5



Primary pulmonary hypertension I
BMPR2



Surfactant Protein B (SP-B) Deficiency
SFTPB



(pulmonary surfactant metabolism dysfunction 1)

















TABLE 14







Skeletal muscle








Disease
Gene Affected





Becker muscular dystrophy
DMD


Becker myotonia
CLCN1


Bethlem myopathy
COL6A2


Centronuclear myopathy, X-linked (motubular)
MTM1


Congenital myasthenic syndrome
CHRNE


Duchenne muscular dystrophy
DMD


Emery-Dreifuss muscular dystrophy, AD
LMNA


Limb-girdle muscular dystrophy 2A
CAPN3


Limb-girdle muscular dystrophy, type 2D
SGCA
















TABLE 15







Skin








Disease
Gene Affected





Epidermolysis Bullosa Dystrophica Recessive
COL7A1


(Hallopeau-Siemens)



Epidermolysis Bullosa Junctional
LAMB3


Epidermolytic Ichthyosis
KRT1; KRT10


Hailey-Hailey Disease
ATP2C1


Lamellar Ichthyosis/Nonbullous Congenital
TGM1


Ichthyosiform Erythroderma (ARCI)



Netherton Syndrome
SPINK5









In some embodiments, a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein), is used to treat a genetic disease, disorder, or condition. In some embodiments, a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein), is used to treat a subject (e.g., a human patient) diagnosed with a genetic disease, disorder, or condition. In some embodiments, the genetic disease, disorder, or condition is associated with a specific genotype, e.g., a heterozygous or homozygous genotype. In some embodiments, the genetic disease, disorder, or condition is associated with a specific mutation, e.g., substitution, deletion, or insertion, e.g., a nucleotide expansion. In some embodiments, the genetic disease, disorder, or condition is cystic fibrosis or ornithine transcarbamylase (OTC) deficiency. In some embodiments, a Gene Writer™ system described herein for use in treating a genetic disease, disorder, or condition comprises a heterologous object sequence comprising a functional (e.g., wildtype) copy of a gene for which the subject (e.g., human patient) is deficient (e.g., wholly or in a target population of cells). In some embodiments, the functional copy of a gene comprises a functional (e.g., wildtype) CFTR gene or OTC gene.


In some embodiments, a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein), is used to treat a subject (e.g., human patient) having a biomarker (e.g., associated with a disease, disorder, or condition, e.g., a genetic disease, disorder, or condition) at a level outside of a healthy range. In some embodiments, a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein), is used to treat a subject (e.g., a human patient) diagnosed as having a biomarker (e.g., associated with a disease, disorder, or condition, e.g., a genetic disease, disorder, or condition) at a level outside of a healthy range.


In some embodiments, the presence and/or level of the biomarker and/or the genotype of the subject (e.g., human patient) is determined before treatment using a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein). In some embodiments, the presence and/or level of the biomarker and/or the genotype of the subject (e.g., human patient) is determined after treatment using a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein). In some embodiments, the presence and/or level of the biomarker and/or the genotype of the subject (e.g., human patient) is determined before and after treatment using a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein).


In some embodiments, a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein) is administered responsive to a determination that a biomarker is present at a level outside of a normal and/or healthy range in a subject (e.g., a human patient). In some embodiments, a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein) is re-administered responsive to a determination that a biomarker is present at a level outside of a normal and/or healthy range in a subject (e.g., a human patient) after a first administration of the Gene Writer™ system described herein, or a component or portion thereof. In some embodiments, a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein) is administered responsive to a determination that a subject (e.g., a human patient), e.g., or a target cell population in the subject, has a genotype (e.g., associated with a disease, disorder, or condition). In some embodiments, a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein) is re-administered responsive to a determination that a subject (e.g., a human patient), e.g., or a target cell population in the subject, has a genotype (e.g., associated with a disease, disorder, or condition) after a first administration of the Gene Writer™ system described herein, or a component or portion thereof. In some embodiments, administration of a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein) continues or is repeated until a biomarker is present at a level within a normal and/or healthy range in the subject (e.g., a human patient). In some embodiments, administration of a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein) continues or is repeated until the subject (e.g., a human patient), e.g., or a target cell population in the subject, does not have the genotype (e.g., associated with a disease, disorder, or condition).


In some embodiments, a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein), is used to treat a disease, disorder, or condition prenatally (e.g., in a human subject in utero, e.g., an embryo or fetus). In some embodiments, a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein), is used to treat a disease, disorder, or condition postnatally, e.g., in a human infant, toddler, or child. In some embodiments, a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein), is used to treat a disease, disorder, or condition neonatally.


In some embodiments, the genotype of a subject (e.g., a human patient), e.g., or a target cell population in the subject, treated with a Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein), remains stable as the subject develops. Stable in this context may refer to the absence of additional alterations in a subject's genotype (e.g., or a target cell population in the subject) after treatment with the Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein) is complete. Stable in this context may additionally or alternatively refer to the persistence of an alteration to the subject's genotype made by a Gene Writer system described herein. Without wishing to be bound by theory, it may be desirable to avoid, prevent, or minimize additional alterations in the genotype of a subject besides those made by the Gene Writer system. Additionally or alternatively, it may be desirable that the alteration of the genotype of a subject (e.g., or a target cell population in the subject), persist after completion of treatment (e.g., for at least a selected time interval, e.g., indefinitely). In some embodiments, the genotype of a subject, e.g., or a target cell population in the subject, after the completion of treatment is the same as the genotype of the subject, e.g., or the target cell population in the subject, at a selected time interval after treatment, e.g., 1, 2, 3, 4, 5, 6, or 7 days, or 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 weeks, or 3, 4, 5, 6, 7, 8, 9, 10, or 11 months, or 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 years (e.g., indefinitely). In some embodiments, an alteration to the genotype of a subject, e.g., or a target cell population in the subject, made by the Gene Writer™ system described herein, or a component or portion thereof (e.g., a polypeptide or nucleic acid as described herein) persists for at least a selected time interval after treatment, e.g., 1, 2, 3, 4, 5, 6, or 7 days, or 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 weeks, or 3, 4, 5, 6, 7, 8, 9, 10, or 11 months, or 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 years (e.g., indefinitely).


Plant-Modification Methods

Gene Writer systems described herein may be used to modify a plant or a plant part (e.g., leaves, roots, flowers, fruits, or seeds), e.g., to increase the fitness of a plant.


A. Delivery to a Plant


Provided herein are methods of delivering a Gene Writer system described herein to a plant. Included are methods for delivering a Gene Writer system to a plant by contacting the plant, or part thereof, with a Gene Writer system. The methods are useful for modifying the plant to, e.g., increase the fitness of a plant.


More specifically, in some embodiments, a nucleic acid described herein (e.g., a nucleic acid encoding a GeneWriter) may be encoded in a vector, e.g., inserted adjacent to a plant promoter, e.g., a maize ubiquitin promoter (ZmUBI) in a plant vector (e.g., pHUC411). In some embodiments, the nucleic acids described herein are introduced into a plant (e.g., japonica rice) or part of a plant (e.g., a callus of a plant) via agrobacteria. In some embodiments, the systems and methods described herein can be used in plants by replacing a plant gene (e.g., hygromycin phosphotransferase (HPT)) with a null allele (e.g., containing a base substitution at the start codon). Systems and methods for modifying a plant genome are described in Xu et. al. Development of plant prime-editing systems for precise genome editing, 2020, Plant Communications.


In one aspect, provided herein is a method of increasing the fitness of a plant, the method including delivering to the plant the Gene Writer system described herein (e.g., in an effective amount and duration) to increase the fitness of the plant relative to an untreated plant (e.g., a plant that has not been delivered the Gene Writer system).


An increase in the fitness of the plant as a consequence of delivery of a Gene Writer system can manifest in a number of ways, e.g., thereby resulting in a better production of the plant, for example, an improved yield, improved vigor of the plant or quality of the harvested product from the plant, an improvement in pre- or post-harvest traits deemed desirable for agriculture or horticulture (e.g., taste, appearance, shelf life), or for an improvement of traits that otherwise benefit humans (e.g., decreased allergen production). An improved yield of a plant relates to an increase in the yield of a product (e.g., as measured by plant biomass, grain, seed or fruit yield, protein content, carbohydrate or oil content or leaf area) of the plant by a measurable amount over the yield of the same product of the plant produced under the same conditions, but without the application of the instant compositions or compared with application of conventional plant-modifying agents. For example, yield can be increased by at least about 0.5%, about 1%, about 2%, about 3%, about 4%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 100%, or more than 100%. In some instances, the method is effective to increase yield by about 2×-fold, 5×-fold, 10×-fold, 25×-fold, 50×-fold, 75×-fold, 100×-fold, or more than 100×-fold relative to an untreated plant. Yield can be expressed in terms of an amount by weight or volume of the plant or a product of the plant on some basis. The basis can be expressed in terms of time, growing area, weight of plants produced, or amount of a raw material used. For example, such methods may increase the yield of plant tissues including, but not limited to: seeds, fruits, kernels, bolls, tubers, roots, and leaves.


An increase in the fitness of a plant as a consequence of delivery of a Gene Writer system can also be measured by other means, such as an increase or improvement of the vigor rating, the stand (the number of plants per unit of area), plant height, stalk circumference, stalk length, leaf number, leaf size, plant canopy, visual appearance (such as greener leaf color), root rating, emergence, protein content, increased tillering, bigger leaves, more leaves, less dead basal leaves, stronger tillers, less fertilizer needed, less seeds needed, more productive tillers, earlier flowering, early grain or seed maturity, less plant verse (lodging), increased shoot growth, earlier germination, or any combination of these factors, by a measurable or noticeable amount over the same factor of the plant produced under the same conditions, but without the administration of the instant compositions or with application of conventional plant-modifying agents.


Accordingly, provided herein is a method of modifying a plant, the method including delivering to the plant an effective amount of any of the Gene Writer systems provided herein, wherein the method modifies the plant and thereby introduces or increases a beneficial trait in the plant (e.g., by about 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or more than 100%) relative to an untreated plant. In particular, the method may increase the fitness of the plant (e.g., by about 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or more than 100%) relative to an untreated plant.


In some instances, the increase in plant fitness is an increase (e.g., by about 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or more than 100%) in disease resistance, drought tolerance, heat tolerance, cold tolerance, salt tolerance, metal tolerance, herbicide tolerance, chemical tolerance, water use efficiency, nitrogen utilization, resistance to nitrogen stress, nitrogen fixation, pest resistance, herbivore resistance, pathogen resistance, yield, yield under water-limited conditions, vigor, growth, photosynthetic capability, nutrition, protein content, carbohydrate content, oil content, biomass, shoot length, root length, root architecture, seed weight, or amount of harvestable produce.


In some instances, the increase in fitness is an increase (e.g., by about 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or more than 100%) in development, growth, yield, resistance to abiotic stressors, or resistance to biotic stressors. An abiotic stress refers to an environmental stress condition that a plant or a plant part is subjected to that includes, e.g., drought stress, salt stress, heat stress, cold stress, and low nutrient stress. A biotic stress refers to an environmental stress condition that a plant or plant part is subjected to that includes, e.g. nematode stress, insect herbivory stress, fungal pathogen stress, bacterial pathogen stress, or viral pathogen stress. The stress may be temporary, e.g. several hours, several days, several months, or permanent, e.g. for the life of the plant.


In some s 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or more than 100%) in quality of products harvested from the plant. For example, the increase in plant fitness may be an improvement in commercially favorable features (e.g., taste or appearance) of a product harvested from the plant. In other instances, the increase in plant fitness is an increase in shelf-life of a product harvested from the plant (e.g., by about 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or more than 100%).


Alternatively, the increase in fitness may be an alteration of a trait that is beneficial to human or animal health, such as a reduction in allergen production. For example, the increase in fitness may be a decrease (e.g., by about 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or more than 100%) in production of an allergen (e.g., pollen) that stimulates an immune response in an animal (e.g., human).


The modification of the plant (e.g., increase in fitness) may arise from modification of one or more plant parts. For example, the plant can be modified by contacting leaf, seed, pollen, root, fruit, shoot, flower, cells, protoplasts, or tissue (e.g., meristematic tissue) of the plant. As such, in another aspect, provided herein is a method of increasing the fitness of a plant, the method including contacting pollen of the plant with an effective amount of any of the plant-modifying compositions herein, wherein the method increases the fitness of the plant (e.g., by about 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or more than 100%) relative to an untreated plant.


In yet another aspect, provided herein is a method of increasing the fitness of a plant, the method including contacting a seed of the plant with an effective amount of any of the Gene Writer systems disclosed herein, wherein the method increases the fitness of the plant (e.g., by about 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or more than 100%) relative to an untreated plant.


In another aspect, provided herein is a method including contacting a protoplast of the plant with an effective amount of any of the Gene Writer systems described herein, wherein the method increases the fitness of the plant (e.g., by about 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or more than 100%) relative to an untreated plant.


In a further aspect, provided herein is a method of increasing the fitness of a plant, the method including contacting a plant cell of the plant with an effective amount of any of the Gene Writer system described herein, wherein the method increases the fitness of the plant (e.g., by about 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or more than 100%) relative to an untreated plant.


In another aspect, provided herein is a method of increasing the fitness of a plant, the method including contacting meristematic tissue of the plant with an effective amount of any of the plant-modifying compositions herein, wherein the method increases the fitness of the plant (e.g., by about 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or more than 100%) relative to an untreated plant.


In another aspect, provided herein is a method of increasing the fitness of a plant, the method including contacting an embryo of the plant with an effective amount of any of the plant-modifying compositions herein, wherein the method increases the fitness of the plant (e.g., by about 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or more than 100%) relative to an untreated plant.


B. Application Methods


A plant described herein can be exposed to any of the Gene Writer system compositions described herein in any suitable manner that permits delivering or administering the composition to the plant. The Gene Writer system may be delivered either alone or in combination with other active (e.g., fertilizing agents) or inactive substances and may be applied by, for example, spraying, injection (e.g., microinjection), through plants, pouring, dipping, in the form of concentrated liquids, gels, solutions, suspensions, sprays, powders, pellets, briquettes, bricks and the like, formulated to deliver an effective concentration of the plant-modifying composition. Amounts and locations for application of the compositions described herein are generally determined by the habitat of the plant, the lifecycle stage at which the plant can be targeted by the plant-modifying composition, the site where the application is to be made, and the physical and functional characteristics of the plant-modifying composition.


In some instances, the composition is sprayed directly onto a plant, e.g., crops, by e.g., backpack spraying, aerial spraying, crop spraying/dusting etc. In instances where the Gene Writer system is delivered to a plant, the plant receiving the Gene Writer system may be at any stage of plant growth. For example, formulated plant-modifying compositions can be applied as a seed-coating or root treatment in early stages of plant growth or as a total plant treatment at later stages of the crop cycle. In some instances, the plant-modifying composition may be applied as a topical agent to a plant.


Further, the Gene Writer system may be applied (e.g., in the soil in which a plant grows, or in the water that is used to water the plant) as a systemic agent that is absorbed and distributed through the tissues of a plant. In some instances, plants or food organisms may be genetically transformed to express the Gene Writer system.


Delayed or continuous release can also be accomplished by coating the Gene Writer system or a composition with the plant-modifying composition(s) with a dissolvable or bioerodable coating layer, such as gelatin, which coating dissolves or erodes in the environment of use, to then make the plant-modifying com Gene Writer system position available, or by dispersing the agent in a dissolvable or erodible matrix. Such continuous release and/or dispensing means devices may be advantageously employed to consistently maintain an effective concentration of one or more of the plant-modifying compositions described herein.


In some instances, the Gene Writer system is delivered to a part of the plant, e.g., a leaf, seed, pollen, root, fruit, shoot, or flower, or a tissue, cell, or protoplast thereof. In some instances, the Gene Writer system is delivered to a cell of the plant. In some instances, the Gene Writer system is delivered to a protoplast of the plant. In some instances, the Gene Writer system is delivered to a tissue of the plant. For example, the composition may be delivered to meristematic tissue of the plant (e.g., apical meristem, lateral meristem, or intercalary meristem). In some instances, the composition is delivered to permanent tissue of the plant (e.g., simple tissues (e.g., parenchyma, collenchyma, or sclerenchyma) or complex permanent tissue (e.g., xylem or phloem)). In some instances, the Gene Writer system is delivered to a plant embryo.


C. Plants


A variety of plants can be delivered to or treated with a Gene Writer system described herein. Plants that can be delivered a Gene Writer system (i.e., “treated”) in accordance with the present methods include whole plants and parts thereof, including, but not limited to, shoot vegetative organs/structures (e.g., leaves, stems and tubers), roots, flowers and floral organs/structures (e.g., bracts, sepals, petals, stamens, carpels, anthers and ovules), seed (including embryo, endosperm, cotyledons, and seed coat) and fruit (the mature ovary), plant tissue (e.g., vascular tissue, ground tissue, and the like) and cells (e.g., guard cells, egg cells, and the like), and progeny of same. Plant parts can further refer parts of the plant such as the shoot, root, stem, seeds, stipules, leaves, petals, flowers, ovules, bracts, branches, petioles, internodes, bark, pubescence, tillers, rhizomes, fronds, blades, pollen, stamen, and the like.


The class of plants that can be treated in a method disclosed herein includes the class of higher and lower plants, including angiosperms (monocotyledonous and dicotyledonous plants), gymnosperms, ferns, horsetails, psilophytes, lycophytes, bryophytes, and algae (e.g., multicellular or unicellular algae). Plants that can be treated in accordance with the present methods further include any vascular plant, for example monocotyledons or dicotyledons or gymnosperms, including, but not limited to alfalfa, apple, Arabidopsis, banana, barley, canola, castor bean, chrysanthemum, clover, cocoa, coffee, cotton, cottonseed, corn, crambe, cranberry, cucumber, dendrobium, dioscorea, eucalyptus, fescue, flax, gladiolus, liliacea, linseed, millet, muskmelon, mustard, oat, oil palm, oilseed rape, papaya, peanut, pineapple, ornamental plants, Phaseolus, potato, rapeseed, rice, rye, ryegrass, safflower, sesame, sorghum, soybean, sugarbeet, sugarcane, sunflower, strawberry, tobacco, tomato, turfgrass, wheat and vegetable crops such as lettuce, celery, broccoli, cauliflower, cucurbits; fruit and nut trees, such as apple, pear, peach, orange, grapefruit, lemon, lime, almond, pecan, walnut, hazel; vines, such as grapes (e.g., a vineyard), kiwi, hops; fruit shrubs and brambles, such as raspberry, blackberry, gooseberry; forest trees, such as ash, pine, fir, maple, oak, chestnut, popular; with alfalfa, canola, castor bean, corn, cotton, crambe, flax, linseed, mustard, oil palm, oilseed rape, peanut, potato, rice, safflower, sesame, soybean, sugarbeet, sunflower, tobacco, tomato, and wheat. Plants that can be treated in accordance with the methods of the present invention include any crop plant, for example, forage crop, oilseed crop, grain crop, fruit crop, vegetable crop, fiber crop, spice crop, nut crop, turf crop, sugar crop, beverage crop, and forest crop. In certain instances, the crop plant that is treated in the method is a soybean plant. In other certain instances, the crop plant is wheat. In certain instances, the crop plant is corn. In certain instances, the crop plant is cotton. In certain instances, the crop plant is alfalfa. In certain instances, the crop plant is sugarbeet. In certain instances, the crop plant is rice. In certain instances, the crop plant is potato. In certain instances, the crop plant is tomato.


In certain instances, the plant is a crop. Examples of such crop plants include, but are not limited to, monocotyledonous and dicotyledonous plants including, but not limited to, fodder or forage legumes, ornamental plants, food crops, trees, or shrubs selected from Acer spp., Allium spp., Amaranthus spp., Ananas comosus, Apium graveolens, Arachis spp, Asparagus officinalis, Beta vulgaris, Brassica spp. (e.g., Brassica napus, Brassica rapa ssp. (canola, oilseed rape, turnip rape), Camellia sinensis, Canna indica, Cannabis saliva, Capsicum spp., Castanea spp., Cichorium endivia, Citrullus lanatus, Citrus spp., Cocos spp., Coffea spp., Coriandrum sativum, Corylus spp., Crataegus spp., Cucurbita spp., Cucumis spp., Daucus carota, Fagus spp., Ficus carica, Fragaria spp., Ginkgo biloba, Glycine spp. (e.g., Glycine max, Soja hispida or Soja max), Gossypium hirsutum, Helianthus spp. (e.g., Helianthus annuus), Hibiscus spp., Hordeum spp. (e.g., Hordeum vulgare), Ipomoea batatas, Juglans spp., Lactuca sativa, Linum usitatissimum, Litchi chinensis, Lotus spp., Luffa acutangula, Lupinus spp., Lycopersicon spp. (e.g., Lycopersicon esculenturn, Lycopersicon lycopersicum, Lycopersicon pyriforme), Malus spp., Medicago sativa, Mentha spp., Miscanthus sinensis, Morus nigra, Musa spp., Nicotiana spp., Olea spp., Oryza spp. (e.g., Oryza sativa, Oryza latifolia), Panicum miliaceum, Panicum virgatum, Passiflora edulis, Petroselinum crispum, Phaseolus spp., Pinus spp., Pistacia vera, Pisum spp., Poa spp., Populus spp., Prunus spp., Pyrus communis, Quercus spp., Raphanus sativus, Rheum rhabarbarum, Ribes spp., Ricinus communis, Rubus spp., Saccharum spp., Salix sp., Sambucus spp., Secale cereale, Sesamum spp., Sinapis spp., Solanum spp. (e.g., Solanum tuberosum, Solanum integrifolium or Solanum lycopersicum), Sorghum bicolor, Sorghum halepense, Spinacia spp., Tamarindus indica, Theobroma cacao, Trifolium spp., Triticosecale rimpaui, Triticum spp. (e.g., Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triticum sativum or Triticum vulgare), Vaccinium spp., Vicia spp., Vigna spp., Viola odorata, Vitis spp., and Zea mays. In certain embodiments, the crop plant is rice, oilseed rape, canola, soybean, corn (maize), cotton, sugarcane, alfalfa, sorghum, or wheat.


The plant or plant part for use in the present invention include plants of any stage of plant development. In certain instances, the delivery can occur during the stages of germination, seedling growth, vegetative growth, and reproductive growth. In certain instances, delivery to the plant occurs during vegetative and reproductive growth stages. In some instances, the composition is delivered to pollen of the plant. In some instances, the composition is delivered to a seed of the plant. In some instances, the composition is delivered to a protoplast of the plant. In some instances, the composition is delivered to a tissue of the plant. For example, the composition may be delivered to meristematic tissue of the plant (e.g., apical meristem, lateral meristem, or intercalary meristem). In some instances, the composition is delivered to permanent tissue of the plant (e.g., simple tissues (e.g., parenchyma, collenchyma, or sclerenchyma) or complex permanent tissue (e.g., xylem or phloem)). In some instances, the composition is delivered to a plant embryo. In some instances, the composition is delivered to a plant cell. The stages of vegetative and reproductive growth are also referred to herein as “adult” or “mature” plants.


In instances where the Gene Writer system is delivered to a plant part, the plant part may be modified by the plant-modifying agent. Alternatively, the Gene Writer system may be distributed to other parts of the plant (e.g., by the plant's circulatory system) that are subsequently modified by the plant-modifying agent.


Lipid Nanoparticles

The methods and systems provided by the invention, may employ any suitable carrier or delivery modality, including, in certain embodiments, lipid nanoparticles (LNPs). Lipid nanoparticles, in some embodiments, comprise one or more ionic lipids, such as non-cationic lipids (e.g., neutral or anionic, or zwitterionic lipids); one or more conjugated lipids (such as PEG-conjugated lipids or lipids conjugated to polymers described in Table 5 of WO2019217941; incorporated herein by reference in its entirety); one or more sterols (e.g., cholesterol); and, optionally, one or more targeting molecules (e.g., conjugated receptors, receptor ligands, antibodies); or combinations of the foregoing.


Lipids that can be used in nanoparticle formations (e.g., lipid nanoparticles) include, for example those described in Table 4 of WO2019217941, which is incorporated by reference e.g., a lipid-containing nanoparticle can comprise one or more of the lipids in Table 4 of WO2019217941. Lipid nanoparticles can include additional elements, such as polymers, such as the polymers described in Table 5 of WO2019217941, incorporated by reference.


In some embodiments, conjugated lipids, when present, can include one or more of PEG-diacylglycerol (DAG) (such as 1-(monomethoxy-polyethyleneglycol)-2,3-dimyristoylglycerol (PEG-DMG)), PEG-dialkyloxypropyl (DAA), PEG-phospholipid, PEG-ceramide (Cer), a pegylated phosphatidylethanoloamine (PEG-PE), PEG succinate diacylglycerol (PEGS-DAG) (such as 4-0-(2′,3′-di(tetradecanoyloxy)propyl-1-0-(w-methoxy(polyethoxy)ethyl) butanedioate (PEG-S-DMG)), PEG dialkoxypropylcarbam, N-(carbonyl-methoxypoly ethylene glycol 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine sodium salt, and those described in Table 2 of WO2019051289 (incorporated by reference), and combinations of the foregoing.


In some embodiments, sterols that can be incorporated into lipid nanoparticles include one or more of cholesterol or cholesterol derivatives, such as those in WO2009/127060 or US2010/0130588, which are incorporated by reference. Additional exemplary sterols include phytosterols, including those described in Eygeris et al (2020), dx.doi.org/10.1021/acs.nanolett.0c01386, incorporated herein by reference.


In some embodiments, the lipid particle comprises an ionizable lipid, a non-cationic lipid, a conjugated lipid that inhibits aggregation of particles, and a sterol. The amounts of these components can be varied independently and to achieve desired properties. For example, in some embodiments, the lipid nanoparticle comprises an ionizable lipid is in an amount from about 20 mol % to about 90 mol % of the total lipids (in other embodiments it may be 20-70% (mol), 30-60% (mol) or 40-50% (mol); about 50 mol % to about 90 mol % of the total lipid present in the lipid nanoparticle), a non-cationic lipid in an amount from about 5 mol % to about 30 mol % of the total lipids, a conjugated lipid in an amount from about 0.5 mol % to about 20 mol % of the total lipids, and a sterol in an amount from about 20 mol % to about 50 mol % of the total lipids. The ratio of total lipid to nucleic acid (e.g., encoding the Gene Writer or template nucleic acid) can be varied as desired. For example, the total lipid to nucleic acid (mass or weight) ratio can be from about 10:1 to about 30:1.


In some embodiments, the lipid to nucleic acid ratio (mass/mass ratio; w/w ratio) can be in the range of from about 1:1 to about 25:1, from about 10:1 to about 14:1, from about 3:1 to about 15:1, from about 4:1 to about 10:1, from about 5:1 to about 9:1, or about 6:1 to about 9:1. The amounts of lipids and nucleic acid can be adjusted to provide a desired N/P ratio, for example, N/P ratio of 3, 4, 5, 6, 7, 8, 9, 10 or higher. Generally, the lipid nanoparticle formulation's overall lipid content can range from about 5 mg/ml to about 30 mg/mL.


Exemplary ionizable lipids that can be used in lipid nanoparticle formulations include, without limitation, those listed in Table 1 of WO2019051289, incorporated herein by reference. Additional exemplary lipids include, without limitation, one or more of the following formulae: X of US2016/0311759; I of US20150376115 or in US2016/0376224; I, II or III of US20160151284; I, IA, II, or IIA of US20170210967; I-c of US20150140070; A of US2013/0178541; I of US2013/0303587 or US2013/0123338; I of US2015/0141678; II, III, IV, or V of US2015/0239926; I of US2017/0119904; I or II of WO2017/117528; A of US2012/0149894; A of US2015/0057373; A of WO2013/116126; A of US2013/0090372; A of US2013/0274523; A of US2013/0274504; A of US2013/0053572; A of WO2013/016058; A of WO2012/162210; I of US2008/042973; I, II, III, or IV of US2012/01287670; I or II of US2014/0200257; I, II, or III of US2015/0203446; I or III of US2015/0005363; I, IA, IB, IC, ID, II, IIA, IIB, IIC, IID, or III-XXIV of US2014/0308304; of US2013/0338210; I, II, III, or IV of WO2009/132131; A of US2012/01011478; I or XXXV of US2012/0027796; XIV or XVII of US2012/0058144; of US2013/0323269; I of US2011/0117125; I, II, or III of US2011/0256175; I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII of US2012/0202871; I, II, III, IV, V, VI, VII, VIII, X, XII, XIII, XIV, XV, or XVI of US2011/0076335; I or II of US2006/008378; I of US2013/0123338; I or X-A-Y-Z of US2015/0064242; XVI, XVII, or XVIII of US2013/0022649; I, II, or III of US2013/0116307; I, II, or III of US2013/0116307; I or II of US2010/0062967; I-X of US2013/0189351; I of US2014/0039032; V of US2018/0028664; I of US2016/0317458; I of US2013/0195920.


In some embodiments, the ionizable lipid is MC3 (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl-4-(dimethylamino) butanoate (DLin-MC3-DMA or MC3), e.g., as described in Example 9 of WO2019051289A9 (incorporated by reference herein in its entirety). In some embodiments, the ionizable lipid is the lipid ATX-002, e.g., as described in Example 10 of WO2019051289A9 (incorporated by reference herein in its entirety). In some embodiments, the ionizable lipid is (13Z,16Z)-A,A-dimethyl-3-nonyldocosa-13, 16-dien-1-amine (Compound 32), e.g., as described in Example 11 of WO2019051289A9 (incorporated by reference herein in its entirety). In some embodiments, the ionizable lipid is Compound 6 or Compound 22, e.g., as described in Example 12 of WO2019051289A9 (incorporated by reference herein in its entirety).


Exemplary non-cationic lipids include, but are not limited to, distearoyl-sn-glycero-phosphoethanolamine, distearoylphosphatidylcholine (DSPC), dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylglycerol (DOPG), dipalmitoylphosphatidylglycerol (DPPG), dioleoyl-phosphatidylethanolamine (DOPE), palmitoyloleoylphosphatidylcholine (POPC), palmitoyloleoylphosphatidylethanolamine (POPE), dioleoyl-phosphatidylethanolamine 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (DOPE-mal), dipalmitoyl phosphatidyl ethanolamine (DPPE), dimyristoylphosphoethanolamine (DMPE), distearoyl-phosphatidyl-ethanolamine (DSPE), monomethyl-phosphatidylethanolamine (such as 16-O-monomethyl PE), dimethyl-phosphatidylethanolamine (such as 16-O-dimethyl PE), 18-1-trans PE, 1-stearoyl-2-oleoyl-phosphatidyethanolamine (SOPE), hydrogenated soy phosphatidylcholine (HSPC), egg phosphatidylcholine (EPC), dioleoylphosphatidylserine (DOPS), sphingomyelin (SM), dimyristoyl phosphatidylcholine (DMPC), dimyristoyl phosphatidylglycerol (DMPG), distearoylphosphatidylglycerol (DSPG), dierucoylphosphatidylcholine (DEPC), palmitoyloleyolphosphatidylglycerol (POPG), dielaidoyl-phosphatidylethanolamine (DEPE), lecithin, phosphatidylethanolamine, lysolecithin, lysophosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, egg sphingomyelin (ESM), cephalin, cardiolipin, phosphatidicacid, cerebrosides, dicetylphosphate, lysophosphatidylcholine, dilinoleoylphosphatidylcholine, or mixtures thereof. It is understood that other diacylphosphatidylcholine and diacylphosphatidylethanolamine phospholipids can also be used. The acyl groups in these lipids are preferably acyl groups derived from fatty acids having C10-C24 carbon chains, e.g., lauroyl, myristoyl, paimitoyl, stearoyl, or oleoyl. Additional exemplary lipids, in certain embodiments, include, without limitation, those described in Kim et al. (2020) dx.doi.org/10.1021/acs.nanolett.0c01386, incorporated herein by reference. Such lipids include, in some embodiments, plant lipids found to improve liver transfection with mRNA (e.g., DGTS).


Other examples of non-cationic lipids suitable for use in the lipid nanoparticles include, without limitation, nonphosphorous lipids such as, e.g., stearylamine, dodeeylamine, hexadecylamine, acetyl palmitate, glycerol ricinoleate, hexadecyl stereate, isopropyl myristate, amphoteric acrylic polymers, triethanolamine-lauryl sulfate, alkyl-aryl sulfate polyethyloxylated fatty acid amides, dioctadecyl dimethyl ammonium bromide, ceramide, sphingomyelin, and the like. Other non-cationic lipids are described in WO2017/099823 or US patent publication US2018/0028664, the contents of which is incorporated herein by reference in their entirety.


In some embodiments, the non-cationic lipid is oleic acid or a compound of Formula I, II, or IV of US2018/0028664, incorporated herein by reference in its entirety. The non-cationic lipid can comprise, for example, 0-30% (mol) of the total lipid present in the lipid nanoparticle. In some embodiments, the non-cationic lipid content is 5-20% (mol) or 10-15% (mol) of the total lipid present in the lipid nanoparticle. In embodiments, the molar ratio of ionizable lipid to the neutral lipid ranges from about 2:1 to about 8:1 (e.g., about 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, or 8:1).


In some embodiments, the lipid nanoparticles do not comprise any phospholipids.


In some aspects, the lipid nanoparticle can further comprise a component, such as a sterol, to provide membrane integrity. One exemplary sterol that can be used in the lipid nanoparticle is cholesterol and derivatives thereof. Non-limiting examples of cholesterol derivatives include polar analogues such as 5a-choiestanol, 53-coprostanol, choiesteryl-(2′-hydroxy)-ethyl ether, choiesteryl-(4′-hydroxy)-butyl ether, and 6-ketocholestanol; non-polar analogues such as 5a-cholestane, cholestenone, 5a-cholestanone, 5p-cholestanone, and cholesteryl decanoate; and mixtures thereof. In some embodiments, the cholesterol derivative is a polar analogue, e.g., choiesteryl-(4′-hydroxy)-butyl ether. Exemplary cholesterol derivatives are described in PCT publication WO2009/127060 and US patent publication US2010/0130588, each of which is incorporated herein by reference in its entirety.


In some embodiments, the component providing membrane integrity, such as a sterol, can comprise 0-50% (mol) (e.g., 0-10%, 10-20%, 20-30%, 30-40%, or 40-50%) of the total lipid present in the lipid nanoparticle. In some embodiments, such a component is 20-50% (mol) 30-40% (mol) of the total lipid content of the lipid nanoparticle.


In some embodiments, the lipid nanoparticle can comprise a polyethylene glycol (PEG) or a conjugated lipid molecule. Generally, these are used to inhibit aggregation of lipid nanoparticles and/or provide steric stabilization. Exemplary conjugated lipids include, but are not limited to, PEG-lipid conjugates, polyoxazoline (POZ)-lipid conjugates, polyamide-lipid conjugates (such as ATTA-lipid conjugates), cationic-polymer lipid (CPL) conjugates, and mixtures thereof. In some embodiments, the conjugated lipid molecule is a PEG-lipid conjugate, for example, a (methoxy polyethylene glycol)-conjugated lipid.


Exemplary PEG-lipid conjugates include, but are not limited to, PEG-diacylglycerol (DAG) (such as 1-(monomethoxy-polyethyleneglycol)-2,3-dimyristoylglycerol (PEG-DMG)), PEG-dialkyloxypropyl (DAA), PEG-phospholipid, PEG-ceramide (Cer), a pegylated phosphatidylethanoloamine (PEG-PE), PEG succinate diacylglycerol (PEGS-DAG) (such as 4-0-(2′,3′-di(tetradecanoyloxy)propyl-1-0-(w-methoxy(polyethoxy)ethyl) butanedioate (PEG-S-DMG)), PEG dialkoxypropylcarbam, N-(carbonyl-methoxypolyethylene glycol 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine sodium salt, or a mixture thereof. Additional exemplary PEG-lipid conjugates are described, for example, in U.S. Pat. Nos. 5,885,613, 6,287,591, US2003/0077829, US2003/0077829, US2005/0175682, US2008/0020058, US2011/0117125, US2010/0130588, US2016/0376224, US2017/0119904, and US/099823, the contents of all of which are incorporated herein by reference in their entirety. In some embodiments, a PEG-lipid is a compound of Formula III, III-a-I, III-a-2, III-b-1, III-b-2, or V of US2018/0028664, the content of which is incorporated herein by reference in its entirety. In some embodiments, a PEG-lipid is of Formula II of US20150376115 or US2016/0376224, the content of both of which is incorporated herein by reference in its entirety. In some embodiments, the PEG-DAA conjugate can be, for example, PEG-dilauryloxypropyl, PEG-dimyristyloxypropyl, PEG-dipalmityloxypropyl, or PEG-distearyloxypropyl. The PEG-lipid can be one or more of PEG-DMG, PEG-dilaurylglycerol, PEG-dipalmitoylglycerol, PEG-disterylglycerol, PEG-dilaurylglycamide, PEG-dimyristylglycamide, PEG-dipalmitoylglycamide, PEG-disterylglycamide, PEG-cholesterol (1-[8′-(Cholest-5-en-3[beta]-oxy)carboxamido-3′,6′-dioxaoctanyl] carbamoyl-[omega]-methyl-poly(ethylene glycol), PEG-DMB (3,4-Ditetradecoxylbenzyl-[omega]-methyl-poly(ethylene glycol) ether), and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]. In some embodiments, the PEG-lipid comprises PEG-DMG, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]. In some embodiments, the PEG-lipid comprises a structure selected from:




embedded image


In some embodiments, lipids conjugated with a molecule other than a PEG can also be used in place of PEG-lipid. For example, polyoxazoline (POZ)-lipid conjugates, polyamide-lipid conjugates (such as ATTA-lipid conjugates), and cationic-polymer lipid (GPL) conjugates can be used in place of or in addition to the PEG-lipid.


Exemplary conjugated lipids, i.e., PEG-lipids, (POZ)-lipid conjugates, ATTA-lipid conjugates and cationic polymer-lipids are described in the PCT and LIS patent applications listed in Table 2 of WO2019051289A9, the contents of all of which are incorporated herein by reference in their entirety.


In some embodiments, the PEG or the conjugated lipid can comprise 0-20% (mol) of the total lipid present in the lipid nanoparticle. In some embodiments, PEG or the conjugated lipid content is 0.5-10% or 2-5% (mol) of the total lipid present in the lipid nanoparticle. Molar ratios of the ionizable lipid, non-cationic-lipid, sterol, and PEG/conjugated lipid can be varied as needed. For example, the lipid particle can comprise 30-70% ionizable lipid by mole or by total weight of the composition, 0-60% cholesterol by mole or by total weight of the composition, 0-30% non-cationic-lipid by mole or by total weight of the composition and 1-10% conjugated lipid by mole or by total weight of the composition. Preferably, the composition comprises 30-40% ionizable lipid by mole or by total weight of the composition, 40-50% cholesterol by mole or by total weight of the composition, and 10-20% non-cationic-lipid by mole or by total weight of the composition. In some other embodiments, the composition is 50-75% ionizable lipid by mole or by total weight of the composition, 20-40% cholesterol by mole or by total weight of the composition, and 5 to 10% non-cationic-lipid, by mole or by total weight of the composition and 1-10% conjugated lipid by mole or by total weight of the composition. The composition may contain 60-70% ionizable lipid by mole or by total weight of the composition, 25-35% cholesterol by mole or by total weight of the composition, and 5-10% non-cationic-lipid by mole or by total weight of the composition. The composition may also contain up to 90% ionizable lipid by mole or by total weight of the composition and 2 to 15% non-cationic lipid by mole or by total weight of the composition. The formulation may also be a lipid nanoparticle formulation, for example comprising 8-30% ionizable lipid by mole or by total weight of the composition, 5-30% non-cationic lipid by mole or by total weight of the composition, and 0-20% cholesterol by mole or by total weight of the composition; 4-25% ionizable lipid by mole or by total weight of the composition, 4-25% non-cationic lipid by mole or by total weight of the composition, 2 to 25% cholesterol by mole or by total weight of the composition, 10 to 35% conjugate lipid by mole or by total weight of the composition, and 5% cholesterol by mole or by total weight of the composition; or 2-30% ionizable lipid by mole or by total weight of the composition, 2-30% non-cationic lipid by mole or by total weight of the composition, 1 to 15% cholesterol by mole or by total weight of the composition, 2 to 35% conjugate lipid by mole or by total weight of the composition, and 1-20% cholesterol by mole or by total weight of the composition; or even up to 90% ionizable lipid by mole or by total weight of the composition and 2-10% non-cationic lipids by mole or by total weight of the composition, or even 100% cationic lipid by mole or by total weight of the composition. In some embodiments, the lipid particle formulation comprises ionizable lipid, phospholipid, cholesterol and a PEG-ylated lipid in a molar ratio of 50:10:38.5:1.5. In some other embodiments, the lipid particle formulation comprises ionizable lipid, cholesterol and a PEG-ylated lipid in a molar ratio of 60:38.5:1.5.


In some embodiments, the lipid particle comprises ionizable lipid, non-cationic lipid (e.g. phospholipid), a sterol (e.g., cholesterol) and a PEG-ylated lipid, where the molar ratio of lipids ranges from 20 to 70 mole percent for the ionizable lipid, with a target of 40-60, the mole percent of non-cationic lipid ranges from 0 to 30, with a target of 0 to 15, the mole percent of sterol ranges from 20 to 70, with a target of 30 to 50, and the mole percent of PEG-ylated lipid ranges from 1 to 6, with a target of 2 to 5.


In some embodiments, the lipid particle comprises ionizable lipid/non-cationic-lipid/sterol/conjugated lipid at a molar ratio of 50:10:38.5:1.5.


In an aspect, the disclosure provides a lipid nanoparticle formulation comprising phospholipids, lecithin, phosphatidylcholine and phosphatidylethanolamine.


In some embodiments, one or more additional compounds can also be included. Those compounds can be administered separately or the additional compounds can be included in the lipid nanoparticles of the invention. In other words, the lipid nanoparticles can contain other compounds in addition to the nucleic acid or at least a second nucleic acid, different than the first. Without limitations, other additional compounds can be selected from the group consisting of small or large organic or inorganic molecules, monosaccharides, disaccharides, trisaccharides, oligosaccharides, polysaccharides, peptides, proteins, peptide analogs and derivatives thereof, peptidomimetics, nucleic acids, nucleic acid analogs and derivatives, an extract made from biological materials, or any combinations thereof.


In some embodiments, LNPs are directed to specific tissues by the addition of targeting domains. For example, biological ligands may be displayed on the surface of LNPs to enhance interaction with cells displaying cognate receptors, thus driving association with and cargo delivery to tissues wherein cells express the receptor. In some embodiments, the biological ligand may be a ligand that drives delivery to the liver, e.g., LNPs that display GalNAc result in delivery of nucleic acid cargo to hepatocytes that display asialoglycoprotein receptor (ASGPR). The work of Akinc et al. Mol Ther 18(7):1357-1364 (2010) teaches the conjugation of a trivalent GalNAc ligand to a PEG-lipid (GalNAc-PEG-DSG) to yield LNPs dependent on ASGPR for observable LNP cargo effect (see, e.g., FIG. 6). Other ligand-displaying LNP formulations, e.g., incorporating folate, transferrin, or antibodies, are discussed in WO2017223135, which is incorporated herein by reference in its entirety, in addition to the references used therein, namely Kolhatkar et al., Curr Drug Discov Technol. 2011 8:197-206; Musacchio and Torchilin, Front Biosci. 2011 16:1388-1412; Yu et al., Mol Membr Biol. 2010 27:286-298; Patil et al., Crit Rev Ther Drug Carrier Syst. 2008 25:1-61; Benoit et al., Biomacromolecules. 2011 12:2708-2714; Zhao et al., Expert Opin Drug Deliv. 2008 5:309-319; Akinc et al., Mol Ther. 2010 18:1357-1364; Srinivasan et al., Methods Mol Biol. 2012 820:105-116; Ben-Arie et al., Methods Mol Biol. 2012 757:497-507; Peer 2010 J Control Release. 20:63-68; Peer et al., Proc Natl Acad Sci USA. 2007 104:4095-4100; Kim et al., Methods Mol Biol. 2011 721:339-353; Subramanya et al., Mol Ther. 2010 18:2028-2037; Song et al., Nat Biotechnol. 2005 23:709-717; Peer et al., Science. 2008 319:627-630; and Peer and Lieberman, Gene Ther. 2011 18:1127-1133.


In some embodiments, LNPs are selected for tissue-specific activity by the addition of a Selective ORgan Targeting (SORT) molecule to a formulation comprising traditional components, such as ionizable cationic lipids, amphipathic phospholipids, cholesterol and poly(ethylene glycol) (PEG) lipids. The teachings of Cheng et al. Nat Nanotechnol 15(4):313-320 (2020) demonstrate that the addition of a supplemental “SORT” component precisely alters the in vivo RNA delivery profile and mediates tissue-specific (e.g., lungs, liver, spleen) gene delivery and editing as a function of the percentage and biophysical property of the SORT molecule.


In some embodiments, the LNPs comprise biodegradable, ionizable lipids. In some embodiments, the LNPs comprise (9Z,12Z)-3-((4,4-bis(octyloxy)butanoyl)oxy)-2-((((3-(diethylamino)propoxy)carbonyl)oxy)methyl)propyl octadeca-9,12-dienoate, also called 3-((4,4-bis(octyloxy)butanoyl)oxy)-2-((((3-(diethylamino)propoxy)carbonyl)oxy)methyl)propyl (9Z,12Z)-octadeca-9,12-dienoate) or another ionizable lipid. See, e.g, lipids of WO2019/067992, WO/2017/173054, WO2015/095340, and WO2014/136086, as well as references provided therein. In some embodiments, the term cationic and ionizable in the context of LNP lipids is interchangeable, e.g., wherein ionizable lipids are cationic depending on the pH.


In some embodiments, multiple components of a Gene Writer system may be prepared as a single LNP formulation, e.g., an LNP formulation comprises mRNA encoding for the Gene Writer polypeptide and an RNA template. Ratios of nucleic acid components may be varied in order to maximize the properties of a therapeutic. In some embodiments, the ratio of RNA template to mRNA encoding a Gene Writer polypeptide is about 1:1 to 100:1, e.g., about 1:1 to 20:1, about 20:1 to 40:1, about 40:1 to 60:1, about 60:1 to 80:1, or about 80:1 to 100:1, by molar ratio. In other embodiments, a system of multiple nucleic acids may be prepared by separate formulations, e.g., one LNP formulation comprising a template RNA and a second LNP formulation comprising an mRNA encoding a Gene Writer polypeptide. In some embodiments, the system may comprise more than two nucleic acid components formulated into LNPs. In some embodiments, the system may comprise a protein, e.g., a Gene Writer polypeptide, and a template RNA formulated into at least one LNP formulation.


In some embodiments, the average LNP diameter of the LNP formulation may be between 10s of nm and 100s of nm, e.g., measured by dynamic light scattering (DLS). In some embodiments, the average LNP diameter of the LNP formulation may be from about 40 nm to about 150 nm, such as about 40 nm, 45 nm, 50 nm, 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 105 nm, 110 nm, 115 nm, 120 nm, 125 nm, 130 nm, 135 nm, 140 nm, 145 nm, or 150 nm. In some embodiments, the average LNP diameter of the LNP formulation may be from about 50 nm to about 100 nm, from about 50 nm to about 90 nm, from about 50 nm to about 80 nm, from about 50 nm to about 70 nm, from about 50 nm to about 60 nm, from about 60 nm to about 100 nm, from about 60 nm to about 90 nm, from about 60 nm to about 80 nm, from about 60 nm to about 70 nm, from about 70 nm to about 100 nm, from about 70 nm to about 90 nm, from about 70 nm to about 80 nm, from about 80 nm to about 100 nm, from about 80 nm to about 90 nm, or from about 90 nm to about 100 nm. In some embodiments, the average LNP diameter of the LNP formulation may be from about 70 nm to about 100 nm. In a particular embodiment, the average LNP diameter of the LNP formulation may be about 80 nm. In some embodiments, the average LNP diameter of the LNP formulation may be about 100 nm. In some embodiments, the average LNP diameter of the LNP formulation ranges from about 1 mm to about 500 mm, from about 5 mm to about 200 mm, from about 10 mm to about 100 mm, from about 20 mm to about 80 mm, from about 25 mm to about 60 mm, from about 30 mm to about 55 mm, from about 35 mm to about 50 mm, or from about 38 mm to about 42 mm.


A LNP may, in some instances, be relatively homogenous. A polydispersity index may be used to indicate the homogeneity of a LNP, e.g., the particle size distribution of the lipid nanoparticles. A small (e.g., less than 0.3) polydispersity index generally indicates a narrow particle size distribution. A LNP may have a polydispersity index from about 0 to about 0.25, such as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, or 0.25. In some embodiments, the polydispersity index of a LNP may be from about 0.10 to about 0.20.


The zeta potential of a LNP may be used to indicate the electrokinetic potential of the composition. In some embodiments, the zeta potential may describe the surface charge of a LNP. Lipid nanoparticles with relatively low charges, positive or negative, are generally desirable, as more highly charged species may interact undesirably with cells, tissues, and other elements in the body. In some embodiments, the zeta potential of a LNP may be from about −10 mV to about +20 mV, from about −10 mV to about +15 mV, from about −10 mV to about +10 mV, from about −10 mV to about +5 mV, from about −10 mV to about 0 mV, from about −10 mV to about −5 mV, from about −5 mV to about +20 mV, from about −5 mV to about +15 mV, from about −5 mV to about +10 mV, from about −5 mV to about +5 mV, from about −5 mV to about 0 mV, from about 0 mV to about +20 mV, from about 0 mV to about +15 mV, from about 0 mV to about +10 mV, from about 0 mV to about +5 mV, from about +5 mV to about +20 mV, from about +5 mV to about +15 mV, or from about +5 mV to about +10 mV.


The efficiency of encapsulation of a protein and/or nucleic acid, e.g., Gene Writer polypeptide or mRNA encoding the polypeptide, describes the amount of protein and/or nucleic acid that is encapsulated or otherwise associated with a LNP after preparation, relative to the initial amount provided. The encapsulation efficiency is desirably high (e.g., close to 100%). The encapsulation efficiency may be measured, for example, by comparing the amount of protein or nucleic acid in a solution containing the lipid nanoparticle before and after breaking up the lipid nanoparticle with one or more organic solvents or detergents. An anion exchange resin may be used to measure the amount of free protein or nucleic acid (e.g., RNA) in a solution. Fluorescence may be used to measure the amount of free protein and/or nucleic acid (e.g., RNA) in a solution. For the lipid nanoparticles described herein, the encapsulation efficiency of a protein and/or nucleic acid may be at least 50%, for example 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%. In some embodiments, the encapsulation efficiency may be at least 80%. In some embodiments, the encapsulation efficiency may be at least 90%. In some embodiments, the encapsulation efficiency may be at least 95%.


A LNP may optionally comprise one or more coatings. In some embodiments, a LNP may be formulated in a capsule, film, or table having a coating. A capsule, film, or tablet including a composition described herein may have any useful size, tensile strength, hardness or density.


Additional exemplary lipids, formulations, methods, and characterization of LNPs are taught by WO2020061457, which is incorporated herein by reference in its entirety.


In some embodiments, in vitro or ex vivo cell lipofections are performed using Lipofectamine MessengerMax (Thermo Fisher) or TransIT-mRNA Transfection Reagent (Mirus Bio). In certain embodiments, LNPs are formulated using the GenVoy_ILM ionizable lipid mix (Precision NanoSystems). In certain embodiments, LNPs are formulated using 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA) or dilinoleylmethyl-4-dimethylaminobutyrate (DLin-MC3-DMA or MC3), the formulation and in vivo use of which are taught in Jayaraman et al. Angew Chem Int Ed Engl 51(34):8529-8533 (2012), incorporated herein by reference in its entirety.


LNP formulations optimized for the delivery of CRISPR-Cas systems, e.g., Cas9-gRNA RNP, gRNA, Cas9 mRNA, are described in WO2019067992 and WO2019067910, both incorporated by reference.


Additional specific LNP formulations useful for delivery of nucleic acids are described in U.S. Pat. Nos. 8,158,601 and 8,168,775, both incorporated by reference, which include formulations used in patisiran, sold under the name ONPATTRO.


Exemplary dosing of Gene Writer LNP may include about 0.1, 0.25, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 8, 10, or 100 mg/kg (RNA). Exemplary dosing of AAV comprising a nucleic acid encoding one or more components of the system may include an MOI of about 1011, 1012, 1013, and 1014 vg/kg.


All publications, patent applications, patents, and other publications and references (e.g., sequence database reference numbers) cited herein are incorporated by reference in their entirety. For example, all GenBank, Unigene, and Entrez sequences referred to herein, e.g., in any Table herein, are incorporated by reference. Unless otherwise specified, the sequence accession numbers specified herein, including in any Table herein, refer to the database entries current as of Jul. 19, 2019. When one gene or protein references a plurality of sequence accession numbers, all of the sequence variants are encompassed.


EXAMPLES

The invention is further illustrated by the following examples. The examples are provided for illustrative purposes only and are not to be construed as limiting the scope or content of the invention in any way.


Example 1: Delivery of a Gene Writer™ System to Mammalian Cells

This example describes a Gene Writer™ genome editing system delivered to a mammalian cell for site-specific insertion of exogenous DNA into a mammalian cell genome.


In this example, the polypeptide component of the Gene Writer™ system is a recombinase protein selected from Table 1, column 1, and the template DNA component is a plasmid DNA that comprises a target recombination site, e.g., as listed in a corresponding row of Table 1.


HEK293T cells are transfected with the following test agents:

    • 1. Scrambled DNA control
    • 2. DNA coding for the polypeptide described above
    • 3. Template DNA described above
    • 4. Combination of 2 and 3


After transfection, HEK293T cells are cultured for at least 4 days and then assayed for site-specific genome editing. Genomic DNA is isolated from each group of HEK293 cells. PCR is conducted with primers that flank the appropriate genomic locus selected from Table 1 column 4. The PCR product is run on an agarose gel to measure the length of the amplified DNA.


A PCR product of the expected length, indicative of a successful Gene Writing™ genome editing event that inserts the DNA plasmid template into the target genome, is observed only in cells that were transfected with the complete Gene Writer™ system of group 4 above.


Example 2: Targeted Delivery of a Gene Expression Unit into Mammalian Cells Using a Gene Writer™ System

This example describes the making and using of a Gene Writer genome editor to insert a heterologous gene expression unit into the mammalian genome.


In this example, a recombinase protein is selected from Table 1, column 1. The recombinase protein targets the corresponding genomic locus listed in column 4 of Table 1 for DNA integration. The template DNA component is a plasmid DNA that comprises a target recombination site and gene expression unit. A gene expression unit comprises at least one regulatory sequence operably linked to at least one coding sequence. In this example, the regulatory sequences include the CMV promoter and enhancer, an enhanced translation element, and a WPRE. The coding sequence is the GFP open reading frame.


HEK293 cells are transfected with the following test agents:

  • 1. Scrambled DNA control
  • 2. DNA coding for the polypeptide described above
  • 3. Template DNA described above
  • 4. Combination of 2 and 3


After transfection, HEK293 cells are cultured for at least 4 days and assayed for site-specific Gene Writing genome editing. Genomic DNA is isolated from the HEK293 cells and PCR is conducted with primers that flank the target integration site in the genome. The PCR product is run on an agarose gel to measure the length of DNA. A PCR product of the expected length, indicative of a successful Gene Writing™ genome editing event, is detected in cells transfected with the test agent of group 4 (complete Gene Writer™ system).


The transfected cells are cultured for a further 10 days, and after multiple cell culture passages are assayed for GFP expression via flow cytometry. The percent of cells that are GFP positive from each cell population are calculated. GFP positive cells are detected in the population of HEK293 cells that were transfected with group 4 test agent, demonstrating that a gene expression unit added into the mammalian cell genome via Gene Writing genome editing is expressed.


Example 3: Targeted Delivery of a Splice Acceptor Unit into Mammalian Cells Using a Gene Writer™ System

This example describes the making and use of a Gene Writing genome editing system to add a heterologous sequence into an intronic region to act as a splice acceptor for an upstream exon. Splicing into the first intron a new exon containing a splice acceptor site at the 5′ end and a polyA tail at the 3′ end will result in a mature mRNA containing the first natural exon of the natural locus spliced to the new exon.


In this example, a recombinase protein selected from Table 1, column 1. The recombinase protein targets the corresponding genomic locus listed in Table 1, column 4, for DNA integration. The template DNA codes for GFP with a splice acceptor site immediately 5′ to the first amino acid of mature GFP (the start codon is removed) and a 3′ polyA tail downstream of the stop codon.


HEK293 cells are transfected with the following test agents:

  • 1. Scrambled DNA control
  • 2. DNA coding for the polypeptide described above
  • 3. Template DNA described above
  • 4. Combination of 2 and 3


After transfection, HEK293 cells are cultured for at least 4 days and assayed for site-specific Gene Writing genome editing and appropriate mRNA processing. Genomic DNA is isolated from the HEK293 cells. Reverse transcription-PCR is conducted to measure the mature mRNA containing the first natural exon of the target locus and the new exon. The RT-PCR reaction is conducted with forward primers that bind to the first natural exon of the target locus and with reverse primers that bind to GFP. The RT-PCR product is run on an agarose gel to measure the length of DNA. A PCR product of the expected length is detected in cells transfected with the test agent of group 4, indicative of a successful Gene Writing genome editing event and a successful splice event. This result would demonstrate that a Gene Writing genome editing system can add a heterologous sequence encoding a gene into an intronic region to act as a splice acceptor for the upstream exon.


The transfected cells are cultured for a further 10 days and, after multiple cell culture passages, are assayed for GFP expression via flow cytometry. The percent of cells that are GFP positive from each cell population are calculated. GFP positive cells are detected in the population of HEK293 cells that were transfected with group 4 test agent, demonstrating that a gene expression unit added into the mammalian cell genome via Gene Writing genome editing is expressed.


Example 4: Specificity of Gene Writing in Mammalian Cells

This example describes a Gene Writer™ genome system delivered to a mammalian cell for site-specific insertion of exogenous DNA into a mammalian cell genome and a measurement of the specificity of the site-specific insertion.


In this example, Gene Writing is conducted in HEK293T cells as described in any of the preceding Examples. After transfection, HEK293T cells are cultured for at least 4 days and then assayed for site-specific genome editing. Linear amplification PCR is conducted as described in Schmidt et al. Nature Methods 4, 1051-1057 (2007) using a forward primer specific to the template DNA that will amplify adjacent genomic DNA. Amplified PCR products are then sequenced using next generation sequencing technology on a MiSeq instrument. The MiSeq reads are mapped to the HEK293T genome to identify integration sites in the genome.


The percent of LAM-PCR sequencing reads that map to the target genomic site is the specificity of the Gene Writer.


The number of total genomic sites that LAM-PCR sequencing reads map to is the number of total integration sites.


Example 5: Efficiency of Gene Writing in Mammalian Cells

This example describes Gene Writer™ genome system delivered to a mammalian cell for site-specific insertion of exogenous DNA into a mammalian cell genome, and a measurement of the efficiency of Gene Writing.


In this example, Gene Writing is conducted in HEK293T cells as described in any of the preceding Examples. After transfection, HEK293T cells are cultured for at least 4 days and then assayed for site-specific genome editing. Digital droplet PCR is conducted as described in Lin et al., Human Gene Therapy Methods 27(5), 197-208, 2016. A forward primer binds to the template DNA and a reverse primer binds on one side of the appropriate genomic locus selected from Table 1 column 4, thus a PCR amplification is only expected upon integration of target DNA. A probe to the target site containing a FAM fluorophore and is used to measure the number of copies of the target DNA in the genome. Primers and HEX-fluorophore probe specific to a housekeeping gene (e.g. RPP30) are used to measure the copies of genomic DNA per droplet.


The copy number of target DNA per droplet normalized to the copy number of house keeping DNA per droplet is the efficiency of the Gene Writer.


Example 6: Determination of Copy Number of a Recombinase in a Cell

The following example describes the absolute quantification of a recombinase on a per cell basis. This measurement is performed using the AQUA mass spectrometry based methods, e.g., as accessible at the following uniform resource locator (URL):https://www.sciencedirect.com/science/article/pii/S1046202304002087?via%3Dihub


Following delivery of the recombinase and DNA template to the cells, the recombination is allowed to proceed for 24 hours after which the cells are quantified and then quantified by this MS method. This method involves two stages.


In the first stage, the amino acid sequence of the recombinase is examined, and a representative tryptic peptide is selected for analysis. An AQUA peptide is then synthesized with an amino acid sequence that exactly mimics the corresponding native peptide produced during proteolysis. However, stable isotopes are incorporated at one residue to allow the mass spectrometer to differentiate between the analyte and internal standard. The synthetic peptide and the native peptide share the same physicochemical properties including chromatographic co-elution, ionization efficiency, and relative distributions of fragment ions, but are differentially detected in a mass spectrometer due to their mass difference. The synthetic peptide is next analyzed by LC-MS/MS techniques to confirm the retention time of the peptide, determine fragment ion intensities, and select an ion for SRM analysis. In such an SRM experiment, a triple quadrupole mass spectrometer is directed to select the expected precursor ion in the first scanning quadrupole, or Q1. Only ions with this one mass-to-charge (m/z) ratio are directed into the collision cell (Q2) to be fragmented. The resulting product ions are passed to the third quadrupole (Q3), where the m/z ratio for single fragment ion is monitored across a narrow m/z window.


The second stage involves quantification of the recombinase from cell or tissue lysates. A quantified number of cells or mass of tissue is used to initiate the reaction and is used to normalize the quantification to a per cell basis. Cell lysates are separated prior to proteolysis to increase the dynamic range of the assay via SDS-PAGE, followed by excision of the region of the gel where the recombinase migrates. In-gel digestion is performed to obtain native tryptic peptides. In-gel digestion is performed in the presence of the AQUA peptide, which is added to the gel pieces during the digestion process. Following proteolysis, the complex peptide mixture, containing both heavy and light peptides, is analyzed in an LC-SRM experiment using parameters determined during the first stage.


The results of the mass spectrometry-based quantification is converted to a number of proteins loaded to determine the number of recombinases per cell.


Example 7: Copy Number of DNA Inside Cell
Q-FISH

The following example describes the quantification of delivered DNA template on a per cell basis. In this example the DNA that the recombinase is integrating contains a DNA-probe binding site. Following delivery of the recombinase and DNA template to the cells, the recombination is allowed to proceed for 24 hours, after which the cells are quantified and are prepared for quantitative fluorescence in situ hybridization (Q-FISH). Q-FISH is conducted using FISH Tag DNA Orange Kit, with Alex Fluor 555 dye (ThermoFisher catalog number F32948). Briefly, a DNA probe that binds to the DNA-probe binding site on the DNA template is generated through a procedure of nick translation, dye labeling, and purification as described in the Kit manual. The cells are then labeled with the DNA probe as described in the Kit manual. The cells are imaged on a Zeiss LSM 710 confocal microscope with a 63× oil immersion objective while maintained at 37 C and 5% CO2. The DNA probe is subjected to 555 nm laser excitation to stimulate Alexa Flour. A MATLAB script is written to measure the Alex Fluor intensity relative to a standard generated with known quantities of DNA. Using this method, the amount of template DNA delivered to a cell is determined.


qPCR


The following example describes the quantification of delivered DNA template on a per cell basis. In this example the DNA that the recombinase is integrating contains a DNA-probe binding site. Following delivery of the recombinase and DNA template to the cells, the recombination is allowed to proceed for 24 hours after which the cells are quantified, and cells are prepared for quantitative PCR (qPCR). qPCR is conducted using standard kits for this protocol, such as the ThermoFisher TaqMan product (https://www.thermofisher.com/us/en/home/life-science/pcr/real-time-pcr/real-time-pcr-assays-search.html). Briefly, primers are designed that specifically amplify a region of the delivered template DNA as well as probes for the specific amplicon. A standard curve is generated by using a serial dilution of quantified pure template DNA to correlate threshold Ct numbers to number of DNA templates. The DNA is then extracted from the cells being analyzed and input into the qPCR reaction along with all additional components per the manufacturer's directions. The samples are than analyzed on an appropriate qPCR machine to determine the Ct number, which is then mapped to the standard curve for absolute quantification. Using this method, the amount of template DNA delivered to a cell is determined.


Example 8: Intracellular Ratio of DNA: Recombinase

The following example describes the determination of the ratio of recombinase protein to template DNA cell in the target cells. Following delivery of the recombinase and DNA template to the cells, the recombination is allowed to proceed for 24 hours after which the cells are quantified, and cells are prepared quantification of the recombinase and of the template DNA as outlined in the above examples. These two values (recombinase per cell and template DNA per cell) are then divided (recombinase per cell/template DNA per cell) to determine the bulk average ratio of these quantities. Using this method, the ratio of recombinase to template DNA delivered to a cell is determined.


Example 9: Activity in Presence of DNA-Damage Response Inhibiting Agents—Activity in Presence of NHEJ Inhibitor

The following example describes the assaying of activity of the recombinase protein in the presence of inhibitors of non-homologous end joining to highlight the lack of dependence on the expression of the proteins involved in these pathways for activity of the recombinase. Briefly, the assay outlined to determine efficiency of recombinase activity outlined in the example above is performed. However, in this case two separate experiments are performed.


In experiment 1, 24 hours after delivery of the recombinase and Template DNA, 1 μM of the NHEJ inhibitor Scr7 (https://www.sigmaaldrich.com/catalog/product/sigma/sml1546?lang=en&region=US) is added to the cell growth media to inhibit this pathway. All other elements of the protocol are identical.


In experiment 2, the cells are manipulated identically as in experiment 1 but no inhibitor is added to the media. Both experiments are analyzed for efficiency per the example above and the % inhibited activity relative to uninhibited activity is determined.


Example 10: Activity in Presence of DNA-Damage Response Inhibiting Agents—Activity in Presence of HDR Inhibitor

The following example describes the assaying of activity of the recombinase protein in the presence of inhibitors of homologous recombination to highlight the lack of dependence on the expression of the proteins involved in these pathways for activity of the recombinase. Briefly, the assay outlined to determine efficiency of recombinase activity outlined in the example above is performed. However, in this case, two separate experiments are performed.


In experiment 1: 24 hours after delivery of the recombinase and Template DNA, 1 μM of the HR inhibitor B02 (https://www.selleckchem.com/products/b02.html) is added to the cell growth media to inhibit this pathway. All other elements of the protocol are identical.


In experiment 2: the cells are manipulated identically as in experiment 1 but no inhibitor is added to the media. Both experiments are analyzed for efficiency per the example above and the % inhibited activity relative to uninhibited activity is determined.


Example 11: Percentage of Nuclear Versus Cytoplasmic Recombinase

The following example describes the determination of the ratio of recombinase protein in the nucleus vs the cytoplasm of target cells. 12 hours following delivery of the recombinase and DNA template to the cells as described herein, the cells are quantified and prepared for analysis. The cells are split into nuclear and cytoplasmic fractions using the following standard kits, following manufacturer directions: NE-PER Nuclear and Cytoplasmic Extraction by ThermoFisher. Both the cytoplasmic and nuclear fractions are kept and then put through the mass spec based recombinase quantification assay outlined in the example above. Using this method, the ratio of nuclear recombinase to cytoplasmic recombinase in the cells is determined.


Example 12: Delivery to Plant Cells

This example illustrates a method of delivering at least one recombinase to a plant cell wherein the plant cell is located in a plant or plant part. More specifically, this example describes delivery of a Gene Writing recombinase and its template DNA to a non-epidermal plant cell (i.e., a cell in a soybean embryo), in order to edit an endogenous plant gene (i.e., phytoene desaturase, PDS) in germline cells of excised soybean embryos. This example describes delivery of polynucleotides encoding the delivered transgene through multiple barriers (e.g., multiple cell layers, seed coat, cell walls, plasma membrane) directly into soybean germline cells, resulting in a heritable alteration of the target nucleotide sequence, PDS. The methods described do not employ the common techniques of bacterially mediated transformation (e.g., by Agrobacterium sp.) or biolistics.


Plasmids are designed for delivery of recombinase and a single template DNA targeting the endogenous phytoene desaturase (PDS) in soybean (Glycine max). It will be apparent to one skilled in the art that analogous plasmids are easily designed to encode other recombinases and template DNA sequences, optionally including different elements (e. g., different promoters, terminators, selectable or detectable markers, a cell-penetrating peptide, a nuclear localization signal, a chloroplast transit peptide, or a mitochondrial targeting peptide, etc.), and used in a similar manner.


In a first series of experiments, these vectors are delivered to non-epidermal plant cells in soybean embryos using combinations of delivery agents and electroporation. Mature, dry soybean seeds (cv. Williams 82) are surface-sterilized as follows. Dry soybean seeds are held for 4 hours in an enclosed chamber holding a beaker containing 100 milliliters 5% sodium hypochlorite solution to which 4 milliliters hydrochloric acid are freshly added. Seeds remain desiccated after this sterilization treatment. The sterilized seeds are split into 2 halves by manual application of a razor blade and the embryos are manually separated from the cotyledons. Each test or control treatment is carried out on 20 excised embryos. The following series of experiments is then performed.


Experiment 1: A delivery solution containing the vectors (100 nanograms per microliter of each plasmid) in 0.01% CTAB (cetyltrimethylammonium bromide, a quaternary ammonium surfactant) in sterile-filtered milliQ water is prepared. Each solution is chilled to 4 degrees Celsius and 500 microliters are added directly to the embryos, which are then immediately placed on ice in a vacuum chamber and subjected to a negative pressure (2×10″3 millibar) treatment for 15 minutes. Following the chilling/negative pressure treatments, the embryos are treated with electric current using a BTX-Harvard ECM-830 electroporation device set with the following parameters: 50V, 25 millisecond pulse length, 75 millisecond pulse interval for 99 pulses.


Experiment 2: conditions identical to Experiment 1, except that the initial contacting with delivery solution and negative pressure treatments are carried out at room temperature.


Experiment 3: conditions identical to Experiment 1, except that the delivery solution is prepared without CTAB but includes 0.1% Silwet L-77™ (CAS Number 27306-78-1, available from Momentive Performance Materials, Albany, N.Y). Half (10 of 20) of the embryos receiving each treatment undergo electroporation, and the other half of the embryos do not.


Experiment 4: conditions identical to Experiment 3, except that several delivery solutions are prepared, where each further includes 20 micrograms/milliliter of one single-walled carbon nanotube preparation selected from those with catalogue numbers 704113, 750530, 724777, and 805033, all obtainable from Sigma-Aldrich, St. Louis, Mo. Half (10 of 20) of the embryos receiving each treatment undergo electroporation, and the other half of the embryos do not.


Experiment 5: conditions identical to Experiment 3, except that the delivery solution further includes 20 micrograms/milliliter of triethoxylpropylaminosilane-functionalized silica nanoparticles (catalogue number 791334, Sigma-Aldrich, St. Louis, Mo. Half (10 of 20) of the embryos receiving each treatment undergo electroporation, and the other half of the embryos do not.


Experiment 6: conditions identical to Experiment 3, except that the delivery solution further includes 9 micrograms/milliliter branched polyethylenimine, molecular weight −25,000 (CAS Number 9002-98-6, catalogue number 408727, Sigma-Aldrich, St. Louis, Mo.) or 9 micro grams/milliliter branched polyethylenimine, molecular weight −800 (CAS Number 25987-06-8, catalogue number 408719, Sigma-Aldrich, St. Louis, Mo.). Half (10 of 20) of the embryos receiving each treatment undergo electroporation, and the other half of the embryos do not.


Experiment 7: conditions identical to Experiment 3, except that the delivery solution further includes 20% v/v dimethylsulf oxide (DMSO, catalogue number D4540, Sigma-Aldrich, St. Louis, Mo.). Half (10 of 20) of the embryos receiving each treatment undergo electroporation, and the other half of the embryos do not.


Experiment 8: conditions identical to Experiment 3, except that the delivery solution further contains 50 micromolar nono-arginine (RRRRRRRRR, SEQ ID NO:1873). Half (10 of 20) of the embryos receiving each treatment undergo electroporation, and the other half of the embryos do not.


Experiment 9: conditions identical to Experiment 3, except that following the vacuum treatment, the embryos and treatment solutions are transferred to microcentrifuge tubes and centrifuged 2, 5, 10, or 20 minutes at 4000×g. Half (10 of 20) of the embryos receiving each treatment undergo electroporation, and the other half of the embryos do not.


Experiment 10: conditions identical to Experiment 3, except that following the vacuum treatment, the embryos and treatment solutions are transferred to microcentrifuge tubes and centrifuged 2, 5, 10, or 20 minutes at 4000×g.


Experiment 11: conditions identical to Experiment 4, except that following the vacuum treatment, the embryos and treatment solutions are transferred to microcentrifuge tubes and centrifuged 2, 5, 10, or 20 minutes at 4000×g.


Experiment 12: conditions identical to Experiment 5, except that following the vacuum treatment, the embryos and treatment solutions are transferred to microcentrifuge tubes and centrifuged 2, 5, 10, or 20 minutes at 4000×g.


After the delivery treatment, each treatment group of embryos is washed 5 times with sterile water, transferred to a petri dish containing ½ MS solid medium (2.165 g Murashige and Skoog medium salts, catalogue number MSP0501, Caisson Laboratories, Smithfield, Utah), 10 grams sucrose, and 8 grams Bacto agar, made up to 1.00 liter in distilled water), and placed in a tissue culture incubator set to 25 degrees Celsius. After the embryos have elongated, developed roots and true leaves have emerged, the seedlings are transferred to soil and grown out. Modification of all endogenous PDS alleles results in a plant unable to produce chlorophyll and having a visible bleached phenotype. Modification of a fraction of all endogenous PDS alleles results in plants still able to produce chlorophyll; plants that are heterozygous for an altered PDS gene will are grown out to seed and the efficiency of heritable genome modification is determined by molecular analysis of the progeny seeds.


Example 13: Assessment of Gene Writer Activity in Human Cells by Episomal Reporter Inversion Assay

This example describes a reporter assay for Gene Writer activity in human cells. Specifically, the reporter assay involves the co-delivery of an inactive reporter plasmid and a second plasmid bearing a tyrosine recombinase that may activate an inverted GFP gene on the reporter plasmid.


In this example, a Gene Writer and a reporter were delivered to HEK293T cells. The delivery comprised two plasmids: 1) the recombinase expression plasmid encoding a recombinase sequence (e.g., a recombinase from Table 1, recombinase sequence from Table 2) driven by the mammalian CMV promoter, and 2) the reporter plasmid comprising a CMV promoter upstream of a recombinase target site flanked inverted EGFP sequence (e.g., an inverted EGFP sequence flanked by a pair of recognition sites from Column 2 or 3 of Table 1, in inverted orientation relative to each other). Tyrosine recombinases that were discovered as described elsewhere herein and that recognize palindromic sequences with homology to the human genome, comprising up to 3 mismatches, were selected for activity testing on both their natural sequences (e.g., natural sequences as discovered in bacteria, e.g., as describe in Column 2 of Table 1) as well as the corresponding human genome sequence (containing up to 3 mismatches, e.g., as described in Column 3 of Table 1). The presence of a cognate recombinase results in inversion of the EGFP sequence and allows EGFP expression driven by the CMV promoter, e.g., as shown in the schematic in FIG. 1.


Approximately 120,000 HEK293T cells were either co-transfected with recombinase expressing plasmid and inverted GFP reporter plasmid at a 1:3 recombinase:reporter plasmid molar ratio using TransIT-293 Reagent (Mirusbio), or transfected similarly with reporter plasmid alone as a negative control. Two days after transfection, recombinase activity was measured using flow cytometry to determine the percentage of EGFP positive cells. Results of flow cytometry analysis are provided in Table 16, and show that a recombinase with activity in human cells resulted in an increase in the percentage of EGFP positive cells over the negative control (reporter plasmid only).


Example 14: Assessment of Gene Writer Activity in Human Cells by Integration at Endogenous Genomic Loci

This example describes an integration assay for Gene Writer activity in human cells. Specifically, the assay involves the co-delivery of an insert DNA plasmid comprising a heterologous object sequence and a recombinase recognition site and a second plasmid bearing a tyrosine recombinase for catalyzing the integration of the insert DNA plasmid into the genome.


In this example, a Gene Writer and a sequence of interest were delivered to HEK293T cells. The delivery comprised two plasmids: 1) the recombinase expression plasmid harboring a recombinase sequence (e.g., a recombinase from Table 1, recombinase sequence from Table 2) driven by the mammalian CMV promoter, and 2) the insert DNA plasmid comprising a CMV promoter upstream of a gene of interest (e.g., a GFP sequence) and a native recombinase recognition site (e.g., a sequence of Column 2 of Table 1) or a recombinase recognition site matching a sequence in the human genome, e.g., a sequence in the human genome with homology to the native recognition site (e.g., a sequence of Column 3 of Table 1), with three or fewer mismatches. An example integration reaction is shown in FIG. 2.


Approximately 120,000 HEK293T cells were either co-transfected with recombinase expressing plasmid and insert DNA plasmid at a 1:3 recombinase:insert DNA plasmid molar ratio using TransIT-293 Reagent (Mirusbio), or transfected similarly with reporter plasmid alone as a negative control. At 2-5 days post-transfection, recombinase-mediated genome integration was measured using Droplet Digital PCR (ddPCR). The percentage of cells undergoing successful integration was approximated by calculating the average genomic copy number of insert DNA integrants normalized to an RPP30 reference control. Results of ddPCR analysis are provided in Table 16, and shows that a recombinase able to integrate the insert DNA plasmid into the human genome resulted in an increase in the average number of integration events per genome over the negative control (reporter plasmid only).


Example 15: Inversion and Integration Assay Data

Recombinases from Table 1 or 2 were tested in human cells using an episomal reporter inversion (Example 13) or genomic integration (Example 14) assay and the data is shown in Table 16. Column 2 indicates the accession of recombinase proteins as listed in Tables 1 and 2. For the episomal assay, inversion activity is shown as % of GFP+ cells as measured by flow cytometry, where Column 4 indicates inversion activity using the natural recognition sites (Column 2 of Table 1) and Column 6 indicates inversion activity using the closest matching human site (Column 3 of Table 1), with Columns 3 and 5 displaying the respective background GFP in the absence of recombinase. For the genomic integration assay, integration activity measured by ddPCR is expressed as % of cells estimated by the average copies of integrated insert DNA vector per genome copy and is shown in Column 7. Of the exemplary recombinases listed in Table 16, at least 34 showed activity above background using the closest matching human site in the episomal reporter inversion assay. Of these, at least 21 showed activity that was at least twice the background level using the closest matching human site. Of the exemplary recombinases listed in Table 16 that were tested by genomic integration assay, at least 17 showed activity at the closest matching site in the human genome. NT=Not Tested









TABLE 16







Recombinase activity in human cells.















3.
4.
5.
6.



1.
2.
GFP Neg
GFP+ Rec
GFP Neg
GFP+ Rec
7.


Recombinase
Protein_ID
(Natural)
(Natural)
(Human)
(Human)
Integration
















Rec1
WP_010497271.1
8.22
9.77
7.25
7.965
NT


Rec2
WP_006717173.1
0.2565
0.133
2.27
0.88
NT


Rec3
WP_006718580.1
0.2565
0.096
2.27
0.75
NT


Rec4
WP_006719234.1
0.2565
0.1335
2.27
0.55
NT


Rec5
WP_109859198.1
0.265
0.195
2.27
0.545
NT


Rec2
WP_006717173.1
0.265
0.27
2.27
0.76
NT


Rec6
WP_006717195.1
0.2565
0.135
2.27
0.705
NT


Rec7
WP_005715799.1
0.2565
0.108
2.27
0.78
NT


Rec8
WP_017740000.1
0.264
0.1645
0.165
0.047
NT


Rec9
WP_017744257.1
0.264
0.1325
0.165
0.05
NT


Rec10
WP_017746151.1
0.264
0.1675
0.165
0.047
NT


Rec11
WP_038150996.1
0.07465
0.02366
1.8875
3.065
NT


Rec12
WP_038150898.1
0.07465
0.031
1.8875
2.715
NT


Rec13
WP_126045042.1
5.795
4.465
4.085
9.235
NT


Rec14
WP_061329756.1
1.04
1.18
4.085
1.715
NT


Rec15
XP_012333305.1
2.178
5.905
3.435
7.24
NT


Rec16
WP_120166565.1
4.755
7.985
6.21
11.42
NT


Rec17
WP_073025039.1
4.4
8.625
3.355
68.4
0.15


Rec18
WP_007635552.1
1.255
0.202
3.355
1.045
NT


Rec19
WP_058958135.1
0.0065
63.65
6.21
54.8
0.86


Rec20
WP_090967054.1
4.93
70.65
6.21
63.55
0.54


Rec21
WP_010365336.1
4.91
4.75
3.355
0.98
NT


Rec22
WP_016392893.1
1.66
1.45
10.985
11.49
NT


Rec23
WP_047824597.1
0.81
43.3
0.188665
9.96
0


Rec24
WP_046407494.1
2.34
17.1
6.505
11.7
NT


Rec25
WP_003712523.1
3.3
4.845
0.1935
0.275
NT


Rec26
WP_005027658.1
3.98
4.115
1.475
2.05
NT


Rec27
WP_021170377.1
6.51
62.7
1.2395
45.2
0.87


Rec28
WP_015169902.1
6.76
10.165
3.705
4.62
NT


Rec29
WP_089415106.1
1.305
36.85
2.215
30.9
0.28


Rec30
WP_022624268.1
1.305
32.1
2.215
32.35
0.27


Rec31
WP_046103089.1
1.305
21.3
2.215
5.185
0.25


Rec32
WP_069027120.1
6.6
60.05
2.215
38.25
0.14


Rec33
WP_010671927.1
6.6
50.95
2.215
28.3
0.09


Rec34
WP_109653747.1
6.6
50.65
2.215
28.65
0.24


Rec35
WP_134161939.1
6.6
51.95
2.215
34.15
0.63


Rec36
WP_111534863.1
6.6
44.2
2.215
28.25
0.26


Rec37
WP_128085508.1
6.6
40
2.215
15.85
0.36


Rec38
WP_115764642.1
6.6
44.45
2.215
30.8
0.06


Rec39
WP_11H38305.1
6.6
42
2.215
14.845
0.33


Rec82
WP_056773790.1
5.03
59
3.47
5.625
NT


Rec83
WP_033768926.1
5.425
65.2
3.47
4.43
NT


Rec142
WP_048474244.1
4.4
20.25
0.9
0.325
NT


Rec338
PKP94160.1
12.9
39.1
1.345
25.05
0.09


Rec349
WP_047138903.1
2.655
3.105
1.815
1.17
NT


Rec432
WP_016115818.1
10.65
7.59
3.03
1.015
NT


Rec476
WP_037412868.1
10.255
9.875
3.995
3.94
NT


Rec480
WP_066605681.1
0.49
0.375
0.65
0.245
NT


Rec483
WP_040041154.1
3.015
3.625
1.45
1.33
NT


Rec507
WP_132978117.1
13.7
21.4
7.485
6.63
NT


Rec521
WP_111480623.1
7.83
57.3
8.22
7.42
NT


Rec522
WP_125440609.1
7.83
29.265
7.115
8.435
NT


Rec523
WP_065235645.1
9.44
46.5
4.3
2.39
NT


Rec554
WP_076797908.1
3.02
2.495
5.76
3.55
NT


Rec555
WP_097452609.1
1.23
47
9.2
10.525
NT


Rec589
WP_026351576.1
NT
NT
5.945
36.65
0.12


Rec590
WP_092743158.1
NT
NT
5.945
27.45
NT









Example 16: Dual AAV Delivery of Tyrosine Recombinase and Template DNA to Mammalian Cells

This example describes the use of a tyrosine recombinase based Gene Writer system for the targeted integration of a template DNA into the human genome. More specifically, a recombinase, e.g., a tyrosine recombinase with an amino acid sequence from Table 1 or 2, and a template DNA comprising the associated recognition site, e.g., a sequence from Column 2 or 3 of Table 1, are co-delivered to HEK293T cells as separate AAV viral vectors to insert DNA precisely and efficiently in a mammalian cell genome comprising a cognate recognition site, e.g., a sequence from Column 3 of Table 1.


Two transgene configurations are assessed to determine the integration, stability, and expression using different AAV insert DNA formats: 1) template comprising a single recognition site that utilizes formation of double-stranded circularized DNA following AAV transduction in the cell nucleus; or 2) template comprising two same orientation recognition sites flanking the desired insert sequence, e.g., two copies of a recognition sequence from Column 2 or Column 3 of Table 1 in the same orientation, that can first be excised from the AAV genome by the recombinase for circularization followed by integration into the mammalian genome.


Adeno-associated viral vectors encoding a recombinase or the corresponding recognition site-containing insert DNA are generated based on the pAAV-CMV-EGFP-WPRE-pA viral backbone (Sirion Biotech), but with replacement of the CMV promoter with the EFla promoter. pAAV-Ef1a-Recombinase-WPRE-pA is generated using a human codon optimized recombinase (GenScript). pAAV-Stuffer insert DNA constructs additionally contain either a 500 bp stuffer sequence between the 5′ AAV2 ITR sequence and Ef1a promoter, or a 500 bp stuffer sequence proximal to the 5′ terminal AAV2 ITR sequence and a 500 bp stuffer sequence proximal to the 3′ AAV2 ITR sequence. The above listed AAV vectors are packaged into AAV2 serotype (Sirion Biotech) at a 1013 total vg scale.


HEK293T cells are seeded in a 48-well plate format at 40,000 cells/well. 24 h later, cells are transduced with either the AAV comprising the recombinase expression vector and the AAV comprising the insert DNA vector, or the AAV comprising the insert DNA vector alone (negative control). On days 3 and 7 post-transduction, genomic DNA is extracted to assess the efficiency of integration using dual AAV delivery of a tyrosine recombinase and an insert DNA vector comprising its recognition site. Integration events are assessed via ddPCR to quantify average integration events (copies/genome) across the cell population to estimate the fraction of cells successfully edited.


Example 17: In Vitro Combination mRNA and AAV Delivery of a Gene Writing Polypeptide and Template DNA for Site-Specific Integration in Human Cells

This example describes use of a Gene Writer system for the site-specific insertion of exogenous DNA into the mammalian cell genome. More specifically, a recombinase, e.g., a tyrosine recombinase with an amino acid sequence from Table 1 or 2, and a template DNA comprising the associated recognition site, e.g., a sequence from Column 2 or 3 of Table 1, are introduced into HEK293T cells. In this example, the recombinase is delivered as mRNA encoding the recombinase, and the template DNA is delivered via AAV.


HEK293T cells are seeded in a 48-well plate format at 40,000 cells/well. 24 h later, cells are transduced with either mRNA encoding the recombinase polypeptide and an AAV comprising the insert DNA vector, or the AAV comprising the insert DNA vector alone (negative control). The timing of delivery is assessed by the following conditions: 1) mRNA delivery of recombinase and AAV delivery of template DNA on the same day, 2) mRNA delivery of recombinase 24 h prior to AAV delivery of template DNA, 3) AAV delivery of template DNA 24 h prior to mRNA delivery of recombinase. Genomic DNA is extracted three days post-transfection of mRNA and post-transduction of AAV to assess the efficiency of integration. Integration efficiency is assessed via ddPCR to quantify average integration events (copies/genome) across the cell population to estimate the fraction of cells successfully edited.


Example 18: Ex Vivo Combination mRNA and AAV Delivery of a Gene Writing Polypeptide and Template DNA to HSCs for the Treatment of Beta-Thalassemia and Sickle Cell Disease

This example describes delivery of mRNA encoding a recombinase and AAV template DNA into C34+ cells (hematopoietic stem and progenitor cells) in order to write an actively expressed 7-globin gene cassette to treat genetic mutations that lead to beta-thalassemia and sickle cell disease.


In this example, AAV6 is used to deliver the template DNA. More specifically, the AAV6 template DNA includes, in order, 5′ ITR, a recombinase recognition site, e.g., a sequence from Column 2 or 3 of Table 1, a pol II promoter, e.g., the human β-globin promoter, a human fetal 7-globin coding sequence, a poly A tail and 3′ITR. Considering the maximum volume limit of electroporation reagents, recombinase mRNA and the AAV6 template are co-delivered into CD34 cells via different conditions, e.g.: 1) AAV6 template and recombinase mRNA are co-electroporated; 2) recombinase mRNA is electroporated 15 mins prior to AAV6 insert DNA transduction.


After electroporation/transduction, cells are incubated in CD34 maintenance media for 2 days. Then, ˜10% of the treated cells are harvested for genomic DNA isolation to determine integration efficiency. The rest of the cells are transferred to erythroid expansion and differentiation media. After ˜20 days differentiation, three assays are performed to determine the integration of 7-globin after erythroid differentiation: 1) a subset of cells is stained with NucRed (Thermo Fisher Scientific) to determine the enucleation rate; 2) a subset of the cells is stained with fluorescein isothiocyanate (FITC)-conjugated anti-γ-globin antibody (Santa Cruz) to determine the percentage of fetal hemoglobin positive cells; 3) a subset of the cells is harvested for HPLC to determine 7-globin chain expression.


Example 19: Ex Vivo Delivery of a Gene Writer Polypeptide and Circular DNA Template for Generating CAR-T Cells

This example describes delivery of a Gene Writing system as a deoxyribonucleoprotein (DNP) to human primary T-cells ex vivo for the generation of CAR-T cells, e.g., CAR-T cells for treating B-cell lymphoma.


The Gene Writer polypeptide, e.g., recombinase, e.g., recombinase with a sequence from Table 1 or Table 2, is prepared and purified for use directly in its active protein form. For the template component, minicircle DNA plasmids that lack plasmid backbone and bacterial sequences are used in this example, e.g., prepared as according to a method of Chen et al. Mol Ther 8(3):495-500 (2003), wherein a recombination event is first used to excise these extraneous plasmid maintenance functions to minimize plasmid size and cellular response. The first recombination event may be performed by flanking the desired vector sequence with cognate recognition sites positioned in the same orientation, such that in vitro recombination with the cognate recombinase results in the formation of a minicircle template DNA comprising a single copy of the recombinase recognition site and desired sequence for integration, which is purified from the remaining plasmid vector. Template DNA minicircles comprise, in order, a recombinase recognition site, e.g., a sequence from Column 2 or 3 of Table 1, a pol II promoter, e.g., EF-1, a human codon optimized chimeric Antigen Receptor (including an extracellular ligand binding domain, a transmembrane domain, and intracellular signaling domains), e.g., the CD19-specific Hu19-CD828Z (Genbank MN698642; Brudno et al. Nat Med 26:270-280 (2020)) CAR molecule, and a poly A tail. The template DNA is first mixed with purified recombinase protein and incubated at room temperature for 15-30 mins to form DNP complexes. Then, the DNP complex is nucleofected into activated T cells. Integration by the Gene Writer system is assayed using ddPCR for molecular quantification, and CAR expression is measured by flow cytometry.


Example 20: Production of mRNA Encoding a Gene Writer Polypeptide

This example describes the generation of a recombinase encoding mRNA by in vitro transcription from a DNA vector. The mRNA template plasmid includes the T7 promoter followed by a 5′UTR, the recombinase coding sequence, a 3′ UTR, and ˜100 nucleotide long poly(A) tail. The plasmid is linearized by enzymatic restriction resulting in blunt end or 5′ overhang downstream of poly(A) tail and used for in vitro transcription (IVT) using T7 polymerase (NEB). Following IVT, the RNA is treated with DNase I (NEB). After buffer exchange, enzymatic capping is performed using Vaccinia capping enzyme (NEB) and 2′-O-methyltransferase (NEB) in the presence of GTP and SAM (NEB). The capped RNA is purified and concentrated using silica columns (for example, Monarch® RNA Cleanup kit) and buffered by 2 mM sodium citrate pH 6.5.


Example 21: Unidirectional Sequencing Assay for Determination of Integration Site

This example describes performance of unidirectional sequencing to determine the sequence of an unknown integration site with an unbiased profile of genome wide specificity. Integration experiments are performed as in previous examples by using a Gene Writing system comprising a recombinase and a template DNA for insertion. The recombinase and insert DNA plasmids are transfected into 293T cells. Genomic DNA is extracted at 72 hours post transfection and subjected to unidirectional sequencing according to the following method. First, a next generation library is created by fragmentation of the genomic DNA, end repair, and adaptor ligation. Next, fragmented genomic DNA harboring template DNA integration events is amplified by two-step nested PCR using forward primers binding to template specific sequence and reverse primers binding to sequencing adaptors. PCR products are visualized on a capillary gel electrophoresis instrument, purified, and quantified by Qubit (ThermoFisher). Final libraries are sequenced on a Miseq using 300 bp paired end reads (Illumina). Data analysis is performed by detecting the DNA flanking the insertion and mapping that sequence back to the human genome sequence, e.g., hg38.


Example 22: Use of Dual AAV Vector for the Treatment of Cystic Fibrosis in CFTR Mouse Model

This example describes delivery of a Gene Writing system as a dual AAV vector system for the treatment of cystic fibrosis in a mouse model of disease. Cystic fibrosis is a lung disease that is caused by mutations in the CFTR gene, which can be treated by the insertion of the wild-type CFTR gene into the genome of lung cells, such as cells found in the respiratory bronchioles and columnar non-ciliated cells in the terminal bronchiole.


A Gene Writing polypeptide, e.g., comprising a sequence of Table 1 or Table 2, and a template DNA comprising a cognate recombinase recognition site, e.g., a sequence from Column 2 or 3 of Table 1, are packaged into AAV6 capsids with expression of the polypeptide driven by the CAG promoter, the combination of which has been shown to be effective for high level transduction and expression in murine respiratory epithelial cells according to the teachings of Halbert et al. Hum Gene Ther 18(4):344-354 (2007).


AAV preparations are co-delivered intranasally to CFTR gene knockout (Cftrtm1Unc) mice (The Jackson Labs) using a modified intranasal administration, as described previously (Santry et al. BMC Biotechnol 17:43 (2017)). Briefly, AAVs are packaged, purified, and concentrated comprising either a recombinase expression cassette or template DNA, comprising the CFTR gene under the control of a pol II promoter, e.g., CAG promoter, and a cognate recombinase recognition site. In some embodiments, the CFTR expression cassette is flanked by the recombinase recognition sites. Prepared AAVs are each delivered at a dose ranging from 1×1010-1×1012 vg/mouse using a modified intranasal administration to the CFTR knockout mouse. After one week, lung tissue is harvested and used for genomic extraction and tissue analysis. To measure integration efficiency, CFTR gene integration is quantified using ddPCR to determine the fraction of cells and target sites containing or lacking the insertion. To assay expression from successfully integrated CFTR, tissue is analyzed by immunohistochemistry to determine expression and pathology.


Example 23: Method of Treating Ornithine Transcarbamylase Deficiency Through the Introduction of Transiently Expressed Integrase

This example describes the treatment of ornithine transcarbamylase (OTC) deficiency by the delivery and expression of an mRNA encoding a Gene Writer polypeptide, e.g., a recombinase sequence from Table 1 or Table 2, along with the delivery of an AAV providing the template DNA for integration. OTC deficiency is a rare genetic disorder that results in an accumulation of ammonia due to not having efficient breakdown of nitrogen. The accumulation of ammonia leads to hyperammonemia that can be debilitating and in severe cases lethal. The AAV template comprises a wild-type copy of the human OTC gene under the control of a pol II promoter, e.g., ApoE.hAAT, and a cognate recombinase recognition site, e.g., a sequence from Column 2 or 3 or Table 1. In some embodiments, the OTC expression cassette is flanked by the recombinase recognition sites.


In this example, LNP formulation of recombinase mRNA follows the formulation of LNP-INT-01 (methods taught by Finn et al. Cell Reports 22:2227-2235 (2018), incorporated herein by reference) and template DNA is formulated in AAV2/8 (methods taught by Ginn et al. JHEP Reports (2019), incorporated herein by reference). Briefly, OTC deficiency is restored by treating neonatal Spfash mice (The Jackson Lab) by injecting LNP formulations (1-3 mg/kg) containing the recombinase mRNA and AAV (1×1010-1×1012 vg/mouse) containing the template DNA via the superficial temporal facial vein (Lampe et al. J Vis Exp 93:e52037 (2014)). The Spfash mouse has some residual mouse OTC activity which, in some embodiments, is silenced by the administration of an AAV that expresses an shRNA against mouse OTC as previously described (Cunningham et al. Mol Ther 19(5):854-859 (2011), the methods of which are incorporated herein by reference). OTC enzyme activity, ammonia levels, and orotic acid are measured as previously described (Cunningham et al. Mol Ther 19(5):854-859 (2011)). After 1 week, mouse livers are harvested and used for gDNA extraction and tissue analysis. The integration efficiency of hOTC is measured by ddPCR on extracted gDNA. Mouse liver tissue is analyzed by immunohistochemistry to confirm hOTC expression.


Example 24: Use of a Gene Writing to Integrate a Large Payload into Human Cells

This example describes the recombinase-mediated integration of a large payload into human cells in vitro.


In this example, the Gene Writer polypeptide component comprises an mRNA encoding a recombinase, e.g., a recombinase sequence of Table 1 or Table 2, and a template DNA comprising: a cognate recombinase recognition site, e.g., a sequence of Column 2 or 3 of Table 1; a GFP expression cassette, e.g., a CMV promoter operably linked to EGFP; and stuffer sequence to bring the total plasmid size to approximately 20 kb.


Briefly, HEK293T cells are co-electroporated with the recombinase mRNA and large template DNA. After three days, integration efficiency and specificity are measured. In order to measure efficiency of integration, droplet digital PCR (ddPCR) is performed on genomic DNA e.g., as described by Lin et al. Hum Gene Ther Methods 27(5):197-208 (2016), using primer-probe sets that amplify across the junction of integration, e.g., with one primer annealing to the template DNA and the other to an appropriate flanking region of the genome, such that only integration events are quantified. Data are normalized to an internal reference gene, e.g., RPP30, and efficiency is expressed as the average integration events per genome across the population of cells. To measure specificity, integration events in genomic DNA are assessed by unidirectional sequencing to determine genome coordinates, as described in Example 21.


Example 25: Use of a Gene Writing to Integrate a Bacterial Artificial Chromosome into Human Embryonic Stem Cells Ex Vivo

This example describes the recombinase-mediated integration of a bacterial artificial chromosome (BAC) into human embryonic stem cells (hESCs).


BAC vectors are capable of maintaining extremely large (>100 kb) DNA payloads, and thus can carry many genes or complex gene circuits that may be useful in cellular engineering. Though there has been demonstration of their integration into hESCs (Rostovskaya et al. Nucleic Acids Res 40(19):e150 (2012)), this was accomplished using transposons that lack sequence specificity in their integration patterns. This Example describes sequence-specific integration of large constructs.


In this example, a BAC engineered to carry the desired payload further comprises a recombinase recognition sequence, e.g., a sequence of Column 2 or 3 from Table 1, that enables recognition by the Gene Writer polypeptide, e.g., a recombinase, e.g., a recombinase with a sequence of Table 1 or Table 2. An approximately 150 kb BAC is introduced into hESCs by electroporation or lipofection as per the teachings of Rostovskaya et al. Nucleic Acids Res 40(19):e150 (2012). After three days, integration efficiency and specificity are measured. In order to measure efficiency of integration, droplet digital PCR (ddPCR) is performed on genomic DNA e.g., as described by Lin et al. Hum Gene Ther Methods 27(5):197-208 (2016), using primer-probe sets that amplify across the junction of integration, e.g., with one primer annealing to the template DNA and the other to an appropriate flanking region of the genome, such that only integration events are quantified. Data are normalized to an internal reference gene, e.g., RPP30, and efficiency is expressed as the average integration events per genome across the population of cells. To measure specificity, integration events in genomic DNA are assessed by unidirectional sequencing to determine genome coordinates, as described in Example 21.

Claims
  • 1. (canceled)
  • 2. A system for modifying DNA comprising: a) a recombinase polypeptide comprising an amino acid sequence selected from SEQ ID NO: 1241, SEQ ID NO: 1249, or comprising an amino acid sequence of Table 1 or 2, or an amino acid sequence having at least 70% identity thereto, or a nucleic acid encoding the recombinase polypeptide; andb) an insert DNA comprising: (i) a human first parapalindromic sequence and a human second parapalindromic sequence of Table 1 that bind to the recombinase polypeptide of (a).
  • 3. A eukaryotic cell comprising the recombinase polypeptide of claim 7, or a nucleic acid encoding the recombinase polypeptide.
  • 4. A eukaryotic cell comprising: (i) a DNA recognition sequence, said DNA recognition sequence comprising a first parapalindromic sequence and a second parapalindromic sequence,wherein each parapalindromic sequence is about 10-30, 12-27, or 10-15 nucleotides, and the first and second parapalindromic sequences together comprise the parapalindromic region of a nucleotide sequence of Table 1, or a nucleotide sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or having no more than 1, 2, 3, 4, 5, 6, 7, or 8 sequence alterations relative thereto,wherein said DNA recognition sequence further comprises a core sequence of about 5-10 nucleotides, and wherein the core sequence is situated between the first and second parapalindromic sequences; and(ii) a heterologous object sequence;wherein: (a) the DNA recognition sequence is located within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, or 100 nucleotides of the heterologous object sequence; and/or(b) the DNA recognition sequence and the heterologous objet sequence are extrachromosomal.
  • 5. A method of modifying the genome of a eukaryotic cell comprising contacting the cell with: a) a recombinase polypeptide comprising an amino acid sequence selected from SEQ ID NO: 1241, SEQ ID NO: 1249, or comprising an amino acid sequence of Table 1 or 2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or a nucleic acid encoding the recombinase polypeptide; andb) an insert DNA comprising: (i) a DNA recognition sequence that binds to the recombinase polypeptide of (a), said DNA recognition sequence comprising a first parapalindromic sequence and a second parapalindromic sequence, wherein each parapalindromic sequence is about 10-30, 12-27, or 10-15 nucleotides, and the first and second parapalindromic sequences together comprise the parapalindromic region of a nucleotide sequence of Table 1, or a nucleotide sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or having no more than 1, 2, 3, or 4 sequence alterations relative thereto,wherein said DNA recognition sequence further comprises a core sequence of about 5-10 nucleotides, and wherein the core sequence is situated between the first and second parapalindromic sequences, and(ii) a heterologous object sequence,thereby modifying the genome of the eukaryotic cell.
  • 6. A method of inserting a heterologous object sequence into the genome of a eukaryotic cell comprising contacting the cell with: a) a recombinase polypeptide comprising an amino acid sequence selected from Rec27 SEQ ID NO: 1241, SEQ ID NO: 1249, or comprising an amino acid sequence of Table 1 or 2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or a nucleic acid encoding the polypeptide; andb) an insert DNA comprising: (i) a DNA recognition sequence that binds to the recombinase polypeptide of (a), said DNA recognition sequence comprising a first parapalindromic sequence and a second parapalindromic sequence, wherein each parapalindromic sequence is about 10-30, 12-27, or 10-15 nucleotides, and the first and second parapalindromic sequences together comprise the parapalindromic region of a nucleotide sequence of Table 1, andwherein said DNA recognition sequence further comprises a core sequence of about 5-10 nucleotides, and wherein the core sequence is situated between the first and second parapalindromic sequences, and(ii) a heterologous object sequence,thereby inserting the heterologous object sequence into the genome of the eukaryotic cell.
  • 7. An isolated recombinase polypeptide comprising an amino acid sequence selected from SEQ ID NO: 1249, or comprising an amino acid sequence of Table 1 or 2 other than SEQ ID NO: 1241, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.
  • 8. An isolated nucleic acid encoding the recombinase polypeptide of claim 7.
  • 9. An isolated nucleic acid comprising: (i) a DNA recognition sequence, said DNA recognition sequence comprising a first parapalindromic sequence and a second parapalindromic sequence, wherein each parapalindromic sequence is about 10-30, 12-27, or 10-15 nucleotides, and the first and second parapalindromic sequences together comprise the parapalindromic region of a nucleotide sequence of Table 1, andsaid DNA recognition sequence further comprises a core sequence of about 5-10 nucleotides, wherein the core sequence is situated between the first and second parapalindromic sequences, and(ii) a heterologous object sequence.
  • 10. A method of making a recombinase polypeptide, the method comprising: a) providing a nucleic acid encoding a recombinase polypeptide according to claim 7, andb) introducing the nucleic acid into a eukaryotic cell under conditions that allow for production of the recombinase polypeptide,thereby making the recombinase polypeptide.
  • 11. A method of making an insert DNA that comprises a DNA recognition sequence and a heterologous sequence, comprising: a) providing a nucleic acid comprising: (i) a DNA recognition sequence that binds to a recombinase polypeptide according to claim 7, said DNA recognition sequence comprising a first parapalindromic sequence and a second parapalindromic sequence, wherein each parapalindromic sequence is about 10-30, 12-27, or 10-15 nucleotides, and the first and second parapalindromic sequences together comprise the parapalindromic region of a nucleotide sequence of Table 1, andsaid DNA recognition sequence further comprises a core sequence of about 5-10 nucleotides, wherein the core sequence is situated between the first and second parapalindromic sequences, and(ii) a heterologous object sequence, andb) introducing the nucleic acid into a eukaryotic cell under conditions that allow for replication of the nucleic acid,
  • 12. An isolated eukaryotic cell comprising a heterologous object sequence stably integrated into its genome at a genomic location listed in column 2 or 3 of Table 1.
  • 13. The system of claim 2, wherein: the insert DNA is a double-stranded DNA; and/orthe insert DNA comprises: a DNA recognition sequence that binds to the recombinase polypeptide of (a), said DNA recognition sequence comprising the first parapalindromic sequence and the second parapalindromic sequence, wherein each parapalindromic sequence is about 10-30, 12-27, or 10-15 nucleotides, and the first and second parapalindromic sequences together comprise the parapalindromic region of a nucleotide sequence of Table 1, or a nucleotide sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, or having no more than 1, 2, 3, 4, 5, 6, 7, 8 sequence alterations relative thereto, andsaid DNA recognition sequence further comprising a core sequence of about 5-10 nucleotides, wherein the core sequence is situated between the first and second parapalindromic sequences.
  • 14. The system of claim 2, wherein the insert DNA comprises a heterologous object sequence.
  • 15. The system of claim 2, wherein the recombinase polypeptide is selected from a recombinase listed in Table 16, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.
  • 16. The system of claim 2, wherein the recombinase polypeptide of (a) and the insert DNA of (b) are in separate containers or admixed.
  • 17. The system of claim 2, wherein the recombinase polypeptide comprises at least one insertion, deletion, or substitution relative to the amino acid sequence of Table 1 or 2.
  • 18. The system of claim 2, wherein the recombinase polypeptide comprises a truncation at the N-terminus, C-terminus, or both of the N- and C-termini relative to the amino acid sequence of Table 1 or 2.
  • 19. The system of claim 2, wherein the recombinase polypeptide comprises a nuclear localization sequence.
  • 20. The system of claim 14, which results in an insert frequency of the heterologous object sequence into the genome of at least about 0.1%.
RELATED APPLICATIONS

This application is a continuation of International Application PCT/US2020/042511, filed Jul. 17, 2020, which claims priority to U.S. Ser. No. 62/876,165 filed Jul. 19, 2019 and U.S. Ser. No. 63/039,328 filed Jun. 15, 2020, the entire contents of each of which is incorporated herein by reference.

Provisional Applications (2)
Number Date Country
63039328 Jun 2020 US
62876165 Jul 2019 US
Continuations (1)
Number Date Country
Parent PCT/US2020/042511 Jul 2020 US
Child 17577942 US