Krishniamoorthy et al., ““Application of Critical Compositional Difference” Concept to the Growth of Low Dislocation Density ((<104/cm2) InxGa1-xAs (x≲0.5) on GaAs,” J. Appl. Phys., vol. 72, No. 5, (Sep. 1, 1992): 1752-1757. |
Chang et al., “Strain Relaxation of Compositionally Graded InxGa1-xAs Buffer Layers for Modulation-doped In0.3Ga0.7As Heterostructures,” Appl. Phys. Lett., vol. 60 No. 9, (Mar. 2, 1992): 1129-1131. |
Lord et al., “Graded Buffer Layers for Molecular Beam Epitaxail Growth of High In Content InGaAs On GaAs For Optoelectronics,” Mat. Res. Soc. Symp. Proc., vol. 281, (1993): 221-225. |
Molina et al., “Strain Relief in Linearly Composition Buffer Layers: A Design Scheme to Grow Dislocation-Free (<105cm-2) and Unstrained Epilayers,” Appl. Phys. Lett., vol. 65 No. 19, (Nov. 7, 1994): 2460-2462. |
Goorsky et al., “Structural Properties of Highly Mismatched InGaAs-Based Devices Grown by Molecular Beam Epitaxy on GaAs Substrates,” J. Vac. Sci. Technol., (Mar./Apr. 1994): 1034-1037. |
Molina et al., “Dislocation Distribution in Graded Composition InGaAs Layers,” Mat. Res. Soc. Symp. Proc., vol. 325, (1994): 223-228. |
Ferrari et al., “Mechanisms of Strain Release in Molecular Beam Epitaxy Grown InGaAs/GaAs Buffer Heterostructures,” Materials Science and Engineering, (1994): 510-514. |
Sigle et al. Strain Relaxation in Graded InGaAs And InP Buffer Layers On GaAs (001), Scanning Microscopy, vol. 8 No. 4 (1994): 897-904. |
Goldman et al., “Strain Relaxation In Compositionally Graded InGaAS/GaAs Heterosctructures,” Scanning Microscopy, vol. 8, No. 1, (1994): 905-912. |
Eldredge et al., “Effect of Substrate Miscut on the Structural Properties of InGaAs Linear Graded Buffer Layers Grown by Molecular-Beam Epitaxy on GaAs,” J. Vac. Sci. Technol., vol. 13 No. 2 (Mar./Apr. 1995): 689-691. |
Rammohan et al., Study of αm—scale Spatioal Variations in Strain of a Compositionally Step-Graded InxGa1-xAs/GaAs(001) Heterostructure, Appl. Phys. Lett., vol. 66 No. 7, (Feb. 13, 1995): 869-871. |
Goldman et al., Effects of Substrate Misorientation Direction On Strain Relaxation At InGaAs/GaAs(001) Interfaces, Mat. Res. Soc. Symp. Proc., vol. 379, (1995): 21-16. |
Lee et al., “Reduction of Defects In Highly Lattice Mismatched InGaAs Grown On GaAs By MOCVD,” Mat. Res. Soc. Symp., vol. 355, (1995): 649-654. |
Goldman et al., “Correlation of Buffer Strain Relaxation Modes with Transport Properties of Two-Dimensional Electron Gases,” J. Appl. Phys., vol. 80 No. 12, (Dec. 15, 1996): 6849-6854. |
Chyi et al. Material Properties of Compositional Graded InxGa1-xAs and InxAl1-xAs Epilayers Grown on GaAs Substrates, J. Appl. Phys., vol. 79 No. 11, (Jun. 1, 1996): 8367-8370. |
Lee et al., “Optical Properties of InGaAs Linear Graded Buffer Layers on GaAs Grown by Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett., (May 20, 1996). |
Uchida et al., “A 1.3 αm Strained Quantum Well Laser on a Graded InGaAs Buffer with a GaAs Substrate,” Journal of Electronic Materials, vol. 25 No. 4 (1996): 581-584. |
Valtueña et al., “Influence of the Surface Morphology on the Relaxation of Low-Strain InxGa1-xAs Linear Buffer Structure,” Journal of Crystal Growth, (1997): 281-291. |
Uchida et al., “CW Operation of a 1.3-αm Strained Quantum Well Laser on a Graded InGaAs Buffer with a GaAs substrate”, Proceedings of the International Conference on Indium Phosphate and related materials, Conf. 7, May 9, 1995, pp. 22-25. |
Bulsara et al., “Relaxed InxGA(1-x)As graded buffers grown with organometallic vapor phase epitaxy on GaAs”, Applied Physics Letters, vol. 72, No. 13, Mar. 30,1998, pp. 1608-1610. |