The present invention relates generally to fluid spraying systems. More particularly, the invention relates to a resilient fluid housing for a spraying system.
Fluid spraying systems are commonly used in a wide variety of applications, from industrial assembly to home painting. Handheld sprayers can be used by a human operator, while automated sprayers are typically used in mechanized manufacturing processes. Pressure within fluid spraying systems fluctuates during normal operation. In practice, peak operating pressures define the minimum structural requirements of spraying systems, because fluid volumes within such systems must operate under all pressure conditions. For this reason, conventional high-pressure capable spraying systems use rigid, heavy housings typically formed of metal.
A high pressure capable fluid sprayer includes a piston pump, a main pump housing, and a spray tip. The piston pump has a piston disposed to pump a fluid. The spray tip has an outlet aperture configured to atomize and spray the fluid. The main pump housing is formed of compliant plastic and rated for at least 1600 psi, defines a main pump chamber surrounding the piston, and is disposed to receive fluid from a fluid source.
While the above-identified drawing figures set forth several embodiments of the invention, other embodiments are also contemplated, as noted in the discussion. In all cases, this disclosure presents the invention by way of representation and not limitation. It should be understood that numerous other modifications and embodiments can be devised by those skilled in the art, which fall within the scope and spirit of the principles of the invention. The figures may not be drawn to scale.
The present invention relates to a fluid sprayer such as a hand-held paint spraying system. The sprayer has interior volumes primarily defined by housings formed of compliant plastic. These compliant housings distend in response to high pressures that occur during sprayer operation, thereby reducing pressure within the sprayer and allowing the sprayer to operate at peak pressures without the need for heavy rigid housings.
Body 12 of sprayer 10 includes pumping elements suitable to drive fluid from source 14 towards nozzle 20, and expel fluid from outlet aperture 24 of spray tip 22. In the depicted embodiment, body 12 houses pump 36. Pump 36 can, for example, be an electric motorized piston pump that receives power through power cord 32, or from an integral battery pack (not shown). Pump 36 produces high pressures via aggressive pressure spikes, unlike gentler pumping mechanisms such as diaphragm or impeller pumps. Grip 16 provides a hand-hold for a human user. When the user depresses trigger 18, sprayer 10 draws fluid from source 14 through body 12, and expels this fluid through nozzle 20. Trigger 18 can, for example, actuate pump 36. Although source 14 is depicted as a substantially cylindrical fluid receptacle carried by body 12, alternative embodiments of source 14 can include receptacles of other shapes and sizes, as well as fluid lines or hoses connectable to external fluid supplies. Source 14 can, for example, be a disposable paint container such as a deflating bag. Prime valve assembly 28 can be used to prime pumping elements within body 12 prior to spraying fluid from source 14.
Nozzle 20 houses spray tip 22. Spray tip 22 can, for example, be a removable element with a substantially cylindrical portion insertable into nozzle 20 to provide a desired spray pattern, as depicted and described in further detail below with respect to
Main pump housing 100 defines main pump chamber 101, which houses a piston of pump 36 (see
During ordinary operation, outlet check valve sealing element 110 and prime valve sealing element 118 are retained against outlet check valve seat 112 and prime valve seat 120, respectively, by outlet check valve rod 106 and prime valve rod 124. Outlet check valve rod 106 and prime valve rod 124 are in turn biased to “closed” positions by outlet check valve bias element 114 and prime valve bias element 128, respectively. In the illustrated embodiment, prime and outlet check valve bias elements 113 and 128 are springs disposed coaxially with prime valve rod 106 and outlet check valve rod 124, respectively. Outlet check valve sealing element 110 and prime valve sealing element 118 can, for example, be valve balls, as shown. In alternative embodiments, outlet check valve sealing element 110 and prime valve sealing element 118 can, for example, be pins or other shapes that mate with corresponding faces on outlet check valve seat 112 and prime valve seat 120. Outlet check valve rod 106 reciprocates along an axis AO within outlet check valve housing 104, which defines outlet check valve chamber 114. Fluid pressure within check valve chamber 114 above a threshold actuation valve PactO overcomes a substantially constant closing force exerted by outlet check valve bias element 108, causing outlet check valve sealing element 110 to recede from outlet check valve seat 112, opening outlet check valve assembly 102. Prime valve assembly 28 operates analogously while prime valve pin 132 is disengaged: prime valve rod 124 reciprocates along axis AP, allowing prime valve sealing element 118 to separate from prime valve seat 120.
Outlet check valve seat 112 and prime valve seat 120 are rigid, durable elements with geometries suited to receive sealing elements 110 and 118, respectively, in tight seals. In one embodiment, outlet check valve seat 112 and prime valve seat 120 are formed of tungsten carbide blanks ground or otherwise machined to mate smoothly with sealing elements 110 and 118, respectively.
Main pump housing 100, outlet check valve housing 104, and prime valve seat housing 122 define main pump chamber 101, outlet check valve chamber 114, and prime valve chamber 130, respectively. Main pump chamber 101, outlet check valve chamber 114, and prime valve chamber 130 together make up the majority of fluid-accessible volume of the sprayer 10. Sprayer 10 is a high pressure-capable fluid sprayer rated for pressures in excess of 360 psi. In one embodiment, sprayer 10 is rated for pressures in excess of 1000 psi, and main pump housing 100, outlet check valve housing 104, and prime valve seat housing 122 must accordingly be resilient to high pressures. In a further embodiment, sprayer 10 is rated for pressures in excess of 2000 psi. In one embodiment, main pump housing 100, outlet check valve housing 104, and prime valve seat housing 122 are capable of operating under peak pressures exceeding 2000 psi. Main pump housing 100, outlet check valve housing 104, and prime valve seat housing 122 are each formed of compliant plastic, e.g. of molded acetal or nylon. In one embodiment, main pump housing 100, outlet check valve housing 104, and prime valve seat housing 122 each have Young's modulus less than 1,000,000 psi. In a further embodiment, outlet check valve housing 104 and prime valve seat housing 122 each have Young's modulus between 290,000 and 400,000 psi, while main pump housing 100 has Young's modulus of 750,000 or less. Main pump housing 100, outlet check valve housing 104, and prime valve seat housing 122 are externally exposed to atmospheric pressures, are each sufficiently thin-walled to be capable distending laterally (i.e. radially outward from axes AO or AP) under heavy internal pressure loads, unlike the heavy, rigid housing structures (formed, e.g. of aluminum) conventionally used to satisfy the demanding structural requirements of high-pressure sprayers.
The compliant structure of main pump housing 100, outlet check valve housing 104, and prime valve seat housing 122 reduces pressure spikes within main pump chamber 101, outlet check valve chamber 114, and prime valve chamber 130. Where analogous sprayer systems using rigid fluid housings might experience internal pressures of up to 4000 psi, for example, the compliant housings of the present invention reduce internal pressure to less than 2000 psi. In one embodiment, the present invention reduces average internal fluid pressures to approximately 1000 psi, or less than 1200 psi, and peak internal fluid pressures to approximately 1500 psi, or less than 1800 psi. In general, the use of compliant material in pump housing 100, outlet check valve housing 104, and prime valve housing 122 reduces peak pressures inside sprayer 10 by at least 30%, and in some cases by more than 50%. As a result of this pressure reduction, housing 100, outlet check valve housing 104, and prime valve seat housing 122 can be designed towards more lenient structural requirements, and can be relatively light and inexpensive without sacrificing structural integrity.
Discussion of Possible Embodiments
The following are non-exclusive descriptions of possible embodiments of the present invention.
A high pressure-capable fluid sprayer comprising: a piston pump with a piston disposed to pump a fluid; a spray tip having an outlet aperture configured to atomize and spray the fluid; and a main pump housing formed of compliant polymer, defining a main pump chamber surrounding the piston, disposed to receive fluid from the fluid source, and rated for at least 360 psi.
The fluid sprayer of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
A further embodiment of the foregoing fluid sprayer, further comprising an outlet check valve assembly with an outlet check valve housing defining an outlet check valve chamber disposed between the spray tip and the main pump chamber.
A further embodiment of the foregoing fluid sprayer, wherein the outlet check valve assembly is formed of compliant polymer.
A further embodiment of the foregoing fluid sprayer, wherein the outlet check valve assembly includes a valve ball and valve seat situated at least three times as far from the main pump housing as from the spray tip.
A further embodiment of the foregoing fluid sprayer, wherein the main pump chamber and the outlet check valve chamber together comprise the majority of a fluid-accessible volume of the fluid sprayer.
A further embodiment of the foregoing fluid sprayer, further comprising a prime valve assembly fluidly connected to the main pump chamber and operable to prime the fluid sprayer, the prime valve assembly having a prime valve housing defining a prime valve chamber.
A further embodiment of the foregoing fluid sprayer, wherein at least a portion of the prime valve housing is formed of compliant plastic.
A further embodiment of the foregoing fluid sprayer, wherein the main pump housing and the outlet check valve housing each have Young's modulus less than 1,000,000 psi.
A further embodiment of the foregoing fluid sprayer, wherein the main pump housing and the outlet check valve housing are capable of withstanding at least 1000 psi pressure spikes.
A further embodiment of the foregoing fluid sprayer, wherein at least one of the outlet check valve housing and the main pump housing is formed of acetal or nylon.
A further embodiment of the foregoing fluid sprayer, wherein compliance of the main pump housing prevents peak internal fluid pressures within the fluid-accessible volume from exceeding 1800 psi.
A further embodiment of the foregoing fluid sprayer, wherein compliance of the main pump housing prevent average internal fluid pressures within the fluid-accessible volume from exceeding 1200 psi.
Summation
Any relative terms or terms of degree used herein, such as “substantially”, “essentially”, “generally”, “approximately” and the like, should be interpreted in accordance with and subject to any applicable definitions or limits expressly stated herein. In all instances, any relative terms or terms of degree used herein should be interpreted to broadly encompass any relevant disclosed embodiments as well as such ranges or variations as would be understood by a person of ordinary skill in the art in view of the entirety of the present disclosure, such as to encompass ordinary manufacturing tolerance variations, incidental alignment variations, alignment or shape variations induced by thermal, rotational or vibrational operational conditions, and the like.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/011976 | 1/20/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/109295 | 7/23/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4693423 | Roe et al. | Sep 1987 | A |
4744516 | Peterson et al. | May 1988 | A |
6981658 | Streutker | Jan 2006 | B2 |
7891588 | Jones | Feb 2011 | B2 |
8596555 | Thompson | Dec 2013 | B2 |
9016599 | Johnson | Apr 2015 | B2 |
20030025002 | Hughes | Feb 2003 | A1 |
20070278787 | Jones et al. | Dec 2007 | A1 |
20090145980 | Jones | Jun 2009 | A1 |
20090272260 | Moreno et al. | Nov 2009 | A1 |
20100294805 | Pohlmann et al. | Nov 2010 | A1 |
20110114756 | Munn | May 2011 | A1 |
20120037726 | Johnson et al. | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
101081383 | Dec 2007 | CN |
101939112 | Jan 2011 | CN |
201913031 | Aug 2011 | CN |
102202802 | Sep 2011 | CN |
WO2010047800 | Apr 2010 | WO |
Entry |
---|
International Search Report and Written Opinion from PCT Application Serial No. PCT/US2015/011976, dated Apr. 30, 2015, 11 pages. |
Extended European Search Report for EP Application No. 15737153.5, dated Jun. 14, 2017, 8 pages. |
First Chinese Office Action from Chinese Appln. No. 2015800049684, dated Jul. 18, 2017, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20160332178 A1 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
61929397 | Jan 2014 | US |