This application is directed, in general, to optical communications systems and methods.
This section introduces aspects that may be helpful to facilitating a better understanding of the inventions. Accordingly, the statements of this section are to be read in this light and are not to be understood as admissions about what is in the prior art or what is not in the prior art.
Optical switching networks employ a switching topology that may be referred to as an “optical switch fabric.” As the size and speed of such networks grows, new optical switch fabrics that provide greater capability are needed to keep pace with such growth. One aspect of capability to be addressed is configuration of such optical networks.
One aspect provides a system, e.g. a reconfigurable electro-optical network, including first input and first output waveguides. The input waveguide is configured to receive a first input optical signal. The signal includes a first modulated input wavelength channel. The output waveguide is configured to receive a carrier signal including an unmodulated output wavelength channel. A first input microcavity resonator is configured to derive a modulated electrical control signal from the modulated input wavelength channel. A first output microcavity resonator is configured to modulate the output wavelength channel in response to the control signal.
Another aspect provides a method, e.g. for forming a reconfigurable electro-optical network. The method includes forming a first input waveguide capable of receiving a first input optical signal, the signal including a first modulated input wavelength channel. A first output waveguide is formed that is capable of receiving a carrier signal, the carrier signal including an unmodulated output wavelength channel. A first input microcavity resonator is formed that is configured to derive a modulated electrical control signal from the modulated input wavelength channel. A first output microcavity resonator is formed that is configured to modulate the output wavelength channel in response to the control signal.
In some of the above embodiments the first input microcavity resonator may be one of a plurality of input microcavity resonators configured to derive an electrical control signal from each one of a corresponding plurality of modulated input wavelength channels. The first output microcavity resonator may be one of a plurality of output microcavity resonators each configured to modulate a corresponding output wavelength channel in response to a corresponding one of the control signals. A controller is configured to reconfigure connectivity between the input microcavity resonators and the output microcavity resonators.
In any of the above embodiments the controller may include a cross-connect switch having N inputs and N outputs, and configured to provide a plurality of unique combinations of signal paths of the control signals between the input microcavity resonators and the output microcavity resonators. In some such embodiments the cross-connect switch has N outputs, and includes a plurality of sub-switches each being configured to switch √N inputs to √N outputs. In some embodiments the cross-connect switch provides N! unique combinations of signal paths.
In any of the above embodiments the input and output waveguides may be located on a first substrate and the controller may be located on a second substrate. In some such embodiments the first and second substrates are may both be bonded to an interposed interconnect substrate.
In any of the above-described embodiments the microcavity resonators may comprise ring resonators. In any of the above-described embodiments the input wavelength channel and the output wavelength channel may each employ a same wavelength. In any of the above-described embodiments the system may include an optical source configured to produce the carrier signal. In such embodiments the optical source may be configured to produce a plurality of wavelength components in the optical S, C, or L bands.
Another embodiment is a system comprising an NM×NM electrical cross-connect, N first sets and N second sets. Of the N first sets, each first set including M ring resonators optically coupled to an optical waveguide corresponding to the same first set, each ring resonator of the first sets having an optical-to-electrical output connected to a corresponding electrical input of the NM×NM electrical cross-connect. Of the N second sets, each second set includes M ring resonators optically coupled to an optical waveguide corresponding to the same second set, each ring resonator of the second sets having an optical-to-electrical input connected to a corresponding output of the NM×NM electrical cross-connect.
Some such embodiments further comprise N optical transmitters capable of transmitting on M optical transmission channels, each transmitter optically coupled to a corresponding one of the optical waveguides optically coupled to one of the first sets. Some such embodiments further comprise N optical receivers capable of receiving on M optical reception channels, each receiver optically coupled to a corresponding one of the optical waveguides optically coupled to one of the second sets. In any such embodiments, the electrical cross-connect may be configured to connect each ring resonator of a same one of the first sets to a different one of the second sets. In any such embodiments, the electrical cross-connect may be configured to connect each ring resonator of one of the first sets to a different one of the second sets. In any such embodiments, the electrical cross-connect may be configured to connect each ring resonator of one of the second sets to a different one of the first sets. In any such embodiments, the electrical cross-connect is configured to connect each ring resonator of one of the second sets to a different one of the first sets. In any such embodiments, the NM×NM electrical cross-connect may be dynamically reconfigurable.
Reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The inventors have determined that a compact and flexible architecture for switching data between optical WDM (wavelength-division multiplexed) channels in an optical network may be implemented using microcavity resonators coupled to input waveguides to convert received data-modulated optical signal streams to corresponding data-modulated electrical signal streams, and electrically switching the data-modulated electrical signal streams to a plurality of microcavity resonators, which re-convert the individual data-modulated electrical signals into output data-modulated optical carriers.
Some structures and/or methods described in the '374 Application and/or the '249 Application may be suitable for making or using similar structures and/or methods of the present application.
The system 100 includes three sections that are described in turn, a receiver stage 105 that which performs optical-to-electrical conversion, an electrical switching stage 110, and a transmitter stage 115 that performs electrical-to-optical conversion.
The receiver stage 105 includes a plurality of input waveguides 120-1 . . . 120-6, collectively referred to as input waveguides 120. Each waveguide 120-1 . . . 120-6 may receive a WDM optical signal 122-1 . . . 122-6, including as many as M (e.g. 6) data-modulated wavelength channels.
Each of the multi-channel optical signals 122 may be coupled to the system 100 via, e.g. grating couplers. As appreciated by those skilled in the optical arts, a WDM signal may be schematically described by a frequency or wavelength comb.
The receiver stage 105 further includes a plurality of input microcavity resonator sets 125-1 . . . 125-N (e.g. N=6), each including M microcavity resonators 130 (e.g. M=6). Each microcavity resonator 130 may be, e.g. a ring resonator (microring) or a disk resonator (microdisk) configured to couple to a particular wavelength channel of an optical signal 122 propagating in an adjacent waveguide 120. The resonant wavelength is not limited to any particular value, and may be selected to be in any wavelength band used in optical communications, e.g. in the S band (1460 nm-1530 nm), the C band (1530 nm-1565 nm) or the L band (1565 nm-1625 nm), e.g., by adjusting the refractive index of the individual microcavity resonator.
In the remaining discussion, the microcavity resonators 130 are described as ring resonators without limitation thereto. The microcavity resonator sets 125 may therefore also be referred to as ring resonators sets 125. An individual ring resonator may be designated “130-MN”, where the integers M and N are replaced by that resonator's assignment to a particular one of the M wavelength channels and a particular one of the N received input signals. Moreover, an optical signal may be described by its frequency or equivalently by its wavelength λM. Each ring resonator set 125 is optically coupled to a corresponding one of the input waveguides 120.
An individual one of the ring resonators 130 in each set 125 is configured to couple to a corresponding one of the wavelength channels of the received multi-channel optical signal. Each ring resonator 130 has a resonant wavelength, which is determined in part by its optical path length and is the wavelength at which optical power couples resonantly from the associated input waveguide 120 to that ring resonator 130. In some or all of the ring resonators 130 adjustment of the resonant wavelength may be performed, e.g. by a heater, which can adjust the effective refractive index of a corresponding one of the ring resonators 130. Thus, e.g., the ring resonators 130-11, 130-12 . . . 130-16 are configured to couple to the λ1 wavelength channel, the ring resonators 130-21, 130-22 . . . 130-26 are configured to couple to the λ2 wavelength channel, etc.
An optical-to-electrical (OE) converter 300 is located adjacent each ring resonator 130. One such OE converter 300 is illustrated in
Returning to
The implementation of the switch 140 is not limited to any particular form. In the illustrated example embodiment, the switch 140 is “square”, meaning the number of inputs is equal to the number of outputs, and the number is a squared integer, e.g. M×N=36, where M=N=6. In such embodiments, the switch 140 may be efficiently implemented using about √N input sub-switches 150-1 . . . 150-6, about √N output sub-switches 155-1 . . . 155-6, and about √N intermediate sub-switches 160-1 . . . 160-6. Alternatively and without limitation, the switch 140 may be implemented directly as an N2×N2 (e.g. 36×36) switch. In some embodiments M≠N, such as when the number of wavelength channels of the received optical signals 122 is not equal to the number of optical signals 122 received.
Referring again to
A corresponding microcavity resonator set 175-1 to 175-M is optically coupled to and located adjacent to a segment of a corresponding one of the waveguides 165 and includes N microcavity resonators 180. The resonators 180 may also be designated by M and N, e.g. 180-MN. Each microcavity resonator 180 within each set 175 is configured to couple to one of the wavelength channels of the CW signal 170 propagating within that waveguide 165. Thus, for the illustrated example, one microcavity resonator 180 in each set 175 may be configured to have a resonant frequency at each of about λ1, λ2, λ3, λ4, λ5, and λ6. Some or all of the microcavity resonators may include a tuning heater that sets the resonant optical wavelength therein.
The resonant optical wavelength of each ring resonator 180 is also modulated by one of M×N electrical data-modulated electrical signal streams 142 from the cross-connect switch 140. A subset of N of the data-modulated signal streams 138 from one the sub-switch 155 controls a corresponding one of each of the resonator sets 175, the corresponding ones being configured to couple to a single one of the wavelength channels. For example, the sub-switch 155-1 provides N signals (e.g. N=6 in
Referring again to
Thus the system 100 is expected to provide a high-speed and flexible architecture for configuring an optical switch fabric of an optical communication system. The system 100 may be used in many types of optical systems. In one example, the system may be used to route optical signals within an integrated photonic optical processor. In another example, the system 100 may provide quasi-static or dynamic reconfiguration of optical paths in a communication system, e.g. a long-haul optical communication system. The system 100 may also be used to enable machine-to-machine optical communications in a data center.
In the system 100, each machine 900-1 to 900-N has an optical transmitter capable of outputting data-modulated optical carriers in M wavelength channels.
In the system 100, each machine 1000-1 to 1000-M has an optical receiver capable of inputting and processing data-modulated optical carriers in M wavelength channels.
In one embodiment, the system 100 is a data center with N digital data processors 900-1 to 900-N and N digital data storage devices 1000-1 to 1000-N. In other embodiments, the devices 900-1 to 900-N may be different types of devices capable transmitting data-modulated optical carriers in M wavelength channels. In other embodiments, the devices 1000-1 to 1000-N may be different types of devices capable receiving and processing data-modulated optical carriers in M wavelength channels. The wavelengths of the M wavelength channels of the machines 900-1 to 900-N may be, but need not be, the same as the M wavelength channels of the machines 1000-1 to 1000-N.
In some such embodiments, the system 100 enables each of the N digital data processors to communicate a separate digital data stream to any of the digital data storage devices 1000-1 to 1000-N.
The optical components of the system 100 may be formed conventionally, e.g. as planar structures formed over a silicon substrate, e.g. a silicon wafer. A convenient platform on which to form the system 100 is a silicon-on-insulator (SOI) wafer, but embodiments of the invention are not limited thereto. For example, a dielectric layer, e.g. plasma oxide, could be formed on any suitable substrate, and a silicon layer could be formed thereover by any suitable method. Other embodiments may use a substrate formed from, e.g. glass, sapphire or a compound semiconductor. Those skilled in the pertinent art are familiar with such fabrication techniques.
In some embodiments optical and electrical components of the system 100 are formed on a same substrate. In such a system, e.g. silicon-based electronic components may be formed on one region of a photonic integrated circuit (PIC), and optical components may be formed on another region of the PIC. Interconnects may provide conductive paths from the domain converters 300 to the electrical switching stage 110.
In other embodiments, such as represented by
The electronic substrate 610 may include electronic components, e.g. transistors, diodes, resistors and capacitors, needed to implement electrical functions of the system 100. Such functions include, but are not limited to, the switch 140 and the controller 145, including switching, signal conditioning and amplification. The electronic substrate 610 may include a base layer 640, e.g. a silicon wafer, and an active layer 650 that includes electronic devices and interconnects. The substrate 610 may be formed from any conventional and/or future-discovered processes, and is not limited to any particular material types. By way of example, without limitation, such materials may include silica, SiN, silicon, InP, GaAs, and copper or aluminum interconnects.
The optical substrate 620 includes various optical components of the system 100, e.g. waveguides, microcavity resonators, power splitters, power combiners, and photodiodes. The optical components may be formed from planar or ridge structures by conventional and/or novel processes. Such components typically include a core region and a cladding region. The core regions may be formed from any conventional or nonconventional optical material system, e.g. silicon, LiNbO3, a compound semiconductor such as GaAs or InP, or an electro-optic polymer. Some embodiments described herein are implemented in Si as a nonlimiting example. While embodiments within the scope of the invention are not limited to Si, this material provides some benefits relative to other material systems, e.g. relatively low cost and well-developed manufacturing infrastructure. The cladding region may include homogenous or heterogeneous dielectric materials, e.g. silica or benzocyclobutene (BCB). Some portions of the cladding region may include air, which for the purposes of this discussion includes vacuum.
The interconnect substrate 630 includes additional interconnect structures that may configure operation of the system 600. The interconnect substrate 630 may include any dielectric and conductive (e.g. metallic) materials needed to implement the desired connectivity. In some cases, formation of the substrate 630 may include the use of a handle wafer to provide mechanical support, after which the substrate 630 is removed from the handle.
The electronic substrate 610 may be joined to the interconnect substrate 630 by, e.g. a bump process or, as illustrated, a wafer bonding process. Such processes are well known to those skilled in, e.g. semiconductor manufacturing, and may include chemical mechanical polishing (CMP) to prepare the substrate surfaces for bonding. The interconnect substrate 630 may be joined to the optical substrate 620 by, e.g. a bump process as illustrated in
The separate formation of the electronic substrate 610, the interconnect substrate 630 and the optical substrate 620 may serve at least one of several purposes. First, the thermal budget required to form some features, e.g. high quality waveguides in the optical substrate 620, may be incompatible with other features, such as doping profiles of transistors in the substrate 610. Second, the substrates 610, 620 and 630 may be formed separately by entities with specialized skills and/or fabrication facilities and joined by another entity. Third, where security is desired regarding the function of the assembled system 600, the fabrication operations may be assigned to the various entities such that no one entity acquires sufficient knowledge to determine the functionality of the device. The final assembly may then be completed under secure conditions to provide confidentiality of the operation of the assembled system 600.
Turning to
The method 700 begins with an entry 710. In a step 720, a first input waveguide, e.g. the input waveguide 120-1, is formed. This waveguide is configured to receive a first input optical signal including a first modulated input wavelength channel. In a step 730, a first output waveguide, e.g. the waveguide 165-1, is formed. This waveguide is configured to receive a carrier signal including an unmodulated output wavelength channel. In a step 740 a first input microcavity resonator, e.g. the ring resonator 130-11, is formed. The ring resonator is configured to derive a modulated electrical control signal from the modulated input wavelength channel, e.g. by transferring optical power to the domain converter 300. In a step 750, a first output microcavity resonator is formed, e.g. the ring resonator 180-11. This microcavity resonator is configured to modulate said output wavelength channel in response to said control signal.
The method includes a step 810, in which a first substrate is provided, e.g. the substrate 620. The substrate includes an input waveguide, e.g. the waveguide 120-1, and an output waveguide, e.g. the waveguide 165-1. An input microcavity resonator, e.g. the resonator 130-11, is configured to derive a modulated electrical control signal from a modulated input wavelength channel propagating within the input waveguide. An output microcavity resonator, e.g. the resonator 175-11, is configured to modulate an output wavelength channel propagating within the output waveguide in response to the control signal.
In a step 820 a second substrate is provided, e.g. the substrate 610. The second substrate includes a control stage formed thereover, e.g. the electrical switching stage 110. The control stage is configured to route the electrical control signal from the input microcavity resonator to the output microcavity resonator.
In a step 830 the first and second substrates are joined, thereby connecting the control stage to the microcavity resonators.
In some embodiments of the method 800 joining the first and second substrates includes joining both substrates to a third substrate that includes conductive interconnections that connect the controller to the output microcavity resonator.
Those skilled in the art to which this application relates will appreciate that other and further additions, deletions, substitutions and modifications may be made to the described embodiments.
This application is related to U.S. patent application Ser. No. 13/538,525 (the '525 Application) filed on Jun. 29, 2012 and incorporated by reference herein. This application is further related to U.S. patent application Ser. No. ______ (attorney docket number 812249-US-NP) (the '249 Application) filed on even date herewith and incorporated by reference herein. The present application claims the benefit to the previously filed U.S. Provisional Patent Application No. 61/667,380 of the same title, filed Jul. 2, 2012, and which is incorporated herein by reference in its entirety. The present application further claims the benefit to the previously filed U.S. Provisional Patent Application No. 61/667,374 also of the same title, filed Jul. 2, 2012 (the '374 Application), and which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61667380 | Jul 2012 | US | |
61667374 | Jul 2012 | US |