Embodiments of the present invention relate generally to apparatuses and systems including a high-electron mobility transistor device including a regrown Schottky layer.
High-electron mobility transistors (HEMTs) are used in a number of applications due at least in part to their simultaneous high-power, high-frequency, and low on-resistance operation. The wide-band gap characteristic of gallium nitride may provide particularly exceptional performance, with high-temperature operation capability.
Embodiments of the present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like structural elements. Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof wherein like numerals designate like parts throughout, and in which is shown by way of illustration embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments in accordance with the present invention is defined by the appended claims and their equivalents.
Various operations may be discussed and/or illustrated as multiple discrete operations in turn, in a manner that may be helpful in understanding embodiments of the present invention; however, the order of description should not be construed to imply that these operations are order dependent.
The description may use the phrases “in an embodiment,” “in embodiments,” “in some embodiments,” or “in various embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments of the present invention, are synonymous.
As used herein, “coupled,” along with its derivatives, may mean one or more of the following. “Coupled” may mean a direct physical or electrical coupling or connection, wherein there is no other element coupled or connected between the elements that are said to be coupled with each other. “Coupled” may also mean an indirect physical or electrical coupling or connection, where one or more other elements are coupled or connected between the elements that are said to be coupled with each other.
The description may use perspective-based descriptions such as up/down, back/front, and top/bottom. Such descriptions are merely used to facilitate the discussion and are not intended to restrict the application of embodiments of the present invention.
For the purposes of the present disclosure, the phrase “A/B” means A or B. The phrase “A and/or B” means (A), (B), or (A and B). The phrase “at least one of A, B, and C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C). The phrase “(A)B” means (B) or (A and B), that is, A is an optional element. In addition, although embodiments of the present disclosure may be shown and described as including a particular number of components or elements, embodiments are not limited to any particular number of components or elements.
This disclosure is generally drawn, inter alia, to apparatuses and systems including a HEMT device including a regrown Schottky layer. In various embodiments, the HEMT device may include a buffer layer and a group III-V layer over the buffer layer. The regrown Schottky layer may be over the buffer layer such that the Schottky layer is between a source contact and a drain contact.
The HEMT 100 may provide a low-resistance contact structure at least in that there is low-resistance contact to the 2-dimensional electron gas (at the interface of the buffer layer 16 and the group III-V layer 18) by having direct contact to the group III-V layer 18. To that end, the group III-V layer 18 may comprise a highly-doped group III-V material. Rather than having a Schottky layer that spans across the structure such that the Schottky layer is between the ohmic contacts 20, 22 and the buffer layer 16, the Schottky layer 10 is instead regrown in the area between the gate 24 and the underlying layers (layers 18, 16, 14, 12), and between the ohmic contacts 20, 22. By providing the low-resistance path using the highly-doped n+ group III-V layer 18, it may also be possible to anneal the contacts 20, 22 at a lower temperature than would otherwise be necessary for providing good contact between the contacts 20, 22 and the n+ group III-V layer 18.
An example method for forming a HEMT device, such as, for example, HEMT device 100, is illustrated in
As illustrated in
The nucleation layer 14 may comprise aluminum nitride or another suitable material for improving the quality of the buffer layer 16. The nucleation layer may comprise, for example, aluminum nitride. In some embodiments, the nucleation layer 14 may comprise gallium nitride or aluminum gallium nitride. In various embodiments, the nucleation layer 14 may be omitted entirely from the HEMT 100 structure.
The buffer layer 16 may then be formed over the nucleation layer when present, as illustrated in
The buffer layer 16 may comprise a suitable gallium-nitride-based material. The gallium-nitride-based material may comprise gallium nitride or aluminum gallium nitride, or a combination thereof. In various embodiments, the buffer layer 16 may be an iron- or carbon-doped gallium-nitride-based material or a superlattice gallium-nitride-based material.
The group III-V layer 18 may be formed over the buffer layer 16, as illustrated in
A mask layer 26 may be formed over the group III-V layer 18, as illustrated in
The patterned structure may then be cleaned, if desired, and then the Schottky layer 10 may be regrown, as illustrated in
In various embodiments, the regrown Schottky layer 10 comprises an epitaxial material. The regrown Schottky layer 10 may comprise gallium nitride, aluminum gallium nitride, indium aluminum nitride, aluminum nitride, indium gallium nitride, gallium boron nitride, or aluminum boron nitride, or a combination of two or more thereof.
Depending on the epitaxial material regrown for forming the regrown Schottky layer 10, a polycrystalline layer 30 may form over the mask layer 26 during the regrowth operation, as also illustrated in
The mask layer 26 and polycrystalline layer 30, if present, may then be removed using a suitable etch operation, leaving the regrown Schottky layer 10, as illustrated in
Device processing may continue with gate 24 definition and metallization on the regrown Schottky layer 10, and ohmic metallization for forming the source contact 20 and the drain contact 22 on the remaining group III-V layer 18 regions to form the HEMT device 100, as illustrated in
Although not illustrated here, the HEMT 100 may include additional layers depending on the application.
In various embodiments, the group III-V layer 18 may be etched prior to forming the Schottky layer 10, as illustrated by the method of
After etching the group III-V layer 18, the patterned structure may be cleaned, if desired, and then the Schottky layer 10 may be regrown directly on the buffer layer 16, as illustrated in
In various embodiments, the regrown Schottky layer 10 comprises an epitaxial material. The regrown Schottky layer 10 may comprise gallium nitride, aluminum gallium nitride, indium aluminum nitride, aluminum nitride, indium gallium nitride, gallium boron nitride, or aluminum boron nitride, or a combination of two or more thereof.
Depending on the epitaxial material regrown for forming the regrown Schottky layer 10, a polycrystalline layer 30 may be formed over the mask layer 26 during the regrowth operation, as also illustrated in
The mask layer 26 and polycrystalline layer 30, if present, may then be removed using a suitable etch operation, leaving the regrown Schottky layer 10, as illustrated in
Device processing may continue with gate 24 definition and metallization on the regrown Schottky layer 10, and ohmic metallization for forming the source contact 20 and the drain contact 22 on the remaining group III-V layer 18 regions to form the HEMT device 200, as illustrated in
Although not illustrated here, the HEMT 200 may include additional layers depending on the application.
In various embodiments, one or more etch stop layers may be used for facilitating the etch operation(s), as illustrated by the example method for forming a HEMT device in
As illustrated in
The etch stop layer 32 may comprise any material suitable for the purpose. In various embodiments, the etch stop layer 32 may comprise indium gallium nitride, aluminum nitride, or any other suitable material.
A mask layer 26 may then be formed over the group III-V layer 18, as illustrated in
As illustrated in
The patterned structure may then be cleaned, if desired, and then the Schottky layer 10 may be regrown directly on the buffer layer 16, as illustrated in
In various embodiments, the regrown Schottky layer 10 comprises an epitaxial material. The regrown Schottky layer 10 may comprise gallium nitride, aluminum gallium nitride, indium aluminum nitride, aluminum nitride, indium gallium nitride, gallium boron nitride, or aluminum boron nitride, or a combination of two or more thereof.
Depending on the epitaxial material regrown for forming the regrown Schottky layer 10, a polycrystalline layer 30 may form over the mask layer 26 during the regrowth operation, as also illustrated in
The mask layer 26 and polycrystalline layer 30, if present, may then be removed using a suitable etch operation, leaving the regrown Schottky layer 10, as illustrated in
Device processing may continue with gate 24 definition and metallization on the regrown Schottky layer 10, and ohmic metallization for forming the source contact 20 and the drain contact 22 on the remaining group III-V layer 18 regions to form the HEMT device 300, as illustrated in
Although not illustrated here, the HEMT 300 may include additional layers depending on the application.
Turning now to
From block 2202, the method 2200 may proceed to block 2204 by forming a mask including an opening over the group III-V layer. The mask layer may comprise any material suitable for photolithographic patterning and etching operations including, for example, silicon nitride. The opening may be formed by a suitable etch operation. The opening may extend to the group III-V layer.
From block 2204, the method 2200 may proceed to block 2206 by regrowing a Schottky layer within the opening. The Schottky layer may be regrown using any suitable method including, for example, molecular beam epitaxy, vapor-phase epitaxy, solid-phase epitaxy, or liquid-phase epitaxy. In various embodiments, the regrown Schottky layer comprises an epitaxial material such as gallium nitride, aluminum gallium nitride, indium aluminum nitride, aluminum nitride, indium gallium nitride, gallium boron nitride, or aluminum boron nitride, or a combination of two or more thereof.
From block 2206, the method 2200 may proceed to block 2208 by removing from the group III-V layer the mask having the Schottky layer within the opening.
Although not illustrated in the flow diagram, the method 2200 may further include forming a source contact on the group III-V layer and abutting the Schottky layer, and forming a drain contact on the of the group III-V layer and abutting the Schottky layer such that the Schottky layer is between the source contact and the drain contact.
Embodiments of HEMTs described herein, and apparatuses including such HEMTs, may be incorporated into various other apparatuses and systems. A block diagram of an example system 2300 is illustrated in
The RF power amplifier module 2302 may receive an RF input signal, RFin, from the transceiver 2304. The RF power amplifier module 2304 may amplify the RF input signal, RFin, to provide the RF output signal, RFout. The RF input signal, RFin, and the RF output signal, RFout, may both be part of a transmit chain, respectively noted by Tx-RFin and Tx-RFout in
The amplified RF output signal, RFout, may be provided to an antenna switch module (ASM) 2306, which effectuates an over-the-air (OTA) transmission of the RF output signal, RFout, via an antenna structure 2308. The ASM 2306 may also receive RF signals via the antenna structure 2308 and couple the received RF signals, Rx, to the transceiver 2304 along a receive chain.
In various embodiments, the antenna structure 2308 may include one or more directional and/or omnidirectional antennas, including, e.g., a dipole antenna, a monopole antenna, a patch antenna, a loop antenna, a microstrip antenna or any other type of antenna suitable for OTA transmission/reception of RF signals.
The system 2300 may be any system including power amplification. In various embodiments, the system 2300 may be particularly useful for power amplification at high radio-frequency power and frequency. For example, the system 2300 may be suitable for any one or more of terrestrial and satellite communications, radar systems, and possibly in various industrial and medical applications. More specifically, in various embodiments, the system 2300 may be a selected one of a radar device, a satellite communication device, a mobile handset, a cellular telephone base station, a broadcast radio, or a television amplifier system.
Although the present disclosure has been described in terms of the above-illustrated embodiments, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope of the present disclosure. Those with skill in the art will readily appreciate that embodiments in accordance with the present disclosure may be implemented in a very wide variety of embodiments. This description is intended to be regarded as illustrative instead of restrictive.
Number | Name | Date | Kind |
---|---|---|---|
20010040246 | Ishii | Nov 2001 | A1 |
20080286915 | Dungan et al. | Nov 2008 | A1 |
20090072240 | Suh et al. | Mar 2009 | A1 |
20090072269 | Suh et al. | Mar 2009 | A1 |
20090078966 | Asai et al. | Mar 2009 | A1 |
20090140262 | Ohki et al. | Jun 2009 | A1 |
20100001318 | Bito | Jan 2010 | A1 |
20100072516 | Tamura et al. | Mar 2010 | A1 |
20110037100 | Hikita et al. | Feb 2011 | A1 |
20110215424 | Sato | Sep 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20120302178 A1 | Nov 2012 | US |