Queen et al, A Humanized Antibody That Binds to the Interleukin 2 Receptor, Proc. Natl. Acad. Sci. USA 86, pp. 10029-10033 (1989). |
Kettleborough et al, Humanization of a Mouse Monoclonal Antibody by CDR-Grafting: The Importance of Framework Residues on Loop Conformation, Protein Engineering 4, pp. 773-83(1991). |
Chothia et al, Canonical Structures for the Hypervariable Regions of Immunoglobulins, J. Mol. Biol. 196, pp. 901-917 (1987). |
Chothia et al, Conformations of Immunoglobulin Hypervariable Regions, Nature 342, pp. 877-883 (1989). |
Jonsson et al, Real-Time Biospecific Interaction Analysis Using Surface Plasmon Resonance and a Sensor Chip Technology, BioTechniques 11, pp. 620-627 (1991). |
Dersimonian et al, Relationship of Human Variable Region Heavy Chain Germ-Line Genes to Genes Encoding Anti-DNA Autoantibodies, J. Immunology 139, pp. 2496-2501(1987). |
Beatty et al, Measurement of Monoclonal Antibody Affinity by Non-Competitive Enzyme Immunoassay J. Immunological Methods 100, pp. 173-179(1987). |
Amit et al, Three-Dimensional Structure of an Antigen-Antibody Complex at 2.8A Resolution, Science 233, pp. 747-753 (1986). |
Padlan et al, Structure of an Antibody-Antigen Complex: Crystal Structure of the Hyhel-10 Fab-Lysozyme Complex, Proc. Natl. Acad. Sci. USA 86, pp. 5938-5942 (1989). |
Newkirk et al, Complete Protein Sequences of the Variable Regions of the Cloned Heavy and Light Chains of a Human Anti-Cytomegalovirus Antibody Reveal a Striking Similarity to Human Monoclonal Rheumatoid Factors of the WA Idiotypic Family, J. Clin. Invest. 81, pp. 1511-1518 (1988). |
Kozak, At Least Six Nucleotides Preceding the AUG Initiator Codon Enhance Translation in Mammalian Cells, J. Mol. Biol. 196, pp. 947-950 (1987). |
Sheriff et al, Three-Dimensional Structure of an Antibody-Antigen Complex, Proc. Natl. Acad. Sci. USA 84, pp. 8075-8079 (1987). |
Furey et al, Structure of a Novel Bence-Jones Protein (Rhe) Fragment at 1.6 A Resolution, J. Mol. Biol. 167, pp. 661-692 (1983). |
Breathnach et al, Ovalbumin Gene: Evidence for a Leader Sequence in mRNA and DNA Sequences at the Exon-Intron Boundaries, Proc. Natl. Acad. Sci USA 75, pp. 4853-4857(1978). |
Sun et al, Expression of a Mouse/Human Chimeric IgE, J. Cell Biol. 109, 1573(1989). |
Kolbinger et al, A Humanized Antibody for the Treatment of Allergy, Poster, Miami, Jan., 1993. |
Tempest et al, Reshaping a Human Monoclonal Antibody to Inhibit Human Respiratory Syncytial Virus Infection In Vivo, Bio/Technology 9, pp. 266-271 (1991). |
Rousseaux-Prevost ,et al, Studies of the IgE Binding Sites to Rat Mast Cell Receptor with Proteolytic Fragments and with a Monoclonal Antibody Directed Against Epsilon Heavy Chain: Evidence That the Combining Sites are Located in the C,3 Domain, Molecular Immunology 24, pp. 187-196 (1987). |
Baniyash et al, Inhibition of IgE Binding to Mast Cells and Basophils by Monolconal Antibodies to Murine IgE, Eur. J. Immunol. 14, pp. 799-807(1984). |
Vercelli et al, The B-Cell Binding Site on Human Immunoglobulin E, Nature 338, pp. 649-651 (1989). |
Nissim et al, Localization of the FC ERI Binding Site to the Third Constant Domain of IgE, Int. Arch. Allergy Appl. Immunol. 94, pp. 93-95 (1991). |
Helm et al, The Mast Cell Binding Site on Human Immunoglobulin E, Nature 331, pp. 180-183(1988). |
Chang et al, Monoclonal Antibodies Specific for Human IgE-Producing B Cells: A Potential Therapeutic for IgE-Mediated Allergic Diseases, Bio/Technology 8, pp. 122-127(1990). |
Bourgeois et al, Monoclonal Antibodies to Human IgE: Utilization for Total IgE Quantification and Estimation of Allergen Specific IgE Antibodies, Develop. Biol. Standard 57, pp. 371-379 (1984). |
Ichimori et al, Establishment of Hybridomas Secreting Monoclonal Antibodies Against CE2 and CE4 Domains of Human IgE, Hybridoma 4, pp. 47-53 (1985). |
Chretien et al, A Monoclonal Anti-IgE Antibody Against an Epitope (Amino Acids 367-376) in the CH3 Domain Inhibits IgE Binding to the Low Affinity IgE Receptor (CD23), J. Immunology 141, pp. 3128-3134 (1988). |
Noro et al, Monoclonal Antibody (H107) Inhibiting IgE Binding to FCER(+) Human Lymphocytes, J. Immunology 137, pp. 1258-1263 (1986). |
Kings et al, Histamine Release from Human Leukocytes by Anti-IgE Antibodies: Influence of Multiple or Single Epitope Recognition, Diagnostic Immunology 4, pp. 89-96(1986). |
Grassi et al, Quantitative Determination of Total and Specific Human IgE with the Use of Monoclonal Antibodies, J. Allergy Clin. Immunology 77, pp. 808-822 (1986). |
Haba et al, Production of Syngeneic Autoreactive Monoclonal Antibodies Specific for Isotypic Determinants of IgE, J. Immunological Methods, 105, pp. 193-199(1987). |
Baniyash et al, Relationships Between Epitopes on IgE Recognized by Defined Monoclonal Antibodies and By the FC.sub.E Receptor on Basophils, J. Immunology 136, pp. 588-593(1986). |
Baniyash et al, Anti-IgE Monoclonal Antibodies Directed at the FC.sub.E Receptor Binding Site, Molecular Immunology 25, pp. 705-711 (1988). |
Nakajima et al, Effect of Anti-IgE Antibodies on IgE Binding to CD23, Allergy 44, pp. 187-191 (1989). |
Hook et al, Monoclonal Antibodies to Human IgE, Fed. Proc. 10, p. 968 (Abstr. 4177) (1981). |
Lewis et al; Immunoglobulin Complementarity-Determining Region Grafting by Recombinant Polymerase Chain Reaction to Generate Humanized Monoclonal Antibodies; Gene 101 (1991) 297-302. |
Kolbinger et al; A Humanized Antibody for the Treatment of Allergy Protein Engineering vol.6, Suppl. 1993 p. 90. |
Riechmann et al; Reshaping Human Antibodies for Therapy Nature vol. 332, Mar. 24, 1988, pp. 323-327. |
Heussler et al; New Concepts of IgE Regulation; Int Arch Allergy Appl Immunol, 1991; 94:87-90. |
RudiKoff et al., PNAS USA 79:1979-1983, 1982. |
Liou et al. Faseb J 5-A1670, Mar. 19, 1991. |