Robotic interventional systems and devices are well suited for performing minimally invasive medical procedures as opposed to conventional techniques wherein the patient's body cavity is open to permit the surgeon's hands access to internal organs. Advances in technology have led to significant changes in the field of medical surgery such that less invasive surgical procedures, in particular, minimally invasive surgery (MIS), are increasingly popular.
MIS is generally defined as surgery that is performed by entering the body through the skin, a body cavity, or an anatomical opening utilizing small incisions rather than large, open incisions in the body. With MIS, it is possible to achieve less operative trauma for the patient, reduced hospitalization time, less pain and scarring, reduced incidence of complications related to surgical trauma, lower costs, and a speedier recovery.
MIS devices and techniques have advanced to the point where an elongated catheter instrument is controllable by selectively operating tensioning control elements within the catheter instrument. In one example, a remote catheter manipulator (RCM) or robotic instrument driver utilizes four opposing directional control elements which extend to the distal end of the catheter. When selectively placed in and out of tension, the opposing directional control elements may cause the distal end to steerably maneuver within the patient. Control motors are coupled to each of the directional control elements so that they may be individually controlled and the steering effectuated via the operation of the motors in unison.
At least two types of catheters may be employed for surgical procedures. One type includes an electrophysiology (EP) catheter that only requires a navigating distance of 15 cm or less. EP catheters also may be relatively thick and stiff and thus, due their short navigating length and high stiffness, EP catheters typically do not suffer from a tendency to buckle during use.
In comparison to EP procedures, vascular procedures include a greater amount of catheter insertion length, a greater number of catheter articulation degrees of freedom (DOFs), and a mechanism for manipulation of a guide wire. For that reason, known bedside systems provides mounting for splayer actuation hardware configured to provide the catheter insertion lengths, mounting which accounts for an increase in splayer size due to added DOFs, and mounting for a guide wire manipulator. Thus, vascular catheters typically include a relatively long stroke, such as one meter or more. Relative to EP catheters, vascular catheters are typically smaller, thinner and more flexible, and therefore have a greater tendency to buckle than EP catheters. As such, it is typically desirable to feed vascular catheters into the patient with minimal bending to reduce the tendency to buckle. Known vascular robotic catheter systems are therefore typically suspended over the patient that is lying prone on a bed.
A vascular catheter (elongate member) catheter system typically includes elongate members that include an outer catheter (sheath), an inner catheter (leader), and a guidewire. Each is separately controllable and therefore they can telescope with respect to one another. For instance, a sheath carriage controls operation of the sheath and is moveable about a generally axial motion along the patient, and a leader carriage controls operation of the guidewire and is likewise moveable about the generally axial direction of the patient. Typically, the leader carriage and the sheath carriage are positioned on a remote catheter manipulator (RCM), which is supported by a setup joint (SUJ). Because the sheath carriage and leader carriage are traditionally aligned along the insertion axis, this configuration results in the RCM taking up significant space and the RCM being restricted to a specific orientation and alignment based on the insertion location. The SUJ is typically positioned on a rail that is itself mounted to the bed, below which the patient is positioned.
The RCM typically carries the weight of both carriages as well as the other hardware that are used to operate the system. And, to provide a full stroke, the SUJ is passed through the full range of motion which, as stated, can exceed one meter. To do so, typically the SUJ is moved or rotated with respect to the rail and the rail is stationary. For this reason, a bedside system is typically included that provides mounting for splayer actuation hardware configured to provide catheter insertion lengths, and mounting for a guide wire manipulator. Because this hardware is supported by the SUJ, the system can not only be cumbersome to work with, but it can interfere with other system operation (such as the C-arm and monitors), as well as provide significant weight that is carried by the bed.
However, in some clinical situations, it is difficult, if not impossible to orient the RCM such that it is aligned along the insertion axis. For instance, in some MIS procedures an imaging device may be required in addition to the RCM. In order for the imaging device to scan the entire body, the RCM should be oriented so that it is not obstructing the imaging devices ability to capture the entire body. For example, if the insertion location is at the patient's thigh and catheter is directed towards the patient's heart, the current RCM configuration would require the RCM to be located at the base of the patient's bed below their feet. The likelihood of the catheter buckling between the RCM and the insertion location also increases as the distance between the RCM and the insertion location increases and often requires more than one person to assist in operation of the RCM, especially during tool exchanges.
As such, there is a need for an improved catheter system that can handle functional challenges experienced with long catheters and provides greater flexibility with regard to the orientation of the RCM with regard to the insertion axis. There is also a need to for an improved catheter system that operates over a smaller footprint and weighs less.
A medical device comprising a sheath catheter and at least one feed mechanism is disclosed herein. The feed mechanism includes a pair of radially arranged drive wheels opposite one another, each wheel having a wheel rotation axis. The drive wheels cooperate to define a feed axis along which the sheath catheter is advanced and retracted. The feed axis is oriented generally orthogonal to the wheel rotation axes. The feed axis is configured to change the orientation of the sheath catheter when the sheath catheter is disposed within the feed mechanism.
An alternative configuration for a medical apparatus comprises a robotic instrument driver, a sheath splayer and a guide splayer. The sheath splayer and guide splayer are operatively engaged with the robotic instrument driver. The sheath splayer carries the catheter sheath, and the guide splayer carries the sheath catheter. The sheath splayer is defined by a catheter sheath operational axis and the guide splayer is defined by a guide catheter operational axis, wherein the sheath operational axis and guide catheter operational axis are oriented parallel to one another and laterally spaced apart from one another. First and second feed mechanisms are also provided. The first feed mechanism is positioned between the sheath splayer and the guide splayer and configured to orient the guide catheter about 180° from the guide catheter operational axis so as to be coaxial with the catheter sheath operational axis. The second feed mechanism is positioned distally of the sheath splayer and is configured to orient the sheath catheter about 180° from the catheter sheath operational axis so as to be coaxial with a feed axis that is oriented parallel to the catheter sheath operational axis.
A further alternative configuration of a medical device comprises a robotic instrument driver, a sheath splayer and a guide splayer. The sheath splayer and guide splayer are operatively engaged with the robotic instrument driver. The sheath splayer carries the sheath catheter, and the guide splayer carries the guide catheter. The guide splayer is positioned over the sheath splayer in a stacked relationship. The sheath catheter is defined by a sheath catheter operational axis and the guide splayer is defined by a guide catheter operational axis and the sheath operational axis and guide operational axis are oriented parallel to one another and spaced apart from one another. First and second feed mechanisms are also provided. The first feed mechanism is positioned between an entrance of the sheath splayer and an exit of the guide splayer and configured to orient the guide catheter about 180° from the guide catheter operational axis so as to be coaxial with the catheter sheath operational axis. The second feed mechanism is positioned distally of the sheath splayer and is configured to orient the sheath catheter about 180° from the catheter sheath operational axis so as to be coaxial with a feed axis that is oriented parallel to the catheter sheath operational axis.
While the claims are not limited to a specific illustration, an appreciation of the various aspects is best gained through a discussion of various examples thereof. Referring now to the drawings, exemplary illustrations are shown in detail. Although the drawings represent the illustrations, the drawings are not necessarily to scale and certain features may be exaggerated to better illustrate and explain an innovative aspect of an example. Further, the exemplary illustrations described herein are not intended to be exhaustive or otherwise limiting or restricted to the precise form and configuration shown in the drawings and disclosed in the following detailed description. Exemplary illustrations are described in detail by referring to the drawings as follows:
Referring to
Operator workstation 112 may include a computer monitor to display a three dimensional object, such as a catheter displayed within or relative to a three dimensional space, such as a body cavity or organ, e.g., a chamber of a patient's heart. In one example, an operator uses one or more input devices 120 to control the position of a catheter or other elongate instrument. In response to actuation of the input device by a user, the input device can output positioning information for the desired position of the catheter instrument, including the three-dimensional spatial position of the distal end of a steerable catheter. System components, including the operator workstation, electronics rack and the instrument driver, may be coupled together via a plurality of cables or other suitable connectors 118 to provide for data communication, or one or more components may be equipped with wireless communication components to reduce or eliminate cables 118. Communication between components may also be implemented over a network or over the internet. In this manner, a surgeon or other operator may control a surgical instrument while located away from or remotely from radiation sources. Because of the option for wireless or networked operation, the surgeon may even be located remotely from the patient in a different room or building.
An exemplary instrument driver 108 is illustrated in
It is desirable to have the instrument driver 108 positioned close to the patient for a number of reasons, including, for example to facilitate tool removal over the table 110 rather than risk tools falling to the floor. However, the instrument drivers 108 are generally heavy, due to the internal components required to advance and articulate the catheters. Moreover, for procedures where a relatively long stroke of a catheter is used, the instrument driver 108 has a sufficient length to operate the catheter system. Thus, known systems use a setup joint 116 to support the instrument driver 108 close to the patient. The positioning of the instrument driver 108 on the setup joint, however, may lead to other issues, such as blocking intra-operative imaging equipment, such as a C-arm or monitor (not shown).
Further, certain issues are experienced when tool exchanges are required during a procedure. For example, therapeutic tools are inserted into the sheath catheter 105. To accomplish this task, the guide catheter 103 is removed from the sheath catheter 105. A separate guide wire (not shown) is also included, but the tool is advanced over the guide wire for delivery, which takes two people.
To address some of these issues, alternative arrangements of the guide and sheath splayers are proposed herein, which serve to minimize the length and weight of the instrument driver, thereby eliminating the requirement of a SUJ, and even permitting the instrument driver to be mounted directly to a bed rail. Moreover, the exemplary arrangements disclosed herein also provide for positioning of the instrument driver close to the patient, thus permitting the instrument driver to be positioned adjacent an introducer.
Referring to
In the embodiment illustrated in
In the exemplary arrangement illustrated in
In one embodiment, the manipulator mechanism 330 includes two radially oppositely arranged drive wheels 340. The drive wheels 340 may include an idle wheel 342 and an active wheel 344. The drive wheels 340 are each configured to rotate about an axes C-C that are orthogonal to the feed mechanism axis B-B. In one exemplary arrangement, the feed mechanism 330 may be fixedly connected to the instrument driver 308, along a side surface of the instrument driver 308. This configuration permits the feed mechanism to be placed next to the axis A-A so as to minimize wasted catheter length. As the drive wheels 340 are rotated in a first direction, the feed mechanism 330 serves to propel the sheath catheter 305, the guide catheter 303 inserted therein, and the guide wire 307 toward the patient. As the drive wheels 340 are rotated in a second direction, the catheter assembly is moved away from the patient. A similar manipulator mechanism (not shown) disposed within the instrument driver 308 proximal of the sheath splayer 304 serves to propel guide catheter 303. This manipulation may also involve insertion retraction or roll of the guide catheter relative to the sheath. In addition, a similar manipulator mechanism (not shown) disposed within the instrument driver 308 proximal of the leader splayer 306, or disposed proximal of instrument driver 308 (as shown) serves to propel the guide wire 307. It should be understood that sheath catheter 305, guide catheter 303 and guide wire 307 may all be manipulated independently from each other. Manipulation may involve insertion, retraction and roll for all 3 manipulators but preferred embodiments involve just insertion and retract for the sheath and guide manipulators and insertion, retraction and roll for the guidewire manipulator. It should be understood that while drive wheels are shown for the sheath manipulator 330 and a gripping pad 309 is shown for the guidewire manipulator, any active drive or manipulation device such as rotating pads, grippers, rollers, chucks etc. may be used in all cases
In one alternative embodiment, the manipulator 330 may be configured to pitch with respect to the drive wheels axes C-C, while the sheath splayer 304 and guide splayer 306 remain generally level with respect to the table 110. With this configuration, the opposing drive wheels 340 may be configured to selectively adjust an insertion angle of the catheter assembly as the catheter sheath 305 passes through the manipulator 340.
An alternative configuration of an instrument driver 408 is illustrated in
In the exemplary arrangement illustrated in
In another exemplary arrangement, sheath splayer 404 may rotate about an axis D-D to minimize wasted length on the sheath catheter. For example, as sheath 405 is inserted into the patient, via manipulator 409, the sheath splayer 404 may be configured to rotate toward the manipulator to minimize the length of catheter outside of the patient.
In one exemplary arrangement, the manipulator 430 may be configured to pitch with respect to an axis E-E that extends through the shaft 433, while the sheath splayer 404 and guide splayer 406 remain generally level with respect to the table 110. With this configuration, the opposing drive wheels 440 may be configured to selectively adjust an insertion angle of the catheter assembly as the catheter sheath 405 passes through the mechanism 440.
An alternative configuration of an instrument driver 508 is illustrated in
The configuration of the instrument driver 508 in
The guide feed mechanism 550 is configured to orient the guide catheter 503 such that it bends 180° into the guide mechanism 550. More specifically, the mechanism 550 is oriented such that an axis extending through the guide mechanism 550 is generally coaxial with an axis A′-A′ along which the sheath splayer 504 is positioned. The sheath mechanism 540 is configured to orient the sheath catheter 505 such that it bends 180° into the sheath mechanism 540. More specifically, the sheath mechanism 540 is oriented such that an axis B-B extending through the sheath mechanism 540 is generally parallel to the axis A′-A′ along which the sheath splayer 504 is positioned at the start of a procedure. The sheath splayer 504 may be configured to rotate towards manipulator 540 as the sheath 505 is inserted through introducer 535 and the available sheath length outside the patient gets shorter.
A guidewire manipulator mechanism 560 is positioned adjacent an entrance to the guide splayer 506. The guidewire mechanism 560 is oriented such that an axis extending through the guide feed mechanism 560 is generally coaxial with an axis A2-A2 along which the guide splayer 506 is positioned. The guidewire manipulator 560 may also be configured to insert, retract and roll a guidewire. It should be understood that the feed roller embodiment of the guidewire manipulator 560 shown here and the gripper embodiment 409 shown above are representative embodiments of active drive manipulators. Any of these manipulation mechanisms may be used in any of the configurations.
The orientation of the sheath and guide splayers 504, 506 eliminates a linear insertion axis of the catheter sheath 505 and guide catheter 503, thereby reducing the size of the instrument driver 508. Reducing the size of the instrument driver 508 lends itself to a simple surgical drape of the catheter system.
The configuration of a catheter system with three different manipulator mechanisms 540, 550, 560 also allows the guide wire 507, guide catheter 503 and/or the sheath catheter 505 to be propelled or held in place individually. More specifically, the sheath mechanism 540 may be configured to insert, retract or roll the sheath catheter 505. The guide mechanism 550 inserts, retracts or rolls the guide catheter 503 and the guide wire mechanism 560 inserts, retracts or rolls guidewire 507. Thus, the combination of the three feed mechanisms 540, 550, and 560 allows the guide wire 507, sheath catheter 505, and/or guide catheter 503 (as shown in
In such fashion and in one example, a robotic instrument driver for elongate members 508 includes a first elongate member 505, and at least one manipulator mechanism 540 configured to manipulate the first elongate member 505, and at least one articulating drive 504 configured to articulate the first elongate member 505, positionable on a bed 110 and beside a patient access site, wherein the manipulator 540 and articulating drive 504 are positioned relative to each other a distance less than the insertable length of the first elongate member, stationary in position. That is, a distance between manipulator 540 (and particularly between wheels 542, 544) and articulating drive 504 is less than a length of the first elongate member 505 that passes between them—i.e., the insertable length.
In one exemplary configuration, the sheath mechanism 540 may be configured to pitch with respect to an axis B-B that is generally transverse to the feed axis B-B, while the sheath splayer 504 and guide splayer 506 remain generally level with respect to the table 110. With this configuration, opposing drive wheels 542, 544 may be configured to selectively adjust an insertion angle of the catheter assembly as the catheter sheath 505 passes through the catheter feed mechanism 540.
The configuration in
Referring to
Referring to
Referring to
With regard to the processes, systems, methods, heuristics, etc. described herein, it should be understood that, although the steps of such processes, etc. have been described as occurring according to a certain ordered sequence, such processes could be practiced with the described steps performed in an order other than the order described herein. It further should be understood that certain steps could be performed simultaneously, that other steps could be added, or that certain steps described herein could be omitted. In other words, the descriptions of processes herein are provided for the purpose of illustrating certain embodiments, and should in no way be construed so as to limit the claims.
Accordingly, it is to be understood that the above description is intended to be illustrative and not restrictive. Many embodiments and applications other than the examples provided would be apparent upon reading the above description. The scope should be determined, not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. It is anticipated and intended that future developments will occur in the technologies discussed herein, and that the disclosed systems and methods will be incorporated into such future embodiments. In sum, it should be understood that the application is capable of modification and variation.
All terms used in the claims are intended to be given their broadest reasonable constructions and their ordinary meanings as understood by those knowledgeable in the technologies described herein unless an explicit indication to the contrary in made herein. In particular, use of the singular articles such as “a,” “the,” “said,” etc. should be read to recite one or more of the indicated elements unless a claim recites an explicit limitation to the contrary.
This application is a continuation of U.S. patent application Ser. No. 16/740,973, filed Nov. 13, 2020, entitled “REMOTE CATHETER MANIPULATOR,” issued as U.S. Pat. No. 11,376,085 on Jul. 5, 2022, which is a continuation of U.S. patent application Ser. No. 15/390,355, filed Dec. 23, 2016, entitled “REMOTE CATHETER MANIPULATOR,” issued as U.S. Pat. No. 10,543,047 on Jan. 28, 2020, which is a continuation of U.S. patent application Ser. No. 13/839,967, filed Mar. 15, 2013, entitled “VASCULAR REMOTE CATHETER MANIPULATOR”, and now abandoned. The entirety of U.S. patent application Ser. No. 13/839,967 is herein incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2556601 | Schofield | Jun 1951 | A |
2566183 | Forss | Aug 1951 | A |
2623175 | Finke | Dec 1952 | A |
2730699 | Grattan | Jan 1956 | A |
2884808 | Mueller | May 1959 | A |
3294183 | Riley et al. | Dec 1966 | A |
3472083 | Schnepel | Oct 1969 | A |
3513724 | Box | May 1970 | A |
3595074 | Johnson | Jul 1971 | A |
3734207 | Fishbein | May 1973 | A |
3739923 | Totsuka | Jun 1973 | A |
3784031 | Nitu | Jan 1974 | A |
3790002 | Guilbaud et al. | Feb 1974 | A |
3921536 | Savage | Nov 1975 | A |
3926386 | Stahmann | Dec 1975 | A |
4141245 | Brandstetter | Feb 1979 | A |
4241884 | Lynch | Dec 1980 | A |
4243034 | Brandt | Jan 1981 | A |
4351493 | Sonnek | Sep 1982 | A |
4357843 | Peck et al. | Nov 1982 | A |
4384493 | Grunbaum | May 1983 | A |
4507026 | Lund | Mar 1985 | A |
4530471 | Inoue | Jul 1985 | A |
4555960 | King | Dec 1985 | A |
4688555 | Wardle | Aug 1987 | A |
4745908 | Wardle | May 1988 | A |
4784150 | Voorhies et al. | Nov 1988 | A |
4857058 | Payton | Aug 1989 | A |
4907168 | Boggs | Mar 1990 | A |
4945790 | Golden | Aug 1990 | A |
5207128 | Albright | May 1993 | A |
5234428 | Kaufman | Aug 1993 | A |
5256150 | Quiachon et al. | Oct 1993 | A |
5277085 | Tanimura et al. | Jan 1994 | A |
5350101 | Godlewski | Sep 1994 | A |
5398691 | Martin et al. | Mar 1995 | A |
5408409 | Glassman et al. | Apr 1995 | A |
5426687 | Goodall et al. | Jun 1995 | A |
5507725 | Savage et al. | Apr 1996 | A |
5524180 | Wang et al. | Jun 1996 | A |
5559294 | Hoium et al. | Sep 1996 | A |
5631973 | Green | May 1997 | A |
5709661 | Van Egmond | Jan 1998 | A |
5713946 | Ben-Haim | Feb 1998 | A |
5749362 | Funda et al. | May 1998 | A |
5767840 | Selker | Jun 1998 | A |
5779623 | Bonnell | Jul 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5797900 | Madhani | Aug 1998 | A |
5842390 | Bouligny | Dec 1998 | A |
5855583 | Wang et al. | Jan 1999 | A |
5859934 | Green | Jan 1999 | A |
5876325 | Mizuno et al. | Mar 1999 | A |
5921968 | Lampropoulos et al. | Jul 1999 | A |
5951475 | Gueziec et al. | Sep 1999 | A |
5967934 | Ishida et al. | Oct 1999 | A |
6077219 | Viebach | Jun 2000 | A |
6084371 | Kress et al. | Jul 2000 | A |
6154000 | Rastegar et al. | Nov 2000 | A |
6171234 | White et al. | Jan 2001 | B1 |
6185478 | Koakutsu et al. | Feb 2001 | B1 |
6226543 | Gilboa et al. | May 2001 | B1 |
6259806 | Green | Jul 2001 | B1 |
6272371 | Shlomo | Aug 2001 | B1 |
6289579 | Viza et al. | Sep 2001 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6401572 | Provost | Jun 2002 | B1 |
6424885 | Niemeyer et al. | Jul 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6487940 | Hart et al. | Dec 2002 | B2 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6550128 | Lorenz | Apr 2003 | B1 |
6695818 | Wollschlager | Feb 2004 | B2 |
6726675 | Beyar | Apr 2004 | B1 |
6786896 | Madhani et al. | Sep 2004 | B1 |
6827712 | Tovey et al. | Dec 2004 | B2 |
7044936 | Harding | May 2006 | B2 |
7155315 | Niemeyer et al. | Dec 2006 | B2 |
7172580 | Hruska et al. | Feb 2007 | B2 |
7276044 | Ferry et al. | Oct 2007 | B2 |
7615042 | Beyar et al. | Nov 2009 | B2 |
7635342 | Ferry et al. | Dec 2009 | B2 |
7766856 | Ferry et al. | Aug 2010 | B2 |
7789874 | Yu et al. | Sep 2010 | B2 |
7938809 | Lampropoulos et al. | May 2011 | B2 |
7972298 | Wallace et al. | Jul 2011 | B2 |
7974674 | Hauck et al. | Jul 2011 | B2 |
7998020 | Kidd et al. | Aug 2011 | B2 |
8052636 | Moll et al. | Nov 2011 | B2 |
8146874 | Yu | Apr 2012 | B2 |
8157308 | Pedersen | Apr 2012 | B2 |
8182415 | Larkin et al. | May 2012 | B2 |
8277417 | Fedinec et al. | Oct 2012 | B2 |
8291791 | Light et al. | Oct 2012 | B2 |
8414505 | Weitzner | Apr 2013 | B1 |
8425465 | Nagano | Apr 2013 | B2 |
8671817 | Bogusky | Mar 2014 | B1 |
8720448 | Reis et al. | May 2014 | B2 |
8746252 | McGrogan et al. | Jun 2014 | B2 |
8870815 | Bhat et al. | Oct 2014 | B2 |
8961533 | Stahler et al. | Feb 2015 | B2 |
8968333 | Yu et al. | Mar 2015 | B2 |
8992542 | Hagag et al. | Mar 2015 | B2 |
9023068 | Viola | May 2015 | B2 |
9173713 | Hart et al. | Nov 2015 | B2 |
9204933 | Reis et al. | Dec 2015 | B2 |
9259281 | Griffiths et al. | Feb 2016 | B2 |
9314306 | Yu | Apr 2016 | B2 |
9326822 | Lewis et al. | May 2016 | B2 |
9408669 | Kokish et al. | Aug 2016 | B2 |
9446177 | Millman et al. | Sep 2016 | B2 |
9452018 | Yu | Sep 2016 | B2 |
9457168 | Moll et al. | Oct 2016 | B2 |
9498601 | Tanner et al. | Nov 2016 | B2 |
9504604 | Alvarez | Nov 2016 | B2 |
9561083 | Yu et al. | Feb 2017 | B2 |
9566201 | Yu | Feb 2017 | B2 |
9622827 | Yu et al. | Apr 2017 | B2 |
9636184 | Lee et al. | May 2017 | B2 |
9636483 | Hart et al. | May 2017 | B2 |
9668814 | Kokish | Jun 2017 | B2 |
9713509 | Schuh et al. | Jul 2017 | B2 |
9727963 | Mintz et al. | Aug 2017 | B2 |
9737371 | Roma et al. | Aug 2017 | B2 |
9737373 | Schuh | Aug 2017 | B2 |
9744335 | Jiang | Aug 2017 | B2 |
9763741 | Alvarez et al. | Sep 2017 | B2 |
9788910 | Schuh | Oct 2017 | B2 |
9844412 | Bogusky et al. | Dec 2017 | B2 |
9867635 | Alvarez et al. | Jan 2018 | B2 |
9918659 | Chopra | Mar 2018 | B2 |
9918681 | Wallace et al. | Mar 2018 | B2 |
9931025 | Graetzel et al. | Apr 2018 | B1 |
9949749 | Noonan et al. | Apr 2018 | B2 |
9955986 | Shah | May 2018 | B2 |
9962228 | Schuh et al. | May 2018 | B2 |
9980785 | Schuh | May 2018 | B2 |
9993313 | Schuh et al. | Jun 2018 | B2 |
9993614 | Pacheco | Jun 2018 | B2 |
10016900 | Meyer et al. | Jul 2018 | B1 |
10022192 | Ummalaneni | Jul 2018 | B1 |
10046140 | Kokish et al. | Aug 2018 | B2 |
10080576 | Romo et al. | Sep 2018 | B2 |
10136959 | Mintz et al. | Nov 2018 | B2 |
10143360 | Roelle et al. | Dec 2018 | B2 |
10145747 | Lin et al. | Dec 2018 | B1 |
10149720 | Romo | Dec 2018 | B2 |
10159532 | Ummalaneni et al. | Dec 2018 | B1 |
10159533 | Moll et al. | Dec 2018 | B2 |
10169875 | Mintz et al. | Jan 2019 | B2 |
10213264 | Tanner et al. | Feb 2019 | B2 |
10219874 | Yu et al. | Mar 2019 | B2 |
10231793 | Romo | Mar 2019 | B2 |
10231867 | Alvarez et al. | Mar 2019 | B2 |
10244926 | Noonan et al. | Apr 2019 | B2 |
10258285 | Hauck | Apr 2019 | B2 |
10285574 | Landey et al. | May 2019 | B2 |
10299870 | Connolly et al. | May 2019 | B2 |
10314463 | Agrawal et al. | Jun 2019 | B2 |
10383765 | Alvarez et al. | Aug 2019 | B2 |
10398518 | Yu et al. | Sep 2019 | B2 |
10405939 | Romo et al. | Sep 2019 | B2 |
10405940 | Romo | Sep 2019 | B2 |
10426559 | Graetzel et al. | Oct 2019 | B2 |
10426661 | Kintz | Oct 2019 | B2 |
10434660 | Mever | Oct 2019 | B2 |
10454347 | Covington et al. | Oct 2019 | B2 |
10464209 | Ho et al. | Nov 2019 | B2 |
10470830 | Hill | Nov 2019 | B2 |
10478595 | Kokish | Nov 2019 | B2 |
10482599 | Mintz et al. | Nov 2019 | B2 |
10493239 | Hart et al. | Dec 2019 | B2 |
10493241 | Jiang | Dec 2019 | B2 |
10500001 | Yu et al. | Dec 2019 | B2 |
10517692 | Eyre et al. | Dec 2019 | B2 |
10524866 | Srinivasan | Jan 2020 | B2 |
10524867 | Kokish et al. | Jan 2020 | B2 |
10539478 | Lin | Jan 2020 | B2 |
10543047 | Yu | Jan 2020 | B2 |
10543048 | Noonan et al. | Jan 2020 | B2 |
10555778 | Ummalaneni et al. | Feb 2020 | B2 |
10556092 | Yu et al. | Feb 2020 | B2 |
10569052 | Kokish et al. | Feb 2020 | B2 |
10765487 | Ho | Sep 2020 | B2 |
20010042643 | Krueger et al. | Nov 2001 | A1 |
20020045905 | Gerbi et al. | Apr 2002 | A1 |
20020098938 | Milbourne et al. | Jul 2002 | A1 |
20020100254 | Dharssi | Aug 2002 | A1 |
20020107573 | Steinberg | Aug 2002 | A1 |
20020117017 | Bernhardt et al. | Aug 2002 | A1 |
20020161355 | Wollschlager | Oct 2002 | A1 |
20020161426 | Lancea | Oct 2002 | A1 |
20020177789 | Ferry et al. | Nov 2002 | A1 |
20030056561 | Butscher et al. | Mar 2003 | A1 |
20030167623 | Lorenz | Sep 2003 | A1 |
20030212308 | Bendall | Nov 2003 | A1 |
20040015053 | Bieger | Jan 2004 | A1 |
20040152972 | Hunter | Aug 2004 | A1 |
20040243147 | Lipow | Dec 2004 | A1 |
20040254566 | Plicchi | Dec 2004 | A1 |
20050004579 | Schneider et al. | Jan 2005 | A1 |
20050177026 | Hoeg et al. | Aug 2005 | A1 |
20050183532 | Najaf et al. | Aug 2005 | A1 |
20050222554 | Wallace et al. | Oct 2005 | A1 |
20060025676 | Viswanathan et al. | Feb 2006 | A1 |
20060041245 | Ferry | Feb 2006 | A1 |
20060111692 | Hlavka et al. | May 2006 | A1 |
20060146010 | Schneider | Jul 2006 | A1 |
20060201688 | Jenner et al. | Sep 2006 | A1 |
20060229587 | Beyar et al. | Oct 2006 | A1 |
20060237205 | Sia et al. | Oct 2006 | A1 |
20070000498 | Glynn et al. | Jan 2007 | A1 |
20070013336 | Nowlin et al. | Jan 2007 | A1 |
20070060879 | Weitzner et al. | Mar 2007 | A1 |
20070100201 | Komiya et al. | May 2007 | A1 |
20070100254 | Murakami | May 2007 | A1 |
20070112355 | Salahieb | May 2007 | A1 |
20070119274 | Devengenzo et al. | May 2007 | A1 |
20070149946 | Viswanathan | Jun 2007 | A1 |
20070185485 | Hauck et al. | Aug 2007 | A1 |
20070185486 | Hauck et al. | Aug 2007 | A1 |
20070191177 | Nagai et al. | Aug 2007 | A1 |
20070197939 | Wallace | Aug 2007 | A1 |
20070239028 | Houser | Oct 2007 | A1 |
20070245175 | Zheng et al. | Oct 2007 | A1 |
20070299427 | Yeung et al. | Dec 2007 | A1 |
20080039255 | Jinno et al. | Feb 2008 | A1 |
20080046122 | Manzo et al. | Feb 2008 | A1 |
20080065103 | Cooper et al. | Mar 2008 | A1 |
20080147011 | Urmey | Jun 2008 | A1 |
20080177285 | Brock et al. | Jul 2008 | A1 |
20080214925 | Wilson et al. | Sep 2008 | A1 |
20080243064 | Stahler et al. | Oct 2008 | A1 |
20080245946 | Yu | Oct 2008 | A1 |
20080249536 | Stahler et al. | Oct 2008 | A1 |
20080253108 | Yu et al. | Oct 2008 | A1 |
20080262301 | Gibbons et al. | Oct 2008 | A1 |
20080287963 | Rogers et al. | Nov 2008 | A1 |
20080302200 | Tobey | Dec 2008 | A1 |
20090005768 | Sharareh | Jan 2009 | A1 |
20090082722 | Munger et al. | Mar 2009 | A1 |
20090098971 | Ho et al. | Apr 2009 | A1 |
20090105645 | Kidd et al. | Apr 2009 | A1 |
20090163948 | Sunaoshi | Jun 2009 | A1 |
20090171371 | Nixon | Jul 2009 | A1 |
20090247944 | Kirschenman et al. | Oct 2009 | A1 |
20090248039 | Cooper et al. | Oct 2009 | A1 |
20100030023 | Yoshie | Feb 2010 | A1 |
20100069833 | Wenderow et al. | Mar 2010 | A1 |
20100073150 | Olson et al. | Mar 2010 | A1 |
20100130923 | Cleary et al. | May 2010 | A1 |
20100130987 | Wenderow et al. | May 2010 | A1 |
20100175701 | Reis | Jul 2010 | A1 |
20100187740 | Orgeron | Jul 2010 | A1 |
20100204646 | Plicchi et al. | Aug 2010 | A1 |
20100210923 | Li et al. | Aug 2010 | A1 |
20100248177 | Mangelberger et al. | Sep 2010 | A1 |
20100249506 | Prisco et al. | Sep 2010 | A1 |
20100274078 | Kim et al. | Oct 2010 | A1 |
20100332033 | Diolaiti | Dec 2010 | A1 |
20110015484 | Alvarez et al. | Jan 2011 | A1 |
20110015648 | Alvarez et al. | Jan 2011 | A1 |
20110015650 | Choi et al. | Jan 2011 | A1 |
20110028991 | Ikeda et al. | Feb 2011 | A1 |
20110130718 | Kidd et al. | Jun 2011 | A1 |
20110147030 | Blum et al. | Jun 2011 | A1 |
20110152880 | Alvarez et al. | Jun 2011 | A1 |
20110238083 | Moll et al. | Sep 2011 | A1 |
20110261183 | Ma et al. | Oct 2011 | A1 |
20110277775 | Holop et al. | Nov 2011 | A1 |
20110288573 | Yates et al. | Nov 2011 | A1 |
20110306836 | Ohline et al. | Dec 2011 | A1 |
20120071821 | Yu | Mar 2012 | A1 |
20120071894 | Tanner et al. | Mar 2012 | A1 |
20120071895 | Stahler et al. | Mar 2012 | A1 |
20120132018 | Tang | May 2012 | A1 |
20120143226 | Belson et al. | Jun 2012 | A1 |
20120150154 | Brisson et al. | Jun 2012 | A1 |
20120186194 | Schlieper | Jul 2012 | A1 |
20120191107 | Tanner et al. | Jul 2012 | A1 |
20120232476 | Bhat | Sep 2012 | A1 |
20120239012 | Laurent et al. | Sep 2012 | A1 |
20120277730 | Salahieh | Nov 2012 | A1 |
20120283747 | Popovic | Nov 2012 | A1 |
20130018400 | Milton et al. | Jan 2013 | A1 |
20130066335 | Barwinkel | Mar 2013 | A1 |
20130144116 | Cooper et al. | Jun 2013 | A1 |
20130231678 | Wenderow | Sep 2013 | A1 |
20130304084 | Beira et al. | Nov 2013 | A1 |
20130317519 | Ramo et al. | Nov 2013 | A1 |
20130345519 | Piskun et al. | Dec 2013 | A1 |
20140000411 | Shelton, IV et al. | Jan 2014 | A1 |
20140066944 | Taylor et al. | Mar 2014 | A1 |
20140069437 | Reis et al. | Mar 2014 | A1 |
20140142591 | Alvarez et al. | May 2014 | A1 |
20140166023 | Kishi | Jun 2014 | A1 |
20140171778 | Tsusaka | Jun 2014 | A1 |
20140180063 | Zhao | Jun 2014 | A1 |
20140222019 | Brudnick | Aug 2014 | A1 |
20140243849 | Saglam et al. | Aug 2014 | A1 |
20140276233 | Murphy | Sep 2014 | A1 |
20140276389 | Walker | Sep 2014 | A1 |
20140276394 | Wong et al. | Sep 2014 | A1 |
20140276594 | Tanner et al. | Sep 2014 | A1 |
20140276647 | Yu | Sep 2014 | A1 |
20140276935 | Yu | Sep 2014 | A1 |
20140276936 | Kokish et al. | Sep 2014 | A1 |
20140277334 | Yu et al. | Sep 2014 | A1 |
20140357984 | Wallace et al. | Dec 2014 | A1 |
20140364870 | Alvarez et al. | Dec 2014 | A1 |
20140375784 | Massetti | Dec 2014 | A1 |
20150012134 | Robinson | Jan 2015 | A1 |
20150090063 | Lantermann et al. | Apr 2015 | A1 |
20150133858 | Julian et al. | May 2015 | A1 |
20150133963 | Barbagli | May 2015 | A1 |
20150142013 | Tanner et al. | May 2015 | A1 |
20150144514 | Brennan et al. | May 2015 | A1 |
20150148600 | Ashinuma et al. | May 2015 | A1 |
20150150635 | Kilroy | Jun 2015 | A1 |
20150182250 | Conlon et al. | Jul 2015 | A1 |
20150231364 | Blanchard | Aug 2015 | A1 |
20150374445 | Gombert et al. | Dec 2015 | A1 |
20160000512 | Gombert et al. | Jan 2016 | A1 |
20160001038 | Romo et al. | Jan 2016 | A1 |
20160100896 | Yu | Apr 2016 | A1 |
20160157945 | Madhani | Jun 2016 | A1 |
20160166234 | Zhang | Jun 2016 | A1 |
20160192860 | Allenby | Jul 2016 | A1 |
20160206389 | Miller | Jul 2016 | A1 |
20160213435 | Hourtash | Jul 2016 | A1 |
20160235946 | Lewis et al. | Aug 2016 | A1 |
20160270865 | Landey et al. | Sep 2016 | A1 |
20160287279 | Bovay et al. | Oct 2016 | A1 |
20160338783 | Romo et al. | Nov 2016 | A1 |
20160338785 | Kokish et al. | Nov 2016 | A1 |
20160346049 | Allen et al. | Dec 2016 | A1 |
20170007337 | Dan | Jan 2017 | A1 |
20170007343 | Yu | Jan 2017 | A1 |
20170119481 | Romo et al. | May 2017 | A1 |
20170151028 | Ogawa et al. | Jun 2017 | A1 |
20170165011 | Bovay et al. | Jun 2017 | A1 |
20170202627 | Sramek et al. | Jul 2017 | A1 |
20170209073 | Sramek et al. | Jul 2017 | A1 |
20170252540 | Weitzner et al. | Sep 2017 | A1 |
20170258534 | Hourtash | Sep 2017 | A1 |
20170281049 | Yamamoto | Oct 2017 | A1 |
20170290631 | Lee et al. | Oct 2017 | A1 |
20170325932 | Hoelzle | Nov 2017 | A1 |
20170340396 | Romo et al. | Nov 2017 | A1 |
20170367782 | Schuh et al. | Dec 2017 | A1 |
20180025666 | Ho et al. | Jan 2018 | A1 |
20180042464 | Arai | Feb 2018 | A1 |
20180042686 | Peine | Feb 2018 | A1 |
20180049792 | Eckert | Feb 2018 | A1 |
20180056044 | Choi et al. | Mar 2018 | A1 |
20180104820 | Troy et al. | Apr 2018 | A1 |
20180116735 | Tierney et al. | May 2018 | A1 |
20180206927 | Prisco et al. | Jul 2018 | A1 |
20180214011 | Graetzel et al. | Aug 2018 | A1 |
20180221038 | Noonan et al. | Aug 2018 | A1 |
20180221039 | Shah | Aug 2018 | A1 |
20180243048 | Shan | Aug 2018 | A1 |
20180250083 | Schuh et al. | Sep 2018 | A1 |
20180271616 | Schuh et al. | Sep 2018 | A1 |
20180279852 | Rafii-Tari et al. | Oct 2018 | A1 |
20180280660 | Landey et al. | Oct 2018 | A1 |
20180289431 | Draper et al. | Oct 2018 | A1 |
20180296299 | Iceman | Oct 2018 | A1 |
20180303566 | Soundararajan | Oct 2018 | A1 |
20180325499 | Landey et al. | Nov 2018 | A1 |
20180326181 | Kokish et al. | Nov 2018 | A1 |
20180333044 | Jenkins | Nov 2018 | A1 |
20180360435 | Romo | Dec 2018 | A1 |
20190000559 | Berman et al. | Jan 2019 | A1 |
20190000560 | Berman et al. | Jan 2019 | A1 |
20190000576 | Mintz et al. | Jan 2019 | A1 |
20190083183 | Moll et al. | Mar 2019 | A1 |
20190110839 | Rafii-Tari et al. | Apr 2019 | A1 |
20190151148 | Alvarez et al. | Apr 2019 | A1 |
20190142537 | Covington et al. | May 2019 | A1 |
20190167366 | Ummalaneni | Jun 2019 | A1 |
20190175009 | Mintz | Jun 2019 | A1 |
20190175062 | Raffi-Tari et al. | Jun 2019 | A1 |
20190175799 | Hsu | Jun 2019 | A1 |
20190183585 | Raffi-Tani et al. | Jun 2019 | A1 |
20190183587 | Raffi-Tani et al. | Jun 2019 | A1 |
20190216548 | Ummalaneni | Jul 2019 | A1 |
20190216576 | Eyre | Jul 2019 | A1 |
20190223967 | Abbott | Jul 2019 | A1 |
20190223974 | Romo | Jul 2019 | A1 |
20190228525 | Mintz et al. | Jul 2019 | A1 |
20190231458 | DiMaio | Aug 2019 | A1 |
20190246882 | Graetzel et al. | Aug 2019 | A1 |
20190262086 | Connolly et al. | Aug 2019 | A1 |
20190269468 | Hsu et al. | Sep 2019 | A1 |
20190274764 | Romo | Sep 2019 | A1 |
20190290109 | Agrawal et al. | Sep 2019 | A1 |
20190298160 | Ummalaneni et al. | Oct 2019 | A1 |
20190298460 | Al-Jadda | Oct 2019 | A1 |
20190298465 | Chin | Oct 2019 | A1 |
20190328213 | Landey et al. | Oct 2019 | A1 |
20190336238 | Yu | Nov 2019 | A1 |
20190365209 | Ye et al. | Dec 2019 | A1 |
20190365479 | Rafii-Tani | Dec 2019 | A1 |
20190365486 | Srinivasan et al. | Dec 2019 | A1 |
20190374297 | Wallace et al. | Dec 2019 | A1 |
20190375383 | Alvarez | Dec 2019 | A1 |
20190380787 | Ye | Dec 2019 | A1 |
20190380797 | Yu | Dec 2019 | A1 |
20200000530 | DeFonzo | Jan 2020 | A1 |
20200000533 | Schuh | Jan 2020 | A1 |
20200008874 | Barbagli et al. | Jan 2020 | A1 |
20200022767 | Hill | Jan 2020 | A1 |
20200039086 | Meyer | Feb 2020 | A1 |
20200046434 | Graetzel | Feb 2020 | A1 |
20200054405 | Schuh | Feb 2020 | A1 |
20200054408 | Schuh et al. | Feb 2020 | A1 |
20200060516 | Baez | Feb 2020 | A1 |
20200086087 | Hart et al. | Mar 2020 | A1 |
20200091799 | Covington et al. | Mar 2020 | A1 |
20200093549 | Chin | Mar 2020 | A1 |
20200093554 | Schuh | Mar 2020 | A1 |
20200100845 | Julian | Apr 2020 | A1 |
20200100855 | Leparmentier | Apr 2020 | A1 |
20200101264 | Jiang | Apr 2020 | A1 |
20200107894 | Wallace | Apr 2020 | A1 |
20200121502 | Kintz | Apr 2020 | A1 |
20200129252 | Kokish | Apr 2020 | A1 |
20200146769 | Eyre | May 2020 | A1 |
20200155801 | Kokish | May 2020 | A1 |
20200188043 | Yu | Jun 2020 | A1 |
20200197112 | Chin | Jun 2020 | A1 |
20200206472 | Ma | Jul 2020 | A1 |
20200217733 | Lin | Jul 2020 | A1 |
20200222134 | Schuh | Jul 2020 | A1 |
20200230360 | Yu | Jul 2020 | A1 |
20200237458 | DeFonzo | Jul 2020 | A1 |
20200261172 | Romo | Aug 2020 | A1 |
20200268459 | Noonan et al. | Aug 2020 | A1 |
20200268460 | Tse | Aug 2020 | A1 |
Number | Date | Country |
---|---|---|
101161426 | Apr 2008 | CN |
103037799 | Apr 2011 | CN |
201884596 | Jun 2011 | CN |
102316817 | Jan 2012 | CN |
102327118 | Jan 2012 | CN |
102458295 | May 2012 | CN |
102665590 | Sep 2012 | CN |
102834043 | Dec 2012 | CN |
102973317 | Mar 2013 | CN |
102015759 | Apr 2013 | CN |
103735313 | Apr 2014 | CN |
105147393 | Dec 2015 | CN |
105559850 | May 2016 | CN |
105559886 | May 2016 | CN |
19649082 | Jan 1998 | DE |
102004020465 | Sep 2005 | DE |
442 720 | Aug 2004 | EP |
2 567 670 | Mar 2013 | EP |
3 025 630 | Jun 2016 | EP |
07-136173 | May 1995 | JP |
2009-139187 | Jun 2009 | JP |
2010-046384 | Mar 2010 | JP |
WO 0274178 | Sep 2002 | WO |
WO 03086190 | Oct 2003 | WO |
WO 07146987 | Dec 2007 | WO |
WO 09092059 | Jul 2009 | WO |
WO 11005335 | Jan 2011 | WO |
WO 12037506 | Mar 2012 | WO |
WO 13179600 | Dec 2013 | WO |
WO 15127231 | Aug 2015 | WO |
WO 17059412 | Apr 2017 | WO |
WO 17151993 | Sep 2017 | WO |
Entry |
---|
Mayo Clinic, Robotic Surgery, https://www.mayoclinic.org/tests-procedures/robotic-surgery/about/pac-20394974?p=1, downloaded from the internet on Jul. 12, 2018, 2 pp. |
European Search Report for European Patent Application No. 14160078.3 dated Feb. 11, 2015. (6 pages). |
Number | Date | Country | |
---|---|---|---|
20230000573 A1 | Jan 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16740973 | Jan 2020 | US |
Child | 17836135 | US | |
Parent | 15390355 | Dec 2016 | US |
Child | 16740973 | US | |
Parent | 13839967 | Mar 2013 | US |
Child | 15390355 | US |