Claims
- 1. An optical encoder including:
A. a scale, the scale including an optical grating and an optical element; B. a sensor head, the sensor head including a light source, a detector array, and an index detector all of which are disposed on a substrate, the scale being disposed opposite the sensor head and being disposed for movement relative to the sensor head, a distance between the scale and a talbot imaging plane closest to the scale being equal to d, the sensor head being disposed within a region bounded by a first plane and a second plane, the first plane being separated from the scale by a distance substantially equal to n times d plus d times x, the second plane being separated from the scale by a distance substantially equal to n times d minus d times x, n being an integer and x being less than or equal to one half, the light source emitting a diverging beam of light, the diverging beam of light being directed towards the scale, light from the diverging beam of light being diffracted by the grating towards the detector array, light from diverging beam of light being diffracted by the optical element towards the index detector, the detector array providing a measurement of the position of the sensor head relative to the scale, the index detector providing a reference measurement of the position of the sensor head relative to the scale.
- 2. An encoder according to claim 1, wherein the substrate defines a trench and at least one of the light source and the detector array are disposed in the trench.
- 3. An encoder according to claim 1, further including a spacer disposed on the substrate, at least one of the light source and the detector array being disposed on the spacer.
- 4. An encoder according to claim 1, wherein the index detector includes a central photodetector, a left photodetector, and a right photodetector.
- 5. An encoder according to claim 1, wherein x is less than or equal to 0.2.
- 6. An encoder according to claim 1, wherein x is less than or equal to 0.1.
- 7. An optical encoder including:
A. a scale, the scale including an optical grating and an optical element; B. a sensor head, the sensor head including a light source and a detector array both of which are disposed on a substrate, the scale being disposed opposite the sensor head and being disposed for movement relative to the sensor head, a distance between the scale and a talbot imaging plane closest to the scale being equal to d, the sensor head being disposed within a region bounded by a first plane and a second plane, the first plane being separated from the scale by a distance substantially equal to n times d plus d times x, the second plane being separated from the scale by a distance substantially equal to n times d minus d times x, n being an integer and x being less than or equal to one half, the light source emitting a diverging beam of light, the diverging beam of light being directed towards the scale, light from the diverging beam of light being diffracted by the grating towards the detector array; C. a mask disposed between the scale and the sensor head, the mask defining an aperture, the mask remaining substantially fixed relative to the sensor head, the aperture being sized and positioned to substantially prevent fifth order beams diffracted from the grating from reaching the detector array.
- 8. An optical encoder including:
A. a scale, the scale including an optical grating and an optical element; B. a sensor head, the sensor head including a light source, a detector array, and an index detector all of which are disposed on a substrate, the scale being disposed opposite the sensor head and being disposed for movement relative to the sensor head, the light source emitting a diverging beam of light, the diverging beam of light being directed towards the scale, light from the diverging beam of light being diffracted by the grating towards the detector array, light from diverging beam of light being diffracted by the optical element towards the index detector, the detector array providing a measurement of the position of the sensor head relative to the scale, the index detector providing a reference measurement of the position of the sensor head relative to the scale, the index detector comprising three photodetectors.
- 9. An encoder according to claim 8, the three photodetectors of the index detector being a left photodetector, a right photodetector, and a central photodetector, each of the three photodetectors generating output signals.
- 10. An encoder according to claim 9, further including processing circuitry for generating a first signal, the first signal being representative of a difference between twice the output signal generated by the central photodetector minus a sum of the output signals generated by the left and right photodetectors.
- 11. An encoder according to claim 10, the processing circuitry also generating a second signal, the second signal being representative of minus one times the first signal.
- 12. An encoder according to claim 11, the processing circuitry also generating an index signal, the index signal being equal to a first value when the first signal is greater than the second signal plus an offset value and the first signal being equal to a second value otherwise.
- 13. An encoder according to claim 9, wherein the central photodetector comprises more than one photodetector.
REFERENCE TO RELATED APPLICATIONS
[0001] This application is a Non-Provisional Application of Provisional Application Serial No. 60/316,160 which is related to copending U.S. Patent Application Serial No. 60/316,121 entitled HARMONIC SUPPRESSING PHOTODETECTOR ARRAY [Attorney Docket No. MCE-018 (111390-140)] which is assigned to the assignee of the present invention and was filed contemporaneously with the present application. That application is incorporated herein in its entirety by reference.
Provisional Applications (2)
|
Number |
Date |
Country |
|
60316160 |
Aug 2001 |
US |
|
60316121 |
Aug 2001 |
US |