REDIRECTION OF TROPISM OF AAV CAPSIDS

Abstract
The disclosure relates to compositions, methods, and processes for the preparation, use, and/or formulation of adeno-associated virus capsid proteins, wherein the capsid proteins comprise targeting peptide inserts for enhanced tropism to a target tissue.
Description
REFERENCE TO THE SEQUENCE LISTING

The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled 20571060PCTSL.txt, created on Oct. 2, 2019, which is 428,491 bytes in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.


FIELD OF THE DISCLOSURE

The disclosure relates to compositions, methods, and processes for the preparation, use, and/or formulation of adeno-associated virus capsid proteins, wherein the capsid proteins comprise targeting peptide inserts for enhanced tropism to a target tissue.


BACKGROUND

Gene delivery to the adult central nervous system (CNS) remains a major challenge in gene therapy, and engineered AAV capsids with improved brain tropism represent an attractive solution.


Adeno-associated virus (AAV)-derived vectors are promising tools for clinical gene transfer because of their non-pathogenic nature, their low immunogenic profile, low rate of integration into the host genome and long-term transgene expression in non-dividing cells. However, the transduction efficiency of AAV natural variants in certain organs is too low for clinical applications, and capsid neutralization by pre-existing neutralizing antibodies may prevent treatment of a large proportion of patients. For these reasons, major efforts have been devoted to obtaining novel capsid variants with enhanced properties. Of many approaches tested so far, the most significant advances have resulted from directed evolution of AAV capsids using in vitro or in vivo selection of capsid variants created by capsid sequence randomization using either error-prone PCR, shuffling of various parent serotypes or insertion of fully randomized short peptides at defined positions.


In order to perform directed evolution of AAV capsids, the sequence encoding the viral capsid is itself flanked by inverted terminal repeats (ITR) so it can be packaged into its own capsid shell. Following infection of cultured cells or animals by the mixed population of capsids, the DNA encoding capsids variants that have successfully homed into the tissue of interest is recovered by PCR for further rounds of selection. In this approach, all viral DNA species present in a given tissue are recovered, with no discrimination for specific cell types or for vectors able to perform complete transduction (cell surface binding, endocytosis, trafficking, nuclear import, uncoating, second-strand synthesis, transcription). For example, in the case of highly complex tissues containing multiple cell types, such as the central nervous system (CNS), it would be highly preferable to apply a more stringent selective pressure aimed at recovering capsid variants capable of transducing neuron and/or astrocyte rather than microglia or blood vessel endothelial cells.


Attempts at improving the CNS tropism of AAV capsids upon systemic administration have been met with limited success.


Two previous approaches have been used to address this issue. The first strategy used co-infection of cultured cells (Grimm et al., 2008) or in situ animal tissue (Lisowski et al., 2014) with adenovirus, in order to trigger exponential replication of infectious AAV DNA. Another successful approach involved the use of cell-specific CRE transgenic mice (Deverman et al., 2016) allowing viral DNA recombination specifically in astrocytes, followed by recovery of CRE-recombined capsid variants. Both approaches proved successful, allowing the isolation of several capsid variants with enhanced transduction of target cell populations.


This finding suggested that cell type-specific library selection could improve the outcome of directed evolution. However, the transgenic CRE system used by Deverman et al. is not tractable in other animal species and AAV variants selected by directed evolution in mouse tissue do not show similar properties in large animals. Therefore, it would be necessary to perform the entire directed evolution process directly in non-human primates to increase the probability of translatability in human subjects. None of the previously described transduction-specific approaches are amenable to large animal studies because: 1) many tissues of interest (e.g. CNS) are not readily accessible to adenovirus co-infection, 2) the specific Ad tropism itself would bias the library distribution, and 3) large animals are typically not amenable to transgenesis and cannot be genetically engineered to express CRE recombinase in defined cell types.


To address this problem, we have developed a broadly-applicable functional AAV capsid library screening platform for cell type-specific biopanning in non-transgenic animals. In the TRACER (Tropism Redirection of AAV by Cell type-specific Expression of RNA) platform system, the capsid gene is placed under the control of a cell type-specific promoter to drive capsid mRNA expression in the absence of helper virus co-infection. This RNA-driven screen increases the selective pressure in favor of capsid variants which transduce a specific cell type.


The TRACER platform allows generation of AAV capsid libraries whereby specific recovery and subcloning of capsid mRNA expressed in transduced cells is achieved with no need for transgenic animals or helper virus co-infection. Since mRNA transcription is a hallmark of full transduction, these methods will allow identification of fully infectious AAV capsid mutants. In addition to its higher stringency, this method allows identification of capsids with high tropism for particular cell types using libraries designed to express CAP mRNA under the control of any cell-specific promoter such as, but not limited to, synapsin-1 promoter (neurons), GFAP promoter (astrocytes), TBG promoter (liver), CAMK promoter (skeletal muscle), MYH6 promoter (cardiomyocytes).


SUMMARY OF THE DISCLOSURE

The present disclosure provides compositions and methods for the engineering and/or redirecting the tropism of AAV capsids. Also provided herein are peptides which may be inserted into AAV capsid sequences to increase the tropism of the capsid for a particular tissue. In one aspect, the peptides may be used to target the capsids to brain or regions of the brain or the spinal cord.


The present disclosure presents methods for generating one or more variant AAV capsid polypeptides. In certain embodiments, the variant AAV capsid polypeptides exhibit at least one of improved transduction or increased cell or tissue specificity, relative to a parental AAV capsid polypeptide. In certain embodiments, the method includes: (a) generating a library of variant AAV capsid polypeptides, wherein said library includes (i) a plurality of capsid polypeptides having a region of randomized sequence of 2, 3, 4, 5, 6, 7, 8, or 9 consecutive amino acids, or (ii) a plurality of capsid polypeptides from more than one parental AAV capsid polypeptide; (b) generating an AAV vector library by cloning the capsid polypeptides of libraries (a)(i) or (a)(ii) into AAV vectors, wherein the AAV vectors include a first promoter and a second promoter, wherein said second promoter drives capsid mRNA expression in the absence of helper virus co-infection.


In certain embodiments, the first promoter is AAV2 P40. In certain embodiments, the second promoter is a ubiquitous promoter. In certain embodiments, the first promoter is AAV2 P40 and the second promoter is a ubiquitous promoter.


In certain embodiments, the first promoter is AAV2 P40. In certain embodiments, the second promoter is a cell-type-specific promoter. In certain embodiments, the first promoter is AAV2 P40 and the second promoter is a cell-type-specific promoter.


In certain embodiments, the promoter is selected from any promoter listed in Table 3. In certain embodiments, the ubiquitous or cell-specific promoter allows the expression of RNA encoding the capsid polypeptides.


In certain embodiments, the method includes recovery of the RNA encoding the capsid polypeptides. In certain embodiments, the method includes determining the sequence of the capsid polypeptides. In certain embodiments, the capsid polypeptides recovered exhibit increased target cell transduction or target cell specificity (tropism) as compared to a parental capsid polypeptide.


In certain embodiments, the target cell is a neuronal cell, a neural stem cell, an astrocyte, an oligodendrocyte, a microglia cell, a retinal cell, a tumor cell, a hematopoietic stem cell, an insulin producing beta cell, a lung epithelium cell, an endothelial cell, a liver cell, a skeletal muscle cell, a muscle stem cell, a muscle satellite cell, or a cardiac muscle cell.


In certain embodiments, the AAV vectors comprise a first promoter and a second promoter, wherein the second promoter is located the downstream of the capsid gene and drives its anti-sense RNA expression in the absence of helper virus co-infection.


In certain embodiments, the first promoter is AAV2 P40 and the second promoter is a ubiquitous promoter. In certain embodiments, the first promoter is AAV2 P40 and the second promoter is a cell-specific promoter. In certain embodiments, the ubiquitous or cell-specific promoter allows the expression of gene encoding the capsid polypeptide of variant AAV in an anti-sense direction, resulting in the anti-sense RNA. In certain embodiments, the method included the recovery of the anti-sense RNA that can be converted to RNA encoding the variant AAV capsid polypeptide that is used to determine the sequence of the variant AAV capsid polypeptides.


In certain embodiments, the variant AAV capsid polypeptide exhibits increased target cell transduction or target cell specificity (tropism) as compared to a parental capsid polypeptide.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features, and advantages will be apparent from the following description of particular embodiments of the disclosure, as illustrated in the accompanying drawings. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of various embodiments of the disclosure.



FIG. 1A and FIG. 1B are maps of wild-type AAV capsid gene transcription and CMV-CAP vectors. FIG. 1A shows transcription of VP1, VP2 and VP3 AAV transcripts from wildtype AAV genome. Transcription start sites of each viral promoter are indicated. SD, splice donor, SA, splice acceptor. Sequence of start codons for each reading frame is indicated. Translation of AAP and VP3 is performed by leaky scanning of the major mRNA. FIG. 1B shows the structure of the CMV-p40 dual promoter vectors used to determine the minimal regulatory sequences necessary for efficient virus production. The pREP2ΔCAP vector shown at the bottom is obtained by deletion of most CAP reading frame and is used to provide the REP protein in trans.



FIG. 2A and FIG. 2B are histogram representations of the data and show the effect of CMV promoter position on virus yield and CAP mRNA splicing. FIG. 2A shows average yield of AAV9 produced in HEK-293T cells using the constructs described in FIG. 1, co-transfected with an Ad Helper vector. Wild-type AAV9 plasmid (pAV9) is used as a positive control. Y-axis values indicate AAV DNA copies per ul from each 15-cm plate (˜1000 ul total, left panel) or the percentage of wtAAV9 (right panel). FIG. 2B shows evidence for expression of CAP transcripts in transfected cells. mRNA from transfected 293T cells was subjected to RT-PCR using primers specific for the major spliced CAP transcript. Note the lack of p40-driven transcription in the absence of Ad Helper vector (lane 2).



FIG. 3A, FIG. 3B and FIG. 3C show the effect of REP helper plasmid optimization on virus yield. FIG. 3A shows the design of improved pREP helper vectors. The MscI fragment deletion removes the C-terminal part of VP proteins, which is necessary for capsid formation. Asterisks represent early stop codons introduced to disrupt the coding potential of VP1, VP2 and VP3 reading frames. FIG. 3B shows the yield of Synapsin-p40-CAP9 AAV produced with various REP plasmid architectures. Values on the Y-axis represent the percentage of VG relative to wild-type AAV9. FIG. 3C shows the quantification of recombination and/or illegitimate packaging of full-length REP from the pREP plasmids. Virus stocks produced were subjected to qPCR using Taqman probes located in the N-terminal part of REP absent from the ITR-containing vectors.



FIG. 4A, FIG. 4B, FIG. 4C and FIG. 4D describe the in vivo analysis of the second-generation vectors. FIG. 4A shows the design of Pro9 vectors. Architecture of all three vectors is based on the BstEII construct. AAV9 capsid RNA is placed under control of P40 and CMV, hSyn1 or GFAP promoters, respectively. FIG. 4B shows the silver stain of SDS-PAGE gel obtained by running 1e10 VG of each vector, after double iodixanol purification. FIG. 4C shows the biodistribution of viral DNA in mouse brain (cortex), liver and heart following tail-vein injection of 1e12 VG per mouse. AAV9 VP3 DNA is quantified by Taqman PCR and normalized to mouse transferrin receptor gene. FIG. 4D shows the capsid RNA recovery from mouse tissues. Total RNA was reverse transcribed and Taqman PCR was performed with capsid-specific Taqman primers and probe. Values represent VP3 cDNA copies normalized to TBP housekeeping gene.



FIG. 5A, FIG. 5B, FIG. 5C, FIG. 5D and FIG. 5E describes in vitro analysis of intronic second generation vectors. FIG. 5A shows the design of intronic Pro9 vectors harboring a hybrid CMV/Globin intron. AAV9 capsid RNA is placed under control of P40 and CBA, hSyn1 or GFAP promoters in a tandem configuration (top) or in an inverted configuration (bottom). In the inverted promoter vectors, an extra SV40 polyadenylation site (orange) is added at the 3′ extremity to allow polyadenylation of antisense CAPS transcripts. FIG. 5B shows the AAV9 CAP cDNA amplification. All vectors depicted were produced using triple transfection with pHelper and pREP-3stops and resulting viruses were used to infect HEK-293T cells at a MOI of 1e4 VG per cell. RNA was extracted 48 hours post-infection and subjected to RT-PCR with primers amplifying full capsid (top) or a C-terminal fragment (bottom). FIG. 5C shows the AAV9 VP3 cDNA from cells infected with intronless or intronic viruses with tandem promoters in forward orientation was quantified by Taqman PCR and normalized to GAPDH housekeeping gene. Values indicate the ratio of VP3 to GAPDH cDNA. FIG. 5D shows the mapping of capsid RNA recovery from cells infected with tandem or inverted constructs. Total RNA was reverse transcribed and PCR was performed with primers flanking the entire capsid gene. White arrowheads represent VP3 size variants resulting from aberrant splicing of antisense CAP mRNA. FIG. 5E shows the analysis of Globin intron splicing. CAG9 plasmid (left) or cDNA from HEK-293T cells transduced by CAG9 virus was submitted to PCR with forward primers located before (Glo ex1) or within (GloSpliceF4 (SEQ ID NO: 26) and GloSpliceF6 (SEQ ID NO: 13)) the Globin exon-exon junction. Primers spanning junction between exon 1 (no underline) and exon 2 (underline) are described at the bottom.



FIG. 6 provides in vitro evidence that the presence of the P40 promoter downstream of Synapsin or Gfabc1D promoters does not relieve the repression of either promoter in HEK-293T cells.



FIG. 7 illustrates the basic tenets of the TRACER platform.



FIG. 8 illustrates features of the TRACER platform including the use of a tissue specific promoter and RNA recovery.



FIG. 9 provides one embodiment of the TRACER production architecture.



FIG. 10 provides a comparison between traditional vDNA recovery and 2nd generation vRNA recovery.



FIG. 11 provides an overview of the use of cell-specific RNA expression for targeted evolution.



FIG. 12A and FIG. 12B provide diagrams representing capsid gene transcription of natural AAV (FIG. 12A) and TRACER libraries (FIG. 12B).



FIG. 13 is a diagram of the AAV6, AAV5 and AAV-DJ capsid peptide display libraries used for in vivo evolution (SEQ ID NOS 27-32, respectively, in order of appearance).



FIG. 14 is a diagram of the AAV9 capsid peptide display libraries used for in vivo evolution (SEQ ID NOS 33-42, respectively, in order of appearance).



FIG. 15A and FIG. 15B present the method used for library construction. FIG. 15A shows the sequence of the insertion site used to introduce random libraries (SEQ ID NOS 43-46, respectively, in order of appearance). FIG. 15B provides a description of the assembly procedure.



FIG. 16 provides an exemplary diagram of cloning-free rolling circle procedure used for library amplification (SEQ ID NO 47; NNK7).



FIG. 17 provides the sequence of the codon-mutant AAV9 library shuttle designed to minimize wild-type contamination (SEQ ID NOS 33-34 and 48-52, respectively, in order of appearance).



FIG. 18 provides a description of AAV9 peptide libraries biopanning.



FIG. 19 illustrates the recovery process from an initial pool with recovery at 50%.



FIG. 20 provides an example of the cDNA recovery and amplification from GFAP-driven libraries (B group and F group).



FIG. 21A, FIG. 21B and FIG. 21C show the progression of AAV9 peptide library diversity throughout the biopanning process. FIG. 21A describes RNA library evolution. FIG. 21B and FIG. 21C show the amino acid distribution of NNK machine mix preparations for P0 and P1 virus.



FIG. 22 provides neuron (SYN)-AAV9 Peptide Libraries Composition at P2.



FIG. 23 provides astrocyte (GFAP)-AAV9 Peptide Libraries Composition at P2.



FIG. 24 provides an estimation of brain/liver specificity in GFAP-AAV9 peptide library candidates.



FIG. 25 provides an estimation of brain/liver specificity in GFAP-AAV9 peptide library candidates.



FIG. 26 provide an example subpopulation selection of variants.



FIG. 27 provides an exemplary design of a library generation and cloning procedure.



FIG. 28 provides the NNK/NNM codon distribution (covariance of codon mutants) of AAV produced with a synthetic library of 666 sequence variants (GFAP promoter).



FIG. 29 provides the NNK/NNM codon distribution (covariance of codon mutants) of AAV produced with a synthetic library of 666 sequence variants (SYN9 promoter).



FIG. 30 provides the data from the tissue recovery, one-month post injection, from brain and a liver punch.



FIG. 31A, FIG. 31B, FIG. 31C and FIG. 31D provide results of control capsids from the Syn-driven synthetic library NGS analysis. FIG. 31A shows the enrichment analysis of internal AAV9, PHP.B and PHP.eB controls (SEQ ID NOS 53-58 and 53-58, respectively, in order of appearance). FIG. 31B, FIG. 31C and FIG. 31D show the NNK/NNM codon distribution in mRNA from mouse brain tissue.



FIG. 32A and FIG. 32B provide the results of the neuron synthetic library NGS analysis (SEQ ID NOS 59-60, 59-61, 61-63, 62, 64, 64, 63, 65-67, 67, 65, 68, 66, 69, 70-71, and 70-74, respectively, in order of appearance).



FIG. 33 provides the results of the astrocyte synthetic library NGS analysis (SEQ ID NOS 53-58, 53-58, and 53-58, respectively, in order of appearance).



FIG. 34A and FIG. 34B provide astrocyte synthetic library codon mutants covariance.



FIG. 35 provides the results of the astrocyte synthetic library NGS analysis (SEQ ID NOS 75, 75-78, 76-77, 79-83, 65, 78, 84, 80, 85, 70, 86, 82, 81, 79, 87, 65, 85, 84, 70, 86, 88-90, 87, 91, 83, 88, 63, 89-90, 92-93, 91, 94-97, 93, 95, 98, 98, 97, 63, 92, 94, 99-101, 75, 75-78, 76-77, 79-83, 65, 78, 84, 80, 85, 70, 86, 82, 81, 79, 87, 65, 85, 84, 70, 86, 88-90, 87, 91, 83, 88, 63, 89-90, 92-93, 91, 94-97, 93, 95, 98, 98, 97, 63, 92, 94, 99-102, 99, 103, 103-104, 96, 105-106, 101, 100, 102, 107, 104-105, 108-113, 106, 60, 66, 114-117, 109, 113, 72, 108, 110, 67, 118-119, 116, 120, 120, 107, 112, 121-123, 66, 124-125, 115, 118, 126, 121, 127-128, 60, 129, 119, 130-132, 72, 133, 123, 125, 69, 134-139, 62, 124, 67, 111, 114, 126, 140-141, 122, 142, 128-129, 143, 138, 144, 134, 62, 136, 145, 141, 146-153, 127, 154, 69, 144, 155, 71, 156, 133, 132, 137, 147, 157-158, 135, 159, 140, 117, 160, 139, 161-162, 130, 163, 143, 164, 152, 151, 165-167, 155, 168, 71, 169, and 146, respectively, in order of appearance).



FIG. 36 provides the GFAP synthetic library NGS analysis.



FIG. 37A and FIG. 37B provides the top 38 variants from the synthetic library screen. FIG. 37A shows the phylogenetic analysis of 9-mer peptide sequences, and also shows the sequence of the peptide variants (SEQ ID NOS 67, 59, 64, 61, 77, 84, 96, 60, 80, 82, 66, 62, 83, 85, 106, 131, 94, 90, 76, 68-69, 79, 75, 81, 88, 139, 78, 155, 102, 63, 140, 87, 70, 105, 120, 89, 65, and 109, respectively, in order of appearance). Highlighted sequences represent the peptides that were selected for individual transduction assay. FIG. 37B shows the graphic representation of the neuron and astrocyte tropism of each peptide, both axis indicate the inverted rank in Synapsin and GFAP screen.



FIG. 38 provides the top consensus sequences as compared to PHP.N and PHP.B (SEQ ID NOS 168 and 71, respectively, in order of appearance).



FIG. 39 is a diagram of the Gibson assembly library cloning procedure.



FIG. 40 provides an example of TRIM/NNK peptide prevalence (SEQ ID NOS 170-171, respectively, in order of appearance).



FIG. 41 provides peptide diversity statistics from a study using the Illumina adapter having 42 million bacterial transformants, 81 million sequence reads and 12 million sequence variants (SEQ ID NOS 172-173, 48-49, and 174-175, respectively, in order of appearance).



FIG. 42 provides an exemplary diagram of cloning-free DNA amplification by rolling circle amplification.



FIG. 43 provides a diagram of protelomerase monomer processing (SEQ ID NOS 176-178, respectively, in order of appearance).



FIG. 44 provides a diagram comparing the traditional and cloning-free methods.



FIG. 45A and FIG. 45C provide the full ranking of Syn-driven (FIG. 45A) and GFAP-driven (FIG. 45B) 333 variants in the brain, spinal cord, liver and heart tissues. Capsid variants are ranked by their average brain RNA enrichment score (average of NNK and NNM codons). The rank of internal control capsids PHP.B, PHP.eB and AAV9 is indicated (FIG. 45A and FIG. 45B). A comparison of combined Syn-driven results and GFAP-driven results is provided (FIG. 45C). Only 4 animals were represented for the GFAP-driven libraries because 2/6 mice showed a very different ranking profile and were considered as outliers.



FIG. 46A and FIG. 46B provide the comparison of results of the neuron and astrocyte synthetic library NGS analysis. FIG. 46A shows the ranking of capsids using SYN or GFAP promoters; FIG. 46B shows the scatter plot showing the correlation of Syn-versus GFAP-driven libraries.



FIG. 47 illustrates one embodiment of a multi-species (e.g., rodent) study followed by next generation sequencing (NGS).



FIG. 48A, FIG. 48B and FIG. 48C provide results from a multi-strain/species comparison of 333 capsid variants. FIG. 48A shows the ranking of 333 capsids by brain RNA enrichment score in C57BL/6 mice, BALB/C mice and rats. Capsids are ranked according to Syn-driven brain enrichment score in C57BL/6 mice. FIG. 48B shows the scatter plots showing the correlation between C57BL/6 and BALB/C enrichment scores from Syn- and GFAP-driven pools. FIG. 48C shows the Venn diagram showing the intersection and consensus sequence of capsids with a brain enrichment score >10-fold higher than AAV9 (either Syn- or GFAP-driven) in C57BL/6 and BALB/C strains. In rats, no capsid showed an enrichment score >10-fold versus AAV9.



FIG. 49A, FIG. 49B, FIG. 49C and FIG. 49D provide transduction (RNA) and biodistribution (DNA) analysis of 10 capsid variants indicated in FIG. 49A (SEQ ID NOS 179-188, respectively, in order of appearance). Individual capsids were used to package self-complementary CBA-EGFP genomes (FIG. 49B) and injected intravenously to C57BL/6 mice. FIG. 49C shows the RNA expression in brain and spinal cord samples. FIG. 49D shows the DNA distribution in brain and spinal cord samples.



FIG. 50A, FIG. 50B and FIG. 50C provide the results of testing of individual capsids and their mRNA expression in brain, spinal cord and liver. EGFP mRNA expression results are shown for the brain (FIG. 50A), the spinal cord (FIG. 50B) and the liver (FIG. 50C).



FIG. 51 provides results for NGS screening using neuronal NeuN marker (FIG. 51) for both GFAP screening and SYN screening.



FIG. 52 provides the results of testing of individual capsids in whole brain.



FIG. 53 provides the results of testing of additional individual capsids in whole brain.



FIG. 54 provides the results of testing of individual capsids in cerebellum.



FIG. 55 provides the results of testing of individual capsids in cortex.



FIG. 56 provides the results of testing of individual capsids in hippocampus.



FIG. 57A and FIG. 57B provide transduction data of 10 capsid variants in mouse liver (FIG. 57B), analyzed by EGFP RNA expression and whole tissue fluorescence (FIG. 57A).



FIG. 58A and FIG. 58B provide results for comparison studies on the efficacy of the 333 capsid variants to transduce CNS for C57BL/6 mice BMVEC (FIG. 58A) and Human BMVEC (FIG. 58B).



FIG. 59A, FIG. 59B and FIG. 57C provide diagrams of external barcoding for NGS analysis and recovery of full-length capsid variants. A general barcode pair is shown (FIG. 59C). Full ITR-to-ITR constructs are shown with the barcode pair 5′ of the CAP sequence (FIG. 59A) and 3′ of the CAP sequence (FIG. 59B).



FIG. 60A, FIG. 60B and FIG. 60C provide detailed analysis of virus production and RNA splicing with several configurations of intronic barcoded platforms. A general ITR-to-ITR construct is shown in FIG. 60A (SEQ ID NOS 189-193, respectively, in order of appearance), with intronic barcode yields (FIG. 60B) and gel columns showing AAV intron splicing and Globin intron splicing results (FIG. 60C).





DETAILED DESCRIPTION OF THE DISCLOSURE

The details of one or more embodiments of the disclosure are set forth in the accompanying description below. Although any materials and methods similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, the preferred materials and methods are now described. Other features, objects and advantages of the disclosure will be apparent from the description. In the description, the singular forms also include the plural unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. In the case of conflict, the present description will control.


According to the present disclosure, AAV particles with enhanced tropism for a target tissue (e.g., CNS) are provided, as well as associated processes for their targeting, preparation, formulation and use. Targeting peptides and nucleic acid sequences encoding the targeting peptides are provided. These targeting peptides may be inserted into an AAV capsid protein sequence to alter tropism to a particular cell-type, tissue, organ or organism, in vivo, ex vivo or in vitro.


As used herein, an “AAV particle” or “AAV vector” comprises a capsid protein and a viral genome, wherein the viral genome comprises at least one payload region and at least one inverted terminal repeat (ITR). The AAV particle and/or its component capsid and viral genome may be engineered to alter tropism to a particular cell-type, tissue, organ or organism.


As used herein, “viral genome” or “vector genome” refers to the nucleic acid sequence(s) encapsulated in an AAV particle. A viral genome comprises a nucleic acid sequence with at least one payload region encoding a payload and at least one ITR.


As used herein, a “payload region” is any nucleic acid molecule which encodes one or more “payloads” of the disclosure. As non-limiting examples, a payload region may be a nucleic acid sequence encoding a payload comprising an RNAi agent or a polypeptide.


As used herein, a “targeting peptide” refers to a peptide of 3-20 amino acids in length. These targeting peptides may be inserted into, or attached to, a parent amino acid sequence to alter the characteristics (e.g., tropism) of the parent protein. As a non-limiting example, the targeting peptide can be inserted into an AAV capsid sequence for enhanced targeting to a desired cell-type, tissue, organ or organism.


The AAV particles and payloads of the disclosure may be delivered to one or more target cells, tissues, organs, or organisms. In a preferred embodiment, the AAV particles of the disclosure demonstrate enhanced tropism for a target cell type, tissue or organ. As a non-limiting example, the AAV particle may have enhanced tropism for cells and tissues of the central or peripheral nervous systems (CNS and PNS, respectively). The AAV particles of the disclosure may, in addition, or alternatively, have decreased tropism for an undesired target cell-type, tissue or organ.


Adeno-associated viruses (AAV) are small non-enveloped icosahedral capsid viruses of the Parvoviridae family characterized by a single stranded DNA viral genome. Parvoviridae family viruses consist of two subfamilies: Parvovirinae, which infect vertebrates, and Densovirinae, which infect invertebrates. The Parvoviridae family comprises the Dependovirus genus which includes AAV, capable of replication in vertebrate hosts including, but not limited to, human, primate, bovine, canine, equine, and ovine species.


The parvoviruses and other members of the Parvoviridae family are generally described in Kenneth I. Berns, “Parvoviridae: The Viruses and Their Replication,” Chapter 69 in FIELDS VIROLOGY (3d Ed. 1996), the contents of which are incorporated by reference in their entirety.


AAV have proven to be useful as a biological tool due to their relatively simple structure, their ability to infect a wide range of cells (including quiescent and dividing cells) without integration into the host genome and without replicating, and their relatively benign immunogenic profile. The genome of the virus may be manipulated to contain a minimum of components for the assembly of a functional recombinant virus, or viral particle, which is loaded with or engineered to target a particular tissue and express or deliver a desired payload.


The wild-type AAV vector genome is a linear, single-stranded DNA (ssDNA) molecule approximately 5,000 nucleotides (nt) in length. Inverted terminal repeats (ITRs) traditionally cap the viral genome at both the 5′ and the 3′ end, providing origins of replication for the viral genome. While not wishing to be bound by theory, an AAV viral genome typically comprises two ITR sequences. These ITRs have a characteristic T-shaped hairpin structure defined by a self-complementary region (145nt in wild-type AAV) at the 5′ and 3′ ends of the ssDNA which form an energetically stable double stranded region. The double stranded hairpin structures comprise multiple functions including, but not limited to, acting as an origin for DNA replication by functioning as primers for the endogenous DNA polymerase complex of the host viral replication cell.


The wild-type AAV viral genome further comprises nucleotide sequences for two open reading frames, one for the four non-structural Rep proteins (Rep78, Rep68, Rep52, Rep40, encoded by Rep genes) and one for the three capsid, or structural, proteins (VP1, VP2, VP3, encoded by capsid genes or Cap genes). The Rep proteins are important for replication and packaging, while the capsid proteins are assembled to create the protein shell of the AAV, or AAV capsid. Alternative splicing and alternate initiation codons and promoters result in the generation of four different Rep proteins from a single open reading frame and the generation of three capsid proteins from a single open reading frame. Though it varies by AAV serotype, as a non-limiting example, for AAV9/hu.14 (SEQ ID NO: 123 of U.S. Pat. No. 7,906,111, the contents of which are herein incorporated by reference in their entirety) VP1 refers to amino acids 1-736, VP2 refers to amino acids 138-736, and VP3 refers to amino acids 203-736. In other words, VP1 is the full-length capsid sequence, while VP2 and VP3 are shorter components of the whole. As a result, changes in the sequence in the VP3 region, are also changes to VP1 and VP2, however, the percent difference as compared to the parent sequence will be greatest for VP3 since it is the shortest sequence of the three. Though described here in relation to the amino acid sequence, the nucleic acid sequence encoding these proteins can be similarly described. Together, the three capsid proteins assemble to create the AAV capsid protein. While not wishing to be bound by theory, the AAV capsid protein typically comprises a molar ratio of 1:1:10 of VP1:VP2:VP3. As used herein, an “AAV serotype” is defined primarily by the AAV capsid. In some instances, the ITRs are also specifically described by the AAV serotype (e.g., AAV2/9).


AAV vectors of the present disclosure may be produced recombinantly and may be based on adeno-associated virus (AAV) parent or reference sequences. As used herein, a “vector” is any molecule or moiety which transports, transduces, or otherwise acts as a carrier of a heterologous molecule such as the nucleic acids described herein.


In addition to single stranded AAV viral genomes (e.g., ssAAVs), the present disclosure also provides for self-complementary AAV (scAAVs) viral genomes. scAAV vector genomes contain DNA strands which anneal together to form double stranded DNA. By skipping second strand synthesis, scAAVs allow for rapid expression in the transduced cell.


In one embodiment, the AAV particle of the present disclosure is an scAAV.


In one embodiment, the AAV particle of the present disclosure is an ssAAV.


Methods for producing and/or modifying AAV particles are disclosed in the art such as pseudotyped AAV vectors (PCT Patent Publication Nos. WO200028004; WO200123001; WO2004112727; WO2005005610; and WO2005072364, the content of each of which is incorporated herein by reference in its entirety).


In one embodiment, the AAV particles of the disclosure comprising a capsid with an inserted targeting peptide and a viral genome, may have enhanced tropism for a cell-type or tissue of the human CNS.


AAV Capsids

AAV particles of the present disclosure may comprise or be derived from any natural or recombinant AAV serotype. AAV serotypes may differ in characteristics such as, but not limited to, packaging, tropism, transduction and immunogenic profiles. While not wishing to be bound by theory, the AAV capsid protein is often considered to be the driver of AAV particle tropism to a particular tissue.


In one embodiment, an AAV particle may have a capsid protein and ITR sequences derived from the same parent serotype (e.g., AAV2 capsid and AAV2 ITRs). In another embodiment, the AAV particle may be a pseudo-typed AAV particle, wherein the capsid protein and ITR sequences are derived from different parent serotypes (e.g., AAV9 capsid and AAV2 ITRs; AAV2/9).


The AAV particles of the present disclosure may comprise an AAV capsid protein with a targeting peptide inserted into the parent sequence. The parent capsid or serotype may comprise or be derived from any natural or recombinant AAV serotype. As used herein, a “parent” sequence is a nucleotide or amino acid sequence into which a targeting sequence is inserted (i.e., nucleotide insertion into nucleic acid sequence or amino acid sequence insertion into amino acid sequence).


In a preferred embodiment, the parent AAV capsid nucleotide sequence is as set forth in SEQ ID NO: 1.


In another embodiment, the parent AAV capsid nucleotide sequence is a K449R variant of SEQ ID NO: 1, wherein the codon encoding a lysine (e.g., AAA or AAG) at position 449 in the amino acid sequence (nucleotides 1345-1347) is exchanged for one encoding an arginine (CGT, CGC, CGA, CGG, AGA, AGG). The K449R variant has the same function as wild-type AAV9.


In one embodiment, the parent AAV capsid amino acid sequence is as set forth in SEQ ID NO: 2.


In another embodiment, the parent AAV capsid amino acid sequence is as set forth in SEQ ID NO: 3.


In one embodiment the parent AAV capsid sequence is any of those shown in Table 1.









TABLE 1







AAV Capsid Sequences










SEQ



Serotype
ID NO
Reference Information












AAV9/hu.14 (nt)
1
U.S. Pat. No. 7,906,111 SEQ ID NO:




3; WO2015038958 SEQ ID NO: 11


AAV9/hu.14 (aa)
2
U.S. Pat. No. 7,906,111 SEQ ID NO:




123; WO2015038958 SEQ ID NO: 2


AAV9/hu.14 K449R (aa)
3
WO2017100671 SEQ ID NO: 45









Each of the patents, applications and or publications listed in Table 1 are hereby incorporated by reference in their entirety.


The parent AAV serotype and associated capsid sequence may be any of those known in the art. Non-limiting examples of such AAV serotypes include, AAV9, AAV9 K449R (or K449R AAV9), AAV1, AAVrh10, AAV-DJ, AAV-DJ8, AAV5, AAVPHP.B (PHP.B), AAVPHP.A (PHP.A), AAVG2B-26, AAVG2B-13, AAVTH1.1-32, AAVTH1.1-35, AAVPHP.B2 (PHP.B2), AAVPHP.B3 (PHP.B3), AAVPHP.N/PHP.B-DGT, AAVPHP.B-EST, AAVPHP.B-GGT, AAVPHP.B-ATP, AAVPHP.B-ATT-T, AAVPHP.B-DGT-T, AAVPHP.B-GGT-T, AAVPHP.B-SGS, AAVPHP.B-AQP, AAVPHP.B-QQP, AAVPHP.B-SNP(3), AAVPHP.B-SNP, AAVPHP.B-QGT, AAVPHP.B-NQT, AAVPHP.B-EGS, AAVPHP.B-SGN, AAVPHP.B-EGT, AAVPHP.B-DST, AAVPHP.B-DST, AAVPHP.B-STP, AAVPHP.B-PQP, AAVPHP.B-SQP, AAVPHP.B-QLP, AAVPHP.B-TMP, AAVPHP.B-TTP, AAVPHP.S/G2A12, AAVG2A15/G2A3 (G2A3), AAVG2B4 (G2B4), AAVG2B5 (G2B5), PHP.S, AAV2, AAV2G9, AAV3, AAV3a, AAV3b, AAV3-3, AAV4, AAV4-4, AAV6, AAV6.1, AAV6.2, AAV6.1.2, AAV7, AAV7.2, AAV8, AAV9.11, AAV9.13, AAV9.16, AAV9.24, AAV9.45, AAV9.47, AAV9.61, AAV9.68, AAV9.84, AAV9.9, AAV10, AAV11, AAV12, AAV16.3, AAV24.1, AAV27.3, AAV42.12, AAV42-1b, AAV42-2, AAV42-3a, AAV42-3b, AAV42-4, AAV42-5a, AAV42-5b, AAV42-6b, AAV42-8, AAV42-10, AAV42-11, AAV42-12, AAV42-13, AAV42-15, AAV42-aa, AAV43-1, AAV43-12, AAV43-20, AAV43-21, AAV43-23, AAV43-25, AAV43-5, AAV44.1, AAV44.2, AAV44.5, AAV223.1, AAV223.2, AAV223.4, AAV223.5, AAV223.6, AAV223.7, AAV1-7/rh.48, AAV1-8/rh.49, AAV2-15/rh.62, AAV2-3/rh.61, AAV2-4/rh.50, AAV2-5/rh.51, AAV3.1/hu.6, AAV3.1/hu.9, AAV3-9/rh.52, AAV3-11/rh.53, AAV4-8/r11.64, AAV4-9/rh.54, AAV4-19/rh.55, AAVS-3/rh.57, AAVS-22/rh.58, AAV7.3/hu.7, AAV16.8/hu.10, AAV16.12/hu.11, AAV29.3/bb .1, AAV29.5/bb .2, AAV106.1/hu.37, AAV114.3/hu.40, AAV127.2/hu.41, AAV127.5/hu.42, AAV128.3/hu.44, AAV130.4/hu.48, AAV145.1/hu.53, AAV145.5/hu.54, AAV145.6/hu.55, AAV161.10/hu.60, AAV161.6/hu.61, AAV33.12/hu.17, AAV33 .4/hu. 15, AAV33.8/hu.16, AAV52/hu.19, AAV52.1/hu.20, AAV58.2/hu.25, AAVA3.3, AAVA3.4, AAVA3.5, AAVA3.7, AAVC1, AAVC2, AAVCS, AAVF3, AAVFS, AAVH2, AAVrh.72, AAVhu.8, AAVrh.68, AAVrh.70, AAVpi.1, AAVpi.3, AAVpi.2, AAVrh.60, AAVrh.44, AAVrh.65, AAVrh.55, AAVrh.47, AAVrh.69, AAVrh.45, AAVrh.59, AAVhu.12, AAVH6, AAVH-1/hu.1, AAVH-5/hu.3, AAVLG-10/rh.40, AAVLG-4/rh.38, AAVLG-9/hu.39, AAVN721-8/rh.43, AAVCh.5, AAVCh.5R1, AAVcy.2, AAVcy.3, AAVcy.4, AAVcy.5, AAVCy.5R1, AAVCy.5R2, AAVCy.5R3, AAVCy.5R4, AAVcy.6, AAVhu.1, AAVhu.2, AAVhu.3, AAVhu.4, AAVhu.5, AAVhu.6, AAVhu.7, AAVhu.9, AAVhu.10, AAVhu.11, AAVhu.13, AAVhu.15, AAVhu.16, AAVhu.17, AAVhu.18, AAVhu.20, AAVhu.21, AAVhu.22, AAVhu.23.2, AAVhu.24, AAVhu.25, AAVhu.27, AAVhu.28, AAVhu.29, AAVhu.29R, AAVhu.31, AAVhu.32, AAVhu.34, AAVhu.35, AAVhu.37, AAVhu.39, AAVhu.40, AAVhu.41, AAVhu.42, AAVhu.43, AAVhu.44, AAVhu.44R1, AAVhu.44R2, AAVhu.44R3, AAVhu.45, AAVhu.46, AAVhu.47, AAVhu.48, AAVhu.48R1, AAVhu.48R2, AAVhu.48R3, AAVhu.49, AAVhu.51, AAVhu.52, AAVhu.54, AAVhu.55, AAVhu.56, AAVhu.57, AAVhu.58, AAVhu.60, AAVhu.61, AAVhu.63, AAVhu.64, AAVhu.66, AAVhu.67, AAVhu.14/9, AAVhu.t 19, AAVrh.2, AAVrh.2R, AAVrh.8, AAVrh.8R, AAVrh.10, AAVrh.12, AAVrh.13, AAVrh.13R, AAVrh.14, AAVrh.17, AAVrh.18, AAVrh.19, AAVrh.20, AAVrh.21, AAVrh.22, AAVrh.23, AAVrh.24, AAVrh.25, AAVrh.31, AAVrh.32, AAVrh.33, AAVrh.34, AAVrh.35, AAVrh.36, AAVrh.37, AAVrh.37R2, AAVrh.38, AAVrh.39, AAVrh.40, AAVrh.46, AAVrh.48, AAVrh.48.1, AAVrh.48.1.2, AAVrh.48.2, AAVrh.49, AAVrh.51, AAVrh.52, AAVrh.53, AAVrh.54, AAVrh.56, AAVrh.57, AAVrh.58, AAVrh.61, AAVrh.64, AAVrh.64R1, AAVrh.64R2, AAVrh.67, AAVrh.73, AAVrh.74, AAVrh8R, AAVrh8R A586R mutant, AAVrh8R R533A mutant, AAAV, BAAV, caprine AAV, bovine AAV, AAVhE1.1, AAVhEr1.5, AAVhER1.14, AAVhEr1.8, AAVhEr1.16, AAVhEr1.18, AAVhEr1.35, AAVhEr1.7, AAVhEr1.36, AAVhEr2.29, AAVhEr2.4, AAVhEr2.16, AAVhEr2.30, AAVhEr2.31, AAVhEr2.36, AAVhER1.23, AAVhEr3.1, AAV2.5T , AAV-PAEC, AAV-LK01, AAV-LK02, AAV-LK03, AAV-LK04, AAV-LK05, AAV-LK06, AAV-LK07, AAV-LK08, AAV-LK09, AAV-LK10, AAV-LK11, AAV-LK12, AAV-LK13, AAV-LK14, AAV-LK15, AAV-LK16, AAV-LK17, AAV-LK18, AAV-LK19, AAV-PAEC2, AAV-PAEC4, AAV-PAEC6, AAV-PAEC7, AAV-PAEC8, AAV-PAEC11, AAV-PAEC12, AAV-2-pre-miRNA-101 , AAV-8h, AAV-8b, AAV-h, AAV-b, AAV SM 10-2 , AAV Shuffle 100-1 , AAV Shuffle 100-3, AAV Shuffle 100-7, AAV Shuffle 10-2, AAV Shuffle 10-6, AAV Shuffle 10-8, AAV Shuffle 100-2, AAV SM 10-1, AAV SM 10-8 , AAV SM 100-3, AAV SM 100-10, BNP61 AAV, BNP62 AAV, BNP63 AAV, AAVrh.50, AAVrh.43, AAVrh.62, AAVrh.48, AAVhu.19, AAVhu.11, AAVhu.53, AAV4-8/rh.64, AAVLG-9/hu.39, AAV54.5/hu.23, AAV54.2/hu.22, AAV54.7/hu.24, AAV54.1/hu.21, AAV54.4R/hu.27, AAV46.2/hu.28, AAV46.6/hu.29, AAV128.1/hu.43, true type AAV (ttAAV), UPENN AAV 10, Japanese AAV 10 serotypes, AAV CBr-7.1, AAV CBr-7.10, AAV CBr-7.2, AAV CBr-7.3, AAV CBr-7.4, AAV CBr-7.5, AAV CBr-7.7, AAV CBr-7.8, AAV CBr-B7.3, AAV CBr-B7.4, AAV CBr-E1, AAV CBr-E2, AAV CBr-E3, AAV CBr-E4, AAV CBr-E5, AAV CBr-e5, AAV CBr-E6, AAV CBr-E7, AAV CBr-E8, AAV CHt-1, AAV CHt-2, AAV CHt-3, AAV CHt-6.1, AAV CHt-6.10, AAV CHt-6.5, AAV CHt-6.6, AAV CHt-6.7, AAV CHt-6.8, AAV CHt-P1, AAV CHt-P2, AAV CHt-P5, AAV CHt-P6, AAV CHt-P8, AAV CHt-P9, AAV CKd-1, AAV CKd-10, AAV CKd-2, AAV CKd-3, AAV CKd-4, AAV CKd-6, AAV CKd-7, AAV CKd-8, AAV CKd-B1, AAV CKd-B2, AAV CKd-B3, AAV CKd-B4, AAV CKd-B5, AAV CKd-B6, AAV CKd-B7, AAV CKd-B8, AAV CKd-H1, AAV CKd-H2, AAV CKd-H3, AAV CKd-H4, AAV CKd-H5, AAV CKd-H6, AAV CKd-N3, AAV CKd-N4, AAV CKd-N9, AAV CLg-F1, AAV CLg-F2, AAV CLg-F3, AAV CLg-F4, AAV CLg-F5, AAV CLg-F6, AAV CLg-F7, AAV CLg-F8, AAV CLv-1, AAV CLv1-1, AAV Clv1-10, AAV CLv1-2, AAV CLv-12, AAV CLv1-3, AAV CLv-13, AAV CLv1-4, AAV Clv1-7, AAV Clv1-8, AAV Clv1-9, AAV CLv-2, AAV CLv-3, AAV CLv-4, AAV CLv-6, AAV CLv-8, AAV CLv-D1, AAV CLv-D2, AAV CLv-D3, AAV CLv-D4, AAV CLv-D5, AAV CLv-D6, AAV CLv-D7, AAV CLv-D8, AAV CLv-E1, AAV CLv-K1, AAV CLv-K3, AAV CLv-K6, AAV CLv-L4, AAV CLv-L5, AAV CLv-L6, AAV CLv-M1, AAV CLv-M11, AAV CLv-M2, AAV CLv-M5, AAV CLv-M6, AAV CLv-M7, AAV CLv-M8, AAV CLv-M9, AAV CLv-R1, AAV CLv-R2, AAV CLv-R3, AAV CLv-R4, AAV CLv-R5, AAV CLv-R6, AAV CLv-R7, AAV CLv-R8, AAV CLv-R9, AAV CSp-1, AAV CSp-10, AAV CSp-11, AAV CSp-2, AAV CSp-3, AAV CSp-4, AAV CSp-6, AAV CSp-7, AAV CSp-8, AAV CSp-8.10, AAV CSp-8.2, AAV CSp-8.4, AAV CSp-8.5, AAV CSp-8.6, AAV CSp-8.7, AAV CSp-8.8, AAV CSp-8.9, AAV CSp-9, AAV.hu.48R3, AAV.VR-355, AAV3B, AAV4, AAV5, AAVF1/HSC1, AAVF11/HSC11, AAVF12/HSC12, AAVF13/HSC13, AAVF14/HSC14, AAVF15/HSC15, AAVF16/HSC16, AAVF17/HSC17, AAVF2/HSC2, AAVF3/HSC3, AAVF4/HSC4, AAVF5/HSC5, AAVF6/HSC6, AAVF7/HSC7, AAVF8/HSC8, and/or AAVF9/HSC9 and variants thereof.


In some embodiments, the serotype may be AAVDJ or a variant thereof, such as AAVDJ8 (or AAV-DJ8), as described by Grimm et al. (Journal of Virology 82(12): 5887-5911 (2008), US Publication US20140359799 and U.S. Pat. No. 7,588,772, each of which is herein incorporated by reference in its entirety). The amino acid sequence of AAVDJ8 may comprise two or more mutations in order to remove the heparin binding domain (HBD). As a non-limiting example, the AAV-DJ sequence is as described by SEQ ID NO: 1 in U.S. Pat. No. 7,588,772, the contents of which are herein incorporated by reference in their entirety, and the AAVDJ8 sequence may comprise two mutations: (1) R587Q where arginine (R; Arg) at amino acid 587 is changed to glutamine (Q; Gln) and (2) R590T where arginine (R; Arg) at amino acid 590 is changed to threonine (T; Thr). As another non-limiting example, the AAVDJ8 sequence may comprise three mutations: (1) K406R where lysine (K; Lys) at amino acid 406 is changed to arginine (R; Arg), (2) R587Q where arginine (R; Arg) at amino acid 587 is changed to glutamine (Q; Gln) and (3) R590T where arginine (R; Arg) at amino acid 590 is changed to threonine (T; Thr).


In one embodiment, the parent AAV capsid sequence comprises an AAV9 sequence.


In one embodiment, the parent AAV capsid sequence comprises an K449R AAV9 sequence.


In one embodiment, the parent AAV capsid sequence comprises an AAVDJ sequence.


In one embodiment, the parent AAV capsid sequence comprises an AAVDJ8 sequence.


In one embodiment, the parent AAV capsid sequence comprises an AAVrh10 sequence.


In one embodiment, the parent AAV capsid sequence comprises an AAV1 sequence.


In one embodiment, the parent AAV capsid sequence comprises an AAV5 sequence.


While not wishing to be bound by theory, it is understood that a parent AAV capsid sequence comprises a VP1 region. In one embodiment, a parent AAV capsid sequence comprises a VP1, VP2 and/or VP3 region, or any combination thereof. A parent VP1 sequence may be considered synonymous with a parent AAV capsid sequence.


The present disclosure refers to structural capsid proteins (including VP1, VP2 and VP3) which are encoded by capsid (Cap) genes. These capsid proteins form an outer protein structural shell (i.e. capsid) of a viral vector such as AAV. VP capsid proteins synthesized from Cap polynucleotides generally include a methionine as the first amino acid in the peptide sequence (Met1), which is associated with the start codon (AUG or ATG) in the corresponding Cap nucleotide sequence. However, it is common for a first-methionine (Met1) residue or generally any first amino acid (AA1) to be cleaved off after or during polypeptide synthesis by protein processing enzymes such as Met-aminopeptidases. This “Met/AA-clipping” process often correlates with a corresponding acetylation of the second amino acid in the polypeptide sequence (e.g., alanine, valine, serine, threonine, etc.). Met-clipping commonly occurs with VP1 and VP3 capsid proteins but can also occur with VP2 capsid proteins.


Where the Met/AA-clipping is incomplete, a mixture of one or more (one, two or three) VP capsid proteins comprising the viral capsid may be produced, some of which may include a Met1/AA1 amino acid (Met+/AA+) and some of which may lack a Met1/AA1 amino acid as a result of Met/AA-clipping (Met−/AA−). For further discussion regarding Met/AA-clipping in capsid proteins, see Jin, et al. Direct Liquid Chromatography/Mass Spectrometry Analysis for Complete Characterization of Recombinant Adeno-Associated Virus Capsid Proteins. Hum Gene Ther Methods. 2017 October 28(5):255-267; Hwang, et al. N-Terminal Acetylation of Cellular Proteins Creates Specific Degradation Signals. Science. 2010 Feb. 19. 327(5968): 973-977; the contents of which are each incorporated herein by reference in its entirety.


According to the present disclosure, references to capsid proteins is not limited to either clipped (Met−/AA−) or unclipped (Met+/AA+) and may, in context, refer to independent capsid proteins, viral capsids comprised of a mixture of capsid proteins, and/or polynucleotide sequences (or fragments thereof) which encode, describe, produce or result in capsid proteins of the present disclosure. A direct reference to a “capsid protein” or “capsid polypeptide” (such as VP1, VP2 or VP2) may also comprise VP capsid proteins which include a Met1/AA1 amino acid (Met+/AA+) as well as corresponding VP capsid proteins which lack the Met1/AA1 amino acid as a result of Met/AA-clipping (Met−/AA−).


Further according to the present disclosure, a reference to a specific SEQ ID NO: (whether a protein or nucleic acid) which comprises or encodes, respectively, one or more capsid proteins which include a Met1/AA1 amino acid (Met+/AA+) should be understood to teach the VP capsid proteins which lack the Met1/AA1 amino acid as upon review of the sequence, it is readily apparent any sequence which merely lacks the first listed amino acid (whether or not Met1/AA1).


As a non-limiting example, reference to a VP1 polypeptide sequence which is 736 amino acids in length and which includes a “Met1” amino acid (Met+) encoded by the AUG/ATG start codon may also be understood to teach a VP1 polypeptide sequence which is 735 amino acids in length and which does not include the “Met1” amino acid (Met−) of the 736 amino acid Met+ sequence. As a second non-limiting example, reference to a VP1 polypeptide sequence which is 736 amino acids in length and which includes an “AA1” amino acid (AA1+) encoded by any NNN initiator codon may also be understood to teach a VP1 polypeptide sequence which is 735 amino acids in length and which does not include the “AA1” amino acid (AA1−) of the 736 amino acid AA1+sequence.


References to viral capsids formed from VP capsid proteins (such as reference to specific AAV capsid serotypes), can incorporate VP capsid proteins which include a Met1/AA1 amino acid (Met+/AA1+), corresponding VP capsid proteins which lack the Met1/AA1 amino acid as a result of Met/AA1-clipping (Met−/AA1−), and combinations thereof (Met+/AA1+ and Met−/AA1−).


As a non-limiting example, an AAV capsid serotype can include VP1 (Met+/AA1+), VP1 (Met−/AA1−), or a combination of VP1 (Met+/AA1+) and VP1 (Met−/AA1−). An AAV capsid serotype can also include VP3 (Met+/AA1+), VP3 (Met−/AA1−), or a combination of VP3 (Met+/AA1+) and VP3 (Met−/AA1−); and can also include similar optional combinations of VP2 (Met+/AA1) and VP2 (Met−/AA1−).


In one embodiment, the parent AAV capsid sequence may comprise an amino acid sequence with 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to any of the those described above.


In one embodiment, the parent AAV capsid sequence may be encoded by a nucleotide sequence with 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to any of those described above.


In one embodiment, the parent sequence is not an AAV capsid sequence and is instead a different vector (e.g., lentivirus, plasmid, etc.). In another embodiment, the parent sequence is a delivery vehicle (e.g., a nanoparticle) and the targeting peptide is attached thereto.


Targeting Peptides

Disclosed herein are targeting peptides and associated AAV particles comprising a capsid protein with one or more targeting peptide inserts, for enhanced or improved transduction of a target tissue (e.g., cells of the CNS or PNS).


In one embodiment, the targeting peptide may direct an AAV particle to a cell or tissue of the CNS. The cell of the CNS may be, but is not limited to, neurons (e.g., excitatory, inhibitory, motor, sensory, autonomic, sympathetic, parasympathetic, Purkinje, Betz, etc.), glial cells (e.g., microglia, astrocytes, oligodendrocytes) and/or supporting cells of the brain such as immune cells (e.g., T cells). The tissue of the CNS may be, but is not limited to, the cortex (e.g., frontal, parietal, occipital, temporal), thalamus, hypothalamus, striatum, putamen, caudate nucleus, hippocampus, entorhinal cortex, basal ganglia, or deep cerebellar nuclei.


In one embodiment, the targeting peptide may direct an AAV particle to a cell or tissue of the PNS. The cell or tissue of the PNS may be, but is not limited to, a dorsal root ganglion (DRG).


The targeting peptide may direct an AAV particle to the CNS (e.g., the cortex) after intravenous administration.


The targeting peptide may direct and AAV particle to the PNS (e.g., DRG) after intravenous administration.


A targeting peptide may vary in length. In one embodiment, the targeting peptide is 3-20 amino acids in length. As non-limiting examples, the targeting peptide may be 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or 3-5, 3-8, 3-10, 3-12, 3-15, 3-18, 3-20, 5-10, 5-15, 5-20, 10-12, 10-15, 10-20, 12-20, or 15-20 amino acids in length.


Targeting peptides of the present disclosure may be identified and/or designed by any method known in the art. As a non-limiting example, the CREATE system as described in Deverman et al., (Nature Biotechnology 34(2):204-209 (2016)), Chan et al., (Nature Neuroscience 20(8):1172-1179 (2017)), and in International Patent Application Publication Nos. WO2015038958 and WO2017100671, the contents of each of which are herein incorporated by reference in their entirety, may be used as a means of identifying targeting peptides, in either mice or other research animals, such as, but not limited to, non-human primates.


Targeting peptides and associated AAV particles may be identified from libraries of AAV capsids comprised of targeting peptide variants. In one embodiment, the targeting peptides may be 7 amino acid sequences (7-mers). In another embodiment, the targeting peptides may be 9 amino acid sequences (9-mers). The targeting peptides may also differ in their method of creation or design, with non-limiting examples including, random peptide selection, site saturation mutagenesis, and/or optimization of a particular region of the peptide (e.g., flanking regions or central core).


In one embodiment, a targeting peptide library comprises targeting peptides of 7 amino acids (7-mer) in length randomly generated by PCR.


In one embodiment, a targeting peptide library comprises targeting peptides with 3 mutated amino acids. In one embodiment, these 3 mutated amino acids are consecutive amino acids. In another embodiment, these 3 mutated amino acids are not consecutive amino acids. In one embodiment, the parent targeting peptide is a 7-mer. In another embodiment, the parent peptide is a 9-mer.


In one embodiment, a targeting peptide library comprises 7-mer targeting peptides, wherein the amino acids of the targeting peptide and/or the flanking sequences are evolved through site saturation mutagenesis of 3 consecutive amino acids. In one embodiment, NNK (N=any base; K=G or T) codons are used to generate the site saturated mutation sequences.


AAV particles comprising capsid proteins with targeting peptide inserts are generated and viral genomes encoding a reporter (e.g., GFP) encapsulated within. These AAV particles (or AAV capsid library) are then administered to a transgenic mouse by intravenous delivery to the tail vein. Administration of these capsid libraries to cre-expressing mice results in expression of the reporter payload in the target tissue, due to the expression of Cre.


AAV particles and/or viral genomes may be recovered from the target tissue for identification of targeting peptides and associated AAV particles that are enriched, indicating enhanced transduction of target tissue. Standard methods in the art, such as, but not limited to next generation sequencing (NGS), viral genome quantification, biochemical assays, immunohistochemistry and/or imaging of target tissue samples may be used to determine enrichment.


A target tissue may be any cell, tissue or organ of a subject. As non-limiting examples, samples may be collected from brain, spinal cord, dorsal root ganglia and associated roots, liver, heart, gastrocnemius muscle, soleus muscle, pancreas, kidney, spleen, lung, adrenal glands, stomach, sciatic nerve, saphenous nerve, thyroid gland, eyes (with or without optic nerve), pituitary gland, skeletal muscle (rectus femoris), colon, duodenum, ileum, jejunum, skin of the leg, superior cervical ganglia, urinary bladder, ovaries, uterus, prostate gland, testes, and/or any sites identified as having a lesion, or being of interest.


Targeting Peptide Sequences

In one embodiment the targeting peptide may comprise a sequence as set forth in Table 2. In Table 2, “_1” refers to NNM codons where A or C is in the third position and “_2” refers to NNK codons where G or T is in the third position. Additionally, the NNM codons cannot cover the entire repertoire of amino acids since Met or Trp can only be encoded by codons ATG and TGG, respectively. Therefore, some “NNM” sequences also contain some codons ending in G.









TABLE 2







Peptides










Peptide
SEQ
Peptide
SEQ


Sequence_ID
ID NO:
Sequence_ID
ID NO:





AQAGAGSER_1
194
DGTGQVTGW_1
 68





AQAGAGSER_2
194
DGTGQVTGW_2
 68





AQDQNPGRW_1
195
DGTGRLTGW_1
159





AQDQNPGRW_2
195
DGTGRLTGW_2
159





AQELTRPFL_1
144
DGTGRTVGW_1
117





AQELTRPFL_2
144
DGTGRTVGW_2
117





AQEVPGYRW_1
196
DGTGSGMMT_1
306





AQEVPGYRW_2
196
DGTGSGMMT_2
306





AQFPTNYDS_1
 66
DGTGSISGW_1
307





AQFPTNYDS_2
 66
DGTGSISGW_2
307





AQFVVGQQY_1
 95
DGTGSLAGW_1
308





AQFVVGQQY_2
 95
DGTGSLAGW_2
308





AQGASPGRW_1
149
DGTGSLNGW_1
309





AQGASPGRW_2
149
DGTGSLNGW_2
309





AQGENPGRW_1
 96
DGTGSLQGW_1
310





AQGENPGRW_2
 96
DGTGSLQGW_2
310





AQGGNPGRW_1
 91
DGTGSLSGW_1
311





AQGGNPGRW_2
 91
DGTGSLSGW_2
311





AQGGSTGSN_1
197
DGTGSLVGW_1
312





AQGGSTGSN_2
197
DGTGSLVGW_2
312





AQGPTRPFL_1
125
DGTGSTHGW_1
119





AQGPTRPFL_2
125
DGTGSTHGW_2
119





AQGRDGWAA_1
198
DGTGSTKGW_1
313





AQGRDGWAA_2
198
DGTGSTKGW_2
313





AQGRMTDSQ_1
199
DGTGSTMGW_1
314





AQGRMTDSQ_2
199
DGTGSTMGW_2
314





AQGSDVGRW_1
128
DGTGSTQGW_1
315





AQGSDVGRW_2
128
DGTGSTQGW_2
315





AQGSNPGRW_1
103
DGTGSTSGW_1
316





AQGSNPGRW_2
103
DGTGSTSGW_2
316





AQGSNSPQV_1
200
DGTGSTTGW_1
134





AQGSNSPQV_2
200
DGTGSTTGW_2
134





AQGSWNPPA_1
 80
DGTGSVMGW_1
317





AQGSWNPPA_2
 80
DGTGSVMGW_2
317





AQGTWNPPA_1
 82
DGTGSVTGW_1
318





AQGTWNPPA_2
 82
DGTGSVTGW_2
318





AQGVFIPPK_1
201
DGTGTLAGW_1
319





AQGVFIPPK_2
201
DGTGTLAGW_2
319





AQHVNASQS_1
202
DGTGTLHGW_1
320





AQHVNASQS_2
202
DGTGTLHGW_2
320





AQIKAGWAQ_1
203
DGTGTLKGW_1
321





AQIKAGWAQ_2
203
DGTGTLKGW_2
321





AQIMSGYAQ_1
204
DGTGTLSGW_1
322





AQIMSGYAQ_2
204
DGTGTLSGW_2
322





AQKSVGSVY_1
205
DGTGTTLGW_1
323





AQKSVGSVY_2
205
DGTGTTLGW_2
323





AQLEHGFAQ_1
206
DGTGTTMGW_1
324





AQLEHGFAQ_2
206
DGTGTTMGW_2
324





AQLGGVLSA_1
207
DGTGTTTGW_1
130





AQLGGVLSA_2
207
DGTGTTTGW_2
130





AQLGLSQGR_1
208
DGTGTTVGW_1
 74





AQLGLSQGR_2
208
DGTGTTVGW_2
 74





AQLGYGFAQ_1
209
DGTGTTYGW_1
325





AQLGYGFAQ_2
209
DGTGTTYGW_2
325





AQLKYGLAQ_1
115
DGTGTVHGW_1
326





AQLKYGLAQ_2
115
DGTGTVHGW_2
326





AQLRIGFAQ_1
210
DGTGTVQGW_1
327





AQLRIGFAQ_2
210
DGTGTVQGW_2
327





AQLRMGYSQ_1
211
DGTGTVSGW_1
328





AQLRMGYSQ_2
211
DGTGTVSGW_2
328





AQLRQGYAQ_1
212
DGTGTVTGW_1
329





AQLRQGYAQ_2
212
DGTGTVTGW_2
329





AQLRVGFAQ_1
123
DGTHARLSS_1
330





AQLRVGFAQ_2
123
DGTHARLSS_2
330





AQLSCRSQM_1
213
DGTHAYMAS_1
153





AQLSCRSQM_2
213
DGTHAYMAS_2
153





AQLTYSQSL_1
214
DGTHFAPPR_1
112





AQLTYSQSL_2
214
DGTHFAPPR_2
112





AQLYKGYSQ_1
215
DGTHIHLSS_1
162





AQLYKGYSQ_2
215
DGTHIHLSS_2
162





AQMPQRPFL_1
216
DGTHIRALS_1
331





AQMPQRPFL_2
216
DGTHIRALS_2
331





AQNGNPGRW_1
 84
DGTHIRLAS_1
332





AQNGNPGRW_2
 84
DGTHIRLAS_2
332





AQPEGSARW_1
 60
DGTHLQPFR_1
333





AQPEGSARW_2
 60
DGTHLQPFR_2
333





AQPLAVYGA_1
217
DGTHSFYDA_1
334





AQPLAVYGA_2
217
DGTHSFYDA_2
334





AQPQSSSMS_1
218
DGTHSTTGW_1
145





AQPQSSSMS_2
218
DGTHSTTGW_2
145





AQPSVGGYW_1
219
DGTHTRTGW_1
 90





AQPSVGGYW_2
219
DGTHTRTGW_2
 90





AQQAVGQSW_1
220
DGTHVRALS_1
335





AQQAVGQSW_2
220
DGTHVRALS_2
335





AQQRSLASG_1
221
DGTHVYMAS_1
336





AQQRSLASG_2
221
DGTHVYMAS_2
336





AQQVMNSQG_1
222
DGTHVYMSS_1
337





AQQVMNSQG_2
222
DGTHVYMSS_2
337





AQRGVGLSQ_1
223
DGTIALPFK_1
338





AQRGVGLSQ_2
223
DGTIALPFK_2
338





AQRHDAEGS_1
224
DGTIALPFR_1
339





AQRHDAEGS_2
224
DGTIALPFR_2
339





AQRKGEPHY_1
225
DGTIATRYV_1
340





AQRKGEPHY_2
225
DGTIATRYV_2
340





AQRYTGDSS_1
138
DGTIERPFR_1
 87





AQRYTGDSS_2
138
DGTIERPFR_2
 87





AQSAMAAKG_1
226
DGTIGYAYV_1
341





AQSAMAAKG_2
226
DGTIGYAYV_2
341





AQSGGLTGS_1
227
DGTIQAPFK_1
342





AQSGGLTGS_2
227
DGTIQAPFK_2
342





AQSGGVGQV_1
228
DGTIRLPFK_1
343





AQSGGVGQV_2
228
DGTIRLPFK_2
343





AQSLATPFR_1
169
DGTISKEVG_1
344





AQSLATPFR_2
169
DGTISKEVG_2
344





AQSMSRPFL_1
229
DGTISQPFK_1
105





AQSMSRPFL_2
229
DGTISQPFK_2
105





AQSQLRPFL_1
230
DGTKIQLSS_1
146





AQSQLRPFL_2
230
DGTKIQLSS_2
146





AQSVAKPFL_1
231
DGTKIRLSS_1
111





AQSVAKPFL_2
231
DGTKIRLSS_2
111





AQSVSQPFR_1
232
DGTKLMLSS_1
157





AQSVSQPFR_2
232
DGTKLMLSS_2
157





AQSVVRPFL_1
233
DGTKLRLSS_1
118





AQSVVRPFL_2
233
DGTKLRLSS_2
118





AQTALSSST_1
234
DGTKMVLQL_1
142





AQTALSSST_2
234
DGTKMVLQL_2
142





AQTEMGGRC_1
235
DGTKSLVQL_1
345





AQTEMGGRC_2
235
DGTKSLVQL_2
345





AQTGFAPPR_1
161
DGTKVLVQL_1
122





AQTGFAPPR_2
161
DGTKVLVQL_2
122





AQTIRGYSS_1
236
DGTLAAPFK_1
120





AQTIRGYSS_2
236
DGTLAAPFK_2
120





AQTISNYHT_1
237
DGTLAVNFK_1
346





AQTISNYHT_2
237
DGTLAVNFK_2
346





AQTLARPFV_1
 98
DGTLAVPFK_1
 71





AQTLARPFV_2
 98
DGTLAVPFK_2
 71





AQTLAVPFK_1
168
DGTLAYPFK_1
347





AQTLAVPFK_2
168
DGTLAYPFK_2
347





AQTPDRPWL_1
238
DGTLERPFR_1
156





AQTPDRPWL_2
238
DGTLERPFR_2
156





AQTRAGYAQ_1
126
DGTLEVHFK_1
348





AQTRAGYAQ_2
126
DGTLEVHFK_2
348





AQTRAGYSQ_1
141
DGTLLRLSS_1
121





AQTRAGYSQ_2
141
DGTLLRLSS_2
121





AQTREYLLG_1
 93
DGTLNNPFR_1
109





AQTREYLLG_2
 93
DGTLNNPFR_2
109





AQTSAKPFL_1
163
DGTLQQPFR_1
 89





AQTSAKPFL_2
163
DGTLQQPFR_2
 89





AQTSARPFL_1
100
DGTLSQPFR_1
 65





AQTSARPFL_2
100
DGTLSQPFR_2
 65





AQTTDRPFL_1
 85
DGTLSRTLW_1
349





AQTTDRPFL_2
 85
DGTLSRTLW_2
349





AQTTEKPWL_1
 83
DGTLSSPFR_1
350





AQTTEKPWL_2
 83
DGTLSSPFR_2
350





AQTVARPFY_1
239
DGTLTVPFR_1
351





AQTVARPFY_2
239
DGTLTVPFR_2
351





AQTVATPFR_1
240
DGTLVAPFR_1
352





AQTVATPFR_2
240
DGTLVAPFR_2
352





AQTVTQLFK_1
241
DGTMDKPFR_1
 70





AQTVTQLFK_2
241
DGTMDKPFR_2
 70





AQVHVGSVY_1
165
DGTMDRPFK_1
102





AQVHVGSVY_2
165
DGTMDRPFK_2
102





AQVLAGYNM_1
242
DGTMLRLSS_1
148





AQVLAGYNM_2
242
DGTMLRLSS_2
148





AQVSEARVR_1
243
DGTMQLTGW_1
353





AQVSEARVR_2
243
DGTMQLTGW_2
353





AQVVVGYSQ_1
244
DGTNGLKGW_1
 76





AQVVVGYSQ_2
244
DGTNGLKGW_2
 76





AQWAAGYNV_1
245
DGTNSISGW_1
354





AQWAAGYNV_2
245
DGTNSISGW_2
354





AQWELSNGY_1
246
DGTNSLSGW_1
355





AQWELSNGY_2
246
DGTNSLSGW_2
355





AQWEVKGGY_1
247
DGTNSTTGW_1
143





AQWEVKGGY_2
247
DGTNSTTGW_2
143





AQWEVKRGY_1
248
DGTNSVTGW_1
356





AQWEVKRGY_2
248
DGTNSVTGW_2
356





AQWEVQSGF_1
249
DGTNTINGW_1
124





AQWEVQSGF_2
249
DGTNTINGW_2
124





AQWEVRGGY_1
250
DGTNTLGGW_1
357





AQWEVRGGY_2
250
DGTNTLGGW_2
357





AQWEVTSGW_1
251
DGTNTTHGW_1
113





AQWEVTSGW_2
251
DGTNTTHGW_2
113





AQWGAPSHG_1
252
DGTNYRLSS_1
358





AQWGAPSHG_2
252
DGTNYRLSS_2
358





AQWMELGSS_1
253
DGTQALSGW_1
359





AQWMELGSS_2
253
DGTQALSGW_2
359





AQWMFGGSG_1
254
DGTQFRLSS_1
129





AQWMFGGSG_2
254
DGTQFRLSS_2
129





AQWMLGGAQ_1
255
DGTQFSPPR_1
108





AQWMLGGAQ_2
255
DGTQFSPPR_2
108





AQWPTAYDA_1
256
DGTQGLKGW_1
158





AQWPTAYDA_2
256
DGTQGLKGW_2
158





AQWPTSYDA_1
 62
DGTQTTSGW_1
360





AQWPTSYDA_2
 62
DGTQTTSGW_2
360





AQWQVQTGF_1
257
DGTRALTGW_1
361





AQWQVQTGF_2
257
DGTRALTGW_2
361





AQWSTEGGY_1
258
DGTRFSLSS_1
362





AQWSTEGGY_2
258
DGTRFSLSS_2
362





AQWTAAGGY_1
259
DGTRGLSGW_1
363





AQWTAAGGY_2
259
DGTRGLSGW_2
363





AQWTTESGY_1
260
DGTRIGLSS_1
364





AQWTTESGY_2
260
DGTRIGLSS_2
364





AQWVYGSSH_1
261
DGTRLHLAS_1
365





AQWVYGSSH_2
261
DGTRLHLAS_2
365





AQYLAGYTV_1
262
DGTRLHLSS_1
366





AQYLAGYTV_2
262
DGTRLHLSS_2
366





AQYLKGYSV_1
152
DGTRLLLSS_1
367





AQYLKGYSV_2
152
DGTRLLLSS_2
367





AQYLSGYNT_1
263
DGTRLMLSS_1
368





AQYLSGYNT_2
263
DGTRLMLSS_2
368





DGAAATTGW_1
264
DGTRLNLSS_1
369





DGAAATTGW_2
264
DGTRLNLSS_2
369





DGAGGTSGW_1
151
DGTRMVVQL_1
370





DGAGGTSGW_2
151
DGTRMVVQL_2
370





DGAGTTSGW_1
265
DGTRNMYEG_1
135





DGAGTTSGW_2
265
DGTRNMYEG_2
135





DGAHGLSGW_1
266
DGTRSITGW_1
371





DGAHGLSGW_2
266
DGTRSITGW_2
371





DGAHVGLSS_1
267
DGTRSLHGW_1
372





DGAHVGLSS_2
267
DGTRSLHGW_2
372





DGARTVLQL_1
268
DGTRSTTGW_1
373





DGARTVLQL_2
268
DGTRSTTGW_2
373





DGEYQKPFR_1
269
DGTRTTTGW_1
106





DGEYQKPFR_2
269
DGTRTTTGW_2
106





DGGGTTTGW_1
270
DGTRTVTGW_1
374





DGGGTTTGW_2
270
DGTRTVTGW_2
374





DGHATSMGW_1
271
DGTRTVVQL_1
375





DGHATSMGW_2
271
DGTRTVVQL_2
375





DGKGSTQGW_1
272
DGTRVHLSS_1
376





DGKGSTQGW_2
272
DGTRVHLSS_2
376





DGKQYQLSS_1
 92
DGTSFPYAR_1
 86





DGKQYQLSS_2
 92
DGTSFPYAR_2
 86





DGNGGLKGW_1
167
DGTSFTPPK_1
 81





DGNGGLKGW_2
167
DGTSFTPPK_2
 81





DGQGGLSGW_1
273
DGTSFTPPR_1
 88





DGQGGLSGW_2
273
DGTSFTPPR_2
 88





DGQHFAPPR_1
110
DGTSGLHGW_1
377





DGQHFAPPR_2
110
DGTSGLHGW_2
377





DGRATKTLY_1
274
DGTSGLKGW_1
101





DGRATKTLY_2
274
DGTSGLKGW_2
101





DGRNALTGW_1
275
DGTSIHLSS_1
378





DGRNALTGW_2
275
DGTSIHLSS_2
378





DGRRQVIQL_1
276
DGTSIMLSS_1
379





DGRRQVIQL_2
276
DGTSIMLSS_2
379





DGRVYGLSS_1
277
DGTSLRLSS_1
166





DGRVYGLSS_2
277
DGTSLRLSS_2
166





DGSGRTTGW_1
147
DGTSNYGAR_1
380





DGSGRTTGW_2
147
DGTSNYGAR_2
380





DGSGTTRGW_1
114
DGTSSYYDA_1
381





DGSGTTRGW_2
114
DGTSSYYDA_2
381





DGSGTVSGW_1
278
DGTSSYYDS_1
 59





DGSGTVSGW_2
278
DGTSSYYDS_2
 59





DGSPEKPFR_1
160
DGTSTISGW_1
382





DGSPEKPFR_2
160
DGTSTISGW_2
382





DGSQSTTGW_1
136
DGTSTITGW_1
383





DGSQSTTGW_2
136
DGTSTITGW_2
383





DGSSFYPPK_1
127
DGTSTLHGW_1
384





DGSSFYPPK_2
127
DGTSTLHGW_2
384





DGSSSYYDA_1
 64
DGTSTLRGW_1
385





DGSSSYYDA_2
 64
DGTSTLRGW_2
385





DGSIERPFR_1
 99
DGTSTLSGW_1
386





DGSIERPFR_2
 99
DGTSTLSGW_2
386





DGTAARLSS_1
132
DGTSYVPPK_1
 97





DGTAARLSS_2
132
DGTSYVPPK_2
 97





DGTADKPFR_1
 63
DGTSYVPPR_1
 78





DGTADKPFR_2
 63
DGTSYVPPR_2
 78





DGTADRPFR_1
155
DGTTATYYK_1
387





DGTADRPFR_2
155
DGTTATYYK_2
387





DGTAERPFR_1
140
DGTTFTPPR_1
 79





DGTAERPFR_2
140
DGTTFTPPR_2
 79





DGTAIHLSS_1
 67
DGTTLAPFR_1
388





DGTAIHLSS_2
 67
DGTTLAPFR_2
388





DGTAIYLSS_1
279
DGTTLVPPR_1
116





DGTAIYLSS_2
279
DGTTLVPPR_2
116





DGTALMLSS_1
280
DGTTSKTLW_1
389





DGTALMLSS_2
280
DGTTSKTLW_2
389





DGTASISGW_1
281
DGTTSRTLW_1
390





DGTASISGW_2
281
DGTTSRTLW_2
390





DGTASTSGW_1
282
DGTTTRSLY_1
391





DGTASTSGW_2
282
DGTTTRSLY_2
391





DGTASVTGW_1
283
DGTTTTTGW_1
392





DGTASVTGW_2
283
DGTTTTTGW_2
392





DGTASYYDS_1
 61
DGTTTYGAR_1
 77





DGTASYYDS_2
 61
DGTTTYGAR_2
 77





DGTATTMGW_1
284
DGTTWTPPR_1
139





DGTATTMGW_2
284
DGTTWTPPR_2
139





DGTATTTGW_1
285
DGTTYMLSS_1
393





DGTATTTGW_2
285
DGTTYMLSS_2
393





DGTAYRLSS_1
286
DGTTYVPPR_1
 75





DGTAYRLSS_2
286
DGTTYVPPR_2
 75





DGTDKMWSL_1
287
DGTVANPFR_1
394





DGTDKMWSL_2
287
DGTVANPFR_2
394





DGTGGIKGW_1
131
DGTVDRPFK_1
395





DGTGGIKGW_2
131
DGTVDRPFK_2
395





DGTGGIMGW_1
288
DGTVIHLSS_1
 73





DGTGGIMGW_2
288
DGTVIHLSS_2
 73





DGTGGISGW_1
289
DGTVILLSS_1
396





DGTGGISGW_2
289
DGTVILLSS_2
396





DGTGGLAGW_1
290
DGTVIMLSS_1
397





DGTGGLAGW_2
290
DGTVIMLSS_2
397





DGTGGLHGW_1
291
DGTVLHLSS_1
398





DGTGGLHGW_2
291
DGTVLHLSS_2
398





DGTGGLQGW_1
292
DGTVLMLSS_1
399





DGTGGLQGW_2
292
DGTVLMLSS_2
399





DGTGGLRGW_1
154
DGTVLVPFR_1
150





DGTGGLRGW_2
154
DGTVLVPFR_2
150





DGTGGLSGW_1
293
DGTVPYLAS_1
400





DGTGGLSGW_2
293
DGTVPYLAS_2
400





DGTGGLTGW_1
294
DGTVPYLSS_1
401





DGTGGLTGW_2
294
DGTVPYLSS_2
401





DGTGGTKGW_1
107
DGTVRVPFR_1
164





DGTGGTKGW_2
107
DGTVRVPFR_2
164





DGTGGTSGW_1
295
DGTVSMPFK_1
402





DGTGGTSGW_2
295
DGTVSMPFK_2
402





DGTGGVHGW_1
296
DGTVSNPFR_1
403





DGTGGVHGW_2
296
DGTVSNPFR_2
403





DGTGGVMGW_1
297
DGTVSTRWV_1
404





DGTGGVMGW_2
297
DGTVSTRWV_2
404





DGTGGVSGW_1
298
DGTVTTTGW_1
405





DGTGGVSGW_2
298
DGTVTTTGW_2
405





DGTGGVTGW_1
299
DGTVTVTGW_1
406





DGTGGVTGW_2
299
DGTVTVTGW_2
406





DGTGGVYGW_1
300
DGTVWVPPR_1
407





DGTGGVYGW_2
300
DGTVWVPPR_2
407





DGTGNLQGW_1
301
DGTVYRLSS_1
408





DGTGNLQGW_2
301
DGTVYRLSS_2
408





DGTGNLRGW_1
133
DGTYARLSS_1
409





DGTGNLRGW_2
133
DGTYARLSS_2
409





DGTGNLSGW_1
302
DGTYGNKLW_1
410





DGTGNLSGW_2
302
DGTYGNKLW_2
410





DGTGNTHGW_1
 72
DGTYIHLSS_1
411





DGTGNTHGW_2
 72
DGTYIHLSS_2
411





DGTGNTRGW_1
 94
DGTYSTSGW_1
412





DGTGNTRGW_2
 94
DGTYSTSGW_2
412





DGTGNTSGW_1
137
DGVHPGLSS_1
104





DGTGNTSGW_2
137
DGVHPGLSS_2
104





DGTGNVSGW_1
303
DGVVALLAS_1
413





DGTGNVSGW_2
303
DGVVALLAS_2
413





DGTGNVTGW_1
 69
DGYVGVGSL_1
414





DGTGNVTGW_2
 69
DGYVGVGSL_2
414





DGTGQLVGW_1
304
control





(wtAAV9-





NNM)






DGTGQLVGW_2
304
control





(wtAAV9-





NNK)






DGTGQTIGW_1
305







DGTGQTIGW_2
305









In one embodiment, the targeting peptide may comprise an amino acid sequence with 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to any of the sequences shown in Table 2.


In one embodiment, a targeting peptide may comprise 4 or more contiguous amino acids of any of the targeting peptides disclosed herein. In one embodiment the targeting peptide may comprise 4 contiguous amino acids of any of the sequences as set forth in Table 2. In one embodiment the targeting peptide may comprise 5 contiguous amino acids of any of the sequences as set forth in Table 2. In one embodiment the targeting peptide may comprise 6 contiguous amino acids of any of the sequences as set forth in Table 2.


In one embodiment, the AAV particle of the disclosure comprises an AAV capsid with a targeting peptide insert, wherein the targeting peptide has an amino acid sequence as set forth in any of Table 2.


In one embodiment, the AAV particle of the disclosure comprises an AAV capsid with a targeting peptide insert, wherein the targeting peptide has an amino acid sequence comprising at least 4 contiguous amino acids of any of the sequences as set forth in any of Table 2.


In one embodiment, the AAV particle of the disclosure comprises an AAV capsid with a targeting peptide insert, wherein the targeting peptide has an amino acid sequence substantially comprising any of the sequences as set forth in any of Table 2.


In one embodiment, the AAV particle of the disclosure comprises an AAV capsid polynucleotide with a targeting nucleic acid insert, wherein the targeting nucleic acid insert has a nucleotide sequence substantially comprising any of those set forth as Table 2.


The AAV particle of the disclosure comprising a targeting nucleic acid insert, may have a polynucleotide sequence with 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more, identity to the parent capsid sequence.


The AAV particle of the disclosure comprising a targeting peptide insert, may have an amino acid sequence with 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more, identity to the parent capsid sequence.


In any of the DNA and RNA sequences referenced and/or described herein, the single letter symbol has the following description: A for adenine; C for cytosine; G for guanine; T for thymine; U for Uracil; W for weak bases such as adenine or thymine; S for strong nucleotides such as cytosine and guanine; M for amino nucleotides such as adenine and cytosine; K for keto nucleotides such as guanine and thymine; R for purines adenine and guanine; Y for pyrimidine cytosine and thymine; B for any base that is not A (e.g., cytosine, guanine, and thymine); D for any base that is not C (e.g., adenine, guanine, and thymine); H for any base that is not G (e.g., adenine, cytosine, and thymine); V for any base that is not T (e.g., adenine, cytosine, and guanine); N for any nucleotide (which is not a gap); and Z is for zero.


In any of the amino acid sequences referenced and/or described herein, the single letter symbol has the following description: G (Gly) for Glycine; A (Ala) for Alanine; L (Leu) for Leucine; M (Met) for Methionine; F (Phe) for Phenylalanine; W (Trp) for Tryptophan; K (Lys) for Lysine; Q (Gln) for Glutamine; E (Glu) for Glutamic Acid; S (Ser) for Serine; P (Pro) for Proline; V (Val) for Valine; I (Ile) for Isoleucine; C (Cys) for Cysteine; Y (Tyr) for Tyrosine; H (His) for Histidine; R (Arg) for Arginine; N (Asn) for Asparagine; D (Asp) for Aspartic Acid; T (Thr) for Threonine; B (Asx) for Aspartic acid or Asparagine; J (Xle) for Leucine or Isoleucine; O (Pyl) for Pyrrolysine; U (Sec) for Selenocysteine; X (Xaa) for any amino acid; and Z (Glx) for Glutamine or Glutamic acid.


Use of Targeting Peptides in AAV Particles

Targeting peptides may be stand-alone peptides or may be inserted into or conjugated to a parent sequence. In one embodiment, the targeting peptides are inserted into the capsid protein of an AAV particle.


One or more targeting peptides may be inserted into a parent AAV capsid sequence to generate the AAV particles of the disclosure.


Targeting peptides may be inserted into a parent AAV capsid sequence in any location that results in fully functional AAV particles. The targeting peptide may be inserted in VP1, VP2 and/or VP3. Numbering of the amino acid residues differs across AAV serotypes, and so the exact amino acid position of the targeting peptide insertion may not be critical. As used herein, amino acid positions of the parent AAV capsid sequence are described using AAV9 (SEQ ID NO: 2) as reference.


In one embodiment, the targeting peptides are inserted in a hypervariable region of the AAV capsid sequence. Non-limiting examples of such hypervariable regions include Loop IV and Loop VIII of the parent AAV capsid. While not wishing to be bound by theory, these surface exposed loops are unstructured and poorly conserved, making them ideal regions for insertion of targeting peptides.


In one embodiment, the targeting peptide is inserted into Loop IV. In another embodiment, the targeting peptide is used to replace a portion, or all of Loop IV. As a non-limiting example, addition of the targeting peptide to the parent AAV capsid sequence may result in the replacement or mutation of at least one amino acid of the parent AAV capsid.


In one embodiment, the targeting peptide is inserted into Loop VIII. In another embodiment, the targeting peptide is used to replace a portion, or all of Loop VIII. As a non-limiting example, addition of the targeting peptide to the parent AAV capsid sequence may result in the replacement or mutation of at least one amino acid of the parent AAV capsid.


In one embodiment, more than one targeting peptide is inserted into a parent AAV capsid sequence. As a non-limiting example, targeting peptides may be inserted at both Loop IV and Loop VIII in the same parent AAV capsid sequence.


Targeting peptides may be inserted at any amino acid position of the parent AAV capsid sequence, such as, but not limited to, between amino acids at positions 586-592, 588-589, 586-589, 452-458, 262-269, 464-473, 491-495, 546-557 and/or 659-668.


In a preferred embodiment, the targeting peptides are inserted into a parent AAV capsid sequence between amino acids at positions 588 and 589 (Loop VIII). In one embodiment, the parent AAV capsid is AAV9 (SEQ ID NO: 2). In a second embodiment, the parent AAV capsid is K449R AAV9 (SEQ ID NO: 3).


The targeting peptides described herein may increase the transduction of the AAV particles of the disclosure to a target tissue as compared to the parent AAV particle lacking a targeting peptide insert. In one embodiment, the targeting peptide increases the transduction of an AAV particle to a target tissue by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 200%, 300%, 400%, 500%, or more as compared to a parent AAV particle lacking a targeting peptide insert.


In one embodiment, the targeting peptide increases the transduction of an AAV particle to a cell or tissue of the CNS by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 200%, 300%, 400%, 500%, or more as compared to a parent AAV particle lacking a targeting peptide insert.


In one embodiment, the targeting peptide increases the transduction of an AAV particle to a cell or tissue of the PNS by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 200%, 300%, 400%, 500%, or more as compared to a parent AAV particle lacking a targeting peptide insert.


In one embodiment, the targeting peptide increases the transduction of an AAV particle to a cell or tissue of the DRG by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 200%, 300%, 400%, 500%, or more as compared to a parent AAV particle lacking a targeting peptide insert.


AAV Production

Viral production disclosed herein describes processes and methods for producing AAV particles (with enhanced, improved and/or increased tropism for a target tissue) that may be used to contact a target cell to deliver a payload.


The present disclosure provides methods for the generation of AAV particles comprising targeting peptides. In one embodiment, the AAV particles are prepared by viral genome replication in a viral replication cell. Any method known in the art may be used for the preparation of AAV particles. In one embodiment, AAV particles are produced in mammalian cells (e.g., HEK293). In another embodiment, AAV particles are produced in insect cells (e.g., Sf9)


Methods of making AAV particles are well known in the art and are described in e.g., U.S. Pat. Nos. 6,204,059, 5,756,283, 6,258,595, 6,261,551, 6,270,996, 6,281,010, 6,365,394, 6,475,769, 6,482,634, 6,485,966, 6,943,019, 6,953,690, 7,022,519, 7,238,526, 7,291,498 and 7,491,508, 5,064,764, 6,194,191, 6,566,118, 8,137,948; or International Publication Nos. WO1996039530, WO1998010088, WO1999014354, WO1999015685, WO1999047691, WO2000055342, WO2000075353 and WO2001023597; Methods In Molecular Biology, ed. Richard, Humana Press, NJ (1995); O'Reilly et al., Baculovirus Expression Vectors, A Laboratory Manual, Oxford Univ. Press (1994); Samulski et al., J. Vir. 63:3822-8 (1989); Kajigaya et al., Proc. Nat'l. Acad. Sci. USA 88: 4646-50 (1991); Ruffing et al., J. Vir. 66:6922-30 (1992); Kimbauer et al., Vir., 219:37-44 (1996); Zhao et al., Vir. 272:382-93 (2000); the contents of each of which are herein incorporated by reference in their entirety. In one embodiment, the AAV particles are made using the methods described in International Patent Publication WO2015191508, the contents of which are herein incorporated by reference in their entirety.


Therapeutic Applications

The present disclosure provides a method for treating a disease, disorder and/or condition in a mammalian subject, including a human subject, comprising administering to the subject an AAV particle described herein where the AAV particle comprises the novel capsids (“TRACER AAV particles”) defined by the present disclosure or administering to the subject any of the described compositions, including pharmaceutical compositions, described herein.


In one embodiment, the TRACER AAV particles of the present disclosure are administered to a subject prophylactically, to prevent on-set of disease. In another embodiment, the TRACER AAV particles of the present disclosure are administered to treat (lessen the effects of) a disease or symptoms thereof. In yet another embodiment, the TRACER AAV particles of the present disclosure are administered to cure (eliminate) a disease. In another embodiment, the TRACER AAV particles of the present disclosure are administered to prevent or slow progression of disease. In yet another embodiment, the TRACER AAV particles of the present disclosure are used to reverse the deleterious effects of a disease. Disease status and/or progression may be determined or monitored by standard methods known in the art.


In some embodiments, the TRACER AAV particles of the disclosure are useful in the field of medicine for the treatment, prophylaxis, palliation or amelioration of neurological diseases and/or disorders.


In some embodiments, the TRACER AAV particles of the disclosure are useful in the field of medicine for the treatment, prophylaxis, palliation or amelioration of tauopathy.


In some embodiments, the TRACER AAV particles of the disclosure are useful in the field of medicine for the treatment, prophylaxis, palliation or amelioration of Alzheimer's Disease.


In some embodiments, the TRACER AAV particles of the disclosure are useful in the field of medicine for the treatment, prophylaxis, palliation or amelioration of Friedreich's ataxia, or any disease stemming from a loss or partial loss of frataxin protein.


In some embodiments, the TRACER AAV particles of the disclosure are useful in the field of medicine for the treatment, prophylaxis, palliation or amelioration of Parkinson's Disease.


In some embodiments, the TRACER AAV particles of the disclosure are useful in the field of medicine for the treatment, prophylaxis, palliation or amelioration of Amyotrophic lateral sclerosis.


In some embodiments, the TRACER AAV particles of the disclosure are useful in the field of medicine for the treatment, prophylaxis, palliation or amelioration of Huntington's Disease.


In some embodiments, the TRACER AAV particles of the disclosure are useful in the field of medicine for the treatment, prophylaxis, palliation or amelioration of chronic or neuropathic pain.


In some embodiments, the TRACER AAV particles of the disclosure are useful in the field of medicine for treatment, prophylaxis, palliation or amelioration of a disease associated with the central nervous system.


In some embodiments, the TRACER AAV particles of the disclosure are useful in the field of medicine for treatment, prophylaxis, palliation or amelioration of a disease associated with the peripheral nervous system.


In one embodiment, the TRACER AAV particles of the present disclosure are administered to a subject having at least one of the diseases or symptoms described herein.


As used herein, any disease associated with the central or peripheral nervous system and components thereof (e.g., neurons) may be considered a “neurological disease”.


Any neurological disease may be treated with the TRACER AAV particles of the disclosure, or pharmaceutical compositions thereof, including but not limited to, Absence of the Septum Pellucidum, Acid Lipase Disease, Acid Maltase Deficiency, Acquired Epileptiform Aphasia, Acute Disseminated Encephalomyelitis, Attention Deficit-Hyperactivity Disorder (ADHD), Adie's Pupil, Adie's Syndrome, Adrenoleukodystrophy, Agenesis of the Corpus Callosum, Agnosia, Aicardi Syndrome, Aicardi-Goutieres Syndrome Disorder, AIDS—Neurological Complications, Alexander Disease, Alpers' Disease, Alternating Hemiplegia, Alzheimer's Disease, Amyotrophic Lateral Sclerosis (ALS), Anencephaly, Aneurysm, Angelman Syndrome, Angiomatosis, Anoxia, Antiphospholipid Syndrome, Aphasia, Apraxia, Arachnoid Cysts, Arachnoiditis, Arnold-Chiari Malformation, Arteriovenous Malformation, Asperger Syndrome, Ataxia, Ataxia Telangiectasia, Ataxias and Cerebellar or Spinocerebellar Degeneration, Atrial Fibrillation and Stroke, Attention Deficit-Hyperactivity Disorder, Autism Spectrum Disorder, Autonomic Dysfunction, Back Pain, Barth Syndrome, Batten Disease, Becker's Myotonia, Bechet's Disease, Bell's Palsy, Benign Essential Blepharospasm, Benign Focal Amyotrophy, Benign Intracranial Hypertension, Bernhardt-Roth Syndrome, Binswanger's Disease, Blepharospasm, Bloch-Sulzberger Syndrome, Brachial Plexus Birth Injuries, Brachial Plexus Injuries, Bradbury-Eggleston Syndrome, Brain and Spinal Tumors, Brain Aneurysm, Brain Injury, Brown-Sequard Syndrome, Bulbar palsy, Bulbospinal Muscular Atrophy, Cerebral Autosomal Dominant Arteriopathy with Sub-cortical Infarcts and Leukoencephalopathy (CADASIL), Canavan Disease, Carpal Tunnel Syndrome, Causalgia, Cavernomas, Cavernous Angioma, Cavernous Malformation, Central Cervical Cord Syndrome, Central Cord Syndrome, Central Pain Syndrome, Central Pontine Myelinolysis, Cephalic Disorders, Ceramidase Deficiency, Cerebellar Degeneration, Cerebellar Hypoplasia, Cerebral Aneurysms, Cerebral Arteriosclerosis, Cerebral Atrophy, Cerebral Beriberi, Cerebral Cavernous Malformation, Cerebral Gigantism, Cerebral Hypoxia, Cerebral Palsy, Cerebro-Oculo-Facio-Skeletal Syndrome (COFS), Charcot-Marie-Tooth Disease, Chiari Malformation, Cholesterol Ester Storage Disease, Chorea, Choreoacanthocytosis, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), Chronic Orthostatic Intolerance, Chronic Pain, Cockayne Syndrome Type II, Coffin Lowry Syndrome, Colpocephaly, Coma, Complex Regional Pain Syndrome, Concentric sclerosis (Balo's sclerosis), Congenital Facial Diplegia, Congenital Myasthenia, Congenital Myopathy, Congenital Vascular Cavernous Malformations, Corticobasal Degeneration, Cranial Arteritis, Craniosynostosis, Cree encephalitis, Creutzfeldt-Jakob Disease, Chronic progressive external ophtalmoplegia, Cumulative Trauma Disorders, Cushing's Syndrome, Cytomegalic Inclusion Body Disease, Cytomegalovirus Infection, Dancing Eyes-Dancing Feet Syndrome, Dandy-Walker Syndrome, Dawson Disease, De Morsier's Syndrome, Dejerine-Klumpke Palsy, Dementia, Dementia—Multi-Infarct, Dementia—Semantic, Dementia—Subcortical, Dementia With Lewy Bodies, Demyelination diseases, Dentate Cerebellar Ataxia, Dentatorubral Atrophy, Dermatomyositis, Developmental Dyspraxia, Devic's Syndrome, Diabetic Neuropathy, Diffuse Sclerosis, Distal hereditary motor neuronopathies, Dravet Syndrome, Dysautonomia, Dysgraphia, Dyslexia, Dysphagia, Dyspraxia, Dyssynergia Cerebellaris Myoclonica, Dyssynergia Cerebellaris Progressiva, Dystonias, Early Infantile Epileptic Encephalopathy, Empty Sella Syndrome, Encephalitis, Encephalitis Lethargica, Encephaloceles, Encephalomyelitis, Encephalopathy, Encephalopathy (familial infantile), Encephalotrigeminal Angiomatosis, Epilepsy, Epileptic Hemiplegia, Episodic ataxia, Erb's Palsy, Erb-Duchenne and Dejerine-Klumpke Palsies, Essential Tremor, Extrapontine Myelinolysis, Faber's disease, Fabry Disease, Fahr's Syndrome, Fainting, Familial Dysautonomia, Familial Hemangioma, Familial Idiopathic Basal Ganglia Calcification, Familial Periodic Paralyses, Familial Spastic Paralysis, Farber's Disease, Febrile Seizures, Fibromuscular Dysplasia, Fisher Syndrome, Floppy Infant Syndrome, Foot Drop, Friedreich's Ataxia, Frontotemporal Dementia, Gaucher Disease, Generalized Gangliosidoses (GM1, GM2), Gerstmann's Syndrome, Gerstmann-Straussler-Scheinker Disease, Giant Axonal Neuropathy, Giant Cell Arteritis, Giant Cell Inclusion Disease, Globoid Cell Leukodystrophy, Glossopharyngeal Neuralgia, Glycogen Storage Disease, Guillain-Barré Syndrome, Hallervorden-Spatz Disease, Head Injury, Headache, Hemicrania Continua, Hemifacial Spasm, Hemiplegia Alterans, Hereditary Neuropathies, Hereditary Spastic Paraplegia, Heredopathia Atactica Polyneuritiformis, Herpes Zoster, Herpes Zoster Oticus, Hirayama Syndrome, Holmes-Adie syndrome, Holoprosencephaly, HTLV-1 Associated Myelopathy, Hughes Syndrome, Huntington's Disease, Hurler syndrome, Hydranencephaly, Hydrocephalus, Hydrocephalus—Normal Pressure, Hydromyelia, Hypercortisolism, Hypersomnia, Hypertonia, Hypotonia, Hypoxia, Immune-Mediated Encephalomyelitis, Inclusion Body Myositis, Incontinentia Pigmenti, Infantile Hypotonia, Infantile Neuroaxonal Dystrophy, Infantile Phytanic Acid Storage Disease, Infantile Refsum Disease, Infantile Spasms, Inflammatory Myopathies, Iniencephaly, Intestinal Lipodystrophy, Intracranial Cysts, Intracranial Hypertension, Isaacs' Syndrome, Joubert Syndrome, Kearns-Sayre Syndrome, Kennedy's Disease, Kinsbourne syndrome, Kleine-Levin Syndrome, Klippel-Feil Syndrome, Klippel-Trenaunay Syndrome (KTS), Kluver-Bucy Syndrome, Korsakoff s Amnesic Syndrome, Krabbe Disease, Kugelberg-Welander Disease, Kuru, Lambert-Eaton Myasthenic Syndrome, Landau-Kleffner Syndrome, Lateral Femoral Cutaneous Nerve Entrapment, Lateral Medullary Syndrome, Learning Disabilities, Leigh's Disease, Lennox-Gastaut Syndrome, Lesch-Nyhan Syndrome, Leukodystrophy, Levine-Critchley Syndrome, Lewy Body Dementia, Lichtheim's disease, Lipid Storage Diseases, Lipoid Proteinosis, Lissencephaly, Locked-In Syndrome, Lou Gehrig's Disease, Lupus—Neurological Sequelae, Lyme Disease—Neurological Complications, Lysosomal storage disorders, Machado-Joseph Disease, Macrencephaly, Megalencephaly, Melkersson-Rosenthal Syndrome, Meningitis, Meningitis and Encephalitis, Menkes Disease, Meralgia Paresthetica, Metachromatic Leukodystrophy, Microcephaly, Migraine, Miller Fisher Syndrome, Mini Stroke, Mitochondrial Myopathy, Mitochondrial DNA depletion syndromes, Moebius Syndrome, Monomelic Amyotrophy, Morvan Syndrome, Motor Neuron Diseases, Moyamoya Disease, Mucolipidoses, Mucopolysaccharidoses, Multi-Infarct Dementia, Multifocal Motor Neuropathy, Multiple Sclerosis, Multiple System Atrophy, Multiple System Atrophy with Orthostatic Hypotension, Muscular Dystrophy, Myasthenia—Congenital, Myasthenia Gravis, Myelinoclastic Diffuse Sclerosis, Myelitis, Myoclonic Encephalopathy of Infants, Myoclonus, Myoclonus epilepsy, Myopathy, Myopathy—Congenital, Myopathy—Thyrotoxic, Myotonia, Myotonia Congenita, Narcolepsy, NARP (neuropathy, ataxia and retinitis pigmentosa), Neuroacanthocytosis, Neurodegeneration with Brain Iron Accumulation, Neurodegenerative disease, Neurofibromatosis, Neuroleptic Malignant Syndrome, Neurological Complications of AIDS, Neurological Complications of Lyme Disease, Neurological Consequences of Cytomegalovirus Infection, Neurological Manifestations of Pompe Disease, Neurological Sequelae Of Lupus, Neuromyelitis Optica, Neuromyotonia, Neuronal Ceroid Lipofuscinosis, Neuronal Migration Disorders, Neuropathic pain, Neuropathy—Hereditary, Neuropathy, Neurosarcoidosis, Neurosyphilis, Neurotoxicity, Nevus Cavernosus, Niemann-Pick Disease, O'Sullivan-McLeod Syndrome, Occipital Neuralgia, Ohtahara Syndrome, Olivopontocerebellar Atrophy, Opsoclonus Myoclonus, Orthostatic Hypotension, Overuse Syndrome, Pain—Chronic, Pantothenate Kinase-Associated Neurodegeneration, Paraneoplastic Syndromes, Paresthesia, Parkinson's Disease, Paroxysmal Choreoathetosis, Paroxysmal Hemicrania, Parry-Romberg, Pelizaeus-Merzbacher Disease, Pena Shokeir II Syndrome, Perineural Cysts, Peroneal muscular atrophy, Periodic Paralyses, Peripheral Neuropathy, Periventricular Leukomalacia, Persistent Vegetative State, Pervasive Developmental Disorders, Phytanic Acid Storage Disease, Pick's Disease, Pinched Nerve, Piriformis Syndrome, Pituitary Tumors, Polymyositis, Pompe Disease, Porencephaly, Post-Polio Syndrome, Postherpetic Neuralgia, Postinfectious Encephalomyelitis, Postural Hypotension, Postural Orthostatic Tachycardia Syndrome, Postural Tachycardia Syndrome, Primary Dentatum Atrophy, Primary Lateral Sclerosis, Primary Progressive Aphasia, Prion Diseases, Progressive bulbar palsy, Progressive Hemifacial Atrophy, Progressive Locomotor Ataxia, Progressive Multifocal Leukoencephalopathy, Progressive Muscular Atrophy, Progressive Sclerosing Poliodystrophy, Progressive Supranuclear Palsy, Prosopagnosia, Pseudobulbar palsy, Pseudo-Torch syndrome, Pseudotoxoplasmosis syndrome, Pseudotumor Cerebri, Psychogenic Movement, Ramsay Hunt Syndrome I, Ramsay Hunt Syndrome II, Rasmussen's Encephalitis, Reflex Sympathetic Dystrophy Syndrome, Refsum Disease, Refsum Disease—Infantile, Repetitive Motion Disorders, Repetitive Stress Injuries, Restless Legs Syndrome, Retrovirus-Associated Myelopathy, Rett Syndrome, Reye's Syndrome, Rheumatic Encephalitis, Riley-Day Syndrome, Sacral Nerve Root Cysts, Saint Vitus Dance, Salivary Gland Disease, Sandhoff Disease, Schilder's Disease, Schizencephaly, Seitelberger Disease, Seizure Disorder, Semantic Dementia, Septo-Optic Dysplasia, Severe Myoclonic Epilepsy of Infancy (SMEI), Shaken Baby Syndrome, Shingles, Shy-Drager Syndrome, Sjögren's Syndrome, Sleep Apnea, Sleeping Sickness, Sotos Syndrome, Spasticity, Spina Bifida, Spinal Cord Infarction, Spinal Cord Injury, Spinal Cord Tumors, Spinal Muscular Atrophy, Spinocerebellar Ataxia, Spinocerebellar Atrophy, Spinocerebellar Degeneration, Sporadic ataxia, Steele-Richardson-Olszewski Syndrome, Stiff-Person Syndrome, Striatonigral Degeneration, Stroke, Sturge-Weber Syndrome, Subacute Sclerosing Panencephalitis, Subcortical Arteriosclerotic Encephalopathy, Short-lasting, Unilateral, Neuralgiform (SUNCT) Headache, Swallowing Disorders, Sydenham Chorea, Syncope, Syphilitic Spinal Sclerosis, Syringohydromyelia, Syringomyelia, Systemic Lupus Erythematosus, Tabes Dorsalis, Tardive Dyskinesia, Tarlov Cysts, Tay-Sachs Disease, Temporal Arteritis, Tethered Spinal Cord Syndrome, Thomsen's Myotonia, Thoracic Outlet Syndrome, Thyrotoxic Myopathy, Tic Douloureux, Todd's Paralysis, Tourette Syndrome, Transient Ischemic Attack, Transmissible Spongiform Encephalopathies, Transverse Myelitis, Traumatic Brain Injury, Tremor, Trigeminal Neuralgia, Tropical Spastic Paraparesis, Troyer Syndrome, Tuberous Sclerosis, Vascular Erectile Tumor, Vasculitis Syndromes of the Central and Peripheral Nervous Systems, Vitamin B12 deficiency, Von Economo's Disease, Von Hippel-Lindau Disease (VHL), Von Recklinghausen's Disease, Wallenberg's Syndrome, Werdnig-Hoffman Disease, Wernicke-Korsakoff Syndrome, West Syndrome, Whiplash, Whipple's Disease, Williams Syndrome, Wilson Disease, Wolman's Disease, X-Linked Spinal and Bulbar Muscular Atrophy.


Methods of Treatment of Neurological Disease
TRACER AAV Particles Encoding Protein Payloads

Provided in the present disclosure are methods for introducing the TRACER AAV particles of the present disclosure into cells, the method comprising introducing into said cells any of the vectors in an amount sufficient for an increase in the production of target mRNA and protein to occur. In some aspects, the cells may be neurons such as but not limited to, motor, hippocampal, entorhinal, thalamic, cortical, sensory, sympathetic, or parasympathetic neurons, and glial cells such as astrocytes, microglia, and/or oligodendrocytes.


Disclosed in the present disclosure are methods for treating neurological disease associated with insufficient function/presence of a target protein (e.g., ApoE, FXN) in a subject in need of treatment. The method optionally comprises administering to the subject a therapeutically effective amount of a composition comprising TRACER AAV particles of the present disclosure. As a non-limiting example, the TRACER AAV particles can increase target gene expression, increase target protein production, and thus reduce one or more symptoms of neurological disease in the subject such that the subject is therapeutically treated.


In one embodiment, the composition comprising the TRACER AAV particles of the present disclosure is administered to the central nervous system of the subject via systemic administration. In one embodiment, the systemic administration is intravenous injection.


In some embodiments, the composition comprising the TRACER AAV particles of the present disclosure is administered to the central nervous system of the subject. In other embodiments, the composition comprising the TRACER AAV particles of the present disclosure is administered to a CNS tissue of a subject (e.g., putamen, thalamus or cortex of the subject).


In one embodiment, the composition comprising the TRACER AAV particles of the present disclosure is administered to the central nervous system of the subject via intraparenchymal injection. Non-limiting examples of intraparenchymal injections include intraputamenal, intracortical, intrathalamic, intrastriatal, intrahippocampal or into the entorhinal cortex.


In one embodiment, the composition comprising the TRACER AAV particles of the present disclosure is administered to the central nervous system of the subject via intraparenchymal injection and intravenous injection.


In one embodiment, the TRACER AAV particles of the present disclosure may be delivered into specific types of targeted cells, including, but not limited to, thalamic, hippocampal, entorhinal, cortical, motor, sensory, excitatory, inhibitory, sympathetic, or parasympathetic neurons; glial cells including oligodendrocytes, astrocytes and microglia; and/or other cells surrounding neurons such as T cells.


In one embodiment, the TRACER AAV particles of the present disclosure may be delivered to neurons in the putamen, thalamus and/or cortex.


In some embodiments, the TRACER AAV particles of the present disclosure may be used as a therapy for neurological disease.


In some embodiments, the TRACER AAV particles of the present disclosure may be used as a therapy for tauopathies.


In some embodiments, the TRACER AAV particles of the present disclosure may be used as a therapy for Alzheimer's Disease.


In some embodiments, the TRACER AAV particles of the present disclosure may be used as a therapy for Amyotrophic Lateral Sclerosis.


In some embodiments, the TRACER AAV particles of the present disclosure may be used as a therapy for Huntington's Disease.


In some embodiments, the TRACER AAV particles of the present disclosure may be used as a therapy for Parkinson's Disease.


In some embodiments, the TRACER AAV particles of the present disclosure may be used as a therapy for Friedreich's Ataxia.


In some embodiments, the TRACER AAV particles of the present disclosure may be used as a therapy for chronic or neuropathic pain.


In one embodiment, administration of the TRACER AAV particles described herein to a subject may increase target protein levels in a subject. The target protein levels may be increased by about 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95% and 100%, or at least 20-30%, 20-40%, 20-50%, 20-60%, 20-70%, 20-80%, 20-90%, 20-95%, 20-100%, 30-40%, 30-50%, 30-60%, 30-70%, 30-80%, 30-90%, 30-95%, 30-100%, 40-50%, 40-60%, 40-70%, 40-80%, 40-90%, 40-95%, 40-100%, 50-60%, 50-70%, 50-80%, 50-90%, 50-95%, 50-100%, 60-70%, 60-80%, 60-90%, 60-95%, 60-100%, 70-80%, 70-90%, 70-95%, 70-100%, 80-90%, 80-95%, 80-100%, 90-95%, 90-100% or 95-100% in a subject such as, but not limited to, the CNS, a region of the CNS, or a specific cell of the CNS of a subject. As a non-limiting example, the TRACER AAV particles may increase the protein levels of a target protein by at least 50%. As a non-limiting example, the TRACER AAV particles may increase the proteins levels of a target protein by at least 40%. As a non-limiting example, a subject may have an increase of 10% of target protein. As a non-limiting example, the TRACER AAV particles may increase the protein levels of a target protein by fold increases over baseline. In one embodiment, TRACER AAV particles lead to 5-6 times higher levels of a target protein.


In one embodiment, administration of the TRACER AAV particles described herein to a subject may increase the expression of a target protein in a subject. The expression of the target protein may be increased by about 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95% and 100%, or at least 20-30%, 20-40%, 20-50%, 20-60%, 20-70%, 20-80%, 20-90%, 20-95%, 20-100%, 30-40%, 30-50%, 30-60%, 30-70%, 30-80%, 30-90%, 30-95%, 30-100%, 40-50%, 40-60%, 40-70%, 40-80%, 40-90%, 40-95%, 40-100%, 50-60%, 50-70%, 50-80%, 50-90%, 50-95%, 50-100%, 60-70%, 60-80%, 60-90%, 60-95%, 60-100%, 70-80%, 70-90%, 70-95%, 70-100%, 80-90%, 80-95%, 80-100%, 90-95%, 90-100% or 95-100% in a subject such as, but not limited to, the CNS, a region of the CNS, or a specific cell of the CNS of a subject. As a non-limiting example, the TRACER AAV particles may increase the expression of a target protein by at least 50%. As a non-limiting example, the TRACER AAV particles may increase the expression of a target protein by at least 40%.


In one embodiment, intravenous administration of the TRACER AAV particles described herein to a subject may increase the CNS expression of a target protein in a subject. The expression of the target protein may be increased by about 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95% and 100%, or at least 20-30%, 20-40%, 20-50%, 20-60%, 20-70%, 20-80%, 20-90%, 20-95%, 20-100%, 30-40%, 30-50%, 30-60%, 30-70%, 30-80%, 30-90%, 30-95%, 30-100%, 40-50%, 40-60%, 40-70%, 40-80%, 40-90%, 40-95%, 40-100%, 50-60%, 50-70%, 50-80%, 50-90%, 50-95%, 50-100%, 60-70%, 60-80%, 60-90%, 60-95%, 60-100%, 70-80%, 70-90%, 70-95%, 70-100%, 80-90%, 80-95%, 80-100%, 90-95%, 90-100% or 95-100% in a subject such as, but not limited to, the CNS, a region of the CNS, or a specific cell of the CNS of a subject. As a non-limiting example, the TRACER AAV particles may increase the expression of a target protein in the CNS by at least 50%. As a non-limiting example, the TRACER AAV particles may increase the expression of a target protein in the CNS by at least 40%.


In some embodiments, the TRACER AAV particles of the present disclosure may be used to increase target protein expression in astrocytes in order to treat a neurological disease. Target protein in astrocytes may be increased by 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%.


In some embodiments, the TRACER AAV particles may be used to increase target protein in microglia. The increase of target protein in microglia may be, independently, increased by 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%.


In some embodiments, the TRACER AAV particles may be used to increase target protein in cortical neurons. The increase of target protein in the cortical neurons may be, independently, increased by 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%.


In some embodiments, the TRACER AAV particles may be used to increase target protein in hippocampal neurons. The increase of target protein in the hippocampal neurons may be, independently, increased by 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%.


In some embodiments, the TRACER AAV particles may be used to increase target protein in DRG and/or sympathetic neurons. The increase of target protein in the DRG and/or sympathetic neurons may be, independently, increased by 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%.


In some embodiments, the TRACER AAV particles of the present disclosure may be used to increase target protein in sensory neurons in order to treat neurological disease. Target protein in sensory neurons may be increased by 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%.


In some embodiments, the TRACER AAV particles of the present disclosure may be used to increase target protein and reduce symptoms of neurological disease in a subject. The increase of target protein and/or the reduction of symptoms of neurological disease may be, independently, altered (increased for the production of target protein and reduced for the symptoms of neurological disease) by 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%.


In one embodiment, the TRACER AAV particles of the present disclosure may be used to reduce the decline of functional capacity and activities of daily living as measured by a standard evaluation system such as, but not limited to, the total functional capacity (TFC) scale.


In one embodiment, the TRACER AAV particles of the present disclosure may be used to improve performance on any assessment used to measure symptoms of neurological disease. Such assessments include, but are not limited to ADAS-cog (Alzheimer Disease Assessment Scale—cognitive), MNISE (Mini-Mental State Examination), GDS (Geriatric Depression Scale), FAQ (Functional Activities Questionnaire), ADL (Activities of Daily Living), GPCOG (General Practitioner Assessment of Cognition), Mini-Cog, AMTS (Abbreviated Mental Test Score), Clock-drawing test, 6-CIT (6-item Cognitive Impairment Test), TYM (Test Your Memory), MoCa (Montreal Cognitive Assessment), ACE-R (Addenbrookes Cognitive Assessment), MIS (Memory Impairment Screen), BADLS (Bristol Activities of Daily Living Scale), Barthel Index, Functional Independence Measure, Instrumental Activities of Daily Living, IQCODE (Informant Questionnaire on Cognitive Decline in the Elderly), Neuropsychiatric Inventory, The Cohen-Mansfield Agitation Inventory, BEHAVE-AD, EuroQol, Short Form-36 and/or MBR Caregiver Strain Instrument, or any of the other tests as described in Sheehan B (Ther Adv Neurol Disord. 5(6):349-358 (2012)), the contents of which are herein incorporated by reference in their entirety.


In some embodiments, the present composition is administered as a solo therapeutic or as combination therapeutic for the treatment of neurological disease.


The TRACER AAV particles encoding the target protein may be used in combination with one or more other therapeutic agents. By “in combination with,” it is not intended to imply that the agents must be administered at the same time and/or formulated for delivery together, although these methods of delivery are within the scope of the present disclosure. Compositions can be administered concurrently with, prior to, or subsequent to, one or more other desired therapeutics or medical procedures. In general, each agent will be administered at a dose and/or on a time schedule determined for that agent.


Therapeutic agents that may be used in combination with the TRACER AAV particles of the present disclosure can be small molecule compounds which are antioxidants, anti-inflammatory agents, anti-apoptosis agents, calcium regulators, antiglutamatergic agents, structural protein inhibitors, compounds involved in muscle function, and compounds involved in metal ion regulation. As a non-limiting example, the combination therapy may be in combination with one or more neuroprotective agents such as small molecule compounds, growth factors and hormones which have been tested for their neuroprotective effect on motor neuron degeneration.


Compounds tested for treating neurological disease which may be used in combination with the TRACER AAV particles described herein include, but are not limited to, cholinesterase inhibitors (donepezil, rivastigmine, galantamine), NMDA receptor antagonists such as memantine, anti-psychotics, anti-depressants, anti-convulsants (e.g., sodium valproate and levetiracetam for myoclonus), secretase inhibitors, amyloid aggregation inhibitors, copper or zinc modulators, BACE inhibitors, inhibitors of tau aggregation, such as Methylene blue, phenothiazines, anthraquinones, n-phenylamines or rhodamines, microtubule stabilizers such as NAP, taxol or paclitaxel, kinase or phosphatase inhibitors such as those targeting GSK3 (3 (lithium) or PP2A, immunization with Aβ peptides or tau phospho-epitopes, anti-tau or anti-amyloid antibodies, dopamine-depleting agents (e.g., tetrabenazine for chorea), benzodiazepines (e.g., clonazepam for myoclonus, chorea, dystonia, rigidity, and/or spasticity), amino acid precursors of dopamine (e.g., levodopa for rigidity), skeletal muscle relaxants (e.g., baclofen, tizanidine for rigidity and/or spasticity), inhibitors for acetylcholine release at the neuromuscular junction to cause muscle paralysis (e.g., botulinum toxin for bruxism and/or dystonia), atypical neuroleptics (e.g., olanzapine and quetiapine for psychosis and/or irritability, risperidone, sulpiride and haloperidol for psychosis, chorea and/or irritability, clozapine for treatment-resistant psychosis, aripiprazole for psychosis with prominent negative symptoms), selective serotonin reuptake inhibitors (SSRIs) (e.g., citalopram, fluoxetine, paroxetine, sertraline, mirtazapine, venlafaxine for depression, anxiety, obsessive compulsive behavior and/or irritability), hypnotics (e.g., xopiclone and/or zolpidem for altered sleep-wake cycle), anticonvulsants (e.g., sodium valproate and carbamazepine for mania or hypomania) and mood stabilizers (e.g., lithium for mania or hypomania).


Neurotrophic factors may be used in combination therapy with the TRACER AAV particles of the present disclosure for treating neurological disease. Generally, a neurotrophic factor is defined as a substance that promotes survival, growth, differentiation, proliferation and/or maturation of a neuron, or stimulates increased activity of a neuron. In some embodiments, the present methods further comprise delivery of one or more trophic factors into the subject in need of treatment. Trophic factors may include, but are not limited to, IGF-I, GDNF, BDNF, CTNF, VEGF, Colivelin, Xaliproden, Thyrotrophin-releasing hormone and ADNF, and variants thereof.


In one aspect, the TRACER AAV particle described herein may be co-administered with TRACER AAV particles expressing neurotrophic factors such as AAV-IGF-I (See e.g., Vincent et al., Neuromolecular medicine, 2004, 6, 79-85; the contents of which are incorporated herein by reference in their entirety) and AAV-GDNF (See e.g., Wang et al., J Neurosci., 2002, 22, 6920-6928; the contents of which are incorporated herein by reference in their entirety).


In one embodiment, administration of the TRACER AAV particles to a subject will increase the expression of a target protein in a subject and the increase of the expression of the target protein will reduce the effects and/or symptoms of neurological disease in a subject.


As a non-limiting example, the target protein may be an antibody, or fragment thereof.


TRACER AAV Particles Comprising RNAi Agents or Modulatory Polynucleotides

Provided in the present disclosure are methods for introducing the TRACER AAV particles of the disclosure, comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules into cells, the method comprising introducing into said cells any of the vectors in an amount sufficient for degradation of a target mRNA to occur, thereby activating target-specific RNAi in the cells. In some aspects, the cells may be neurons such as but not limited to, motor, hippocampal, entorhinal, thalamic, cortical, sensory, sympathetic, or parasympathetic neurons, and glial cells such as astrocytes, microglia, and/or oligodendrocytes.


Disclosed in the present disclosure are methods for treating neurological diseases associated with dysfunction of a target protein in a subject in need of treatment. The method optionally comprises administering to the subject a therapeutically effective amount of a composition comprising TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules. As a non-limiting example, the siRNA molecules can silence target gene expression, inhibit target protein production, and reduce one or more symptoms of neurological disease in the subject such that the subject is therapeutically treated.


In some embodiments, the composition comprising the TRACER AAV particles of the present disclosure comprising a viral genome encoding one or more siRNA molecules comprise an AAV capsid that allows for enhanced transduction of CNS and/or PNS cells after intravenous administration.


In some embodiments, the composition comprising the TRACER AAV particles of the present disclosure with a viral genome encoding at least one siRNA molecule is administered to the central nervous system of the subject. In other embodiments, the composition comprising the TRACER AAV particles of the present disclosure is administered to a tissue of a subject (e.g., putamen, thalamus or cortex of the subject).


In one embodiment, the composition comprising the TRACER AAV particles of the disclosure, comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules is administered to the central nervous system of the subject via systemic administration. In one embodiment, the systemic administration is intravenous injection.


In one embodiment, the composition comprising the TRACER AAV particles of the disclosure comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules is administered to the central nervous system of the subject via intraparenchymal injection. Non-limiting examples of intraparenchymal injections include intraputamenal, intracortical, intrathalamic, intrastriatal, intrahippocampal or into the entorhinal cortex.


In one embodiment, the composition comprising the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules is administered to the central nervous system of the subject via intraparenchymal injection and intravenous injection.


In one embodiment, the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be delivered into specific types or targeted cells, including, but not limited to, thalamic, hippocampal, entorhinal, cortical, motor, sensory, excitatory, inhibitory, sympathetic, or parasympathetic neurons; glial cells including oligodendrocytes, astrocytes and microglia; and/or other cells surrounding neurons such as T cells.


In one embodiment, the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be delivered to neurons in the putamen, thalamus, and/or cortex.


In one embodiment, the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be used as a therapy for neurological disease.


In one embodiment, the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be used as a therapy for tauopathies.


In one embodiment, the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be used as a therapy for Alzheimer' s Disease.


In one embodiment, the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be used as a therapy for Amyotrophic Lateral Sclerosis.


In one embodiment, the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be used as a therapy for Huntington's Disease.


In one embodiment, the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be used as a therapy for Parkinson's Disease.


In one embodiment, the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be used as a therapy for Friedreich's Ataxia.


In one embodiment, the administration of TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules to a subject may lower target protein levels in a subject. The target protein levels may be lowered by about 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95% and 100%, or at least 20-30%, 20-40%, 20-50%, 20-60%, 20-70%, 20-80%, 20-90%, 20-95%, 20-100%, 30-40%, 30-50%, 30-60%, 30-70%, 30-80%, 30-90%, 30-95%, 30-100%, 40-50%, 40-60%, 40-70%, 40-80%, 40-90%, 40-95%, 40-100%, 50-60%, 50-70%, 50-80%, 50-90%, 50-95%, 50-100%, 60-70%, 60-80%, 60-90%, 60-95%, 60-100%, 70-80%, 70-90%, 70-95%, 70-100%, 80-90%, 80-95%, 80-100%, 90-95%, 90-100% or 95-100% in a subject such as, but not limited to, the CNS, a region of the CNS, or a specific cell of the CNS of a subject. As a non-limiting example, the TRACER AAV particles may lower the protein levels of a target protein by at least 50%. As a non-limiting example, the TRACER AAV particles may lower the proteins levels of a target protein by at least 40%.


In one embodiment, the administration of TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules to a subject may lower the expression of a target protein in a subject. The expression of a target protein may be lowered by about 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95% and 100%, or at least 20-30%, 20-40%, 20-50%, 20-60%, 20-70%, 20-80%, 20-90%, 20-95%, 20-100%, 30-40%, 30-50%, 30-60%, 30-70%, 30-80%, 30-90%, 30-95%, 30-100%, 40-50%, 40-60%, 40-70%, 40-80%, 40-90%, 40-95%, 40-100%, 50-60%, 50-70%, 50-80%, 50-90%, 50-95%, 50-100%, 60-70%, 60-80%, 60-90%, 60-95%, 60-100%, 70-80%, 70-90%, 70-95%, 70-100%, 80-90%, 80-95%, 80-100%, 90-95%, 90-100% or 95-100% in a subject such as, but not limited to, the CNS, a region of the CNS, or a specific cell of the CNS of a subject. As a non-limiting example, the TRACER AAV particles may lower the expression of a target protein by at least 50%. As a non-limiting example, the TRACER AAV particles may lower the expression of a target protein by at least 40%.


In one embodiment, the administration of TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules to a subject may lower the expression of a target protein in the CNS of a subject. The expression of a target protein may be lowered by about 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95% and 100%, or at least 20-30%, 20-40%, 20-50%, 20-60%, 20-70%, 20-80%, 20-90%, 20-95%, 20-100%, 30-40%, 30-50%, 30-60%, 30-70%, 30-80%, 30-90%, 30-95%, 30-100%, 40-50%, 40-60%, 40-70%, 40-80%, 40-90%, 40-95%, 40-100%, 50-60%, 50-70%, 50-80%, 50-90%, 50-95%, 50-100%, 60-70%, 60-80%, 60-90%, 60-95%, 60-100%, 70-80%, 70-90%, 70-95%, 70-100%, 80-90%, 80-95%, 80-100%, 90-95%, 90-100% or 95-100% in a subject such as, but not limited to, the CNS, a region of the CNS, or a specific cell of the CNS of a subject. As a non-limiting example, the TRACER AAV particles may lower the expression of a target protein by at least 50%. As a non-limiting example, the TRACER AAV particles may lower the expression of a target protein by at least 40%.


In one embodiment, the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be used to suppress a target protein in astrocytes in order to treat neurological disease. Target protein in astrocytes may be suppressed by 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%. Target protein in astrocytes may be reduced may be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%.


In one embodiment, the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be used to suppress a target protein in microglia. The suppression of the target protein in microglia may be, independently, suppressed by 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%. The reduction may be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%.


In one embodiment, the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be used to suppress target protein in cortical neurons. The suppression of a target protein in cortical neurons may be, independently, suppressed by 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%. The reduction may be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%.


In one embodiment, the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be used to suppress a target protein in hippocampal neurons. The suppression of a target protein in the hippocampal neurons may be, independently, suppressed by 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%. The reduction may be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%.


In one embodiment, the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be used to suppress a target protein in DRG and/or sympathetic neurons. The suppression of a target protein in the DRG and/or sympathetic neurons may be, independently, suppressed by 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%. The reduction may be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%.


In one embodiment, the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be used to suppress a target protein in sensory neurons in order to treat neurological disease. Target protein in sensory neurons may be suppressed by 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%. Target protein in the sensory neurons may be reduced may be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%.


In one embodiment, the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be used to suppress a target protein and reduce symptoms of neurological disease in a subject. The suppression of target protein and/or the reduction of symptoms of neurological disease may be, independently, reduced or suppressed by 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95%, 5-15%, 5-20%, 5-25%, 5-30%, 5-35%, 5-40%, 5-45%, 5-50%, 5-55%, 5-60%, 5-65%, 5-70%, 5-75%, 5-80%, 5-85%, 5-90%, 5-95%, 10-20%, 10-25%, 10-30%, 10-35%, 10-40%, 10-45%, 10-50%, 10-55%, 10-60%, 10-65%, 10-70%, 10-75%, 10-80%, 10-85%, 10-90%, 10-95%, 15-25%, 15-30%, 15-35%, 15-40%, 15-45%, 15-50%, 15-55%, 15-60%, 15-65%, 15-70%, 15-75%, 15-80%, 15-85%, 15-90%, 15-95%, 20-30%, 20-35%, 20-40%, 20-45%, 20-50%, 20-55%, 20-60%, 20-65%, 20-70%, 20-75%, 20-80%, 20-85%, 20-90%, 20-95%, 25-35%, 25-40%, 25-45%, 25-50%, 25-55%, 25-60%, 25-65%, 25-70%, 25-75%, 25-80%, 25-85%, 25-90%, 25-95%, 30-40%, 30-45%, 30-50%, 30-55%, 30-60%, 30-65%, 30-70%, 30-75%, 30-80%, 30-85%, 30-90%, 30-95%, 35-45%, 35-50%, 35-55%, 35-60%, 35-65%, 35-70%, 35-75%, 35-80%, 35-85%, 35-90%, 35-95%, 40-50%, 40-55%, 40-60%, 40-65%, 40-70%, 40-75%, 40-80%, 40-85%, 40-90%, 40-95%, 45-55%, 45-60%, 45-65%, 45-70%, 45-75%, 45-80%, 45-85%, 45-90%, 45-95%, 50-60%, 50-65%, 50-70%, 50-75%, 50-80%, 50-85%, 50-90%, 50-95%, 55-65%, 55-70%, 55-75%, 55-80%, 55-85%, 55-90%, 55-95%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 70-80%, 70-85%, 70-90%, 70-95%, 75-85%, 75-90%, 75-95%, 80-90%, 80-95%, or 90-95%.


In one embodiment, the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be used to reduce the decline of functional capacity and activities of daily living as measured by a standard evaluation system such as, but not limited to, the total functional capacity (TFC) scale.


In some embodiments, the present composition is administered as a solo therapeutic or as combination therapeutic for the treatment of neurological disease.


The TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules may be used in combination with one or more other therapeutic agents. By “in combination with,” it is not intended to imply that the agents must be administered at the same time and/or formulated for delivery together, although these methods of delivery are within the scope of the present disclosure. Compositions can be administered concurrently with, prior to, or subsequent to, one or more other desired therapeutics or medical procedures. In general, each agent will be administered at a dose and/or on a time schedule determined for that agent.


Therapeutic agents that may be used in combination with the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules can be small molecule compounds which are antioxidants, anti-inflammatory agents, anti-apoptosis agents, calcium regulators, antiglutamatergic agents, structural protein inhibitors, compounds involved in muscle function, and compounds involved in metal ion regulation.


Compounds tested for treating neurological disease which may be used in combination with the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules include, but are not limited to, cholinesterase inhibitors (donepezil, rivastigmine, galantamine), NMDA receptor antagonists such as memantine, anti-psychotics, anti-depressants, anti-convulsants (e.g., sodium valproate and levetiracetam for myoclonus), secretase inhibitors, amyloid aggregation inhibitors, copper or zinc modulators, BACE inhibitors, inhibitors of tau aggregation, such as Methylene blue, phenothiazines, anthraquinones, n-phenylamines or rhodamines, microtubule stabilizers such as NAP, taxol or paclitaxel, kinase or phosphatase inhibitors such as those targeting GSK3β (lithium) or PP2A, immunization with Aβ peptides or tau phospho-epitopes, anti-tau or anti-amyloid antibodies, dopamine-depleting agents (e.g., tetrabenazine for chorea), benzodiazepines (e.g., clonazepam for myoclonus, chorea, dystonia, rigidity, and/or spasticity), amino acid precursors of dopamine (e.g., levodopa for rigidity), skeletal muscle relaxants (e.g., baclofen, tizanidine for rigidity and/or spasticity), inhibitors for acetylcholine release at the neuromuscular junction to cause muscle paralysis (e.g., botulinum toxin for bruxism and/or dystonia), atypical neuroleptics (e.g., olanzapine and quetiapine for psychosis and/or irritability, risperidone, sulpiride and haloperidol for psychosis, chorea and/or irritability, clozapine for treatment-resistant psychosis, aripiprazole for psychosis with prominent negative symptoms), selective serotonin reuptake inhibitors (SSRIs) (e.g., citalopram, fluoxetine, paroxetine, sertraline, mirtazapine, venlafaxine for depression, anxiety, obsessive compulsive behavior and/or irritability), hypnotics (e.g., xopiclone and/or zolpidem for altered sleep-wake cycle), anticonvulsants (e.g., sodium valproate and carbamazepine for mania or hypomania) and mood stabilizers (e.g., lithium for mania or hypomania).


Neurotrophic factors may be used in combination therapy with the TRACER AAV particles comprising a viral genome with a nucleic acid sequence encoding one or more siRNA molecules for treating neurological disease. Generally, a neurotrophic factor is defined as a substance that promotes survival, growth, differentiation, proliferation and/or maturation of a neuron, or stimulates increased activity of a neuron. In some embodiments, the present methods further comprise delivery of one or more trophic factors into the subject in need of treatment. Trophic factors may include, but are not limited to, IGF-I, GDNF, BDNF, CTNF, VEGF, Colivelin, Xaliproden, Thyrotrophin-releasing hormone and ADNF, and variants thereof.


In one aspect, the TRACER AAV particle encoding the nucleic acid sequence for the at least one siRNA duplex targeting the gene of interest may be co-administered with TRACER AAV particles expressing neurotrophic factors such as AAV-IGF-I (See e.g., Vincent et al., Neuromolecular medicine, 2004, 6, 79-85; the content of which is incorporated herein by reference in its entirety) and AAV-GDNF (See e.g., Wang et al., J Neurosci., 2002, 22, 6920-6928; the contents of which are incorporated herein by reference in their entirety).


In one embodiment, administration of the TRACER AAV particles to a subject will reduce the expression of a target protein in a subject and the reduction of expression of the target protein will reduce the effects and/or symptoms of neurological disease in a subject.


DEFINITIONS

Adeno-associated virus: As used herein, the term “adeno-associated virus” or “AAV” refers to members of the Dependovirus genus comprising any particle, sequence, gene, protein, or component derived therefrom.


AAV Particle: As used herein, an “AAV particle” is a virus which comprises a capsid and a viral genome with at least one payload region and at least one ITR. As used herein “AAV particles of the disclosure” are AAV particles comprising a parent capsid sequence with at least one targeting peptide insert. AAV particles of the present disclosure may be produced recombinantly and may be based on adeno-associated virus (AAV) parent or reference sequences. AAV particle may be derived from any serotype, described herein or known in the art, including combinations of serotypes (i.e., “pseudotyped” AAV) or from various genomes (e.g., single stranded or self-complementary). In addition, the AAV particle may be replication defective and/or targeted. In one embodiment, the AAV particle may have a targeting peptide inserted into the capsid to enhance tropism for a desired target tissue. It is to be understood that reference to the AAV particles of the disclosure also includes pharmaceutical compositions thereof, even if not explicitly recited.


Administering: As used herein, the term “administering” refers to providing a pharmaceutical agent or composition to a subject.


Amelioration: As used herein, the term “amelioration” or “ameliorating” refers to a lessening of severity of at least one indicator of a condition or disease. For example, in the context of neurodegeneration disorder, amelioration includes the reduction of neuron loss.


Animal: As used herein, the term “animal” refers to any member of the animal kingdom. In some embodiments, “animal” refers to humans at any stage of development. In some embodiments, “animal” refers to non-human animals at any stage of development. In certain embodiments, the non-human animal is a mammal (e.g., a rodent, a mouse, a rat, a rabbit, a monkey, a dog, a cat, a sheep, cattle, a primate, or a pig). In some embodiments, animals include, but are not limited to, mammals, birds, reptiles, amphibians, fish, and worms. In some embodiments, the animal is a transgenic animal, genetically engineered animal, or a clone.


Antisense strand: As used herein, the term “the antisense strand” or “the first strand” or “the guide strand” of a siRNA molecule refers to a strand that is substantially complementary to a section of about 10-50 nucleotides, e.g., about 15-30, 16-25, 18-23 or 19-22 nucleotides of the mRNA of a gene targeted for silencing. The antisense strand or first strand has sequence sufficiently complementary to the desired target mRNA sequence to direct target-specific silencing, e.g., complementarity sufficient to trigger the destruction of the desired target mRNA by the RNAi machinery or process.


Approximately: As used herein, the term “approximately” or “about,” as applied to one or more values of interest, refers to a value that is similar to a stated reference value. In certain embodiments, the term “approximately” or “about” refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).


Capsid: As used herein, the term “capsid” refers to the protein shell of a virus particle.


Complementary and substantially complementary: As used herein, the term “complementary” refers to the ability of polynucleotides to form base pairs with one another. Base pairs are typically formed by hydrogen bonds between nucleotide units in antiparallel polynucleotide strands. Complementary polynucleotide strands can form base pairs in the Watson-Crick manner (e.g., A to T, A to U, C to G), or in any other manner that allows for the formation of duplexes. As persons skilled in the art are aware, when using RNA as opposed to DNA, uracil rather than thymine is the base that is considered to be complementary to adenine. However, when a U is denoted in the context of the present disclosure, the ability to substitute a T is implied, unless otherwise stated. Perfect complementarity or 100% complementarity refers to the situation in which each nucleotide unit of one polynucleotide strand can form a hydrogen bond with a nucleotide unit of a second polynucleotide strand. Less than perfect complementarity refers to the situation in which some, but not all, nucleotide units of two strands can form hydrogen bond with each other. For example, for two 20-mers, if only two base pairs on each strand can form a hydrogen bond with each other, the polynucleotide strands exhibit 10% complementarity. In the same example, if 18 base pairs on each strand can form hydrogen bonds with each other, the polynucleotide strands exhibit 90% complementarity. As used herein, the term “substantially complementary” means that the siRNA has a sequence (e.g., in the antisense strand) which is sufficient to bind the desired target mRNA, and to trigger the RNA silencing of the target mRNA.


Control Elements: As used herein, “control elements”, “regulatory control elements” or “regulatory sequences” refers to promoter regions, polyadenylation signals, transcription termination sequences, upstream regulatory domains, origins of replication, internal ribosome entry sites (“IRES”), enhancers, and the like, which provide for the replication, transcription and translation of a coding sequence in a recipient cell. Not all of these control elements need always be present as long as the selected coding sequence is capable of being replicated, transcribed and/or translated in an appropriate host cell.


Delivery: As used herein, “delivery” refers to the act or manner of delivering an AAV particle, a compound, substance, entity, moiety, cargo or payload.


Element: As used herein, the term “element” refers to a distinct portion of an entity. In some embodiments, an element may be a polynucleotide sequence with a specific purpose, incorporated into a longer polynucleotide sequence.


Encapsulate: As used herein, the term “encapsulate” means to enclose, surround or encase. As an example, a capsid protein often encapsulates a viral genome.


Engineered: As used herein, embodiments of the disclosure are “engineered” when they are designed to have a feature or property, whether structural or chemical, that varies from a starting point, wild type or native molecule.


Effective Amount: As used herein, the term “effective amount” of an agent is that amount sufficient to effect beneficial or desired results, for example, clinical results, and, as such, an “effective amount” depends upon the context in which it is being applied. For example, in the context of administering an agent that treats cancer, an effective amount of an agent is, for example, an amount sufficient to achieve treatment, as defined herein, of cancer, as compared to the response obtained without administration of the agent.


Expression: As used herein, “expression” of a nucleic acid sequence refers to one or more of the following events: (1) production of an RNA template from a DNA sequence (e.g., by transcription); (2) processing of an RNA transcript (e.g., by splicing, editing, 5′ cap formation, and/or 3′ end processing); (3) translation of an RNA into a polypeptide or protein; and (4) post-translational modification of a polypeptide or protein.


Feature: As used herein, a “feature” refers to a characteristic, a property, or a distinctive element.


Formulation: As used herein, a “formulation” includes at least one AAV particle (active ingredient) and an excipient, and/or an inactive ingredient.


Fragment: A “fragment,” as used herein, refers to a portion. For example, an antibody fragment may comprise a CDR, or a heavy chain variable region, or a scFv, etc.


Functional: As used herein, a “functional” biological molecule is a biological molecule in a form in which it exhibits a property and/or activity by which it is characterized.


Gene expression: The term “gene expression” refers to the process by which a nucleic acid sequence undergoes successful transcription and in most instances translation to produce a protein or peptide. For clarity, when reference is made to measurement of “gene expression”, this should be understood to mean that measurements may be of the nucleic acid product of transcription, e.g., RNA or mRNA or of the amino acid product of translation, e.g., polypeptides or peptides. Methods of measuring the amount or levels of RNA, mRNA, polypeptides and peptides are well known in the art.


Homology: As used herein, the term “homology” refers to the overall relatedness between polymeric molecules, e.g. between polynucleotide molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. In some embodiments, polymeric molecules are considered to be “homologous” to one another if their sequences are at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identical or similar. The term “homologous” necessarily refers to a comparison between at least two sequences (polynucleotide or polypeptide sequences). In accordance with the disclosure, two polynucleotide sequences are considered to be homologous if the polypeptides they encode are at least about 50%, 60%, 70%, 80%, 90%, 95%, or even 99% for at least one stretch of at least about 20 amino acids. In some embodiments, homologous polynucleotide sequences are characterized by the ability to encode a stretch of at least 4-5 uniquely specified amino acids. For polynucleotide sequences less than 60 nucleotides in length, homology is determined by the ability to encode a stretch of at least 4-5 uniquely specified amino acids. In accordance with the disclosure, two protein sequences are considered to be homologous if the proteins are at least about 50%, 60%, 70%, 80%, or 90% identical for at least one stretch of at least about 20 amino acids.


Identity: As used herein, the term “identity” refers to the overall relatedness between polymeric molecules, e.g., between polynucleotide molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. Calculation of the percent identity of two polynucleotide sequences, for example, can be performed by aligning the two sequences for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second nucleic acid sequences for optimal alignment and non-identical sequences can be disregarded for comparison purposes). In certain embodiments, the length of a sequence aligned for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or 100% of the length of the reference sequence. The nucleotides at corresponding nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which needs to be introduced for optimal alignment of the two sequences. The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. For example, the percent identity between two nucleotide sequences can be determined using methods such as those described in Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; the contents of each of which are incorporated herein by reference in their entirety. For example, the percent identity between two nucleotide sequences can be determined using the algorithm of Meyers and Miller (CABIOS, 1989, 4:11-17), which has been incorporated into the ALIGN program (version 2.0) using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. The percent identity between two nucleotide sequences can, alternatively, be determined using the GAP program in the GCG software package using an NWSgapdna.CMP matrix. Methods commonly employed to determine percent identity between sequences include, but are not limited to those disclosed in Carillo, H., and Lipman, D., SIAM J Applied Math., 48:1073 (1988); incorporated herein by reference. Techniques for determining identity are codified in publicly available computer programs. Exemplary computer software to determine homology between two sequences include, but are not limited to, GCG program package, Devereux, J., et al., Nucleic Acids Research, 12(1), 387 (1984)), BLASTP, BLASTN, and FASTA Altschul, S. F. et al., J. Molec. Biol., 215, 403 (1990)).


Inhibit expression of a gene: As used herein, the phrase “inhibit expression of a gene” means to cause a reduction in the amount of an expression product of the gene. The expression product can be an RNA transcribed from the gene (e.g., an mRNA) or a polypeptide translated from an mRNA transcribed from the gene. Typically, a reduction in the level of an mRNA results in a reduction in the level of a polypeptide translated therefrom. The level of expression may be determined using standard techniques for measuring mRNA or protein.


Insert: As used herein the term “insert” may refer to the addition of a targeting peptide sequence to a parent AAV capsid sequence. An “insertion” may result in the replacement of one or more amino acids of the parent AAV capsid sequence. Alternatively, an insertion may result in no changes to the parent AAV capsid sequence beyond the addition of the targeting peptide sequence.


Inverted terminal repeat: As used herein, the term “inverted terminal repeat” or “ITR” refers to a cis-regulatory element for the packaging of polynucleotide sequences into viral capsids.


Library: As used herein, the term “library” refers to a diverse collection of linear polypeptides, polynucleotides, viral particles, or viral vectors. As examples, a library may be a DNA library or an AAV capsid library.


Neurological disease: As used herein, a “neurological disease” is any disease associated with the central or peripheral nervous system and components thereof (e.g., neurons).


Naturally Occurring: As used herein, “naturally occurring” or “wild-type” means existing in nature without artificial aid, or involvement of the hand of man.


Open reading frame: As used herein, “open reading frame” or “ORF” refers to a sequence which does not contain a stop codon in a given reading frame.


Parent sequence: As used herein, a “parent sequence” is a nucleic acid or amino acid sequence from which a variant is derived. In one embodiment, a parent sequence is a sequence into which a heterologous sequence is inserted. In other words, a parent sequence may be considered an acceptor or recipient sequence. In one embodiment, a parent sequence is an AAV capsid sequence into which a targeting sequence is inserted.


Particle: As used herein, a “particle” is a virus comprised of at least two components, a protein capsid and a polynucleotide sequence enclosed within the capsid.


Patient: As used herein, “patient” refers to a subject who may seek or be in need of treatment, requires treatment, is receiving treatment, will receive treatment, or a subject who is under care by a trained professional for a particular disease or condition.


Payload region: As used herein, a “payload region” is any nucleic acid sequence (e.g., within the viral genome) which encodes one or more “payloads” of the disclosure. As non-limiting examples, a payload region may be a nucleic acid sequence within the viral genome of an AAV particle, which encodes a payload, wherein the payload is an RNAi agent or a polypeptide. Payloads of the present disclosure may be, but are not limited to, peptides, polypeptides, proteins, antibodies, RNAi agents, etc.


Peptide: As used herein, “peptide” is less than or equal to 50 amino acids long, e.g., about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids long.


Pharmaceutically acceptable: The phrase “pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.


Preventing: As used herein, the term “preventing” or “prevention” refers to partially or completely delaying onset of an infection, disease, disorder and/or condition; partially or completely delaying onset of one or more symptoms, features, or clinical manifestations of a particular infection, disease, disorder, and/or condition; partially or completely delaying onset of one or more symptoms, features, or manifestations of a particular infection, disease, disorder, and/or condition; partially or completely delaying progression from an infection, a particular disease, disorder and/or condition; and/or decreasing the risk of developing pathology associated with the infection, the disease, disorder, and/or condition.


Prophylactic: As used herein, “prophylactic” refers to a therapeutic or course of action used to prevent the spread of disease.


Prophylaxis: As used herein, a “prophylaxis” refers to a measure taken to maintain health and prevent the spread of disease.


Region: As used herein, the term “region” refers to a zone or general area. In some embodiments, when referring to a protein or protein module, a region may comprise a linear sequence of amino acids along the protein or protein module or may comprise a three-dimensional area, an epitope and/or a cluster of epitopes. In some embodiments, regions comprise terminal regions. As used herein, the term “terminal region” refers to regions located at the ends or termini of a given agent. When referring to proteins, terminal regions may comprise N- and/or C-termini.


In some embodiments, when referring to a polynucleotide, a region may comprise a linear sequence of nucleic acids along the polynucleotide or may comprise a three-dimensional area, secondary structure, or tertiary structure. In some embodiments, regions comprise terminal regions. As used herein, the term “terminal region” refers to regions located at the ends or termini of a given agent. When referring to polynucleotides, terminal regions may comprise 5′ and/or 3′ termini.


RNA or RNA molecule: As used herein, the term “RNA” or “RNA molecule” or “ribonucleic acid molecule” refers to a polymer of ribonucleotides; the term “DNA” or “DNA molecule” or “deoxyribonucleic acid molecule” refers to a polymer of deoxyribonucleotides. DNA and RNA can be synthesized naturally, e.g., by DNA replication and transcription of DNA, respectively; or be chemically synthesized. DNA and RNA can be single-stranded (i.e., ssRNA or ssDNA, respectively) or multi-stranded (e.g., double stranded, i.e., dsRNA and dsDNA, respectively). The term “mRNA” or “messenger RNA”, as used herein, refers to a single stranded RNA that encodes the amino acid sequence of one or more polypeptide chains.


RNA interfering or RNAi: As used herein, the term “RNA interfering” or “RNAi” refers to a sequence specific regulatory mechanism mediated by RNA molecules which results in the inhibition or interfering or “silencing” of the expression of a corresponding protein-coding gene. RNAi has been observed in many types of organisms, including plants, animals and fungi. RNAi occurs in cells naturally to remove foreign RNAs (e.g., viral RNAs). Natural RNAi proceeds via fragments cleaved from free dsRNA which direct the degradative mechanism to other similar RNA sequences. RNAi is controlled by the RNA-induced silencing complex (RISC) and is initiated by short/small dsRNA molecules in cell cytoplasm, where they interact with the catalytic RISC component argonaute. The dsRNA molecules can be introduced into cells exogenously. Exogenous dsRNA initiates RNAi by activating the ribonuclease protein Dicer, which binds and cleaves dsRNAs to produce double-stranded fragments of 21-25 base pairs with a few unpaired overhang bases on each end. These short double stranded fragments are called small interfering RNAs (siRNAs).


RNAi agent: As used herein, the term “RNAi agent” refers to an RNA molecule, or its derivative, that can induce inhibition, interfering, or “silencing” of the expression of a target gene and/or its protein product. An RNAi agent may knock-out (virtually eliminate or eliminate) expression, or knock-down (lessen or decrease) expression. The RNAi agent may be, but is not limited to, dsRNA, siRNA, shRNA, pre-miRNA, pri-miRNA, miRNA, stRNA, lncRNA, piRNA, or snoRNA.


Sample: As used herein, the term “sample” or “biological sample” refers to a subset of its tissues, cells or component parts (e.g. body fluids, including but not limited to blood, serum, mucus, lymphatic fluid, synovial fluid, cerebrospinal fluid, saliva, amniotic fluid, amniotic cord blood, urine, vaginal fluid and semen). A sample further may include a homogenate, lysate or extract prepared from a whole organism or a subset of its tissues, cells or component parts, or a fraction or portion thereof, including but not limited to, for example, plasma, serum, spinal fluid, lymph fluid, the external sections of the skin, respiratory, intestinal, and genitourinary tracts, tears, saliva, milk, blood cells, tumors, organs. A sample further refers to a medium, such as a nutrient broth or gel, which may contain cellular components, such as proteins or nucleic acid molecule.


Self-complementary viral particle: As used herein, a “self-complementary viral particle” is a particle comprised of at least two components, a protein capsid and a self-complementary viral genome enclosed within the capsid.


Sense Strand: As used herein, the term “the sense strand” or “the second strand” or “the passenger strand” of a siRNA molecule refers to a strand that is complementary to the antisense strand or first strand. The antisense and sense strands of a siRNA molecule are hybridized to form a duplex structure. As used herein, a “siRNA duplex” includes a siRNA strand having sufficient complementarity to a section of about 10-50 nucleotides of the mRNA of the gene targeted for silencing and a siRNA strand having sufficient complementarity to form a duplex with the other siRNA strand.


Similarity: As used herein, the term “similarity” refers to the overall relatedness between polymeric molecules, e.g. between polynucleotide molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. Calculation of percent similarity of polymeric molecules to one another can be performed in the same manner as a calculation of percent identity, except that calculation of percent similarity takes into account conservative substitutions as is understood in the art.


Short interfering RNA or siRNA: As used herein, the terms “short interfering RNA,” “small interfering RNA” or “siRNA” refer to an RNA molecule (or RNA analog) comprising between about 5-60 nucleotides (or nucleotide analogs) which is capable of directing or mediating RNAi. Preferably, a siRNA molecule comprises between about 15-30 nucleotides or nucleotide analogs, such as between about 16-25 nucleotides (or nucleotide analogs), between about 18-23 nucleotides (or nucleotide analogs), between about 19-22 nucleotides (or nucleotide analogs) (e.g., 19, 20, 21 or 22 nucleotides or nucleotide analogs), between about 19-25 nucleotides (or nucleotide analogs), and between about 19-24 nucleotides (or nucleotide analogs). The term “short” siRNA refers to a siRNA comprising 5-23 nucleotides, preferably 21 nucleotides (or nucleotide analogs), for example, 19, 20, 21 or 22 nucleotides. The term “long” siRNA refers to a siRNA comprising 24-60 nucleotides, preferably about 24-25 nucleotides, for example, 23, 24, 25 or 26 nucleotides. Short siRNAs may, in some instances, include fewer than 19 nucleotides, e.g., 16, 17 or 18 nucleotides, or as few as 5 nucleotides, provided that the shorter siRNA retains the ability to mediate RNAi. Likewise, long siRNAs may, in some instances, include more than 26 nucleotides, e.g., 27, 28, 29, 30, 35, 40, 45, 50, 55, or even 60 nucleotides, provided that the longer siRNA retains the ability to mediate RNAi or translational repression absent further processing, e.g., enzymatic processing, to a short siRNA. siRNAs can be single stranded RNA molecules (ss-siRNAs) or double stranded RNA molecules (ds-siRNAs) comprising a sense strand and an antisense strand which hybridized to form a duplex structure called an siRNA duplex.


Subject: As used herein, the term “subject” or “patient” refers to any organism to which a composition in accordance with the disclosure may be administered, e.g., for experimental, diagnostic, prophylactic, and/or therapeutic purposes. Typical subjects include animals (e.g., mammals such as mice, rats, rabbits, non-human primates, and humans) and/or plants.


Substantially: As used herein, the term “substantially” refers to the qualitative condition of exhibiting total or near-total extent or degree of a characteristic or property of interest. One of ordinary skill in the biological arts will understand that biological and chemical phenomena rarely, if ever, go to completion and/or proceed to completeness or achieve or avoid an absolute result. The term “substantially” is therefore used herein to capture the potential lack of completeness inherent in many biological and chemical phenomena.


Targeting peptide: As used herein, a “targeting peptide” refers to a peptide of 3-20 amino acids in length. These targeting peptides may be inserted into, or attached to, a parent amino acid sequence to alter the characteristics (e.g., tropism) of the parent protein. As a non-limiting example, the targeting peptide can be inserted into an AAV capsid sequence for enhanced targeting to a desired cell-type, tissue, organ or organism. It is to be understood that a targeting peptide is encoded by a targeting polynucleotide which may similarly be inserted into a parent polynucleotide sequence. Therefore, a “targeting sequence” refers to a peptide or polynucleotide sequence for insertion into an appropriate parent sequence (amino acid or polynucleotide, respectively).


Target Cells: As used herein, “target cells” or “target tissue” refers to any one or more cells of interest. The cells may be found in vitro, in vivo, in situ or in the tissue or organ of an organism. The organism may be an animal, preferably a mammal, more preferably a human and most preferably a patient.


Therapeutic Agent: The term “therapeutic agent” refers to any agent that, when administered to a subject, has a therapeutic, diagnostic, and/or prophylactic effect and/or elicits a desired biological and/or pharmacological effect.


Therapeutically effective amount: As used herein, the term “therapeutically effective amount” means an amount of an agent to be delivered (e.g., nucleic acid, drug, therapeutic agent, diagnostic agent, prophylactic agent, etc.) that is sufficient, when administered to a subject suffering from or susceptible to an infection, disease, disorder, and/or condition, to treat, improve symptoms of, diagnose, prevent, and/or delay the onset of the infection, disease, disorder, and/or condition. In some embodiments, a therapeutically effective amount is provided in a single dose.


Therapeutically effective outcome: As used herein, the term “therapeutically effective outcome” means an outcome that is sufficient in a subject suffering from or susceptible to an infection, disease, disorder, and/or condition, to treat, improve symptoms of, diagnose, prevent, and/or delay the onset of the infection, disease, disorder, and/or condition.


Treating: As used herein, the term “treating” refers to partially or completely alleviating, ameliorating, improving, relieving, delaying onset of, inhibiting progression of, reducing severity of, and/or reducing incidence of one or more symptoms or features of a particular infection, disease, disorder, and/or condition. For example, “treating” cancer may refer to inhibiting survival, growth, and/or spread of a tumor. Treatment may be administered to a subject who does not exhibit signs of a disease, disorder, and/or condition and/or to a subject who exhibits only early signs of a disease, disorder, and/or condition for the purpose of decreasing the risk of developing pathology associated with the disease, disorder, and/or condition.


Vector: As used herein, the term “vector” refers to any molecule or moiety which transports, transduces or otherwise acts as a carrier of a heterologous molecule. In some embodiments, vectors may be plasmids. In some embodiments, vectors may be viruses. An AAV particle is an example of a vector. Vectors of the present disclosure may be produced recombinantly and may be based on and/or may comprise adeno-associated virus (AAV) parent or reference sequences. The heterologous molecule may be a polynucleotide and/or a polypeptide.


Viral Genome: As used herein, the terms “viral genome” or “vector genome” refer to the nucleic acid sequence(s) encapsulated in an AAV particle. A viral genome comprises a nucleic acid sequence with at least one payload region encoding a payload and at least one ITR.


Equivalents and Scope

Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments in accordance with the disclosure described herein. The scope of the present disclosure is not intended to be limited to the above Description, but rather is as set forth in the appended claims.


In the claims, articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The disclosure includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The disclosure includes embodiments in which more than one, or the entire group members are present in, employed in, or otherwise relevant to a given product or process.


It is also noted that the term “comprising” is intended to be open and permits but does not require the inclusion of additional elements or steps. When the term “comprising” is used herein, the term “consisting of” is thus also encompassed and disclosed.


Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or subrange within the stated ranges in different embodiments of the disclosure, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.


In addition, it is to be understood that any particular embodiment of the present disclosure that falls within the prior art may be explicitly excluded from any one or more of the claims. Since such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the compositions of the disclosure (e.g., any antibiotic, therapeutic or active ingredient; any method of production; any method of use; etc.) can be excluded from any one or more claims, for any reason, whether or not related to the existence of prior art.


It is to be understood that the words which have been used are words of description rather than limitation, and that changes may be made within the purview of the appended claims without departing from the true scope and spirit of the disclosure in its broader aspects.


While the present disclosure has been described at some length and with some particularity with respect to the several described embodiments, it is not intended that it should be limited to any such particulars or embodiments or any particular embodiment, but it is to be construed with references to the appended claims so as to provide the broadest possible interpretation of such claims in view of the prior art and, therefore, to effectively encompass the intended scope of the disclosure.


The present disclosure is further illustrated by the following non-limiting examples.


EXAMPLES
Example 1. TRACER Proof of Concept: Promoter Selection

Proof-of-concept experiments were conducted by placing the genes encoding an AAV9 peptide display capsid library under the control of either the neuron-specific synapsin promoter (SYN) or the astrocyte-specific GFAP promoter. Following intravenous administration to C57BL/6 mice, RNA was recovered from brain tissue and used for further library evolution. Next-generation sequencing (NGS) showed sequence convergence between animals after only two rounds of selection. Interestingly, several variants highly similar to the PHP.eB capsid were recovered, suggesting that our method allowed a rapid selection of high-performance capsids. A subset of capsids having peptide sequences with high CNS enrichment was selected for further study. It is understood that any promoter may be selected depending on the desired tropism. Examples of such promoters are found in Table 3.









TABLE 3







Promoters, tissue and cell type









Promoter name
Tissue
Cell type





B29 promoter
Blood
B cells


Immunoglobulin heavy chain
Blood
B cells


promoter


CD45 promoter
Blood
Hematopoietic


Mouse INF-β promoter
Blood
Hematopoietic


CD45 SV40/CD45 promoter
Blood
Hematopoietic


WASP promoter
Blood
Hematopoietic


CD43 promoter
Blood
Leuko & Platelets


CD43 SV40/CD43 promoter
Blood
Leuko & Platelets


CD68 promoter
Blood
Macrophages


GPIIb promoter
Blood
Megakaryocyte


CD14 promoter
Blood
Monocytes


CD2 promoter
Blood
T cells


Osteocalcin
Bone
Osteoblasts


Bone sialoprotein
Bone
Osteoblasts


OG-2 promoter
Bone
Osteoblasts, odontoblasts


GFAP promoter
Brain
Astrocytes


Vga
Brain
GABAergic neurons


Vglut2
Brain
glutamatergic neurons


NSE/RU5′ promoter
Brain
Neurons


SYN1 promoter
Brain
Neurons


Neurofilament light chain
Brain
Neurons


VGF
Brain
Neurons


Nestin
Brain
NSC


Chx10
Eye
All retinal neurons


PrP
Eye
All retinal neurons


Dkk3
Eye
All retinal neurons


Math5
Eye
Amacrine and horizontal




cells


Ptf1a
Eye
Amacrine and horizontal




cells


Pcp2
Eye
Bipolar cells


Nefh
Eye
Ganglion cells


gamma-synuclein gene
Eye
ganglion cells


(SNCG)


Grik4
Eye
GC


Pdgfra
Eye
GC and ONL Müller cells


Chat
Eye
GC/Amacrine cells


Thy 1.2
Eye
GC/neural retina


hVmd2
Eye
INL Müller cells


Thy 1
Eye
INL Müller cells


Modified αA-crystallin
Eye
Lens/neural retina


hRgp
Eye
M- and S-cone


mMo
Eye
M-cone


Opn4
Eye
Melanopsin-expressing GC


RLBP1
Eye
Muller cells


Glast
Eye
Müller cells


Foxg1
Eye
Müller cells


hVmd2
Eye
Müller cells/optic nerve/




INL


Trp1
Eye
Neural retina


Six3
Eye
Neural retina


cx36
Eye
Neurons


Grm6 - SV40 eukaryotic
Eye
ON bipolar


promoter


hVmd2
Eye
Optic nerve


Dct
Eye
Pigmented cells


Rpc65
Eye
Retinal pigment epithelium


mRho
Eye
Rod


Irbp
Eye
Rod


hRho
Eye
Rod


Pcp2
Eye
Rod bipolar cells


Rhodopsin
Eye
Rod Photoreceptors


mSo
Eye
S-cone


MLC2v promoter
Heart
Cardiomyocyte


αMHC promoter
Heart
Cardiomyocyte


rat troponin T (Tnnt2)
Heart
Cardiomyocyte


Tie2
Heart
Endothelial


Tcf21
Heart
Fibroblasts


ECAD
Kidney
Collecting duct


NKCC2
Kidney
Loop of Henle


KSPC
Kidney
Nephron


NPHS1
Kidney
Podocyte


SGLT2
Kidney
Proximal tubular cells


SV40/bAlb promoter
Liver
hepatocytes


SV40/hAlb promoter
Liver
hepatocytes


Hepatitis B virus core
Liver
hepatocytes


promoter


Alpha fetoprotein
Liver
hepatocytes


Surfactant protein B promoter
Lung
AT II cells and Clara cells


Surfactant protein C promoter
Lung
AT II cells and Clara cells


Desmin
Muscle
Muscle stem cells +




Myocytes


Mb promoter
Muscle
Myocyte


Myosin
Muscle
Myocyte


Dystrophin
Muscle
Myocyte


dMCK and tMCK
Muscle
Myocytes


Elastase-1 promoter
Pancreas
Acinar cells


PDX1 promoter
Pancreas
Beta cells


Insulin promoter
Pancreas
langherans


Slco1c1
Vasculature
BBB Endothelial


tie
Vasculature
Endothelial


cadherin
Vasculature
Endothelial


ICAM-2
Vasculature
Endothelial


claudin 1
Vasculature
Endothelial


Cldn5
Vasculature
Endothelial


Flt-1 promoter
Vasculature
Endothelial


Endoglin promoter
Vasculature
Endothelial









Capsid pools were injected to three rodent species, followed by RNA enrichment analysis for characterization of transduction efficiency in neurons or astrocytes and cross-species performance. Top-ranking capsids were then individually tested and several variants showed CNS transduction similar to or higher than the PHP.eB benchmark. These results suggest that the TRACER platform allows rapid in vivo evolution of AAV capsids in non-transgenic animals with a high degree of tropism improvement. The following examples illustrate the findings in more detail.


Example 2. Generation of an AAV Vectors Capable of Capsid mRNA Expression in the Absence of Helper Virus

In order to perform cell type- and transduction-restricted in vivo evolution of AAV capsid libraries, a capsid library system was engineered in which the capsid mutant gene can be transcribed in the absence of a helper virus, in a specific cell type. In the wild-type AAV virus, the mRNA encoding the capsid proteins VP1, VP2 and VP3, as well as the AAP accessory protein, are expressed by the P40 promoter located in the 3′ region of the REP gene (FIG. 1A), that is only active in the presence of the REP protein as well as the helper virus functions (Berns et al., 1996). In order to allow expression of the capsid mRNA in animal tissue or in cultured cells, another promoter must be inserted upstream or downstream of the CAP gene. Because of the limited packaging capacity of the AAV capsid, a portion of the REP gene must be deleted to accommodate the extra promoter insertion, and the REP gene has to be provided in trans by another plasmid to allow virus production. The minimal viral sequence required for high titer AAV production was determined by introducing a CMV promoter at various locations upstream of the CAP gene of AAV9 (FIG. 1B). The REP protein was provided in trans by the pREP2 plasmid obtained by deleting the CAP gene from a REP2-CAP2 packaging vector using EcoNI and ClaI (SEQ. ID NO:4). For small-scale virus production test, HEK-293T cells grown in DMEM supplemented with 5% FBS and 1× pen/strep were plated in 15-cm dishes and co-transfected with 15 ug of pHelper (pFdelta6) plasmid, 10 ug pREP2 plasmid and lug ITR-CMV-CAP plasmid using calcium phosphate transfection. After 72 hours, cells were harvested by scraping, pelleted by a brief centrifugation and suspended in 1 ml of a buffer containing 10 mM Tris and 2 mM MgCl2. Cells were lysed by addition of triton X-100 to 0.1% final concentration and treated with 50U of benzonase for 1 hour. Virus from the supernatants was precipitated with 8% polyethylene glycol and 0.5M NaCl, suspended in 1 ml of 10 mM TRIS-2mM MgCl2 and combined with the cell lysate. The pooled virus was adjusted to 0.5M NaCl, cleared by centrifugation for 15 minutes at 4,000×g and fractionated on a step iodixanol gradient of 15%, 25%, 40% and 60% for 3 hours at 40,000prm (Zolotukhin et al., 1999). The 40% fraction containing the purified AAV particles was harvested and viral titers were measured by real-time PCR using a Taqman primer/probe mix specific for the 3′-end of REP, shared by all the constructs. Virus yields were significantly lower than the fully wild-type ITR-REP2-CAP9-ITR used as a reference (1.7% to 8.8%), but the CMV-BstEII construct allowed the highest yields of all three CMV constructs. See FIG. 2. The CMV-HindIII construct, in which most of the P40 promoter sequence is deleted, generated the lowest yield (1.7% of wtAAV9), indicating that even the potent CMV promoter cannot replace the P40 promoter without a severe drop in virus yields. Following these observations, the BstEII architecture (SEQ. ID NO:5), which preserves the minimal P40 sequence and the CAP mRNA splice donor, was used in all further experiments.


The REP-expressing plasmid was then improved by preserving the AAP reading frame together with a large portion of the capsid gene from the REP2-CAP9 helper vector, which may contain sequences necessary for the regulation of CAP transcription and/or splicing. In order to eliminate the capsid coding potential of the vector, a C-terminus fragment of the capsid gene was deleted by a triple cut with the MscI restriction enzyme followed by self-ligation, in order to obtain the pREP-AAP plasmid (FIG. 3A, SEQ. ID NO:6).


An iteration of this construct was engineered by introducing premature stop codons immediately after the start codons of VP1, VP2 and VP3, without perturbing the amino acid sequence of the colinear AAP reading frame (FIG. 3A). This construct was named pREP-3stop (SEQ. ID NO:7). A neuron-specific syn-CAPS vector (SEQ. ID NO:8) was derived from the CMV9-BstEII plasmid by swapping the CMV promoter with the neuron-specific human synapsin 1 promoter.


Production efficiency of this Syn-CAPS was tested as described previously using pREP, pREP-AAP or pREP-3stop plasmid to supply REP in trans. As shown in FIG. 3B, the REP plasmids harboring a longer capsid sequence as well as AAP increased virus yields by approximately 3-fold compared to the pREP plasmid. Virus titers obtained with the pREP-AAP or pREP-3stop vectors reached ˜30% of wild-type AAV9. An important concern with plasmids harboring long homologous regions is the potential for unwanted recombination with the ITR-CAP vector, that would reconstitute a wild-type ITR-REP-CAP vector and contaminate combinatorial libraries.


To evaluate the risk of wild-type virus reconstitution, the viral preparations obtained in FIG. 3B were subjected to real-time PCR with a Taqman probe located in the N terminus of REP. The percentage of capsids containing a detectable full-length REP was less than 0.03% of wild-type virus (FIG. 3C), which was even lower than the routinely detected 0.1% illegitimate REP-CAP packaging occurring in most recombinant AAV preparations obtained from 293T cell transfection (FIG. 3C, our unpublished observations). Because the premature stop codons of the pREP-3 stop vector offer an extra layer of safety against potential reconstitution of wild-type capsids and prevents the translation of truncated capsid proteins, the 3stop plasmid was used for all subsequent studies.


Following this, the feasibility of RNA-driven biopanning in C57BL/6 mice using AAV9-packaged vectors where the AAV9 capsid gene is driven by the CMV promoter, the Synapsin promoter or the astrocyte-specific GFabc1D promoter (SEQ. ID NO:9), thereafter referred to as GFAP promoter (Brenner et al., 2008) was tested (FIG. 4A). The three vectors were produced in HEK-293T cells as previously described and analyzed by PAGE-silver stain. As shown in FIG. 4B, all vectors showed a normal ratio of VP1, VP2 and VP3 capsid proteins, indicating that the particular promoter architecture does not disrupt the balance of capsid protein expression. Six-week old male C57BL/6 mice were injected intravenously with 1e12 VG per mouse and sacrificed after 28 days. DNA biodistribution and capsid mRNA expression were tested in the brain, liver and heart tissues.


Total DNA was extracted from brain, liver and heart tissues using Qiagen DNeasy Blood and Tissue columns, and viral DNA was quantified by real-time PCR using a Taqman probe located in the VP3 N-terminal region. DNA abundance was normalized using a pre-designed probe detecting the single-copy transferrin receptor gene (Life Technologies ref. 4458366). Viral DNA was highly abundant in the liver and to a lower extent in the heart. The DNA distribution did not show any noticeable difference between the three vectors (FIG. 4C). RNA was extracted with Qiagen RNeasy plus universal kit following manufacturer's instructions, then treated with ezDNAse (Qiagen) to remove residual DNA, and reverse transcribed with Superscript IV (Life technologies).


RNA expression was evaluated using the same VP3 probe used to quantify viral DNA and normalized using TBP as a reference RNA (Life technologies Mm01277042 m1). In the brain, the GFAP promoter allowed the strongest expression level, and the Synapsin promoter allowed a comparable expression as the potent CMV promoter. In the liver, all promoters resulted in a similar expression level, which could be the result of a leaky expression at very high copy number (FIG. 4D). In the heart, the cell type specificity of the Syn and GFAP promoters was evident, since they allowed only ˜3 and 10% of CMV expression, respectively despite of a similar DNA biodistribution.


Overall the experiment showed that mRNA from transduction-competent capsids could be recovered from various animal organs, including weakly transduced tissues such as the brain.


Example 3. AAV Vector Configuration

Various vector configurations were explored toward increasing RNA expression to maximize library recovery. The CMV promoter was replaced by a hybrid CMV enhancer/Chicken beta-actin promoter sequence (Niwa et al., 1991) and a potent cytomegalovirus-beta-globin hybrid intron derived from the AAV-MCS cloning vector (Stratagene) was inserted between the promoter sequence and the capsid gene, as introns have been shown to increase mRNA processing and stability (Powell et al., 2015). This resulted in the constructs CAG9 (SEQ. ID NO:10), SYNG9 (SEQ. ID NO:11) and GFAPG (SEQ. ID NO:12).


An inverted vector configuration was also tested where the helper-independent promoter was placed downstream of the capsid gene in reverse orientation, in order to avoid potential interference with the P40 promoter (FIG. 5A). This configuration allows the expression of an antisense capsid transcript in animal tissue. Because most polyadenylation signals (AATAAA) are orientation-dependent, it was hypothesized that the natural AAV capsid polyA would not prematurely terminate transcription when placed in reverse orientation. All constructs were co-transfected with pHelper and pREP-3 stop plasmids to generate AAV9-packaged virions that were used to transduce HEK-293T cells at a MOI of 1e4 VG per cell. RNA was extracted 48 hours post-transfection and reverse transcribed using the Quantitect kit (Qiagen).


PCR was performed with primers allowing amplification of the full-length capsid or a partial sequence localized close to the C-terminus (FIG. 5B). Overall, the presence of an intron had little influence on the expression from low-activity promoters Syn and GFAP, which indicates that mRNA splicing did not alleviate promoter repression in nonpermissive cells. The combination of the CMV enhancer with a Chicken beta-actin promoter and the hybrid intron allowed a significantly higher (>10-fold) mRNA expression compared to CMV promoter alone (FIGS. 5B, C).


When comparing endpoint PCR amplification between forward and inverted intronic vectors, a discrepancy was obvious between full-length and partial capsid amplicons (FIG. 5B, right-hand lanes), which led us to question the integrity of capsid RNA. When cDNA from inverted iCAG9 genome was amplified using primers flanking the full-length capsid, multiple low-molecular weight bands were detected, whereas the forward orientation vector allowed amplification of a single product with the expected length (FIG. 5D). Sanger sequencing of low-molecular weight amplicons showed that each band corresponded to an illegitimate splicing product from the antisense capsid RNA.


In light of these results, the forward tandem promoter architecture for subsequent experiments.


Splice-specific PCR amplification was tested to avoid amplification of residual DNA present in RNA preparations. Two candidate PCR primers overlapping the CMV/Globin exon-exon junction were designed and tested them for amplification of cDNA (spliced) or plasmid DNA (still containing the intron sequence). As shown in FIG. 5E, the GloSpliceF6 primer (SEQ. ID NO:13) allowed a fully specific amplification from cDNA without producing a detectable amplicon from the plasmid DNA sequence. This primer was used in subsequent assays to ascertain the absence of amplification from contaminating DNA.


Tandem constructs were then tested for potential interference of the P40 promoter with the cell-specific promoter placed upstream. For this, two series of AAV genomes were tested for transgene mRNA expression in HEK-293T cells. A series of transgenes where the GFP gene was placed immediately downstream of the CAG, SYNG or GFAPG promoter without P40 sequence were tested, and compared to the library constructs where AAV9 capsid was placed downstream of the P40 promoter (FIG. 6A). All genomes were packaged into the AAV9 capsid and used to infect HEK-293T at a MOI of 1e4 VG per cell. RNA was extracted 48 hours post-infection and transgene RNA was quantified by using a Taqman primer/probe mix specific for the spliced globin exon-exon junction. As shown in FIG. 6B, the expression from the CAG promoter was similar between the GFP and the P40-CAP9 constructs (2-fold lower in p40-CAP9, within the error margin of AAV titration). Expression from the synapsin promoter was drastically lower with both constructs and even lower for GFAP-driven mRNA (FIG. 6B). This was expected since HEK-293T cells are not permissive to Synapsin or GFAP promoter expression. Overall, this experiment confirmed that the presence of the P40 sequence did not alter the cell type specificity of synapsin or GFAP promoters.


This novel platform was termed TRACER (Tropism Redirection of AAV by Cell type-specific Expression of RNA). The TRACER platform solves the problems of standard methods including transduction and cell-type restrictions. (FIG. 7). Use of the TRACER system is well suited to capsid discovery where targeting peptide libraries are utilized. Screening of such a library may be conducted as outlined in FIG. 8.


While several variations of the AAV vectors which encode the capsids as payloads are taught herein, one canonical design is shown in FIG. 9B and in FIG. 12A and FIG. 12B.


Further advantages of the TRACER platform relate to the nature of the virus pool and the recovery of RNA only from fully transduced cells (FIG. 10). Consequently, capsid discovery can be accelerated in a manner that results in cell and/or tissue specific tropism (FIG. 11).


Example 4. Generation of Peptide Display Libraries and Cloning-Free Amplification

Several peptide display capsid libraries were generated by insertion of seven contiguous randomized amino acids into the surface-exposed hypervariable loop VIII region of AAV5, AAV6, or AAV-DJ8 capsids (FIG. 13 and FIG. 39) as well as AAV9 (FIG. 14). For AAV9 libraries, two extra libraries by modifying residues at positions −2, −1 and +1 of the insertion to match the flanking sequence of the highly neurotrophic PHP.eB vector (Chan et al., 2018). In order to facilitate the insertion of various loops and to prevent contamination by wild-type capsids, defective shuttle vectors were generated in which the C-terminal region of the capsid gene comprised between the loop VIII and the stop codon was deleted and replaced by a unique BsrGI restriction site (FIGS. 15A, B). Degenerate primers containing randomized NNK (K=T or G) sequences able to encode all amino acids were synthesized by IDT and used to amplify the missing capsid fragment using gBlock (IDT) double-stranded linear DNA as templates (SEQ. ID NO 14, 15, 16, 17). Linear PCR templates were preferred to plasmids in order to completely prevent the possibility of plasmid carryover in the PCR reaction. Amplicons containing the random library sequence (500 ng) were inserted in the shuttle plasmid linearized by BsrGI (2 ug) using 100 ul of NEBuilder HiFi DNA assembly master mix (NEB) during 30 minutes at 50° C. Unassembled linear templates were eliminated by addition of 5 ul of T5 exonuclease to the reaction and digestion for 30 minutes at 37° C. The entire reaction was purified with DNA Clean and Concentrator-5 and quantified with a nanodrop to estimate the efficiency of assembly. This method routinely allows the recovery of 0.5-1 ug assembled material.


gBlock templates were engineered by introducing silent mutations to remove unique restriction sites, to allow selective elimination of wild-type virus contaminants from the libraries by restriction enzyme treatment. As an example, AAV9 gBlock was engineered to remove BamHI and AfeI sites present in the parental sequence (SEQ. ID NO 17).


Example 5. Cloning Free Amplification

Transformation of assembled library DNA into competent bacteria represents a major bottleneck in library diversity, since even highly competent strains rarely exceed 1e7-1e8 colonies per transformation. By comparison, 100 nanograms of a 6-kilobase plasmid contain 1.5e10 DNA molecules. Therefore, bacterial transformation arbitrarily eliminates more than 99% of DNA species in a given pool. A cloning-free method was therefore created that allows >100-fold amplification of Gibson-assembled DNA while bypassing the bacterial transformation bottleneck (FIG. 16). A protocol based on rolling-circle amplification was optimized, which allows unbiased exponential amplification of circular DNA templates with an extremely low error rate (Hutchinson et al., 2005). One issue with rolling circle amplification is that it produces very large (˜70 kilobases on average) heavily branched concatemers that have to be cleaved into monomers for efficient cell transfection. This process can be accomplished by several methods, for example by using restriction enzymes to generate open-ended linear templates (Hutchinson et al., 2005, Huovinen, 2012), or CRE-Lox recombination to generates self-ligated circular templates (Huovinen et al., 2011). However, open-ended DNA is sensitive to degradation by cytoplasmic exonucleases, and the CRE recombination method showed relatively low efficiency (our unpublished observations). Therefore, an alternative monomer resolution method was chosen based on the use of TelN protelomerase (Rybchin et al., 1999), an enzyme that catalyzes the formation of closed-ended linear “dogbone” DNA monomers that are highly suitable for mammalian cell transfection (Heinrich et al., 2002).


To that end, the protelomerase recognition sequence TATCAGCACACAATTGCCCATTATACGC*GCGTATAATGGACTATTGTGTGCTGATA (SEQ ID NO: 176) was introduced outside both ITRs in all the BsrGI shuttle vectors used for capsid library insertion (the asterisk depicts the position were the two complementary strands get covalently linked to each other), in order to obtain the following plasmids: TelN-Syn9-BsrGI (SEQ ID NO 18), TelN-GFAP9-BsrGI (SEQ ID NO 19), TelN-Syn5-BsrGI (SEQ ID NO 20), TelN-GFAP5-BsrGI (SEQ ID NO 21), TelN-Syn6-BsrGI (SEQ ID NO 22), TelN-GFAP6-BsrGI (SEQ ID NO 23), TelN-SynDJ8-BsrGI (SEQ ID NO 24), TelN-GFAPDJ8-BsrGI (SEQ ID NO 25). Several methods for rolling circle amplification were tested, and the best results (high yield and low non-specific amplification) were obtained with the TruePrime technology (Expedeon), which relies on primerless amplification (Picher et al., 2016).


Briefly, the entire column-purified assembly reaction was used in a 900-ul TruePrime reaction following the manufacturer's instructions and incubated overnight at 30° C. The following day, the rolling circle reaction product was incubated 10 minutes at 65° C. to inactivate the enzymes and was diluted 5-fold in 1× thermoPol buffer with 50 ul protelomerase (NEB) in a 4.5-ml reaction. After 1 hour at 30° C., the reaction was heat-treated for 10 minutes at 70° C. to inactivate the protelomerase, and a 4.5-ul aliquot was run on an agarose gel. The entire reaction was then purified on multiple (10-12) Qiagen QiaPrep 2.0 columns following manufacturer's instructions. The typical yield obtained with this method was 160-180 ug DNA, which indicates >100-fold amplification of the starting material (typically 0.5-1 ug) and provides enough DNA for transfection of 200 cell culture dishes (FIG. 16).


The composition of all libraries was tested by next-gen sequencing with an Illumina NextSeq sequencing platform to estimate the number of variants and the eventual contamination by wild-type viruses. Amplicons were generated by PCR with Q5 polymerase (NEB) using primers containing Illumina TruSeq adapters and index barcodes. Amplicons were obtained by low-cycle PCR amplification (15 cycles), ran on 3% agarose gels and purified using Zymo gel extraction reagents. Libraries were quantified using a nanodrop, pooled into equimolar mixes and re-quantified with a KAPA library quantification kit following manufacturer's instruction. Libraries were mixed with 20-40% of PhiX control library to increase sequence diversity.


All DNA libraries generated by rolling circle showed a high sequence diversity (typically >1e8 unique variants, beyond the limits of NextSeq sequencing). By comparison, plasmid libraries generated by bacterial transformation rarely exceeded 1-2e7 variants.


Example 6. Prevention and/or Reduction of Contamination

In another embodiment, a primer/vector system aimed at completely preventing contamination of AAV9 libraries by wild-type virus possibly recovered from environmental contamination or from naturally infected primate animal tissues was created. This was achieved by introducing a maximum number of silent mutations in the sequences surrounding the library insertion site, as well as the sequence immediately before the CAP stop codon, used for PCR amplification (FIG. 17). These libraries showed an extremely low number of wild-type AAV9 detection by NGS (<2 AAV9 reads per 5e7 total reads), suggesting that the alteration of codons surrounding the library amplification and cloning sites is a very efficient way to preserve libraries from environmental or experimental contaminations.


Libraries were produced as described previously by calcium phosphate transfection of HEK-293T cells, dual iodixanol gradient fractionation and membrane ultrafiltration using 100,000 Da MWCO Amicon-15 membranes (Millipore), quantified by real-time PCR and an aliquot was used for NGS amplicon generation and NextSeq sequencing. The diversity of viral libraries was significantly lower than that of DNA libraries (typically ˜1-2e7 unique variants) and showed a very strong counter-selection of variants containing stop codons (from 20% in DNA libraries to ˜1% in virus libraries), evincing a very high rate of cis-packaging, as observed in previous studies (Nonnenmacher et al., 2014).


Example 7. In Vivo Selection of AAV9 Libraries for Mouse Brain Transduction

An RNA-driven library selection for increased brain transduction in a murine model was then developed. AAV9 libraries generated as described above were intravenously injected to male C57BL/6 mice at a dose 2e12 VG per mouse. Two groups of mice were injected with a single SYN-driven or GFAP-driven libraries derived from wild-type AAV9 flanking sequences, and two other groups received pooled libraries containing wild-type and PHP.eB-derived flanking sequences (FIG. 18). After one month, RNA was extracted from 200 mg of brain tissue corresponding to a whole hemisphere using RNeasy Universal Plus procedure (Qiagen). In order to minimize the possibility of RNA under sampling, the entire RNA preparation (˜200 ug) was subjected to mRNA enrichment using Oligotex beads (Qiagen) as recommended by the manufacturer. The entire preparation of enriched mRNA (˜5 ug, equivalent to 2% of total RNA) was then reverse transcribed in a 40-ul Superscript IV reaction (Life Technologies) using a library-specific primer with the following sequence: 5′-GAAACGAATTAAACGGTTTATTGATTAACAATCGATTA-3′ (SEQ ID NO: 415) (CAP stop codon is underlined) (FIG. 19). The entire pool of cDNA was then amplified 30 cycles with 55° C. annealing temperature and 2 minutes elongation in a 500-ul PCR reaction assembled with Q5 master mix, GloSpliceF6 forward primer and a CAP9-specific reverse primer: 5′-CGGTTTATTGATTAACAATCGATTACAGATTACGAGTCAGGTATC-3′ (SEQ ID NO: 416) (CAP stop codon is underlined). This method allowed recovery of abundant amplicons from all brain samples (FIG. 20).


Full-length capsid amplicons were then used as templates for NGS library generation, as well as cloning into a P1 DNA library for the next round of biopanning, using the exact same assembly and cloning-free procedure. NGS analysis performed on PCR amplicons indicated that the library diversity dropped ˜25-fold (from 1e7 to 4e5) after the first round of biopanning for both Syn-driven and GFAP-driven libraries (FIG. 21). The number of 1st pass variants (P1) recovered was too high to show any significant sequence convergence at this point, and there was very little overlap between the composition of pools recovered from individual animals. Therefore, a second round of selection was performed. After the second biopanning (P2), the total number of unique variants further dropped by 4-5-fold, down to <1e5 peptides. Importantly, some libraries recovered after the first round of biopanning showed significant counts of wild-type AAV9 and AAV-PHP.eB sequences, presumably from environmental contamination. These later became useful benchmarks in the second round of enrichment.


Following RNA recovery and PCR amplification, a systematic enrichment analysis by NGS was performed by calculating the ratio of P2/P1 reads and comparing it to AAV9 or PHP.eB P2/P1 ratio. As shown in FIG. 22, Table 4, FIG. 23 and Table 5, several capsids showed a higher enrichment ratio than the benchmark PHP.eB in both Syn-driven and GFAP-driven libraries, and sequence convergence was obvious, as represented by consensus sequence generation.









TABLE 4







Capsid analysis results













Rank


SEQ


Brain/


(enrichment
Ranking

ID
Average
P1
virus


factor)
(count)
Peptide
NO
of brain
AEvirus_S11
stock





 1
136
DGTLAVHFK
417
   2546.3
      6
254.6





 2
153
DGTFAVPFK
418
   2321.7
      6
232.2





 3
155
EGTLAVPFK
419
   2351.0
      7
201.5





 4
147
DGTMAVPFK
420
   2547.0
      8
191.0





 5
 32
DGTGGTKGW
107
  11116.0
     35
190.6





 6
  3
AQWPTSYDA
 62
 119359.7
    512
139.9





 7
 99
DGTLAVTFK
421
   3779.7
     19
119.4





 8
176
DGTLAVPIK
422
   1882.0
     13
 86.9





 9
 36
AQTTEKPWL
 83
  10192.0
     76
 80.5





10
165
DGTAIHLSS
 67
   2885.0
     23
 75.3





11
 13
DGTLSQPFR
 65
  42145.7
    344
 73.5





12
  2
DGTLAAPFK
120
 157129.3
  1,300
 72.5





13
  8
AQPEGSARW
 60
  70884.0
    594
 71.6





14
 48
AQWPTAYDA
256
   5934.0
     53
 67.2





15
198
DGTLQQPFR
 89
   2793.3
     25
 67.0





16
104
DGTLAVNFK
346
   3511.0
     32
 65.8





17
 31
DGTGNLSGW
302
  14521.3
    133
 65.5





18
158
DGTLEVTFK
423
   2337.7
     22
 63.8





19
 51
DGTMDKPFR
 70
  23962.3
    234
 61.4





20
 80
DGTGQVTGW
 68
   6242.7
     62
 60.4





21
 42
AQFPTNYDS
 66
   8640.0
     86
 60.3





22
127
ERTLAVPFK
424
   2873.3
     31
 55.6





23
  1
DGTLAVPFK
 71
9885065.7
110,785
 53.5





24
 61
DGTGTTMGW
324
   6753.0
     76
 53.3





25
 69
DGSQSTTGW
136
   7227.7
     82
 52.9





26
186
DGTVSNPFR
403
   2074.3
     24
 51.9





27
160
DGTLEVHFK
348
   2245.0
     26
 51.8





28
 29
DGTISQPFK
105
  20505.7
    243
 50.6





29
102
AQGSWNPPA
 80
   3746.0
     45
 49.9





30
 59
DGTHSTTGW
145
   7499.0
     91
 49.4





31
 23
DGTGSTTGW
134
  21582.0
    272
 47.6





32
142
DGTGTTTGW
130
   3077.3
     39
 47.3





33
 74
DGTVTTTGW
405
   5088.7
     66
 46.3





34
 35
DGTTYVPPR
 75
   9614.7
    126
 45.8





35
 40
DGTMDRPFK
102
   7868.3
    104
 45.4





36
  4
DGTGTTLGW
323
  88397.3
  1,169
 45.4





37
156
DGTALMLSS
280
   2444.0
     34
 43.1





38
116
DGTNTTHGW
113
   3065.0
     43
 42.8





39
 98
SGSLAVPFK
425
   4107.3
     58
 42.5





40
 38
DGTATTTGW
285
  10529.7
    150
 42.1





41
 11
DGTSYVPPR
 78
  36293.3
    526
 41.4





42
 89
DGTGNTHGW
 72
   3399.3
     50
 40.8





43
129
DGTASVTGW
283
   4824.3
     71
 40.8





44
 12
AQWELSNGY
246
  40837.0
    611
 40.1





45
115
DGTGNTSGW
137
   3405.0
     51
 40.1





46
 67
DGKGSTQGW
272
   5818.0
     88
 39.7





47
137
DGTVIMLSS
397
   3781.0
     58
 39.1





48
119
DGTGGVMGW
297
   2302.3
     36
 38.4





49
 58
DGGGTTTGW
270
  11174.3
    175
 38.3





50
 71
DGTSIHLSS
378
   5703.7
     90
 38.0
















TABLE 5







Capsid analysis results













Rank


SEQ


Brain/


(enrichment
Ranking

ID
Average
p1
virus


factor)
(count)
Peptide
NO
of brain
AEvirus_S11
stock





 1
106
DGTGGTKGW
107
   3620.7
   0
NA





 2
264
GGTRNTAPM
426
    831.0
   0
NA





 3
295
AQGRMTDSQ
199
    716.0
   0
NA





 4
677
DGNSYVPPR
427
    474.3
   0
NA





 5
700
AQAGVSGQR
428
    456.0
   0
NA





 6
731
AQAGNSNAV
429
    844.0
   0
NA





 7
181
DGTGGLTGW
294
   4044.3
   4
606.7





 8
558
AQWVYGQTV
430
    977.7
   1
586.6





 9
123
DGTSFSPPK
431
   4227.3
  10
253.6





10
 35
DGTIERPFR
 87
  29872.0
  92
194.8





11
105
DGTTLVPPR
116
   5597.3
  19
176.8





12
 18
DGTADKPFR
 63
 103305.3
 363
170.8





13
 22
DGTASYYDS
 61
  61841.3
 233
159.2





14
 26
AQTTDRPFL
 85
  38893.7
 147
158.7





15
  8
DGTQFSPPR
108
 206660.7
 801
154.8





16
169
DGTTTYGAR
 77
   4237.3
  17
149.6





17
 11
AQFVVGQQY
 95
 152965.0
 625
146.8





18
 61
DGTSYVPPR
 78
  13968.0
  58
144.5





19
 16
DGTAERPFR
140
 134132.7
 565
142.4





20
 21
AQGENPGRW
 96
  68919.7
 292
141.6





21
157
DGTSFTPPR
 88
   3210.0
  14
137.6





22
 73
AQTLARPFV
 98
   5947.7
  26
137.3





23
  9
DGTTWTPPR
139
 184936.7
 825
134.5





24
721
DGTATTMGW
284
   5562.3
  25
133.5





25
129
AQGTWNPPA
 82
  12379.3
  57
130.3





26
215
DGTRLMLSS
368
   2505.0
  12
125.3





27
 60
AQPLAVYGA
217
  13419.3
  66
122.0





28
909
AQGLDLGRW
432
    405.0
   2
121.5





29
 53
DGTSFTPPK
 81
  13673.3
  68
120.6





30
412
AQVMSGVGQ
433
    583.0
   3
116.6





31
390
AQKSVGSVY
205
   4415.7
  23
115.2





32
 70
AQTREYLLG
 93
   5752.7
  30
115.1





33
 43
DGTNGLKGW
 76
  15068.7
  79
114.4





34
 93
AQYLAGYTV
262
   6223.3
  33
113.2





35
 54
AQTGFAPPR
161
  14611.3
  78
112.4





36
115
DGTLNNPFR
109
   4719.7
  26
108.9





37
968
DGNGGLKGW
167
   3199.0
  18
106.6





38
120
AQSVAKPFL
231
   6929.7
  39
106.6





39
544
DGTHGLRGW
434
    528.0
   3
105.6





40
159
AQSVVRPFL
233
   2457.3
  14
105.3





41
 65
DGTRNMYEG
135
  21086.3
 124
102.0





42
556
AQRWAADSS
435
    500.7
   3
100.1





43
 30
AQGPTRPFL
125
  46225.3
 279
 99.4





44
 64
DGTVPYLSS
401
  22384.3
 137
 98.0





45
870
AQTGASGAT
436
    473.7
   3
 94.7





46
341
AQLVAGYSQ
437
   1240.0
   8
 93.0





47
375
AQSGGVGQV
228
    768.3
   5
 92.2





48
145
AQSLARLFP
438
   4435.3
  29
 91.8





49
  1
DGTLAVPFK
 71
1445517.0
9453
 91.7





50
124
DGTGNVTGW
 69
   5424.3
  36
 90.4









Importantly, there was also a strong sequence convergence between different animals, suggesting an efficient selection after only two passages. FIG. 24 and FIG. 25 provide an estimation of brain/liver specificity in GFAP-AAV9 peptide library candidates.


Example 8. Multiplexing Selections

For the final multiplex in vivo screen by individual variant pooling in equimolar library, a subpopulation of variants with promising properties (such as, but not limited to, enrichment factor, liver detargeting, high counts in more than one mouse, etc.) may be selected as shown in FIG. 26 and then an equimolar pool of primers encoding all the 7-mers (microchip solid-phase synthesis, up to 3,800 primers per chip) can be synthesized. The limited diversity library may be produced including internal controls such as, but not limited to, PHP.N, PHP.B, wild-type AAV9 (wtAAV9) and/or any other serotype including those taught herein. The mice are injected and then the RNA enrichment is compared to internal controls in a similar manner to a barcoding study, which is known in the art and described herein.


Example 9. Codon Optimization

Codon variants may be used to improve data strength when using synthesized libraries. A listing of NNK codons, NNM codons and the most favorable NNM codons in mammals for various amino acids is provided in Table 6. In Table 6, * means that no NNM codon was available and ** means “avoid homopolymeric stretches if possible.”









TABLE 6







Codon Variants















Most






favorable






NNM



Amino
NNK
NNM
codon in



acid
codon
codons
mammals






F
TTT
TTC
TTC






L
TTG, CTT, CTG
TTA, CTC, CTA
CTC






S
TCT, TCG, AGT
TCC, TCA, AGC
AGC






Y
TAT
TAC
TAC






C
TGT
TGC
TGC






W
TGG

TGG*






P
CCT, CCG
CCC, CCA
CCA**






H
CAT
CAC
CAC






Q
CAG
CAA
CAA






R
CGT, CGG, AGG
CGC, CGA, AGA
AGA






I
ATT
ATC, ATA
ATC






M
ATG

ATT*






T
ACT, ACG
ACC, ACA
ACC






N
AAT
AAC
AAC






K
AAG
AAA
AAA






V
GTT, GTG
GTC, GTA
GTC






A
GCT, GCG
GCC, GCA
GCC






D
GAT
GAC
GAC






E
GAG
GAA
GAA






G
GGT, GGG
GGC, GGA
GGC






stop
TAG
TAC, TAA
n/a





*no NNM codon available


**avoid homopolymeric stretches if possible






In order to have a balanced library it is recommended to establish a list of potential candidates. Then, using Table 6, a pooled primer library containing every peptide variant with encoded by NNK codons (original from library) and non-NNK codons (maximum variation). If similar behavior is seen between the two variants of the same peptide, this would strengthen the analysis of that peptide. Additionally, it is recommended to choose the most favorable NNM codons (M=A or C).


Example 10. Library Generation

The top-ranking 330 peptide variants from SYN-driven and GFAP-driven libraries that showed enhanced performance relative to the parental AAV9 were selected. A de novo library by pooled primer synthesis of all 330 peptide sequences plus AAV9, AAV-PHP.B and AAV-PHP.eB controls was generated (Table 7). In order to exclude potential artifacts due to the DNA sequence and to increase the robustness of the assay, each peptide variant was encoded by two different DNA sequences, one where all amino acids were encoded by NNK codons (identical to the original library) and another one where NNM codons were used whenever possible (M=C or A, Table 6).









TABLE 7







Peptide variants selected after 2 rounds


of RNA-driven mouse brain biopanning













SEQ
Nucleotide
SEQ
Nucleotide
SEQ


Peptide
ID
sequence
ID
sequence
ID


Sequence
NO:
(NNK codons)
NO:
(NNM codons)
NO:






AQ (AAV9)


CAGAGTGCTCAG
439
CAGAGTGCCCAA
 772




GCACAG

GCACAG







AQAGAGSER

194
CAGAGTGCCCAA
440
CAGAGTGCACAA
 773




GCGGGTGCGGGG

GCAGGAGCAGGA





TCGGAGCGGGCA

AGCGAAAGAGCA





CAG

CAG







AQDQNPGRW

195
CAGAGTGCCCAA
441
CAGAGTGCACAA
 774




GATCAGAATCCG

GACCAAAACCCA





GGGCGTTGGGCA

GGAAGATGGGCA





CAG

CAG







AQELTRPFL

144
CAGAGTGCCCAA
442
CAGAGTGCACAA
 775




GAGTTGACGCGT

GAACTCACAAGA





CCGTTTTTGGCAC

CCATTCCTCGCAC





AG

AG







AQEVPGYRW

196
CAGAGTGCCCAA
443
CAGAGTGCACAA
 776




GAGGTGCCTGGG

GAAGTCCCAGGA





TATAGGTGGGCA

TACAGATGGGCA





CAG

CAG







AQFPTNYDS

 66
CAGAGTGCCCAA
444
CAGAGTGCACAA
 777




TTTCCTACGAATT

TTCCCAACAAACT





ATGATTCTGCACA

ACGACAGCGCAC





G

AG







AQFVVGQQY

 95
CAGAGTGCCCAA
445
CAGAGTGCACAA
 778




TTTGTGGTTGGTC

TTCGTCGTCGGAC





AGCAGTATGCAC

AACAATACGCAC





AG

AG







AQGASPGRW

149
CAGAGTGCCCAA
446
CAGAGTGCACAA
 779




GGGGCTAGTCCG

GGAGCAAGCCCA





GGGCGGTGGGCA

GGAAGATGGGCA





CAG

CAG







AQGENPGRW

 96
CAGAGTGCCCAA
447
CAGAGTGCACAA
 780




GGGGAGAATCCG

GGAGAAAACCCA





GGTAGGTGGGCA

GGAAGATGGGCA





CAG

CAG







AQGGNPGRW

 91
CAGAGTGCCCAA
448
CAGAGTGCACAA
 781




GGGGGGAATCCG

GGAGGAAACCCA





GGTCGGTGGGCA

GGAAGATGGGCA





CAG

CAG







AQGGSTGSN

197
CAGAGTGCCCAA
449
CAGAGTGCACAA
 782




GGTGGTTCTACG

GGAGGAAGCACA





GGGTCGAATGCA

GGAAGCAACGCA





CAG

CAG







AQGPTRPFL

125
CAGAGTGCCCAA
450
CAGAGTGCACAA
 783




GGGCCGACTAGG

GGACCAACAAGA





CCGTTTTTGGCAC

CCATTCCTCGCAC





AG

AG







AQGRDGWAA

198
CAGAGTGCCCAA
451
CAGAGTGCACAA
 784




GGTCGGGATGGT

GGAAGAGACGGA





TGGGCGGCGGCA

TGGGCAGCAGCA





CAG

CAG







AQGRMTDSQ

199
CAGAGTGCCCAA
452
CAGAGTGCACAA
 785




GGTCGTATGACT

GGAAGAATGACA





GATTCGCAGGCA

GACAGCCAAGCA





CAG

CAG







AQGSDVGRW

128
CAGAGTGCCCAA
453
CAGAGTGCACAA
 786




GGTAGTGATGTG

GGAAGCGACGTC





GGGCGGTGGGCA

GGAAGATGGGCA





CAG

CAG







AQGSNPGRW

103
CAGAGTGCCCAA
454
CAGAGTGCACAA
 787




GGTAGTAATCCG

GGAAGCAACCCA





GGGAGGTGGGCA

GGAAGATGGGCA





CAG

CAG







AQGSNSPQV

200
CAGAGTGCCCAA
455
CAGAGTGCACAA
 788




GGGTCTAATTCGC

GGAAGCAACAGC





CTCAGGTGGCAC

CCACAAGTCGCA





AG

CAG







AQGSWNPPA

 80
CAGAGTGCCCAA
456
CAGAGTGCACAA
 789




GGTTCGTGGAAT

GGAAGCTGGAAC





CCGCCGGCGGCA

CCACCAGCAGCA





CAG

CAG







AQGTWNPPA

 82
CAGAGTGCCCAA
457
CAGAGTGCACAA
 790




GGTACTTGGAAT

GGAACATGGAAC





CCGCCGGCTGCA

CCACCAGCAGCA





CAG

CAG







AQGVFIPPK

201
CAGAGTGCCCAA
458
CAGAGTGCACAA
 791




GGTGTTTTTATTC

GGAGTCTTCATCC





CGCCGAAGGCAC

CACCAAAAGCAC





AG

AG







AQHVNASQS

202
CAGAGTGCCCAA
459
CAGAGTGCACAA
 792




CATGTGAATGCTT

CACGTCAACGCA





CTCAGTCTGCACA

AGCCAAAGCGCA





G

CAG







AQIKAGWAQ

203
CAGAGTGCCCAA
460
CAGAGTGCACAA
 793




ATTAAGGCGGGG

ATCAAAGCAGGA





TGGGCGCAGGCA

TGGGCACAAGCA





CAG

CAG







AQIMSGYAQ

204
CAGAGTGCCCAA
461
CAGAGTGCACAA
 794




ATTATGAGTGGG

ATCATGAGCGGA





TATGCTCAGGCA

TACGCACAAGCA





CAG

CAG







AQKSVGSVY

205
CAGAGTGCCCAA
462
CAGAGTGCACAA
 795




AAGAGTGTGGGT

AAAAGCGTCGGA





AGTGTTTATGCAC

AGCGTCTACGCA





AG

CAG







AQLEHGFAQ

206
CAGAGTGCCCAA
463
CAGAGTGCACAA
 796




CTTGAGCATGGG

CTCGAACACGGA





TTTGCTCAGGCAC

TTCGCACAAGCA





AG

CAG







AQLGGVLSA

207
CAGAGTGCCCAA
464
CAGAGTGCACAA
 797




CTGGGTGGGGTG

CTCGGAGGAGTC





TTGAGTGCTGCAC

CTCAGCGCAGCA





AG

CAG







AQLGLSQGR

208
CAGAGTGCCCAA
465
CAGAGTGCACAA
 798




CTGGGGCTTTCGC

CTCGGACTCAGC





AGGGGCGGGCAC

CAAGGAAGAGCA





AG

CAG







AQLGYGFAQ

209
CAGAGTGCCCAA
466
CAGAGTGCACAA
 799




TTGGGGTATGGG

CTCGGATACGGA





TTTGCTCAGGCAC

TTCGCACAAGCA





AG

CAG







AQLKYGLAQ

115
CAGAGTGCCCAA
467
CAGAGTGCACAA
 800




TTGAAGTATGGTC

CTCAAATACGGA





TTGCGCAGGCAC

CTCGCACAAGCA





AG

CAG







AQLRIGFAQ

210
CAGAGTGCCCAA
468
CAGAGTGCACAA
 801




CTTCGGATTGGTT

CTCAGAATCGGA





TTGCTCAGGCAC

TTCGCACAAGCA





AG

CAG







AQLRMGYSQ

211
CAGAGTGCCCAA
469
CAGAGTGCACAA
 802




TTGCGTATGGGTT

CTCAGAATGGGA





ATAGTCAGGCAC

TACAGCCAAGCA





AG

CAG







AQLRQGYAQ

212
CAGAGTGCCCAA
470
CAGAGTGCACAA
 803




CTGAGGCAGGGG

CTCAGACAAGGA





TATGCTCAGGCA

TACGCACAAGCA





CAG

CAG







AQLRVGFAQ

123
CAGAGTGCCCAA
471
CAGAGTGCACAA
 804




TTGCGTGTTGGTT

CTCAGAGTCGGA





TTGCGCAGGCAC

TTCGCACAAGCA





AG

CAG







AQLSCRSQM

213
CAGAGTGCCCAA
472
CAGAGTGCACAA
 805




CTGTCGTGTCGGA

CTCAGCTGCAGA





GTCAGATGGCAC

AGCCAAATGGCA





AG

CAG







AQLTYSQSL

214
CAGAGTGCCCAA
473
CAGAGTGCACAA
 806




TTGACGTATAGTC

CTCACATACAGC





AGTCGCTGGCAC

CAAAGCCTCGCA





AG

CAG







AQLYKGYSQ

215
CAGAGTGCCCAA
474
CAGAGTGCACAA
 807




CTGTATAAGGGTT

CTCTACAAAGGA





ATAGTCAGGCAC

TACAGCCAAGCA





AG

CAG







AQMPQRPFL

216
CAGAGTGCCCAA
475
CAGAGTGCACAA
 808




ATGCCTCAGCGG

ATGCCACAAAGA





CCGTTTTTGGCAC

CCATTCCTCGCAC





AG

AG







AQNGNPGRW

 84
CAGAGTGCCCAA
476
CAGAGTGCACAA
 809




AATGGTAATCCG

AACGGAAACCCA





GGGCGGTGGGCA

GGAAGATGGGCA





CAG

CAG







AQPEGSARW

 60
CAGAGTGCCCAA
477
CAGAGTGCACAA
 810




CCTGAGGGTAGT

CCAGAAGGAAGC





GCGAGGTGGGCA

GCAAGATGGGCA





CAG

CAG







AQPLAVYGA

217
CAGAGTGCCCAA
478
CAGAGTGCACAA
 811




CCGTTGGCTGTTT

CCACTCGCAGTCT





ATGGGGCGGCAC

ACGGAGCAGCAC





AG

AG







AQPQSSSMS

218
CAGAGTGCCCAA
479
CAGAGTGCACAA
 812




CCGCAGTCGTCGT

CCACAAAGCAGC





CGATGAGTGCAC

AGCATGAGCGCA





AG

CAG







AQPSVGGYW

219
CAGAGTGCCCAA
480
CAGAGTGCACAA
 813




CCGAGTGTGGGT

CCAAGCGTCGGA





GGGTATTGGGCA

GGATACTGGGCA





CAG

CAG







AQQAVGQSW

220
CAGAGTGCCCAA
481
CAGAGTGCACAA
 814




CAGGCTGTGGGT

CAAGCAGTCGGA





CAGTCTTGGGCA

CAAAGCTGGGCA





CAG

CAG







AQQRSLASG

221
CAGAGTGCCCAA
482
CAGAGTGCACAA
 815




CAGCGTTCGCTG

CAAAGAAGCCTC





GCTTCGGGTGCA

GCAAGCGGAGCA





CAG

CAG







AQQVMNSQG

222
CAGAGTGCCCAA
483
CAGAGTGCACAA
 816




CAGGTGATGAAT

CAAGTCATGAAC





AGTCAGGGGGCA

AGCCAAGGAGCA





CAG

CAG







AQRGVGLSQ

223
CAGAGTGCCCAA
484
CAGAGTGCACAA
 817




CGTGGGGTTGGG

AGAGGAGTCGGA





TTGAGTCAGGCA

CTCAGCCAAGCA





CAG

CAG







AQRHDAEGS

224
CAGAGTGCCCAA
485
CAGAGTGCACAA
 818




AGGCATGATGCG

AGACACGACGCA





GAGGGTAGTGCA

GAAGGAAGCGCA





CAG

CAG







AQRKGEPHY

225
CAGAGTGCCCAA
486
CAGAGTGCACAA
 819




CGTAAGGGGGAG

AGAAAAGGAGAA





CCTCATTATGCAC

CCACACTACGCA





AG

CAG







AQRYTGDSS

138
CAGAGTGCCCAA
487
CAGAGTGCACAA
 820




AGGTATACGGGG

AGATACACAGGA





GATTCTAGTGCAC

GACAGCAGCGCA





AG

CAG







AQSAMAAKG

226
CAGAGTGCCCAA
488
CAGAGTGCACAA
 821




TCGGCGATGGCT

AGCGCAATGGCA





GCGAAGGGTGCA

GCAAAAGGAGCA





CAG

CAG







AQSGGLTGS

227
CAGAGTGCCCAA
489
CAGAGTGCACAA
 822




TCTGGGGGTCTTA

AGCGGAGGACTC





CGGGGAGTGCAC

ACAGGAAGCGCA





AG

CAG







AQSGGVGQV

228
CAGAGTGCCCAA
490
CAGAGTGCACAA
 823




TCGGGTGGGGTG

AGCGGAGGAGTC





GGGCAGGTGGCA

GGACAAGTCGCA





CAG

CAG







AQSLATPFR

169
CAGAGTGCCCAA
491
CAGAGTGCACAA
 824




TCTCTGGCGACGC

AGCCTCGCAACA





CTTTTCGTGCACA

CCATTCAGAGCA





G

CAG







AQSMSRPFL

229
CAGAGTGCCCAA
492
CAGAGTGCACAA
 825




AGTATGTCGCGTC

AGCATGAGCAGA





CGTTTCTGGCACA

CCATTCCTCGCAC





G

AG







AQSQLRPFL

230
CAGAGTGCCCAA
493
CAGAGTGCACAA
 826




AGTCAGCTTAGG

AGCCAACTCAGA





CCGTTTCTTGCAC

CCATTCCTCGCAC





AG

AG







AQSVAKPFL

231
CAGAGTGCCCAA
494
CAGAGTGCACAA
 827




TCTGTGGCTAAGC

AGCGTCGCAAAA





CTTTTTTGGCACA

CCATTCCTCGCAC





G

AG







AQSVSQPFR

232
CAGAGTGCCCAA
495
CAGAGTGCACAA
 828




TCGGTTTCGCAGC

AGCGTCAGCCAA





CGTTTAGGGCAC

CCATTCAGAGCA





AG

CAG







AQSVVRPFL

233
CAGAGTGCCCAA
496
CAGAGTGCACAA
 829




TCTGTGGTGCGTC

AGCGTCGTCAGA





CTTTTCTGGCACA

CCATTCCTCGCAC





G

AG







AQTALSSST

234
CAGAGTGCCCAA
497
CAGAGTGCACAA
 830




ACTGCGCTTTCGT

ACAGCACTCAGC





CGTCGACGGCAC

AGCAGCACAGCA





AG

CAG







AQTEMGGRC

235
CAGAGTGCCCAA
498
CAGAGTGCACAA
 831




ACGGAGATGGGT

ACAGAAATGGGA





GGGAGGTGTGCA

GGAAGATGCGCA





CAG

CAG







AQTGFAPPR

161
CAGAGTGCCCAA
499
CAGAGTGCACAA
 832




ACGGGGTTTGCTC

ACAGGATTCGCA





CGCCGCGTGCAC

CCACCAAGAGCA





AG

CAG







AQTIRGYSS

236
CAGAGTGCCCAA
500
CAGAGTGCACAA
 833




ACGATTCGGGGG

ACAATCAGAGGA





TATTCGTCTGCAC

TACAGCAGCGCA





AG

CAG







AQTISNYHT

237
CAGAGTGCCCAA
501
CAGAGTGCACAA
 834




ACTATTTCTAATT

ACAATCAGCAAC





ATCATACGGCAC

TACCACACAGCA





AG

CAG







AQTLARPFV

 98
CAGAGTGCCCAA
502
CAGAGTGCACAA
 835




ACTTTGGCGCGTC

ACACTCGCAAGA





CGTTTGTGGCACA

CCATTCGTCGCAC





G

AG







AQTLAVPFK

168
CAGAGTGCCCAA
503
CAGAGTGCACAA
 836



(PHP.B)


ACTTTGGCGGTGC

ACACTCGCAGTC





CTTTTAAGGCACA

CCATTCAAAGCA





G

CAG







AQTPDRPWL

238
CAGAGTGCCCAA
504
CAGAGTGCACAA
 837




ACTCCTGATCGTC

ACACCAGACAGA





CTTGGTTGGCACA

CCATGGCTCGCA





G

CAG







AQTRAGYAQ

126
CAGAGTGCCCAA
505
CAGAGTGCACAA
 838




ACTCGGGCTGGG

ACAAGAGCAGGA





TATGCTCAGGCA

TACGCACAAGCA





CAG

CAG







AQTRAGYSQ

141
CAGAGTGCCCAA
506
CAGAGTGCACAA
 839




ACTAGGGCGGGG

ACAAGAGCAGGA





TATTCTCAGGCAC

TACAGCCAAGCA





AG

CAG







AQTREYLLG

 93
CAGAGTGCCCAA
507
CAGAGTGCACAA
 840




ACGCGTGAGTAT

ACAAGAGAATAC





CTGCTGGGGGCA

CTCCTCGGAGCA





CAG

CAG







AQTSAKPFL

163
CAGAGTGCCCAA
508
CAGAGTGCACAA
 841




ACTTCTGCGAAG

ACAAGCGCAAAA





CCGTTTCTTGCAC

CCATTCCTCGCAC





AG

AG







AQTSARPFL

100
CAGAGTGCCCAA
509
CAGAGTGCACAA
 842




ACTTCTGCTAGGC

ACAAGCGCAAGA





CTTTTCTGGCACA

CCATTCCTCGCAC





G

AG







AQTTDRPFL

 85
CAGAGTGCCCAA
510
CAGAGTGCACAA
 843




ACTACTGATAGG

ACAACAGACAGA





CCTTTTTTGGCAC

CCATTCCTCGCAC





AG

AG







AQTTEKPWL

 83
CAGAGTGCCCAA
511
CAGAGTGCACAA
 844




ACGACTGAGAAG

ACAACAGAAAAA





CCGTGGCTGGCA

CCATGGCTCGCA





CAG

CAG







AQTVARPFY

239
CAGAGTGCCCAA
512
CAGAGTGCACAA
 845




ACGGTTGCGCGG

ACAGTCGCAAGA





CCTTTTTATGCAC

CCATTCTACGCAC





AG

AG







AQTVATPFR

240
CAGAGTGCCCAA
513
CAGAGTGCACAA
 846




ACTGTTGCTACGC

ACAGTCGCAACA





CGTTTAGGGCAC

CCATTCAGAGCA





AG

CAG







AQTVTQLFK

241
CAGAGTGCCCAA
514
CAGAGTGCACAA
 847




ACGGTGACGCAG

ACAGTCACACAA





TTGTTTAAGGCAC

CTCTTCAAAGCAC





AG

AG







AQVHVGSVY

165
CAGAGTGCCCAA
515
CAGAGTGCACAA
 848




GTTCATGTTGGGA

GTCCACGTCGGA





GTGTTTATGCACA

AGCGTCTACGCA





G

CAG







AQVLAGYNM

242
CAGAGTGCCCAA
516
CAGAGTGCACAA
 849




GTTCTTGCTGGGT

GTCCTCGCAGGA





ATAATATGGCAC

TACAACATGGCA





AG

CAG







AQVSEARVR

243
CAGAGTGCCCAA
517
CAGAGTGCACAA
 850




GTTTCTGAGGCG

GTCAGCGAAGCA





AGGGTTAGGGCA

AGAGTCAGAGCA





CAG

CAG







AQVVVGYSQ

244
CAGAGTGCCCAA
518
CAGAGTGCACAA
 851




GTTGTGGTGGGTT

GTCGTCGTCGGAT





ATAGTCAGGCAC

ACAGCCAAGCAC





AG

AG







AQWAAGYNV

245
CAGAGTGCCCAA
519
CAGAGTGCACAA
 852




TGGGCTGCTGGG

TGGGCAGCAGGA





TATAATGTGGCA

TACAACGTCGCA





CAG

CAG







AQWELSNGY

246
CAGAGTGCCCAA
520
CAGAGTGCACAA
 853




TGGGAGCTGAGT

TGGGAACTCAGC





AATGGGTATGCA

AACGGATACGCA





CAG

CAG







AQWEVKGGY

247
CAGAGTGCCCAA
521
CAGAGTGCACAA
 854




TGGGAGGTGAAG

TGGGAAGTCAAA





GGGGGTTATGCA

GGAGGATACGCA





CAG

CAG







AQWEVKRGY

248
CAGAGTGCCCAA
522
CAGAGTGCACAA
 855




TGGGAGGTGAAG

TGGGAAGTCAAA





CGGGGGTATGCA

AGAGGATACGCA





CAG

CAG







AQWEVQSGF

249
CAGAGTGCCCAA
523
CAGAGTGCACAA
 856




TGGGAGGTTCAG

TGGGAAGTCCAA





TCTGGGTTTGCAC

AGCGGATTCGCA





AG

CAG







AQWEVRGGY

250
CAGAGTGCCCAA
524
CAGAGTGCACAA
 857




TGGGAGGTTCGT

TGGGAAGTCAGA





GGTGGTTATGCA

GGAGGATACGCA





CAG

CAG







AQWEVTSGW

251
CAGAGTGCCCAA
525
CAGAGTGCACAA
 858




TGGGAGGTGACG

TGGGAAGTCACA





AGTGGTTGGGCA

AGCGGATGGGCA





CAG

CAG







AQWGAPSHG

252
CAGAGTGCCCAA
526
CAGAGTGCACAA
 859




TGGGGGGCGCCG

TGGGGAGCACCA





AGTCATGGGGCA

AGCCACGGAGCA





CAG

CAG







AQWMELGSS

253
CAGAGTGCCCAA
527
CAGAGTGCACAA
 860




TGGATGGAGCTT

TGGATGGAACTC





GGTAGTTCGGCA

GGAAGCAGCGCA





CAG

CAG







AQWMFGGSG

254
CAGAGTGCCCAA
528
CAGAGTGCACAA
 861




TGGATGTTTGGG

TGGATGTTCGGA





GGTAGTGGGGCA

GGAAGCGGAGCA





CAG

CAG







AQWMLGGAQ

255
CAGAGTGCCCAA
529
CAGAGTGCACAA
 862




TGGATGCTGGGG

TGGATGCTCGGA





GGGGCGCAGGCA

GGAGCACAAGCA





CAG

CAG







AQWPTAYDA

256
CAGAGTGCCCAA
530
CAGAGTGCACAA
 863




TGGCCGACTGCTT

TGGCCAACAGCA





ATGATGCGGCAC

TACGACGCAGCA





AG

CAG







AQWPTSYDA

 62
CAGAGTGCCCAA
531
CAGAGTGCACAA
 864




TGGCCTACGAGTT

TGGCCAACAAGC





ATGATGCTGCAC

TACGACGCAGCA





AG

CAG







AQWQVQTGF

257
CAGAGTGCCCAA
532
CAGAGTGCACAA
 865




TGGCAGGTTCAG

TGGCAAGTCCAA





ACGGGGTTTGCA

ACAGGATTCGCA





CAG

CAG







AQWSTEGGY

258
CAGAGTGCCCAA
533
CAGAGTGCACAA
 866




TGGTCGACTGAG

TGGAGCACAGAA





GGTGGGTATGCA

GGAGGATACGCA





CAG

CAG







AQWTAAGGY

259
CAGAGTGCCCAA
534
CAGAGTGCACAA
 867




TGGACTGCTGCG

TGGACAGCAGCA





GGTGGTTATGCA

GGAGGATACGCA





CAG

CAG







AQWTTESGY

260
CAGAGTGCCCAA
535
CAGAGTGCACAA
 868




TGGACGACGGAG

TGGACAACAGAA





TCGGGTTATGCAC

AGCGGATACGCA





AG

CAG







AQWVYGSSH

261
CAGAGTGCCCAA
536
CAGAGTGCACAA
 869




TGGGTTTATGGG

TGGGTCTACGGA





AGTTCGCATGCA

AGCAGCCACGCA





CAG

CAG







AQYLAGYTV

262
CAGAGTGCCCAA
537
CAGAGTGCACAA
 870




TATTTGGCGGGGT

TACCTCGCAGGA





ATACGGTGGCAC

TACACAGTCGCA





AG

CAG







AQYLKGYSV

152
CAGAGTGCCCAA
538
CAGAGTGCACAA
 871




TATCTGAAGGGG

TACCTCAAAGGA





TATTCTGTGGCAC

TACAGCGTCGCA





AG

CAG







AQYLSGYNT

263
CAGAGTGCCCAA
539
CAGAGTGCACAA
 872




TATTTGTCGGGTT

TACCTCAGCGGA





ATAATACGGCAC

TACAACACAGCA





AG

CAG







DGAAATTGW

264
CAGAGTGATGGC
540
CAGAGTGACGGA
 873




GCTGCGGCGACT

GCAGCAGCAACA





ACTGGGTGGGCA

ACAGGATGGGCA





CAG

CAG







DGAGGTSGW

151
CAGAGTGATGGC
541
CAGAGTGACGGA
 874




GCGGGTGGGACG

GCAGGAGGAACA





AGTGGTTGGGCA

AGCGGATGGGCA





CAG

CAG







DGAGTTSGW

265
CAGAGTGATGGC
542
CAGAGTGACGGA
 875




GCGGGTACTACTT

GCAGGAACAACA





CGGGTTGGGCAC

AGCGGATGGGCA





AG

CAG







DGAHGLSGW

266
CAGAGTGATGGC
543
CAGAGTGACGGA
 876




GCTCATGGGCTGT

GCACACGGACTC





CGGGGTGGGCAC

AGCGGATGGGCA





AG

CAG







DGAHVGLSS

267
CAGAGTGATGGC
544
CAGAGTGACGGA
 877




GCTCATGTTGGGC

GCACACGTCGGA





TGTCGTCGGCAC

CTCAGCAGCGCA





AG

CAG







DGARTVLQL

268
CAGAGTGATGGC
545
CAGAGTGACGGA
 878




GCTCGGACGGTG

GCAAGAACAGTC





CTTCAGTTGGCAC

CTCCAACTCGCAC





AG

AG







DGEYQKPFR

269
CAGAGTGATGGC
546
CAGAGTGACGGA
 879




GAGTATCAGAAG

GAATACCAAAAA





CCGTTTAGGGCA

CCATTCAGAGCA





CAG

CAG







DGGGTTTGW

270
CAGAGTGATGGC
547
CAGAGTGACGGA
 880




GGTGGGACTACG

GGAGGAACAACA





ACGGGGTGGGCA

ACAGGATGGGCA





CAG

CAG







DGHATSMGW

271
CAGAGTGATGGC
548
CAGAGTGACGGA
 881




CATGCGACGAGT

CACGCAACAAGC





ATGGGTTGGGCA

ATGGGATGGGCA





CAG

CAG







DGKGSTQGW

272
CAGAGTGATGGC
549
CAGAGTGACGGA
 882




AAGGGTTCGACG

AAAGGAAGCACA





CAGGGGTGGGCA

CAAGGATGGGCA





CAG

CAG







DGKQYQLSS

 92
CAGAGTGATGGC
550
CAGAGTGACGGA
 883




AAGCAGTATCAG

AAACAATACCAA





CTGTCTTCGGCAC

CTCAGCAGCGCA





AG

CAG







DGNGGLKGW

167
CAGAGTGATGGC
551
CAGAGTGACGGA
 884




AATGGTGGGTTG

AACGGAGGACTC





AAGGGGTGGGCA

AAAGGATGGGCA





CAG

CAG







DGQGGLSGW

273
CAGAGTGATGGC
552
CAGAGTGACGGA
 885




CAGGGGGGTTTG

CAAGGAGGACTC





TCTGGGTGGGCA

AGCGGATGGGCA





CAG

CAG







DGQHFAPPR

110
CAGAGTGATGGC
553
CAGAGTGACGGA
 886




CAGCATTTTGCTC

CAACACTTCGCA





CGCCGCGGGCAC

CCACCAAGAGCA





AG

CAG







DGRATKTLY

274
CAGAGTGATGGC
554
CAGAGTGACGGA
 887




CGTGCGACTAAG

AGAGCAACAAAA





ACGCTTTATGCAC

ACACTCTACGCA





AG

CAG







DGRNALTGW

275
CAGAGTGATGGC
555
CAGAGTGACGGA
 888




CGTAATGCGTTG

AGAAACGCACTC





ACGGGGTGGGCA

ACAGGATGGGCA





CAG

CAG







DGRRQVIQL

276
CAGAGTGATGGC
556
CAGAGTGACGGA
 889




AGGAGGCAGGTG

AGAAGACAAGTC





ATTCAGCTGGCA

ATCCAACTCGCA





CAG

CAG







DGRVYGLSS

277
CAGAGTGATGGC
557
CAGAGTGACGGA
 890




AGGGTTTATGGTC

AGAGTCTACGGA





TTTCGTCGGCACA

CTCAGCAGCGCA





G

CAG







DGSGRTTGW

147
CAGAGTGATGGC
558
CAGAGTGACGGA
 891




AGTGGGCGTACG

AGCGGAAGAACA





ACGGGTTGGGCA

ACAGGATGGGCA





CAG

CAG







DGSGTTRGW

114
CAGAGTGATGGC
559
CAGAGTGACGGA
 892




TCTGGTACGACG

AGCGGAACAACA





CGGGGTTGGGCA

AGAGGATGGGCA





CAG

CAG







DGSGTVSGW

278
CAGAGTGATGGC
560
CAGAGTGACGGA
 893




TCGGGTACGGTT

AGCGGAACAGTC





AGTGGGTGGGCA

AGCGGATGGGCA





CAG

CAG







DGSPEKPFR

160
CAGAGTGATGGC
561
CAGAGTGACGGA
 894




AGTCCGGAGAAG

AGCCCAGAAAAA





CCGTTTCGGGCAC

CCATTCAGAGCA





AG

CAG







DGSQSTTGW

136
CAGAGTGATGGC
562
CAGAGTGACGGA
 895




AGTCAGTCTACTA

AGCCAAAGCACA





CGGGGTGGGCAC

ACAGGATGGGCA





AG

CAG







DGSSFYPPK

127
CAGAGTGATGGC
563
CAGAGTGACGGA
 896




AGTAGTTTTTATC

AGCAGCTTCTACC





CTCCTAAGGCAC

CACCAAAAGCAC





AG

AG







DGSSSYYDA

 64
CAGAGTGATGGC
564
CAGAGTGACGGA
 897




AGTAGTTCTTATT

AGCAGCAGCTAC





ATGATGCGGCAC

TACGACGCAGCA





AG

CAG







DGSTERPFR

 99
CAGAGTGATGGC
565
CAGAGTGACGGA
 898




TCTACGGAGAGG

AGCACAGAAAGA





CCGTTTAGGGCA

CCATTCAGAGCA





CAG

CAG







DGTAARLSS

132
CAGAGTGATGGC
566
CAGAGTGACGGA
 899




ACCGCGGCTCGG

ACAGCAGCAAGA





CTGTCGTCGGCAC

CTCAGCAGCGCA





AG

CAG







DGTADKPFR

 63
CAGAGTGATGGC
567
CAGAGTGACGGA
 900




ACCGCTGATAAG

ACAGCAGACAAA





CCGTTTCGGGCAC

CCATTCAGAGCA





AG

CAG







DGTADRPFR

155
CAGAGTGATGGC
568
CAGAGTGACGGA
 901




ACGGCGGATCGT

ACAGCAGACAGA





CCTTTTCGGGCAC

CCATTCAGAGCA





AG

CAG







DGTAERPFR

140
CAGAGTGATGGC
569
CAGAGTGACGGA
 902




ACCGCGGAGAGG

ACAGCAGAAAGA





CCTTTTAGGGCAC

CCATTCAGAGCA





AG

CAG







DGTAIHLSS

 67
CAGAGTGATGGC
570
CAGAGTGACGGA
 903




ACCGCGATTCATC

ACAGCAATCCAC





TTTCGTCTGCACA

CTCAGCAGCGCA





G

CAG







DGTAIYLSS

279
CAGAGTGATGGC
571
CAGAGTGACGGA
 904




ACCGCGATTTATC

ACAGCAATCTAC





TGTCTTCTGCACA

CTCAGCAGCGCA





G

CAG







DGTALMLSS

280
CAGAGTGATGGC
572
CAGAGTGACGGA
 905




ACCGCTCTTATGT

ACAGCACTCATG





TGTCGTCTGCACA

CTCAGCAGCGCA





G

CAG







DGTASISGW

281
CAGAGTGATGGC
573
CAGAGTGACGGA
 906




ACCGCGAGTATT

ACAGCAAGCATC





AGTGGTTGGGCA

AGCGGATGGGCA





CAG

CAG







DGTASTSGW

282
CAGAGTGATGGC
574
CAGAGTGACGGA
 907




ACCGCGTCGACG

ACAGCAAGCACA





AGTGGGTGGGCA

AGCGGATGGGCA





CAG

CAG







DGTASVTGW

283
CAGAGTGATGGC
575
CAGAGTGACGGA
 908




ACCGCGTCGGTG

ACAGCAAGCGTC





ACGGGGTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTASYYDS

 61
CAGAGTGATGGC
576
CAGAGTGACGGA
 909




ACCGCGAGTTATT

ACAGCAAGCTAC





ATGATTCTGCACA

TACGACAGCGCA





G

CAG







DGTATTMGW

284
CAGAGTGATGGC
577
CAGAGTGACGGA
 910




ACCGCGACGACG

ACAGCAACAACA





ATGGGGTGGGCA

ATGGGATGGGCA





CAG

CAG







DGTATTTGW

285
CAGAGTGATGGC
578
CAGAGTGACGGA
 911




ACCGCGACGACG

ACAGCAACAACA





ACGGGTTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTAYRLSS

286
CAGAGTGATGGC
579
CAGAGTGACGGA
 912




ACCGCGTATCGTT

ACAGCATACAGA





TGTCGTCTGCACA

CTCAGCAGCGCA





G

CAG







DGTDKMWSI

287
CAGAGTGATGGC
580
CAGAGTGACGGA
 913




ACCGATAAGATG

ACAGACAAAATG





TGGAGTATTGCA

TGGAGCATCGCA





CAG

CAG







DGTGGIKGW

131
CAGAGTGATGGC
581
CAGAGTGACGGA
 914




ACCGGTGGTATT

ACAGGAGGAATC





AAGGGGTGGGCA

AAAGGATGGGCA





CAG

CAG







DGTGGIMGW

288
CAGAGTGATGGC
582
CAGAGTGACGGA
 915




ACCGGGGGGATT

ACAGGAGGAATC





ATGGGTTGGGCA

ATGGGATGGGCA





CAG

CAG







DGTGGISGW

289
CAGAGTGATGGC
583
CAGAGTGACGGA
 916




ACCGGTGGGATT

ACAGGAGGAATC





TCGGGGTGGGCA

AGCGGATGGGCA





CAG

CAG







DGTGGLAGW

290
CAGAGTGATGGC
584
CAGAGTGACGGA
 917




ACCGGGGGTCTT

ACAGGAGGACTC





GCTGGTTGGGCA

GCAGGATGGGCA





CAG

CAG







DGTGGLHGW

291
CAGAGTGATGGC
585
CAGAGTGACGGA
 918




ACCGGGGGGTTG

ACAGGAGGACTC





CATGGTTGGGCA

CACGGATGGGCA





CAG

CAG







DGTGGLQGW

292
CAGAGTGATGGC
586
CAGAGTGACGGA
 919




ACCGGGGGTTTG

ACAGGAGGACTC





CAGGGTTGGGCA

CAAGGATGGGCA





CAG

CAG







DGTGGLRGW

154
CAGAGTGATGGC
587
CAGAGTGACGGA
 920




ACCGGGGGTTTG

ACAGGAGGACTC





CGTGGTTGGGCA

AGAGGATGGGCA





CAG

CAG







DGTGGLSGW

293
CAGAGTGATGGC
588
CAGAGTGACGGA
 921




ACCGGTGGGTTG

ACAGGAGGACTC





TCGGGTTGGGCA

AGCGGATGGGCA





CAG

CAG







DGTGGLTGW

294
CAGAGTGATGGC
589
CAGAGTGACGGA
 922




ACCGGGGGGTTG

ACAGGAGGACTC





ACGGGTTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTGGTKGW

107
CAGAGTGATGGC
590
CAGAGTGACGGA
 923




ACCGGTGGGACT

ACAGGAGGAACA





AAGGGTTGGGCA

AAAGGATGGGCA





CAG

CAG







DGTGGTSGW

295
CAGAGTGATGGC
591
CAGAGTGACGGA
 924




ACCGGGGGGACG

ACAGGAGGAACA





AGTGGTTGGGCA

AGCGGATGGGCA





CAG

CAG







DGTGGVHGW

296
CAGAGTGATGGC
592
CAGAGTGACGGA
 925




ACCGGTGGGGTG

ACAGGAGGAGTC





CATGGTTGGGCA

CACGGATGGGCA





CAG

CAG







DGTGGVMGW

297
CAGAGTGATGGC
593
CAGAGTGACGGA
 926




ACCGGTGGTGTT

ACAGGAGGAGTC





ATGGGGTGGGCA

ATGGGATGGGCA





CAG

CAG







DGTGGVSGW

298
CAGAGTGATGGC
594
CAGAGTGACGGA
 927




ACCGGGGGGGTG

ACAGGAGGAGTC





TCTGGTTGGGCAC

AGCGGATGGGCA





AG

CAG







DGTGGVTGW

299
CAGAGTGATGGC
595
CAGAGTGACGGA
 928




ACCGGTGGTGTG

ACAGGAGGAGTC





ACGGGGTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTGGVYGW

300
CAGAGTGATGGC
596
CAGAGTGACGGA
 929




ACCGGTGGTGTG

ACAGGAGGAGTC





TATGGGTGGGCA

TACGGATGGGCA





CAG

CAG







DGTGNLQGW

301
CAGAGTGATGGC
597
CAGAGTGACGGA
 930




ACCGGTAATTTGC

ACAGGAAACCTC





AGGGTTGGGCAC

CAAGGATGGGCA





AG

CAG







DGTGNLRGW

133
CAGAGTGATGGC
598
CAGAGTGACGGA
 931




ACCGGGAATCTT

ACAGGAAACCTC





AGGGGGTGGGCA

AGAGGATGGGCA





CAG

CAG







DGTGNLSGW

302
CAGAGTGATGGC
599
CAGAGTGACGGA
 932




ACCGGGAATTTG

ACAGGAAACCTC





AGTGGGTGGGCA

AGCGGATGGGCA





CAG

CAG







DGTGNTHGW

 72
CAGAGTGATGGC
600
CAGAGTGACGGA
 933




ACCGGGAATACT

ACAGGAAACACA





CATGGGTGGGCA

CACGGATGGGCA





CAG

CAG







DGTGNTRGW

 94
CAGAGTGATGGC
601
CAGAGTGACGGA
 934




ACCGGGAATACT

ACAGGAAACACA





CGGGGGTGGGCA

AGAGGATGGGCA





CAG

CAG







DGTGNTSGW

137
CAGAGTGATGGC
602
CAGAGTGACGGA
 935




ACCGGTAATACT

ACAGGAAACACA





AGTGGTTGGGCA

AGCGGATGGGCA





CAG

CAG







DGTGNVSGW

303
CAGAGTGATGGC
603
CAGAGTGACGGA
 936




ACCGGGAATGTG

ACAGGAAACGTC





TCGGGGTGGGCA

AGCGGATGGGCA





CAG

CAG







DGTGNVTGW

 69
CAGAGTGATGGC
604
CAGAGTGACGGA
 937




ACCGGTAATGTG

ACAGGAAACGTC





ACGGGGTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTGQLVGW

304
CAGAGTGATGGC
605
CAGAGTGACGGA
 938




ACCGGGCAGCTT

ACAGGACAACTC





GTGGGTTGGGCA

GTCGGATGGGCA





CAG

CAG







DGTGQTIGW

305
CAGAGTGATGGC
606
CAGAGTGACGGA
 939




ACCGGTCAGACG

ACAGGACAAACA





ATTGGTTGGGCA

ATCGGATGGGCA





CAG

CAG







DGTGQVTGW

 68
CAGAGTGATGGC
607
CAGAGTGACGGA
 940




ACCGGGCAGGTG

ACAGGACAAGTC





ACTGGGTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTGRLTGW

159
CAGAGTGATGGC
608
CAGAGTGACGGA
 941




ACCGGTCGGTTG

ACAGGAAGACTC





ACGGGTTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTGRTVGW

117
CAGAGTGATGGC
609
CAGAGTGACGGA
 942




ACCGGTCGGACT

ACAGGAAGAACA





GTTGGGTGGGCA

GTCGGATGGGCA





CAG

CAG







DGTGSGMMT

306
CAGAGTGATGGC
610
CAGAGTGACGGA
 943




ACCGGTTCGGGT

ACAGGAAGCGGA





ATGATGACGGCA

ATGATGACAGCA





CAG

CAG







DGTGSISGW

307
CAGAGTGATGGC
611
CAGAGTGACGGA
 944




ACCGGGTCGATT

ACAGGAAGCATC





AGTGGGTGGGCA

AGCGGATGGGCA





CAG

CAG







DGTGSLAGW

308
CAGAGTGATGGC
612
CAGAGTGACGGA
 945




ACCGGTTCTTTGG

ACAGGAAGCCTC





CGGGGTGGGCAC

GCAGGATGGGCA





AG

CAG







DGTGSLNGW

309
CAGAGTGATGGC
613
CAGAGTGACGGA
 946




ACCGGGTCTTTGA

ACAGGAAGCCTC





ATGGGTGGGCAC

AACGGATGGGCA





AG

CAG







DGTGSLQGW

310
CAGAGTGATGGC
614
CAGAGTGACGGA
 947




ACCGGGTCGCTG

ACAGGAAGCCTC





CAGGGTTGGGCA

CAAGGATGGGCA





CAG

CAG







DGTGSLSGW

311
CAGAGTGATGGC
615
CAGAGTGACGGA
 948




ACCGGGAGTCTG

ACAGGAAGCCTC





TCGGGGTGGGCA

AGCGGATGGGCA





CAG

CAG







DGTGSLVGW

312
CAGAGTGATGGC
616
CAGAGTGACGGA
 949




ACCGGGTCGTTG

ACAGGAAGCCTC





GTGGGTTGGGCA

GTCGGATGGGCA





CAG

CAG







DGTGSTHGW

119
CAGAGTGATGGC
617
CAGAGTGACGGA
 950




ACCGGGAGTACG

ACAGGAAGCACA





CATGGGTGGGCA

CACGGATGGGCA





CAG

CAG







DGTGSTKGW

313
CAGAGTGATGGC
618
CAGAGTGACGGA
 951




ACCGGGAGTACT

ACAGGAAGCACA





AAGGGGTGGGCA

AAAGGATGGGCA





CAG

CAG







DGTGSTMGW

314
CAGAGTGATGGC
619
CAGAGTGACGGA
 952




ACCGGTTCTACTA

ACAGGAAGCACA





TGGGTTGGGCAC

ATGGGATGGGCA





AG

CAG







DGTGSTQGW

315
CAGAGTGATGGC
620
CAGAGTGACGGA
 953




ACCGGTAGTACG

ACAGGAAGCACA





CAGGGTTGGGCA

CAAGGATGGGCA





CAG

CAG







DGTGSTSGW

316
CAGAGTGATGGC
621
CAGAGTGACGGA
 954




ACCGGGAGTACT

ACAGGAAGCACA





TCGGGGTGGGCA

AGCGGATGGGCA





CAG

CAG







DGTGSTTGW

134
CAGAGTGATGGC
622
CAGAGTGACGGA
 955




ACCGGGAGTACG

ACAGGAAGCACA





ACGGGGTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTGSVMGW

317
CAGAGTGATGGC
623
CAGAGTGACGGA
 956




ACCGGTTCGGTTA

ACAGGAAGCGTC





TGGGGTGGGCAC

ATGGGATGGGCA





AG

CAG







DGTGSVTGW

318
CAGAGTGATGGC
624
CAGAGTGACGGA
 957




ACCGGGTCTGTG

ACAGGAAGCGTC





ACTGGGTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTGTLAGW

319
CAGAGTGATGGC
625
CAGAGTGACGGA
 958




ACCGGGACGCTT

ACAGGAACACTC





GCGGGGTGGGCA

GCAGGATGGGCA





CAG

CAG







DGTGTLHGW

320
CAGAGTGATGGC
626
CAGAGTGACGGA
 959




ACCGGTACTTTGC

ACAGGAACACTC





ATGGTTGGGCAC

CACGGATGGGCA





AG

CAG







DGTGTLKGW

321
CAGAGTGATGGC
627
CAGAGTGACGGA
 960




ACCGGTACTCTTA

ACAGGAACACTC





AGGGTTGGGCAC

AAAGGATGGGCA





AG

CAG







DGTGTLSGW

322
CAGAGTGATGGC
628
CAGAGTGACGGA
 961




ACCGGGACTCTG

ACAGGAACACTC





TCGGGTTGGGCA

AGCGGATGGGCA





CAG

CAG







DGTGTTLGW

323
CAGAGTGATGGC
629
CAGAGTGACGGA
 962




ACCGGGACTACG

ACAGGAACAACA





CTGGGGTGGGCA

CTCGGATGGGCA





CAG

CAG







DGTGTTMGW

324
CAGAGTGATGGC
630
CAGAGTGACGGA
 963




ACCGGGACTACT

ACAGGAACAACA





ATGGGTTGGGCA

ATGGGATGGGCA





CAG

CAG







DGTGTTTGW

130
CAGAGTGATGGC
631
CAGAGTGACGGA
 964




ACCGGGACTACT

ACAGGAACAACA





ACGGGGTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTGTTVGW

 74
CAGAGTGATGGC
632
CAGAGTGACGGA
 965




ACCGGTACTACG

ACAGGAACAACA





GTGGGGTGGGCA

GTCGGATGGGCA





CAG

CAG







DGTGTTYGW

325
CAGAGTGATGGC
633
CAGAGTGACGGA
 966




ACCGGGACGACG

ACAGGAACAACA





TATGGTTGGGCA

TACGGATGGGCA





CAG

CAG







DGTGTVHGW

326
CAGAGTGATGGC
634
CAGAGTGACGGA
 967




ACCGGTACGGTT

ACAGGAACAGTC





CATGGTTGGGCA

CACGGATGGGCA





CAG

CAG







DGTGTVQGW

327
CAGAGTGATGGC
635
CAGAGTGACGGA
 968




ACCGGGACTGTG

ACAGGAACAGTC





CAGGGGTGGGCA

CAAGGATGGGCA





CAG

CAG







DGTGTVSGW

328
CAGAGTGATGGC
636
CAGAGTGACGGA
 969




ACCGGTACTGTTT

ACAGGAACAGTC





CTGGTTGGGCAC

AGCGGATGGGCA





AG

CAG







DGTGTVTGW

329
CAGAGTGATGGC
637
CAGAGTGACGGA
 970




ACCGGTACTGTTA

ACAGGAACAGTC





CTGGGTGGGCAC

ACAGGATGGGCA





AG

CAG







DGTHARLSS

330
CAGAGTGATGGC
638
CAGAGTGACGGA
 971




ACCCATGCGAGG

ACACACGCAAGA





TTGTCTTCGGCAC

CTCAGCAGCGCA





AG

CAG







DGTHAYMAS

153
CAGAGTGATGGC
639
CAGAGTGACGGA
 972




ACCCATGCTTATA

ACACACGCATAC





TGGCGTCTGCAC

ATGGCAAGCGCA





AG

CAG







DGTHFAPPR

112
CAGAGTGATGGC
640
CAGAGTGACGGA
 973




ACCCATTTTGCGC

ACACACTTCGCA





CGCCGCGTGCAC

CCACCAAGAGCA





AG

CAG







DGTHIHLSS

162
CAGAGTGATGGC
641
CAGAGTGACGGA
 974




ACCCATATTCATC

ACACACATCCAC





TGAGTAGTGCAC

CTCAGCAGCGCA





AG

CAG







DGTHIRALS

331
CAGAGTGATGGC
642
CAGAGTGACGGA
 975




ACCCATATTAGG

ACACACATCAGA





GCTCTGAGTGCA

GCACTCAGCGCA





CAG

CAG







DGTHIRLAS

332
CAGAGTGATGGC
643
CAGAGTGACGGA
 976




ACCCATATTCGTT

ACACACATCAGA





TGGCGAGTGCAC

CTCGCAAGCGCA





AG

CAG







DGTHLQPFR

333
CAGAGTGATGGC
644
CAGAGTGACGGA
 977




ACCCATCTGCAG

ACACACCTCCAA





CCGTTTAGGGCA

CCATTCAGAGCA





CAG

CAG







DGTHSFYDA

334
CAGAGTGATGGC
645
CAGAGTGACGGA
 978




ACCCATAGTTTTT

ACACACAGCTTCT





ATGATGCGGCAC

ACGACGCAGCAC





AG

AG







DGTHSTTGW

145
CAGAGTGATGGC
646
CAGAGTGACGGA
 979




ACCCATTCTACTA

ACACACAGCACA





CGGGTTGGGCAC

ACAGGATGGGCA





AG

CAG







DGTHTRTGW

 90
CAGAGTGATGGC
647
CAGAGTGACGGA
 980




ACCCATACGCGG

ACACACACAAGA





ACGGGTTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTHVRALS

335
CAGAGTGATGGC
648
CAGAGTGACGGA
 981




ACCCATGTTAGG

ACACACGTCAGA





GCGTTGTCGGCA

GCACTCAGCGCA





CAG

CAG







DGTHVYMAS

336
CAGAGTGATGGC
649
CAGAGTGACGGA
 982




ACCCATGTTTATA

ACACACGTCTAC





TGGCTAGTGCAC

ATGGCAAGCGCA





AG

CAG







DGTHVYMSS

337
CAGAGTGATGGC
650
CAGAGTGACGGA
 983




ACCCATGTGTATA

ACACACGTCTAC





TGTCTAGTGCACA

ATGAGCAGCGCA





G

CAG







DGTIALPFK

338
CAGAGTGATGGC
651
CAGAGTGACGGA
 984




ACCATTGCGCTTC

ACAATCGCACTC





CGTTTAAGGCAC

CCATTCAAAGCA





AG

CAG







DGTIALPFR

339
CAGAGTGATGGC
652
CAGAGTGACGGA
 985




ACCATTGCTTTGC

ACAATCGCACTC





CGTTTAGGGCAC

CCATTCAGAGCA





AG

CAG







DGTIATRYV

340
CAGAGTGATGGC
653
CAGAGTGACGGA
 986




ACCATTGCGACG

ACAATCGCAACA





CGGTATGTGGCA

AGATACGTCGCA





CAG

CAG







DGTIERPFR

 87
CAGAGTGATGGC
654
CAGAGTGACGGA
 987




ACCATTGAGCGG

ACAATCGAAAGA





CCTTTTCGTGCAC

CCATTCAGAGCA





AG

CAG







DGTIGYAYV

341
CAGAGTGATGGC
655
CAGAGTGACGGA
 988




ACCATTGGTTATG

ACAATCGGATAC





CGTATGTTGCACA

GCATACGTCGCA





G

CAG







DGTIQAPFK

342
CAGAGTGATGGC
656
CAGAGTGACGGA
 989




ACCATTCAGGCTC

ACAATCCAAGCA





CGTTTAAGGCAC

CCATTCAAAGCA





AG

CAG







DGTIRLPFK

343
CAGAGTGATGGC
657
CAGAGTGACGGA
 990




ACCATTCGTCTTC

ACAATCAGACTC





CTTTTAAGGCACA

CCATTCAAAGCA





G

CAG







DGTISKEVG

344
CAGAGTGATGGC
658
CAGAGTGACGGA
 991




ACCATTTCTAAGG

ACAATCAGCAAA





AGGTGGGGGCAC

GAAGTCGGAGCA





AG

CAG







DGTISQPFK

105
CAGAGTGATGGC
659
CAGAGTGACGGA
 992




ACCATTTCGCAGC

ACAATCAGCCAA





CTTTTAAGGCACA

CCATTCAAAGCA





G

CAG







DGTKIQLSS

146
CAGAGTGATGGC
660
CAGAGTGACGGA
 993




ACCAAGATTCAG

ACAAAAATCCAA





CTGTCTAGTGCAC

CTCAGCAGCGCA





AG

CAG







DGTKIRLSS

111
CAGAGTGATGGC
661
CAGAGTGACGGA
 994




ACCAAGATTCGG

ACAAAAATCAGA





TTGTCGTCTGCAC

CTCAGCAGCGCA





AG

CAG







DGTKLMLSS

157
CAGAGTGATGGC
662
CAGAGTGACGGA
 995




ACCAAGCTGATG

ACAAAACTCATG





TTGAGTAGTGCA

CTCAGCAGCGCA





CAG

CAG







DGTKLRLSS

118
CAGAGTGATGGC
663
CAGAGTGACGGA
 996




ACCAAGTTGAGG

ACAAAACTCAGA





CTTAGTTCTGCAC

CTCAGCAGCGCA





AG

CAG







DGTKMVLQL

142
CAGAGTGATGGC
664
CAGAGTGACGGA
 997




ACCAAGATGGTG

ACAAAAATGGTC





TTGCAGCTGGCA

CTCCAACTCGCAC





CAG

AG







DGTKSLVQL

345
CAGAGTGATGGC
665
CAGAGTGACGGA
 998




ACCAAGAGTCTT

ACAAAAAGCCTC





GTGCAGCTTGCA

GTCCAACTCGCA





CAG

CAG







DGTKVLVQL

122
CAGAGTGATGGC
666
CAGAGTGACGGA
 999




ACCAAGGTGCTG

ACAAAAGTCCTC





GTGCAGTTGGCA

GTCCAACTCGCA





CAG

CAG







DGTLAAPFK

120
CAGAGTGATGGC
667
CAGAGTGACGGA
1000




ACCTTGGCTGCTC

ACACTCGCAGCA





CTTTTAAGGCACA

CCATTCAAAGCA





G

CAG







DGTLAVNFK

346
CAGAGTGATGGG
668
CAGAGTGACGGA
1001




ACTTTGGCGGTG

ACACTCGCAGTC





AATTTTAAGGCA

AACTTCAAAGCA





CAG

CAG







DGTLAVPFK

 71
CAGAGTGATGGG
669
CAGAGTGACGGA
1002



(PHP.eB)


ACTTTGGCGGTGC

ACACTCGCAGTC





CTTTTAAGGCACA

CCATTCAAAGCA





G

CAG







DGTLAYPFK

347
CAGAGTGATGGC
670
CAGAGTGACGGA
1003




ACCCTTGCGTATC

ACACTCGCATAC





CTTTTAAGGCACA

CCATTCAAAGCA





G

CAG







DGTLERPFR

156
CAGAGTGATGGC
671
CAGAGTGACGGA
1004




ACCCTGGAGAGG

ACACTCGAAAGA





CCGTTTCGGGCAC

CCATTCAGAGCA





AG

CAG







DGTLEVHFK

348
CAGAGTGATGGG
672
CAGAGTGACGGA
1005




ACTTTGGAGGTG

ACACTCGAAGTC





CATTTTAAGGCAC

CACTTCAAAGCA





AG

CAG







DGTLLRLSS

121
CAGAGTGATGGC
673
CAGAGTGACGGA
1006




ACCTTGCTGAGG

ACACTCCTCAGA





CTGAGTAGTGCA

CTCAGCAGCGCA





CAG

CAG







DGTLNNPFR

109
CAGAGTGATGGC
674
CAGAGTGACGGA
1007




ACCTTGAATAATC

ACACTCAACAAC





CGTTTAGGGCAC

CCATTCAGAGCA





AG

CAG







DGTLQQPFR

 89
CAGAGTGATGGC
675
CAGAGTGACGGA
1008




ACCTTGCAGCAG

ACACTCCAACAA





CCGTTTCGGGCAC

CCATTCAGAGCA





AG

CAG







DGTLSQPFR

 65
CAGAGTGATGGC
676
CAGAGTGACGGA
1009




ACCCTGTCTCAGC

ACACTCAGCCAA





CTTTTAGGGCACA

CCATTCAGAGCA





G

CAG







DGTLSRTLW

349
CAGAGTGATGGC
677
CAGAGTGACGGA
1010




ACCTTGTCGCGTA

ACACTCAGCAGA





CGCTTTGGGCAC

ACACTCTGGGCA





AG

CAG







DGTLSSPFR

350
CAGAGTGATGGC
678
CAGAGTGACGGA
1011




ACCCTGTCTAGTC

ACACTCAGCAGC





CGTTTAGGGCAC

CCATTCAGAGCA





AG

CAG







DGTLTVPFR

351
CAGAGTGATGGC
679
CAGAGTGACGGA
1012




ACCTTGACGGTTC

ACACTCACAGTC





CTTTTCGGGCACA

CCATTCAGAGCA





G

CAG







DGTLVAPFR

352
CAGAGTGATGGC
680
CAGAGTGACGGA
1013




ACCCTTGTTGCGC

ACACTCGTCGCA





CGTTTAGGGCAC

CCATTCAGAGCA





AG

CAG







DGTMDKPFR

 70
CAGAGTGATGGC
681
CAGAGTGACGGA
1014




ACGATGGATAAG

ACAATGGACAAA





CCTTTTAGGGCAC

CCATTCAGAGCA





AG

CAG







DGTMDRPFK

102
CAGAGTGATGGC
682
CAGAGTGACGGA
1015




ACCATGGATAGG

ACAATGGACAGA





CCGTTTAAGGCA

CCATTCAAAGCA





CAG

CAG







DGTMLRLSS

148
CAGAGTGATGGC
683
CAGAGTGACGGA
1016




ACCATGTTGCGTC

ACAATGCTCAGA





TTAGTTCGGCACA

CTCAGCAGCGCA





G

CAG







DGTMQLTGW

353
CAGAGTGATGGC
684
CAGAGTGACGGA
1017




ACCATGCAGCTT

ACAATGCAACTC





ACGGGGTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTNGLKGW

 76
CAGAGTGATGGC
685
CAGAGTGACGGA
1018




ACCAATGGTCTG

ACAAACGGACTC





AAGGGGTGGGCA

AAAGGATGGGCA





CAG

CAG







DGTNSISGW

354
CAGAGTGATGGC
686
CAGAGTGACGGA
1019




ACCAATAGTATT

ACAAACAGCATC





AGTGGGTGGGCA

AGCGGATGGGCA





CAG

CAG







DGTNSLSGW

355
CAGAGTGATGGC
687
CAGAGTGACGGA
1020




ACCAATTCTCTGT

ACAAACAGCCTC





CGGGTTGGGCAC

AGCGGATGGGCA





AG

CAG







DGTNSTTGW

143
CAGAGTGATGGC
688
CAGAGTGACGGA
1021




ACCAATTCTACG

ACAAACAGCACA





ACGGGTTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTNSVTGW

356
CAGAGTGATGGC
689
CAGAGTGACGGA
1022




ACCAATAGTGTT

ACAAACAGCGTC





ACGGGTTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTNTINGW

124
CAGAGTGATGGC
690
CAGAGTGACGGA
1023




ACCAATACTATTA

ACAAACACAATC





ATGGGTGGGCAC

AACGGATGGGCA





AG

CAG







DGTNTLGGW

357
CAGAGTGATGGC
691
CAGAGTGACGGA
1024




ACCAATACGTTG

ACAAACACACTC





GGGGGGTGGGCA

GGAGGATGGGCA





CAG

CAG







DGTNTTHGW

113
CAGAGTGATGGC
692
CAGAGTGACGGA
1025




ACCAATACTACTC

ACAAACACAACA





ATGGGTGGGCAC

CACGGATGGGCA





AG

CAG







DGTNYRLSS

358
CAGAGTGATGGC
693
CAGAGTGACGGA
1026




ACCAATTATAGG

ACAAACTACAGA





CTGTCGAGTGCA

CTCAGCAGCGCA





CAG

CAG







DGTQALSGW

359
CAGAGTGATGGC
694
CAGAGTGACGGA
1027




ACCCAGGCGCTG

ACACAAGCACTC





TCGGGGTGGGCA

AGCGGATGGGCA





CAG

CAG







DGTQFRLSS

129
CAGAGTGATGGC
695
CAGAGTGACGGA
1028




ACCCAGTTTAGGT

ACACAATTCAGA





TGTCTTCGGCACA

CTCAGCAGCGCA





G

CAG







DGTQFSPPR

108
CAGAGTGATGGC
696
CAGAGTGACGGA
1029




ACCCAGTTTAGTC

ACACAATTCAGC





CTCCGCGTGCAC

CCACCAAGAGCA





AG

CAG







DGTQGLKGW

158
CAGAGTGATGGC
697
CAGAGTGACGGA
1030




ACCCAGGGGCTG

ACACAAGGACTC





AAGGGGTGGGCA

AAAGGATGGGCA





CAG

CAG







DGTQTTSGW

360
CAGAGTGATGGC
698
CAGAGTGACGGA
1031




ACCCAGACTACG

ACACAAACAACA





AGTGGGTGGGCA

AGCGGATGGGCA





CAG

CAG







DGTRALTGW

361
CAGAGTGATGGC
699
CAGAGTGACGGA
1032




ACCAGGGCTCTT

ACAAGAGCACTC





ACGGGTTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTRFSLSS

362
CAGAGTGATGGC
700
CAGAGTGACGGA
1033




ACCCGGTTTTCGC

ACAAGATTCAGC





TTTCGAGTGCACA

CTCAGCAGCGCA





G

CAG







DGTRGLSGW

363
CAGAGTGATGGC
701
CAGAGTGACGGA
1034




ACCAGGGGGTTG

ACAAGAGGACTC





TCGGGGTGGGCA

AGCGGATGGGCA





CAG

CAG







DGTRIGLSS

364
CAGAGTGATGGC
702
CAGAGTGACGGA
1035




ACCAGGATTGGG

ACAAGAATCGGA





CTGAGTAGTGCA

CTCAGCAGCGCA





CAG

CAG







DGTRLHLAS

365
CAGAGTGATGGC
703
CAGAGTGACGGA
1036




ACCAGGCTTCATC

ACAAGACTCCAC





TGGCGAGTGCAC

CTCGCAAGCGCA





AG

CAG







DGTRLHLSS

366
CAGAGTGATGGC
704
CAGAGTGACGGA
1037




ACCAGGCTTCATC

ACAAGACTCCAC





TGTCGTCGGCAC

CTCAGCAGCGCA





AG

CAG







DGTRLLLSS

367
CAGAGTGATGGC
705
CAGAGTGACGGA
1038




ACCCGTTTGCTGC

ACAAGACTCCTC





TGTCGAGTGCAC

CTCAGCAGCGCA





AG

CAG







DGTRLMLSS

368
CAGAGTGATGGC
706
CAGAGTGACGGA
1039




ACCCGTTTGATGC

ACAAGACTCATG





TTTCTAGTGCACA

CTCAGCAGCGCA





G

CAG







DGTRLNLSS

369
CAGAGTGATGGC
707
CAGAGTGACGGA
1040




ACCCGTTTGAATC

ACAAGACTCAAC





TTAGTTCGGCACA

CTCAGCAGCGCA





G

CAG







DGTRMVVQL

370
CAGAGTGATGGC
708
CAGAGTGACGGA
1041




ACCCGGATGGTT

ACAAGAATGGTC





GTTCAGCTTGCAC

GTCCAACTCGCA





AG

CAG







DGTRNMYEG

135
CAGAGTGATGGC
709
CAGAGTGACGGA
1042




ACCCGTAATATGT

ACAAGAAACATG





ATGAGGGGGCAC

TACGAAGGAGCA





AG

CAG







DGTRSITGW

371
CAGAGTGATGGC
710
CAGAGTGACGGA
1043




ACCAGGAGTATT

ACAAGAAGCATC





ACGGGGTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTRSLHGW

372
CAGAGTGATGGC
711
CAGAGTGACGGA
1044




ACCAGGAGTTTG

ACAAGAAGCCTC





CATGGGTGGGCA

CACGGATGGGCA





CAG

CAG







DGTRSTTGW

373
CAGAGTGATGGC
712
CAGAGTGACGGA
1045




ACCCGGAGTACT

ACAAGAAGCACA





ACGGGTTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTRTTTGW

106
CAGAGTGATGGC
713
CAGAGTGACGGA
1046




ACCCGTACTACG

ACAAGAACAACA





ACGGGTTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTRTVTGW

374
CAGAGTGATGGC
714
CAGAGTGACGGA
1047




ACCCGGACGGTG

ACAAGAACAGTC





ACTGGTTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTRTVVQL

375
CAGAGTGATGGC
715
CAGAGTGACGGA
1048




ACCCGTACTGTG

ACAAGAACAGTC





GTGCAGTTGGCA

GTCCAACTCGCA





CAG

CAG







DGTRVHLSS

376
CAGAGTGATGGC
716
CAGAGTGACGGA
1049




ACCCGGGTGCAT

ACAAGAGTCCAC





CTTTCTAGTGCAC

CTCAGCAGCGCA





AG

CAG







DGTSFPYAR

 86
CAGAGTGATGGC
717
CAGAGTGACGGA
1050




ACCTCGTTTCCGT

ACAAGCTTCCCAT





ATGCTCGGGCAC

ACGCAAGAGCAC





AG

AG







DGTSFTPPK

 81
CAGAGTGATGGC
718
CAGAGTGACGGA
1051




ACCTCGTTTACGC

ACAAGCTTCACA





CGCCTAAGGCAC

CCACCAAAAGCA





AG

CAG







DGTSFTPPR

 88
CAGAGTGATGGC
719
CAGAGTGACGGA
1052




ACCTCGTTTACTC

ACAAGCTTCACA





CGCCGCGGGCAC

CCACCAAGAGCA





AG

CAG







DGTSGLHGW

377
CAGAGTGATGGC
720
CAGAGTGACGGA
1053




ACCTCTGGGTTGC

ACAAGCGGACTC





ATGGGTGGGCAC

CACGGATGGGCA





AG

CAG







DGTSGLKGW

101
CAGAGTGATGGC
721
CAGAGTGACGGA
1054




ACCAGTGGGCTT

ACAAGCGGACTC





AAGGGGTGGGCA

AAAGGATGGGCA





CAG

CAG







DGTSIHLSS

378
CAGAGTGATGGC
722
CAGAGTGACGGA
1055




ACCTCGATTCATT

ACAAGCATCCAC





TGAGTAGTGCAC

CTCAGCAGCGCA





AG

CAG







DGTSIMLSS

379
CAGAGTGATGGC
723
CAGAGTGACGGA
1056




ACCTCGATTATGT

ACAAGCATCATG





TGAGTTCTGCACA

CTCAGCAGCGCA





G

CAG







DGTSLRLSS

166
CAGAGTGATGGC
724
CAGAGTGACGGA
1057




ACCTCTTTGCGGC

ACAAGCCTCAGA





TTTCTTCTGCACA

CTCAGCAGCGCA





G

CAG







DGTSNYGAR

380
CAGAGTGATGGC
725
CAGAGTGACGGA
1058




ACCTCTAATTATG

ACAAGCAACTAC





GGGCGCGGGCAC

GGAGCAAGAGCA





AG

CAG







DGTSSYYDA

381
CAGAGTGATGGC
726
CAGAGTGACGGA
1059




ACCAGTTCGTATT

ACAAGCAGCTAC





ATGATGCGGCAC

TACGACGCAGCA





AG

CAG







DGTSSYYDS

 59
CAGAGTGATGGC
727
CAGAGTGACGGA
1060




ACCTCGAGTTATT

ACAAGCAGCTAC





ATGATTCTGCACA

TACGACAGCGCA





G

CAG







DGTSTISGW

382
CAGAGTGATGGC
728
CAGAGTGACGGA
1061




ACCTCTACGATTT

ACAAGCACAATC





CTGGTTGGGCAC

AGCGGATGGGCA





AG

CAG







DGTSTITGW

383
CAGAGTGATGGC
729
CAGAGTGACGGA
1062




ACCAGTACTATTA

ACAAGCACAATC





CGGGTTGGGCAC

ACAGGATGGGCA





AG

CAG







DGTSTLHGW

384
CAGAGTGATGGC
730
CAGAGTGACGGA
1063




ACCTCGACGTTGC

ACAAGCACACTC





ATGGGTGGGCAC

CACGGATGGGCA





AG

CAG







DGTSTLRGW

385
CAGAGTGATGGC
731
CAGAGTGACGGA
1064




ACCTCTACTCTGC

ACAAGCACACTC





GTGGGTGGGCAC

AGAGGATGGGCA





AG

CAG







DGTSTLSGW

386
CAGAGTGATGGC
732
CAGAGTGACGGA
1065




ACCTCGACGCTGT

ACAAGCACACTC





CGGGGTGGGCAC

AGCGGATGGGCA





AG

CAG







DGTSYVPPK

 97
CAGAGTGATGGC
733
CAGAGTGACGGA
1066




ACCTCTTATGTGC

ACAAGCTACGTC





CGCCGAAGGCAC

CCACCAAAAGCA





AG

CAG







DGTSYVPPR

 78
CAGAGTGATGGC
734
CAGAGTGACGGA
1067




ACCAGTTATGTGC

ACAAGCTACGTC





CGCCTCGGGCAC

CCACCAAGAGCA





AG

CAG







DGTTATYYK

387
CAGAGTGATGGC
735
CAGAGTGACGGA
1068




ACCACGGCGACT

ACAACAGCAACA





TATTATAAGGCA

TACTACAAAGCA





CAG

CAG







DGTTFTPPR

 79
CAGAGTGATGGC
736
CAGAGTGACGGA
1069




ACCACTTTTACTC

ACAACATTCACA





CTCCTCGGGCAC

CCACCAAGAGCA





AG

CAG







DGTTLAPFR

388
CAGAGTGATGGC
737
CAGAGTGACGGA
1070




ACCACTCTGGCTC

ACAACACTCGCA





CTTTTAGGGCACA

CCATTCAGAGCA





G

CAG







DGTTLVPPR

116
CAGAGTGATGGC
738
CAGAGTGACGGA
1071




ACCACTTTGGTTC

ACAACACTCGTC





CGCCGCGTGCAC

CCACCAAGAGCA





AG

CAG







DGTTSKTLW

389
CAGAGTGATGGC
739
CAGAGTGACGGA
1072




ACCACGAGTAAG

ACAACAAGCAAA





ACGCTTTGGGCA

ACACTCTGGGCA





CAG

CAG







DGTTSRTLW

390
CAGAGTGATGGC
740
CAGAGTGACGGA
1073




ACCACTTCTAGG

ACAACAAGCAGA





ACTTTGTGGGCAC

ACACTCTGGGCA





AG

CAG







DGTTTRSLY

391
CAGAGTGATGGC
741
CAGAGTGACGGA
1074




ACCACGACTCGT

ACAACAACAAGA





AGTTTGTATGCAC

AGCCTCTACGCA





AG

CAG







DGTTTTTGW

392
CAGAGTGATGGC
742
CAGAGTGACGGA
1075




ACCACTACGACT

ACAACAACAACA





ACGGGTTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTTTYGAR

 77
CAGAGTGATGGC
743
CAGAGTGACGGA
1076




ACCACTACGTAT

ACAACAACATAC





GGGGCTCGTGCA

GGAGCAAGAGCA





CAG

CAG







DGTTWTPPR

139
CAGAGTGATGGC
744
CAGAGTGACGGA
1077




ACCACTTGGACG

ACAACATGGACA





CCGCCGCGTGCA

CCACCAAGAGCA





CAG

CAG







DGTTYMLSS

393
CAGAGTGATGGC
745
CAGAGTGACGGA
1078




ACCACGTATATG

ACAACATACATG





CTTAGTAGTGCAC

CTCAGCAGCGCA





AG

CAG







DGTTYVPPR

 75
CAGAGTGATGGC
746
CAGAGTGACGGA
1079




ACCACGTATGTTC

ACAACATACGTC





CTCCGCGGGCAC

CCACCAAGAGCA





AG

CAG







DGTVANPFR

394
CAGAGTGATGGC
747
CAGAGTGACGGA
1080




ACCGTGGCGAAT

ACAGTCGCAAAC





CCTTTTCGGGCAC

CCATTCAGAGCA





AG

CAG







DGTVDRPFK

395
CAGAGTGATGGC
748
CAGAGTGACGGA
1081




ACCGTGGATCGG

ACAGTCGACAGA





CCTTTTAAGGCAC

CCATTCAAAGCA





AG

CAG







DGTVIHLSS

 73
CAGAGTGATGGC
749
CAGAGTGACGGA
1082




ACCGTTATTCATC

ACAGTCATCCAC





TGAGTAGTGCAC

CTCAGCAGCGCA





AG

CAG







DGTVILLSS

396
CAGAGTGATGGC
750
CAGAGTGACGGA
1083




ACCGTTATTCTGT

ACAGTCATCCTCC





TGTCGAGTGCAC

TCAGCAGCGCAC





AG

AG







DGTVIMLSS

397
CAGAGTGATGGC
751
CAGAGTGACGGA
1084




ACCGTGATTATGC

ACAGTCATCATG





TGTCGAGTGCAC

CTCAGCAGCGCA





AG

CAG







DGTVLHLSS

398
CAGAGTGATGGC
752
CAGAGTGACGGA
1085




ACCGTGCTTCATT

ACAGTCCTCCACC





TGTCGTCTGCACA

TCAGCAGCGCAC





G

AG







DGTVLMLSS

399
CAGAGTGATGGC
753
CAGAGTGACGGA
1086




ACCGTTTTGATGC

ACAGTCCTCATGC





TGAGTAGTGCAC

TCAGCAGCGCAC





AG

AG







DGTVLVPFR

150
CAGAGTGATGGC
754
CAGAGTGACGGA
1087




ACCGTGTTGGTGC

ACAGTCCTCGTCC





CGTTTAGGGCAC

CATTCAGAGCAC





AG

AG







DGTVPYLAS

400
CAGAGTGATGGC
755
CAGAGTGACGGA
1088




ACCGTTCCGTATC

ACAGTCCCATAC





TTGCTTCTGCACA

CTCGCAAGCGCA





G

CAG







DGTVPYLSS

401
CAGAGTGATGGC
756
CAGAGTGACGGA
1089




ACCGTGCCGTATT

ACAGTCCCATAC





TGTCTTCGGCACA

CTCAGCAGCGCA





G

CAG







DGTVRVPFR

164
CAGAGTGATGGC
757
CAGAGTGACGGA
1090




ACCGTTCGTGTGC

ACAGTCAGAGTC





CGTTTAGGGCAC

CCATTCAGAGCA





AG

CAG







DGTVSMPFK

402
CAGAGTGATGGC
758
CAGAGTGACGGA
1091




ACCGTGTCGATG

ACAGTCAGCATG





CCGTTTAAGGCA

CCATTCAAAGCA





CAG

CAG







DGTVSNPFR

403
CAGAGTGATGGC
759
CAGAGTGACGGA
1092




ACCGTGTCTAATC

ACAGTCAGCAAC





CGTTTAGGGCAC

CCATTCAGAGCA





AG

CAG







DGTVSTRWV

404
CAGAGTGATGGC
760
CAGAGTGACGGA
1093




ACCGTTTCTACGC

ACAGTCAGCACA





GTTGGGTGGCAC

AGATGGGTCGCA





AG

CAG







DGTVTTTGW

405
CAGAGTGATGGC
761
CAGAGTGACGGA
1094




ACCGTGACGACG

ACAGTCACAACA





ACTGGGTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTVTVTGW

406
CAGAGTGATGGC
762
CAGAGTGACGGA
1095




ACCGTGACGGTT

ACAGTCACAGTC





ACGGGGTGGGCA

ACAGGATGGGCA





CAG

CAG







DGTVWVPPR

407
CAGAGTGATGGC
763
CAGAGTGACGGA
1096




ACCGTTTGGGTGC

ACAGTCTGGGTC





CTCCTAGGGCAC

CCACCAAGAGCA





AG

CAG







DGTVYRLSS

408
CAGAGTGATGGC
764
CAGAGTGACGGA
1097




ACCGTTTATAGGT

ACAGTCTACAGA





TGTCGAGTGCAC

CTCAGCAGCGCA





AG

CAG







DGTYARLSS

409
CAGAGTGATGGC
765
CAGAGTGACGGA
1098




ACCTATGCGCGTT

ACATACGCAAGA





TGTCTTCTGCACA

CTCAGCAGCGCA





G

CAG







DGTYGNKLW

410
CAGAGTGATGGC
766
CAGAGTGACGGA
1099




ACCTATGGTAAT

ACATACGGAAAC





AAGTTGTGGGCA

AAACTCTGGGCA





CAG

CAG







DGTYIHLSS

411
CAGAGTGATGGC
767
CAGAGTGACGGA
1100




ACCTATATTCATC

ACATACATCCAC





TGTCTTCGGCACA

CTCAGCAGCGCA





G

CAG







DGTYSTSGW

412
CAGAGTGATGGC
768
CAGAGTGACGGA
1101




ACCTATTCGACG

ACATACAGCACA





AGTGGGTGGGCA

AGCGGATGGGCA





CAG

CAG







DGVHPGLSS

104
CAGAGTGATGGC
769
CAGAGTGACGGA
1102




GTGCATCCTGGG

GTCCACCCAGGA





CTTTCGAGTGCAC

CTCAGCAGCGCA





AG

CAG







DGVVALLAS

413
CAGAGTGATGGC
770
CAGAGTGACGGA
1103




GTGGTTGCGTTGC

GTCGTCGCACTCC





TTGCTAGTGCACA

TCGCAAGCGCAC





G

AG







DGYVGVGSL

414
CAGAGTGATGGC
771
CAGAGTGACGGA
1104




TATGTGGGTGTTG

TACGTCGGAGTC





GTAGTTTGGCAC

GGAAGCCTCGCA





AG

CAG









Primer pools were produced by Twist biosciences using solid-phase synthesis and were used to generate a balanced library of 666 nucleotide variants by PCR amplification of CAP C-terminus and Gibson assembly as described in FIG. 27. 666 primers were provided a 1 fmole each, resulting in 0.6 pmole (regular PCR requires ˜25 pmole of primer). Primerless amplification on capsid gBlock template was performed over 10 cycles. Forward and reverse primers were added, followed by an additional 10, 15 or 20 PCR cycles. Constructs were then cloned into AAV9 backbone plasmids by Gibson/RCA (like regular libraries).


NGS analysis of SYN- and GFAP-driven AAV libraries produced with the pooled DNA showed a good correlation between the codon variants of each peptide, suggesting that the DNA sequence itself had little influence on virus production (FIG. 28 and FIG. 29). The pooled synthetic library was injected intravenously to C57BL/6 mice (5e11 VG per mouse, N=9), BALB/C mice (5e11 VG per mouse, N=6) and to rats (5e12 VG per rat, N=6), and after one month in-life RNA was extracted from the brain and spinal cord, and DNA was extracted from liver and heart tissue samples for biodistribution analysis (FIG. 30). Because the Synapsin and GFAP promoters are not fully active in non-CNS tissue, DNA was analyzed instead of RNA in peripheral organs. The initial focus was on the C57BL/6 mouse analysis because this is the mouse strain in which library evolution was performed.


The enrichment score of each capsid was determined by NGS analysis and defined as the ratio of reads per million (RPM) in the target tissue versus RPM in the inoculum. An example of analysis performed on the control capsids is shown in FIG. 31A. As expected from the published data, the PHP.B and PHP.eB (aka, PHP.N) capsids allowed significantly higher RNA expression in neurons compared to the AAV9 parental capsid (8-fold and 25-fold, respectively). There was a very high correlation between the codon variants of each peptide species in each animal (r=0.92, 0.93 and 0.95), confirming the robustness of the NGS assay (FIG. 31B-FIG. 31D).


An example of enrichment analysis is presented in FIG. 32A-FIG. 36. The 333 capsid variants are ranked by average brain enrichment score from all animals, and the individual enrichment values are indicated by a color scale. As indicated by the position of the reference capsids, a group of novel variants showed a higher enrichment score than the PHP.eB benchmark capsid in both neurons (Syn-driven) and astrocytes (GFAP-driven). Interestingly, many variants showed a different enrichment score in neurons vs. astrocytes, as indicated by the medium level of correlation between Syn- and GFAP-driven RNA. This suggests that certain capsids display an enhanced tropism for neurons, and others for astrocytes (FIG. 33).


A group of 38 capsids showed potentially interesting properties based on their tropism for neurons, astrocytes or both (Table 8A and Table 8B) (FIG. 38) and showed a strong consensus peptide sequence similarity, different between neuron- and astrocyte-targeting variants (FIG. 45A-FIG. 45C and FIG. 46A-FIG. 46B).









TABLE 8A







TOP 38 candidates from C57BL/6 screen #1 (N =3)















SEQ ID
SYN
GFAP


Groups
variant
peptide
NO:
ranking
ranking





A
9p32
DGTAIHLSS
 67
15, 16
113, 133






9p35
DGTSSYYDS
 59
1, 3
565, 581


B
9p36
DGSSSYYDA
 64
10, 11
591, 594



9p37
DGTASYYDS
 61
5, 6
553, 560





C
9p26
DGTTTYGAR
 77
225, 262
49, 56





D
9p2
AQNGNPGRW
 84
156, 160
38, 44



9p13
AQGENPGRW
 96
77, 87
7, 13



9p30
AQPEGSARW
 60
2, 4
154, 160





E
9p1
AQGSWNPPA
 80
348, 361
8, 15



9p14
AQGTWNPPA
 82
448, 467
14, 17





F
9p29
AQFPTNYDS
 66
14, 19
490, 537



9p31
AQWPTSYDA
 62
7, 9
290, 304





G
9p3
AQTTEKPWL
 83
53, 72
35, 70



9p15
AQTTDRPFL
 85
206, 219
26, 43





H
9p10
DGTRTTTGW
106
161, 220
10, 22



9p18
DGTGGIKGW
131
346, 388
41, 68



9p19
DGTGNTRGW
 94
322, 340
45, 54



9p20
DGTHTRTGW
 90
380, 427
31, 39



9p23
DGTNGLKGW
 76
132, 153
5, 16



9p33
DGTGQVTGW
 68
18, 33
172, 213



9p38
DGTGNVTGW
 69
20, 31
117, 137





I
9p11
DGTTFTPPR
 79
183, 199
11, 19



9p12
DGTTYVPPR
 75
146, 154
4, 9



9p24
DGTSFTPPK
 81
210, 243
29, 40



9p25
DGTSFTPPR
 88
250, 273
28, 37



9p27
DGTTWTPPR
139
567, 570
46, 59



9p28
DGTSYVPPR
 78
162, 179
20, 25





J
9p4
DGTADRPFR
155
109, 118
48, 57



9p9
DGTMDRPFK
102
102, 113
23 ,34



9p16
DGTADKPFR
 63
8, 12
1, 6



9p17
DGTAERPFR
140
106, 138
42, 50



9p21
DGTIERPFR
 87
186, 235
21, 33



9p34
DGTMDKPFR
 70
21, 23
107, 112





K
9p5
DGTISQPFK
105
184, 193
12, 18



9p6
DGTLAAPFK
120
110, 112
27, 30



9p7
DGTLQQPFR
 89
46, 57
32, 47



9p8
DGTLSQPFR
 65
13, 17
2, 3



9p22
DGTLNNPFR
109
30, 41
24, 36





Ref.
PHPN
DGTLAVPFK
 71
22, 24
51, 60



PHPB
AQTLAVPFK
168
253, 261
61, 62



wtAAV9
AQ

630, 631
611, 620
















TABLE 8B







Variant 9mer and encoding sequences















SEQ
NNK 
SEQ
NNM
SEQ



9mer 
ID
nucleotide
ID
nucleotide
ID


variant
peptide
NO:
sequences
NO:
sequences
NO:





9p1
AQGSWNPPA
 80
GCCCAAGGTT
1105
GCACAAGGAAG
1143





CGTGGAATCC

CTGGAACCCACC






GCCGGCG

AGCA






9p2
AQNGNPGRW
 84
GCCCAAAATG
1106
GCACAAAACGG
1144





GTAATCCGGG

AAACCCAGGAA






GCGGTGG

GATGG






9p3
AQTIEKPWL
 83
GCCCAAACGA
1107
GCACAAACAAC
1145





CTGAGAAGCC

AGAAAAACCAT






GTGGCTG

GGCTC






9p4
DGTADRPFR
155
GATGGCACGG
1108
GACGGAACAGC
1146





CGGATCGTCCT

AGACAGACCATT






TTTCGG

CAGA






9p5
DGTISQPFK
105
GATGGCACCA
1109
GACGGAACAAT
1147





TTTCGCAGCCT

CAGCCAACCATT






TTTAAG

CAAA






9p6
DGTLAAPFK
120
GATGGCACCTT
1110
GACGGAACACTC
1148





GGCTGCTCCTT

GCAGCACCATTC






TTAAG

AAA






9p7
DGTLQQPFR
 89
GATGGCACCTT
1111
GACGGAACACTC
1149





GCAGCAGCCG

CAACAACCATTC






TTTCGG

AGA






9p8
DGTLSQPFR
 65
GATGGCACCC
1112
GACGGAACACTC
1150





TGTCTCAGCCT

AGCCAACCATTC






TTTAGG

AGA






9p9
DGTMDRPFK
102
GATGGCACCA
1113
GACGGAACAAT
1151





TGGATAGGCC

GGACAGACCATT






GTTTAAG

CAAA






9p10
DGTRTTTGW
106
GATGGCACCC
1114
GACGGAACAAG
1152





GTACTACGAC

AACAACAACAG






GGGTTGG

GATGG






9p11
DGTTFTPPR
 79
GATGGCACCA
1115
GACGGAACAAC
1153





CTTTTACTCCT

ATTCACACCACC






CCTCGG

AAGA






9p12
DGTTYVPPR
 75
GATGGCACCA
1116
GACGGAACAAC
1154





CGTATGTTCCT

ATACGTCCCACC






CCGCGG

AAGA






9p13
AQGENPGRW
 96
GCCCAAGGGG
1117
GCACAAGGAGA
1155





AGAATCCGGG

AAACCCAGGAA






TAGGTGG

GATGG






9p14
AQGTWNPPA
 82
GCCCAAGGTA
1118
GCACAAGGAAC
1156





CTTGGAATCCG

ATGGAACCCACC






CCGGCT

AGCA






9p15
AQTTDRPFL
 85
GCCCAAACTA
1119
GCACAAACAAC
1157





CTGATAGGCCT

AGACAGACCATT






TTTTTG

CCTC






9p16
DGTADKPFR
 63
GATGGCACCG
1120
GACGGAACAGC
1158





CTGATAAGCC

AGACAAACCATT






GTTTCGG

CAGA






9p17
DGTAERPFR
140
GATGGCACCG
1121
GACGGAACAGC
1159





CGGAGAGGCC

AGAAAGACCATT






TTTTAGG

CAGA






9p18
DGTGGIKGW
131
GATGGCACCG
1122
GACGGAACAGG
1160





GTGGTATTAA

AGGAATCAAAG






GGGGTGG

GATGG






9p19
DGTGNTRGW
 94
GATGGCACCG
1123
GACGGAACAGG
1161





GGAATACTCG

AAACACAAGAG






GGGGTGG

GATGG






9p20
DGTHTRTGW
 90
GATGGCACCC
1124
GACGGAACACA
1162





ATACGCGGAC

CACAAGAACAG






GGGTTGG

GATGG






9p21
DGTIERPFR
 87
GATGGCACCA
1125
GACGGAACAAT
1163





TTGAGCGGCCT

CGAAAGACCATT






TTTCGT

CAGA






9p22
DGTLNNPFR
109
GATGGCACCTT
1126
GACGGAACACTC
1164





GAATAATCCG

AACAACCCATTC






TTTAGG

AGA






9p23
DGTNGLKGW
 76
GATGGCACCA
1127
GACGGAACAAA
1165





ATGGTCTGAA

CGGACTCAAAG






GGGGTGG

GATGG






9p24
DGTSFTPPK
 81
GATGGCACCT
1128
GACGGAACAAG
1166





CGTTTACGCCG

CTTCACACCACC






CCTAAG

AAAA






9p25
DGTSFTPPR
 88
GATGGCACCT
1129
GACGGAACAAG
1167





CGTTTACTCCG

CTTCACACCACC






CCGCGG

AAGA






9p26
DGTTTYGAR
 77
GATGGCACCA
1130
GACGGAACAAC
1168





CTACGTATGG

AACATACGGAG






GGCTCGT

CAAGA






9p27
DGTTWTPPR
139
GATGGCACCA
1131
GACGGAACAAC
1169





CTTGGACGCC

ATGGACACCACC






GCCGCGT

AAGA






9p28
DGTSYVPPR
 78
GATGGCACCA
1132
GACGGAACAAG
1170





GTTATGTTCCT

CTACGTCCCACC






CCGAGG

AAGA






9p29
AQFPTNYDS
 66
GCCCAATTTCC
1133
GCACAATTCCCA
1171





TACGAATTATG

ACAAACTACGAC






ATTCT

AGC






9p30
AQPEGSARW
 60
GCCCAACCTG
1134
GCACAACCAGA
1172





AGGGTAGTGC

AGGAAGCGCAA






GAGGTGG

GATGG






9p31
AQWPTSYDA
 62
GCCCAATGGC
1135
GCACAATGGCCA
1173





CTACGAGTTAT

ACAAGCTACGAC






GATGCT

GCA






9p32
DGTAIHLSS
 67
GATGGCACCG
1136
GACGGAACAGC
1174





CGATTCATCTT

AATCCACCTCAG






TCGTCT

CAGC






9p33
DGTGQVTGW
 68
GATGGCACCG
1137
GACGGAACAGG
1175





GGCAGGTGAC

ACAAGTCACAG






TGGGTGG

GATGG






9p34
DGTMDKPFR
 70
GATGGCACGA
1138
GACGGAACAAT
1176





TGGATAAGCC

GGACAAACCATT






TTTTAGG

CAGA






9p35
DGTSSYYDS
 59
GATGGCACCT
1139
GACGGAACAAG
1177





CGAGTTATTAT

CAGCTACTACGA






GATTCT

CAGC






9p36
DGSSSYYDA
 64
GATGGCAGTA
1140
GACGGAAGCAG
1178





GTTCTTATTAT

CAGCTACTACGA






GATGCG

CGCA






9p37
DGTASYYDS
 61
GATGGCACCG
1141
GACGGAACAGC
1179





CGAGTTATTAT

AAGCTACTACGA






GATTCT

CAGC






9p38
DGTGNVTGW
 69
GATGGCACCG
1142
GACGGAACAGG
1180





GTAATGTGAC

AAACGTCACAG






GGGGTGG

GATGG






AAV9
AQ

AGTGCTCAGG
  54
AGTGCCCAAGCA
  53





CACAGGCGCA

CAGGCGCAGAC






GACC

C






PHPN
DGTLAVPFK
 71
GATGGGACTTT
  56
GACGGAACACTC
  55





GGCGGTGCCTT

GCAGTCCCATTC






TTAAG

AAA






PHPB
AQTLAVPFK
168
GCCCAAACTTT
  58
GCACAAACACTC
  57





GGCGGTGCCTT

GCAGTCCCATTC






TTAAG

AAA









Example 11. Phylogenetic Grouping

Phylogenetic grouping of peptide sequences showed an evident correlation between sequence homology clusters and capsid phenotypes (FIG. 37). For example, 9-mer variants with the sequence DGTxxxPFK/R (SEQ ID NO: 1181) presented a similar behavior as PHP.eB capsid (high transduction of both neurons and astrocytes), whereas variants harboring the sequence DGTxxxYDS/A (SEQ ID NO: 1182) showed a preference for neuron transduction. By contrast, peptides with the consensus DGTxxxxGW (SEQ ID NO: 1183) or CGTxxxPPR/K (SEQ ID NO: 1184) presented a higher tropism for astrocytes.


Example 12. Capsid Testing

Capsid variants representative of distinct sequence clusters (highlighted in FIG. 37B) were chosen for individual transduction analysis in C57BL/6 mice. Each capsid was produced as a recombinant AAV packaging a self-complementary EGFP transgene driven by the ubiquitous promoter (FIGS. 49A, B). Mouse groups (N=3) were injected intravenously with 6e10 VG and transduction efficiency was assessed after 1 month by quantifying EGFP mRNA in the brain, spinal cord, and liver tissue. EGFP mRNA expression was normalized using mouse TBP as a housekeeping gene, and DNA biodistribution was normalized to the single-copy mouse TfR gene (FIG. 50A-FIG. 50C). Reverse transcription was performed with the Quantitect kit and included a DNA removal treatment. All capsid variants showed a significant improvement in brain and spinal cord mRNA expression by comparison to the parent AAV9 capsid, and 3 out of 7 variants (9P16, 9P31 and 9P35) showed similar or higher transduction than the PHP.eB benchmark capsid (FIG. 49C, Table 10). The viral DNA biodistribution showed a very strong tropism of 9P31 and 9P35 for the brain and spinal cord, but all the variants showed a 40- to 260-fold increase of biodistribution compared to AAV9 (FIG. 49D, Table 10).


Expected cellular tropism was tested using an NGS screen by labeling the neuronal NeuN marker (FIG. 51). Within the cortex, the top capsids in the GFAP screen showed mostly GFP expression in NeuN-negative cells with glial morphology. Conversely, top capsids in the SYN screen showed a very high transduction of NeuN-positive cells, and the dual-specificity capsids 9P08 and 9P16—ranking high in both assays—showed mixed cell preference with multiple NeuN+ cells and glial cells.


Cellular tropism was also tested using mouse brain microvascular EC (mBMVEC) binding relative to AAV9. Results are shown in Table 9.









TABLE 9







mBMVEC binding results













BINDING TO




SEQUENCE 
mBMVEC (fold


PEPTIDE
SEQUENCE
ID
over AAV9)





AAV9
AQ

  1





PHP.eB
DGTLAVPFK
 71
153





9P03
AQTTEKPWL
 83
170





9P08
DGTLSQPFR
 65
349





9P09
DGTMDRPFK
102
222





9P13
AQGENPGRW
 96
  2.5





9P16
DGTADKPFR
 63
176





9P31
AQWPTSYDA
 62
  2





9P32
DGTAIHLSS
 67
  16





9P33
DGTGQVTGW
 68
  5





9P36
DGSSSYYDA
 64
  0





9P39
DGTGSTTGW
134
  2









Fluorescent EGFP expression in tissues of whole brain, cerebellum, cortex, and hippocampus revealed transduction patterns across a spectrum and demonstrate the identification of tissue-specific capsids (FIG. 52-FIG. 56).


The liver transduction, measured by mRNA expression and by whole tissue GFP expression, showed that several variants outperformed AAV9, which was unexpected in light of the NGS results. Some variants, such as 9P08 or 9P23, showed a relative liver detargeting by comparison with AAV9 (FIG. 57A-FIG. 57B).









TABLE 10





Brain and Spinal cord tropism

















BRAIN EGFP mRNA*















EGFP/TBP
EGFP/TBP
EGFP/TBP
group
group
Mean Fold
Fold


CAPSID
m1
m2
m3
mean
SD
over AAV9
SDEV





AAV9
0.11
0.1
0.15
0.12
0.03
1
0.21


PHPN
2.94
4.44
3.42
3.6
0.77
30
6.38


9P08
2.46
3.47
2.73
2.89
0.53
24
4.38


9P12
3.07
2.27
2.98
2.77
0.44
23
3.65


9P16
4.31
4.75
5.28
4.78
0.49
39
4.06


9P23
3.28
2.37
2.79
2.81
0.46
23
3.79


9P30
1.06
1.7
1.32
1.36
0.32
11
2.66


9P31
4.87
5.53
4.2
4.87
0.66
40
5.54


9P35
3.9
3.24
3.45
3.53
0.33
29
2.78


PHPB***
2.68
2.68
2.68
2.68
0
22
0


ctrl
0
0
0
0
0
0
0












SPINAL CORD EGFP mRNA*















EGFP/TBP
EGFP/TBP
EGFP/TBP
group
group
Mean Fold
Fold


CAPSID
m1
m2
m3
mean
SD
over AAV9
SD





AAV9
0.84
0.29
0.3
0.48
0.31
1
0.66


PHPN
3.36
5.8
5.4
4.86
1.31
10.22
2.75


9P08
4.3
5.62
4.65
4.86
0.68
10.22
1.43


9P12
6.09
5.94
5.78
5.94
0.16
12.49
0.33


9P16
4.42
5.31
5.37
5.04
0.53
10.6
1.12


9P23
5.41
5.95
5.04
5.47
0.46
11.5
0.96


9P30
1.53
1.83
2.11
1.82
0.29
3.84
0.61


9P31
6.92
7.06
6.94
6.98
0.08
14.68
0.16


9P35
4.68
4.81
4.79
4.76
0.07
10.02
0.15


PHPB
3.84
3.84
3.84
3.84
0
8.09
0


ctrl
0
0
0
0
0
0
0












BRAIN EGFP DNA** (VG/Cell)















EGFP/TERT
EGFP/TERT
EGFP/TERT
Group
Group
Mean Fold
Fold


CAPSID
m1
m2
m3
mean
SD
over AAV9
SDEV





AAV9
0.03
0.04
0.01
0.03
0.01
1
0


PHPN
2.07
2.79
1.94
2.27
0.46
87
18


P08
1.25
1.62
5.47
2.78
2.34
107
90


P12
1.43
0.94
1.41
1.26
0.27
48
10


P16
4.13
1.15
3.56
2.95
1.58
113
60


P23
1.34
2.68
1.87
1.96
0.68
75
26


P30
0.59
1.42
1.21
1.08
0.43
41
17


P31
6.47
5.6
8.81
6.96
1.66
267
64


P35
4.62
5.55
2.52
4.23
1.55
162
59


PHPB
1.5
1.5
1.5
1.5
0
58
0


ctrl
0
0
0
0
0
0
0












SPINAL CORD EGFP DNA** (VG/Cell)















EGFP/TERT
EGFP/TERT
EGFP/TERT
Group
Group
Mean Fold
Fold


CAPSID
m 1
m 2
m 3
AVG
SD
over AAV9
SDEV





AAV9
0.03
0.04
0.04
0.03
0.007
1
0.2


PHPN
1.75
2.96
3.14
2.62
0.752
75
21.7


P08
3.81
3.47
3.66
3.65
0.174
105
5


P12
1.62
3.31
2.87
2.6
0.873
75
25.2


P16
3.3
3.34
2.96
3.2
0.211
92
6.1


P23
2.63
2.47
3.1
2.73
0.322
79
9.3


P30
0.8
1.8
1.43
1.34
0.507
39
14.6


P31
9.88
6.19
5.47
7.18
2.366
207
68.2


P35
2.95
3.92
2.41
3.1
0.765
89
22


PHPB
1.34
1.34
1.34
1.34
0
39
0


ctrl
0
0
0
0
0
0
0





*EGFP mRNA expression was normalized to TBP as a housekeeping marker


**GFP DNA was normalized to single-copy TfR DNA


***N = 1






Example 13. Multi-Rodent Testing (Cross Species)

The efficacy of the 333 capsid variants to transduce CNS was tested in other rodent strains or species (FIG. 47). Side-by-side comparison of neuron and astrocyte transduction in C57BL/6 mice, BALB/C mice and rats showed major differences in the enrichment scores of multiple variants between the two mouse strains, and even more pronounced differences between mice and rats (FIG. 48A-FIG. 48C). Strikingly, the most efficient capsid for rat brain transduction was the parental AAV9, which suggests that directed evolution “bottlenecks” capsid variants that are highly performant in one given species, as opposed to the versatility of wild-type AAV capsids.


Correlation analysis showed that some capsids shared high CNS transduction between C57BL/6 and BALB/C mice, whereas others were restricted to only one strain (FIG. 48B).


Interestingly, the PHP.B and PHP.eB capsid showed poor brain transduction in BALB/C mice, in line with a recent publication (Hordeaux et al., 2018). When focusing on the capsids that showed >10-fold increase in brain transduction, 62 variants were improved only in C57BL/6 mice, 28 variants were improved only in BALB/C mice and 30 variants showed improved brain transduction in both strains (Table 11). Consensus sequence analysis showed a “C57BL/6 signature” closely resembling the PHP.eB peptide (DGTxxxPFR (SEQ ID NO: 1185)) whereas the BALB/C signature showed a different consensus (DGTxxxxGW (SEQ ID NO: 1183)), suggesting the use of a different cellular receptor (FIG. 48C).









TABLE 11





TOP 30 candidates from C57BL/6 and BALB/C mouse screen







SYNAPSIN PROMOTER








C57BL/6
BALB/C









REPLICATE 1 (N = 3)
REPLICATE 2 (N = 6)
REPLICATE 1 (N = 6)













Brain

Brain

Brain



Enrichment

Enrichment

Enrichment


9-mer peptide
Factor (fold
9-mer peptide
Factor (fold
9-mer peptide
Factor (fold


insert
over AAV9)
insert
over AAV9)
insert
over AAV9)





DGTSSYYDS
36.40
AQWPTSYDA
39.97
DGTGSTTGW
57.05


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



59)

62)

134)






AQPEGSARW
35.95
AQPEGSARW
31.83
DGTGQVTGW
49.87


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



60)

60)

68)






DGTASYYDS
32.34
DGTGQVTGW
20.35
DGTGSTHGW
43.08


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



61)

68)

119)






AQWPTSYDA
30.81
DGTAIHLSS
19.55
DGTGSTQGW
38.31


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



62)

67)

315)






DGTADKPFR
29.30
DGTMDRPFK
19.48
DGTGTTTGW
37.29


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



63)

102)

130)






DGSSSYYDA
28.05
DGTGSTTGW
19.20
AQWAAGYNV
34.57


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



64)

134)

245)






DGTLSQPFR
26.73
DGSSSYYDA
18.08
DGTGGTKGW
33.59


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



65)

64)

107)






DGTAIHLSS
26.23
DGTSSYYDA
17.93
DGTGSTKGW
29.64


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



67)

381)

313)






AQFPTNYDS
26.07
DGSQSTTGW
17.59
DGSQSTTGW
25.19


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



66)

136)

136)






DGTMDKPFR
25.05
DGTGSTQGW
17.24
AQWEVKGGY
23.44


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



70)

315)

247)








DGTLAVPFK


24.62
DGTGTTTGW
17.00
DGTAIHLSS
22.81


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



71)

130)

67)






DGTGNVTGW
24.05


DGTLAVPFK


16.84
DGGGTTTGW
22.62


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



69)

71)

270)






DGTGQVTGW
23.83
DGTASYYDS
16.68
DGTGGLTGW
22.42


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



68)

61)

294)






DGTHIHLSS
22.93
DGTMDKPFR
16.68
DGTNTINGW
20.76


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



162)

70)

124)






DGTGNTHGW
22.63
DGTVANPFR
16.32
DGAGGTSGW
19.55


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



72)

394)

151)






DGTVIHLSS
22.62
DGTLNNPFR
16.24
DGTNTTHGW
18.99


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



73)

109)

113)






DGTLNNPFR
22.33
DGTLAAPFK
15.96
DGTGTVQGW
18.84


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



109)

120)

327)






DGTGNTSGW
22.10
DGTLSQPFR
15.43
DGTGQTIGW
18.55


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



137)

65)

305)






DGTGTTVGW
21.72
DGTHIHLSS
15.11
AQWELSNGY
18.13


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



74)

162)

246)






DGTSSYYDA
20.94
AQTTEKPWL
15.00
DGTGSLNGW
17.93


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



381)

83)

309)






DGAGTTSGW
20.42
DGTGNVTGW
14.90
DGTGTTLGW
17.48


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



265)

69)

323)






DGGGTTTGW
20.27
DGTGGVTGW
14.89
AQPEGSARW
17.11


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



270)

299)

60)






DGTLQQPFR
19.88
DGTSSYYDS
14.80
DGTGSTMGW
16.91


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



89)

59)

314)






DGTGQTIGW
19.52
DGTGNTSGW
14.48
DGTGNTHGW
16.47


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



305)

137)

72)






DGTVTTTGW
19.49
AQWPTAYDA
14.48
DGSGTTRGW
15.83


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



405)

256)

114)






DGTSIHLSS
19.45
AQGENPGRW
14.41
DGTNSTTGW
15.48


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



378)

96)

143)






DGTGSTTGW
19.45
DGTADKPFR
14.32
DGRNALTGW
15.13


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



134)

63)

275)






DGTGGVTGW
19.44
DGTGQTIGW
14.27
DGAAATTGW
15.02


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



299)

305)

264)






DGTVANPFR
19.42
DGTISQPFK
13.84
DGTATTMGW
14.54


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



394)

105)

284)






DGTGTTTGW
19.16
DGTKLMLSS
13.71
AQRYTGDSS
14.35


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



130)

157)

138)






DGAGGTSGW
18.99


AQTLAVPFK


13.69
DGAGTTSGW
14.29


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



151)

168)

265)










GFAP PROMOTER








C57BL/6
BALB/C









REPLICATE 1 (N = 2)
REPLICATE 2 (N = 6)
REPLICATE 1 (N = 6)













Brain

Brain

Brain



Enrichment

Enrichment

Enrichment


9-mer peptide
Factor (fold
9-mer peptide
Factor (fold
9-mer peptide
Factor (fold


insert
over AAV9)
insert
over AAV9)
insert
over AAV9)





DGTADKPFR
37.60
DGTMDRPFK
24.89
DGTGSTTGW
21.03


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



63)

102)

134)






DGTLSQPFR
35.97
DGTAERPFR
24.66
DGTGQVTGW
19.24


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



65)

140)

68)






DGTTYVPPR
33.09
DGTADKPFR
23.03
DGTGTTTGW
15.56


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



75)

63)

130)






DGTNGLKGW
32.14
DGTLNNPFR
22.91
DGTGSTHGW
14.45


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



76)

109)

119)






AQGENPGRW
31.99
DGTLSQPFR
21.60
DGTAIHLSS
11.74


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



96)

65)

67)






AQGSWNPPA
30.78
DGTMDKPFR
20.52
DGTGSTQGW
11.40


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



80)

70)

315)






AQGTWNPPA
29.19
DGTISQPFK
20.47
DGTGGLTGW
8.87


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



82)

105)

294)






DGTISQPFK
29.01
AQGENPGRW
20.09
AQNGNPGRW
8.82


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



105)

96)

84)






DGTTFTPPR
28.94
AQTTEKPWL
18.04
DGTGGIKGW
8.62


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



79)

83)

131)






DGTRTTTGW
28.59
DGTVANPFR
16.87
DGRNALTGW
8.39


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



106)

394)

275)






DGTSYVPPR
26.17
DGTTYVPPR
16.31
DGTGSTKGW
8.38


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



78)

75)

313)






DGTIERPFR
25.37
AQTTDRPFL
16.27
AQRYTGDSS
8.13


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



87)

85)

138)






DGTMDRPFK
24.85
DGTTTYGAR
15.62
DGTGGTKGW
8.06


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



102)

77)

107)






DGTLAAPFK
24.67
DGTADRPFR
15.60
DGTATTTGW
8.04


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



120)

155)

285)






DGTLNNPFR
24.62
DGTIERPFR
15.11
DGTKMVLQL
7.87


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



109)

87)

142)






DGTSFTPPR
24.14
AQGSWNPPA
15.11
DGTGSLNGW
7.71


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



88)

80)

309)






AQTTDRPFL
23.85
AQGTWNPPA
15.03
DGTNTINGW
7.59


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



85)

82)

124)






DGTSFTPPK
23.75
DGSTERPFR
15.01
AQWELSNGY
7.57


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



81)

99)

246)






DGTHTRTGW
23.54
AQSVAKPFL
14.90
DGTNGLKGW
7.50


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



90)

231)

76)






DGTLQQPFR
22.94
DGTVDRPFK
14.74
DGTNTTHGW
7.25


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



89)

395)

113)






AQNGNPGRW
22.80
DGTTFTPPR
14.56
DGTRMVVQL
7.25


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



84)

79)

370)






DGTAERPFR
21.65
AQTLARPFV
14.51
DGTNSTTGW
6.41


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



140)

98)

143)






DGTGNTRGW
21.12
DGTGGTKGW
14.13
DGSQSTTGW
6.29


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



94)

107)

136)






AQTTEKPWL
20.58
AQGPTRPFL
13.47
AQPEGSARW
6.23


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



83)

125)

60)






DGTADRPFR
20.49
DGTRTTTGW
13.39
DGTGQTIGW
6.16


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



155)

106)

305)






DGTTWTPPR
20.44
AQNGNPGRW
13.09
DGTGGVTGW
6.07


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



139)

84)

299)






DGTTTYGAR
20.43
DGTVSNPFR
12.77
DGTVTTTGW
6.04


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



77)

403)

405)






DGTGGIKGW
20.20
AQGGNPGRW
12.21
DGKGSTQGW
5.97


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



131)

91)

272)








DGTLAVPFK


19.43
AQWPTSYDA
11.93
AQGENPGRW
5.88


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



71)

62)

96)






DGKQYQLSS
18.74
DGTLQQPFR
11.92
DGNGGLKGW
5.82


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



92)

89)

167)






DGSPEKPFR
18.73
DGTNGLKGW
11.53
DGTGTVHGW
5.82


(SEQ ID NO:

(SEQ ID NO:

(SEQ ID NO:



160)

76)

326)









The efficacy of the 333 capsid variants to transduce CNS was also compared for C57BL/6 mice BMVEC and Human BMVEC (FIG. 58A and FIG. 58B).


Example 14. Engineering of a NGS-Driven Selection System for Full-Length Capsid Variants

A barcode system was engineered to allow enrichment studies with full capsid length modifications. While the TRACER platform described here was initially developed for the use of peptide display libraries, where the randomized peptide sequence itself can be used for Illumina NGS analysis due to its short size, the Illumina sequencing technology does not typically allow sequencing of more than 300 contiguous bases, and therefore our platform cannot be used for NGS analysis of full-length capsid variants, such as those generated by DNA shuffling technology or error-prone PCR.


An alternative RNA-driven platform for full-length capsid libraries in which a unique molecular identified (UMI) is placed outside the capsid gene and can be used for NGS enrichment analysis was designed (FIG. 59A-FIG. 59C). Once the variants with desired properties are identified by UMI enrichment analysis from animal tissue, the UMI sequence must allow highly specific recovery of the full-length capsid from the starting material with a minimal error rate. The system should have one or more of the following properties to be effective: 1) the UMI should be transcribed under control of a cell type-specific promoter, 2) the UMI should not interfere with capsid expression or splicing during virus production, 3) the UMI should be short enough for Illumina NGS sequencing (typically less than 60nt for standard single-end 75 nt sequencing), and 4) the UMI should allow sequence-specific recovery of full-length capsids of interest from the starting DNA/virus library with a minimal error rate.


To address these properties: 1) the UMI was placed in the transcribed region of capsid library (i.e., anywhere between the transcription start site and the polyadenylation signal), 2) the UMI was placed either in various locations of the AAV intron (which mostly unspliced in the absence of helper functions) or between the capsid stop codon and the polyadenylation signal, 3) the UMI cassette was composed of two randomized 21-nt sequences separated by a 15-nt spacer, for a total length of 57 nt, which allows 18 extra nucleotides for primer annealing, and 4) the UMI randomized sequences were formed of NSW triplets (N=A, T, G, C; S=G, C; W=A, T) to prevent large variations in annealing temperature with amplification primers, avoid homopolymeric stretches and prevent the formation of a premature polyA signal (AATAAA).


Importantly, the UMI cassette contained two random sequences in tandem. The first sequence (outermost) is used to design a matching capsid recovery primer, and the second sequence (innermost) to confirm the identity of the capsid amplicon after cloning. This method should allow to eliminate all clones containing non-specific amplification products. In an alternative embodiment, the innermost sequence can also be used to design a nested PCR primer in order to increase the specificity of amplification (FIG. 59A-FIG. 59C).


Several insertion sites of the tandem barcode to test the impact on virus viability and titers were explored. A series of constructs were engineered with the barcode inserted in the AAV intron of the CAG9 plasmid (FIG. 60A). Since AAV intron is spliced during virus production, the presence of the barcode should have only a minimal impact on the yields. Conversely, the AAV splicing is very ineffective in the absence of helper functions (Mouw et al., 2000), therefore the barcode sequence will be preserved in the RNA recovered from animal tissue. All intronic barcode constructs were tested for their ability to produce high titer AAV progeny by cotransfecting them with pHelper and pREP3 stop plasmids. All constructs allowed high titer AAV production going from 50% to 80% of non-barcoded CAG9 virus (FIG. 60B).


RNA splicing analysis from transfected cells showed that the rate of AAV intron splicing was slightly different between constructs and was more efficient when the intronic barcode was inserted after a conserved intervening sequence downstream of the splice donor (FIG. 58C, upper panel).


Globin intron splicing was 100% effective in all tested conditions (FIG. 60C, lower panel). As expected, AAV intron splicing was almost undetectable in the absence of helper functions.


An alternative platform was tested where the tandem barcode was placed between the capsid stop codon and the polyadenylation signal (FIG. 59B). Titers produced by the 3′-barcoded constructs were identical to the non-barcoded CAG9 construct.


Overall, external barcoding of full-length capsid allows highly efficient AAV production, and the novel tandem barcode platform allows NGS-driven sequence-specific recovery from library preparations with high confidence.









TABLE 12







Sequences








DESCRIPTION



SEQ ID NO:
NUCLEIC ACID SEQUENCE





PREP2 SEQ ID
CGCAGGGTCTCCATTTTGAAGCGGGAGGTTTGAACGCGCAGCCGCCATGCCGGGGTTTTA


NO: 4
CGAGATTGTGATTAAGGTCCCCAGCGACCTTGACGAGCATCTGCCCGGCATTTCTGACAG



CTTTGTGAACTGGGTGGCCGAGAAGGAATGGGAGTTGCCGCCAGATTCTGACATGGATCT



GAATCTGATTGAGCAGGCACCCCTGACCGTGGCCGAGAAGCTGCAGCGCGACTTTCTGAC



GGAATGGCGCCGTGTGAGTAAGGCCCCGGAGGCTCTTTTCTTTGTGCAATTTGAGAAGGG



AGAGAGCTACTTCCACATGCACGTGCTCGTGGAAACCACCGGGGTGAAATCCATGGTTTT



GGGACGTTTCCTGAGTCAGATTCGCGAAAAACTGATTCAGAGAATTTACCGCGGGATCGA



GCCGACTTTGCCAAACTGGTTCGCGGTCACAAAGACCAGAAATGGCGCCGGAGGCGGGA



ACAAGGTGGTGGATGAGTGCTACATCCCCAATTACTTGCTCCCCAAAACCCAGCCTGAGC



TCCAGTGGGCGTGGACTAATATGGAACAGTATTTAAGCGCCTGTTTGAATCTCACGGAGC



GTAAACGGTTGGTGGCGCAGCATCTGACGCACGTGTCGCAGACGCAGGAGCAGAACAAA



GAGAATCAGAATCCCAATTCTGATGCGCCGGTGATCAGATCAAAAACTTCAGCCAGGTAC



ATGGAGCTGGTCGGGTGGCTCGTGGACAAGGGGATTACCTCGGAGAAGCAGTGGATCCA



GGAGGACCAGGCCTCATACATCTCCTTCAATGCGGCCTCCAACTCGCGGTCCCAAATCAA



GGCTGCCTTGGACAATGCGGGAAAGATTATGAGCCTGACTAAAACCGCCCCCGACTACCT



GGTGGGCCAGCAGCCCGTGGAGGACATTTCCAGCAATCGGATTTATAAAATTTTGGAACT



AAACGGGTACGATCCCCAATATGCGGCTTCCGTCTTTCTGGGATGGGCCACGAAAAAGTT



CGGCAAGAGGAACACCATCTGGCTGTTTGGGCCTGCAACTACCGGGAAGACCAACATCG



CGGAGGCCATAGCCCACACTGTGCCCTTCTACGGGTGCGTAAACTGGACCAATGAGAACT



TTCCCTTCAACGACTGTGTCGACAAGATGGTGATCTGGTGGGAGGAGGGGAAGATGACC



GCCAAGGTCGTGGAGTCGGCCAAAGCCATTCTCGGAGGAAGCAAGGTGCGCGTGGACCA



GAAATGCAAGTCCTCGGCCCAGATAGACCCGACTCCCGTGATCGTCACCTCCAACACCAA



CATGTGCGCCGTGATTGACGGGAACTCAACGACCTTCGAACACCAGCAGCCGTTGCAAGA



CCGGATGTTCAAATTTGAACTCACCCGCCGTCTGGATCATGACTTTGGGAAGGTCACCAA



GCAGGAAGTCAAAGACTTTTTCCGGTGGGCAAAGGATCACGTGGTTGAGGTGGAGCATG



AATTCTACGTCAAAAAGGGTGGAGCCAAGAAAAGACCCGCCCCCAGTGACGCAGATATA



AGTGAGCCCAAACGGGTGCGCGAGTCAGTTGCGCAGCCATCGACGTCAGACGCGGAAGC



TTCGATCAACTACGCAGACAGGTACCAAAACAAATGTTCTCGTCACGTGGGCATGAATCT



GATGCTGTTTCCCTGCAGACAATGCGAGAGAATGAATCAGAATTCAAATATCTGCTTCAC



TCACGGACAGAAAGACTGTTTAGAGTGCTTTCCCGTGTCAGAATCTCAACCCGTTTCTGTC



GTCAAAAAGGCGTATCAGAAACTGTGCTACATTCATCATATCATGGGAAAGGTGCCAGAC



GCTTGCACTGCCTGCGATCTGGTCAATGTGGATTTGGATGACTGCATCTTTGAACAATAA



ATGATTTAAATCAGGTATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGAGGACACTCTC



TCTGAAGGAATAAGACAGTGGTGGAAGCTCAAACCTGGCCCACCACCACCAAAGCCCGC



AGAGCGGCATAAGGACGACAGCAGGGGTCTTGTGCTTCCTGGGTACAAGTACCTCGGAC



CCTTCAACGGACTCGACAAGGGAGAGCCGGTCAACGAGGCAGACGCCGCGGCCCTCGAG



CACGACAAAGCCTACGACCGGCAGCTCGACAGCGGAGACAACCCGTACCTCAAGTACAA



CCACGCCGACGCGGAGTTTCAGGAGCGCCTTAAAGAAGATACGTCTTTTGGGGGCAACCT



CGGACGAGCAGTCTTCCAGGCGAAAAAGAGGGTTCTTGAACCTCTGGGCCTGGTCCACCA



TACCTTCGATTATCCGATTTGCTTGTTAATCAATAAACCGTTTAATTCGTTTCAGTTGAACT



TTGGTCTCTGCGTATTTCTTTCTTATCTAGTTTCCATGCTCTAGAGCGGCCGCCACCGCGGT



GGAGCTCCAGCTTTTGT





CMV9-BSTEII
TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCC


SEQ ID NO: 5
CGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGT



GGCCAACTCCATCACTAGGGGTTCCTGGAGGGGTGGAGTCGTGACGATATCGTTTAAACC



GCGTCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCC



CATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGAC



GTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATA



TGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCC



AGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTAT



TACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACG



GGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCA



ACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCG



TGTACGGTGGGAGGTCTATATAAGCAGAGCTCGGGAGCGGTCACCAAGCAGGAAGTCAA



AGACTTTTTCCGGTGGGCAAAGGATCACGTGGTTGAGGTGGAGCATGAATTCTACGTCAA



AAAGGGTGGAGCCAAGAAAAGACCCGCCCCCAGTGACGCAGATATAAGTGAGCCCAAAC



GGGTGCGCGAGTCAGTTGCGCAGCCATCGACGTCAGACGCGGAAGCTTCGATCAACTAC



GCGGACAGGTACCAAAACAAATGTTCTCGTCACGTGGGCATGAATCTGATGCTGTTTCCC



TGCAGACAATGCGAGAGACTGAATCAGAATTCAAATATCTGCTTCACTCACGGTGTCAAA



GACTGTTTAGAGTGCTTTCCCGTGTCAGAATCTCAACCCGTTTCTGTCGTCAAAAAGGCGT



ATCAGAAACTGTGCTACATTCATCACATCATGGGAAAGGTGCCAGACGCTTGCACTGCTT



GCGACCTGGTCAATGTGGACTTGGATGACTGTGTTTCTGAACAATAAATGACTTAAACCA



GGTATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGAGGACAACCTTAGTGAAGGAATT



CGCGAGTGGTGGGCTTTGAAACCTGGAGCCCCTCAACCCAAGGCAAATCAACAACATCA



AGACAACGCTCGAGGTCTTGTGCTTCCGGGTTACAAATACCTTGGACCCGGCAACGGACT



CGACAAGGGGGAGCCGGTCAACGCAGCAGACGCGGCGGCCCTCGAGCACGACAAGGCCT



ACGACCAGCAGCTCAAGGCCGGAGACAACCCGTACCTCAAGTACAACCACGCCGACGCC



GAGTTCCAGGAGCGGCTCAAAGAAGATACGTCTTTTGGGGGCAACCTCGGGCGAGCAGT



CTTCCAGGCCAAAAAGAGGCTTCTTGAACCTCTTGGTCTGGTTGAGGAAGCGGCTAAGAC



GGCTCCTGGAAAGAAGAGGCCTGTAGAGCAGTCTCCTCAGGAACCGGACTCCTCCGCGG



GTATTGGCAAATCGGGTGCACAGCCCGCTAAAAAGAGACTCAATTTCGGTCAGACTGGCG



ACACAGAGTCAGTCCCAGACCCTCAACCAATCGGAGAACCTCCCGCAGCCCCCTCAGGTG



TGGGATCTCTTACAATGGCTTCAGGTGGTGGCGCACCAGTGGCAGACAATAACGAAGGTG



CCGATGGAGTGGGTAGTTCCTCGGGAAATTGGCATTGCGATTCCCAATGGCTGGGGGACA



GAGTCATCACCACCAGCACCCGAACCTGGGCCCTGCCCACCTACAACAATCACCTCTACA



AGCAAATCTCCAACAGCACATCTGGAGGATCTTCAAATGACAACGCCTACTTCGGCTACA



GCACCCCCTGGGGGTATTTTGACTTCAACAGATTCCACTGCCACTTCTCACCACGTGACTG



GCAGCGACTCATCAACAACAACTGGGGATTCCGGCCTAAGCGACTCAACTTCAAGCTCTT



CAACATTCAGGTCAAAGAGGTTACGGACAACAATGGAGTCAAGACCATCGCCAATAACC



TTACCAGCACGGTCCAGGTCTTCACGGACTCAGACTATCAGCTCCCGTACGTGCTCGGGT



CGGCTCACGAGGGCTGCCTCCCGCCGTTCCCAGCGGACGTTTTCATGATTCCTCAGTACG



GGTATCTGACGCTTAATGATGGAAGCCAGGCCGTGGGTCGTTCGTCCTTTTACTGCCTGG



AATATTTCCCGTCGCAAATGCTAAGAACGGGTAACAACTTCCAGTTCAGCTACGAGTTTG



AGAACGTACCTTTCCATAGCAGCTACGCTCACAGCCAAAGCCTGGACCGACTAATGAATC



CACTCATCGACCAATACTTGTACTATCTCTCAAAGACTATTAACGGTTCTGGACAGAATC



AACAAACGCTAAAATTCAGTGTGGCCGGACCCAGCAACATGGCTGTCCAGGGAAGAAAC



TACATACCTGGACCCAGCTACCGACAACAACGTGTCTCAACCACTGTGACTCAAAACAAC



AACAGCGAATTTGCTTGGCCTGGAGCTTCTTCTTGGGCTCTCAATGGACGTAATAGCTTGA



TGAATCCTGGACCTGCTATGGCCAGCCACAAAGAAGGAGAGGACCGTTTCTTTCCTTTGT



CTGGATCTTTAATTTTTGGCAAACAAGGAACTGGAAGAGACAACGTGGATGCGGACAAA



GTCATGATAACCAACGAAGAAGAAATTAAAACTACTAACCCGGTAGCAACGGAGTCCTA



TGGACAAGTGGCCACAAACCACCAGAGTGCCCAAGCACAGGCGCAGACCGGCTGGGTTC



AAAACCAAGGAATACTTCCGGGTATGGTTTGGCAGGACAGAGATGTGTACCTGCAAGGA



CCCATTTGGGCCAAAATTCCTCACACGGACGGCAACTTTCACCCTTCTCCGCTGATGGGA



GGGTTTGGAATGAAGCACCCGCCTCCTCAGATCCTCATCAAAAACACACCTGTACCTGCG



GATCCTCCAACGGCCTTCAACAAGGACAAGCTGAACTCTTTCATCACCCAGTATTCTACT



GGCCAAGTCAGCGTGGAGATCGAGTGGGAGCTGCAGAAGGAAAACAGCAAGCGCTGGA



ACCCGGAGATCCAGTACACTTCCAACTATTACAAGTCTAATAATGTTGAATTTGCTGTTAA



TACTGAAGGTGTATATAGTGAACCCCGCCCCATTGGCACCAGATACCTGACTCGTAATCT



GTAATCGATTGTTAATCAATAAACCGTTTAATTCGTTTCAGTTGAACTTTGGTCTCTGCGT



ATTTCTTTCTTATCTAGTTTCCATGGCTACGTAGATAAGTAGCATGGCGGGTTAATCATTA



ACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCA



CTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTG



AGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAA





PREP-AAP
GTCGACGGTATCGGGGGAGCTCGCAGGGTCTCCATTTTGAAGCGGGAGGTTTGAACGCGCAGC


SEQ ID NO: 6
CGCCATGCCGGGGTTTTACGAGATTGTGATTAAGGTCCCCAGCGACCTTGACGAGCATCTGCCC



GGCATTTCTGACAGCTTTGTGAACTGGGTGGCCGAGAAGGAATGGGAGTTGCCGCCAGATTCT



GACATGGATCTGAATCTGATTGAGCAGGCACCCCTGACCGTGGCCGAGAAGCTGCAGCGCGAC



TTTCTGACGGAATGGCGCCGTGTGAGTAAGGCCCCGGAGGCTCTTTTCTTTGTGCAATTTGAGA



AGGGAGAGAGCTACTTCCACATGCACGTGCTCGTGGAAACCACCGGGGTGAAATCCATGGTTT



TGGGACGTTTCCTGAGTCAGATTCGCGAAAAACTGATTCAGAGAATTTACCGCGGGATCGAGC



CGACTTTGCCAAACTGGTTCGCGGTCACAAAGACCAGAAATGGCGCCGGAGGCGGGAACAAG



GTGGTGGATGAGTGCTACATCCCCAATTACTTGCTCCCCAAAACCCAGCCTGAGCTCCAGTGGG



CGTGGACTAATATGGAACAGTATTTAAGCGCCTGTTTGAATCTCACGGAGCGTAAACGGTTGGT



GGCGCAGCATCTGACGCACGTGTCGCAGACGCAGGAGCAGAACAAAGAGAATCAGAATCCCA



ATTCTGATGCGCCGGTGATCAGATCAAAAACTTCAGCCAGGTACATGGAGCTGGTCGGGTGGC



TCGTGGACAAGGGGATTACCTCGGAGAAGCAGTGGATCCAGGAGGACCAGGCCTCATACATCT



CCTTCAATGCGGCCTCCAACTCGCGGTCCCAAATCAAGGCTGCCTTGGACAATGCGGGAAAGA



TTATGAGCCTGACTAAAACCGCCCCCGACTACCTGGTGGGCCAGCAGCCCGTGGAGGACATTT



CCAGCAATCGGATTTATAAAATTTTGGAACTAAACGGGTACGATCCCCAATATGCGGCTTCCGT



CTTTCTGGGATGGGCCACGAAAAAGTTCGGCAAGAGGAACACCATCTGGCTGTTTGGGCCTGC



AACTACCGGGAAGACCAACATCGCGGAGGCCATAGCCCACACTGTGCCCTTCTACGGGTGCGT



AAACTGGACCAATGAGAACTTTCCCTTCAACGACTGTGTCGACAAGATGGTGATCTGGTGGGA



GGAGGGGAAGATGACCGCCAAGGTCGTGGAGTCGGCCAAAGCCATTCTCGGAGGAAGCAAGG



TGCGCGTGGACCAGAAATGCAAGTCCTCGGCCCAGATAGACCCGACTCCCGTGATCGTCACCT



CCAACACCAACATGTGCGCCGTGATTGACGGGAACTCAACGACCTTCGAACACCAGCAGCCGT



TGCAAGACCGGATGTTCAAATTTGAACTCACCCGCCGTCTGGATCATGACTTTGGGAAGGTCAC



CAAGCAGGAAGTCAAAGACTTTTTCCGGTGGGCAAAGGATCACGTGGTTGAGGTGGAGCATGA



ATTCTACGTCAAAAAGGGTGGAGCCAAGAAAAGACCCGCCCCCAGTGACGCAGATATAAGTGA



GCCCAAACGGGTGCGCGAGTCAGTTGCGCAGCCATCGACGTCAGACGCGGAAGCTTCGATCAA



CTACGCGGACAGGTACCAAAACAAATGTTCTCGTCACGTGGGCATGAATCTGATGCTGTTTCCC



TGCAGACAATGCGAGAGACTGAATCAGAATTCAAATATCTGCTTCACTCACGGTGTCAAAGAC



TGTTTAGAGTGCTTTCCCGTGTCAGAATCTCAACCCGTTTCTGTCGTCAAAAAGGCGTATCAGA



AACTGTGCTACATTCATCACATCATGGGAAAGGTGCCAGACGCTTGCACTGCTTGCGACCTGGT



CAATGTGGACTTGGATGACTGTGTTTCTGAACAATAAATGACTTAAACCAGGTATGGCTGCCGA



TGGTTATCTTCCAGATTGGCTCGAGGACAACCTTAGTGAAGGAATTCGCGAGTGGTGGGCTTTG



AAACCTGGAGCCCCTCAACCCAAGGCAAATCAACAACATCAAGACAACGCTCGAGGTCTTGTG



CTTCCGGGTTACAAATACCTTGGACCCGGCAACGGACTCGACAAGGGGGAGCCGGTCAACGCA



GCAGACGCGGCGGCCCTCGAGCACGACAAGGCCTACGACCAGCAGCTCAAGGCCGGAGACAA



CCCGTACCTCAAGTACAACCACGCCGACGCCGAGTTCCAGGAGCGGCTCAAAGAAGATACGTC



TTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAAAAGAGGCTTCTTGAACCTCTTGGT



CTGGTTGAGGAAGCGGCTAAGACGGCTCCTGGAAAGAAGAGGCCTGTAGAGCAGTCTCCTCAG



GAACCGGACTCCTCCGCGGGTATTGGCAAATCGGGTGCACAGCCCGCTAAAAAGAGACTCAAT



TTCGGTCAGACTGGCGACACAGAGTCAGTCCCAGACCCTCAACCAATCGGAGAACCTCCCGCA



GCCCCCTCAGGTGTGGGATCTCTTACAATGGCTTCAGGTGGTGGCGCACCAGTGGCAGACAAT



AACGAAGGTGCCGATGGAGTGGGTAGTTCCTCGGGAAATTGGCATTGCGATTCCCAATGGCTG



GGGGACAGAGTCATCACCACCAGCACCCGAACCTGGGCCCTGCCCACCTACAACAATCACCTC



TACAAGCAAATCTCCAACAGCACATCTGGAGGATCTTCAAATGACAACGCCTACTTCGGCTAC



AGCACCCCCTGGGGGTATTTTGACTTCAACAGATTCCACTGCCACTTCTCACCACGTGACTGGC



AGCGACTCATCAACAACAACTGGGGATTCCGGCCTAAGCGACTCAACTTCAAGCTCTTCAACAT



TCAGGTCAAAGAGGTTACGGACAACAATGGAGTCAAGACCATCGCCAATAACCTTACCAGCAC



GGTCCAGGTCTTCACGGACTCAGACTATCAGCTCCCGTACGTGCTCGGGTCGGCTCACGAGGGC



TGCCTCCCGCCGTTCCCAGCGGACGTTTTCATGATTCCTCAGTACGGGTATCTGACGCTTAATG



ATGGAAGCCAGGCCGTGGGTCGTTCGTCCTTTTACTGCCTGGAATATTTCCCGTCGCAAATGCT



AAGAACGGGTAACAACTTCCAGTTCAGCTACGAGTTTGAGAACGTACCTTTCCATAGCAGCTAC



GCTCACAGCCAAAGCCTGGACCGACTAATGAATCCACTCATCGACCAATACTTGTACTATCTCT



CAAAGACTATTAACGGTTCTGGACAGAATCAACAAACGCTAAAATTCAGTGTGGCCGGACCCA



GCAACATGGCTGTCCAGGGAAGAAACTACATACCTGGACCCAGCTACCGACAACAACGTGTCT



CAACCACTGTGACTCAAAACAACAACAGCGAATTTGCTTGGCCTGGAGCTTCTTCTTGGGCTCT



CAATGGACGTAATAGCTTGATGAATCCTGGACCTGCTATGGCCAAGTCAGCGTGGAGATCGAG



TGGGAGCTGCAGAAGGAAAACAGCAAGCGCTGGAACCCGGAGATCCAGTACACTTCCAACTAT



TACAAGTCTAATAATGTTGAATTTGCTGTTAATACTGAAGGTGTATATAGTGAACCCCGCCCCA



TTGGCACCAGATACCTGACTCGTAATCTGTAATTGCTTGTTAATCAATAAACCGTTTAATTCGTT



TCAGTTGAACTTTGGTCTC





PREP3 STOP
GTCGACGGTATCGGGGGAGCTCGCAGGGTCTCCATTTTGAAGCGGGAGGTTTGAACGCGCAGC


SEQ ID NO: 7
CGCCATGCCGGGGTTTTACGAGATTGTGATTAAGGTCCCCAGCGACCTTGACGAGCATCTGCCC



GGCATTTCTGACAGCTTTGTGAACTGGGTGGCCGAGAAGGAATGGGAGTTGCCGCCAGATTCT



GACATGGATCTGAATCTGATTGAGCAGGCACCCCTGACCGTGGCCGAGAAGCTGCAGCGCGAC



TTTCTGACGGAATGGCGCCGTGTGAGTAAGGCCCCGGAGGCTCTTTTCTTTGTGCAATTTGAGA



AGGGAGAGAGCTACTTCCACATGCACGTGCTCGTGGAAACCACCGGGGTGAAATCCATGGTTT



TGGGACGTTTCCTGAGTCAGATTCGCGAAAAACTGATTCAGAGAATTTACCGCGGGATCGAGC



CGACTTTGCCAAACTGGTTCGCGGTCACAAAGACCAGAAATGGCGCCGGAGGCGGGAACAAG



GTGGTGGATGAGTGCTACATCCCCAATTACTTGCTCCCCAAAACCCAGCCTGAGCTCCAGTGGG



CGTGGACTAATATGGAACAGTATTTAAGCGCCTGTTTGAATCTCACGGAGCGTAAACGGTTGGT



GGCGCAGCATCTGACGCACGTGTCGCAGACGCAGGAGCAGAACAAAGAGAATCAGAATCCCA



ATTCTGATGCGCCGGTGATCAGATCAAAAACTTCAGCCAGGTACATGGAGCTGGTCGGGTGGC



TCGTGGACAAGGGGATTACCTCGGAGAAGCAGTGGATCCAGGAGGACCAGGCCTCATACATCT



CCTTCAATGCGGCCTCCAACTCGCGGTCCCAAATCAAGGCTGCCTTGGACAATGCGGGAAAGA



TTATGAGCCTGACTAAAACCGCCCCCGACTACCTGGTGGGCCAGCAGCCCGTGGAGGACATTT



CCAGCAATCGGATTTATAAAATTTTGGAACTAAACGGGTACGATCCCCAATATGCGGCTTCCGT



CTTTCTGGGATGGGCCACGAAAAAGTTCGGCAAGAGGAACACCATCTGGCTGTTTGGGCCTGC



AACTACCGGGAAGACCAACATCGCGGAGGCCATAGCCCACACTGTGCCCTTCTACGGGTGCGT



AAACTGGACCAATGAGAACTTTCCCTTCAACGACTGTGTCGACAAGATGGTGATCTGGTGGGA



GGAGGGGAAGATGACCGCCAAGGTCGTGGAGTCGGCCAAAGCCATTCTCGGAGGAAGCAAGG



TGCGCGTGGACCAGAAATGCAAGTCCTCGGCCCAGATAGACCCGACTCCCGTGATCGTCACCT



CCAACACCAACATGTGCGCCGTGATTGACGGGAACTCAACGACCTTCGAACACCAGCAGCCGT



TGCAAGACCGGATGTTCAAATTTGAACTCACCCGCCGTCTGGATCATGACTTTGGGAAGGTCAC



CAAGCAGGAAGTCAAAGACTTTTTCCGGTGGGCAAAGGATCACGTGGTTGAGGTGGAGCATGA



ATTCTACGTCAAAAAGGGTGGAGCCAAGAAAAGACCCGCCCCCAGTGACGCAGATATAAGTGA



GCCCAAACGGGTGCGCGAGTCAGTTGCGCAGCCATCGACGTCAGACGCGGAAGCTTCGATCAA



CTACGCGGACAGGTACCAAAACAAATGTTCTCGTCACGTGGGCATGAATCTGATGCTGTTTCCC



TGCAGACAATGCGAGAGACTGAATCAGAATTCAAATATCTGCTTCACTCACGGTGTCAAAGAC



TGTTTAGAGTGCTTTCCCGTGTCAGAATCTCAACCCGTTTCTGTCGTCAAAAAGGCGTATCAGA



AACTGTGCTACATTCATCACATCATGGGAAAGGTGCCAGACGCTTGCACTGCTTGCGACCTGGT



CAATGTGGACTTGGATGACTGTGTTTCTGAACAATAAATGACTTAAACCAGGTATGGCTGCCGA



TGGTTAGCTTCCAGATTGGCTCGAGGACAACCTTAGTGAAGGAATTCGCGAGTGGTGGGCTTTG



AAACCTGGAGCCCCTCAACCCAAGGCAAATCAACAACATCAAGACAACGCTCGAGGTCTTGTG



CTTCCGGGTTACAAATACCTTGGACCCGGCAACGGACTCGACAAGGGGGAGCCGGTCAACGCA



GCAGACGCGGCGGCCCTCGAGCACGACAAGGCCTACGACCAGCAGCTCAAGGCCGGAGACAA



CCCGTACCTCAAGTACAACCACGCCGACGCCGAGTTCCAGGAGCGGCTCAAAGAAGATACGTC



TTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAAAAGAGGCTTCTTGAACCTCTTGGT



CTGGTTGAGGAAGCGGCTAAGACGGCTCCTGGAAAGTAGAGGCCTGTAGAGCAGTCTCCTCAG



GAACCGGACTCCTCCGCGGGTATTGGCAAATCGGGTGCACAGCCCGCTAAAAAGAGACTCAAT



TTCGGTCAGACTGGCGACACAGAGTCAGTCCCAGACCCTCAACCAATCGGAGAACCTCCCGCA



GCCCCCTCAGGTGTGGGATCTCTTACAATGGCTTCAGGTGGTGGCGCACCAGTGGCAGACAAT



AACTAAGGTGCCGATGGAGTGGGTAGTTCCTCGGGAAATTGGCATTGCGATTCCCAATGGCTG



GGGGACAGAGTCATCACCACCAGCACCCGAACCTGGGCCCTGCCCACCTACAACAATCACCTC



TACAAGCAAATCTCCAACAGCACATCTGGAGGATCTTCAAATGACAACGCCTACTTCGGCTAC



AGCACCCCCTGGGGGTATTTTGACTTCAACAGATTCCACTGCCACTTCTCACCACGTGACTGGC



AGCGACTCATCAACAACAACTGGGGATTCCGGCCTAAGCGACTCAACTTCAAGCTCTTCAACAT



TCAGGTCAAAGAGGTTACGGACAACAATGGAGTCAAGACCATCGCCAATAACCTTACCAGCAC



GGTCCAGGTCTTCACGGACTCAGACTATCAGCTCCCGTACGTGCTCGGGTCGGCTCACGAGGGC



TGCCTCCCGCCGTTCCCAGCGGACGTTTTCATGATTCCTCAGTACGGGTATCTGACGCTTAATG



ATGGAAGCCAGGCCGTGGGTCGTTCGTCCTTTTACTGCCTGGAATATTTCCCGTCGCAAATGCT



AAGAACGGGTAACAACTTCCAGTTCAGCTACGAGTTTGAGAACGTACCTTTCCATAGCAGCTAC



GCTCACAGCCAAAGCCTGGACCGACTAATGAATCCACTCATCGACCAATACTTGTACTATCTCT



CAAAGACTATTAACGGTTCTGGACAGAATCAACAAACGCTAAAATTCAGTGTGGCCGGACCCA



GCAACATGGCTGTCCAGGGAAGAAACTACATACCTGGACCCAGCTACCGACAACAACGTGTCT



CAACCACTGTGACTCAAAACAACAACAGCGAATTTGCTTGGCCTGGAGCTTCTTCTTGGGCTCT



CAATGGACGTAATAGCTTGATGAATCCTGGACCTGCTATGGCCAAGTCAGCGTGGAGATCGAG



TGGGAGCTGCAGAAGGAAAACAGCAAGCGCTGGAACCCGGAGATCCAGTACACTTCCAACTAT



TACAAGTCTAATAATGTTGAATTTGCTGTTAATACTGAAGGTGTATATAGTGAACCCCGCCCCA



TTGGCACCAGATACCTGACTCGTAATCTGTAATTGCTTGTTAATCAATAAACCGTTTAATTCGTT



TCAGTTGAACTTTGGTCTC





SYN-CAP9
TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGAC


SEQ ID NO: 8
GCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACT



CCATCACTAGGGGTTCCTGGAGGGGTGGAGTCGTGACGATATCTAGTATCTGCAGAGGGCCCT



GCGTATGAGTGCAAGTGGGTTTTAGGACCAGGATGAGGCGGGGTGGGGGTGCCTACCTGACGA



CCGACCCCGACCCACTGGACAAGCACCCAACCCCCATTCCCCAAATTGCGCATCCCCTATCAGA



GAGGGGGAGGGGAAACAGGATGCGGCGAGGCGCGTGCGCACTGCCAGCTTCAGCACCGCGGA



CAGTGCCTTCGCCCCCGCCTGGCGGCGCGCGCCACCGCCGCCTCAGCACTGAAGGCGCGCTGA



CGTCACTCGCCGGTCCCCCGCAAACTCCCCTTCCCGGCCACCTTGGTCGCGTCCGCGCCGCCGC



CGGCCCAGCCGGACCGCACCACGCGAGGCGCGAGATAGGGGGGCACGGGCGCGACCATCTGC



GCTGCGGCGCCGGCGACTCAGCGCTGCCTCAGTCTGCGGTGGGCAGCGGAGGAGTCGTGTCGT



GCCTGAGAGCGCAGCTGTGCTCCTGGGCACCGCGCAGTCCGCCCCCGCGGCTCCTGGCCAGAC



CACCCCTAGGACCCCCTGCCCCAAGTCGCAGCCGGTCACCAAGCAGGAAGTCAAAGACTTTTT



CCGGTGGGCAAAGGATCACGTGGTTGAGGTGGAGCATGAATTCTACGTCAAAAAGGGTGGAGC



CAAGAAAAGACCCGCCCCCAGTGACGCAGATATAAGTGAGCCCAAACGGGTGCGCGAGTCAG



TTGCGCAGCCATCGACGTCAGACGCGGAAGCTTCGATCAACTACGCGGACAGGTACCAAAACA



AATGTTCTCGTCACGTGGGCATGAATCTGATGCTGTTTCCCTGCAGACAATGCGAGAGACTGAA



TCAGAATTCAAATATCTGCTTCACTCACGGTGTCAAAGACTGTTTAGAGTGCTTTCCCGTGTCA



GAATCTCAACCCGTTTCTGTCGTCAAAAAGGCGTATCAGAAACTGTGCTACATTCATCACATCA



TGGGAAAGGTGCCAGACGCTTGCACTGCTTGCGACCTGGTCAATGTGGACTTGGATGACTGTGT



TTCTGAACAATAAATGACTTAAACCAGGTATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGA



GGACAACCTTAGTGAAGGAATTCGCGAGTGGTGGGCTTTGAAACCTGGAGCCCCTCAACCCAA



GGCAAATCAACAACATCAAGACAACGCTCGAGGTCTTGTGCTTCCGGGTTACAAATACCTTGG



ACCCGGCAACGGACTCGACAAGGGGGAGCCGGTCAACGCAGCAGACGCGGCGGCCCTCGAGC



ACGACAAGGCCTACGACCAGCAGCTCAAGGCCGGAGACAACCCGTACCTCAAGTACAACCACG



CCGACGCCGAGTTCCAGGAGCGGCTCAAAGAAGATACGTCTTTTGGGGGCAACCTCGGGCGAG



CAGTCTTCCAGGCCAAAAAGAGGCTTCTTGAACCTCTTGGTCTGGTTGAGGAAGCGGCTAAGA



CGGCTCCTGGAAAGAAGAGGCCTGTAGAGCAGTCTCCTCAGGAACCGGACTCCTCCGCGGGTA



TTGGCAAATCGGGTGCACAGCCCGCTAAAAAGAGACTCAATTTCGGTCAGACTGGCGACACAG



AGTCAGTCCCAGACCCTCAACCAATCGGAGAACCTCCCGCAGCCCCCTCAGGTGTGGGATCTCT



TACAATGGCTTCAGGTGGTGGCGCACCAGTGGCAGACAATAACGAAGGTGCCGATGGAGTGGG



TAGTTCCTCGGGAAATTGGCATTGCGATTCCCAATGGCTGGGGGACAGAGTCATCACCACCAG



CACCCGAACCTGGGCCCTGCCCACCTACAACAATCACCTCTACAAGCAAATCTCCAACAGCAC



ATCTGGAGGATCTTCAAATGACAACGCCTACTTCGGCTACAGCACCCCCTGGGGGTATTTTGAC



TTCAACAGATTCCACTGCCACTTCTCACCACGTGACTGGCAGCGACTCATCAACAACAACTGGG



GATTCCGGCCTAAGCGACTCAACTTCAAGCTCTTCAACATTCAGGTCAAAGAGGTTACGGACA



ACAATGGAGTCAAGACCATCGCCAATAACCTTACCAGCACGGTCCAGGTCTTCACGGACTCAG



ACTATCAGCTCCCGTACGTGCTCGGGTCGGCTCACGAGGGCTGCCTCCCGCCGTTCCCAGCGGA



CGTTTTCATGATTCCTCAGTACGGGTATCTGACGCTTAATGATGGAAGCCAGGCCGTGGGTCGT



TCGTCCTTTTACTGCCTGGAATATTTCCCGTCGCAAATGCTAAGAACGGGTAACAACTTCCAGT



TCAGCTACGAGTTTGAGAACGTACCTTTCCATAGCAGCTACGCTCACAGCCAAAGCCTGGACCG



ACTAATGAATCCACTCATCGACCAATACTTGTACTATCTCTCAAAGACTATTAACGGTTCTGGA



CAGAATCAACAAACGCTAAAATTCAGTGTGGCCGGACCCAGCAACATGGCTGTCCAGGGAAGA



AACTACATACCTGGACCCAGCTACCGACAACAACGTGTCTCAACCACTGTGACTCAAAACAAC



AACAGCGAATTTGCTTGGCCTGGAGCTTCTTCTTGGGCTCTCAATGGACGTAATAGCTTGATGA



ATCCTGGACCTGCTATGGCCAGCCACAAAGAAGGAGAGGACCGTTTCTTTCCTTTGTCTGGATC



TTTAATTTTTGGCAAACAAGGAACTGGAAGAGACAACGTGGATGCGGACAAAGTCATGATAAC



CAACGAAGAAGAAATTAAAACTACTAACCCGGTAGCAACGGAGTCCTATGGACAAGTGGCCAC



AAACCACCAGAGTGCCCAAGCACAGGCGCAGACCGGCTGGGTTCAAAACCAAGGAATACTTCC



GGGTATGGTTTGGCAGGACAGAGATGTGTACCTGCAAGGACCCATTTGGGCCAAAATTCCTCA



CACGGACGGCAACTTTCACCCTTCTCCGCTGATGGGAGGGTTTGGAATGAAGCACCCGCCTCCT



CAGATCCTCATCAAAAACACACCTGTACCTGCGGATCCTCCAACGGCCTTCAACAAGGACAAG



CTGAACTCTTTCATCACCCAGTATTCTACTGGCCAAGTCAGCGTGGAGATCGAGTGGGAGCTGC



AGAAGGAAAACAGCAAGCGCTGGAACCCGGAGATCCAGTACACTTCCAACTATTACAAGTCTA



ATAATGTTGAATTTGCTGTTAATACTGAAGGTGTATATAGTGAACCCCGCCCCATTGGCACCAG



ATACCTGACTCGTAATCTGTAATCGATTGTTAATCAATAAACCGTTTAATTCGTTTCAGTTGAAC



TTTGGTCTCTGCGTATTTCTTTCTTATCTAGTTTCCATGGCTACGTAGATAAGTAGCATGGCGGG



TTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCT



CGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAG



TGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAA





GFAP-CAP9
TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGAC


SEQ ID NO: 9
GCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACT



CCATCACTAGGGGTTCCTGGAGGGGTGGAGTCGTGACGATATCGATCTAACATATCCTGGTGTG



GAGTAGCGGACGCTGCTATGACAGAGGCTCGGGGGCCTGAGCTGGCTCTGTGAGCTGGGGAGG



AGGCAGACAGCCAGGCCTTGTCTGCAAGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGG



GCCTCCTCTTCATGCCCAGTGAATGACTCACCTTGGCACAGACACAATGTTCGGGGTGGGCACA



GTGCCTGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGAGAAGCCCATTGAGCAGGG



GGCTTGCATTGCACCCCAGCCTGACAGCCTGGCATCTTGGGATAAAAGCAGCACAGCCCCCTA



GGGGCTGCCCTTGCTGTGTGGCGCCACCGGCGGTGGAGAACAAGGCTCTATTCAGCCTGTGCCC



AGGAAAGGGGATCAGGGGATGCCCAGGCATGGACAGTGGGTGGCAGGGGGGGAGAGGAGGG



CTGTCTGCTTCCCAGAAGTCCAAGGACACAAATGGGTGAGGGGAGAGCTCTCCCCATAGCTGG



GCTGCGGCCCAACCCCACCCCCTCAGGCTATGCCAGGGGGTGTTGCCAGGGGCACCCGGGCAT



CGCCAGTCTAGCCCACTCCTTCATAAAGCCCTCGCATCCCAGGAGCGAGCAGAGCCAGAGCAG



GTTGGAGAGGAGACGCATCACCTCCGCTGCTCGCGGGGATCCTCTAGGGTCACCAAGCAGGAA



GTCAAAGACTTTTTCCGGTGGGCAAAGGATCACGTGGTTGAGGTGGAGCATGAATTCTACGTC



AAAAAGGGTGGAGCCAAGAAAAGACCCGCCCCCAGTGACGCAGATATAAGTGAGCCCAAACG



GGTGCGCGAGTCAGTTGCGCAGCCATCGACGTCAGACGCGGAAGCTTCGATCAACTACGCGGA



CAGGTACCAAAACAAATGTTCTCGTCACGTGGGCATGAATCTGATGCTGTTTCCCTGCAGACAA



TGCGAGAGACTGAATCAGAATTCAAATATCTGCTTCACTCACGGTGTCAAAGACTGTTTAGAGT



GCTTTCCCGTGTCAGAATCTCAACCCGTTTCTGTCGTCAAAAAGGCGTATCAGAAACTGTGCTA



CATTCATCACATCATGGGAAAGGTGCCAGACGCTTGCACTGCTTGCGACCTGGTCAATGTGGAC



TTGGATGACTGTGTTTCTGAACAATAAATGACTTAAACCAGGTATGGCTGCCGATGGTTATCTT



CCAGATTGGCTCGAGGACAACCTTAGTGAAGGAATTCGCGAGTGGTGGGCTTTGAAACCTGGA



GCCCCTCAACCCAAGGCAAATCAACAACATCAAGACAACGCTCGAGGTCTTGTGCTTCCGGGT



TACAAATACCTTGGACCCGGCAACGGACTCGACAAGGGGGAGCCGGTCAACGCAGCAGACGC



GGCGGCCCTCGAGCACGACAAGGCCTACGACCAGCAGCTCAAGGCCGGAGACAACCCGTACCT



CAAGTACAACCACGCCGACGCCGAGTTCCAGGAGCGGCTCAAAGAAGATACGTCTTTTGGGGG



CAACCTCGGGCGAGCAGTCTTCCAGGCCAAAAAGAGGCTTCTTGAACCTCTTGGTCTGGTTGAG



GAAGCGGCTAAGACGGCTCCTGGAAAGAAGAGGCCTGTAGAGCAGTCTCCTCAGGAACCGGA



CTCCTCCGCGGGTATTGGCAAATCGGGTGCACAGCCCGCTAAAAAGAGACTCAATTTCGGTCA



GACTGGCGACACAGAGTCAGTCCCAGACCCTCAACCAATCGGAGAACCTCCCGCAGCCCCCTC



AGGTGTGGGATCTCTTACAATGGCTTCAGGTGGTGGCGCACCAGTGGCAGACAATAACGAAGG



TGCCGATGGAGTGGGTAGTTCCTCGGGAAATTGGCATTGCGATTCCCAATGGCTGGGGGACAG



AGTCATCACCACCAGCACCCGAACCTGGGCCCTGCCCACCTACAACAATCACCTCTACAAGCA



AATCTCCAACAGCACATCTGGAGGATCTTCAAATGACAACGCCTACTTCGGCTACAGCACCCCC



TGGGGGTATTTTGACTTCAACAGATTCCACTGCCACTTCTCACCACGTGACTGGCAGCGACTCA



TCAACAACAACTGGGGATTCCGGCCTAAGCGACTCAACTTCAAGCTCTTCAACATTCAGGTCAA



AGAGGTTACGGACAACAATGGAGTCAAGACCATCGCCAATAACCTTACCAGCACGGTCCAGGT



CTTCACGGACTCAGACTATCAGCTCCCGTACGTGCTCGGGTCGGCTCACGAGGGCTGCCTCCCG



CCGTTCCCAGCGGACGTTTTCATGATTCCTCAGTACGGGTATCTGACGCTTAATGATGGAAGCC



AGGCCGTGGGTCGTTCGTCCTTTTACTGCCTGGAATATTTCCCGTCGCAAATGCTAAGAACGGG



TAACAACTTCCAGTTCAGCTACGAGTTTGAGAACGTACCTTTCCATAGCAGCTACGCTCACAGC



CAAAGCCTGGACCGACTAATGAATCCACTCATCGACCAATACTTGTACTATCTCTCAAAGACTA



TTAACGGTTCTGGACAGAATCAACAAACGCTAAAATTCAGTGTGGCCGGACCCAGCAACATGG



CTGTCCAGGGAAGAAACTACATACCTGGACCCAGCTACCGACAACAACGTGTCTCAACCACTG



TGACTCAAAACAACAACAGCGAATTTGCTTGGCCTGGAGCTTCTTCTTGGGCTCTCAATGGACG



TAATAGCTTGATGAATCCTGGACCTGCTATGGCCAGCCACAAAGAAGGAGAGGACCGTTTCTTT



CCTTTGTCTGGATCTTTAATTTTTGGCAAACAAGGAACTGGAAGAGACAACGTGGATGCGGAC



AAAGTCATGATAACCAACGAAGAAGAAATTAAAACTACTAACCCGGTAGCAACGGAGTCCTAT



GGACAAGTGGCCACAAACCACCAGAGTGCCCAAGCACAGGCGCAGACCGGCTGGGTTCAAAA



CCAAGGAATACTTCCGGGTATGGTTTGGCAGGACAGAGATGTGTACCTGCAAGGACCCATTTG



GGCCAAAATTCCTCACACGGACGGCAACTTTCACCCTTCTCCGCTGATGGGAGGGTTTGGAATG



AAGCACCCGCCTCCTCAGATCCTCATCAAAAACACACCTGTACCTGCGGATCCTCCAACGGCCT



TCAACAAGGACAAGCTGAACTCTTTCATCACCCAGTATTCTACTGGCCAAGTCAGCGTGGAGAT



CGAGTGGGAGCTGCAGAAGGAAAACAGCAAGCGCTGGAACCCGGAGATCCAGTACACTTCCA



ACTATTACAAGTCTAATAATGTTGAATTTGCTGTTAATACTGAAGGTGTATATAGTGAACCCCG



CCCCATTGGCACCAGATACCTGACTCGTAATCTGTAATCGATTGTTAATCAATAAACCGTTTAA



TTCGTTTCAGTTGAACTTTGGTCTCTGCGTATTTCTTTCTTATCTAGTTTCCATGGCTACGTAGAT



AAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCC



TCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTG



CCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAA





CAG-CAP9
TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCC


SEQ ID NO: 10
CGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGT



GGCCAACTCCATCACTAGGGGTTCCTGGAGGGGTGGAGTCGTGACGATATCCATGCGTCG



ACATAACGCGTCGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATT



AGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGG



CTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAAC



GCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTT



GGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAA



ATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTAC



ATCTACGTATTAGTCATCGCTATTACCATGTCGAGGCCACGTTCTGCTTCACTCTCCCCAT



CTCCCCCCCCTCCCCACCCCCAATTTTGTATTTATTTATTTTTTAATTATTTTGTGCAGCGA



TGGGGGCGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGGGCGGGGCGAGGGGCGGGGC



GGGGCGAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCC



TTTTATGGCGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGGGCGG



GAGCAAGCTTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGA



CCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGATTCGAATCCCGGCCGGGAA



CGGTGCATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACCGCCTATAGAGTC



TATAGGCCCACAAAAAATGCTTTCTTCTTTTAATATACTTTTTTGTTTATCTTATTTCTAAT



ACTTTCCCTAATCTCTTTCTTTCAGGGCAATAATGATACAATGTATCATGCCTCTTTGCAC



CATTCTAAAGAATAACAGTGATAATTTCTGGGTTAAGGCAATAGCAATATTTCTGCATAT



AAATATTTCTGCATATAAATTGTAACTGATGTAAGAGGTTTCATATTGCTAATAGCAGCTA



CAATCCAGCTACCATTCTGCTTTTATTTTATGGTTGGGATAAGGCTGGATTATTCTGAGTC



CAAGCTAGGCCCTTTTGCTAATCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGG



CAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTGGGATTCGAACCGGT



CACCAAGCAGGAAGTCAAAGACTTTTTCCGGTGGGCAAAGGATCACGTGGTTGAGGTGG



AGCATGAATTCTACGTCAAAAAGGGTGGAGCCAAGAAAAGACCCGCCCCCAGTGACGCA



GATATAAGTGAGCCCAAACGGGTGCGCGAGTCAGTTGCGCAGCCATCGACGTCAGACGC



GGAAGCTTCGATCAACTACGCGGACAGGTACCAAAACAAATGTTCTCGTCACGTGGGCAT



GAATCTGATGCTGTTTCCCTGCAGACAATGCGAGAGACTGAATCAGAATTCAAATATCTG



CTTCACTCACGGTGTCAAAGACTGTTTAGAGTGCTTTCCCGTGTCAGAATCTCAACCCGTT



TCTGTCGTCAAAAAGGCGTATCAGAAACTGTGCTACATTCATCACATCATGGGAAAGGTG



CCAGACGCTTGCACTGCTTGCGACCTGGTCAATGTGGACTTGGATGACTGTGTTTCTGAAC



AATAAATGACTTAAACCAGGTATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGAGGAC



AACCTTAGTGAAGGAATTCGCGAGTGGTGGGCTTTGAAACCTGGAGCCCCTCAACCCAAG



GCAAATCAACAACATCAAGACAACGCTCGAGGTCTTGTGCTTCCGGGTTACAAATACCTT



GGACCCGGCAACGGACTCGACAAGGGGGAGCCGGTCAACGCAGCAGACGCGGCGGCCCT



CGAGCACGACAAGGCCTACGACCAGCAGCTCAAGGCCGGAGACAACCCGTACCTCAAGT



ACAACCACGCCGACGCCGAGTTCCAGGAGCGGCTCAAAGAAGATACGTCTTTTGGGGGC



AACCTCGGGCGAGCAGTCTTCCAGGCCAAAAAGAGGCTTCTTGAACCTCTTGGTCTGGTT



GAGGAAGCGGCTAAGACGGCTCCTGGAAAGAAGAGGCCTGTAGAGCAGTCTCCTCAGGA



ACCGGACTCCTCCGCGGGTATTGGCAAATCGGGTGCACAGCCCGCTAAAAAGAGACTCA



ATTTCGGTCAGACTGGCGACACAGAGTCAGTCCCAGACCCTCAACCAATCGGAGAACCTC



CCGCAGCCCCCTCAGGTGTGGGATCTCTTACAATGGCTTCAGGTGGTGGCGCACCAGTGG



CAGACAATAACGAAGGTGCCGATGGAGTGGGTAGTTCCTCGGGAAATTGGCATTGCGATT



CCCAATGGCTGGGGGACAGAGTCATCACCACCAGCACCCGAACCTGGGCCCTGCCCACCT



ACAACAATCACCTCTACAAGCAAATCTCCAACAGCACATCTGGAGGATCTTCAAATGACA



ACGCCTACTTCGGCTACAGCACCCCCTGGGGGTATTTTGACTTCAACAGATTCCACTGCCA



CTTCTCACCACGTGACTGGCAGCGACTCATCAACAACAACTGGGGATTCCGGCCTAAGCG



ACTCAACTTCAAGCTCTTCAACATTCAGGTCAAAGAGGTTACGGACAACAATGGAGTCAA



GACCATCGCCAATAACCTTACCAGCACGGTCCAGGTCTTCACGGACTCAGACTATCAGCT



CCCGTACGTGCTCGGGTCGGCTCACGAGGGCTGCCTCCCGCCGTTCCCAGCGGACGTTTT



CATGATTCCTCAGTACGGGTATCTGACGCTTAATGATGGAAGCCAGGCCGTGGGTCGTTC



GTCCTTTTACTGCCTGGAATATTTCCCGTCGCAAATGCTAAGAACGGGTAACAACTTCCA



GTTCAGCTACGAGTTTGAGAACGTACCTTTCCATAGCAGCTACGCTCACAGCCAAAGCCT



GGACCGACTAATGAATCCACTCATCGACCAATACTTGTACTATCTCTCAAAGACTATTAA



CGGTTCTGGACAGAATCAACAAACGCTAAAATTCAGTGTGGCCGGACCCAGCAACATGG



CTGTCCAGGGAAGAAACTACATACCTGGACCCAGCTACCGACAACAACGTGTCTCAACCA



CTGTGACTCAAAACAACAACAGCGAATTTGCTTGGCCTGGAGCTTCTTCTTGGGCTCTCA



ATGGACGTAATAGCTTGATGAATCCTGGACCTGCTATGGCCAGCCACAAAGAAGGAGAG



GACCGTTTCTTTCCTTTGTCTGGATCTTTAATTTTTGGCAAACAAGGAACTGGAAGAGACA



ACGTGGATGCGGACAAAGTCATGATAACCAACGAAGAAGAAATTAAAACTACTAACCCG



GTAGCAACGGAGTCCTATGGACAAGTGGCCACAAACCACCAGAGTGCCCAAGCACAGGC



GCAGACCGGCTGGGTTCAAAACCAAGGAATACTTCCGGGTATGGTTTGGCAGGACAGAG



ATGTGTACCTGCAAGGACCCATTTGGGCCAAAATTCCTCACACGGACGGCAACTTTCACC



CTTCTCCGCTGATGGGAGGGTTTGGAATGAAGCACCCGCCTCCTCAGATCCTCATCAAAA



ACACACCTGTACCTGCGGATCCTCCAACGGCCTTCAACAAGGACAAGCTGAACTCTTTCA



TCACCCAGTATTCTACTGGCCAAGTCAGCGTGGAGATCGAGTGGGAGCTGCAGAAGGAA



AACAGCAAGCGCTGGAACCCGGAGATCCAGTACACTTCCAACTATTACAAGTCTAATAAT



GTTGAATTTGCTGTTAATACTGAAGGTGTATATAGTGAACCCCGCCCCATTGGCACCAGA



TACCTGACTCGTAATCTGTAATCGATTGTTAATCAATAAACCGTTTAATTCGTTTCAGTTG



AACTTTGGTCTCTGCGTATTTCTTTCTTATCTAGTTTCCATGGCTACGTAGATAAGTAGCAT



GGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTG



CGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCC



CGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAA





SYNG-CAP9
TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCC


SEQ ID NO: 11
CGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGT



GGCCAACTCCATCACTAGGGGTTCCTGGAGGGGTGGAGTCGTGACGATATCCATGCGTCG



ACATAACGCGTGATCTAACATATCCTGGTGTGGAGTAGCGGACGCTGCTATGACAGAGGC



TCGGGGGCCTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTG



CAAGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCCCAGTG



AATGACTCACCTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCCTGCTTCCCGCCG



CACCCCAGCCCCCCTCAAATGCCTTCCGAGAAGCCCATTGAGCAGGGGGCTTGCATTGCA



CCCCAGCCTGACAGCCTGGCATCTTGGGATAAAAGCAGCACAGCCCCCTAGGGGCTGCCC



TTGCTGTGTGGCGCCACCGGCGGTGGAGAACAAGGCTCTATTCAGCCTGTGCCCAGGAAA



GGGGATCAGGGGATGCCCAGGCATGGACAGTGGGTGGCAGGGGGGGAGAGGAGGGCTG



TCTGCTTCCCAGAAGTCCAAGGACACAAATGGGTGAGGGGAGAGCTCTCCCCATAGCTGG



GCTGCGGCCCAACCCCACCCCCTCAGGCTATGCCAGGGGGTGTTGCCAGGGGCACCCGGG



CATCGCCAGTCTAGCCCACTCCTTCATAAAGCCCTCGCATCCCAGGAGCGAGCAGAGCCA



GAGCAGGTTGGAGAGGAGACGCATCACCTCCGCTGCTCGCGGGGATCCTCTAGAAGCTTC



GTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAA



GACACCGGGACCGATCCAGCCTCCGCGGATTCGAATCCCGGCCGGGAACGGTGCATTGG



AACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACCGCCTATAGAGTCTATAGGCCCAC



AAAAAATGCTTTCTTCTTTTAATATACTTTTTTGTTTATCTTATTTCTAATACTTTCCCTAAT



CTCTTTCTTTCAGGGCAATAATGATACAATGTATCATGCCTCTTTGCACCATTCTAAAGAA



TAACAGTGATAATTTCTGGGTTAAGGCAATAGCAATATTTCTGCATATAAATATTTCTGCA



TATAAATTGTAACTGATGTAAGAGGTTTCATATTGCTAATAGCAGCTACAATCCAGCTAC



CATTCTGCTTTTATTTTATGGTTGGGATAAGGCTGGATTATTCTGAGTCCAAGCTAGGCCC



TTTTGCTAATCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGGCAACGTGCTGGTC



TGTGTGCTGGCCCATCACTTTGGCAAAGAATTGGGATTCGAACCGGTCGCCACCGGTCAC



CAAGCAGGAAGTCAAAGACTTTTTCCGGTGGGCAAAGGATCACGTGGTTGAGGTGGAGC



ATGAATTCTACGTCAAAAAGGGTGGAGCCAAGAAAAGACCCGCCCCCAGTGACGCAGAT



ATAAGTGAGCCCAAACGGGTGCGCGAGTCAGTTGCGCAGCCATCGACGTCAGACGCGGA



AGCTTCGATCAACTACGCGGACAGGTACCAAAACAAATGTTCTCGTCACGTGGGCATGAA



TCTGATGCTGTTTCCCTGCAGACAATGCGAGAGACTGAATCAGAATTCAAATATCTGCTT



CACTCACGGTGTCAAAGACTGTTTAGAGTGCTTTCCCGTGTCAGAATCTCAACCCGTTTCT



GTCGTCAAAAAGGCGTATCAGAAACTGTGCTACATTCATCACATCATGGGAAAGGTGCCA



GACGCTTGCACTGCTTGCGACCTGGTCAATGTGGACTTGGATGACTGTGTTTCTGAACAAT



AAATGACTTAAACCAGGTATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGAGGACAAC



CTTAGTGAAGGAATTCGCGAGTGGTGGGCTTTGAAACCTGGAGCCCCTCAACCCAAGGCA



AATCAACAACATCAAGACAACGCTCGAGGTCTTGTGCTTCCGGGTTACAAATACCTTGGA



CCCGGCAACGGACTCGACAAGGGGGAGCCGGTCAACGCAGCAGACGCGGCGGCCCTCGA



GCACGACAAGGCCTACGACCAGCAGCTCAAGGCCGGAGACAACCCGTACCTCAAGTACA



ACCACGCCGACGCCGAGTTCCAGGAGCGGCTCAAAGAAGATACGTCTTTTGGGGGCAAC



CTCGGGCGAGCAGTCTTCCAGGCCAAAAAGAGGCTTCTTGAACCTCTTGGTCTGGTTGAG



GAAGCGGCTAAGACGGCTCCTGGAAAGAAGAGGCCTGTAGAGCAGTCTCCTCAGGAACC



GGACTCCTCCGCGGGTATTGGCAAATCGGGTGCACAGCCCGCTAAAAAGAGACTCAATTT



CGGTCAGACTGGCGACACAGAGTCAGTCCCAGACCCTCAACCAATCGGAGAACCTCCCG



CAGCCCCCTCAGGTGTGGGATCTCTTACAATGGCTTCAGGTGGTGGCGCACCAGTGGCAG



ACAATAACGAAGGTGCCGATGGAGTGGGTAGTTCCTCGGGAAATTGGCATTGCGATTCCC



AATGGCTGGGGGACAGAGTCATCACCACCAGCACCCGAACCTGGGCCCTGCCCACCTAC



AACAATCACCTCTACAAGCAAATCTCCAACAGCACATCTGGAGGATCTTCAAATGACAAC



GCCTACTTCGGCTACAGCACCCCCTGGGGGTATTTTGACTTCAACAGATTCCACTGCCACT



TCTCACCACGTGACTGGCAGCGACTCATCAACAACAACTGGGGATTCCGGCCTAAGCGAC



TCAACTTCAAGCTCTTCAACATTCAGGTCAAAGAGGTTACGGACAACAATGGAGTCAAGA



CCATCGCCAATAACCTTACCAGCACGGTCCAGGTCTTCACGGACTCAGACTATCAGCTCC



CGTACGTGCTCGGGTCGGCTCACGAGGGCTGCCTCCCGCCGTTCCCAGCGGACGTTTTCA



TGATTCCTCAGTACGGGTATCTGACGCTTAATGATGGAAGCCAGGCCGTGGGTCGTTCGT



CCTTTTACTGCCTGGAATATTTCCCGTCGCAAATGCTAAGAACGGGTAACAACTTCCAGTT



CAGCTACGAGTTTGAGAACGTACCTTTCCATAGCAGCTACGCTCACAGCCAAAGCCTGGA



CCGACTAATGAATCCACTCATCGACCAATACTTGTACTATCTCTCAAAGACTATTAACGGT



TCTGGACAGAATCAACAAACGCTAAAATTCAGTGTGGCCGGACCCAGCAACATGGCTGTC



CAGGGAAGAAACTACATACCTGGACCCAGCTACCGACAACAACGTGTCTCAACCACTGT



GACTCAAAACAACAACAGCGAATTTGCTTGGCCTGGAGCTTCTTCTTGGGCTCTCAATGG



ACGTAATAGCTTGATGAATCCTGGACCTGCTATGGCCAGCCACAAAGAAGGAGAGGACC



GTTTCTTTCCTTTGTCTGGATCTTTAATTTTTGGCAAACAAGGAACTGGAAGAGACAACGT



GGATGCGGACAAAGTCATGATAACCAACGAAGAAGAAATTAAAACTACTAACCCGGTAG



CAACGGAGTCCTATGGACAAGTGGCCACAAACCACCAGAGTGCCCAAGCACAGGCGCAG



ACCGGCTGGGTTCAAAACCAAGGAATACTTCCGGGTATGGTTTGGCAGGACAGAGATGT



GTACCTGCAAGGACCCATTTGGGCCAAAATTCCTCACACGGACGGCAACTTTCACCCTTC



TCCGCTGATGGGAGGGTTTGGAATGAAGCACCCGCCTCCTCAGATCCTCATCAAAAACAC



ACCTGTACCTGCGGATCCTCCAACGGCCTTCAACAAGGACAAGCTGAACTCTTTCATCAC



CCAGTATTCTACTGGCCAAGTCAGCGTGGAGATCGAGTGGGAGCTGCAGAAGGAAAACA



GCAAGCGCTGGAACCCGGAGATCCAGTACACTTCCAACTATTACAAGTCTAATAATGTTG



AATTTGCTGTTAATACTGAAGGTGTATATAGTGAACCCCGCCCCATTGGCACCAGATACC



TGACTCGTAATCTGTAATCGATTGTTAATCAATAAACCGTTTAATTCGTTTCAGTTGAACT



TTGGTCTCTGCGTATTTCTTTCTTATCTAGTTTCCATGGCTACGTAGATAAGTAGCATGGC



GGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGC



GCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGG



GCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAA





GFAPG-CAP9
TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCC


SEQ ID NO: 12
CGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGT



GGCCAACTCCATCACTAGGGGTTCCTGGAGGGGTGGAGTCGTGACGATATCCATGCGTCG



ACATAACGCGTTAGTATCTGCAGAGGGCCCTGCGTATGAGTGCAAGTGGGTTTTAGGACC



AGGATGAGGCGGGGTGGGGGTGCCTACCTGACGACCGACCCCGACCCACTGGACAAGCA



CCCAACCCCCATTCCCCAAATTGCGCATCCCCTATCAGAGAGGGGGAGGGGAAACAGGA



TGCGGCGAGGCGCGTGCGCACTGCCAGCTTCAGCACCGCGGACAGTGCCTTCGCCCCCGC



CTGGCGGCGCGCGCCACCGCCGCCTCAGCACTGAAGGCGCGCTGACGTCACTCGCCGGTC



CCCCGCAAACTCCCCTTCCCGGCCACCTTGGTCGCGTCCGCGCCGCCGCCGGCCCAGCCG



GACCGCACCACGCGAGGCGCGAGATAGGGGGGCACGGGCGCGACCATCTGCGCTGCGGC



GCCGGCGACTCAGCGCTGCCTCAGTCTGCGGTGGGCAGCGGAGGAGTCGTGTCGTGCCTG



AGAGCGCAGCTGTGCTCCTGGGCACCGCGCAGTCCGCCCCCGCGGCTCCTGGCCAGACCA



CCCCTAGGACCCCCTGCCCCAAGTCGCAGCCAAGCTTCGTTTAGTGAACCGTCAGATCGC



CTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCT



CCGCGGATTCGAATCCCGGCCGGGAACGGTGCATTGGAACGCGGATTCCCCGTGCCAAG



AGTGACGTAAGTACCGCCTATAGAGTCTATAGGCCCACAAAAAATGCTTTCTTCTTTTAAT



ATACTTTTTTGTTTATCTTATTTCTAATACTTTCCCTAATCTCTTTCTTTCAGGGCAATAATG



ATACAATGTATCATGCCTCTTTGCACCATTCTAAAGAATAACAGTGATAATTTCTGGGTTA



AGGCAATAGCAATATTTCTGCATATAAATATTTCTGCATATAAATTGTAACTGATGTAAG



AGGTTTCATATTGCTAATAGCAGCTACAATCCAGCTACCATTCTGCTTTTATTTTATGGTT



GGGATAAGGCTGGATTATTCTGAGTCCAAGCTAGGCCCTTTTGCTAATCATGTTCATACCT



CTTATCTTCCTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTG



GCAAAGAATTGGGATTCGAACCGGTCGCCACCGGTCACCAAGCAGGAAGTCAAAGACTT



TTTCCGGTGGGCAAAGGATCACGTGGTTGAGGTGGAGCATGAATTCTACGTCAAAAAGG



GTGGAGCCAAGAAAAGACCCGCCCCCAGTGACGCAGATATAAGTGAGCCCAAACGGGTG



CGCGAGTCAGTTGCGCAGCCATCGACGTCAGACGCGGAAGCTTCGATCAACTACGCGGA



CAGGTACCAAAACAAATGTTCTCGTCACGTGGGCATGAATCTGATGCTGTTTCCCTGCAG



ACAATGCGAGAGACTGAATCAGAATTCAAATATCTGCTTCACTCACGGTGTCAAAGACTG



TTTAGAGTGCTTTCCCGTGTCAGAATCTCAACCCGTTTCTGTCGTCAAAAAGGCGTATCAG



AAACTGTGCTACATTCATCACATCATGGGAAAGGTGCCAGACGCTTGCACTGCTTGCGAC



CTGGTCAATGTGGACTTGGATGACTGTGTTTCTGAACAATAAATGACTTAAACCAGGTAT



GGCTGCCGATGGTTATCTTCCAGATTGGCTCGAGGACAACCTTAGTGAAGGAATTCGCGA



GTGGTGGGCTTTGAAACCTGGAGCCCCTCAACCCAAGGCAAATCAACAACATCAAGACA



ACGCTCGAGGTCTTGTGCTTCCGGGTTACAAATACCTTGGACCCGGCAACGGACTCGACA



AGGGGGAGCCGGTCAACGCAGCAGACGCGGCGGCCCTCGAGCACGACAAGGCCTACGAC



CAGCAGCTCAAGGCCGGAGACAACCCGTACCTCAAGTACAACCACGCCGACGCCGAGTT



CCAGGAGCGGCTCAAAGAAGATACGTCTTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCA



GGCCAAAAAGAGGCTTCTTGAACCTCTTGGTCTGGTTGAGGAAGCGGCTAAGACGGCTCC



TGGAAAGAAGAGGCCTGTAGAGCAGTCTCCTCAGGAACCGGACTCCTCCGCGGGTATTG



GCAAATCGGGTGCACAGCCCGCTAAAAAGAGACTCAATTTCGGTCAGACTGGCGACACA



GAGTCAGTCCCAGACCCTCAACCAATCGGAGAACCTCCCGCAGCCCCCTCAGGTGTGGGA



TCTCTTACAATGGCTTCAGGTGGTGGCGCACCAGTGGCAGACAATAACGAAGGTGCCGAT



GGAGTGGGTAGTTCCTCGGGAAATTGGCATTGCGATTCCCAATGGCTGGGGGACAGAGTC



ATCACCACCAGCACCCGAACCTGGGCCCTGCCCACCTACAACAATCACCTCTACAAGCAA



ATCTCCAACAGCACATCTGGAGGATCTTCAAATGACAACGCCTACTTCGGCTACAGCACC



CCCTGGGGGTATTTTGACTTCAACAGATTCCACTGCCACTTCTCACCACGTGACTGGCAGC



GACTCATCAACAACAACTGGGGATTCCGGCCTAAGCGACTCAACTTCAAGCTCTTCAACA



TTCAGGTCAAAGAGGTTACGGACAACAATGGAGTCAAGACCATCGCCAATAACCTTACC



AGCACGGTCCAGGTCTTCACGGACTCAGACTATCAGCTCCCGTACGTGCTCGGGTCGGCT



CACGAGGGCTGCCTCCCGCCGTTCCCAGCGGACGTTTTCATGATTCCTCAGTACGGGTATC



TGACGCTTAATGATGGAAGCCAGGCCGTGGGTCGTTCGTCCTTTTACTGCCTGGAATATTT



CCCGTCGCAAATGCTAAGAACGGGTAACAACTTCCAGTTCAGCTACGAGTTTGAGAACGT



ACCTTTCCATAGCAGCTACGCTCACAGCCAAAGCCTGGACCGACTAATGAATCCACTCAT



CGACCAATACTTGTACTATCTCTCAAAGACTATTAACGGTTCTGGACAGAATCAACAAAC



GCTAAAATTCAGTGTGGCCGGACCCAGCAACATGGCTGTCCAGGGAAGAAACTACATAC



CTGGACCCAGCTACCGACAACAACGTGTCTCAACCACTGTGACTCAAAACAACAACAGC



GAATTTGCTTGGCCTGGAGCTTCTTCTTGGGCTCTCAATGGACGTAATAGCTTGATGAATC



CTGGACCTGCTATGGCCAGCCACAAAGAAGGAGAGGACCGTTTCTTTCCTTTGTCTGGAT



CTTTAATTTTTGGCAAACAAGGAACTGGAAGAGACAACGTGGATGCGGACAAAGTCATG



ATAACCAACGAAGAAGAAATTAAAACTACTAACCCGGTAGCAACGGAGTCCTATGGACA



AGTGGCCACAAACCACCAGAGTGCCCAAGCACAGGCGCAGACCGGCTGGGTTCAAAACC



AAGGAATACTTCCGGGTATGGTTTGGCAGGACAGAGATGTGTACCTGCAAGGACCCATTT



GGGCCAAAATTCCTCACACGGACGGCAACTTTCACCCTTCTCCGCTGATGGGAGGGTTTG



GAATGAAGCACCCGCCTCCTCAGATCCTCATCAAAAACACACCTGTACCTGCGGATCCTC



CAACGGCCTTCAACAAGGACAAGCTGAACTCTTTCATCACCCAGTATTCTACTGGCCAAG



TCAGCGTGGAGATCGAGTGGGAGCTGCAGAAGGAAAACAGCAAGCGCTGGAACCCGGA



GATCCAGTACACTTCCAACTATTACAAGTCTAATAATGTTGAATTTGCTGTTAATACTGAA



GGTGTATATAGTGAACCCCGCCCCATTGGCACCAGATACCTGACTCGTAATCTGTAATCG



ATTGTTAATCAATAAACCGTTTAATTCGTTTCAGTTGAACTTTGGTCTCTGCGTATTTCTTT



CTTATCTAGTTTCCATGGCTACGTAGATAAGTAGCATGGCGGGTTAATCATTAACTACAA



GGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGC



CGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGC



GAGCGCGCAGAGAGGGAGTGGCCAA





GLOSPLICEF6
GTGCCAAGAGTGACCTCCTG


SEQ ID NO: 13






CAP5L8
ACTGCCCCCGCGACCGGCACGTACAACCTCCAGGAAATCGTGCCCGGCAGCGTGTGGATG


GBLOCKSEQ
GAGAGGGACGTGTACCTCCAAGGACCCATCTGGGCCAAGATCCCAGAGACGGGGGCGCA


ID NO: 14
CTTTCACCCCTCTCCGGCTATGGGCGGATTCGGACTCAAACACCCACCGCCCATGATGCTC



ATCAAGAACACGCCTGTGCCCGGAAATATCACCAGCTTCTCGGACGTGCCCGTCAGCAGC



TTCATCACCCAGTACAGCACCGGGCAGGTCACCGTGGAGATGGAGTGGGAGCTCAAGAA



GGAAAACTCCAAGAGGTGGAACCCAGAGATCCAGTACACAAACAACTACAACGACCCCC



AGTTTGTGGACTTTGCCCCGGACAGCACCGGGGAATACAGAACCACCAGACCTATCGGA



ACCCGATACCTTACCCGACCCCTTTAA





CAP6L8
ACCGGAGATGTGCATGTTATGGGAGCCTTACCTGGAATGGTGTGGCAAGACAGGGACGT


GBLOCKSEQ
CTACCTGCAGGGTCCTATTTGGGCCAAAATTCCTCACACGGATGGACACTTTCACCCATCT


ID NO: 15
CCTCTCATGGGCGGCTTTGGACTTAAGCACCCGCCTCCTCAGATCCTCATCAAAAACACG



CCTGTTCCTGCGAATCCTCCGGCAGAGTTTTCGGCTACAAAGTTTGCTTCATTCATCACCC



AGTATTCCACAGGACAAGTGAGCGTGGAGATTGAATGGGAGCTGCAGAAAGAAAACAGC



AAACGCTGGAATCCCGAAGTGCAATATACATCTAACTATGCAAAATCTGCCAACGTTGAT



TTCACTGTGGACAACAATGGACTTTATACTGAGCCTCGCCCCATTGGCACCCGTTACCTCA



CCCGTCCCCTGTAATCGAT





CAPDJ8L8
ACACAAGCAGCTACCGCAGATGTCAACACACAAGGCGTTCTTCCAGGCATGGTCTGGCAG


GBLOCKSEQ
GACAGAGATGTGTACCTTCAGGGGCCCATCTGGGCAAAGATTCCACACACGGACGGACA


ID NO: 16
TTTTCACCCCTCTCCCCTCATGGGTGGATTCGGACTTAAACACCCTCCGCCTCAGATCCTG



ATCAAGAACACGCCTGTACCTGCGGACCCTCCGACCACCTTCAACCAGTCAAAGCTGAAC



TCTTTCATCACCCAGTATTCTACTGGCCAAGTCAGCGTGGAGATCGAGTGGGAGCTGCAG



AAGGAAAACAGCAAGCGCTGGAACCCCGAGATCCAGTACACCTCCAACTACTACAAATC



TACAAGTGTGGACTTTGCTGTTAATACAGAAGGCGTGTACTCTGAACCCCGCCCCATTGG



CACCCGTTACCTCACCCGTAATCTGTAA





CAP9L8M
GCACAGGCGCAGACCGGCTGGGTTCAAAACCAAGGAATACTTCCGGGTATGGTTTGGCA


GBLOCKSEQ
GGACAGAGATGTGTACCTGCAAGGACCCATTTGGGCCAAAATTCCTCACACGGACGGCA


ID NO: 17
ACTTTCACCCTTCTCCGCTGATGGGAGGGTTTGGAATGAAGCACCCGCCTCCTCAGATCCT



CATCAAAAACACACCTGTACCTGCCGATCCTCCAACGGCCTTCAACAAGGACAAGCTGAA



CTCTTTCATCACCCAGTATTCTACTGGCCAAGTCAGCGTGGAGATCGAGTGGGAGCTGCA



GAAGGAAAACAGCAAGCGGTGGAACCCGGAGATCCAGTACACTTCCAACTATTACAAGT



CTAATAATGTTGAATTTGCTGTTAATACTGAAGGTGTATATAGTGAACCCCGCCCCATTGG



CACCAGATACCTGACTCGTAATCTGTAA





TELN-SYNG9-
TATCAGCACACAATAGTCCATTATACGCGCGTATAATGGGCAATTGTGTGCTGATACAGC


BSRGI SEQ ID
TGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAG


NO: 18
TTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGT



GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAG



ATTTAATTAAGGCCTTAATTAGGCTAGCTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTC



ACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGT



GAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGGAGGG



GTGGAGTCGTGACGATATCCATGCGTCGACATAACGCGTTAGTATCTGCAGAGGGCCCTG



CGTATGAGTGCAAGTGGGTTTTAGGACCAGGATGAGGCGGGGTGGGGGTGCCTACCTGA



CGACCGACCCCGACCCACTGGACAAGCACCCAACCCCCATTCCCCAAATTGCGCATCCCC



TATCAGAGAGGGGGAGGGGAAACAGGATGCGGCGAGGCGCGTGCGCACTGCCAGCTTCA



GCACCGCGGACAGTGCCTTCGCCCCCGCCTGGCGGCGCGCGCCACCGCCGCCTCAGCACT



GAAGGCGCGCTGACGTCACTCGCCGGTCCCCCGCAAACTCCCCTTCCCGGCCACCTTGGT



CGCGTCCGCGCCGCCGCCGGCCCAGCCGGACCGCACCACGCGAGGCGCGAGATAGGGGG



GCACGGGCGCGACCATCTGCGCTGCGGCGCCGGCGACTCAGCGCTGCCTCAGTCTGCGGT



GGGCAGCGGAGGAGTCGTGTCGTGCCTGAGAGCGCAGCTGTGCTCCTGGGCACCGCGCA



GTCCGCCCCCGCGGCTCCTGGCCAGACCACCCCTAGGACCCCCTGCCCCAAGTCGCAGCC



AAGCTTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCC



ATAGAAGACACCGGGACCGATCCAGCCTCCGCGGATTCGAATCCCGGCCGGGAACGGTG



CATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACCGCCTATAGAGTCTATAG



GCCCACAAAAAATGCTTTCTTCTTTTAATATACTTTTTTGTTTATCTTATTTCTAATACTTTC



CCTAATCTCTTTCTTTCAGGGCAATAATGATACAATGTATCATGCCTCTTTGCACCATTCT



AAAGAATAACAGTGATAATTTCTGGGTTAAGGCAATAGCAATATTTCTGCATATAAATAT



TTCTGCATATAAATTGTAACTGATGTAAGAGGTTTCATATTGCTAATAGCAGCTACAATCC



AGCTACCATTCTGCTTTTATTTTATGGTTGGGATAAGGCTGGATTATTCTGAGTCCAAGCT



AGGCCCTTTTGCTAATCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGGCAACGT



GCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTGGGATTCGAACCGGTCGCCAC



CGGTCACCAAGCAGGAAGTCAAAGACTTTTTCCGGTGGGCAAAGGATCACGTGGTTGAG



GTGGAGCATGAATTCTACGTCAAAAAGGGTGGAGCCAAGAAAAGACCCGCCCCCAGTGA



CGCAGATATAAGTGAGCCCAAACGGGTGCGCGAGTCAGTTGCGCAGCCATCGACGTCAG



ACGCGGAAGCTTCGATCAACTACGCGGACAGGTACCAAAACAAATGTTCTCGTCACGTGG



GCATGAATCTGATGCTGTTTCCCTGCAGACAATGCGAGAGACTGAATCAGAATTCAAATA



TCTGCTTCACTCACGGTGTCAAAGACTGTTTAGAGTGCTTTCCCGTGTCAGAATCTCAACC



CGTTTCTGTCGTCAAAAAGGCGTATCAGAAACTGTGCTACATTCATCACATCATGGGAAA



GGTGCCAGACGCTTGCACTGCTTGCGACCTGGTCAATGTGGACTTGGATGACTGTGTTTCT



GAACAATAAATGACTTAAACCAGGTATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGA



GGACAACCTTAGTGAAGGAATTCGCGAGTGGTGGGCTTTGAAACCTGGAGCCCCTCAACC



CAAGGCAAATCAACAACATCAAGACAACGCTCGAGGTCTTGTGCTTCCGGGTTACAAATA



CCTTGGACCCGGCAACGGACTCGACAAGGGGGAGCCGGTCAACGCAGCAGACGCGGCGG



CCCTCGAGCACGACAAGGCCTACGACCAGCAGCTCAAGGCCGGAGACAACCCGTACCTC



AAGTACAACCACGCCGACGCCGAGTTCCAGGAGCGGCTCAAAGAAGATACGTCTTTTGG



GGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAAAAGAGGCTTCTTGAACCTCTTGGTCT



GGTTGAGGAAGCGGCTAAGACGGCTCCTGGAAAGAAGAGGCCTGTAGAGCAGTCTCCTC



AGGAACCGGACTCCTCCGCGGGTATTGGCAAATCGGGTGCACAGCCCGCTAAAAAGAGA



CTCAATTTCGGTCAGACTGGCGACACAGAGTCAGTCCCAGACCCTCAACCAATCGGAGAA



CCTCCCGCAGCCCCCTCAGGTGTGGGATCTCTTACAATGGCTTCAGGTGGTGGCGCACCA



GTGGCAGACAATAACGAAGGTGCCGATGGAGTGGGTAGTTCCTCGGGAAATTGGCATTG



CGATTCCCAATGGCTGGGGGACAGAGTCATCACCACCAGCACCCGAACCTGGGCCCTGCC



CACCTACAACAATCACCTCTACAAGCAAATCTCCAACAGCACATCTGGAGGATCTTCAAA



TGACAACGCCTACTTCGGCTACAGCACCCCCTGGGGGTATTTTGACTTCAACAGATTCCA



CTGCCACTTCTCACCACGTGACTGGCAGCGACTCATCAACAACAACTGGGGATTCCGGCC



TAAGCGACTCAACTTCAAGCTCTTCAACATTCAGGTCAAAGAGGTTACGGACAACAATGG



AGTCAAGACCATCGCCAATAACCTTACCAGCACGGTCCAGGTCTTCACGGACTCAGACTA



TCAGCTCCCGTACGTGCTCGGGTCGGCTCACGAGGGCTGCCTCCCGCCGTTCCCAGCGGA



CGTTTTCATGATTCCTCAGTACGGGTATCTGACGCTTAATGATGGAAGCCAGGCCGTGGG



TCGTTCGTCCTTTTACTGCCTGGAATATTTCCCGTCGCAAATGCTAAGAACGGGTAACAAC



TTCCAGTTCAGCTACGAGTTTGAGAACGTACCTTTCCATAGCAGCTACGCTCACAGCCAA



AGCCTGGACCGACTAATGAATCCACTCATCGACCAATACTTGTACTATCTCTCAAAGACT



ATTAACGGTTCTGGACAGAATCAACAAACGCTAAAATTCAGTGTGGCCGGACCCAGCAA



CATGGCTGTCCAGGGAAGAAACTACATACCTGGACCCAGCTACCGACAACAACGTGTCTC



AACCACTGTGACTCAAAACAACAACAGCGAATTTGCTTGGCCTGGAGCTTCTTCTTGGGC



TCTCAATGGACGTAATAGCTTGATGAATCCTGGACCTGCTATGGCCAGCCACAAAGAAGG



AGAGGACCGTTTCTTTCCTTTGTCTGGATCTTTAATTTTTGGCAAACAAGGAACTGGAAGA



GACAACGTGGATGCGGACAAAGTCATGATAACCAACGAAGAAGAAATTAAAACTACTAA



CCCGGTAGCAACGGAGTCCTATGGACAAGTGGCCACAAACCACCAGAGTGTACATCGAT



TGTTAATCAATAAACCGTTTAATTCGTTTCAGTTGAACTTTGGTCTCTGCGTATTTCTTTCT



TATCTAGTTTCCATGGCTACGTAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGG



AACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCG



GGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGA



GCGCGCAGAGAGGGAGTGGCCAAGCATGCAATTAACTGGCCGTCGTTTTACAACGTCGTG



ACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCA



GCTGTATCAGCACACAATTGCCCATTATACGCGCGTATAATGGACTATTGTGTGCTGATA





TELN-
TATCAGCACACAATAGTCCATTATACGCGCGTATAATGGGCAATTGTGTGCTGATACAGC


GFAPG9-
TGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAG


BSRGI SEQ ID
TTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGT


NO: 19
GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAG



ATTTAATTAAGGCCTTAATTAGGCTAGCTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTC



ACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGT



GAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGGAGGG



GTGGAGTCGTGACGATATCCATGCGTCGACATAACGCGTGATCTAACATATCCTGGTGTG



GAGTAGCGGACGCTGCTATGACAGAGGCTCGGGGGCCTGAGCTGGCTCTGTGAGCTGGG



GAGGAGGCAGACAGCCAGGCCTTGTCTGCAAGCAGACCTGGCAGCATTGGGCTGGCCGC



CCCCCAGGGCCTCCTCTTCATGCCCAGTGAATGACTCACCTTGGCACAGACACAATGTTC



GGGGTGGGCACAGTGCCTGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGAGA



AGCCCATTGAGCAGGGGGCTTGCATTGCACCCCAGCCTGACAGCCTGGCATCTTGGGATA



AAAGCAGCACAGCCCCCTAGGGGCTGCCCTTGCTGTGTGGCGCCACCGGCGGTGGAGAA



CAAGGCTCTATTCAGCCTGTGCCCAGGAAAGGGGATCAGGGGATGCCCAGGCATGGACA



GTGGGTGGCAGGGGGGGAGAGGAGGGCTGTCTGCTTCCCAGAAGTCCAAGGACACAAAT



GGGTGAGGGGAGAGCTCTCCCCATAGCTGGGCTGCGGCCCAACCCCACCCCCTCAGGCTA



TGCCAGGGGGTGTTGCCAGGGGCACCCGGGCATCGCCAGTCTAGCCCACTCCTTCATAAA



GCCCTCGCATCCCAGGAGCGAGCAGAGCCAGAGCAGGTTGGAGAGGAGACGCATCACCT



CCGCTGCTCGCGGGGATCCTCTAGAAGCTTCGTTTAGTGAACCGTCAGATCGCCTGGAGA



CGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGA



TTCGAATCCCGGCCGGGAACGGTGCATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGT



AAGTACCGCCTATAGAGTCTATAGGCCCACAAAAAATGCTTTCTTCTTTTAATATACTTTT



TTGTTTATCTTATTTCTAATACTTTCCCTAATCTCTTTCTTTCAGGGCAATAATGATACAAT



GTATCATGCCTCTTTGCACCATTCTAAAGAATAACAGTGATAATTTCTGGGTTAAGGCAAT



AGCAATATTTCTGCATATAAATATTTCTGCATATAAATTGTAACTGATGTAAGAGGTTTCA



TATTGCTAATAGCAGCTACAATCCAGCTACCATTCTGCTTTTATTTTATGGTTGGGATAAG



GCTGGATTATTCTGAGTCCAAGCTAGGCCCTTTTGCTAATCATGTTCATACCTCTTATCTTC



CTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAA



TTGGGATTCGAACCGGTCGCCACCGGTCACCAAGCAGGAAGTCAAAGACTTTTTCCGGTG



GGCAAAGGATCACGTGGTTGAGGTGGAGCATGAATTCTACGTCAAAAAGGGTGGAGCCA



AGAAAAGACCCGCCCCCAGTGACGCAGATATAAGTGAGCCCAAACGGGTGCGCGAGTCA



GTTGCGCAGCCATCGACGTCAGACGCGGAAGCTTCGATCAACTACGCGGACAGGTACCA



AAACAAATGTTCTCGTCACGTGGGCATGAATCTGATGCTGTTTCCCTGCAGACAATGCGA



GAGACTGAATCAGAATTCAAATATCTGCTTCACTCACGGTGTCAAAGACTGTTTAGAGTG



CTTTCCCGTGTCAGAATCTCAACCCGTTTCTGTCGTCAAAAAGGCGTATCAGAAACTGTGC



TACATTCATCACATCATGGGAAAGGTGCCAGACGCTTGCACTGCTTGCGACCTGGTCAAT



GTGGACTTGGATGACTGTGTTTCTGAACAATAAATGACTTAAACCAGGTATGGCTGCCGA



TGGTTATCTTCCAGATTGGCTCGAGGACAACCTTAGTGAAGGAATTCGCGAGTGGTGGGC



TTTGAAACCTGGAGCCCCTCAACCCAAGGCAAATCAACAACATCAAGACAACGCTCGAG



GTCTTGTGCTTCCGGGTTACAAATACCTTGGACCCGGCAACGGACTCGACAAGGGGGAGC



CGGTCAACGCAGCAGACGCGGCGGCCCTCGAGCACGACAAGGCCTACGACCAGCAGCTC



AAGGCCGGAGACAACCCGTACCTCAAGTACAACCACGCCGACGCCGAGTTCCAGGAGCG



GCTCAAAGAAGATACGTCTTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAAA



AGAGGCTTCTTGAACCTCTTGGTCTGGTTGAGGAAGCGGCTAAGACGGCTCCTGGAAAGA



AGAGGCCTGTAGAGCAGTCTCCTCAGGAACCGGACTCCTCCGCGGGTATTGGCAAATCGG



GTGCACAGCCCGCTAAAAAGAGACTCAATTTCGGTCAGACTGGCGACACAGAGTCAGTC



CCAGACCCTCAACCAATCGGAGAACCTCCCGCAGCCCCCTCAGGTGTGGGATCTCTTACA



ATGGCTTCAGGTGGTGGCGCACCAGTGGCAGACAATAACGAAGGTGCCGATGGAGTGGG



TAGTTCCTCGGGAAATTGGCATTGCGATTCCCAATGGCTGGGGGACAGAGTCATCACCAC



CAGCACCCGAACCTGGGCCCTGCCCACCTACAACAATCACCTCTACAAGCAAATCTCCAA



CAGCACATCTGGAGGATCTTCAAATGACAACGCCTACTTCGGCTACAGCACCCCCTGGGG



GTATTTTGACTTCAACAGATTCCACTGCCACTTCTCACCACGTGACTGGCAGCGACTCATC



AACAACAACTGGGGATTCCGGCCTAAGCGACTCAACTTCAAGCTCTTCAACATTCAGGTC



AAAGAGGTTACGGACAACAATGGAGTCAAGACCATCGCCAATAACCTTACCAGCACGGT



CCAGGTCTTCACGGACTCAGACTATCAGCTCCCGTACGTGCTCGGGTCGGCTCACGAGGG



CTGCCTCCCGCCGTTCCCAGCGGACGTTTTCATGATTCCTCAGTACGGGTATCTGACGCTT



AATGATGGAAGCCAGGCCGTGGGTCGTTCGTCCTTTTACTGCCTGGAATATTTCCCGTCGC



AAATGCTAAGAACGGGTAACAACTTCCAGTTCAGCTACGAGTTTGAGAACGTACCTTTCC



ATAGCAGCTACGCTCACAGCCAAAGCCTGGACCGACTAATGAATCCACTCATCGACCAAT



ACTTGTACTATCTCTCAAAGACTATTAACGGTTCTGGACAGAATCAACAAACGCTAAAAT



TCAGTGTGGCCGGACCCAGCAACATGGCTGTCCAGGGAAGAAACTACATACCTGGACCC



AGCTACCGACAACAACGTGTCTCAACCACTGTGACTCAAAACAACAACAGCGAATTTGCT



TGGCCTGGAGCTTCTTCTTGGGCTCTCAATGGACGTAATAGCTTGATGAATCCTGGACCTG



CTATGGCCAGCCACAAAGAAGGAGAGGACCGTTTCTTTCCTTTGTCTGGATCTTTAATTTT



TGGCAAACAAGGAACTGGAAGAGACAACGTGGATGCGGACAAAGTCATGATAACCAACG



AAGAAGAAATTAAAACTACTAACCCGGTAGCAACGGAGTCCTATGGACAAGTGGCCACA



AACCACCAGAGTGTACATCGATTGTTAATCAATAAACCGTTTAATTCGTTTCAGTTGAACT



TTGGTCTCTGCGTATTTCTTTCTTATCTAGTTTCCATGGCTACGTAGATAAGTAGCATGGC



GGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGC



GCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGG



GCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAAGCATGCAATTAACTG



GCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTT



GCAGCACATCCCCCTTTCGCCAGCTGTATCAGCACACAATTGCCCATTATACGCGCGTAT



AATGGACTATTGTGTGCTGATA





TELN-SYNG5-
TATCAGCACACAATAGTCCATTATACGCGCGTATAATGGGCAATTGTGTGCTGATACAGC


BSRGI SEQ ID
TGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAG


NO: 20
TTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGT



GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAG



ATTTAATTAAGGCCTTAATTAGGCTAGCTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTC



ACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGT



GAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGGAGGG



GTGGAGTCGTGACGATATCCATGCGTCGACATAACGCGTTAGTATCTGCAGAGGGCCCTG



CGTATGAGTGCAAGTGGGTTTTAGGACCAGGATGAGGCGGGGTGGGGGTGCCTACCTGA



CGACCGACCCCGACCCACTGGACAAGCACCCAACCCCCATTCCCCAAATTGCGCATCCCC



TATCAGAGAGGGGGAGGGGAAACAGGATGCGGCGAGGCGCGTGCGCACTGCCAGCTTCA



GCACCGCGGACAGTGCCTTCGCCCCCGCCTGGCGGCGCGCGCCACCGCCGCCTCAGCACT



GAAGGCGCGCTGACGTCACTCGCCGGTCCCCCGCAAACTCCCCTTCCCGGCCACCTTGGT



CGCGTCCGCGCCGCCGCCGGCCCAGCCGGACCGCACCACGCGAGGCGCGAGATAGGGGG



GCACGGGCGCGACCATCTGCGCTGCGGCGCCGGCGACTCAGCGCTGCCTCAGTCTGCGGT



GGGCAGCGGAGGAGTCGTGTCGTGCCTGAGAGCGCAGCTGTGCTCCTGGGCACCGCGCA



GTCCGCCCCCGCGGCTCCTGGCCAGACCACCCCTAGGACCCCCTGCCCCAAGTCGCAGCC



AAGCTTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCC



ATAGAAGACACCGGGACCGATCCAGCCTCCGCGGATTCGAATCCCGGCCGGGAACGGTG



CATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACCGCCTATAGAGTCTATAG



GCCCACAAAAAATGCTTTCTTCTTTTAATATACTTTTTTGTTTATCTTATTTCTAATACTTTC



CCTAATCTCTTTCTTTCAGGGCAATAATGATACAATGTATCATGCCTCTTTGCACCATTCT



AAAGAATAACAGTGATAATTTCTGGGTTAAGGCAATAGCAATATTTCTGCATATAAATAT



TTCTGCATATAAATTGTAACTGATGTAAGAGGTTTCATATTGCTAATAGCAGCTACAATCC



AGCTACCATTCTGCTTTTATTTTATGGTTGGGATAAGGCTGGATTATTCTGAGTCCAAGCT



AGGCCCTTTTGCTAATCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGGCAACGT



GCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTGGGATTCGAACCGGTCGCCAC



CGGTCACAAGCAGGAAGTCAAAGACTTTTTCCGGTGGGCAAAGGATCACGTGGTTGAGG



TGGAGCATGAATTCTACGTCAAAAAGGGTGGAGCCAAGAAAAGACCCGCCCCCAGTGAC



GCAGATATAAGTGAGCCCAAACGGGTGCGCGAGTCAGTTGCGCAGCCATCGACGTCAGA



CGCGGAAGCTTCGATCAACTACGCGGACAGGTACCAAAACAAATGTTCTCGTCACGTGGG



CATGAATCTGATGCTGTTTCCCTGCAGACAATGCGAGAGAATGAATCAGAATTCAAATAT



CTGCTTCACTCACGGACAGAAAGACTGTTTAGAGTGCTTTCCCGTGTCAGAATCTCAACC



CGTTTCTGTCGTCAAAAAGGCGTATCAGAAACTGTGCTACATTCATCATATCATGGGAAA



GGTGCCAGACGCTTGCACTGCCTGCGATCTGGTCAATGTGGATTTGGATGACTGCATCTTT



GAACAATAAATGATTTAAATCAGGTATGTCTTTTGTTGATCACCCTCCAGATTGGTTGGAA



GAAGTTGGTGAAGGTCTTCGCGAGTTTTTGGGCCTTGAAGCGGGCCCACCGAAACCAAAA



CCCAATCAGCAGCATCAAGATCAAGCCCGTGGTCTTGTGCTGCCTGGTTATAACTATCTC



GGACCCGGAAACGGTCTCGATCGAGGAGAGCCTGTCAACAGGGCAGACGAGGTCGCGCG



AGAGCACGACATCTCGTACAACGAGCAGCTTGAGGCGGGAGACAACCCCTACCTCAAGT



ACAACCACGCGGACGCCGAGTTTCAGGAGAAGCTCGCCGACGACACATCCTTCGGGGGA



AACCTCGGAAAGGCAGTCTTTCAGGCCAAGAAAAGGGTTCTCGAACCTTTTGGCCTGGTT



GAAGAGGGTGCTAAGACGGCCCCTACCGGAAAGCGGATAGACGACCACTTTCCAAAAAG



AAAGAAGGCCCGGACCGAAGAGGACTCCAAGCCTTCCACCTCGTCAGACGCCGAAGCTG



GACCCAGCGGATCCCAGCAGCTGCAAATCCCAGCCCAACCAGCCTCAAGTTTGGGAGCTG



ATACAATGTCTGCGGGAGGTGGCGGCCCATTGGGCGACAATAACCAAGGTGCCGATGGA



GTGGGCAATGCCTCGGGAGATTGGCATTGCGATTCCACGTGGATGGGGGACAGAGTCGTC



ACCAAGTCCACCCGAACCTGGGTGCTGCCCAGCTACAACAACCACCAGTACCGAGAGAT



CAAAAGCGGCTCCGTCGACGGAAGCAACGCCAACGCCTACTTTGGATACAGCACCCCCTG



GGGGTACTTTGACTTTAACCGCTTCCACAGCCACTGGAGCCCCCGAGACTGGCAAAGACT



CATCAACAACTACTGGGGCTTCAGACCCCGGTCCCTCAGAGTCAAAATCTTCAACATTCA



AGTCAAAGAGGTCACGGTGCAGGACTCCACCACCACCATCGCCAACAACCTCACCTCCAC



CGTCCAAGTGTTTACGGACGACGACTACCAGCTGCCCTACGTCGTCGGCAACGGGACCGA



GGGATGCCTGCCGGCCTTCCCTCCGCAGGTCTTTACGCTGCCGCAGTACGGTTACGCGAC



GCTGAACCGCGACAACACAGAAAATCCCACCGAGAGGAGCAGCTTCTTCTGCCTAGAGT



ACTTTCCCAGCAAGATGCTGAGAACGGGCAACAACTTTGAGTTTACCTACAACTTTGAGG



AGGTGCCCTTCCACTCCAGCTTCGCTCCCAGTCAGAACCTCTTCAAGCTGGCCAACCCGCT



GGTGGACCAGTACTTGTACCGCTTCGTGAGCACAAATAACACTGGCGGAGTCCAGTTCAA



CAAGAACCTGGCCGGGAGATACGCCAACACCTACAAAAACTGGTTCCCGGGGCCCATGG



GCCGAACCCAGGGCTGGAACCTGGGCTCCGGGGTCAACCGCGCCAGTGTCAGCGCCTTCG



CCACGACCAATAGGATGGAGCTCGAGGGCGCGAGTTACCAGGTGCCCCCGCAGCCGAAC



GGCATGACCAACAACCTCCAGGGCAGCAACACCTATGCCCTGGAGAACACTATGATCTTC



AACAGCCAGCCGGCGAACCCGGGCACCACCGCCACGTACCTCGAGGGCAACATGCTCAT



CACCAGCGAGAGCGAGACGCAGCCGGTGAACCGCGTGGCGTACAACGTCGGCGGGCAGA



TGGCCACCAACAACCAGAGCTCTGTACATCGATTGTTAATCAATAAACCGTTTAATTCGTT



TCAGTTGAACTTTGGTCTCTGCGTATTTCTTTCTTATCTAGTTTCCATGGCTACGTAGATAA



GTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCC



CTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGG



CTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAAGCATG



CAATTAACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACT



TAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGTATCAGCACACAATTGCCCATTATA



CGCGCGTATAATGGACTATTGTGTGCTGATA





TELN-
TATCAGCACACAATAGTCCATTATACGCGCGTATAATGGGCAATTGTGTGCTGATACAGC


GFAPG5-
TGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAG


BSRGI SEQ ID
TTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGT


NO: 21
GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAG



ATTTAATTAAGGCCTTAATTAGGCTAGCTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTC



ACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGT



GAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGGAGGG



GTGGAGTCGTGACGATATCCATGCGTCGACATAACGCGTGATCTAACATATCCTGGTGTG



GAGTAGCGGACGCTGCTATGACAGAGGCTCGGGGGCCTGAGCTGGCTCTGTGAGCTGGG



GAGGAGGCAGACAGCCAGGCCTTGTCTGCAAGCAGACCTGGCAGCATTGGGCTGGCCGC



CCCCCAGGGCCTCCTCTTCATGCCCAGTGAATGACTCACCTTGGCACAGACACAATGTTC



GGGGTGGGCACAGTGCCTGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGAGA



AGCCCATTGAGCAGGGGGCTTGCATTGCACCCCAGCCTGACAGCCTGGCATCTTGGGATA



AAAGCAGCACAGCCCCCTAGGGGCTGCCCTTGCTGTGTGGCGCCACCGGCGGTGGAGAA



CAAGGCTCTATTCAGCCTGTGCCCAGGAAAGGGGATCAGGGGATGCCCAGGCATGGACA



GTGGGTGGCAGGGGGGGAGAGGAGGGCTGTCTGCTTCCCAGAAGTCCAAGGACACAAAT



GGGTGAGGGGAGAGCTCTCCCCATAGCTGGGCTGCGGCCCAACCCCACCCCCTCAGGCTA



TGCCAGGGGGTGTTGCCAGGGGCACCCGGGCATCGCCAGTCTAGCCCACTCCTTCATAAA



GCCCTCGCATCCCAGGAGCGAGCAGAGCCAGAGCAGGTTGGAGAGGAGACGCATCACCT



CCGCTGCTCGCGGGGATCCTCTAGAAGCTTCGTTTAGTGAACCGTCAGATCGCCTGGAGA



CGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGA



TTCGAATCCCGGCCGGGAACGGTGCATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGT



AAGTACCGCCTATAGAGTCTATAGGCCCACAAAAAATGCTTTCTTCTTTTAATATACTTTT



TTGTTTATCTTATTTCTAATACTTTCCCTAATCTCTTTCTTTCAGGGCAATAATGATACAAT



GTATCATGCCTCTTTGCACCATTCTAAAGAATAACAGTGATAATTTCTGGGTTAAGGCAAT



AGCAATATTTCTGCATATAAATATTTCTGCATATAAATTGTAACTGATGTAAGAGGTTTCA



TATTGCTAATAGCAGCTACAATCCAGCTACCATTCTGCTTTTATTTTATGGTTGGGATAAG



GCTGGATTATTCTGAGTCCAAGCTAGGCCCTTTTGCTAATCATGTTCATACCTCTTATCTTC



CTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAA



TTGGGATTCGAACCGGTCGCCACCGGTCACCAAGCAGGAAGTCAAAGACTTTTTCCGGTG



GGCAAAGGATCACGTGGTTGAGGTGGAGCATGAATTCTACGTCAAAAAGGGTGGAGCCA



AGAAAAGACCCGCCCCCAGTGACGCAGATATAAGTGAGCCCAAACGGGTGCGCGAGTCA



GTTGCGCAGCCATCGACGTCAGACGCGGAAGCTTCGATCAACTACGCGGACAGGTACCA



AAACAAATGTTCTCGTCACGTGGGCATGAATCTGATGCTGTTTCCCTGCAGACAATGCGA



GAGAATGAATCAGAATTCAAATATCTGCTTCACTCACGGACAGAAAGACTGTTTAGAGTG



CTTTCCCGTGTCAGAATCTCAACCCGTTTCTGTCGTCAAAAAGGCGTATCAGAAACTGTGC



TACATTCATCATATCATGGGAAAGGTGCCAGACGCTTGCACTGCCTGCGATCTGGTCAAT



GTGGATTTGGATGACTGCATCTTTGAACAATAAATGATTTAAATCAGGTATGTCTTTTGTT



GATCACCCTCCAGATTGGTTGGAAGAAGTTGGTGAAGGTCTTCGCGAGTTTTTGGGCCTT



GAAGCGGGCCCACCGAAACCAAAACCCAATCAGCAGCATCAAGATCAAGCCCGTGGTCT



TGTGCTGCCTGGTTATAACTATCTCGGACCCGGAAACGGTCTCGATCGAGGAGAGCCTGT



CAACAGGGCAGACGAGGTCGCGCGAGAGCACGACATCTCGTACAACGAGCAGCTTGAGG



CGGGAGACAACCCCTACCTCAAGTACAACCACGCGGACGCCGAGTTTCAGGAGAAGCTC



GCCGACGACACATCCTTCGGGGGAAACCTCGGAAAGGCAGTCTTTCAGGCCAAGAAAAG



GGTTCTCGAACCTTTTGGCCTGGTTGAAGAGGGTGCTAAGACGGCCCCTACCGGAAAGCG



GATAGACGACCACTTTCCAAAAAGAAAGAAGGCCCGGACCGAAGAGGACTCCAAGCCTT



CCACCTCGTCAGACGCCGAAGCTGGACCCAGCGGATCCCAGCAGCTGCAAATCCCAGCCC



AACCAGCCTCAAGTTTGGGAGCTGATACAATGTCTGCGGGAGGTGGCGGCCCATTGGGCG



ACAATAACCAAGGTGCCGATGGAGTGGGCAATGCCTCGGGAGATTGGCATTGCGATTCC



ACGTGGATGGGGGACAGAGTCGTCACCAAGTCCACCCGAACCTGGGTGCTGCCCAGCTA



CAACAACCACCAGTACCGAGAGATCAAAAGCGGCTCCGTCGACGGAAGCAACGCCAACG



CCTACTTTGGATACAGCACCCCCTGGGGGTACTTTGACTTTAACCGCTTCCACAGCCACTG



GAGCCCCCGAGACTGGCAAAGACTCATCAACAACTACTGGGGCTTCAGACCCCGGTCCCT



CAGAGTCAAAATCTTCAACATTCAAGTCAAAGAGGTCACGGTGCAGGACTCCACCACCAC



CATCGCCAACAACCTCACCTCCACCGTCCAAGTGTTTACGGACGACGACTACCAGCTGCC



CTACGTCGTCGGCAACGGGACCGAGGGATGCCTGCCGGCCTTCCCTCCGCAGGTCTTTAC



GCTGCCGCAGTACGGTTACGCGACGCTGAACCGCGACAACACAGAAAATCCCACCGAGA



GGAGCAGCTTCTTCTGCCTAGAGTACTTTCCCAGCAAGATGCTGAGAACGGGCAACAACT



TTGAGTTTACCTACAACTTTGAGGAGGTGCCCTTCCACTCCAGCTTCGCTCCCAGTCAGAA



CCTCTTCAAGCTGGCCAACCCGCTGGTGGACCAGTACTTGTACCGCTTCGTGAGCACAAA



TAACACTGGCGGAGTCCAGTTCAACAAGAACCTGGCCGGGAGATACGCCAACACCTACA



AAAACTGGTTCCCGGGGCCCATGGGCCGAACCCAGGGCTGGAACCTGGGCTCCGGGGTC



AACCGCGCCAGTGTCAGCGCCTTCGCCACGACCAATAGGATGGAGCTCGAGGGCGCGAG



TTACCAGGTGCCCCCGCAGCCGAACGGCATGACCAACAACCTCCAGGGCAGCAACACCT



ATGCCCTGGAGAACACTATGATCTTCAACAGCCAGCCGGCGAACCCGGGCACCACCGCC



ACGTACCTCGAGGGCAACATGCTCATCACCAGCGAGAGCGAGACGCAGCCGGTGAACCG



CGTGGCGTACAACGTCGGCGGGCAGATGGCCACCAACAACCAGAGCTCTGTACATCGATT



GTTAATCAATAAACCGTTTAATTCGTTTCAGTTGAACTTTGGTCTCTGCGTATTTCTTTCTT



ATCTAGTTTCCATGGCTACGTAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGA



ACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGG



GCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAG



CGCGCAGAGAGGGAGTGGCCAAGCATGCAATTAACTGGCCGTCGTTTTACAACGTCGTGA



CTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAG



CTGTATCAGCACACAATTGCCCATTATACGCGCGTATAATGGACTATTGTGTGCTGATA





TELN-SYNG6-
TATCAGCACACAATAGTCCATTATACGCGCGTATAATGGGCAATTGTGTGCTGATACAGC


BSRGI SEQ ID
TGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAG


NO: 22
TTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGT



GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAG



ATTTAATTAAGGCCTTAATTAGGCTAGCTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTC



ACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGT



GAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGGAGGG



GTGGAGTCGTGACGATATCCATGCGTCGACATAACGCGTTAGTATCTGCAGAGGGCCCTG



CGTATGAGTGCAAGTGGGTTTTAGGACCAGGATGAGGCGGGGTGGGGGTGCCTACCTGA



CGACCGACCCCGACCCACTGGACAAGCACCCAACCCCCATTCCCCAAATTGCGCATCCCC



TATCAGAGAGGGGGAGGGGAAACAGGATGCGGCGAGGCGCGTGCGCACTGCCAGCTTCA



GCACCGCGGACAGTGCCTTCGCCCCCGCCTGGCGGCGCGCGCCACCGCCGCCTCAGCACT



GAAGGCGCGCTGACGTCACTCGCCGGTCCCCCGCAAACTCCCCTTCCCGGCCACCTTGGT



CGCGTCCGCGCCGCCGCCGGCCCAGCCGGACCGCACCACGCGAGGCGCGAGATAGGGGG



GCACGGGCGCGACCATCTGCGCTGCGGCGCCGGCGACTCAGCGCTGCCTCAGTCTGCGGT



GGGCAGCGGAGGAGTCGTGTCGTGCCTGAGAGCGCAGCTGTGCTCCTGGGCACCGCGCA



GTCCGCCCCCGCGGCTCCTGGCCAGACCACCCCTAGGACCCCCTGCCCCAAGTCGCAGCC



AAGCTTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCC



ATAGAAGACACCGGGACCGATCCAGCCTCCGCGGATTCGAATCCCGGCCGGGAACGGTG



CATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACCGCCTATAGAGTCTATAG



GCCCACAAAAAATGCTTTCTTCTTTTAATATACTTTTTTGTTTATCTTATTTCTAATACTTTC



CCTAATCTCTTTCTTTCAGGGCAATAATGATACAATGTATCATGCCTCTTTGCACCATTCT



AAAGAATAACAGTGATAATTTCTGGGTTAAGGCAATAGCAATATTTCTGCATATAAATAT



TTCTGCATATAAATTGTAACTGATGTAAGAGGTTTCATATTGCTAATAGCAGCTACAATCC



AGCTACCATTCTGCTTTTATTTTATGGTTGGGATAAGGCTGGATTATTCTGAGTCCAAGCT



AGGCCCTTTTGCTAATCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGGCAACGT



GCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTGGGATTCGAACCGGTCGCCAC



CGGTCACAAGCAGGAAGTCAAAGACTTTTTCCGGTGGGCAAAGGATCACGTGGTTGAGG



TGGAGCATGAATTCTACGTCAAAAAGGGTGGAGCCAAGAAAAGACCCGCCCCCAGTGAC



GCAGATATAAGTGAGCCCAAACGGGTGCGCGAGTCAGTTGCGCAGCCATCGACGTCAGA



CGCGGAAGCTTCGATCAACTACGCGGACAGGTACCAAAACAAATGTTCTCGTCACGTGGG



CATGAATCTGATGCTGTTTCCCTGCAGACAATGCGAGAGAATGAATCAGAATTCAAATAT



CTGCTTCACTCACGGACAGAAAGACTGTTTAGAGTGCTTTCCCGTGTCAGAATCTCAACC



CGTTTCTGTCGTCAAAAAGGCGTATCAGAAACTGTGCTACATTCATCATATCATGGGAAA



GGTGCCAGACGCTTGCACTGCCTGCGATCTGGTCAATGTGGATTTGGATGACTGCATCTTT



GAACAATAAATGATTTAAATCAGGTATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGA



GGACAACCTCTCTGAGGGCATTCGCGAGTGGTGGGACTTGAAACCTGGAGCCCCGAAAC



CCAAAGCCAACCAGCAAAAGCAGGACGACGGCCGGGGTCTGGTGCTTCCTGGCTACAAG



TACCTCGGACCCTTCAACGGACTCGACAAGGGGGAGCCCGTCAACGCGGCGGATGCAGC



GGCCCTCGAGCACGACAAGGCCTACGACCAGCAGCTCAAAGCGGGTGACAATCCGTACC



TGCGGTATAACCACGCCGACGCCGAGTTTCAGGAGCGTCTGCAAGAAGATACGTCTTTTG



GGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAGAAGAGGGTTCTCGAACCTTTTGGTC



TGGTTGAGGAAGGTGCTAAGACGGCTCCTGGAAAGAAACGTCCGGTAGAGCAGTCGCCA



CAAGAGCCAGACTCCTCCTCGGGCATTGGCAAGACAGGCCAGCAGCCCGCTAAAAAGAG



ACTCAATTTTGGTCAGACTGGCGACTCAGAGTCAGTCCCCGACCCACAACCTCTCGGAGA



ACCTCCAGCAACCCCCGCTGCTGTGGGACCTACTACAATGGCTTCAGGCGGTGGCGCACC



AATGGCAGACAATAACGAAGGCGCCGACGGAGTGGGTAATGCCTCAGGAAATTGGCATT



GCGATTCCACATGGCTGGGCGACAGAGTCATCACCACCAGCACCCGAACATGGGCCTTGC



CCACCTATAACAACCACCTCTACAAGCAAATCTCCAGTGCTTCAACGGGGGCCAGCAACG



ACAACCACTACTTCGGCTACAGCACCCCCTGGGGGTATTTTGATTTCAACAGATTCCACTG



CCATTTCTCACCACGTGACTGGCAGCGACTCATCAACAACAATTGGGGATTCCGGCCCAA



GAGACTCAACTTCAAGCTCTTCAACATCCAAGTCAAGGAGGTCACGACGAATGATGGCGT



CACGACCATCGCTAATAACCTTACCAGCACGGTTCAAGTCTTCTCGGACTCGGAGTACCA



GTTGCCGTACGTCCTCGGCTCTGCGCACCAGGGCTGCCTCCCTCCGTTCCCGGCGGACGTG



TTCATGATTCCGCAGTACGGCTACCTAACGCTCAACAATGGCAGCCAGGCAGTGGGACGG



TCATCCTTTTACTGCCTGGAATATTTCCCATCGCAGATGCTGAGAACGGGCAATAACTTTA



CCTTCAGCTACACCTTCGAGGACGTGCCTTTCCACAGCAGCTACGCGCACAGCCAGAGCC



TGGACCGGCTGATGAATCCTCTCATCGACCAGTACCTGTATTACCTGAACAGAACTCAGA



ATCAGTCCGGAAGTGCCCAAAACAAGGACTTGCTGTTTAGCCGGGGGTCTCCAGCTGGCA



TGTCTGTTCAGCCCAAAAACTGGCTACCTGGACCCTGTTACCGGCAGCAGCGCGTTTCTA



AAACAAAAACAGACAACAACAACAGCAACTTTACCTGGACTGGTGCTTCAAAATATAAC



CTTAATGGGCGTGAATCTATAATCAACCCTGGCACTGCTATGGCCTCACACAAAGACGAC



AAAGACAAGTTCTTTCCCATGAGCGGTGTCATGATTTTTGGAAAGGAGAGCGCCGGAGCT



TCAAACACTGCATTGGACAATGTCATGATCACAGACGAAGAGGAAATCAAAGCCACTAA



CCCCGTGGCCACCGAAAGATTTGGGACTGTGGCAGTCAATCTCCAGAGTGTACATCGATT



GTTAATCAATAAACCGTTTAATTCGTTTCAGTTGAACTTTGGTCTCTGCGTATTTCTTTCTT



ATCTAGTTTCCATGGCTACGTAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGA



ACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGG



GCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAG



CGCGCAGAGAGGGAGTGGCCAAGCATGCAATTAACTGGCCGTCGTTTTACAACGTCGTGA



CTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAG



CTGTATCAGCACACAATTGCCCATTATACGCGCGTATAATGGACTATTGTGTGCTGATA





TELN-
TATCAGCACACAATAGTCCATTATACGCGCGTATAATGGGCAATTGTGTGCTGATACAGC


GFAPG6-
TGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAG


BSRGI SEQ ID
TTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGT


NO: 23
GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAG



ATTTAATTAAGGCCTTAATTAGGCTAGCTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTC



ACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGT



GAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGGAGGG



GTGGAGTCGTGACGATATCCATGCGTCGACATAACGCGTGATCTAACATATCCTGGTGTG



GAGTAGCGGACGCTGCTATGACAGAGGCTCGGGGGCCTGAGCTGGCTCTGTGAGCTGGG



GAGGAGGCAGACAGCCAGGCCTTGTCTGCAAGCAGACCTGGCAGCATTGGGCTGGCCGC



CCCCCAGGGCCTCCTCTTCATGCCCAGTGAATGACTCACCTTGGCACAGACACAATGTTC



GGGGTGGGCACAGTGCCTGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGAGA



AGCCCATTGAGCAGGGGGCTTGCATTGCACCCCAGCCTGACAGCCTGGCATCTTGGGATA



AAAGCAGCACAGCCCCCTAGGGGCTGCCCTTGCTGTGTGGCGCCACCGGCGGTGGAGAA



CAAGGCTCTATTCAGCCTGTGCCCAGGAAAGGGGATCAGGGGATGCCCAGGCATGGACA



GTGGGTGGCAGGGGGGGAGAGGAGGGCTGTCTGCTTCCCAGAAGTCCAAGGACACAAAT



GGGTGAGGGGAGAGCTCTCCCCATAGCTGGGCTGCGGCCCAACCCCACCCCCTCAGGCTA



TGCCAGGGGGTGTTGCCAGGGGCACCCGGGCATCGCCAGTCTAGCCCACTCCTTCATAAA



GCCCTCGCATCCCAGGAGCGAGCAGAGCCAGAGCAGGTTGGAGAGGAGACGCATCACCT



CCGCTGCTCGCGGGGATCCTCTAGAAGCTTCGTTTAGTGAACCGTCAGATCGCCTGGAGA



CGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGA



TTCGAATCCCGGCCGGGAACGGTGCATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGT



AAGTACCGCCTATAGAGTCTATAGGCCCACAAAAAATGCTTTCTTCTTTTAATATACTTTT



TTGTTTATCTTATTTCTAATACTTTCCCTAATCTCTTTCTTTCAGGGCAATAATGATACAAT



GTATCATGCCTCTTTGCACCATTCTAAAGAATAACAGTGATAATTTCTGGGTTAAGGCAAT



AGCAATATTTCTGCATATAAATATTTCTGCATATAAATTGTAACTGATGTAAGAGGTTTCA



TATTGCTAATAGCAGCTACAATCCAGCTACCATTCTGCTTTTATTTTATGGTTGGGATAAG



GCTGGATTATTCTGAGTCCAAGCTAGGCCCTTTTGCTAATCATGTTCATACCTCTTATCTTC



CTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAA



TTGGGATTCGAACCGGTCGCCACCGGTCACCAAGCAGGAAGTCAAAGACTTTTTCCGGTG



GGCAAAGGATCACGTGGTTGAGGTGGAGCATGAATTCTACGTCAAAAAGGGTGGAGCCA



AGAAAAGACCCGCCCCCAGTGACGCAGATATAAGTGAGCCCAAACGGGTGCGCGAGTCA



GTTGCGCAGCCATCGACGTCAGACGCGGAAGCTTCGATCAACTACGCGGACAGGTACCA



AAACAAATGTTCTCGTCACGTGGGCATGAATCTGATGCTGTTTCCCTGCAGACAATGCGA



GAGAATGAATCAGAATTCAAATATCTGCTTCACTCACGGACAGAAAGACTGTTTAGAGTG



CTTTCCCGTGTCAGAATCTCAACCCGTTTCTGTCGTCAAAAAGGCGTATCAGAAACTGTGC



TACATTCATCATATCATGGGAAAGGTGCCAGACGCTTGCACTGCCTGCGATCTGGTCAAT



GTGGATTTGGATGACTGCATCTTTGAACAATAAATGATTTAAATCAGGTATGGCTGCCGA



TGGTTATCTTCCAGATTGGCTCGAGGACAACCTCTCTGAGGGCATTCGCGAGTGGTGGGA



CTTGAAACCTGGAGCCCCGAAACCCAAAGCCAACCAGCAAAAGCAGGACGACGGCCGGG



GTCTGGTGCTTCCTGGCTACAAGTACCTCGGACCCTTCAACGGACTCGACAAGGGGGAGC



CCGTCAACGCGGCGGATGCAGCGGCCCTCGAGCACGACAAGGCCTACGACCAGCAGCTC



AAAGCGGGTGACAATCCGTACCTGCGGTATAACCACGCCGACGCCGAGTTTCAGGAGCG



TCTGCAAGAAGATACGTCTTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAGAA



GAGGGTTCTCGAACCTTTTGGTCTGGTTGAGGAAGGTGCTAAGACGGCTCCTGGAAAGAA



ACGTCCGGTAGAGCAGTCGCCACAAGAGCCAGACTCCTCCTCGGGCATTGGCAAGACAG



GCCAGCAGCCCGCTAAAAAGAGACTCAATTTTGGTCAGACTGGCGACTCAGAGTCAGTCC



CCGACCCACAACCTCTCGGAGAACCTCCAGCAACCCCCGCTGCTGTGGGACCTACTACAA



TGGCTTCAGGCGGTGGCGCACCAATGGCAGACAATAACGAAGGCGCCGACGGAGTGGGT



AATGCCTCAGGAAATTGGCATTGCGATTCCACATGGCTGGGCGACAGAGTCATCACCACC



AGCACCCGAACATGGGCCTTGCCCACCTATAACAACCACCTCTACAAGCAAATCTCCAGT



GCTTCAACGGGGGCCAGCAACGACAACCACTACTTCGGCTACAGCACCCCCTGGGGGTAT



TTTGATTTCAACAGATTCCACTGCCATTTCTCACCACGTGACTGGCAGCGACTCATCAACA



ACAATTGGGGATTCCGGCCCAAGAGACTCAACTTCAAGCTCTTCAACATCCAAGTCAAGG



AGGTCACGACGAATGATGGCGTCACGACCATCGCTAATAACCTTACCAGCACGGTTCAAG



TCTTCTCGGACTCGGAGTACCAGTTGCCGTACGTCCTCGGCTCTGCGCACCAGGGCTGCCT



CCCTCCGTTCCCGGCGGACGTGTTCATGATTCCGCAGTACGGCTACCTAACGCTCAACAA



TGGCAGCCAGGCAGTGGGACGGTCATCCTTTTACTGCCTGGAATATTTCCCATCGCAGAT



GCTGAGAACGGGCAATAACTTTACCTTCAGCTACACCTTCGAGGACGTGCCTTTCCACAG



CAGCTACGCGCACAGCCAGAGCCTGGACCGGCTGATGAATCCTCTCATCGACCAGTACCT



GTATTACCTGAACAGAACTCAGAATCAGTCCGGAAGTGCCCAAAACAAGGACTTGCTGTT



TAGCCGGGGGTCTCCAGCTGGCATGTCTGTTCAGCCCAAAAACTGGCTACCTGGACCCTG



TTACCGGCAGCAGCGCGTTTCTAAAACAAAAACAGACAACAACAACAGCAACTTTACCT



GGACTGGTGCTTCAAAATATAACCTTAATGGGCGTGAATCTATAATCAACCCTGGCACTG



CTATGGCCTCACACAAAGACGACAAAGACAAGTTCTTTCCCATGAGCGGTGTCATGATTT



TTGGAAAGGAGAGCGCCGGAGCTTCAAACACTGCATTGGACAATGTCATGATCACAGAC



GAAGAGGAAATCAAAGCCACTAACCCCGTGGCCACCGAAAGATTTGGGACTGTGGCAGT



CAATCTCCAGAGTGTACATCGATTGTTAATCAATAAACCGTTTAATTCGTTTCAGTTGAAC



TTTGGTCTCTGCGTATTTCTTTCTTATCTAGTTTCCATGGCTACGTAGATAAGTAGCATGGC



GGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGC



GCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGG



GCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAAGCATGCAATTAACTG



GCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTT



GCAGCACATCCCCCTTTCGCCAGCTGTATCAGCACACAATTGCCCATTATACGCGCGTAT



AATGGACTATTGTGTGCTGATA





TELN-
TATCAGCACACAATAGTCCATTATACGCGCGTATAATGGGCAATTGTGTGCTGATACAGC


SYNGDJ8-
TGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAG


BSRGI SEQ ID
TTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGT


NO: 24
GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAG



ATTTAATTAAGGCCTTAATTAGGCTAGCTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTC



ACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGT



GAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGGAGGG



GTGGAGTCGTGACGATATCCATGCGTCGACATAACGCGTTAGTATCTGCAGAGGGCCCTG



CGTATGAGTGCAAGTGGGTTTTAGGACCAGGATGAGGCGGGGTGGGGGTGCCTACCTGA



CGACCGACCCCGACCCACTGGACAAGCACCCAACCCCCATTCCCCAAATTGCGCATCCCC



TATCAGAGAGGGGGAGGGGAAACAGGATGCGGCGAGGCGCGTGCGCACTGCCAGCTTCA



GCACCGCGGACAGTGCCTTCGCCCCCGCCTGGCGGCGCGCGCCACCGCCGCCTCAGCACT



GAAGGCGCGCTGACGTCACTCGCCGGTCCCCCGCAAACTCCCCTTCCCGGCCACCTTGGT



CGCGTCCGCGCCGCCGCCGGCCCAGCCGGACCGCACCACGCGAGGCGCGAGATAGGGGG



GCACGGGCGCGACCATCTGCGCTGCGGCGCCGGCGACTCAGCGCTGCCTCAGTCTGCGGT



GGGCAGCGGAGGAGTCGTGTCGTGCCTGAGAGCGCAGCTGTGCTCCTGGGCACCGCGCA



GTCCGCCCCCGCGGCTCCTGGCCAGACCACCCCTAGGACCCCCTGCCCCAAGTCGCAGCC



AAGCTTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCC



ATAGAAGACACCGGGACCGATCCAGCCTCCGCGGATTCGAATCCCGGCCGGGAACGGTG



CATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACCGCCTATAGAGTCTATAG



GCCCACAAAAAATGCTTTCTTCTTTTAATATACTTTTTTGTTTATCTTATTTCTAATACTTTC



CCTAATCTCTTTCTTTCAGGGCAATAATGATACAATGTATCATGCCTCTTTGCACCATTCT



AAAGAATAACAGTGATAATTTCTGGGTTAAGGCAATAGCAATATTTCTGCATATAAATAT



TTCTGCATATAAATTGTAACTGATGTAAGAGGTTTCATATTGCTAATAGCAGCTACAATCC



AGCTACCATTCTGCTTTTATTTTATGGTTGGGATAAGGCTGGATTATTCTGAGTCCAAGCT



AGGCCCTTTTGCTAATCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGGCAACGT



GCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTGGGATTCGAACCGGTCGCCAC



CGGTCACAAGCAGGAAGTCAAAGACTTTTTCCGGTGGGCAAAGGATCACGTGGTTGAGG



TGGAGCATGAATTCTACGTCAAAAAGGGTGGAGCCAAGAAAAGACCCGCCCCCAGTGAC



GCAGATATAAGTGAGCCCAAACGGGTGCGCGAGTCAGTTGCGCAGCCATCGACGTCAGA



CGCGGAAGCTTCGATCAACTACGCGGACAGGTACCAAAACAAATGTTCTCGTCACGTGGG



CATGAATCTGATGCTGTTTCCCTGCAGACAATGCGAGAGAATGAATCAGAATTCAAATAT



CTGCTTCACTCACGGACAGAAAGACTGTTTAGAGTGCTTTCCCGTGTCAGAATCTCAACC



CGTTTCTGTCGTCAAAAAGGCGTATCAGAAACTGTGCTACATTCATCATATCATGGGAAA



GGTGCCAGACGCTTGCACTGCCTGCGATCTGGTCAATGTGGATTTGGATGACTGCATCTTT



GAACAATAAATGATTTAAATCAGGTATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGA



GGACACTCTCTCTGAAGGAATAAGACAGTGGTGGAAGCTCAAACCTGGCCCACCACCAC



CAAAGCCCGCAGAGCGGCATAAGGACGACAGCAGGGGTCTTGTGCTTCCTGGGTACAAG



TACCTCGGACCCTTCAACGGACTCGACAAGGGAGAGCCGGTCAACGAGGCAGACGCCGC



GGCCCTCGAGCACGACAAAGCCTACGACCGGCAGCTCGACAGCGGAGACAACCCGTACC



TCAAGTACAACCACGCCGACGCCGAGTTCCAGGAGCGGCTCAAAGAAGATACGTCTTTTG



GGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAAAAGAGGCTTCTTGAACCTCTTGGTC



TGGTTGAGGAAGCGGCTAAGACGGCTCCTGGAAAGAAGAGGCCTGTAGAGCACTCTCCT



GTGGAGCCAGACTCCTCCTCGGGAACCGGAAAGGCGGGCCAGCAGCCTGCAAGAAAAAG



ATTGAATTTTGGTCAGACTGGAGACGCAGACTCAGTCCCAGACCCTCAACCAATCGGAGA



ACCTCCCGCAGCCCCCTCAGGTGTGGGATCTCTTACAATGGCTGCAGGCGGTGGCGCACC



AATGGCAGACAATAACGAGGGCGCCGACGGAGTGGGTAATTCCTCGGGAAATTGGCATT



GCGATTCCACATGGATGGGCGACAGAGTCATCACCACCAGCACCCGAACCTGGGCCCTGC



CCACCTACAACAACCACCTCTACAAGCAAATCTCCAACAGCACATCTGGAGGATCTTCAA



ATGACAACGCCTACTTCGGCTACAGCACCCCCTGGGGGTATTTTGACTTTAACAGATTCC



ACTGCCACTTTTCACCACGTGACTGGCAGCGACTCATCAACAACAACTGGGGATTCCGGC



CCAAGAGACTCAGCTTCAAGCTCTTCAACATCCAGGTCAAGGAGGTCACGCAGAATGAA



GGCACCAAGACCATCGCCAATAACCTCACCAGCACCATCCAGGTGTTTACGGACTCGGAG



TACCAGCTGCCGTACGTTCTCGGCTCTGCCCACCAGGGCTGCCTGCCTCCGTTCCCGGCGG



ACGTGTTCATGATTCCCCAGTACGGCTACCTAACACTCAACAACGGTAGTCAGGCCGTGG



GACGCTCCTCCTTCTACTGCCTGGAATACTTTCCTTCGCAGATGCTGAGAACCGGCAACA



ACTTCCAGTTTACTTACACCTTCGAGGACGTGCCTTTCCACAGCAGCTACGCCCACAGCCA



GAGCTTGGACCGGCTGATGAATCCTCTGATTGACCAGTACCTGTACTACTTGTCTCGGACT



CAAACAACAGGAGGCACGACAAATACGCAGACTCTGGGCTTCAGCCAAGGTGGGCCTAA



TACAATGGCCAATCAGGCAAAGAACTGGCTGCCAGGACCCTGTTACCGCCAGCAGCGAG



TATCAAAGACATCTGCGGATAACAACAACAGTGAATACTCGTGGACTGGAGCTACCAAG



TACCACCTCAATGGCAGAGACTCTCTGGTGAATCCGGGCCCGGCCATGGCAAGCCACAAG



GACGATGAAGAAAAGTTTTTTCCTCAGAGCGGGGTTCTCATCTTTGGGAAGCAAGGCTCA



GAGAAAACAAATGTGGACATTGAAAAGGTCATGATTACAGACGAAGAGGAAATCAGGAC



AACCAATCCCGTGGCTACGGAGCAGTATGGTTCTGTATCTACCAACCTCCAGCAAGGTGT



ACATCGATTGTTAATCAATAAACCGTTTAATTCGTTTCAGTTGAACTTTGGTCTCTGCGTA



TTTCTTTCTTATCTAGTTTCCATGGCTACGTAGATAAGTAGCATGGCGGGTTAATCATTAA



CTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACT



GAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAG



CGAGCGAGCGCGCAGAGAGGGAGTGGCCAAGCATGCAATTAACTGGCCGTCGTTTTACA



ACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCC



TTTCGCCAGCTGTATCAGCACACAATTGCCCATTATACGCGCGTATAATGGACTATTGTGT



GCTGATA





TELN-GFAPG-
TATCAGCACACAATAGTCCATTATACGCGCGTATAATGGGCAATTGTGTGCTGATACAGC


DJ8-BSRGI
TGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAG


SEQ ID NO: 25
TTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGT



GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAG



ATTTAATTAAGGCCTTAATTAGGCTAGCTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTC



ACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGT



GAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGGAGGG



GTGGAGTCGTGACGATATCCATGCGTCGACATAACGCGTGATCTAACATATCCTGGTGTG



GAGTAGCGGACGCTGCTATGACAGAGGCTCGGGGGCCTGAGCTGGCTCTGTGAGCTGGG



GAGGAGGCAGACAGCCAGGCCTTGTCTGCAAGCAGACCTGGCAGCATTGGGCTGGCCGC



CCCCCAGGGCCTCCTCTTCATGCCCAGTGAATGACTCACCTTGGCACAGACACAATGTTC



GGGGTGGGCACAGTGCCTGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGAGA



AGCCCATTGAGCAGGGGGCTTGCATTGCACCCCAGCCTGACAGCCTGGCATCTTGGGATA



AAAGCAGCACAGCCCCCTAGGGGCTGCCCTTGCTGTGTGGCGCCACCGGCGGTGGAGAA



CAAGGCTCTATTCAGCCTGTGCCCAGGAAAGGGGATCAGGGGATGCCCAGGCATGGACA



GTGGGTGGCAGGGGGGGAGAGGAGGGCTGTCTGCTTCCCAGAAGTCCAAGGACACAAAT



GGGTGAGGGGAGAGCTCTCCCCATAGCTGGGCTGCGGCCCAACCCCACCCCCTCAGGCTA



TGCCAGGGGGTGTTGCCAGGGGCACCCGGGCATCGCCAGTCTAGCCCACTCCTTCATAAA



GCCCTCGCATCCCAGGAGCGAGCAGAGCCAGAGCAGGTTGGAGAGGAGACGCATCACCT



CCGCTGCTCGCGGGGATCCTCTAGAAGCTTCGTTTAGTGAACCGTCAGATCGCCTGGAGA



CGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGA



TTCGAATCCCGGCCGGGAACGGTGCATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGT



AAGTACCGCCTATAGAGTCTATAGGCCCACAAAAAATGCTTTCTTCTTTTAATATACTTTT



TTGTTTATCTTATTTCTAATACTTTCCCTAATCTCTTTCTTTCAGGGCAATAATGATACAAT



GTATCATGCCTCTTTGCACCATTCTAAAGAATAACAGTGATAATTTCTGGGTTAAGGCAAT



AGCAATATTTCTGCATATAAATATTTCTGCATATAAATTGTAACTGATGTAAGAGGTTTCA



TATTGCTAATAGCAGCTACAATCCAGCTACCATTCTGCTTTTATTTTATGGTTGGGATAAG



GCTGGATTATTCTGAGTCCAAGCTAGGCCCTTTTGCTAATCATGTTCATACCTCTTATCTTC



CTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAA



TTGGGATTCGAACCGGTCGCCACCGGTCACCAAGCAGGAAGTCAAAGACTTTTTCCGGTG



GGCAAAGGATCACGTGGTTGAGGTGGAGCATGAATTCTACGTCAAAAAGGGTGGAGCCA



AGAAAAGACCCGCCCCCAGTGACGCAGATATAAGTGAGCCCAAACGGGTGCGCGAGTCA



GTTGCGCAGCCATCGACGTCAGACGCGGAAGCTTCGATCAACTACGCGGACAGGTACCA



AAACAAATGTTCTCGTCACGTGGGCATGAATCTGATGCTGTTTCCCTGCAGACAATGCGA



GAGAATGAATCAGAATTCAAATATCTGCTTCACTCACGGACAGAAAGACTGTTTAGAGTG



CTTTCCCGTGTCAGAATCTCAACCCGTTTCTGTCGTCAAAAAGGCGTATCAGAAACTGTGC



TACATTCATCATATCATGGGAAAGGTGCCAGACGCTTGCACTGCCTGCGATCTGGTCAAT



GTGGATTTGGATGACTGCATCTTTGAACAATAAATGATTTAAATCAGGTATGGCTGCCGA



TGGTTATCTTCCAGATTGGCTCGAGGACACTCTCTCTGAAGGAATAAGACAGTGGTGGAA



GCTCAAACCTGGCCCACCACCACCAAAGCCCGCAGAGCGGCATAAGGACGACAGCAGGG



GTCTTGTGCTTCCTGGGTACAAGTACCTCGGACCCTTCAACGGACTCGACAAGGGAGAGC



CGGTCAACGAGGCAGACGCCGCGGCCCTCGAGCACGACAAAGCCTACGACCGGCAGCTC



GACAGCGGAGACAACCCGTACCTCAAGTACAACCACGCCGACGCCGAGTTCCAGGAGCG



GCTCAAAGAAGATACGTCTTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAAA



AGAGGCTTCTTGAACCTCTTGGTCTGGTTGAGGAAGCGGCTAAGACGGCTCCTGGAAAGA



AGAGGCCTGTAGAGCACTCTCCTGTGGAGCCAGACTCCTCCTCGGGAACCGGAAAGGCG



GGCCAGCAGCCTGCAAGAAAAAGATTGAATTTTGGTCAGACTGGAGACGCAGACTCAGT



CCCAGACCCTCAACCAATCGGAGAACCTCCCGCAGCCCCCTCAGGTGTGGGATCTCTTAC



AATGGCTGCAGGCGGTGGCGCACCAATGGCAGACAATAACGAGGGCGCCGACGGAGTGG



GTAATTCCTCGGGAAATTGGCATTGCGATTCCACATGGATGGGCGACAGAGTCATCACCA



CCAGCACCCGAACCTGGGCCCTGCCCACCTACAACAACCACCTCTACAAGCAAATCTCCA



ACAGCACATCTGGAGGATCTTCAAATGACAACGCCTACTTCGGCTACAGCACCCCCTGGG



GGTATTTTGACTTTAACAGATTCCACTGCCACTTTTCACCACGTGACTGGCAGCGACTCAT



CAACAACAACTGGGGATTCCGGCCCAAGAGACTCAGCTTCAAGCTCTTCAACATCCAGGT



CAAGGAGGTCACGCAGAATGAAGGCACCAAGACCATCGCCAATAACCTCACCAGCACCA



TCCAGGTGTTTACGGACTCGGAGTACCAGCTGCCGTACGTTCTCGGCTCTGCCCACCAGG



GCTGCCTGCCTCCGTTCCCGGCGGACGTGTTCATGATTCCCCAGTACGGCTACCTAACACT



CAACAACGGTAGTCAGGCCGTGGGACGCTCCTCCTTCTACTGCCTGGAATACTTTCCTTCG



CAGATGCTGAGAACCGGCAACAACTTCCAGTTTACTTACACCTTCGAGGACGTGCCTTTC



CACAGCAGCTACGCCCACAGCCAGAGCTTGGACCGGCTGATGAATCCTCTGATTGACCAG



TACCTGTACTACTTGTCTCGGACTCAAACAACAGGAGGCACGACAAATACGCAGACTCTG



GGCTTCAGCCAAGGTGGGCCTAATACAATGGCCAATCAGGCAAAGAACTGGCTGCCAGG



ACCCTGTTACCGCCAGCAGCGAGTATCAAAGACATCTGCGGATAACAACAACAGTGAAT



ACTCGTGGACTGGAGCTACCAAGTACCACCTCAATGGCAGAGACTCTCTGGTGAATCCGG



GCCCGGCCATGGCAAGCCACAAGGACGATGAAGAAAAGTTTTTTCCTCAGAGCGGGGTT



CTCATCTTTGGGAAGCAAGGCTCAGAGAAAACAAATGTGGACATTGAAAAGGTCATGAT



TACAGACGAAGAGGAAATCAGGACAACCAATCCCGTGGCTACGGAGCAGTATGGTTCTG



TATCTACCAACCTCCAGCAAGGTGTACATCGATTGTTAATCAATAAACCGTTTAATTCGTT



TCAGTTGAACTTTGGTCTCTGCGTATTTCTTTCTTATCTAGTTTCCATGGCTACGTAGATAA



GTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCC



CTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGG



CTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAAGCATG



CAATTAACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACT



TAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGTATCAGCACACAATTGCCCATTATA



CGCGCGTATAATGGACTATTGTGTGCTGATA









LITERATURE CITED

Berns K I, Giraud C. Biology of adeno-associated virus. Curr Top Microbiol Immunol. 1996; 218:1-23.


Chan K Y, Jang M J, Yoo B B, Greenbaum A, Ravi N, Wu W L, Sánchez-Guardado L, Lois C, Mazmanian S K, Deverman B E, Gradinaru V. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci. 2017 August; 20(8):1172-1179.


Heinrich J, Schultz J, Bosse M, Ziegelin G, Lanka E, Moelling K. Linear closed mini DNA generated by the prokaryotic cleaving-joining enzyme TelN is functional in mammalian cells. J Mol Med (Berl). 2002 October; 80(10):648-54.


Hordeaux J, Wang Q, Katz N, Buza E L, Bell P, Wilson J M. The Neurotropic Properties of AAV-PHP.B Are Limited to C57BL/6J Mice. Mol Ther. 2018 Mar. 7; 26(3):664-668.


Huovinen T, Brockmann E C, Akter S, Perez-Gamarra S, Ylä-Pelto J, Liu Y, Lamminmäki U. Primer extension mutagenesis powered by selective rolling circle amplification. PLoS One. 2012; 7(2):e31817.


Huovinen T, Julin M, Sanmark H, Lamminmäki U. Enhanced error-prone RCA mutagenesis by concatemer resolution. Plasmid. 2011 October; 66(1):47-51.


Hutchison C A 3rd, Smith H O, Pfannkoch C, Venter J C. Cell-free cloning using phi29 DNA polymerase. Proc Natl Acad Sci USA. 2005 Nov. 29; 102(48):17332-6.


Miyazaki J, Takaki S, Araki K, Tashiro F, Tominaga A, Takatsu K, Yamamura K. Expression vector system based on the chicken beta-actin promoter directs efficient production of interleukin-5. Gene. 1989 Jul. 15; 79(2):269-77.


Mouw M B, Pintel D J. Adeno-associated virus RNAs appear in a temporal order and their splicing is stimulated during coinfection with adenovirus. J Virol. 2000 November; 74(21):9878-88.


Niwa H, Yamamura K, Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991 Dec. 15; 108(2):193-9.


Nonnenmacher M, van Bakel H, Hajjar R J, Weber T. High capsid-genome correlation facilitates creation of AAV libraries for directed evolution. Mol Ther. 2015 April; 23(4):675-82.


Picher ÁJ, Budeus B, Wafzig O, Krüger C, García-Gómez S, Martínez-Jiménez M I, Díaz-Talavera A, Weber D, Blanco L, Schneider A. TruePrime is a novel method for whole-genome amplification from single cells based on TthPrimPol. Nat Commun. 2016 Nov. 29; 7:13296.


Powell S K, Rivera-Soto R, Gray S J. Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy. Discov Med. 2015 January; 19(102):49-57.


Rybchin V N, Svarchevsky A N. The plasmid prophage N15: a linear DNA with covalently closed ends. Mol Microbiol. 1999 September; 33(5):895-903.


Zolotukhin S, Byrne B J, Mason E, Zolotukhin I, Potter M, Chesnut K, Summerford C, Samulski R J, Muzyczka N. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 1999 June; 6(6):973-85.

Claims
  • 1. A method for generating a variant AAV capsid polypeptides, wherein relative to a parental AAV capsid polypeptide said variant AAV capsid polypeptides exhibit at least one of improved transduction or increased cell or tissue specificity, said method comprising: a) generating a library of variant AAV capsid polypeptides, wherein said library comprises i) a plurality of capsid polypeptides having a region of randomized sequence of 2, 3, 4, 5, 6, 7, 8, or 9 consecutive amino acids, orii) a plurality of capsid polypeptides from more than one parental AAV capsid polypeptide;b) generating an AAV vector library by cloning the capsid polypeptides of libraries (i) or (ii) into AAV vectors, wherein said AAV vectors comprise a first promoter and a second promoter, wherein said second promoter drives capsid mRNA expression in the absence of helper virus co-infection.
  • 2. The method of claim 1, wherein the first promoter is AAV2 P40 and the second promoter is a ubiquitous promoter.
  • 3. The method of claim 1, wherein the first promoter is AAV2 P40 and the second promoter is a cell-type-specific promoter.
  • 4. The method of claim 2 or claim 3, wherein the promoter is selected from any of those listed in Table 3.
  • 5. The method of claim 4, wherein the ubiquitous or cell-specific promoter allows the expression of RNA encoding the capsid polypeptides.
  • 6. The method of claim 5, further comprising the recovery of said RNA encoding the capsid polypeptides and determining the sequence of said capsid polypeptides.
  • 7. The method of claim 6, wherein the capsid polypeptides recovered exhibit increased target cell transduction or target cell specificity (tropism) as compared to a parental capsid polypeptide.
  • 8. The method of claim 7, wherein the target cell is a neuronal cell, a neural stem cell, an astrocyte, an oligodendrocyte, a microglia cell, a retinal cell, a tumor cell, a hematopoietic stem cell, an insulin producing beta cell, a lung epithelium cell, an endothelial cell, a liver cell, a skeletal muscle cell, a muscle stem cell, a muscle satellite cell, or a cardiac muscle cell.
  • 9. The method of claim 1, wherein said AAV vectors comprise a first promoter and a second promoter, wherein said second promoter is located at the downstream of the capsid gene and drives its anti-sense RNA expression in the absence of helper virus co-infection.
  • 10. The method of claim 9, wherein the first promoter is AAV2 P40 and the second promoter is a ubiquitous promoter.
  • 11. The method of claim 9, wherein the first promoter is AAV2 P40 and the second promoter is a cell-specific promoter.
  • 12. The method of claim 10 or claim 11, wherein the ubiquitous or cell-specific promoter allows the expression of gene encoding the capsid polypeptide of variant AAV in an anti-sense direction, resulting in the anti-sense RNA.
  • 13. The method of claim 12, wherein said method further comprises the recovery of said anti-sense RNA that can be converted to RNA encoding said variant AAV capsid polypeptide that is used to determining the sequence of said variant AAV capsid polypeptides.
  • 14. The method of claim 13, wherein said variant AAV capsid polypeptide exhibits increased target cell transduction or target cell specificity (tropism) as compared to a parental capsid polypeptide.
  • 15. The method of claim 14, wherein the target cell is a neuronal cell, a neural stem cell, an astrocyte, a oligodendrocyte, a microglia cell, a retinal cell, a tumor cell, a hematopoietic stem cell, an insulin producing beta cell, a lung epithelium cell, an endothelial cell, a liver cell, a skeletal muscle cell, a muscle stem cell, a muscle satellite cell, or a cardiac muscle cell.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of: U.S. Provisional Patent Application No. 62/740,310, filed Oct. 2, 2018, entitled AAV CAPSID LIBRARIES AND TISSUE TARGETING PEPTIDE INSERTS; U.S. Provisional Patent Application No. 62/839,883, filed Apr. 29, 2019 entitled REDIRECTION OF TROPISM OF AAV CAPSIDS; the contents of which are each incorporated herein by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/054345 10/2/2019 WO 00
Provisional Applications (2)
Number Date Country
62740310 Oct 2018 US
62839883 Apr 2019 US