The application claims the benefit of Taiwan application serial No. 109129877, filed on Sep. 1, 2020, and the entire contents of which are incorporated herein by reference.
The present invention relates to an electronic device and, more particularly, to a resistive random access memory irradiated by a high-energy electromagnetic wave and an initialization method thereof.
Memory is a real-time data access device that must be used in various electronic products. With the trend of miniaturization of products, commonly used flash memory will be replaced by new technologies with high durability, low energy consumption, and faster read/write speed. Among them, resistive random access memory (RRAM) can operate at low current and perform resistive switching within nanoseconds, read/write repeatedly and store data for a long time. In addition, the resistive random access memory has the characteristics of small access data unit, which is suitable for miniaturized electronic products.
Please refer to
Before starting to operate the resistance state switching, the above-mentioned conventional resistive random access memory 9 must go through an initialization process, that is, to apply an initialization voltage to each of the variable resistances 92, with the initialization voltage greater than the bias voltage required for the resistance state switching. Thus, each of the variable resistances 92 will undergo a soft breakdown and change from an insulating state to a variable resistance state. After the initialization is completed, each of the variable resistances 92 only needs a lower bias voltage to switch between the high and low resistance states. Therefore, this initialization step only needs to be performed once. However, with the miniaturization of the size of electronic devices, the portion of the electric field applied to the electronic devices dissipating from the sidewalls of the devices increases. Thus, the initialization voltage increases as the size of the resistive random access memory 9 reduces, which results in the conventional resistive random access memory 9 having to be provided with an amplifying circuit 94 to provide the voltage value required for the initialization step. Nevertheless, the amplifying circuit 94 is only used once, while requiring additional setting space. As a result, the number of memory units 91 that can be set in the same area of the conventional resistive random access memory 9 is reduced, which is unfavorable to the product miniaturization and increases the production cost and manufacturing process difficulty.
In light of this, it is necessary to improve the resistive random access memory and the initialization method thereof.
In order to solve the above problems, it is an objective of the present invention to provide a method for initializing a resistive random access memory, which can simplify the manufacturing process of the memory.
It is another objective of the present invention to provide a method for initializing a resistive random access memory, which can avoid damage caused by high voltage.
It is a further objective of the invention to provide a resistive random access memory capable of reducing the product volume.
As used herein, the term “a” or “an” for describing the number of the elements and members of the present invention is used for convenience, provides the general meaning of the scope of the present invention, and should be interpreted to include one or at least one. Furthermore, unless explicitly indicated otherwise, the concept of a single component also includes the case of plural components.
In an example, a method for initializing a resistive random access memory of the invention includes irradiating a memory device with an electromagnetic wave and manipulating a switching voltage to switch the memory device between a high resistance state and a low resistance state. The electromagnetic wave has a frequency of above 1016 Hertz.
In an example, a resistive random access memory of the invention includes a plurality of memory devices and a switching circuit respectively electrically connected to the plurality of memory devices. Each of the plurality of memory devices has a resistance-changing layer and two electrode layers respectively located on an upper surface and a lower surface of the resistance-changing layer.
Accordingly, in the resistive random access memory and its initialization method of the invention, the initializing process can be completed through irradiating the electromagnetic wave instead of increasing a voltage value, which can simplify the manufacturing process of the memory and can also eliminate the need for an additional amplifying circuit, so as to improve the area utilization rate of the memory substrate to achieve the effects of reducing product volume, saving production costs and reducing manufacturing process difficulty.
In an example, the electromagnetic wave has a frequency of above 1016 Hertz, and the electromagnetic wave E is an X-ray or a gamma ray. In this way, a high-energy electromagnetic wave can gather conductive materials in the device, which has the effect of accelerating the initialization process.
Among them, the resistance-changing layer includes an insulating material having carbon, nitrogen, oxygen, fluorine, silicon, sulfur, selenium or tellurium. In this way, the switching voltage can change the insulation characteristics of the resistance-changing layer, which has the effect of forming high and low resistance states.
In an example, each of the plurality of memory devices further has a current-limiting unit electrically connected to one of the two electrode layers. In this way, the current-limiting unit can control the upper limit of the current value passing through the resistance-changing layer, which has the function of avoiding overcurrent damage to the devices.
In an example, the plurality of memory devices forms an array structure through the switching circuit. In this way, through the switching circuit, it is possible to selectively apply voltage and change-over switch to each of the plurality of memory devices designated, which has the function of accessing information.
The present invention will become clearer in light of the following detailed description of illustrative embodiments of this invention described in connection with the drawings.
Please refer to
Please refer to
Please refer to
In a preferred embodiment of the method for initializing a resistive random access memory of the invention is to irradiate an electromagnetic wave E to the plurality of memory devices 1, such that the resistance-changing layer 11 becomes a variable resistance state to complete the initialization of the resistive random access memory. The frequency of the electromagnetic wave E is above 1016 Hertz, and the electromagnetic wave E can be an X-ray or a gamma ray; a switching voltage is applied to the plurality of memory devices 1 through the switching circuit 2 to switch each of the plurality of memory devices 1 to high or low resistance states.
Please refer to
Please refer to
In summary, the resistive random access memory and the initialization method of the invention complete the initialization process by irradiating the electromagnetic wave instead of applying a voltage value, which can simplify the manufacturing process of the memory and also eliminate the need for an additional amplifying circuit, so as to improve the area utilization rate of the memory substrate, achieving the effects of reducing product volume, saving production costs and reducing manufacturing process difficulty.
Thus since the invention disclosed herein may be embodied in other specific forms without departing from the spirit or general characteristics thereof, some of which forms have been indicated, the embodiments described herein are to be considered in all respects illustrative and not restrictive. The scope of the invention is to be indicated by the appended claims, rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are intended to be embraced therein.
Number | Date | Country | Kind |
---|---|---|---|
109129877 | Sep 2020 | TW | national |