The present invention is directed to a unit for processing numeric and logic operations.
German Published Patent Appln. No. DE 44 16 881 A1 describes a method of processing data, where homogeneously arranged cells which can be configured freely in function and interconnection are used.
Independently of the above-mentioned publication, FPGA (field programmable gate array) units are being used to an increasing extent to assemble arithmetic and logic units and data processing systems from a plurality of logic cells.
Another known method is to assemble data processing systems from fixed program-controlled arithmetic and logic units with largely fixed interconnections, referred to as systolic processors.
Units according to the method described in DE 44 16 881 A1 (referred to below as VPUs) are very complicated to configure owing to the large number of logic cells. To control one logic cell, several control bits must be specified in a static memory (SRAM). There is one SRAM address for each logic cell. The number of SRAM cells to be configured is very large, which requires a great deal of space and time for configuring and reconfiguring such a unit. The great amount of space required is especially problematical because the processing power of a VPU increases with an increase in the number of cells. However, the area of a unit that can be used is limited by chip manufacturing technologies. The price of a chip increases approximately proportionally to the square of the chip area. It is impossible to broadcast data to multiple receivers simultaneously because of the repeated next-neighbor interconnection architecture. If VPUs are to be reconfigured on site, it is absolutely essential to achieve short reconfiguration times. However, the large volume of configuration data required to reconfigure a chip stands in the way of this. There is no possibility of separating cells from the power supply or having them cycle more slowly to minimize the power loss.
In the field of processing numeric and logic operations, FPGAs comprise multiplexers or look-up table (LUT) architectures. SRAM cells are used for implementation. Because of the plurality of small SRAM cells, they are very complicated to configure. Large volumes of data are required, necessitating a comparably large amount of time for configuration and reconfiguration. SRAM cells take up a great deal of space. However, the usable area of a unit is limited by the chip manufacturing technologies. Here again, the price increases approximately proportionally to the square of the chip area. SRAM-based technology is slower than directly integrated logic due to the SRAM access time. Although many FPGAs are based on bus architectures, there is no possibility of broadcasting for rapid and effective transmission of data to multiple receivers simultaneously. If FPGAs are to be reconfigured on site, it is absolutely essential to achieve short configuration times. However, the large volume of configuration data required stands in the way. FPGAs do not offer any support for reasonable on-site reconfiguration. The programmer must ensure that the process takes place properly without interfering effects on data and surrounding logic. There is no intelligent logic to minimize power loss. There are no special function units to permit feedback on the internal operating states to the logic controlling the FPGA.
Reconfiguration is completely eliminated with systolic processors, but these processors are not flexible because of their rigid internal architecture. Commands are decoded anew in each cycle. As already described in the previous sections, there are no functions which include broadcasting or efficient minimization of power loss.
The present invention comprises a cascadable ALU which is configurable in function and interconnection. No decoding of commands is needed during execution of the algorithm. The present invention can be reconfigured on site without any effect on surrounding ALUs, processing units, or data streams. The volume of configuration data is very small, which has positive effects on the space required and the configuration speed. Broadcasting is supported through the internal bus systems in order to distribute large volumes of data rapidly and efficiently. The ALU is equipped with a power-saving mode to shut down power consumption completely. There is also a clock rate divider which makes it possible to operate the ALU at a slower clock rate. Special mechanisms are available for feedback on the internal states to the external controllers.
The present invention describes the architecture of a cell in the sense of German Patent DE 44 16 881 A1 or known FPGA cells. An expanded arithmetic and logic unit (EALU) with special extra functions is integrated into this cell to perform the data processing. The EALU is configured by a function register, which greatly reduces the volume of data required for configuration. The cell can be cascaded freely over a bus system, the EALU being decoupled from the bus system over input and output registers. The output registers are connected to the input of the EALU to permit serial operations. A bus control unit is responsible for the connection to the bus, which it connects according to the bus register. The unit is designed so that distribution of data to multiple receivers (broadcasting) is possible. A synchronization circuit controls the data exchange between multiple cells over the bus system. The EALU, the synchronization circuit, the bus control unit and registers are designed so that a cell can be reconfigured on site independently of the cells surrounding it. A power-saving mode which shuts down the cell can be configured through the function register; clock rate dividers which reduce the working frequency can also be set.
The present invention relates to the design of a cell (PAE=processing array element) in the sense of DE 44 16 881 A1 or known FPGA cells, where the PAEs can be cascaded to form an array (processing array=PA). One PAE is composed of a plurality of function units.
EALU: The ALU consists of an expanded arithmetic and logic unit EALU permanently implemented in the logic unit. An EALU is an ordinary known arithmetic and logic unit (ALU) which has been expanded by special functions such as counters. This EALU is capable of performing a plurality of arithmetic and logic operations, which do not have to be specified here exactly, because it is possible to refer to known ALUs. The EALU has direct access to its own results (described below as the operand) which are returned. Thus, counters or serial operations such as serial multiplication, division, or series expansion are possible. In addition to its result, the EALU delivers the signals CarryOut-AlessB and AequalB-0detect. CarryOut-AlessB specifies either the carry-over in arithmetic operations, or, in comparisons by means of subtraction of two values, it specifies the carry-over, i.e., CarryOut-AlessB, that A<B or B<A, depending on the operand negated. The signal is the usual carry-over generated by a full adder. AequalB-0detect specifies that the result in the result register R-REGsft is zero. The signal is generated by a NOR element from the result. The signals are used for simple analysis of states and can be returned to the PLU. Additional status signals can be implemented, depending on the application.
The function of the EALU is configured in a function register (F-PLUREG).
O-REG: The input operands of the EALU are stored in two independent operand registers (O-REG). They are thus available independently of the status of the unit supplying the data (data transmitter). This is necessary to permit decoupling from the bus and for the PAs to be freely reconfigurable. One or both O-REGs have a shift function. If required, the shift function of each O-REG may be triggered by the EALU on an individual basis. The shift function makes it possible to perform serial operations such as serial multiplication or division in the EALU. O-REGsft denotes O-REGs with a shift function.
O-REGsft: The result of the EALU is stored in a result register (R-REGsft). This provides time independence of the unit or units receiving the result (data receivers). The R-REGsft has a shift function which is triggered by the EALU, thus permitting serial operations.
R2O MUX: The result data available in R-REGsft is introduced as an operand through a multiplexer (R2O-MUX) between one of the O-REGs and the EALU to guarantee feedback of results for serial operations, counters, and similar functions. The multiplexer is set by the F-PLUREG.
Clock cycles: It is appropriate but not absolutely necessary to trigger the O-REG sft at a clock pulse edge and the R-REGsft at the subsequent negated clock pulse edge. Thus, the EALU has a half clock pulse available to carry out its function; the second half clock pulse is available for signal propagation times and multiplexers. Thus it is possible to perform a complete operation in each clock pulse.
State Machine, SM unit: An SM UNIT is available for sequence control in the EALU. SM unit controls the O-REG and R-REGsft and their shift function as well as controlling R2O-MUX. Consequently, serial operations, along with shift and counting functions, can be performed readily by the EALU. The state machine may be implemented according to any suitable conventional method.
Sync UNIT: A synchronization unit (sync UNIT) is provided for synchronization of one PAE in an array (PA) of PAEs. The sync UNIT analyzes a series of input signals, which execute a handshake protocol.
rACK(h/l): The data receiver acknowledges the data received the term, rACKh being the acknowledgment of the high result byte (bits 8 through 15), and the term rACKl being the acknowledgment of the low result byte (bits 0 through 7). The two acknowledgments are linked with an AND (rACKh AND rACKl) and yield the signal rACK. rACK is not true while one or both data receivers are busy processing their data and becomes true when the processing of the data of both data receivers is concluded, and the result is stored in the R-REGsft of the respective data receiver. The rACK(h/l) signals are often considered below in their AND-linked form as rACK (=rACKh & rACKl).
oRDY(1/2): The data transmitter signals its readiness to send new data. oRDY is not true while the data transmitter is busy processing its data, and it becomes true when the result of the data transmitter, which is the operand of the PAE, is available. oRDY1 is the enable signal of the data transmitter of the first operand, and oRDY2 is that of the second. The two are linked with an AND (oRDY1 AND oRDY2) and yield the oRDY signal. oRDY is true only when both data transmitters are ready to send data. The oRDY(1/2) signals are often considered below in their AND-linked form as oRDY (=oRDY1 & oRDY2).
Output signals generated from the input signals and the status of the sync UNIT which, together with the sequence control of the EALU, represent the overall status of the PAE; those output signals are in turn regarded as input signals by the sync UNITs of the data transmitters and receivers. Status information and the F-PLUREG register are used for sequence control of the EALU.
rRDY, rRDY indicates that the PAE has finished its data processing and a result is available in R-REGsft. rRDY is transmitted as rRDYh and rRDYl to both data receivers. However, it is the same signal in each case.
oACK: The signal oACK indicates that the PAE has processed its operands and can receive new data in O-REG(sft). oACK is transmitted as oACK1 and oACK2 to both data transmitters. However, it is the same signal in each case.
The RDY signals retain their level up to the input of the acknowledgment through ACK. This is necessary when the data receiver is reconfigured while the data are being made available. If RDY is applied until acknowledged through ACK, the data receiver will recognize after the reconfiguration that data is available and will accept it.
The linking of the signals over multiple PAEs is as follows:
Data transmitterPAEData receiver
rRDY→oRDY rRDY→oRDY
rACK←oACK rACK←oACK
This means that the output signal rRDY of the data transmitter, for example, represents the input signal oRDY1 or oRDY2 of PAE. The output signal rRDY of PAE is the input signal oRDY of the data receiver.
The sync UNIT has the following types of sequences:
The sync UNIT makes available a special mode which enables the clock signal only when operands are available. This mode is appropriate especially when the data transmitters do not supply the data in each clock pulse of the processor but instead only in every nth clock pulse. Then the clock cycle corresponds to one period of the normal clock cycle and is enabled through rACK or oRDY(1/2). The enable is referred to as OneShot. This mode is called the OneShot MODE. The clock pulse is AND-linked with one of the enable signals through an AND gate. The mode and signal selection take place through F-PLUREG. The enable signal generated through rACK or oRDY(1/2) can be lengthened by the SM UNIT. This is necessary so that operations which need more than one cycle can be carried out in one-shot MODE. To make this possible, a corresponding signal line of the SM UNIT is OR-linked to the enable signal.
If the registry entry STOP is set in F-PLUREG, the sync UNIT runs the current function to the end. Thereafter, no more operands are accepted or acknowledged. As soon as rACK indicates that the result has been accepted by the data receiver, the readiness of the PLU for reconfiguration is indicated by the ReConfig signal. The signal is generated when rACK stores the stop of F-PLUREG in a D flip-flop. ReConfig can be polled by read access of the PLU to F-PLUREG at the stop bit position.
Likewise, the sync UNIT can be used to generate and analyze error states or other status signals.
To apply the operands and the result to the external bus systems, there is a bus multiplex unit (BM UNIT). It consists of two multiplexers and two gates. The two multiplexers are for the operands (O-MUX), and the two gates for the result (R-GATE), and One switch is for the higher-order result, and the other is for the low-order result. The multiplexers and switches are controlled over the multiplexer register (M-PLUREG). The sync UNIT signals are controlled over the switches to the bus. The correlation of the multiplexers/switches and signals is as follows:
O-MUX1:oRDY1, oACK
O-MUX2:oRDY2, oACK
RH-GATE:rRDY, RACKh
RL-GATE:rRDY, rACKl
The R-GATE can be brought by M-PLUREG to a state in which it does not drive a bus system.
The table gives a description of the signals and their respective interface architecture:
It is possible to operate several data receivers from one data transmitter (broadcasting). To do so, several data receivers are connected to the same bus. To guarantee acknowledgment of the data, the driver stage of the acknowledgment line oACK is designed as an open collector driver. The bus operates as a wired AND, i.e., only when all data receivers have acknowledged the data does the H level (logic 0 level, depending on the technology used) required for the acknowledgment occur. This is accomplished by the fact that this data receiver which does NOT acknowledge pulls the bus to an L level over an open collector transistor. Data receivers which acknowledge the data do not trigger the open collector transistor and thus add no load to the bus. When all the data receivers have acknowledged the data, there is no more load on the bus and it assumes an H level via a pull-up resistor.
State-back UNIT: The PAE is capable of supplying feedback about its operating state to its primary logic unit (program load unit), hereinafter called PLU (see DE 44 16 881 A1). The primary logic unit configures the PA and requires information about the status of the individual PAEs in order to be able to perform appropriate reconfigurations, which is done through the StateBack UNIT. This transmits either the lower 3-bit of the result from the R-REGsft—to deliver calculated values to the PLU—or the CarryOut-AlessB and AequalB-0detect signals to a 3-bit status bus, depending on the entry in the F-PLUREG. To allow signals to be impressed from several PAEs, a simple wired-OR method over open collector drivers is used. In order for the reconfiguration of the PAE to begin only when the receiver has acknowledged the data, a latch unit can be inserted between the signals and the open collector drivers to enable the signals only after receipt of rACK. The status bus is monitored by the PLU, which reacts by its program flow and reconfiguration to the status supplied by the bus.
Power Unit: The PAE has a power-saving mode (sleep MODE) which, like the function of the EALU, is set in F-PLUREG. There is a bit for this which, when set, starts the sleep MODE. To do so, either the clock line of the PAE is set at a constant logic 0 or 1, or the voltage of the PAE is turned off via a transistor. F-PLUREG is always energized within the PAE and cannot be switched off. Unused areas (gates) of the PAE for the function executed are switched off by analysis of the F-PLUREG. This is done through a transistor which isolates those areas from the power supply. To prevent unwanted interference, the outputs of the areas are defined over pull-up/pull-down resistors.
In addition, the power save MODE can also be used within the one-shot MODE, which is controlled by the sync UNIT. All parts of the PAE, except the F-PLUREG, M-PLUREG, and sync UNIT are isolated from the power supply. Only when the sync UNIT senses a one-shot mode are all the required PAE parts connected over the power UNIT. The sync UNIT delays the clock signal until all the newly connected parts are capable of functioning.
Registers: The F-PLUREG and M-PLUREG registers are connected to the PLU bus. The addresses of the data packages sent by the PLU are decoded in a comparator. If the address of the PAE is recognized, the data is stored in the registers. The PLU bus has the following architecture:
AX7-0: X address of the X/Y matrix
AY7-0: Y address of the X/Y matrix
RS: Register select; logic 0 selects F-PLUREG, logic 1 selects M-PLUREG
AEN: Address enable; the bus contains a final address. The addresses must be decoded as long as AEN is logic 0. AEN is logic 0 during the entire bus access, i.e., also during the data transmission.
D23-00: Data
DEN: Data enable; the bus contains final data. The data must be transferred to the register at the rising edge of the DEN signal.
OEN: Output enable; the PLU reads valid data out of the PLUREGs.
Architecture of F-PLUREG:
1. The architecture of the register in write access:
The functions of the individual bits:
The reset state is 0 in all bits.
2. Register architecture in read access:
The functions of the individual bits:
The reset state is 0 in all bits.
Architecture of M-PLUREG:
The values M(n+5)−.n=000000, nε{0,6,12,18} mean that the multiplexers/switches are open and have no bus contact. It may be appropriate to block M-PLUREG via the ReConfig signal, i.e., as soon as ReConfig is activated, PAE disconnects from all bus systems. The reset status is 0 in all bits.
The function of PAE can be configured and reconfigured more easily and quickly than in known technologies, in particular the FPGA technology. The interconnection of the ALU is specified in M-PLUREG, whereas in the traditional technologies a plurality of individual unrelated configuration bits must be occupied. The transparent architecture of the registers simplifies (re)configuration.
Due to the direct design as an ALU, the PAE requires less space than in traditional technologies where ALUs have been implemented by a plurality of logic cells. At the same time, the run delays are lower and the attainable clock frequencies are higher accordingly.
A broadcasting function is guaranteed due to the design of the BM UNIT, and acknowledgment is automatic. A data transfer that is largely independent in time is guaranteed due to the input and output registers (O-REG, R-REG).
Configuration and reconfiguration are greatly simplified due to the decoupling of each PAE from the overall system through the O-REG and R-REG registers since the individual PAEs are largely independent of one another. Feedback to the PLU as well as the interaction of STOP and ReConfig permit efficient control of (re)configuration.
Power-saving functions have been implemented which lead to a reduction in power consumption—automatically to some extent (one-shot MODE).
The PAE architecture can be implemented in the FPGAs to increase their efficiency. Arithmetic operations can thus be implemented much more efficiently.
a shows a block diagram of O-REG.
a shows a block diagram of O-REGsft.
a shows the block architecture of R-REGsft. Upstream from the register (0601) there is a multiplexer (0602) which either switches the input data to the register (0601) or directs the shifted output data of the register (0601) to its input. The clock pulse generated by SYNC-SM is sent to the register, shifted by one half clock pulse.
a shows the architecture of multiplexer R2O-MUX which sends the operands or the result to EALU as a function of mode.
A gate may be composed of transfer gates in a design equivalent to that of the multiplexer. However, the direction of data exchange is exactly the opposite.
In two cases, the system jumps to the YES branch (0904):
Otherwise, the system jumps to the NO branch (0906) and no operation is carried out until the state machine returns after RESULT (0902). In the YES branch (0904), the result is stored in output register R-REGsft (0914). It is then determined whether this is the last cycle of a multiple-cycle operation (0915) (cf. 0909) or a single-cycle operation; if yes, the presence of the result is signaled by rRDY (0916). The state machine returns after DATA (0901). The recognition of whether it is the last cycle of an operation—or a single-cycle operation—can be queried of the SM UNIT via the FINISH signal (0916). This is active when the last—or single—cycle takes place. The status of the sync UNIT is signaled to the SM UNIT via RUN (0917). RUN is active in the event an operation is taking place; otherwise it is inactive. The mechanism of the STOP entry in F-PLUREG and the ReConfig generated from this are not shown in
1. If the corresponding bus is not driven by the BM UNIT, L is at the base of the transistors (1104). Therefore, they place no load on the bus.
2. If the corresponding bus is driven by the BM UNIT and the signal is not acknowledged, the base of the transistors (1104) is at H. This means that the bus is pulled to L. If a result is distributed to multiple data receivers by broadcasting, then all PAEs that have not yet acknowledged the result data and need waiting cycles pull the bus to L.
3. If the corresponding bus is driven by the BM UNIT and the signal is acknowledged, the base of the transistors (1104) is at L. This means that the bus is not placed under load. If a result is distributed to multiple data receivers by broadcasting, all PAEs which have acknowledged the result data and do not need waiting cycles place no load on the bus.
In its initial state, the bus assumes the H level, i.e., acknowledgment, so non-acknowledgment according to case 2 overrides the acknowledgment by pulling the bus to L. The bus goes to the H level, i.e., the acknowledgment state, only when all PAEs acknowledge the result data. Thus, a wired-AND circuit is implemented. The sync state machine supplies the RUN signal (1107) to the SM UNIT (1106), which is running on the basis of RUN. If the SM UNIT is in the last—or only processing cycle—it signals this to the sync state machine via FINISH (1108). FINISH is analyzed in the analysis units to recognize the last cycle (0907, 0915). The SM UNIT runs in sync with the PAE-internal clock CLK.
When switching on the power supply, there is a wake-up time of fixed duration until the cell is capable of functioning. To nevertheless function properly, the signals must be delayed accordingly. Therefore, CCLK is sent over a delay line (1607). A multiplexer (1608) selects according to the power-save signal from F-PLUREG whether the normal or delayed clock pulse is sent to the cell. Only the uninverted clock pulse is delayed by the Δpower-on period; the inverted clock pulse is not delayed. Therefore, the result is available in synchronization with the remaining functions of the unit. Thus, the usable processing time is reduced to Δprocess. The maximum clock frequency of the unit thus depends on Σ=Δpower-on+Δprocess (see “one-shot operation with power save” in the timing diagram).
Definition of Terms
AequalB-0detect: Signal generated by the EALU, indicating in arithmetic operations that the result is equal to zero. In comparisons, it indicates that operand A is equal to operand B.
ALU: Arithmetic and logic unit. Basic unit for processing data. The unit can perform arithmetic operations such as addition, subtraction, or, under some circumstances, multiplication, division, series expansions, etc. The unit may be designed as an integer unit or as a floating point unit. It may also perform logic operations such as AND, OR, and comparisons.
BM UNIT: Unit for connecting the data to the bus systems outside the PAE. The connection takes place via multiplexers for the data inputs and gates for the data outputs. oACK lines are implemented as open collector drivers. The BM UNIT is controlled by M-PLUREG.
Broadcast: Transmitting data from a PAE to multiple data receivers.
CarryOut-AlessB: Signal generated by the EALU which indicates a carry-over in arithmetic operations. In comparisons, it indicates that operand A is smaller than operand B.
Data receiver: The unit(s) which processes further the results of the PAE.
Data transmitter: The unit(s) which makes available the data for the PAE as operands.
D flip-flop: Storage element that stores a signal at the rising edge of a clock pulse.
EALU: Expanded arithmetic and logic unit. An ALU expanded to add special functions that are needed or appropriate for the operation of a data processing system according to DE 44 16 881 A1. These are counters in particular.
FPGA: Known field-programmable gate array.
F-PLUREG: Register in which the function of the PAE is set. The one-shot and sleep modes are also set here. The PLU writes into the register.
Gate: Group of transistors that perform a basic logic function. Basic functions include, for example, NAND, NOR. Transmission gates.
H level: Logic 1 level, depending on the technology used.
Handshake: Signal protocol in which one signal A indicates a state and another signal B confirms that it accepts signal A and responds (has responded) to it.
Configuring: Determining the function and interconnecting a logic unit, a (FPGA) cell or a PAE (see reconfiguring).
Latch: Storage element which normally relays a signal transparently during the H level and stores it during the L level. Latches where the function of the levels is exactly reversed are occasionally used in PAEs, in which case an inverter is connected upstream from the clock of a conventional latch.
L level: Logic 0 level, depending on the technology used.
M-PLUREG: Register in which the interconnection of the PAE is set. The PLU writes into the register.
Next-neighbor interconnection: Interconnection of bus systems with the adjacent neighbors abutting at the edges.
O-MUX: Multiplexer within the BM UNIT which selects the bus system of the operands.
One shot: Mode in which a PAE operates at a lower clock rate than the processor clock rate. The clock rate is synchronous with the processor clock rate and corresponds to one period. There is no phase shift. The clock pulse is enabled by one of the signals oRDY(1/2) or rRDY. This mode serves to save power when the data transmitters or receivers are transmitting or receiving data at a slower rate than the processor clock rate.
Open collector: Circuitry in which a bus signal pulled to the H level via a pull-up is applied to the collector of a transistor. The emitter of the transistor is grounded. If the transistor switches, the bus signal is pulled to the L level. The advantage of this method is that a plurality of such transistors can control the bus without electrical collision. The signals are OR linked, resulting in wired-OR.
O-REG: Operand register for storing the operands of the EALU. It makes it possible for the PAE to be independent of the data transmitters in time and function. This simplifies data transfer because it can be asynchronous or packet-oriented. At the same time, the possibility of reconfiguring the data transmitters independently of the PAEs or reconfiguring the PAEs independently of the data transmitters is created.
O-REGsft: O-REG with a shift register controlled by the SM UNIT.
PA: Processing array: array of PAEs.
PAE: Processing array element: EALU with O-REG, R-REG, R2O-MUX, F-PLUREG, M-PLUREG, BM UNIT, SM UNIT, sync UNIT, state-back UNIT and power UNIT.
PLU: Unit for configuring and reconfiguring the PAW. Embodied by a microcontroller adapted specifically to its task.
Power-save MODE: Power-saving mode within the one-shot MODE. None of the parts of the PAE except the F-PLUREG, M-PLUREG and sync unit are supplied with voltage when no operation is being carried out.
Power Unit: Unit which regulates the power-saving functions.
Pull-down: Resistor which pulls a bus line to an L level.
Pull-up: Resistor which pulls a bus line to an H level.
R GATE: Switch within the BM UNIT which switches the result to the corresponding bus system. Some signals are switched over open collector drivers. The R GATE works as a bus driver and can enter a bus-neutral mode.
R2O-MUX: Multiplexer for inserting the result in an R-REGsft into the data path between O-REG and EALU.
R-REGsft: Result register for storing the result of the EALU. It makes it possible for the PAE to be independent, in time and function, of the data receivers. This simplifies data transfer because it can be asynchronous or packet-oriented. At the same time, this creates the possibility of reconfiguring the data receivers independently of the PAE or reconfiguring the PAE independently of the data receivers. The register is provided with a shift function which is controlled by the SM UNIT.
Serial operations: Operations performed by serial processing of a data word or an algorithm. Serial multiplication, serial division, series expansion.
Sleep MODE: Power-saving mode in which the PAE, except for F-PLUREG, carries no voltage.
SM UNIT: State machine UNIT. State machine which controls the EALU.
State-back UNIT: Unit which controls the feedback of the status signals to the PLU. Consists of a multiplexer and an open collector bus driver stage.
Sync UNIT: Unit responsible for the synchronization of the PAE with the data transmitters and receivers, which also monitors the reconfiguration of PAEs. At the same time, it assumes the one-shot functions.
Gate: Switch that forwards or blocks a signal. Simple comparison: relay.
Reconfiguring: New configuration of any number of PAEs while any remaining PAEs continue with the same function (see configuring).
State machine: Logic which can assume various states. The transitions between the states depend on various input parameters. These are known machines that are used to control complex functions.
6. Conventions
6.1. Naming Conventions
Assembly group: UNIT
Operating mode: MODE
Multiplexer: MUX
Negated signal: not
Visible register for PLU: PLUREG
Internal register: REG
Shift registers: sft
6.2 Function Convention
Shift registers: sft
AND function: &
OR function: #
NOT function: !
GATE function: G
Number | Date | Country | Kind |
---|---|---|---|
196 51 075 | Dec 1996 | DE | national |
This application is a continuation of U.S. patent application Ser. No. 08/946,810, filed Oct. 8, 1997 now U.S. Pat. No. 6,425,068.
Number | Name | Date | Kind |
---|---|---|---|
2067477 | Cooper | Jan 1937 | A |
3242998 | Gubbins | Mar 1966 | A |
3681578 | Stevens | Aug 1972 | A |
3757608 | Willner | Sep 1973 | A |
3855577 | Vandierendonck | Dec 1974 | A |
4233667 | Devine et al. | Nov 1980 | A |
4498134 | Hansen et al. | Feb 1985 | A |
4498172 | Bhavsar | Feb 1985 | A |
4566102 | Hefner | Jan 1986 | A |
4591979 | Iwashita | May 1986 | A |
4663706 | James et al. | May 1987 | A |
4682284 | Schrofer | Jul 1987 | A |
4706216 | Carter | Nov 1987 | A |
4720778 | Hall et al. | Jan 1988 | A |
4720780 | Dolecek | Jan 1988 | A |
4739474 | Holsztynski et al. | Apr 1988 | A |
4761755 | Ardini et al. | Aug 1988 | A |
4811214 | Nosenchuck et al. | Mar 1989 | A |
4852048 | Morton | Jul 1989 | A |
4860201 | Miranker et al. | Aug 1989 | A |
4870302 | Freeman | Sep 1989 | A |
4891810 | de Corlieu et al. | Jan 1990 | A |
4901268 | Judd | Feb 1990 | A |
4910665 | Mattheyses et al. | Mar 1990 | A |
4967340 | Dawes | Oct 1990 | A |
5014193 | Garner et al. | May 1991 | A |
5015884 | Agrawal et al. | May 1991 | A |
5021947 | Campbell et al. | Jun 1991 | A |
5023775 | Poret | Jun 1991 | A |
5043978 | Nagler et al. | Aug 1991 | A |
5047924 | Matsubara et al. | Sep 1991 | A |
5065308 | Evans | Nov 1991 | A |
5081375 | Pickett et al. | Jan 1992 | A |
5109503 | Cruickshank et al. | Apr 1992 | A |
5113498 | Evan et al. | May 1992 | A |
5115510 | Okamoto et al. | May 1992 | A |
5123109 | Hillis | Jun 1992 | A |
5125801 | Nabity et al. | Jun 1992 | A |
5128559 | Steele | Jul 1992 | A |
5142469 | Weisenborn | Aug 1992 | A |
5144166 | Camarota et al. | Sep 1992 | A |
5193202 | Lee et al. | Mar 1993 | A |
5203005 | Horst | Apr 1993 | A |
5204935 | Mihara et al. | Apr 1993 | A |
5208491 | Ebeling et al. | May 1993 | A |
5226122 | Thayer et al. | Jul 1993 | A |
RE34363 | Freeman | Aug 1993 | E |
5233539 | Agrawal et al. | Aug 1993 | A |
6127908 | Bozler et al. | Aug 1993 | A |
5247689 | Ewert | Sep 1993 | A |
5274593 | Proebsting | Dec 1993 | A |
5287472 | Horst | Feb 1994 | A |
5294119 | Vincent et al. | Mar 1994 | A |
5301284 | Estes et al. | Apr 1994 | A |
5301344 | Kolchinsky | Apr 1994 | A |
5303172 | Magar et al. | Apr 1994 | A |
5311079 | Ditlow et al. | May 1994 | A |
5336950 | Popli et al. | Aug 1994 | A |
5347639 | Rechtschaffen et al. | Sep 1994 | A |
5349193 | Mott et al. | Sep 1994 | A |
5353432 | Richek et al. | Oct 1994 | A |
5361373 | Gilson | Nov 1994 | A |
5379444 | Mumme | Jan 1995 | A |
5392437 | Matter et al. | Feb 1995 | A |
5410723 | Schmidt et al. | Apr 1995 | A |
5418952 | Morley et al. | May 1995 | A |
5421019 | Holsztynski et al. | May 1995 | A |
5422823 | Agrawal et al. | Jun 1995 | A |
5425036 | Liu et al. | Jun 1995 | A |
5426378 | Ong | Jun 1995 | A |
5428526 | Flood et al. | Jun 1995 | A |
5430687 | Hung et al. | Jul 1995 | A |
5440245 | Galbraith et al. | Aug 1995 | A |
5440538 | Olsen et al. | Aug 1995 | A |
5442790 | Nosenchuck | Aug 1995 | A |
5444394 | Watson et al. | Aug 1995 | A |
5448186 | Kawata | Sep 1995 | A |
5455525 | Ho et al. | Oct 1995 | A |
5457644 | McCollum | Oct 1995 | A |
5465375 | Thepaut et al. | Nov 1995 | A |
5473266 | Ananin et al. | Dec 1995 | A |
5473267 | Stansfield | Dec 1995 | A |
5475583 | Bock et al. | Dec 1995 | A |
5475803 | Stearns et al. | Dec 1995 | A |
5475856 | Kogge | Dec 1995 | A |
5483620 | Pechanek et al. | Jan 1996 | A |
5485103 | Pedersen et al. | Jan 1996 | A |
5485104 | Pedersen et al. | Jan 1996 | A |
5489857 | Agrawal et al. | Feb 1996 | A |
5491353 | Kean | Feb 1996 | A |
5493239 | Zlotnick | Feb 1996 | A |
5497498 | Taylor | Mar 1996 | A |
5506998 | Kato et al. | Apr 1996 | A |
5510730 | El Gamal et al. | Apr 1996 | A |
5511173 | Yamaura et al. | Apr 1996 | A |
5513366 | Agarwal et al. | Apr 1996 | A |
5521837 | Frankle et al. | May 1996 | A |
5522083 | Gove et al. | May 1996 | A |
5530873 | Takano | Jun 1996 | A |
5530946 | Bouvier et al. | Jun 1996 | A |
5532693 | Winters et al. | Jul 1996 | A |
5532957 | Malhi | Jul 1996 | A |
5535406 | Kolchinsky | Jul 1996 | A |
5537057 | Leong et al. | Jul 1996 | A |
5537601 | Kimura et al. | Jul 1996 | A |
5541530 | Cliff et al. | Jul 1996 | A |
5544336 | Kato et al. | Aug 1996 | A |
5548773 | Kemney et al. | Aug 1996 | A |
5555434 | Carlstedt | Sep 1996 | A |
5559450 | Ngai et al. | Sep 1996 | A |
5561738 | Kinerk et al. | Oct 1996 | A |
5570040 | Lytle et al. | Oct 1996 | A |
5574930 | Halverson, Jr. et al. | Nov 1996 | A |
5583450 | Trimberger et al. | Dec 1996 | A |
5586044 | Agrawal et al. | Dec 1996 | A |
5587921 | Agrawal et al. | Dec 1996 | A |
5588152 | Dapp et al. | Dec 1996 | A |
5590345 | Barker et al. | Dec 1996 | A |
5590348 | Barker et al. | Dec 1996 | A |
5596742 | Agarwal et al. | Jan 1997 | A |
5600265 | El Gamal et al. | Feb 1997 | A |
5600845 | Gilson | Feb 1997 | A |
5611049 | Pitts | Mar 1997 | A |
5617547 | Feeney et al. | Apr 1997 | A |
5625806 | Kromer | Apr 1997 | A |
5634131 | Matter et al. | May 1997 | A |
5649176 | Selvidge et al. | Jul 1997 | A |
5649179 | Steenstra et al. | Jul 1997 | A |
5652894 | Hu et al. | Jul 1997 | A |
5655069 | Ogawara et al. | Aug 1997 | A |
5655124 | Lin | Aug 1997 | A |
5657330 | Matsumoto | Aug 1997 | A |
5659797 | Zandveld et al. | Aug 1997 | A |
5675743 | Mavity | Oct 1997 | A |
5680583 | Kuijsten | Oct 1997 | A |
5713037 | Wilkinson et al. | Jan 1998 | A |
5717943 | Barker et al. | Feb 1998 | A |
5732209 | Vigil et al. | Mar 1998 | A |
5734921 | Dapp et al. | Mar 1998 | A |
5737516 | Circello et al. | Apr 1998 | A |
5742180 | Detton | Apr 1998 | A |
5748872 | Norman | May 1998 | A |
5754827 | Barbier et al. | May 1998 | A |
5754871 | Wilkinson et al. | May 1998 | A |
5760602 | Tan | Jun 1998 | A |
5761484 | Agarwal et al. | Jun 1998 | A |
5773994 | Jones | Jun 1998 | A |
5778439 | Timberger et al. | Jul 1998 | A |
5784636 | Rupp | Jul 1998 | A |
5794059 | Barker | Aug 1998 | A |
5794062 | Baxter | Aug 1998 | A |
5801715 | Norman | Sep 1998 | A |
5802290 | Casselman | Sep 1998 | A |
5828229 | Cliff et al. | Oct 1998 | A |
5828858 | Athanas | Oct 1998 | A |
5838165 | Chatter | Nov 1998 | A |
5841973 | Cooke et al. | Nov 1998 | A |
5844888 | Narjjyka | Dec 1998 | A |
5848238 | Shimomura et al. | Dec 1998 | A |
5854918 | Baxter | Dec 1998 | A |
5859544 | Norman | Jan 1999 | A |
5865239 | Carr | Feb 1999 | A |
5867691 | Shiraishi | Feb 1999 | A |
5867723 | Peters et al. | Feb 1999 | A |
5884075 | Hester et al. | Mar 1999 | A |
5887162 | Williams et al. | Mar 1999 | A |
5887165 | Martel et al. | Mar 1999 | A |
5889982 | Rodgers et al. | Mar 1999 | A |
5892370 | Eaton et al. | Apr 1999 | A |
5892961 | Trimberger et al. | Apr 1999 | A |
5892962 | Cloutier | Apr 1999 | A |
5901279 | Davis, III | May 1999 | A |
5915123 | Mirsky et al. | Jun 1999 | A |
5924119 | Sindhu et al. | Jul 1999 | A |
5926638 | Inoue | Jul 1999 | A |
5927423 | Wada et al. | Jul 1999 | A |
5933642 | Baxter et al. | Aug 1999 | A |
5936424 | Young et al. | Aug 1999 | A |
5943242 | Vorbach et al. | Aug 1999 | A |
5956518 | DeHon et al. | Sep 1999 | A |
5960200 | Eager et al. | Sep 1999 | A |
5966534 | Cooke et al. | Oct 1999 | A |
5978260 | Trimberger et al. | Nov 1999 | A |
5996083 | Gupta et al. | Nov 1999 | A |
6003143 | Kim et al. | Dec 1999 | A |
6011407 | New | Jan 2000 | A |
6014509 | Furtek et al. | Jan 2000 | A |
6020758 | Patel et al. | Feb 2000 | A |
6021490 | Vorbach et al. | Feb 2000 | A |
6023564 | Trimberger | Feb 2000 | A |
6023742 | Ebeling et al. | Feb 2000 | A |
6034538 | Abramovici | Mar 2000 | A |
6038650 | Vorbach et al. | Mar 2000 | A |
6038656 | Cummings et al. | Mar 2000 | A |
6047115 | Mohan et al. | Apr 2000 | A |
6049222 | Lawman | Apr 2000 | A |
6052773 | DeHon et al. | Apr 2000 | A |
6054873 | Laramie | Apr 2000 | A |
6058469 | Baxter | May 2000 | A |
6081903 | Vorbach et al. | Jun 2000 | A |
6085317 | Smith | Jul 2000 | A |
6088795 | Vorbach et al. | Jul 2000 | A |
6092174 | Roussakov | Jul 2000 | A |
6105105 | Trimberger et al. | Aug 2000 | A |
6108760 | Mirsky et al. | Aug 2000 | A |
6119181 | Vorbach et al. | Sep 2000 | A |
6122719 | Mirsky et al. | Sep 2000 | A |
6125408 | McGee et al. | Sep 2000 | A |
6150837 | Beal et al. | Nov 2000 | A |
6150839 | New et al. | Nov 2000 | A |
6170051 | Dowling | Jan 2001 | B1 |
6172520 | Lawman et al. | Jan 2001 | B1 |
6202182 | Abramovici et al. | Mar 2001 | B1 |
6212650 | Guccione | Apr 2001 | B1 |
6240502 | Panwar et al. | May 2001 | B1 |
6243808 | Wang | Jun 2001 | B1 |
6260179 | Ohsawa et al. | Jul 2001 | B1 |
6263430 | Trimberger et al. | Jul 2001 | B1 |
6279077 | Nasserbakht et al. | Aug 2001 | B1 |
6282627 | Wong et al. | Aug 2001 | B1 |
6282701 | Wygodny et al. | Aug 2001 | B1 |
6286134 | Click, Jr. et al. | Sep 2001 | B1 |
6288566 | Hanrahan et al. | Sep 2001 | B1 |
6289440 | Casselman | Sep 2001 | B1 |
6298472 | Phillips et al. | Oct 2001 | B1 |
6301706 | Maslennikov et al. | Oct 2001 | B1 |
6311200 | Hanrahan et al. | Oct 2001 | B1 |
6321366 | Tseng et al. | Nov 2001 | B1 |
6338106 | Vorbach et al. | Jan 2002 | B1 |
6341318 | Dakhil | Jan 2002 | B1 |
6347346 | Taylor | Feb 2002 | B1 |
6349346 | Hanrahan et al. | Feb 2002 | B1 |
6370596 | Dakhil | Apr 2002 | B1 |
6378068 | Foster et al. | Apr 2002 | B1 |
6389379 | Lin et al. | May 2002 | B1 |
6389579 | Phillips et al. | May 2002 | B1 |
6392912 | Hanrahan et al. | May 2002 | B1 |
6398383 | Huang | Jun 2002 | B1 |
6404224 | Azegami et al. | Jun 2002 | B1 |
6405299 | Vorbach et al. | Jun 2002 | B1 |
6421809 | Wuytack et al. | Jul 2002 | B1 |
6421817 | Mohan et al. | Jul 2002 | B1 |
6425068 | Vorbach et al. | Jul 2002 | B1 |
6434695 | Esfahani et al. | Aug 2002 | B1 |
6457116 | Mirsky et al. | Sep 2002 | B1 |
6477643 | Vorbach et al. | Nov 2002 | B1 |
6480937 | Vorbach et al. | Nov 2002 | B1 |
6480954 | Trimberger et al. | Nov 2002 | B2 |
6490695 | Zagorski et al. | Dec 2002 | B1 |
6496971 | Lesea et al. | Dec 2002 | B1 |
6513077 | Vorbach et al. | Jan 2003 | B2 |
6519674 | Lam et al. | Feb 2003 | B1 |
6526520 | Vorbach et al. | Feb 2003 | B1 |
6538468 | Moore | Mar 2003 | B1 |
6539477 | Seawright | Mar 2003 | B1 |
6542844 | Hanna | Apr 2003 | B1 |
6542998 | Vorbach et al. | Apr 2003 | B1 |
6571381 | Vorbach et al. | May 2003 | B1 |
6657457 | Hanrahan et al. | Dec 2003 | B1 |
6687788 | Vorbach et al. | Feb 2004 | B2 |
6697979 | Vorbach et al. | Feb 2004 | B1 |
6704816 | Burke | Mar 2004 | B1 |
6717436 | Kress et al. | Apr 2004 | B2 |
6757847 | Farkash et al. | Jun 2004 | B1 |
6785826 | Durham et al. | Aug 2004 | B1 |
6961924 | Bates et al. | Nov 2005 | B2 |
20020038414 | Taylor et al. | Mar 2002 | A1 |
20020143505 | Drusinsky | Oct 2002 | A1 |
20020144229 | Hanrahan | Oct 2002 | A1 |
20020165886 | Lam | Nov 2002 | A1 |
20030014743 | Cooke et al. | Jan 2003 | A1 |
20030046607 | Vorbach | Mar 2003 | A1 |
20030052711 | Taylor et al. | Mar 2003 | A1 |
20030055861 | Lai et al. | Mar 2003 | A1 |
20030056085 | Vorbach | Mar 2003 | A1 |
20030056091 | Greenberg | Mar 2003 | A1 |
20030056202 | Vorbach | Mar 2003 | A1 |
20030061542 | Bates et al. | Mar 2003 | A1 |
20030093662 | Vorbach et al. | May 2003 | A1 |
20030097513 | Vorbach et al. | May 2003 | A1 |
20030123579 | Safavi et al. | Jul 2003 | A1 |
20030135686 | Vorbach et al. | Jul 2003 | A1 |
20030192032 | Andrade et al. | Oct 2003 | A1 |
20040015899 | May et al. | Jan 2004 | A1 |
20040025005 | Vorbach et al. | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
42 21 278 | Jan 1994 | DE |
44 16 881 | Nov 1994 | DE |
441 68 810 | Nov 1994 | DE |
196 51 075 | Jun 1998 | DE |
196 54 593 | Jul 1998 | DE |
196 54 595 | Jul 1998 | DE |
196 54 846 | Jul 1998 | DE |
197 04 044 | Aug 1998 | DE |
197 04 728 | Aug 1998 | DE |
197 04 742 | Sep 1998 | DE |
196 51 075 | Oct 1998 | DE |
198 07 872 | Aug 1999 | DE |
198 61 088 | Feb 2000 | DE |
199 26 538 | Dec 2000 | DE |
100 28 397 | Dec 2001 | DE |
100 36 627 | Feb 2002 | DE |
101 29 237 | Apr 2002 | DE |
102 04 044 | Aug 2003 | DE |
0 221 360 | May 1987 | EP |
0 428 327 | May 1991 | EP |
0 748 051 | Dec 1991 | EP |
0 463 721 | Jan 1992 | EP |
0 485 690 | Jan 1992 | EP |
0 477 809 | Apr 1992 | EP |
0 497 029 | Aug 1992 | EP |
0 539 595 | May 1993 | EP |
0 628 917 | Dec 1994 | EP |
0 678 985 | Oct 1995 | EP |
0 686 915 | Dec 1995 | EP |
0 707 269 | Apr 1996 | EP |
0 726 532 | Aug 1996 | EP |
0 735 685 | Oct 1996 | EP |
0 835 685 | Oct 1996 | EP |
0 748 051 | Dec 1996 | EP |
0 726 532 | Jul 1998 | EP |
0 926 594 | Jun 1999 | EP |
1 102 674 | Jul 1999 | EP |
1 146 432 | Oct 2001 | EP |
WO9004835 | May 1990 | WO |
WO 9004835 | May 1990 | WO |
WO9011648 | Oct 1990 | WO |
WO 9011648 | Oct 1990 | WO |
WO 9311503 | Jun 1993 | WO |
WO9311503 | Jun 1993 | WO |
WO 9408399 | Apr 1994 | WO |
WO9408399 | Apr 1994 | WO |
WO 9500161 | Jan 1995 | WO |
WO9500161 | Jan 1995 | WO |
WO9526001 | Sep 1995 | WO |
WO 9526001 | Sep 1995 | WO |
WO9826356 | Jun 1998 | WO |
WO9828697 | Jul 1998 | WO |
WO9829952 | Jul 1998 | WO |
WO9831102 | Jul 1998 | WO |
WO9835299 | Aug 1998 | WO |
WO9900731 | Jan 1999 | WO |
WO9932975 | Jul 1999 | WO |
WO9940522 | Aug 1999 | WO |
WO9944120 | Sep 1999 | WO |
WO9944147 | Sep 1999 | WO |
WO0017771 | Mar 2000 | WO |
WO0077652 | Dec 2000 | WO |
WO0213000 | Feb 2002 | WO |
WO0221010 | Mar 2002 | WO |
WO0229600 | Apr 2002 | WO |
WO02071248 | Sep 2002 | WO |
WO 0271249 | Sep 2002 | WO |
WO02103532 | Dec 2002 | WO |
WO03017095 | Feb 2003 | WO |
WO 0323616 | Mar 2003 | WO |
WO03025781 | Mar 2003 | WO |
WO03032975 | Apr 2003 | WO |
WO03036507 | May 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20030056085 A1 | Mar 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08946810 | Oct 1997 | US |
Child | 10156397 | US |