This disclosure relates to multi-processor systems for processing packets of information, for example, in the fields of networking and storage
Network devices, e.g., firewalls, switches, routers, storage/compute servers or other network attached devices often utilize multiple core processor systems or multiple-processing unit systems to achieve increased performance. However, processing streams of data, such as network packets, with systems having multiple processing units can present many programming challenges. For example, it is often difficult to move processing of a packet or set of packets from one processing unit to another, such as for load balancing across the processing units. Transitioning program execution from one processing unit to another can be difficult and often requires brute force movement or mapping of state, cached data, and other memory pieces associated with the program execution. Maintaining consistency of cached data and other memory across processing units while achieving high-throughput and utilization is often extremely technically challenging. For example, when using coherent memory, significant processing overhead and delays may result from operations performed by a memory coherence protocol. When using non-coherent memory, the overhead of the coherence protocol is avoided, but some processing units might not have access to data cached by another processing unit.
For example, memory can be shared in multiprocessor or multi-core systems having two or more simultaneously operating processors, each having one or more local memory caches. However, if one processor or core changes data at a particular memory location, procedures generally exist to notify all processors or cores of the change, to invalidate the respective local memory caches or refresh the caches with the updated information. This procedure is commonly known as a memory coherence protocol, and memory operating in accordance with the protocol is known as coherent memory. Typically, supporting coherent memory requires tracking cache line state and handling associated transactions for all memory blocks that are cached within the processor or processing cores and other elements of the system.
In contrast, non-coherent memory does not provide for tracking and updating data to maintain cache coherency. Without the processing overhead and delays associated with conventional coherent memory systems, memory access and utilization can be very fast and efficient. There is a large body of applications that do not benefit from a coherent memory system, particularly ones that process data linearly (e.g., process once, therefore have accesses with poor temporal locality). These “stream” applications, such as networking and storage infrastructure workloads, are increasingly important in large scale datacenters. For such applications, using a coherent memory system tends to result in significant overhead with little benefit in return.
Techniques are described in which a system having multiple processing units processes a series of work units in a processing pipeline, where some or all of the work units access or manipulate data stored in non-coherent memory. In some examples, processing units may be processing cores, and in other examples, processing units may be virtual processors, hardware threads, hardware blocks, or other sub-processing core units. As described herein, a processing unit may perform operations on data as specified by a work unit. While processing the work unit, the processing unit may cache data from non-coherent memory into a segment of a cache associated with the processing unit, and perform operations specified by the work unit using that cached data. Once the work unit has completed processing, the processing unit may initiate a cache flush for the segment (or a portion of the segment) to write the dirty cache data back to the non-coherent memory. Transfer of ownership of the non-coherent memory or a portion of the non-coherent memory may be mediated by delivery of a work unit message to another processing unit. The delivery of the work unit message may be interlocked with (gated by) the flush of the data in the relevant cache segment.
In one example, this disclosure describes a relay consistent memory management method, comprising: receiving a first work unit for execution by a first processor of a multi-processor system having the first processor and a second processor coupled to a memory system; executing the first work unit, with the memory system being accessed; generating a second work unit for execution by the second processor upon execution of the first work unit; updating the memory system; and providing relay consistency by delaying processing of the second work unit by the second processor until the memory system is updated.
In another example, this disclosure describes a data processing system, comprising: a memory system; a first processor able to access a memory system, receive a first work unit for execution, and generate a second work unit for execution by a second processor upon execution of the first work unit; a memory management system connected to the first processor and able to update the memory system, wherein execution of the second work unit by the second processor occurs after memory system update to provide relay consistency.
In another example, this disclosure describes a stream processing system, comprising: multiple processors configured to accept and stream information, including a first processor able to access a memory system, receive a first work unit for execution, and generate a second work unit for execution by a second processor upon execution of a first work unit; a memory management system connected to the first processor and able to update the memory system, wherein execution of the second work unit by the second processor occurs after memory system update to provide relay consistency.
In another example, this disclosure describes a system comprising: a multi-processor system having a first processing unit and a second processing unit; and a memory system having coherent memory and non-coherent memory accessible by both the first processing unit and the second processing unit, wherein the memory system is configured to maintain cache coherency of the first processing unit and the second processing unit for the coherent memory without maintaining cache coherency for the first processing unit and the second processing unit with respect to the non-coherent memory; wherein the first processing unit is configured to: execute a first work unit, wherein executing the first work unit includes accessing data stored in the non-coherently memory of the memory system, generate a second work unit for execution by the second processing unit, update a portion of the non-coherent memory of the memory system, and transfer ownership of the portion of the non-coherent memory of the memory system to the second processing unit upon completion of the update; and wherein the second processing unit is configured to: delay execution of the second work unit before the first processing unit transfers ownership of the portion of the non-coherent memory of the memory system, and execute, after the first processing unit transfers ownership of the portion of the non-coherent memory of the memory system, the second work unit, wherein executing the second work unit includes accessing data stored in the portion of the non-coherent memory of the memory system.
The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the disclosure will be apparent from the description and drawings, and from the claims.
Non-limiting and non-exhaustive embodiments of the present disclosure are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various figures unless otherwise specified.
In the following description, reference is made to the accompanying drawings that form a part thereof, and in which is shown by way of illustrating specific exemplary embodiments in which the disclosure may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the concepts disclosed herein, and it is to be understood that modifications to the various disclosed embodiments may be made, and other embodiments may be utilized, without departing from the scope of the present disclosure. The following detailed description is, therefore, not to be taken in a limiting sense.
The present disclosure describes a system that supports a memory model that provides for consistent ordering of memory operations at multiple memory address locations with respect to multiple processors. Since information relating to consistent memory operations is relayed between processors, this memory model and memory management system is herein referred to as “relay consistent” and is well suited for “stream” applications that process data using a succession of processors. In one embodiment, a system has a first and a second processor, with each processor able to access a memory system. A first work unit is received for execution by the first processor, with the memory system being accessed. A second work unit is generated for execution by a second processor upon execution of a first work unit. Only after the memory system is updated does processing of the second work unit by the second processor occur. This work unit message based ordering provides relay consistency for memory operations of multiple processors. As discussed in this disclosure, processors can include, but are not limited to general purpose processors, multi-core processors, individual cores, co-processors, specialized computational hardware such as cryptographic or graphical processors, virtual processers, process threads, and/or any other suitable logic component or process capable of computational tasks.
As described herein, processing of stream information may be associated with a “work unit.” As one example, a Work Unit (WU) is a container that is associated with a stream state and used to describe (i.e. point to) data within a stream (stored in memory) along with any associated meta-data and operations to be performed on the data. For example, work units may dynamically originate within a peripheral unit of coupled to the multi-processor system (e.g. injected by a networking unit, a host unit, or a solid state drive interface), or within a processor itself, in association with one or more streams of data, and terminate at another peripheral unit or another processor of the one of system. The work unit is associated with an amount of work that is relevant to the entity executing the work unit for processing a respective portion of a stream.
The described system can also support coherent memory caching for certain operations. Commonly, data requiring coherent memory is often processor generated “flow data”. Flow data structure benefits from coherent memory, primarily because multiple processors or cores need to access and modify the flow data. For example, information carried by a flow can include state for stateful protocols, counters to count the number of packets inspected, state for error handling protocols, and other computationally useful data.
Stream processing is a type of data processing architecture well suited for high performance and high efficiency processing. A stream is defined as an ordered, unidirectional sequence of computational objects that can be of unbounded or undetermined length. In a simple embodiment, a stream originates in a producer and terminates at a consumer, and is operated on sequentially. In some embodiments, a stream can be defined as a sequence of stream fragments; each stream fragment including a memory block contiguously addressable in physical address space, an offset into that block, and a valid length.
Streams can be discrete, such as a sequence of packets received from the network, or continuous, such as a stream of bytes read from a storage device. A stream of one type may be transformed into another type as a result of processing. For example, TCP receive (Rx) processing consumes segments (fragments) to produce an ordered byte stream. The reverse processing is performed in the transmit (Tx) direction. Independently of the stream type, stream manipulation requires efficient fragment manipulation, where a fragment is as defined above.
An application may operate on a stream in three broad ways: the first is protocol processing, which consists of operating on control information or headers within the stream; the second is payload processing, which involves significant accessing of the data within the stream; and third is some combination of both control and data access. A particularly important case of protocol processing is network packet processing, which must be very high performance to absorb incoming traffic at line rate. Traditional, host side data delivery can also be mapped to the stream model. For example, delivery to network interface card (NIC) buffers in host memory involve consuming a stream of packet buffers (fragments), and generating a stream of completions that consume a stream of notification buffers. Similarly, delivery to application buffers (e.g. SCSI buffers) involves consuming a stream of scatter descriptors (fragments) to place the stream of received payload.
As seen with respect to system 10 of
In the disclosed embodiment illustrated with respect to system 20 of
Stream processing can be divided into work units executed at a number of intermediate processors (or none) between source and destination. Depending on the amount of work to be performed at each stage, the number and type of intermediate processors that are involved can vary. For example, processing an encrypted stream may involve a cryptographic processor, which is not required in processing a clear text stream
Transfer of ownership of a memory buffer may be mediated by a work unit message, which in some embodiments can be a small message that is delivered, using an on-chip fabric, to the processing core as a low latency notification. A pointer to a buffer can be included for processing. As an example, a work unit message may be a 4-word message. The first word may be a header, containing information necessary for message delivery, and information used for work unit execution, such as a pointer to a function for execution by a processor core. Other words may contain parameters to be passed to the function call, such as pointers to data in memory, parameter values, or contain other information used in executing the work unit. The work unit message header may specify a core that processes the work unit corresponding to a packet. The work unit message may contain a parameter that is the address of the memory where the packet is stored. Another parameter may contain information associated to the packet by the interface block. In one embodiment, receiving a work unit is signaled by receiving a message in a work unit receive queue. A work unit queue is associated with a processing element, such as a core, and is addressable in the header of the work unit message. A core can generate a work unit message by executing store instructions to addresses mapped to a work unit transmit queue. The store instructions write the contents of the message to the queue. The release of a work unit message may be interlocked with (gated by) flushing of the core's dirty cache data.
Each work unit message may be delivered (including signaling, e.g., fast interrupt) such that processing by a processor may start very quickly after a work unit message is received. The utilization of work unit messages as a way of messaging to ensure the synchronization of the non-coherent memory system is done automatically when the execution control is passed from executing one work unit message to executing another. An example of utilization of work unit messages for a smooth flow of operations in a network unit is provided below.
In one example, a network unit of a multi-core processor may receive a networking packet at first time. The network unit may allocate space in a buffer memory and may fill the allocated buffer memory space with bits from the networking packet by performing a write operation into the buffer memory. The buffer memory may send an acknowledgment to the network unit at a second time. Then, the network unit may send a first work unit message to a first processor core, to start processing of the networking packet. The first core may determine what the flow of operations may be for this particular packet, and this may take place. There may be a few read and/or write operations involved during this time frame. Then, first core may send a second work unit message to a second core, which may be the core responsible for processing packets of that flow. The processing by second core may then take place. Next, higher-level processing (e.g., deep packet inspection) may take place, and a third work unit message may be sent from a second core to a third core. Processing by third core may be completed, and subsequently, the third core may send a fourth work unit message to a host unit. There may also be a number of transactions to free up the allocated buffer memory. Communication via work unit messages may be utilized to ensure the synchronization of the non-coherent memory system is done automatically when the execution control is passed from executing one message by one core to executing another message by another core.
Advantageously, operating on streams, pipelined processors, or other synchronizable computational units using work units serves several purposes. Data movement can be minimized by exchanging and operating on pointers as much as possible. Processing efficiency is improved due to conveyance of useful meta-data, such as processing results and control state. Atomic and consistent processing of packets and associated data is enabled, as is natural pipelining and flow control by subdividing the stream into self-contained work elements that are moved at each step in relation to computational consumption rate of downstream stages.
Apparatus 300 may include some or all of those components shown in
Each of the cores 350(1)-350(N) may be configured, adapted, designed or otherwise arranged to process one or more events or activities related to a given data packet such as, for example, a networking packet or a storage packet. Networking unit 370 may be configured, adapted, designed or otherwise arranged to receive one or more data packets from and to transmit one or more data packets to one or more external devices. RAM 340 may function as a messaging interface and may include an egress work unit (WU) queue 345.
Memory controller 330 may be communicatively coupled to memory device 320 (including non-coherent memory device 322 and coherent memory device 324), cores 350(1)-350(N), networking unit 370, RAM 340 and cache 360. Memory controller 330 may control access to memory device 320 by cores 350(1)-350(N) and any number of external clients. Memory controller 330 may be configured, adapted, designed or otherwise arranged to perform a number of operations to render memory management in accordance with the present disclosure. Accordingly, referring to
In some embodiments, memory controller 330 may be capable of mapping accesses from one of the cores 350(1)-350(N) to either of non-coherent memory device 322 and coherent memory device 324. In some embodiments, in mapping the accesses, memory controller 330 may map the accesses based on one or more criteria. For instance, the criteria may include an address range, an instruction or an operation code within the instruction, a special access, or a combination thereof.
In some embodiments, memory controller 330 may be capable of mapping a virtual address to a physical address for non-coherent memory device 322 by performing a number of operations. For instance, memory controller 330 may map to a buffer memory of non-coherent memory device 322 using a TLB entry for a discrete stream of data packets. Moreover, memory controller 330 may map to a stream handle using the TLB entry for a continuous stream of data packets.
In some embodiments, memory controller 330 may be capable of flushing modified cache lines associated with a buffer memory of non-coherent memory device 322 after use by a first core of the plurality of cores 350(1)-350(N). Moreover, memory controller 330 may be capable of transferring ownership of the buffer memory to a second core of the plurality of cores 350(1)-350(N) after the flushing.
In some embodiments, memory controller 330 may be capable of transferring ownership of a segment of the plurality of segments from a first core of the plurality of cores 350(1)-350(N) to a second core of the plurality of cores 350(1)-350(N) by performing a number of operations. For instance, memory controller 330 may hold onto a message generated by the first core. Additionally, memory controller 330 may flush the segment upon the first core completing an event using the segment. Furthermore, memory controller 330 may provide the message to the second core in response to both of: (1) there being no outstanding write operations for the segment, and (2) the segment not being flushed currently.
In some embodiments, the plurality of cores 350(1)-350(N) may be capable of processing a plurality of events related to each data packet of the one or more data packets, received by networking unit 370, in a sequential manner using one or more work unit messages. In some embodiments, in processing the plurality of events related to each data packet, a first core of the plurality of cores 350(1)-350(N) may process a first event of the plurality of events. Moreover, the first core may provide to a second core of the plurality of cores 350(1)-350(N) a first work unit message of the one or more work unit messages. Furthermore, the second core may process a second event of the plurality of events in response to receiving the first work unit message from the first core.
Further information relating to aspects of this disclosure are available in U.S. Provisional Patent Application No. 62/514,583, filed Jun. 2, 2017, entitled “Non-Blocking Any-to-Any Data Center Network with Packet Spraying Over Multiple Alternate Data Paths,” U.S. Provisional Patent Application No. 62/530,591, filed Jul. 10, 2017, entitled “Data Processing Unit for Computing Devices,” U.S. Provisional Patent Application No. 62/559,021, filed Sep. 15, 2017, entitled “Access Node for Data Centers,” U.S. Patent Application Ser. No. 62/589,427, filed Nov. 21, 2017, and U.S. Provisional Patent Application No. 62/625,518, filed Feb. 2, 2018, entitled “Efficient Work Unit Processing in a Multicore System,” the entire content of each of which is incorporated herein by reference.
The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “a user” means one user or more than one users. Reference throughout this specification to “one embodiment,” “an embodiment,” “one example,” or “an example” means that a particular feature, structure, or characteristic described in connection with the embodiment or example is included in at least one embodiment of the present disclosure. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” “one example,” or “an example” in various places throughout this specification are not necessarily all referring to the same embodiment or example. Furthermore, the particular features, structures, databases, or characteristics may be combined in any suitable combinations and/or sub-combinations in one or more embodiments or examples. In addition, it should be appreciated that the figures provided herewith are for explanation purposes to persons ordinarily skilled in the art and that the drawings are not necessarily drawn to scale.
Embodiments in accordance with the present disclosure may be embodied as an apparatus, method, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware-comprised embodiment, an entirely software-comprised embodiment (including firmware, resident software, micro-code or the like), or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module,” or “system.” Furthermore, embodiments of the present disclosure may take the form of a computer program product embodied in any tangible medium of expression having computer-usable program code embodied in the medium.
The flow diagrams and block diagrams in the attached figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present disclosure. In this regard, each block in the flow diagrams or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It will also be noted that each block of the block diagrams and/or flow diagrams, and combinations of blocks in the block diagrams and/or flow diagrams, may be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions. These computer program instructions may also be stored in a computer-readable medium that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable medium produce an article of manufacture including instruction means which implement the function/act specified in the flow diagram and/or block diagram block or blocks.
Although the present disclosure is described in terms of certain embodiments, other embodiments will be apparent to those of ordinary skill in the art, given the benefit of this disclosure, including embodiments that do not provide all of the benefits and features set forth herein, which are also within the scope of this disclosure. It is to be understood that other embodiments may be utilized, without departing from the scope of the present disclosure.
This application is a continuation application of and claims priority to U.S. patent application Ser. No. 15/949,892 filed on Apr. 10, 2018, now U.S. Pat. No. 10,565,112, which claims the benefit of U.S. Provisional Patent Application No. 62/483,844 filed on Apr. 10, 2017, and U.S. Provisional Patent Application No. 62/625,518 filed on Feb. 2, 2018. The entire content of all of these applications is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4872157 | Hemmady et al. | Oct 1989 | A |
4872159 | Hemmady et al. | Oct 1989 | A |
5301324 | Dewey et al. | Apr 1994 | A |
5812549 | Sethu | Sep 1998 | A |
5828860 | Miyaoku et al. | Oct 1998 | A |
6021473 | Davis et al. | Feb 2000 | A |
6055579 | Goyal et al. | Apr 2000 | A |
6314491 | Freerksen et al. | Nov 2001 | B1 |
6842906 | Bowman-Amuah | Jan 2005 | B1 |
6901451 | Miyoshi et al. | May 2005 | B1 |
6901500 | Hussain et al. | May 2005 | B1 |
6993630 | Williams et al. | Jan 2006 | B1 |
7035914 | Payne et al. | Apr 2006 | B1 |
7275103 | Thrasher et al. | Sep 2007 | B1 |
7289964 | Bowman-Amuah | Oct 2007 | B1 |
7342887 | Sindhu | Mar 2008 | B1 |
7480304 | Yeh et al. | Jan 2009 | B2 |
7486678 | Devanagondi et al. | Feb 2009 | B1 |
7664110 | Lovett et al. | Feb 2010 | B1 |
7733781 | Petersen | Jun 2010 | B2 |
7822731 | Yu et al. | Oct 2010 | B1 |
7843907 | Abou-Emara et al. | Nov 2010 | B1 |
7965624 | Ripa et al. | Jun 2011 | B2 |
8560757 | Pangborn et al. | Oct 2013 | B2 |
8582440 | Ofelt et al. | Nov 2013 | B2 |
8599863 | Davis | Dec 2013 | B2 |
8625427 | Terry et al. | Jan 2014 | B1 |
8737410 | Davis et al. | May 2014 | B2 |
8798077 | Mehra et al. | Aug 2014 | B2 |
8848728 | Revah et al. | Sep 2014 | B1 |
8850101 | Pangborn et al. | Sep 2014 | B2 |
8850125 | Pangborn et al. | Sep 2014 | B2 |
8918631 | Kumar et al. | Dec 2014 | B1 |
8966152 | Bouchard et al. | Feb 2015 | B2 |
9065860 | Pangborn et al. | Jun 2015 | B2 |
9118984 | DeCusatis et al. | Aug 2015 | B2 |
9154376 | Aziz | Oct 2015 | B2 |
9225628 | Zahavi | Dec 2015 | B2 |
9262225 | Davis et al. | Feb 2016 | B2 |
9282384 | Graves | Mar 2016 | B1 |
9294304 | Sindhu | Mar 2016 | B2 |
9294398 | DeCusatis et al. | May 2016 | B2 |
9369408 | Raghavan et al. | Jun 2016 | B1 |
9405550 | Biran et al. | Aug 2016 | B2 |
9565114 | Kabbani et al. | Feb 2017 | B1 |
9569366 | Pangborn et al. | Feb 2017 | B2 |
9632936 | Zuckerman et al. | Apr 2017 | B1 |
9800495 | Lu | Oct 2017 | B2 |
9853901 | Kampmann et al. | Dec 2017 | B2 |
9866427 | Yadav et al. | Jan 2018 | B2 |
9876735 | Davis et al. | Jan 2018 | B2 |
9946671 | Tawri et al. | Apr 2018 | B1 |
10003552 | Kumar et al. | Jun 2018 | B2 |
10135731 | Davis et al. | Nov 2018 | B2 |
10140245 | Davis et al. | Nov 2018 | B2 |
10304154 | Appu et al. | May 2019 | B2 |
10387179 | Hildebrant et al. | Aug 2019 | B1 |
10425707 | Sindhu et al. | Sep 2019 | B2 |
10540288 | Noureddine et al. | Jan 2020 | B2 |
10565112 | Noureddine | Feb 2020 | B2 |
10637685 | Goel et al. | Apr 2020 | B2 |
10645187 | Goyal et al. | May 2020 | B2 |
10659254 | Sindhu et al. | May 2020 | B2 |
10686729 | Sindhu et al. | Jun 2020 | B2 |
10725825 | Sindhu et al. | Jul 2020 | B2 |
10761931 | Goyal et al. | Sep 2020 | B2 |
10827191 | Dikshit et al. | Nov 2020 | B2 |
10841245 | Gray et al. | Nov 2020 | B2 |
10929175 | Goyal et al. | Feb 2021 | B2 |
10951393 | Thomas et al. | Mar 2021 | B2 |
11048634 | Noureddine et al. | Jun 2021 | B2 |
20020015387 | Houh | Feb 2002 | A1 |
20020049859 | Bruckert et al. | Apr 2002 | A1 |
20020075862 | Mayes | Jun 2002 | A1 |
20020094151 | Li | Jul 2002 | A1 |
20020118415 | Dasylva et al. | Aug 2002 | A1 |
20020126634 | Mansharamani et al. | Sep 2002 | A1 |
20020126671 | Ellis et al. | Sep 2002 | A1 |
20030043798 | Pugel | Mar 2003 | A1 |
20030091271 | Dragone | May 2003 | A1 |
20030229839 | Wang et al. | Dec 2003 | A1 |
20040236912 | Glasco | Nov 2004 | A1 |
20050166086 | Watanabe | Jul 2005 | A1 |
20060029323 | Nikonov et al. | Feb 2006 | A1 |
20060056406 | Bouchard et al. | Mar 2006 | A1 |
20060112226 | Hady et al. | May 2006 | A1 |
20060277421 | Balestriere | Dec 2006 | A1 |
20070073966 | Corbin | Mar 2007 | A1 |
20070172235 | Snider et al. | Jul 2007 | A1 |
20070192545 | Gara et al. | Aug 2007 | A1 |
20070198656 | Mazzaferri et al. | Aug 2007 | A1 |
20070255906 | Handgen et al. | Nov 2007 | A1 |
20080002702 | Bajic et al. | Jan 2008 | A1 |
20080138067 | Beshai | Jun 2008 | A1 |
20080244231 | Kunze et al. | Oct 2008 | A1 |
20090024836 | Shen et al. | Jan 2009 | A1 |
20090083263 | Felch et al. | Mar 2009 | A1 |
20090135739 | Hoover et al. | May 2009 | A1 |
20090135832 | Fan et al. | May 2009 | A1 |
20090228890 | Vaitovirta et al. | Sep 2009 | A1 |
20090234987 | Lee et al. | Sep 2009 | A1 |
20090285228 | Bagepalli et al. | Nov 2009 | A1 |
20090303880 | Maltz et al. | Dec 2009 | A1 |
20100061391 | Sindhu et al. | Mar 2010 | A1 |
20100318725 | Kwon | Dec 2010 | A1 |
20110055827 | Lin et al. | Mar 2011 | A1 |
20110113184 | Chu | May 2011 | A1 |
20110170553 | Beecroft et al. | Jul 2011 | A1 |
20110173392 | Gara et al. | Jul 2011 | A1 |
20110202658 | Okuno et al. | Aug 2011 | A1 |
20110225594 | Iyengar et al. | Sep 2011 | A1 |
20110228783 | Flynn et al. | Sep 2011 | A1 |
20110238923 | Hooker et al. | Sep 2011 | A1 |
20110289179 | Pekcan et al. | Nov 2011 | A1 |
20110289180 | Sonnier et al. | Nov 2011 | A1 |
20110289279 | Sonnier et al. | Nov 2011 | A1 |
20120030431 | Anderson et al. | Feb 2012 | A1 |
20120036178 | Gavini et al. | Feb 2012 | A1 |
20120076153 | Manzella et al. | Mar 2012 | A1 |
20120096211 | Davis et al. | Apr 2012 | A1 |
20120177047 | Roitshtein | Jul 2012 | A1 |
20120207165 | Davis | Aug 2012 | A1 |
20120254587 | Biran et al. | Oct 2012 | A1 |
20120314710 | Shikano | Dec 2012 | A1 |
20130003725 | Hendel et al. | Jan 2013 | A1 |
20130024875 | Wang et al. | Jan 2013 | A1 |
20130028083 | Yoshida et al. | Jan 2013 | A1 |
20130088971 | Anantharam et al. | Apr 2013 | A1 |
20130145375 | Kang | Jun 2013 | A1 |
20130191443 | Gan et al. | Jul 2013 | A1 |
20130258912 | Zimmerman et al. | Oct 2013 | A1 |
20130330076 | Liboiron-Ladouceur et al. | Dec 2013 | A1 |
20130346789 | Brunel et al. | Dec 2013 | A1 |
20140023080 | Zhang et al. | Jan 2014 | A1 |
20140040909 | Winser et al. | Feb 2014 | A1 |
20140044128 | Suresh et al. | Feb 2014 | A1 |
20140059537 | Kamble et al. | Feb 2014 | A1 |
20140075085 | Schroder et al. | Mar 2014 | A1 |
20140161450 | Graves et al. | Jun 2014 | A1 |
20140187317 | Kohler et al. | Jul 2014 | A1 |
20140258479 | Tenginakai et al. | Sep 2014 | A1 |
20140269351 | Graves et al. | Sep 2014 | A1 |
20140310467 | Shalf et al. | Oct 2014 | A1 |
20140359044 | Davis et al. | Dec 2014 | A1 |
20150019702 | Kancheria | Jan 2015 | A1 |
20150037032 | Xu et al. | Feb 2015 | A1 |
20150043330 | Hu et al. | Feb 2015 | A1 |
20150117860 | Braun | Apr 2015 | A1 |
20150143045 | Han et al. | May 2015 | A1 |
20150143073 | Winser et al. | May 2015 | A1 |
20150163171 | Sindhu et al. | Jun 2015 | A1 |
20150180603 | Darling et al. | Jun 2015 | A1 |
20150186313 | Sodhi et al. | Jul 2015 | A1 |
20150222533 | Birrittella et al. | Aug 2015 | A1 |
20150244617 | Nakil et al. | Aug 2015 | A1 |
20150256405 | Janardhanan et al. | Sep 2015 | A1 |
20150278148 | Sindhu et al. | Oct 2015 | A1 |
20150278984 | Koker et al. | Oct 2015 | A1 |
20150280939 | Sindhu | Oct 2015 | A1 |
20150281128 | Sindhu | Oct 2015 | A1 |
20150324205 | Eisen et al. | Nov 2015 | A1 |
20150325272 | Murphy | Nov 2015 | A1 |
20150334034 | Smedley et al. | Nov 2015 | A1 |
20150334202 | Frydman et al. | Nov 2015 | A1 |
20150378776 | Lippett | Dec 2015 | A1 |
20150381528 | Davis et al. | Dec 2015 | A9 |
20160056911 | Ye et al. | Feb 2016 | A1 |
20160062800 | Stanfill et al. | Mar 2016 | A1 |
20160092362 | Barron et al. | Mar 2016 | A1 |
20160164625 | Gronvall et al. | Jun 2016 | A1 |
20160210159 | Wilson et al. | Jul 2016 | A1 |
20160239415 | Davis et al. | Aug 2016 | A1 |
20160241430 | Yadav et al. | Aug 2016 | A1 |
20160337723 | Graves | Nov 2016 | A1 |
20160364333 | Brown et al. | Dec 2016 | A1 |
20160364334 | Asaro et al. | Dec 2016 | A1 |
20160380885 | Jani et al. | Dec 2016 | A1 |
20170005921 | Liu et al. | Jan 2017 | A1 |
20170031719 | Clark et al. | Feb 2017 | A1 |
20170032011 | Song et al. | Feb 2017 | A1 |
20170060615 | Thakkar et al. | Mar 2017 | A1 |
20170061566 | Min et al. | Mar 2017 | A1 |
20170068639 | Davis et al. | Mar 2017 | A1 |
20170091096 | McCarthy | Mar 2017 | A1 |
20170235581 | Nickolls et al. | Aug 2017 | A1 |
20170265220 | Andreoli-Fang et al. | Sep 2017 | A1 |
20170286143 | Wagner et al. | Oct 2017 | A1 |
20170286157 | Hasting et al. | Oct 2017 | A1 |
20170346766 | Dutta | Nov 2017 | A1 |
20180011739 | Pothula et al. | Jan 2018 | A1 |
20180024771 | Miller et al. | Jan 2018 | A1 |
20180115494 | Bhatia et al. | Apr 2018 | A1 |
20180152317 | Chang et al. | May 2018 | A1 |
20180239702 | Farahani et al. | Aug 2018 | A1 |
20180287818 | Goel et al. | Oct 2018 | A1 |
20180287965 | Sindhu et al. | Oct 2018 | A1 |
20180288505 | Sindhu et al. | Oct 2018 | A1 |
20180293168 | Noureddine et al. | Oct 2018 | A1 |
20180300928 | Koker et al. | Oct 2018 | A1 |
20180307494 | Ould-Ahmed-Vall et al. | Oct 2018 | A1 |
20180307535 | Suzuki et al. | Oct 2018 | A1 |
20180322386 | Sridharan et al. | Nov 2018 | A1 |
20180357169 | Lai | Dec 2018 | A1 |
20190005176 | Illikkal et al. | Jan 2019 | A1 |
20190012278 | Sindhu et al. | Jan 2019 | A1 |
20190012350 | Sindhu et al. | Jan 2019 | A1 |
20190013965 | Sindhu et al. | Jan 2019 | A1 |
20190018806 | Koufaty et al. | Jan 2019 | A1 |
20190042292 | Palermo et al. | Feb 2019 | A1 |
20190042518 | Marolia et al. | Feb 2019 | A1 |
20190095333 | Heirman et al. | Mar 2019 | A1 |
20190102311 | Gupta et al. | Apr 2019 | A1 |
20190104057 | Goel et al. | Apr 2019 | A1 |
20190104206 | Goel et al. | Apr 2019 | A1 |
20190104207 | Goel et al. | Apr 2019 | A1 |
20190158428 | Gray et al. | May 2019 | A1 |
20190188079 | Kohli | Jun 2019 | A1 |
20190243765 | Noureddine et al. | Aug 2019 | A1 |
20190363989 | Shalev et al. | Nov 2019 | A1 |
20200021664 | Goyal et al. | Jan 2020 | A1 |
20200021898 | Sindhu et al. | Jan 2020 | A1 |
20200119903 | Thomas et al. | Apr 2020 | A1 |
20200133771 | Goyal et al. | Apr 2020 | A1 |
20200145680 | Dikshit et al. | May 2020 | A1 |
20200151101 | Noureddine et al. | May 2020 | A1 |
20200159568 | Goyal et al. | May 2020 | A1 |
20200159859 | Beckman et al. | May 2020 | A1 |
20200169513 | Goel et al. | May 2020 | A1 |
20200259682 | Goel et al. | Aug 2020 | A1 |
20200280462 | Sindhu et al. | Sep 2020 | A1 |
20200314026 | Sindhu et al. | Oct 2020 | A1 |
20200356414 | Sindhu et al. | Nov 2020 | A1 |
20210349824 | Noureddine et al. | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
1079571 | Feb 2001 | EP |
1489796 | Dec 2004 | EP |
1501246 | Jan 2005 | EP |
2289206 | Mar 2011 | EP |
2928134 | Jul 2015 | EP |
2009114554 | Sep 2009 | WO |
2013184846 | Dec 2013 | WO |
2014178854 | Nov 2014 | WO |
2016037262 | Mar 2016 | WO |
2019014268 | Jan 2019 | WO |
Entry |
---|
“QFX10000 Switches System Architecture,” White Paper, Juniper Networks, Apr. 2015, 15 pp. |
Adya et al., “Cooperative Task Management without Manual Stack Management,” Proceedigns of the 2002 Usenix Annual Technical Conference, Jun. 2002, 14 pp. |
Al-Fares et al., “Hedera: Dynamic Flow Scheduling for Data Center Networks,” NSDI'10 Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation, Apr. 28-30, 2010, 15 pp. |
Alizadeh et al., “CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,” SIGCOMM '14 Proceedings of the 2014 ACM Conference on SIGCOMM, Aug. 17-22, 2014, pp. 503-514. |
Bakkum et al., “Accelerating SQL Database Operations on a GPU with CUDA,” Proceedings of the 3rd Workshop on Genral-Purpose Computation on Graphics Processing Units, Mar. 14, 2010, 10 pp. |
Banga et al., “Better operating system features for faster network servers,” ACM Sigmetrics Performance Evaluation Review, vol. 26, Issue 3, Dec. 1998, 11 pp. |
Barroso et al., “Attack of the killer Microseconds,” Communications of the ACM, vol. 60, No. 4, Apr. 2017, 7 pp. |
Benson et al., “MicroTE: Fine Grained Traffic Engineering for Data Centers,” CoNEXT '11 Proceedings of the Seventh Conference on emerging Networking Experiments and Technologies Article No. 8, Dec. 6-9, 2011, 12 pp. |
Benson et al., “Network Traffic Characteristics of Data Centers in the Wild,” IMC '10 Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, Nov. 1-30, 2010, pp. 267-280. |
Deutsch, “Deflate Compressed Data Format Specification version 1.3,” IETF Network Working Group, RFC 1951, May 1996, 15 pp. |
Ford et al., “TCP Extensions for Multipath Operation with Multiple Addresses,” Internet Engineering Task Force (IETF), RFC 6824, Jan. 2013, 64 pp. |
Friedman et al., “Programming with Continuations,” Technical Report 151, Nov. 1983, 14 pp. |
Gay et al., “The nesC Language: A Holistic Approach to Networked Embedded Systems,” accessed from http://nescc.sourceforge.net, last updated Dec. 14, 2004, 11 pp. |
Halbwachs et al., “The Synchronous Data Flow Programming Language LUSTRE,” Proceedings of the IEEE, vol. 79, No. 9, Sep. 1991, 16 pp. |
Haynes et al., “Continuations and Coroutines,” Technical Report No. 158, Jun. 1984, 19 pp. |
Hewitt, “Viewing Control Structures as Patterns of Passing Messages,” Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Dec. 1976, 61 pp. |
Hseush et al., Data Path Debugging: Data-Oriented Debugging for a Concurrent Programming Language, PADD 88 Proceedings of the 1988 ACM SIGPLAN and SIGOPS workshop on Parallel and distributed debugging, May 5-6, 1988, 12 pp. |
Huang et al., “Erasure Coding in Windows Azure Storage,” 2012 USENIX Annual Technical Conference, Jun. 13-15, 2012, 12 pp. |
Hurson, “Advances in Computers, vol. 92,” Jan. 13, 2014, Academic Press, XP055510879, 94-95 pp. |
International Preliminary Report on Patentability from International Application No. PCT/US2018/026873, dated Jul. 18, 2019, 28 pp. |
International Search Report and Written Opinion of International Application No. PCT/US2018/026873, dated Jun. 27, 2018, 17 pp. |
Isen et al., “ESKIMO—Energy Savings using Semantic Knowledge of Inconsequential Memory Occupancy for DRAM subsystem,” 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Dec. 12-16, 2009, 10 pp. |
Kahn et al., “Actors as a Special Case of Concurrent Constraint Programming,” ECOOP/OOPSLA '90 Proceedings, Oct. 21-25, 1990, 10 pp. |
Kaminow, “Optical Integrated Circuits: A Personal Perspective,” Journal of Lightwave Technology, vol. 26, No. 9, May 1, 2008, pp. 994-1004. |
Kandula et al., “Dynamic Load Balancing Without Packet Reordering,” SIGCOMM Computer Communication Review, vol. 37, No. 2, Apr. 2007, pp. 53-62. |
Kandula et al., “The Nature of Datacenter Traffic: Measurements & Analysis,” IMC '09 Proceedings of the 9th ACM SIGCOMM conference on Internet measurement, Nov. 4-6, 2009, pp. 202-208. |
Kelly et al., A Block Diagram Compiler, The Bell System Technical Journal, Dec. 7, 1960, 10 pp. |
Kounavis et al., “Programming the data path in network processor-based routers,” Software-Practice and Experience, Oct. 21, 2003, 38 pp. |
Larus et al., “Using Cohort Scheduling to Enhance Server Performance,” Usenix Annual Technical Conference, Jun. 2002, 12 pp. |
Levis et al., “Tiny OS: An Operating System for Sensor Networks,” Ambient Intelligence, Jan. 2005, 34 pp. |
Lin et al., A Parameterized Dataflow Language Extension for Embedded Streaming Systems, 2008 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, Jul. 21-24, 2008, 8 pp. |
Mishra et al., “Thread-based vs Event-based Implementation of a Group Communication Service,” Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing, Mar. 30-Apr. 3, 1998, 5 pp. |
Prosecution History from U.S. Appl. No. 15/949,692, dated May 23, 2019 through Dec. 30, 2019, 60 pp. |
Prosecution History from U.S. Appl. No. 15/949,892, dated Jun. 26, 2019 through Nov. 5, 2019, 34 pp. |
Raiciu et al., “Improving Datacenter Performance and Robustness with Multipath TCP,” ACM SIGCOMM Computer Communication Review—SIGCOMM '11, vol. 41, No. 4, Aug. 2011, pp. 266-277. |
Response to Second Written Opinion dated Mar. 15, 2019, from International Application No. PCT/US2018/026873, dated May 15, 2019, 6 pp. |
Schroeder et al., “Flash Reliability in Production: The Expected and the Unexpected,” 14th USENIX Conference on File and Storage Technologies (FAST '16), Feb. 22-25, 2016, 15 pp. |
Second Written Opinion of International Application No. PCT/US2018/026873, dated Mar. 15, 2019, 13 pp. |
Varela et al., “The Salsa Programming Language 2.0.0alpha Release Tutorial,” Tensselaer Polytechnic Institute, Nov. 2009, 52 pp. |
Von Behren et al., “Why Events Are A Bad Idea (for high-concurrency servers),” Proceedings of HotOS IX, May 2003, 6 pp. |
Wang et al., “A Spatial and Temporal Locality-Aware Adaptive Cache Design with Network Optimization for Tiled Many-Core Architectures,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25. No. 9, Sep. 2017, pp. 2419-2433. |
Welsh et al., “SEDA: An Architecture for Well-Conditioned, Scalable Internet Services,” Eighteenth Symposium on Operating Systems Principles, Oct. 21-24, 2001, 14 pp. |
Zhu et al., “Congestion Control for Large-Scale RDMA Deployments,” SIGCOMM '15 Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, Aug. 17-21, 2015, pp. 523-536. |
Response to Written Opinion dated Jun. 27, 2018, from International Application No. PCT/US2018/026873, dated Feb. 8, 2019, 18 pp. |
Notice of Allowance from U.S. Appl. No. 16/746,344, dated Mar. 2, 2021, 9 pp. |
Number | Date | Country | |
---|---|---|---|
20200183841 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62625518 | Feb 2018 | US | |
62483844 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15949892 | Apr 2018 | US |
Child | 16791957 | US |