1. Field of the Invention
This invention relates generally to the field of mass spectrometry and, more specifically, to the reduction of cross-talk between RF components of a mass spectrometer.
2. Description of the Related Art
Nowadays, RF components are standard devices for use in mass spectrometry. Examples of RF components used in a mass spectrometer include multipole ion guides, multipole mass analyzers (sometimes also called mass filters), pre/post filters, multipole collision cells, and multipole ion traps. Such RF components may be implemented using a configuration having an even number of elongate pole electrodes arranged equi-angularly on a circular perimeter about a common axis. This axis may be linear or non-linear, such as curved. Some mass spectrometers use RF components in tandem or adjacent to one another. Examples of such tandem devices can be found in U.S. Pat. No. 6,191,417 B1 (Douglas et al.) and U.S. Pat. No. 6,340,814 B1 (John Vandermey) where a tandem quadrupole mass filter assembly is disclosed. U.S. Pat. No. 6,576,897 B1 (Steiner et al.) shows a triple quadrupole mass analyzer with a curved ion collision cell which is operated in a so-called RF only mode.
The close proximity of the RF components results in RF coupling or cross-talk therebetween, which causes unwanted perturbations from one RF component on the other adjacent RF component. As a result of these external perturbations, the system performance of the mass spectrometer is degraded. For example, external perturbations on a mass analyzer as a consequence of RF coupling with an adjacent RF component can cause the mass resolution of the mass analyzer to change. Because resolution is related to the ion transmission of the mass analyzer, the overall sensitivity of the measurement will also be affected, which is undesirable.
One approach of overcoming the issues associated with cross-talk between adjacent RF components is placing one or more electrostatic lenses between them. A lens usually consists of a conductive sheet with an aperture and provides a shielding or screening effect impeding the RF voltages of one RF component cross-talking to the other RF component and vice versa. However, due to the lenses being arranged in between the end-faces of the adjacent RF components they also influence the ion transmission characteristics by, for instance, reducing the geometrical acceptance of the respective downstream RF component and also by creating an additional surface where stray ions can hit, charge-up and create an electric field distortion. The latter, in particular, increases the optimization complexity of the instrument.
Another approach of overcoming cross-talk or capacitive coupling is described in U.S. Pat. No. 8,314,385 B2 (Roy Moeller). Some of the electrodes of one RF component are provided with axial extensions which in part spatially overlap with angularly offset electrodes of the other RF component, however, without establishing electrical contact therewith. The overlap area and distance between extensions and electrodes is chosen such as to compensate for, preferably any, capacitive coupling between the adjacent RF components. This design generally works well, but requires additional effort and expense when fabricating the multipole electrodes to also include the extensions, and properly align them with those of another multipole RF component.
Hence, there is still a need for technically simple and economic means to reduce cross-talk or capacitive coupling between adjacent RF components in a mass spectrometer, however, without suffering the negative effects of geometrical acceptance degradation and/or (too much) electric field distortion.
The invention relates generally to an assembly of a first RF component and a second RF component in a mass spectrometer, the first RF component comprising a first set of electrodes and the second RF component comprising a second set of electrodes, wherein the RF components are located and aligned end-to-end to one another, and wherein a transverse dimension of the electrodes of the first set is smaller than that of the electrodes of the second set, the assembly further comprising a conductive electric field screen located at an outer periphery of the first set of electrodes and facing the electrodes of the second set as to reduce RF electric field cross-talk between the electrodes of the first set and those of the second set and vice versa.
With such an arrangement, the benefits of placing RF components in close proximity, such as high ion transmission from one RF component to the other, can be kept without suffering from impairments associated with other conventional arrangements, such as cross-talk in a lens-free and screen-free design or reduced geometrical acceptance in a lens-containing design, for instance.
In one embodiment, the electric field screen may be grounded. Alternatively, the electric field screen can be supplied with at least one of tunable RF and tunable direct current (DC) voltages. In such a case, at least one of the tunable RF and tunable DC voltages supplied to the electric field screen is preferably coordinated with at least one of RF and DC voltages supplied to the first or second set of electrodes. Alternatively, the electric field screen is maintained substantially at a DC bias potential applied uniformly to the electrodes of the first set.
In various embodiments, the first RF component is one of a multipole mass analyzer, a pre/post-filter, a multipole ion guide, a multipole collision cell, and a multipole ion trap and the second RF component is one of a multipole mass analyzer, a pre/post-filter, a multipole ion guide, a multipole collision cell, and a multipole ion trap. The beneficial effect of cross-talk elimination will be achieved with any assembly comprising an arbitrary combination of the aforementioned elements.
A longitudinal distance between the first and second sets of electrodes may be smaller than an inscribed radius of an inner width formed in between the electrodes of one of the first set and the second set.
In various embodiments, the inner width formed in between the electrodes of the first set can be different in one of shape and dimension from that formed in between the electrodes of the second set, preferably such that the end-faces of the electrodes in the two electrode sets feature little overlap, if any.
In further embodiments, the opposing front ends of the electrodes of at least one of the first set and second set can be modified by one of being hollow and being recessed at a side facing away from the inner width formed in between the electrodes, as to decrease the conductive mass and thereby reduce a cross-talk magnitude.
A side of the electric field screen facing the electrodes of the second set may be positioned about flush with an end-face of the electrodes of the first set in order to keep the influence of the electric field screen on the fringe fields formed in the gap between the end-faces of the opposing electrode sets low.
In various embodiments, the electric field screen can be one of an integral sheet member and mesh member, having a central aperture with a dimension as to accommodate the electrodes of the first set.
In one embodiment, the central aperture can resemble a clover leaf with a number of concave recesses that corresponds to a number of electrodes to be accommodated in the aperture. The recesses are preferably arranged such that they lie between the electrodes of the first set as to prevent electrostatic charging by stray ions. Alternatively, the central aperture may be one of circular and rectangular; in each case dimensioned such as to neatly fit the electrodes within. In a further variant the central aperture has the contour of a polygon whose sides closely surround the outer periphery of the electrodes of the first set.
In further embodiments, the electric field screen may comprise a number of two-dimensional members that is equal to a number of electrodes in the first set, each two-dimensional member being associated with one of the electrodes of the first set and effectively screening cross-talk thereto and therefrom. Preferably, the members are electrically connected to one another as to maintain a uniform electric potential at any time.
It is possible to locate at least one non-conductive spacer between an outer circumference of the electrodes of the first set and the electric field screen in order to reliably guarantee electrical insulation therebetween.
In various embodiments, an end-face of a front end of the electrodes of the first set can partially overlap with that of the electrodes of the second set when viewed along an axis of the assembly.
It is to be understood that the first set and the second set of electrodes each may comprise one of four, six, eight, ten, and twelve electrodes to form a quadrupole, hexapole, octopole, decapole, and dodecapole configuration, respectively.
The invention can be better understood by referring to the following figures. The elements in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention (often schematically). In the figures, corresponding parts are generally designated by identical last two digits of the reference numerals throughout the different views.
While the invention has been shown and described with reference to a number of embodiments thereof, it will be recognized by those skilled in the art that various changes in form and detail may be made herein without departing from the spirit and scope of the invention as defined by the appended claims.
In this example, the transverse dimension of the pole electrodes in relation to the longitudinal axis 100 differs between the two quadrupoles so that there is one quadrupole with thick electrodes 102 (
The effects of such cross-talk have been investigated on a tandem quadrupole assembly similar to the one depicted in
As apparent from the drawings, in general, the screen 208 is positioned and aligned such that it faces the end-faces 202A of the thick electrodes 202, thereby creating a substantial overlap between the side surfaces of the screen 208 and the end-faces of the thick electrodes 202 when viewed along the longitudinal axis 200 of the assembly. The screen 208 is preferably maintained at the same DC bias potential as the thin electrodes 204, at the periphery of which it is located, although in certain embodiments the screen can also be electrically connected to ground or a source (or sources) of RF and/or DC voltages (not shown), which should be tunable, in order that particularly favorable ion transmission properties can be set or adjusted either automatically or manually by an operator.
It is to be noted that in the embodiments of
As readily apparent from the figures, the screen 208 by virtue of its position and electrical properties does effectively block a large proportion of the cross-talk between the adjacent electrodes 202, 204, in particular owing to the restricted “field-of-view” between the front end portions 202A, 204A of the electrodes 202, 204. The effect of the screen 208 on the peak width behavior in a mass analyzer Q1 with changing RF voltages at a collision cell Q2, as set out with respect to
Further advantages of the screen 208 being located at the outer periphery of the thin electrodes 202 are that it does not impose any geometrical restriction on the acceptance of the respective downstream RF component, thereby keeping ion transmission rates favorably high, and that it hardly, if at all, influences the fringe fields in the gap between the adjacent RF components created by the combined RF and DC voltages effective therein. Thereby, the tuning of the ion transmission properties in the mass spectrometer is rendered easier to predict and handle.
The screen 308 can comprise an integral plate or mesh (as shown), made from conductive material, such as a metal, having a central aperture 312 which is dimensioned such as to accommodate the front ends of the RF component with the thin electrodes 304. The central aperture 312 may have a circular (as shown) or generally rectangular, in particular quadratic, shape. Similarly, the outer contour of the screen 308 can be circular (as shown) or quadratic, or can have any other suitable shape. An advantage of the circular aperture 312 shown in
The embodiment shown in
The number four of electrodes 504 and recesses 514 indicates that the design is intended for a quadrupole configuration. It goes without saying that multipole configurations with a higher number of electrodes, such as six, eight, ten, twelve, or even more electrodes, can also benefit from the advantageous screening effect facilitated by the present invention if the shape of the central aperture 512 of the screen 508 is adapted to this higher number.
The invention has been described with reference to a number of different embodiments thereof. It will be understood, however, that various aspects or details of the invention may be changed, or various aspects or details of different embodiments may be arbitrarily combined, if practicable, without departing from the scope of the invention. Generally, the foregoing description is for the purpose of illustration only, and not for the purpose of limiting the invention which is defined solely by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6121607 | Whitehouse et al. | Sep 2000 | A |
6919562 | Whitehouse et al. | Jul 2005 | B1 |