RNA COMPOSITIONS AND METHODS FOR INHIBITING LIPOPROTEIN(A)

Abstract
The present disclosure relates to dsRNAs targeting LPA mRNA and modulating Lp(a) plasma levels, and methods of treating one or more conditions associated with LPA gene expression.
Description
SEQUENCE LISTING

Nucleic acid sequences are disclosed in the present specification that serve as references. The same sequences are also presented in a sequence listing formatted according to standard requirements for the purpose of patent matters. In case of any sequence discrepancy with the standard sequence listing, the sequences described in the present specification shall be the reference.


FIELD OF THE INVENTION

The present invention relates to dsRNAs targeting LPA mRNA and modulating Lp(a) plasma levels, and methods of treating one or more conditions associated with LPA gene expression


BACKGROUND OF THE INVENTION

Lipoproteins are lipid protein particles that play a key role in transporting lipids in plasma. These particles have a single-layer phospholipid and cholesterol membrane with embedded apolipoproteins (proteins that bind lipids) such as apoA, apoB, apoC, and apoE. The membrane encapsulates lipids being transported. Because lipids are not soluble in water, lipoproteins effectively serve as emulsifiers.


Lipoprotein(a) or Lp(a), found only in humans and in old-world monkeys, comprises a low density lipoprotein (LDL) particle. Lp(a) differs from other lipoproteins by the presence of a unique apolipoprotein, apolipoprotein(a) [apo(a)], which is linked to apoB100 on the LDL particle outer surface through a disulfide bond (see, e.g., Kronenberg and Utermann, J Intern Med. (2013) 273(1):6-30); Guerra et al., Circulation. (2005) 111:1471-9). Apo(a) is expressed primarily in the liver and contains an inactive peptidase domain. Apo(a) is encoded by the highly polymorphic LPA gene. A variable number of kringle (K) IV type 2 repeats in the gene leads to a wide range of apo(a) isoform sizes. The LPA gene evolved from the plasminogen gene (PLG) and the two genes have highly homologous sequences (Kronenberg, supra).


Plasma Lp(a) levels vary by almost 1000-fold among individuals, with approximately of the population having highly elevated Lp(a) levels (approximately ≥50 mg/dL). See, e.g., Hopewell et al., J Intern Med. (2013) 273(1):260-8; Wilson et al., Clinical Lipidology (2019) 13(3):374-92. High plasma Lp(a) levels and small apo(a) isoform sizes are associated with an increased risk of cardiovascular diseases, including coronary heart disease, myocardial infarction, stroke, peripheral arterial disease, calcific aortic valve disease, and atherosclerosis.


WO 2019/092283 and WO 2020/099476 both disclose nucleic acids for inhibiting expression of LPA in a cell. Also, WO 2014/179625 discloses compositions and methods for modulating apolipoprotein(a) expression.


Double-stranded RNA molecules (dsRNAs) have been shown to block gene expression in a highly conserved regulatory mechanism known as RNA interference (RNAi). This appears to be a different mechanism of action from that of single-stranded oligonucleotides such as antisense oligonucleotides, antimiRs, and antagomiRs. In RNA interference technology, double-stranded RNAs, such as small interfering RNAs (siRNAs), bind to the RNA-induced silencing complex (“RISC”), where one strand (the “passenger strand” or “sense strand”) is displaced and the remaining strand (the “guide strand” or “antisense strand”) cooperates with RISC to bind a complementary RNA (the target RNA). Once bound, the target RNA is cleaved by RNA endonuclease Argonaute (AGO) in RISC and then further degraded by RNA exonucleases. RNAi has now been used to develop a new class of therapeutic agents for treating disorders caused by the aberrant or unwanted expression of a gene.


Due to the importance of Lp(a) in transporting cholesterol and oxidized phospholipids, and in providing lysophosphatidic acid, as well as the prevalence of diseases associated with elevated Lp(a) and atherosclerosis-promoting lipids, there is an urgent need to identify inhibitors of LPA expression and to test such inhibitors for efficacy and unwanted side effects such as cytotoxicity.


SUMMARY OF THE INVENTION

The present disclosure provides a double-stranded ribonucleic acid (dsRNA) that inhibits expression of a human LPA gene by targeting a target sequence on an RNA transcript of the LPA gene, wherein the dsRNA comprises a sense strand comprising a sense sequence, and an antisense strand comprising an antisense sequence, the target sequence is nucleotides 220-238, 223-241, 302-320, 1236-1254, 2946-2964, 2953-2971, 2954-2972, 2958-2976, 2959-2977, 4635-4653, 4636-4654, 4639-4657, 4842-4860, 4980-4998, 4982-5000, 6385-6403, or 6470-6488 of SEQ ID NO: 1632, and wherein the sense sequence is at least 90% identical to the target sequence. In some embodiments, the sense strand and antisense strand are complementary to each other over a region of 15-25 contiguous nucleotides. In some embodiments, the sense strand and the antisense strand are no more than 30 nucleotides in length. In particular embodiments, the target sequence is nucleotides 2958-2976, 4639-4657, or 4982-5000 of SEQ ID NO: 1632.


Most preferred target sequences are nucleotides 2958-2976, 4639-4657 and 4982-5000.


In some embodiments, one or both strands of the dsRNA comprise one or more compounds having the structure of




embedded image


wherein:

    • B is a heterocyclic nucleobase,
    • one of L1 and L2 is an internucleoside linking group linking the compound of formula (I) to said strand(s) and the other of L1 and L2 is H, a protecting group, a phosphorus moiety or an internucleoside linking group linking the compound of formula (I) to said strand(s),
    • Y is O, NH, NR1 or N—C(═O)—R1, wherein R1 is:
      • a (C1-C20) alkyl group, optionally substituted by one or more groups selected from an halogen atom, a (C1-C6) alkyl group, a (C3-C8) cycloalkyl group, a (C3-C14) heterocycle, a (C6-C14) aryl group, a (C5-C14) heteroaryl group, —O—Z1, —N(Z1)(Z2), —S—Z1, —CN, —C(=J)-O—Z1, —O—C(=J)-Z1, —C(=J)-N(Z1)(Z2), and —N(Z1)-C(=J)-Z2, wherein J is O or S,


        each of Z1 and Z2 is, independently, H, a (C1-C6) alkyl group, optionally substituted by one or more groups selected from a halogen atom and a (C1-C6) alkyl group,
    • a (C3-C8) cycloalkyl group, optionally substituted by one or more groups selected from a halogen atom and a (C1-C6) alkyl group,
    • a group —[C(═O)]m-R2-(O—CH2—CH2)p-R3, wherein


      m is an integer meaning 0 or 1,


      p is an integer ranging from 0 to 10,


      R2 is a (C1-C20) alkylene group optionally substituted by a (C1-C6) alkyl group, —O—Z3, —N(Z3)(Z4), —S—Z3, —CN, —C(═K)—O—Z3, —O—C(═K)—Z3, —C(═K)—N(Z3)(Z4), or —N(Z3)-C(═K)—Z4, wherein


K is O or S,

each of Z3 and Z4 is, independently, H, a (C1-C6) alkyl group, optionally substituted by one or more groups selected from a halogen atom and a (C1-C6) alkyl group, and


R3 is selected from the group consisting of a hydrogen atom, a (C1-C6) alkyl group, a (C1-C6) alkoxy group, a (C3-C8) cycloalkyl group, a (C3-C14) heterocycle, a (C6-C14) aryl group or a (C5-C14) heteroaryl group,


or R3 is a cell targeting moiety,

    • X1 and X2 are each, independently, a hydrogen atom, a (C1-C6) alkyl group, and
    • each of Ra, Rb, Rc and Rd is, independently, H or a (C1-C6) alkyl group, or a pharmaceutically acceptable salt thereof.


In another aspect, the present disclosure provides a pharmaceutical composition comprising the present dsRNA and a pharmaceutically acceptable excipient, and the dsRNA and pharmaceutical composition for use in inhibiting LPA expression, reducing Lp(a) levels, or treating an Lp(a)-associated condition in a human in need thereof. In some embodiments, the human has, or is at risk of having, a lipid metabolism disorder or a cardiovascular disease (CVD). In further embodiments, the human has, or is at risk of having, hypercholesterolemia, dyslipidemia, myocardial infarction, atherosclerotic cardiovascular disease, atherosclerosis, peripheral artery disease, calcific aortic valve disease, thrombosis, or stroke.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B are graphs showing correlation analyses of LPA siRNA screening results. A screening library comprising 299 LPA siRNAs was tested at 1 nM (FIG. 1A) or 10 nM (FIG. 1B) in two independent experiments in Hep3B cells transiently transfected with a pmirGLO-LPA dual luciferase reporter plasmid.



FIGS. 2A-C are graphs showing RT-qPCR analysis of LPA mRNA expression in human HepG2-LPA cells (which stably overexpressed a human LPA cDNA construct) (FIG. 2A), primary transgenic apo(a) mouse hepatocytes (FIG. 2B), or primary cynomolgus hepatocytes (FIG. 2C), following treatment with 34 selected test siRNAs at 1 or 10 nM. Expression of mRNA is represented relative to cells treated with a LV2 non-targeting siRNA control. Error bars indicate standard deviation. LV2 and LV3: negative control siRNA sequences that do not target any human, cynomolgus monkey, or rodent mRNA transcript. s8263 and s8264: positive controls, which are human LPA tool siRNAs (Ambion, now Thermo Fisher).



FIGS. 3A-C are graphs showing RT-qPCR analysis of plasminogen (PLG) mRNA expression in human HuH-7 cells (FIG. 3A), primary human hepatocytes (FIG. 3B), or primary cynomolgus hepatocytes (FIG. 3C) following treatment with 34 selected test siRNAs as indicated at 1 or 10 nM. Expression of mRNA is represented relative to cells treated with a LV2 non-targeting siRNA control. Error bars indicate standard deviation.



FIG. 4 is a graph depicting cytotoxic effects of 34 selected test siRNAs in human HepG2-LPA cells. Cells were treated with siRNAs as indicated at 5 or 50 nM before being analyzed for viability (CellTiter-Glo® assay) and toxicity (ToxiLight™ assay). Ratios of the resulting readings are shown relative to results for a LV2 non-targeting siRNA control. Error bars indicate standard deviation. “AllStars Cell Death”: AllStars Hs Cell Death Control siRNA (Qiagen).



FIG. 5 is a graph depicting relative amount of PLG protein secreted into the supernatant of human hepatocytes treated with indicated concentrations (0.1, 1, or 10 μM) of 17 selected LPA GalNAc-siRNAs under free uptake conditions as determined by ELISA assay. Protein expression is represented relative to cells treated with a LV2 non-targeting siRNA control at 1 μM (dashed line). Error bars indicate standard deviation.



FIG. 6 is a graph depicting analysis of cytotoxic siRNA effects in human HepG2-LPA cells. Cells were treated with 17 selected LPA GalNAc-siRNAs as indicated at 5 and 50 nM before being analyzed for viability (CellTiter-Glo assay) and toxicity (ToxiLight assay). Ratios of the resulting readings are shown relative to results of a LV2 non-targeting siRNA control (dashed line). Error bars indicate standard deviation.



FIG. 7 is a graph depicting the amount of interferon α2a (IFNα2a) protein released into the supernatant of human peripheral blood mononuclear cells (PBMCs) isolated from three different donors and transfected with 100 nM concentration of 17 selected LPA GalNAc-siRNAs or controls. Protein concentration was determined by ELISA. Error bars indicate standard deviation.



FIG. 8 is a graph depicting relative amounts of serum apo(a) protein levels in apo(a) transgenic mice treated subcutaneously with a single dose of 17 selected LPA GalNAc-siRNAs at mg/kg at day 0. Protein expression is represented relative to animals treated with a PBS vehicle control. Human apo(a) levels were quantified by ELISA, error bars indicate standard error of the mean (SEM).



FIG. 9 is a panel of graphs showing RNA-Seq whole transcriptome analysis of primary human hepatocytes from two different donors treated with 5 μM of three selected GalNAc-siRNAs. The number of differentially up- and downregulated genes as compared to a LV2 GalNAc-siRNA non-silencing control are shown applying the filter criteria—absolute foldchange>1.5 and FDR (false discovery rate)<0.05. LPA being the most downregulated transcript in each comparison is indicated by a dashed circle.



FIG. 10 is a graph depicting residual LPA mRNA expression levels normalized to a LV2 non-silencing control in primary hepatocytes isolated from apo(a) transgenic mice treated with 1 nM and 5 nM siRNAs from optimization libraries based on selected sequences siLPA #0307, siLPA #0311, and siLPA #0314.



FIGS. 11A-C are graphs showing relative amounts of serum apo(a) levels in apo(a) transgenic mice treated subcutaneously with a single dose of 41 optimized LPA GalNAc-siRNAs and respective parent molecules at 3 mg/kg at day 0. FIGS. 11A-C represent data for optimized LPA GalNAc-siRNAs based on parent sequences siLPA #0307; siLPA #0311, and siLPA #0314, respectively. Protein expression is represented relative to animals treated with a PBS vehicle control. Human apo(a) levels were quantified by ELISA, error bars indicate SEM.



FIG. 12 is a graph showing the amount of interferon α2a (IFNα2a) protein released into the supernatant of human peripheral blood mononuclear cells (PBMCs) isolated from three different donors and transfected with 100 nM concentration of 41 optimized LPA GalNAc-siRNAs or controls. Protein concentration was determined by ELISA. Error bars indicate standard deviation.



FIG. 13 is a graph showing RT-qPCR analysis of LPA mRNA expression in primary cynomolgus hepatocytes treated under free uptake conditions with 41 optimized LPA GalNAc-siRNAs and respective parent lead molecules as indicated at 100 nM and 1 μM concentration, respectively. mRNA expression is represented relative to cells treated with a LV2 non-targeting GalNAc-siRNA control (dashed line). Error bars indicate standard deviation.



FIG. 14 is a graph showing RT-qPCR analysis of PLG mRNA expression in primary human hepatocytes treated under free uptake conditions with 41 optimized LPA siRNA-GalNAc reagents and respective parent lead molecules as indicated at 10 nM, 100 nM and 1 μM concentration, respectively. mRNA expression is represented relative to cells treated with a LV2 non-targeting siRNA-GalNAc control (dashed line). Error bars indicate standard deviation.





DETAILED DESCRIPTION OF THE INVENTION

The present disclosure provides novel double-stranded RNAs (dsRNAs) that inhibit expression of an LPA gene. In some embodiments, the dsRNAs are small interfering RNAs (siRNAs). Besides nucleic acids, the present dsRNAs may comprise additional moieties such as targeting moieties that facilitate the delivery of the dsRNAs to a targeted tissue. The dsRNAs can be used to treat conditions such as cardiovascular diseases. Unless otherwise stated, “apo(a)” refers to a human LPA gene product. An mRNA sequence of 6489 nucleotides in length of a human apo(a) protein is available under NCBI Reference Sequence No. NM_005577.2 (SEQ ID NO: 1632). An mRNA sequence of 6414 nucleotides in length, lacking the 75 first nucleotides located at the 5′ end of SEQ ID NO. 1632, of a human apo(a) protein is also available under NCBI Reference Sequence No. NM_005577.3 (SEQ ID NO: 1627) and its polypeptide sequence is available under NCBI Reference Sequence No. NP_005568.2 (SEQ ID NO: 1628). In certain embodiments, the present disclosure refers to cynomolgus apo(a). An mRNA sequence of a cynomolgus apo(a) protein is available under NCBI Reference Sequence No. XM_015448517 (SEQ ID NO: 1629) and its polypeptide sequence is available under NCBI Reference Sequence No. XP_015304003.1 (SEQ ID NO: 1630).


A dsRNA of the present disclosure, such as one comprising a conjugated GalNAc moiety, may have one or more of the following properties: (i) has a half-life of at least 24, 28, 32, 48, 52, 56, 60, 72, 96, or 168 hours in 50% mouse serum; (ii) does not increase production of interferon α secreted from human primary PMBCs; (iii) has an IC50 value of from, e.g., 1 pM to 100 nM, for inhibition of human LPA mRNA expression in transgenic mouse hepatocytes or primary human or cynomolgus liver cells; and (iv) reduces protein levels of apo(a) by at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% in vivo in FVB/N mice expressing human LPA.


In some embodiments, a dsRNA of the present disclosure comprising a conjugated GalNAc moiety has at least one of the following properties: (i) has a half-life of at least 24 hours in 50% mouse serum; (ii) does not increase production of interferon α secreted from human primary PMBCs, (iii) has an IC50 value of from, e.g., 1 pM to 50 nM, for inhibition of human LPA mRNA expression in transgenic mouse hepatocytes or primary human or cynomolgus liver cells; and (iv) reduces protein levels of human apo(a) by at least 80% in vivo in FVB/N mice expressing human LPA. In certain embodiments, the dsRNA has all of said properties.


It will be understood by the person skilled in the art that the dsRNAs described herein do not occur in nature (“isolated” dsRNAs).


I. Double-Stranded RNAs

Certain aspects of the present disclosure relate to double-stranded ribonucleic acid (dsRNA) molecules targeting LPA mRNA. As used herein, the term “double-stranded RNA” or “dsRNA” refers to an oligoribonucleotide molecule comprising a duplex structure having two anti-parallel and substantially complementary nucleic acid strands. The two strands forming the duplex structure may be different portions of one larger RNA molecule, or they may be on separate RNA molecules. When the two strands are on separate RNA molecules, the dsRNA structure may function as short interfering RNA (siRNA). Where the two strands are part of one larger molecule and are connected by an uninterrupted chain of nucleotides between the 3′-end of a first strand and the 5′-end of a second strand, the connecting RNA chain is referred to as a “hairpin loop” and the RNA molecule may be termed “short hairpin RNA,” or “shRNA.” The RNA strands may have the same or a different number of nucleotides. In addition to the duplex structure, a dsRNA may comprise overhangs of one or more (e.g., 1, 2 or 3) nucleotides.


As used herein, the term “polynucleotide” refers to a polymeric form of nucleotides of at least 10 bases in length, either ribonucleotides or deoxyribonucleotides or a modified form of either type of nucleotide. The term includes single and double stranded forms.


A “dsRNA” may include naturally occurring ribonucleotides, and/or chemically modified analogs thereof. As used herein, “dsRNAs” are not limited to those with ribose-containing nucleotides. A dsRNA herein encompasses a double-stranded polynucleotide molecule where the ribose moiety in some or all of its nucleotides has been replaced by another moiety, so long as the resultant double-stranded molecule can inhibit the expression of a target gene by RNA interference. The dsRNA may also include one or more, but not more than 60% (e.g., not more than 50%, 40%, 30%, 20%, or 10%) deoxyribonucleotides or chemically modified analogs thereof.


A dsRNA of the present disclosure comprises a sense strand comprising a sense sequence, and an antisense strand comprising an antisense sequence, wherein the sense strand and the antisense strand are sufficiently complementary to hybridize to form a duplex structure. The term “antisense sequence” refers to a sequence that is substantially or fully complementary, and binds under physiological conditions, to a target RNA sequence in a cell. A “target sequence” refers to a nucleotide sequence on an RNA molecule (e.g., a primary RNA transcript or a messenger RNA transcript) transcribed from a target gene, e.g., an LPA gene. The term “sense sequence” refers to a sequence that is substantially or fully complementary to the antisense sequence.


The LPA mRNA-targeting dsRNA of the present disclosure comprises a sense strand comprising a sense sequence and an antisense strand comprising an antisense sequence, wherein the sense and antisense sequences are substantially or fully complementary to each other. Unless otherwise indicated, the term “complementary” refers herein to the ability of a polynucleotide comprising a first contiguous nucleotide sequence, under certain conditions, e.g., physiological conditions, to hybridize to and form a duplex structure with another polynucleotide comprising a second contiguous nucleotide sequence. This may include base-pairing of the two polynucleotides over the entire length of the first or second contiguous nucleotide sequence; in this case, the two nucleotide sequences are considered “fully complementary” to each other. For example, in a case where a dsRNA comprises a first oligonucleotide 21 nucleotides in length and a second oligonucleotide 23 nucleotides in length, and where the two oligonucleotides form 21 contiguous base-pairs, the two oligonucleotides may be referred to as “fully complementary” to each other. Where a first polynucleotide sequence is referred to as “substantially complementary” to a second polynucleotide sequence, the two sequences may base-pair with each other over 80% or more (e.g., 90% or more) of their length of hybridization, with no more than 20% (e.g., no more than 10%) of mismatching base-pairs (e.g., for a duplex of 20 nucleotides, no more than 4 or no more than 2 mismatched base-pairs). Where two oligonucleotides are designed to form a duplex with one or more single-stranded overhangs, such overhangs shall not be regarded as mismatches for the determination of complementarity. Complementarity of two sequences may be based on Watson-Crick base-pairs and/or non-Watson-Crick base-pairs. As used herein, a polynucleotide which is “substantially complementary to at least part of” an mRNA refers to a polynucleotide which is substantially complementary to a contiguous portion of an mRNA of interest (e.g., an mRNA encoding LPA).


In some embodiments, the LPA-targeting dsRNA is an siRNA where the sense and antisense strands are not covalently linked to each other. In some embodiments, the sense and antisense strands of the LPA-targeting dsRNA are covalently linked to each other, e.g., through a hairpin loop (such as in the case of shRNA), or by means other than a hairpin loop (such as by a connecting structure referred to as a “covalent linker”).


I.1 Lengths


In some embodiments, each of the sense sequence (in the sense strand) and the antisense sequence (in the antisense strand) is 9-30 nucleotides in length. For example, each sequence can be any of a range of nucleotide lengths having an upper limit of 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 and an independently selected lower limit of 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20. In some embodiments, the number of nucleotides in each sequence may be 15-25 (i.e., 15 to 25 nucleotides in each sequence), 15-30, 16-29, 17-28, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, or 19-21.


In some embodiments, each sequence is greater than 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. In some embodiments, each sequence is less than 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or 31 nucleotides in length. In some embodiments, each sequence is 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length.


In some embodiments, the sense and antisense sequences are each at least 15 and no greater than 25 nucleotides in length. In some embodiments, the sense and antisense sequences are each at least 19 and no greater than 23 nucleotides in length. For example, the sequences are 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length.


In some embodiments, the LPA mRNA-targeting dsRNA has sense and antisense strands of the same length or different lengths. For example, the sense strand may be 1, 2, 3, 4, 5, 6, or 7 nucleotides longer than the antisense strand. Alternatively, the sense strand may be 1, 2, 3, 4, 5, 6, or 7 nucleotides shorter than the antisense strand.


In some embodiments, each of the sense strand and the antisense strand is 9-36 nucleotides in length. For example, each strand can be any of a range of nucleotide lengths having an upper limit of 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, or 36 and an independently selected lower limit of 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20. In some embodiments, the number of nucleotides in each strand may be 15-25, 15-30, 16-29, 17-28, 18-28, 18-27, 18-26, 18-18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, or 19-21.


In some embodiments, each strand is greater than 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. In some embodiments, each strand is less than 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, or 37 nucleotides in length. In some embodiments, each strand is 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, or 36 nucleotides in length.


In some embodiments, the sense and antisense strands are each at least 15 and no greater than 25 nucleotides in length. In some embodiments, the sense and antisense strands are each at least 19 and no greater than 23 nucleotides in length. For example, the strands are 19, 20, 21, 22, or 23 nucleotides in length.


In some embodiments, the sense strand may have 21, 22, 23, or 24 nucleotides, including any modified nucleotides, while the antisense strand may have 21 nucleotides, including any modified nucleotides; in certain embodiments, the sense strand may have a sense sequence having 17, 18, or 19 nucleotides, while the antisense strand may have an antisense sequence having 19 nucleotides.


I.2 Overhangs


In some embodiments, a dsRNA of the present disclosure comprises one or more overhangs at the 3′-end, 5′-end, or both ends of one or both of the sense and antisense strands. In some embodiments, the one or more overhangs improve the stability and/or inhibitory activity of the dsRNA.


“Overhang” refers herein to the unpaired nucleotide(s) that protrude from the duplex structure of a dsRNA when a 3′ end of a first strand of the dsRNA extends beyond the 5′ end of a second strand, or vice versa. “Blunt end” means that there are no unpaired nucleotides at that end of the dsRNA, i.e., no nucleotide overhang. A “blunt-ended” dsRNA is a dsRNA that is double-stranded over its entire length, i.e., no nucleotide overhang at either end of the duplex molecule. Chemical caps or non-nucleotide chemical moieties conjugated to the 3′ end and/or the 5′ end of a dsRNA are not considered herein in determining whether a dsRNA has an overhang or not.


In some embodiments, an overhang comprises one or more, two or more, three or more, or four or more nucleotides. For example, the overhang may comprise 1, 2, 3, or 4 nucleotides.


In some embodiments, an overhang of the present disclosure comprises one or more nucleotides (e.g., ribonucleotides or deoxyribonucleotides, naturally occurring or chemically modified analogs thereof). In some embodiments, the overhang comprises one or more thymines or chemically modified analogs thereof. In certain embodiments, the overhang comprises one or more thymines.


In some embodiments, the dsRNA comprises an overhang located at the 3′-end of the antisense strand. In some embodiments, the dsRNA comprises a blunt end at the 5′-end of the antisense strand. In some embodiments, the dsRNA comprises an overhang located at the 3′-end of the antisense strand and a blunt end at the 5′-end of the antisense strand. In some embodiments, the dsRNA comprises an overhang located at the 3′-end of the sense strand. In some embodiments, the dsRNA comprises a blunt end at the 5′-end of the sense strand. In some embodiments, the dsRNA comprises an overhang located at the 3′-end of the sense strand and a blunt end at the 5′-end of the sense strand. In some embodiments, the dsRNA comprises overhangs located at the 3′-end of both the sense and antisense strands of the dsRNA.


In some embodiments, the dsRNA comprises an overhang located at the 5′-end of the antisense strand. In some embodiments, the dsRNA comprises a blunt end at the 3′-end of the antisense strand. In some embodiments, the dsRNA comprises an overhang located at the 5′-end of the antisense strand and a blunt end at the 3′-end of the antisense strand. In some embodiments, the dsRNA comprises an overhang located at the 5′-end of the sense strand. In some embodiments, the dsRNA comprises a blunt end at the 3′-end of the sense strand. In some embodiments, the dsRNA comprises an overhang located at the 5′-end of the sense strand and a blunt end at the 3′-end of the sense strand. In some embodiments, the dsRNA comprises overhangs located at both the 5′-end of the sense and antisense strands of the dsRNA.


In some embodiments, the dsRNA comprises an overhang located at the 3′-end of the antisense strand and an overhang at the 5′-end of the antisense strand. In some embodiments, the dsRNA comprises an overhang located at the 3′-end of the sense strand and an overhang at the 5′-end of the sense strand.


In some embodiments, the dsRNA has two blunt ends.


In some embodiments, the overhang is the result of the sense strand being longer than the antisense strand. In some embodiments, the overhang is the result of the antisense strand being longer than the sense strand. In some embodiments, the overhang is the result of sense and antisense strands of the same length being staggered. In some embodiments, the overhang forms a mismatch with the target mRNA. In some embodiments, the overhang is complementary to the target mRNA.


In some embodiments, one or both of the sense strand and the antisense strand of the dsRNA further comprise:

    • a) a 5′ overhang comprising one or more nucleotides; and/or
    • b) a 3′ overhang comprising one or more nucleotides.


In some embodiments, an overhang in the dsRNA comprises two or three nucleotides.


In certain embodiments, a dsRNA of the present disclosure contains a sense strand having the sequence of 5′-CCA-[sense sequence]-invdT, and the antisense strand having the sequence of 5′-[antisense sequence]-dTdT-3′, where the trinucleotide CCA may be modified (e.g., 2′-O-Methyl-C and 2′-O-Methyl-A).


I.3 Target and dsRNA Sequences


The antisense strand of a dsRNA of the present disclosure comprises an antisense sequence that may be substantially or fully complementary to a target sequence of 12-30 nucleotides in length in an LPA RNA (e.g., an mRNA). For example, the target sequence can be any of a range of nucleotide lengths having an upper limit of 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 and an independently selected lower limit of 12, 13, 14, 15, 16, 17, 18, or 19. In some embodiments, the number of nucleotides in the target sequence may be 15-25, 15-30, 16-29, 17-28, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, or 19-21.


In some embodiments, the target sequence is greater than 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides in length. In some embodiments, the target sequence is less than 21, 22, 23, 24, 26, 27, 28, 29, or 30 nucleotides in length. In some embodiments, the target sequence is 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. In certain embodiments, the target sequence is at least 15 and no greater than 25 nucleotides in length; for example, at least 19 and no greater than 23 nucleotides in length, or 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length.


The target sequence may be in the 5′ noncoding region, the coding region, or the 3′ noncoding region of the LPA mRNA transcript. The target sequence may also be located at the junction of the coding and noncoding regions.


In some embodiments, the dsRNA antisense strand comprises an antisense sequence having one or more mismatch (e.g., one, two, three, or four mismatches) to the target sequence. In certain embodiments, the antisense sequence is fully complementary to the corresponding portion in the human LPA mRNA sequence and is fully complementary or substantially complementary (e.g., comprises at least one or two mismatches) to the corresponding portion in a cynomolgus LPA mRNA sequence. One advantage of such dsRNAs is to allow pre-clinical in vivo studies of the dsRNAs in non-human primates such as cynomolgus monkeys. In certain embodiments, the dsRNA sense strand comprises a sense sequence that is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the target sequence (e.g., in human or cynomolgus LPA mRNA).


In some embodiments, the target sequence in a human LPA mRNA sequence (SEQ ID NO: 1632) has the start and end nucleotide positions at or around (e.g., within 3 nucleotides of) the following nucleotides: 220 and 238, 223 and 241, 302 and 320, 1236 and 1254, 2946 and 2964, 2953 and 2971, 2954 and 2972, 2958 and 2976, 2959 and 2977, 4635 and 4653, 4636 and 4654, 4639 and 4657, 4842 and 4860, 4980 and 4998, 4982 and 5000, 6385 and 6403, or 6470 and 6488, respectively. In certain embodiments, the target sequence corresponds to nucleotide positions 2958-2976, 4639-4657, or 4982-5000 of the human LPA mRNA sequence, where the start and end positions may vary within 3 nucleotides of the numbered positions. In some embodiments, the target sequence is a sequence listed in Table 1 as a sense sequence, or a sequence that includes at least 80% nucleotides (e.g., at least 90%) of the listed sequence.


In some embodiments, a dsRNA of the present disclosure comprises a sense strand comprising a sense sequence shown in Table 1. For example, the sense strand comprises a sequence selected from SEQ ID NOs: 4, 7, 19, 90, 104, 107, 108, 110, 111, 168, 169, 172, 200, 221, 223, 279, and 298 or a sequence having at least 15, 16, 17, or 18 contiguous nucleotides derived from said selected sequence.


In some embodiments, a dsRNA of the present disclosure comprises an antisense strand comprising an antisense sequence shown in Table 1. In some embodiments, the antisense strand comprises a sequence selected from SEQ ID NOs: 303, 306, 318, 389, 403, 406, 407, 409, 410, 467, 468, 471, 499, 520, 522, 578, and 597 or a sequence having at least 15, 16, 17, or 18 contiguous nucleotides derived from said selected sequence. In a particular embodiment, the dsRNA comprises an antisense sequence that is at least 90% identical to a nucleotide sequence selected from the group consisting of SEQ ID NOs: 303, 306, 318, 389, 403, 406, 407, 409, 410, 467, 468, 471, 499, 520, 522, 578, and 597.


In a particular embodiment, the sense sequence and the antisense sequence are complementary, wherein:

    • a) the sense sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 4, 7, 19, 90, 104, 107, 108, 110, 111, 168, 169, 172, 200, 221, 223, 279, and 298; or
    • b) the antisense sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 303, 306, 318, 389, 403, 406, 407, 409, 410, 467, 468, 471, 499, 520, 522, 578, and 597.


In some embodiments, a dsRNA of the present disclosure comprises a sense strand comprising a sense sequence shown in Table 1 and an antisense strand comprising an antisense sequence shown in Table 1. In some embodiments, the sense and antisense strands respectively comprise the sequences of:

    • SEQ ID NOs: 4 and 303;
    • SEQ ID NOs: 7 and 306;
    • SEQ ID NOs: 19 and 318;
    • SEQ ID NOs: 90 and 389;
    • SEQ ID NOs: 104 and 403;
    • SEQ ID NOs: 107 and 406;
    • SEQ ID NOs: 108 and 407;
    • SEQ ID NOs: 110 and 409;
    • SEQ ID NOs: 111 and 410;
    • SEQ ID NOs: 168 and 467;
    • SEQ ID NOs: 169 and 468;
    • SEQ ID NOs: 172 and 471;
    • SEQ ID NOs: 200 and 499;
    • SEQ ID NOs: 221 and 520;
    • SEQ ID NOs: 223 and 522;
    • SEQ ID NOs: 279 and 578; or
    • SEQ ID NOs: 298 and 597.


In certain embodiments, the sense and antisense strands respectively comprise the sequences of:

    • SEQ ID NOs: 110 and 409;
    • SEQ ID NOs: 172 and 471; or
    • SEQ ID NOs: 223 and 522.


In some embodiments, the antisense sequence is fully complementary to a sequence selected from SEQ ID NOs: 110, 172, and 223. In some embodiments, the antisense sequence is substantially complementary to a sequence selected from SEQ ID NOs: 110, 172, and 223, wherein the antisense sequence comprises at least one mismatch (e.g., one, two, three, or four mismatches) to the selected sequence.


In some embodiments, the antisense sequence of the LPA mRNA-targeting dsRNA comprises one or more mismatches to the target sequence (for example, due to allelic differences among individuals in a general population). For example, the antisense sequence comprises one or more mismatches (e.g., one, two, three, or four mismatches) to the target sequence. In some embodiments, the one or more mismatches are not located in the center of the region of complementarity. In some embodiments, the one or more mismatches are located within five, four, three, two, or one nucleotide of the 5′ and/or 3′ ends of the region of complementarity. For example, for a dsRNA containing a 19 nucleotide antisense sequence, in some embodiments the antisense sequence may not contain any mismatch within the central 9 nucleotides of the region of complementarity between it and its target sequence in the LPA mRNA.


Table 1 below lists the sense and antisense sequences of exemplary siRNA constructs (CNST). The start (ST) and end (ED) nucleotide positions in NM_005577.2 (SEQ ID NO: 1632) are indicated. “SEQ” denotes SEQ ID NOs.









TABLE 1







Sequences of LPA siRNA Constructs













CNS


Sense Sequence

Antisense Sequence



T#
ST
ED
(5′-3′)
SEQ
(5′-3′)
SEQ
















0001
5
23
ACCUUUGGGGCUGGCUUUC
1
GAAAGCCAGCCCCAAAGGU
300





0002
185
203
GCCAUGUGGUCCAGGAUUG
2
CAAUCCUGGACCACAUGGC
301





0003
219
237
ACAGAGUUAUCGAGGCACG
3
CGUGCCUCGAUAACUCUGU
302





0004
220
238
CAGAGUUAUCGAGGCACGU
4
ACGUGCCUCGAUAACUCUG
303





0005
221
239
AGAGUUAUCGAGGCACGUA
5
UACGUGCCUCGAUAACUCU
304





0006
222
240
GAGUUAUCGAGGCACGUAC
6
GUACGUGCCUCGAUAACUC
305





0007
223
241
AGUUAUCGAGGCACGUACU
7
AGUACGUGCCUCGAUAACU
306





0008
238
256
UACUCCACCACUGUCACAG
8
CUGUGACAGUGGUGGAGUA
307





0009
240
258
CUCCACCACUGUCACAGGA
9
UCCUGUGACAGUGGUGGAG
308





0010
259
277
AGGACCUGCCAAGCUUGGU
10
ACCAAGCUUGGCAGGUCCU
309





0011
261
279
GACCUGCCAAGCUUGGUCA
11
UGACCAAGCUUGGCAGGUC
310





0012
262
280
ACCUGCCAAGCUUGGUCAU
12
AUGACCAAGCUUGGCAGGU
311





0013
263
281
CCUGCCAAGCUUGGUCAUC
13
GAUGACCAAGCUUGGCAGG
312





0014
266
284
GCCAAGCUUGGUCAUCUAU
14
AUAGAUGACCAAGCUUGGC
313





0015
267
285
CCAAGCUUGGUCAUCUAUG
15
CAUAGAUGACCAAGCUUGG
314





0016
298
316
CAUAAUAGGACCACAGAAA
16
UUUCUGUGGUCCUAUUAUG
315





0017
300
318
UAAUAGGACCACAGAAAAC
17
GUUUUCUGUGGUCCUAUUA
316





0018
301
319
AAUAGGACCACAGAAAACU
18
AGUUUUCUGUGGUCCUAUU
317





0019
302
320
AUAGGACCACAGAAAACUA
19
UAGUUUUCUGUGGUCCUAU
318





0020
303
321
UAGGACCACAGAAAACUAC
20
GUAGUUUUCUGUGGUCCUA
319





0021
324
342
AAAUGCUGGCUUGAUCAUG
21
CAUGAUCAAGCCAGCAUUU
320





0022
330
348
UGGCUUGAUCAUGAACUAC
22
GUAGUUCAUGAUCAAGCCA
321





0023
331
349
GGCUUGAUCAUGAACUACU
23
AGUAGUUCAUGAUCAAGCC
322





0024
372
390
AGCUCCUUAUUGUUAUACG
24
CGUAUAACAAUAAGGAGCU
323





0025
373
391
GCUCCUUAUUGUUAUACGA
25
UCGUAUAACAAUAAGGAGC
324





0026
413
431
AGUACUGCAACCUGACGCA
26
UGCGUCAGGUUGCAGUACU
325





0027
414
432
GUACUGCAACCUGACGCAA
27
UUGCGUCAGGUUGCAGUAC
326





0028
415
433
UACUGCAACCUGACGCAAU
28
AUUGCGUCAGGUUGCAGUA
327





0029
418
436
UGCAACCUGACGCAAUGCU
29
AGCAUUGCGUCAGGUUGCA
328





0030
419
437
GCAACCUGACGCAAUGCUC
30
GAGCAUUGCGUCAGGUUGC
329





0031
420
438
CAACCUGACGCAAUGCUCA
31
UGAGCAUUGCGUCAGGUUG
330





0032
421
439
AACCUGACGCAAUGCUCAG
32
CUGAGCAUUGCGUCAGGUU
331





0033
422
440
ACCUGACGCAAUGCUCAGA
33
UCUGAGCAUUGCGUCAGGU
332





0034
423
441
CCUGACGCAAUGCUCAGAC
34
GUCUGAGCAUUGCGUCAGG
333





0035
424
442
CUGACGCAAUGCUCAGACG
35
CGUCUGAGCAUUGCGUCAG
334





0036
425
443
UGACGCAAUGCUCAGACGC
36
GCGUCUGAGCAUUGCGUCA
335





0037
465
483
UCCGACUGUUACCCCGGUU
37
AACCGGGGUAACAGUCGGA
336





0038
469
487
ACUGUUACCCCGGUUCCAA
38
UUGGAACCGGGGUAACAGU
337





0039
470
488
CUGUUACCCCGGUUCCAAG
39
CUUGGAACCGGGGUAACAG
338





0040
471
489
UGUUACCCCGGUUCCAAGC
40
GCUUGGAACCGGGGUAACA
339





0041
473
491
UUACCCCGGUUCCAAGCCU
41
AGGCUUGGAACCGGGGUAA
340





0042
474
492
UACCCCGGUUCCAAGCCUA
42
UAGGCUUGGAACCGGGGUA
341





0043
480
498
GGUUCCAAGCCUAGAGGCU
43
AGCCUCUAGGCUUGGAACC
342





0044
481
499
GUUCCAAGCCUAGAGGCUC
44
GAGCCUCUAGGCUUGGAAC
343





0045
489
507
CCUAGAGGCUCCUUCCGAA
45
UUCGGAAGGAGCCUCUAGG
344





0046
490
508
CUAGAGGCUCCUUCCGAAC
46
GUUCGGAAGGAGCCUCUAG
345





0047
495
513
GGCUCCUUCCGAACAAGCA
47
UGCUUGUUCGGAAGGAGCC
346





0048
499
517
CCUUCCGAACAAGCACCGA
48
UCGGUGCUUGUUCGGAAGG
347





0049
500
518
CUUCCGAACAAGCACCGAC
49
GUCGGUGCUUGUUCGGAAG
348





0050
501
519
UUCCGAACAAGCACCGACU
50
AGUCGGUGCUUGUUCGGAA
349





0051
502
520
UCCGAACAAGCACCGACUG
51
CAGUCGGUGCUUGUUCGGA
350





0052
503
521
CCGAACAAGCACCGACUGA
52
UCAGUCGGUGCUUGUUCGG
351





0053
505
523
GAACAAGCACCGACUGAGC
53
GCUCAGUCGGUGCUUGUUC
352





0054
506
524
AACAAGCACCGACUGAGCA
54
UGCUCAGUCGGUGCUUGUU
353





0055
507
525
ACAAGCACCGACUGAGCAA
55
UUGCUCAGUCGGUGCUUGU
354





0056
508
526
CAAGCACCGACUGAGCAAA
56
UUUGCUCAGUCGGUGCUUG
355





0057
509
527
AAGCACCGACUGAGCAAAG
57
CUUUGCUCAGUCGGUGCUU
356





0058
510
528
AGCACCGACUGAGCAAAGG
58
CCUUUGCUCAGUCGGUGCU
357





0059
552
570
UGGUAAUGGACAGAGUUAU
59
AUAACUCUGUCCAUUACCA
358





0060
554
572
GUAAUGGACAGAGUUAUCG
60
CGAUAACUCUGUCCAUUAC
359





0061
555
573
UAAUGGACAGAGUUAUCGA
61
UCGAUAACUCUGUCCAUUA
360





0062
563
581
AGAGUUAUCGAGGCACAUA
62
UAUGUGCCUCGAUAACUCU
361





0063
564
582
GAGUUAUCGAGGCACAUAC
63
GUAUGUGCCUCGAUAACUC
362





0064
565
583
AGUUAUCGAGGCACAUACU
64
AGUAUGUGCCUCGAUAACU
363





0065
566
584
GUUAUCGAGGCACAUACUC
65
GAGUAUGUGCCUCGAUAAC
364





0066
567
585
UUAUCGAGGCACAUACUCC
66
GGAGUAUGUGCCUCGAUAA
365





0067
574
592
GGCACAUACUCCACCACUG
67
CAGUGGUGGAGUAUGUGCC
366





0068
578
596
CAUACUCCACCACUGUCAC
68
GUGACAGUGGUGGAGUAUG
367





0069
598
616
GGAAGAACCUGCCAAGCUU
69
AAGCUUGGCAGGUUCUUCC
368





0070
624
642
UAUGACACCACACUCGCAU
70
AUGCGAGUGUGGUGUCAUA
369





0071
625
643
AUGACACCACACUCGCAUA
71
UAUGCGAGUGUGGUGUCAU
370





0072
626
644
UGACACCACACUCGCAUAG
72
CUAUGCGAGUGUGGUGUCA
371





0073
627
645
GACACCACACUCGCAUAGU
73
ACUAUGCGAGUGUGGUGUC
372





0074
628
646
ACACCACACUCGCAUAGUC
74
GACUAUGCGAGUGUGGUGU
373





0075
630
648
ACCACACUCGCAUAGUCGG
75
CCGACUAUGCGAGUGUGGU
374





0076
631
649
CCACACUCGCAUAGUCGGA
76
UCCGACUAUGCGAGUGUGG
375





0077
632
650
CACACUCGCAUAGUCGGAC
77
GUCCGACUAUGCGAGUGUG
376





0078
633
651
ACACUCGCAUAGUCGGACC
78
GGUCCGACUAUGCGAGUGU
377





0079
640
658
CAUAGUCGGACCCCAGAAU
79
AUUCUGGGGUCCGACUAUG
378





0080
641
659
AUAGUCGGACCCCAGAAUA
80
UAUUCUGGGGUCCGACUAU
379





0081
642
660
UAGUCGGACCCCAGAAUAC
81
GUAUUCUGGGGUCCGACUA
380





0082
643
661
AGUCGGACCCCAGAAUACU
82
AGUAUUCUGGGGUCCGACU
381





0083
644
662
GUCGGACCCCAGAAUACUA
83
UAGUAUUCUGGGGUCCGAC
382





0084
645
663
UCGGACCCCAGAAUACUAC
84
GUAGUAUUCUGGGGUCCGA
383





0085
646
664
CGGACCCCAGAAUACUACC
85
GGUAGUAUUCUGGGGUCCG
384





0086
1191
1209
ACAAGCACCGACUGAGCAG
86
CUGCUCAGUCGGUGCUUGU
385





0087
1193
1211
AAGCACCGACUGAGCAGAG
87
CUCUGCUCAGUCGGUGCUU
386





0088
1234
1252
CACGGUAAUGGACAGAGUU
88
AACUCUGUCCAUUACCGUG
387





0089
1235
1253
ACGGUAAUGGACAGAGUUA
89
UAACUCUGUCCAUUACCGU
388





0090
1236
1254
CGGUAAUGGACAGAGUUAU
90
AUAACUCUGUCCAUUACCG
389





0091
2867
2885
UUACCCCGAUUCCAAGCCU
91
AGGCUUGGAAUCGGGGUAA
390





0092
2868
2886
UACCCCGAUUCCAAGCCUA
92
UAGGCUUGGAAUCGGGGUA
391





0093
2869
2887
ACCCCGAUUCCAAGCCUAG
93
CUAGGCUUGGAAUCGGGGU
392





0094
2870
2888
CCCCGAUUCCAAGCCUAGA
94
UCUAGGCUUGGAAUCGGGG
393





0095
2871
2889
CCCGAUUCCAAGCCUAGAG
95
CUCUAGGCUUGGAAUCGGG
394





0096
2872
2890
CCGAUUCCAAGCCUAGAGG
96
CCUCUAGGCUUGGAAUCGG
395





0097
2873
2891
CGAUUCCAAGCCUAGAGGC
97
GCCUCUAGGCUUGGAAUCG
396





0098
2874
2892
GAUUCCAAGCCUAGAGGCU
98
AGCCUCUAGGCUUGGAAUC
397





0099
2907
2925
ACCAACUGAGCAAAGGCCU
99
AGGCCUUUGCUCAGUUGGU
398





0100
2941
2959
UACCACGGAAAUGGACAGA
100
UCUGUCCAUUUCCGUGGUA
399





0101
2942
2960
ACCACGGAAAUGGACAGAG
101
CUCUGUCCAUUUCCGUGGU
400





0102
2944
2962
CACGGAAAUGGACAGAGUU
102
AACUCUGUCCAUUUCCGUG
401





0103
2945
2963
ACGGAAAUGGACAGAGUUA
103
UAACUCUGUCCAUUUCCGU
402





0104
2946
2964
CGGAAAUGGACAGAGUUAU
104
AUAACUCUGUCCAUUUCCG
403





0105
2950
2968
AAUGGACAGAGUUAUCAAG
105
CUUGAUAACUCUGUCCAUU
404





0106
2951
2969
AUGGACAGAGUUAUCAAGG
106
CCUUGAUAACUCUGUCCAU
405





0107
2953
2971
GGACAGAGUUAUCAAGGCA
107
UGCCUUGAUAACUCUGUCC
406





0108
2954
2972
GACAGAGUUAUCAAGGCAC
108
GUGCCUUGAUAACUCUGUC
407





0109
2955
2973
ACAGAGUUAUCAAGGCACA
109
UGUGCCUUGAUAACUCUGU
408





0110
2958
2976
GAGUUAUCAAGGCACAUAC
110
GUAUGUGCCUUGAUAACUC
409





0111
2959
2977
AGUUAUCAAGGCACAUACU
111
AGUAUGUGCCUUGAUAACU
410





0112
2960
2978
GUUAUCAAGGCACAUACUU
112
AAGUAUGUGCCUUGAUAAC
411





0113
3060
3078
AAAUGCUGGCUUGAUCAAG
113
CUUGAUCAAGCCAGCAUUU
412





0114
3068
3086
GCUUGAUCAAGAACUACUG
114
CAGUAGUUCUUGAUCAAGC
413





0115
3109
3127
GCCCCUUGGUGUUAUACAA
115
UUGUAUAACACCAAGGGGC
414





0116
3111
3129
CCCUUGGUGUUAUACAACA
116
UGUUGUAUAACACCAAGGG
415





0117
3114
3132
UUGGUGUUAUACAACAGAU
117
AUCUGUUGUAUAACACCAA
416





0118
3117
3135
GUGUUAUACAACAGAUCCC
118
GGGAUCUGUUGUAUAACAC
417





0119
3121
3139
UAUACAACAGAUCCCAGUG
119
CACUGGGAUCUGUUGUAUA
418





0120
3496
3514
UGCAACCUGACACAAUGCC
120
GGCAUUGUGUCAGGUUGCA
419





0121
3497
3515
GCAACCUGACACAAUGCCU
121
AGGCAUUGUGUCAGGUUGC
420





0122
3540
3558
AACUCUCACGGUGGUCCCA
122
UGGGACCACCGUGAGAGUU
421





0123
3543
3561
UCUCACGGUGGUCCCAGAU
123
AUCUGGGACCACCGUGAGA
422





0124
3547
3565
ACGGUGGUCCCAGAUCCAA
124
UUGGAUCUGGGACCACCGU
423





0125
3551
3569
UGGUCCCAGAUCCAAGCAC
125
GUGCUUGGAUCUGGGACCA
424





0126
3554
3572
UCCCAGAUCCAAGCACAGA
126
UCUGUGCUUGGAUCUGGGA
425





0127
3558
3576
AGAUCCAAGCACAGAGGCU
127
AGCCUCUGUGCUUGGAUCU
426





0128
3559
3577
GAUCCAAGCACAGAGGCUU
128
AAGCCUCUGUGCUUGGAUC
427





0129
3560
3578
AUCCAAGCACAGAGGCUUC
129
GAAGCCUCUGUGCUUGGAU
428





0130
3662
3680
CUACCACUGUCACAGGAAG
130
CUUCCUGUGACAGUGGUAG
429





0131
4155
4173
CUGCAACCUGACGCAAUGU
131
ACAUUGCGUCAGGUUGCAG
430





0132
4156
4174
UGCAACCUGACGCAAUGUC
132
GACAUUGCGUCAGGUUGCA
431





0133
4157
4175
GCAACCUGACGCAAUGUCC
133
GGACAUUGCGUCAGGUUGC
432





0134
4256
4274
CUGAAAACAGCACUGGGGU
134
ACCCCAGUGCUGUUUUCAG
433





0135
4300
4318
CAGAGUUAUCGAGGCACAC
135
GUGUGCCUCGAUAACUCUG
434





0136
4301
4319
AGAGUUAUCGAGGCACACU
136
AGUGUGCCUCGAUAACUCU
435





0137
4302
4320
GAGUUAUCGAGGCACACUC
137
GAGUGUGCCUCGAUAACUC
436





0138
4303
4321
AGUUAUCGAGGCACACUCU
138
AGAGUGUGCCUCGAUAACU
437





0139
4304
4322
GUUAUCGAGGCACACUCUC
139
GAGAGUGUGCCUCGAUAAC
438





0140
4305
4323
UUAUCGAGGCACACUCUCC
140
GGAGAGUGUGCCUCGAUAA
439





0141
4306
4324
UAUCGAGGCACACUCUCCA
141
UGGAGAGUGUGCCUCGAUA
440





0142
4307
4325
AUCGAGGCACACUCUCCAC
142
GUGGAGAGUGUGCCUCGAU
441





0143
4312
4330
GGCACACUCUCCACCACUA
143
UAGUGGUGGAGAGUGUGCC
442





0144
4319
4337
UCUCCACCACUAUCACAGG
144
CCUGUGAUAGUGGUGGAGA
443





0145
4359
4377
GUCUAUGACACCACAUUGG
145
CCAAUGUGGUGUCAUAGAC
444





0146
4362
4380
UAUGACACCACAUUGGCAU
146
AUGCCAAUGUGGUGUCAUA
445





0147
4366
4384
ACACCACAUUGGCAUCGGA
147
UCCGAUGCCAAUGUGGUGU
446





0148
4367
4385
CACCACAUUGGCAUCGGAG
148
CUCCGAUGCCAAUGUGGUG
447





0149
4368
4386
ACCACAUUGGCAUCGGAGG
149
CCUCCGAUGCCAAUGUGGU
448





0150
4369
4387
CCACAUUGGCAUCGGAGGA
150
UCCUCCGAUGCCAAUGUGG
449





0151
4370
4388
CACAUUGGCAUCGGAGGAU
151
AUCCUCCGAUGCCAAUGUG
450





0152
4371
4389
ACAUUGGCAUCGGAGGAUC
152
GAUCCUCCGAUGCCAAUGU
451





0153
4372
4390
CAUUGGCAUCGGAGGAUCC
153
GGAUCCUCCGAUGCCAAUG
452





0154
4373
4391
AUUGGCAUCGGAGGAUCCC
154
GGGAUCCUCCGAUGCCAAU
453





0155
4376
4394
GGCAUCGGAGGAUCCCAUU
155
AAUGGGAUCCUCCGAUGCC
454





0156
4497
4515
CUGCAACCUGACACGAUGU
156
ACAUCGUGUCAGGUUGCAG
455





0157
4498
4516
UGCAACCUGACACGAUGUC
157
GACAUCGUGUCAGGUUGCA
456





0158
4499
4517
GCAACCUGACACGAUGUCC
158
GGACAUCGUGUCAGGUUGC
457





0159
4500
4518
CAACCUGACACGAUGUCCA
159
UGGACAUCGUGUCAGGUUG
458





0160
4501
4519
AACCUGACACGAUGUCCAG
160
CUGGACAUCGUGUCAGGUU
459





0161
4503
4521
CCUGACACGAUGUCCAGUG
161
CACUGGACAUCGUGUCAGG
460





0162
4504
4522
CUGACACGAUGUCCAGUGA
162
UCACUGGACAUCGUGUCAG
461





0163
4505
4523
UGACACGAUGUCCAGUGAC
163
GUCACUGGACAUCGUGUCA
462





0164
4506
4524
GACACGAUGUCCAGUGACA
164
UGUCACUGGACAUCGUGUC
463





0165
4507
4525
ACACGAUGUCCAGUGACAG
165
CUGUCACUGGACAUCGUGU
464





0166
4510
4528
CGAUGUCCAGUGACAGAAU
166
AUUCUGUCACUGGACAUCG
465





0167
4634
4652
GUGAUGGACGGAGUUAUCG
167
CGAUAACUCCGUCCAUCAC
466





0168
4635
4653
UGAUGGACGGAGUUAUCGA
168
UCGAUAACUCCGUCCAUCA
467





0169
4636
4654
GAUGGACGGAGUUAUCGAG
169
CUCGAUAACUCCGUCCAUC
468





0170
4637
4655
AUGGACGGAGUUAUCGAGG
170
CCUCGAUAACUCCGUCCAU
469





0171
4638
4656
UGGACGGAGUUAUCGAGGC
171
GCCUCGAUAACUCCGUCCA
470





0172
4639
4657
GGACGGAGUUAUCGAGGCA
172
UGCCUCGAUAACUCCGUCC
471





0173
4644
4662
GAGUUAUCGAGGCAUAUCC
173
GGAUAUGCCUCGAUAACUC
472





0174
4645
4663
AGUUAUCGAGGCAUAUCCU
174
AGGAUAUGCCUCGAUAACU
473





0175
4646
4664
GUUAUCGAGGCAUAUCCUC
175
GAGGAUAUGCCUCGAUAAC
474





0176
4647
4665
UUAUCGAGGCAUAUCCUCC
176
GGAGGAUAUGCCUCGAUAA
475





0177
4678
4696
GGAAGGACCUGUCAAUCUU
177
AAGAUUGACAGGUCCUUCC
476





0178
4680
4698
AAGGACCUGUCAAUCUUGG
178
CCAAGAUUGACAGGUCCUU
477





0179
4681
4699
AGGACCUGUCAAUCUUGGU
179
ACCAAGAUUGACAGGUCCU
478





0180
4682
4700
GGACCUGUCAAUCUUGGUC
180
GACCAAGAUUGACAGGUCC
479





0181
4753
4771
GGCCUGACCGAGAACUACU
181
AGUAGUUCUCGGUCAGGCC
480





0182
4755
4773
CCUGACCGAGAACUACUGC
182
GCAGUAGUUCUCGGUCAGG
481





0183
4756
4774
CUGACCGAGAACUACUGCA
183
UGCAGUAGUUCUCGGUCAG
482





0184
4757
4775
UGACCGAGAACUACUGCAG
184
CUGCAGUAGUUCUCGGUCA
483





0185
4775
4793
GGAAUCCAGAUUCUGGGAA
185
UUCCCAGAAUCUGGAUUCC
484





0186
4777
4795
AAUCCAGAUUCUGGGAAAC
186
GUUUCCCAGAAUCUGGAUU
485





0187
4786
4804
UCUGGGAAACAACCCUGGU
187
ACCAGGGUUGUUUCCCAGA
486





0188
4787
4805
CUGGGAAACAACCCUGGUG
188
CACCAGGGUUGUUUCCCAG
487





0189
4789
4807
GGGAAACAACCCUGGUGUU
189
AACACCAGGGUUGUUUCCC
488





0190
4791
4809
GAAACAACCCUGGUGUUAC
190
GUAACACCAGGGUUGUUUC
489





0191
4792
4810
AAACAACCCUGGUGUUACA
191
UGUAACACCAGGGUUGUUU
490





0192
4793
4811
AACAACCCUGGUGUUACAC
192
GUGUAACACCAGGGUUGUU
491





0193
4794
4812
ACAACCCUGGUGUUACACA
193
UGUGUAACACCAGGGUUGU
492





0194
4795
4813
CAACCCUGGUGUUACACAA
194
UUGUGUAACACCAGGGUUG
493





0195
4796
4814
AACCCUGGUGUUACACAAC
195
GUUGUGUAACACCAGGGUU
494





0196
4820
4838
CGUGUGUGAGGUGGGAGUA
196
UACUCCCACCUCACACACG
495





0197
4834
4852
GAGUACUGCAAUCUGACAC
197
GUGUCAGAUUGCAGUACUC
496





0198
4840
4858
UGCAAUCUGACACAAUGCU
198
AGCAUUGUGUCAGAUUGCA
497





0199
4841
4859
GCAAUCUGACACAAUGCUC
199
GAGCAUUGUGUCAGAUUGC
498





0200
4842
4860
CAAUCUGACACAAUGCUCA
200
UGAGCAUUGUGUCAGAUUG
499





0201
4886
4904
CUCCCACUGUUGUUCCAGU
201
ACUGGAACAACAGUGGGAG
500





0202
4887
4905
UCCCACUGUUGUUCCAGUU
202
AACUGGAACAACAGUGGGA
501





0203
4889
4907
CCACUGUUGUUCCAGUUCC
203
GGAACUGGAACAACAGUGG
502





0204
4890
4908
CACUGUUGUUCCAGUUCCA
204
UGGAACUGGAACAACAGUG
503





0205
4894
4912
GUUGUUCCAGUUCCAAGCA
205
UGCUUGGAACUGGAACAAC
504





0206
4896
4914
UGUUCCAGUUCCAAGCAUG
206
CAUGCUUGGAACUGGAACA
505





0207
4897
4915
GUUCCAGUUCCAAGCAUGG
207
CCAUGCUUGGAACUGGAAC
506





0208
4911
4929
CAUGGAGGCUCAUUCUGAA
208
UUCAGAAUGAGCCUCCAUG
507





0209
4912
4930
AUGGAGGCUCAUUCUGAAG
209
CUUCAGAAUGAGCCUCCAU
508





0210
4914
4932
GGAGGCUCAUUCUGAAGCA
210
UGCUUCAGAAUGAGCCUCC
509





0211
4921
4939
CAUUCUGAAGCAGCACCAA
211
UUGGUGCUGCUUCAGAAUG
510





0212
4927
4945
GAAGCAGCACCAACUGAGC
212
GCUCAGUUGGUGCUGCUUC
511





0213
4930
4948
GCAGCACCAACUGAGCAAA
213
UUUGCUCAGUUGGUGCUGC
512





0214
4960
4978
CGGCAGUGCUACCAUGGUA
214
UACCAUGGUAGCACUGCCG
513





0215
4963
4981
CAGUGCUACCAUGGUAAUG
215
CAUUACCAUGGUAGCACUG
514





0216
4965
4983
GUGCUACCAUGGUAAUGGC
216
GCCAUUACCAUGGUAGCAC
515





0217
4972
4990
CAUGGUAAUGGCCAGAGUU
217
AACUCUGGCCAUUACCAUG
516





0218
4975
4993
GGUAAUGGCCAGAGUUAUC
218
GAUAACUCUGGCCAUUACC
517





0219
4976
4994
GUAAUGGCCAGAGUUAUCG
219
CGAUAACUCUGGCCAUUAC
518





0220
4977
4995
UAAUGGCCAGAGUUAUCGA
220
UCGAUAACUCUGGCCAUUA
519





0221
4980
4998
UGGCCAGAGUUAUCGAGGC
221
GCCUCGAUAACUCUGGCCA
520





0222
4981
4999
GGCCAGAGUUAUCGAGGCA
222
UGCCUCGAUAACUCUGGCC
521





0223
4982
5000
GCCAGAGUUAUCGAGGCAC
223
GUGCCUCGAUAACUCUGGC
522





0224
4983
5001
CCAGAGUUAUCGAGGCACA
224
UGUGCCUCGAUAACUCUGG
523





0225
4985
5003
AGAGUUAUCGAGGCACAUU
225
AAUGUGCCUCGAUAACUCU
524





0226
4986
5004
GAGUUAUCGAGGCACAUUC
226
GAAUGUGCCUCGAUAACUC
525





0227
4987
5005
AGUUAUCGAGGCACAUUCU
227
AGAAUGUGCCUCGAUAACU
526





0228
4997
5015
GCACAUUCUCCACCACUGU
228
ACAGUGGUGGAGAAUGUGC
527





0229
5001
5019
AUUCUCCACCACUGUCACA
229
UGUGACAGUGGUGGAGAAU
528





0230
5016
5034
CACAGGAAGGACAUGUCAA
230
UUGACAUGUCCUUCCUGUG
529





0231
5021
5039
GAAGGACAUGUCAAUCUUG
231
CAAGAUUGACAUGUCCUUC
530





0232
5149
5167
UUUACCAUGGACCCCAGCA
232
UGCUGGGGUCCAUGGUAAA
531





0233
5150
5168
UUACCAUGGACCCCAGCAU
233
AUGCUGGGGUCCAUGGUAA
532





0234
5180
5198
ACUGCAACCUGACGCGAUG
234
CAUCGCGUCAGGUUGCAGU
533





0235
5186
5204
ACCUGACGCGAUGCUCAGA
235
UCUGAGCAUCGCGUCAGGU
534





0236
5189
5207
UGACGCGAUGCUCAGACAC
236
GUGUCUGAGCAUCGCGUCA
535





0237
5190
5208
GACGCGAUGCUCAGACACA
237
UGUGUCUGAGCAUCGCGUC
536





0238
5191
5209
ACGCGAUGCUCAGACACAG
238
CUGUGUCUGAGCAUCGCGU
537





0239
5192
5210
CGCGAUGCUCAGACACAGA
239
UCUGUGUCUGAGCAUCGCG
538





0240
5761
5779
GAAGUGAACCUCGAAUCUC
240
GAGAUUCGAGGUUCACUUC
539





0241
5922
5940
CAGGACUGAAUGUUACAUC
241
GAUGUAACAUUCAGUCCUG
540





0242
5956
5974
ACCCAAGGUACCUUUGGGA
242
UCCCAAAGGUACCUUGGGU
541





0243
5957
5975
CCCAAGGUACCUUUGGGAC
243
GUCCCAAAGGUACCUUGGG
542





0244
5964
5982
UACCUUUGGGACUGGCCUU
244
AAGGCCAGUCCCAAAGGUA
543





0245
5965
5983
ACCUUUGGGACUGGCCUUC
245
GAAGGCCAGUCCCAAAGGU
544





0246
6323
6341
GACAGCAAUCAAACGAAGA
246
UCUUCGUUUGAUUGCUGUC
545





0247
6324
6342
ACAGCAAUCAAACGAAGAC
247
GUCUUCGUUUGAUUGCUGU
546





0248
6325
6343
CAGCAAUCAAACGAAGACA
248
UGUCUUCGUUUGAUUGCUG
547





0249
6326
6344
AGCAAUCAAACGAAGACAC
249
GUGUCUUCGUUUGAUUGCU
548





0250
6327
6345
GCAAUCAAACGAAGACACU
250
AGUGUCUUCGUUUGAUUGC
549





0251
6328
6346
CAAUCAAACGAAGACACUG
251
CAGUGUCUUCGUUUGAUUG
550





0252
6330
6348
AUCAAACGAAGACACUGUU
252
AACAGUGUCUUCGUUUGAU
551





0253
6331
6349
UCAAACGAAGACACUGUUC
253
GAACAGUGUCUUCGUUUGA
552





0254
6332
6350
CAAACGAAGACACUGUUCC
254
GGAACAGUGUCUUCGUUUG
553





0255
6333
6351
AAACGAAGACACUGUUCCC
255
GGGAACAGUGUCUUCGUUU
554





0256
6334
6352
AACGAAGACACUGUUCCCA
256
UGGGAACAGUGUCUUCGUU
555





0257
6335
6353
ACGAAGACACUGUUCCCAG
257
CUGGGAACAGUGUCUUCGU
556





0258
6336
6354
CGAAGACACUGUUCCCAGC
258
GCUGGGAACAGUGUCUUCG
557





0259
6337
6355
GAAGACACUGUUCCCAGCU
259
AGCUGGGAACAGUGUCUUC
558





0260
6338
6356
AAGACACUGUUCCCAGCUA
260
UAGCUGGGAACAGUGUCUU
559





0261
6339
6357
AGACACUGUUCCCAGCUAC
261
GUAGCUGGGAACAGUGUCU
560





0262
6340
6358
GACACUGUUCCCAGCUACC
262
GGUAGCUGGGAACAGUGUC
561





0263
6341
6359
ACACUGUUCCCAGCUACCA
263
UGGUAGCUGGGAACAGUGU
562





0264
6350
6368
CCAGCUACCAGCUAUGCCA
264
UGGCAUAGCUGGUAGCUGG
563





0265
6351
6369
CAGCUACCAGCUAUGCCAA
265
UUGGCAUAGCUGGUAGCUG
564





0266
6352
6370
AGCUACCAGCUAUGCCAAA
266
UUUGGCAUAGCUGGUAGCU
565





0267
6353
6371
GCUACCAGCUAUGCCAAAC
267
GUUUGGCAUAGCUGGUAGC
566





0268
6354
6372
CUACCAGCUAUGCCAAACC
268
GGUUUGGCAUAGCUGGUAG
567





0269
6355
6373
UACCAGCUAUGCCAAACCU
269
AGGUUUGGCAUAGCUGGUA
568





0270
6376
6394
GCAUUUUUGGUAUUUUUGU
270
ACAAAAAUACCAAAAAUGC
569





0271
6377
6395
CAUUUUUGGUAUUUUUGUG
271
CACAAAAAUACCAAAAAUG
570





0272
6378
6396
AUUUUUGGUAUUUUUGUGU
272
ACACAAAAAUACCAAAAAU
571





0273
6379
6397
UUUUUGGUAUUUUUGUGUA
273
UACACAAAAAUACCAAAAA
572





0274
6380
6398
UUUUGGUAUUUUUGUGUAU
274
AUACACAAAAAUACCAAAA
573





0275
6381
6399
UUUGGUAUUUUUGUGUAUA
275
UAUACACAAAAAUACCAAA
574





0276
6382
6400
UUGGUAUUUUUGUGUAUAA
276
UUAUACACAAAAAUACCAA
575





0277
6383
6401
UGGUAUUUUUGUGUAUAAG
277
CUUAUACACAAAAAUACCA
576





0278
6384
6402
GGUAUUUUUGUGUAUAAGC
278
GCUUAUACACAAAAAUACC
577





0279
6385
6403
GUAUUUUUGUGUAUAAGCU
279
AGCUUAUACACAAAAAUAC
578





0280
6386
6404
UAUUUUUGUGUAUAAGCUU
280
AAGCUUAUACACAAAAAUA
579





0281
6387
6405
AUUUUUGUGUAUAAGCUUU
281
AAAGCUUAUACACAAAAAU
580





0282
6388
6406
UUUUUGUGUAUAAGCUUUU
282
AAAAGCUUAUACACAAAAA
581





0283
6455
6473
UGUUAAAAAUAAACUCUGC
283
GCAGAGUUUAUUUUUAACA
582





0284
6456
6474
GUUAAAAAUAAACUCUGCA
284
UGCAGAGUUUAUUUUUAAC
583





0285
6457
6475
UUAAAAAUAAACUCUGCAC
285
GUGCAGAGUUUAUUUUUAA
584





0286
6458
6476
UAAAAAUAAACUCUGCACU
286
AGUGCAGAGUUUAUUUUUA
585





0287
6459
6477
AAAAAUAAACUCUGCACUU
287
AAGUGCAGAGUUUAUUUUU
586





0288
6460
6478
AAAAUAAACUCUGCACUUA
288
UAAGUGCAGAGUUUAUUUU
587





0289
6461
6479
AAAUAAACUCUGCACUUAU
289
AUAAGUGCAGAGUUUAUUU
588





0290
6462
6480
AAUAAACUCUGCACUUAUU
290
AAUAAGUGCAGAGUUUAUU
589





0291
6463
6481
AUAAACUCUGCACUUAUUU
291
AAAUAAGUGCAGAGUUUAU
590





0292
6464
6482
UAAACUCUGCACUUAUUUU
292
AAAAUAAGUGCAGAGUUUA
591





0293
6465
6483
AAACUCUGCACUUAUUUUG
293
CAAAAUAAGUGCAGAGUUU
592





0294
6466
6484
AACUCUGCACUUAUUUUGA
294
UCAAAAUAAGUGCAGAGUU
593





0295
6467
6485
ACUCUGCACUUAUUUUGAU
295
AUCAAAAUAAGUGCAGAGU
594





0296
6468
6486
CUCUGCACUUAUUUUGAUU
296
AAUCAAAAUAAGUGCAGAG
595





0297
6469
6487
UCUGCACUUAUUUUGAUUU
297
AAAUCAAAAUAAGUGCAGA
596





0298
6470
6488
CUGCACUUAUUUUGAUUUG
298
CAAAUCAAAAUAAGUGCAG
597





0299
6471
6489
UGCACUUAUUUUGAUUUGA
299
UCAAAUCAAAAUAAGUGCA
598









I.4 Nucleotide Modifications


A dsRNA of the present disclosure may comprise one or more modifications, e.g., to enhance cellular uptake, affinity for the target sequence, inhibitory activity, and/or stability. Modifications may include any modification known in the art, including, for example, end modifications, base modifications, sugar modifications/replacements, and backbone modifications. End modifications may include, for example, 5′ end modifications (e.g., phosphorylation, conjugation, and inverted linkages) and 3′ end modifications (e.g., conjugation, DNA nucleotides, and inverted linkages). Base modifications may include, e.g., replacement with stabilizing bases, destabilizing bases or bases that base-pair with an expanded repertoire of partners, removal of bases (abasic modifications of nucleotides), or conjugated bases. Sugar modifications or replacements may include, e.g., modifications at the 2′ or 4′ position of the sugar moiety, or replacement of the sugar moiety. Backbone modifications may include, for example, modification or replacement of the phosphodiester linkages, e.g., with one or more phosphorothioates, phosphorodithioates, phosphotriesters, methyl and other alkyl phosphonates, phosphinates, and phosphoramidates.


As used herein, the term “nucleotide” includes naturally occurring or modified nucleotide, or a surrogate replacement moiety. A modified nucleotide is a non-naturally occurring nucleotide and is also referred to herein as a “nucleotide analog.” One of ordinary skill in the art would understand that guanine, cytosine, adenine, uracil, or thymine in a nucleotide may be replaced by other moieties without substantially altering the base-pairing properties of the modified nucleotide. For example, a nucleotide comprising inosine as its base may base-pair with nucleotides containing adenine, cytosine, or uracil. Hence, nucleotides containing uracil, guanine, or adenine may be replaced in the nucleotide sequences of the present disclosure by a nucleotide containing, for example, inosine. Sequences comprising such replacement moieties are included as embodiments of the present disclosure. A modified nucleotide may also be a nucleotide whose ribose moiety is replaced with a non-ribose moiety.


The dsRNAs of the present disclosure may include one or more modified nucleotides known in the art, including, without limitation, 2′-O-methyl modified nucleotides, 2′-fluoro modified nucleotides, 2′-deoxy modified nucleotides, 2′-O-methoxyethyl modified nucleotides, modified nucleotides comprising alternate internucleotide linkages such as thiophosphates and phosphorothioates, phosphotriester modified nucleotides, modified nucleotides terminally linked to a cholesterol derivative or lipophilic moiety, peptide nucleic acids (PNAs; see, e.g., Nielsen et al., Science (1991) 254:1497-500), constrained ethyl (cEt) modified nucleotides, inverted deoxy modified nucleotides, inverted dideoxy modified nucleotides, locked nucleic acid modified nucleotides, abasic modifications of nucleotides, 2′-amino modified nucleotides, 2′-alkyl modified nucleotides, morpholino-modified nucleotides, phosphoramidate modified nucleotides, modified nucleotides comprising modifications at other sites of the sugar or base of an oligonucleotide, and non-natural base-containing modified nucleotides. In some embodiments, at least one of the one or more modified nucleotides is a 2′-O-methyl nucleotide, 5′-phosphorothioate nucleotide, or a terminal nucleotide linked to a cholesterol derivative, lipophilic or other targeting moiety. The incorporation of 2′-O-methyl, 2′-O-ethyl, 2′-O-propryl, 2′-O-alkyl, 2′-O-aminoalkyl, or 2′-deoxy-2′-fluoro (i.e., 2′-fluoro) groups in nucleosides of an oligonucleotide may confer enhanced hybridization properties and/or enhanced nuclease stability to the oligonucleotide. Further, oligonucleotides containing phosphorothioate backbones (e.g., phosphorothioate linkage between two neighboring nucleotides at one or more positions of the dsRNA) may have enhanced nuclease stability. In some embodiments, the dsRNA may contain nucleotides with a modified ribose, such as locked nucleic acid (LNA) units.


In some embodiments, the dsRNA comprises one or more modified nucleotides, wherein at least one of the one or more modified nucleotides is 2′-deoxy-2′-fluoro-ribonucleotide, 2′-deoxyribonucleotide, or 2′-O-methyl-ribonucleotide.


In some embodiments, the dsRNA comprises an inverted 2′-deoxyribonucleotide at the 3′-end of its sense or antisense strand.


In some embodiments, a dsRNA of the present disclosure comprises one or more 2′-O-methyl nucleotides and one or more 2′-fluoro nucleotides. In some embodiments, the dsRNA comprises two or more 2′-O-methyl nucleotides and two or more 2′-fluoro nucleotides. In some embodiments, the dsRNA comprises two or more 2′-O-methyl nucleotides (OMe) and two or more 2′-fluoro nucleotides (F) in an alternating pattern, e.g., the pattern OMe-F-OMe-F or the pattern F-OMe-F-OMe. In some embodiments, the sense sequence and the antisense sequence of the dsRNA comprise alternating 2′-O-methyl ribonucleotides and 2′-deoxy-2′-fluoro ribonucleotides. In some embodiments, the dsRNA comprises up to 10 contiguous nucleotides that are each a 2′-O-methyl nucleotide. In some embodiments, the dsRNA comprises up to 10 contiguous nucleotides that are each a 2′-fluoro nucleotide. In some embodiments, the dsRNA comprises two or more 2′-fluoro nucleotides at the 5′- or 3′-end of the antisense strand.


In some embodiments, a dsRNA of the present disclosure comprises one or more phosphorothioate groups. In some embodiments, a dsRNA of the present disclosure comprises two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or 10 or more phosphorothioate groups. In some embodiments, the dsRNA does not comprise any phosphorothioate group.


In some embodiments, the dsRNA comprises one or more phosphotriester groups. In some embodiments, the dsRNA comprises two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or 10 or more phosphotriester groups. In some embodiments, the dsRNA does not comprise any phosphotriester group.


In some embodiments, the dsRNA comprises a modified ribonucleoside such as a deoxyribonucleoside, including, for example, deoxyribonucleoside overhang(s), and one or more deoxyribonucleosides within the double-stranded portion of a dsRNA. However, it is self-evident that under no circumstances is a double-stranded DNA molecule encompassed by the term “dsRNA.” In some embodiments, the dsRNA comprises two or more, three or more, four or more,


five or more, six or more, seven or more, eight or more, nine or more, or 10 or more different modified nucleotides described herein. In some embodiments, the dsRNA comprises up to two contiguous modified nucleotides, up to three contiguous modified nucleotides, up to four contiguous modified nucleotides, up to five contiguous modified nucleotides, up to six contiguous modified nucleotides, up to seven contiguous modified nucleotides, up to eight contiguous modified nucleotides, up to nine contiguous modified nucleotides, or up to 10 contiguous modified nucleotides. In some embodiments, the contiguous modified nucleotides are the same modified nucleotide. In some embodiments, the contiguous modified nucleotides are two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more different modified nucleotides.


In some embodiments, the dsRNA is such that:

    • a) the sense strand comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 602, 605, 617, 688, 702, 705, 706, 708, 709, 766, 767, 770, 798, 819, 821, 877, and 896; or
    • b) the antisense strand comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 901, 904, 916, 987, 1001, 1004, 1005, 1007, 1008, 1065, 1066, 1069, 1097, 1118, 1120, 1176, and 1195.


In some embodiments, the dsRNA is such that:

    • a) the sense strand comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs:708, 770, and 821; or
    • b) the antisense strand comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1007, 1069, and 1120.


In some embodiments, the sense strand and antisense strand of the dsRNA respectively comprise the nucleotide sequences of:

    • a) SEQ ID NOs: 602 and 901;
    • b) SEQ ID NOs: 605 and 904;
    • c) SEQ ID NOs: 617 and 916;
    • d) SEQ ID NOs: 688 and 987;
    • e) SEQ ID NOs: 702 and 1001;
    • f) SEQ ID NOs: 705 and 1004;
    • g) SEQ ID NOs: 706 and 1005;
    • h) SEQ ID NOs: 708 and 1007;
    • i) SEQ ID NOs: 709 and 1008;
    • j) SEQ ID NOs: 766 and 1065;
    • k) SEQ ID NOs: 767 and 1066;
    • l) SEQ ID NOs: 770 and 1069;
    • m) SEQ ID NOs: 798 and 1097;
    • n) SEQ ID NOs: 819 and 1118;
    • o) SEQ ID NOs: 821 and 1120;
    • p) SEQ ID NOs: 877 and 1176; or
    • q) SEQ ID NOs: 896 and 1195.


In some embodiments, the sense strand and antisense strand of the dsRNA respectively comprise the nucleotide sequences of:

    • a) SEQ ID NOs: 708 and 1007;
    • b) SEQ ID NOs: 770 and 1069; or
    • c) SEQ ID NOs: 821 and 1120.


Table 2 below lists the sequences of exemplary siRNA constructs (CNST) with modified nucleotides. The start (ST) and end (ED) nucleotide positions in NM_005577.2 (SEQ ID NO: 1632) are indicated. Abbreviations are as follows: SEQ=SEQ ID NO; x (nucleotide in lower case)=2′-O-Me nucleotide (also denoted as mX elsewhere herein); Xf=2′-F nucleotide (also denoted as fX elsewhere herein); dX=DNA nucleotide; and invdX=inverted dX. In these constructs, the sequences of their sense strands and antisense strands correspond to the sense and antisense sequences of the constructs in Table 1 with the same construct numbers, but for the inclusion of (1) the modified 2′-O-Me nucleotides and 2′-F nucleotides, (2) c-c-a at the 5′ end of the sense strand nucleotide sequence, (3) invdT at the 3′ end of the sense strand nucleotide sequence, and/or (4) dT-dT at the 3′ end of the antisense strand nucleotide sequence. In these constructs, a base-pair of nucleotides may be modified differently in some embodiments, e.g., one nucleotide in the base-pair is a 2′-O-Me ribonucleotide and the other is a 2′-F nucleotide. In some embodiments, the antisense strand comprises two 2′-F nucleotides at its 5′ end.









TABLE 2







Sequences of Modified LPA siRNA Constructs













siLPA


Sense Sequence

Antisense Sequence



#
ST
ED
(5′-3′)
SEQ
(5′-3′)
SEQ
















0001
5
23
ccaAfcCfuUfuGfgGfgCf
599
GfAfaAfgCfcAfgCfcCf
898





uGfgCfuUfuCf(invdT)

cAfaAfgGfudTdT






0002
185
203
ccaGfcCfaUfgUfgGfuCf
600
CfAfaUfcCfuGfgAfcCf
899





cAfgGfaUfuGf(invdT)

aCfaUfgGfcdTdT






0003
219
237
ccaAfcAfgAfgUfuAfuCf
601
CfGfuGfcCfuCfgAfuAf
900





gAfgGfcAfcGf(invdT)

aCfuCfuGfudTdT






0004
220
238
ccaCfaGfaGfuUfaUfcGf
602
AfCfgUfgCfcUfcGfaUf
901





aGfgCfaCfgUf(invdT)

aAfcUfcUfgdTdT






0005
221
239
ccaAfgAfgUfuAfuCfgAf
603
UfAfcGfuGfcCfuCfgAf
902





gGfcAfcGfuAf(invdT)

uAfaCfuCfudTdT






0006
222
240
ccaGfaGfuUfaUfcGfaGf
604
GfUfaCfgUfgCfcUfcGf
903





gCfaCfgUfaCf(invdT)

aUfaAfcUfcdTdT






0007
223
241
ccaAfgUfuAfuCfgAfgGf
605
AfGfuAfcGfuGfcCfuCf
904





cAfcGfuAfcUf(invdT)

gAfuAfaCfudTdT






0008
238
256
ccaUfaCfuCfcAfcCfaCf
606
CfUfgUfgAfcAfgUfgGf
905





uGfuCfaCfaGf(invdT)

uGfgAfgUfadTdT






0009
240
258
ccaCfuCfcAfcCfaCfuGf
607
UfCfcUfgUfgAfcAfgUf
906





uCfaCfaGfgAf(invdT)

gGfuGfgAfgdTdT






0010
259
277
ccaAfgGfaCfcUfgCfcAf
608
AfCfcAfaGfcUfuGfgCf
907





aGfcUfuGfgUf(invdT)

aGfgUfcCfudTdT






0011
261
279
ccaGfaCfcUfgCfcAfaGf
609
UfGfaCfcAfaGfcUfuGf
908





cUfuGfgUfcAf(invdT)

gCfaGfgUfcdTdT






0012
262
280
ccaAfcCfuGfcCfaAfgCf
610
AfUfgAfcCfaAfgCfuUf
909





uUfgGfuCfaUf(invdT)

gGfcAfgGfudTdT






0013
263
281
ccaCfcUfgCfcAfaGfcUf
611
GfAfuGfaCfcAfaGfcUf
910





uGfgUfcAfuCf(invdT)

uGfgCfaGfgdTdT






0014
266
284
ccaGfcCfaAfgCfuUfgGf
612
AfUfaGfaUfgAfcCfaAf
911





uCfaUfcUfaUf(invdT)

gCfuUfgGfcdTdT






0015
267
285
ccaCfcAfaGfcUfuGfgUf
613
CfAfuAfgAfuGfaCfcAf
912





cAfuCfuAfuGf(invdT)

aGfcUfuGfgdTdT






0016
298
316
ccaCfaUfaAfuAfgGfaCf
614
UfUfuCfuGfuGfgUfcCf
913





cAfcAfgAfaAf(invdT)

uAfuUfaUfgdTdT






0017
300
318
ccaUfaAfuAfgGfaCfcAf
615
GfUfuUfuCfuGfuGfgUf
914





cAfgAfaAfaCf(invdT)

cCfuAfuUfadTdT






0018
301
319
ccaAfaUfaGfgAfcCfaCf
616
AfGfuUfuUfcUfgUfgGf
915





aGfaAfaAfcUf(invdT)

uCfcUfaUfudTdT






0019
302
320
ccaAfuAfgGfaCfcAfcAf
617
UfAfgUfuUfuCfuGfuGf
916





gAfaAfaCfuAf(invdT)

gUfcCfuAfudTdT






0020
303
321
ccaUfaGfgAfcCfaCfaGf
618
GfUfaGfuUfuUfcUfgUf
917





aAfaAfcUfaCf(invdT)

gGfuCfcUfadTdT






0021
324
342
ccaAfaAfuGfcUfgGfcUf
619
CfAfuGfaUfcAfaGfcCf
918





uGfaUfcAfuGf(invdT)

aGfcAfuUfudTdT






0022
330
348
ccaUfgGfcUfuGfaUfcAf
620
GfUfaGfuUfcAfuGfaUf
919





uGfaAfcUfaCf(invdT)

cAfaGfcCfadTdT






0023
331
349
ccaGfgCfuUfgAfuCfaUf
621
AfGfuAfgUfuCfaUfgAf
920





gAfaCfuAfcUf(invdT)

uCfaAfgCfcdTdT






0024
372
390
ccaAfgCfuCfcUfuAfuUf
622
CfGfuAfuAfaCfaAfuAf
921





gUfuAfuAfcGf(invdT)

aGfgAfgCfudTdT






0025
373
391
ccaGfcUfcCfuUfaUfuGf
623
UfCfgUfaUfaAfcAfaUf
922





uUfaUfaCfgAf(invdT)

aAfgGfaGfcdTdT






0026
413
431
ccaAfgUfaCfuGfcAfaCf
624
UfGfcGfuCfaGfgUfuGf
923





cUfgAfcGfcAf(invdT)

cAfgUfaCfudTdT






0027
414
432
ccaGfuAfcUfgCfaAfcCf
625
UfUfgCfgUfcAfgGfuUf
924





uGfaCfgCfaAf(invdT)

gCfaGfuAfcdTdT






0028
415
433
ccaUfaCfuGfcAfaCfcUf
626
AfUfuGfcGfuCfaGfgUf
925





gAfcGfcAfaUf(invdT)

uGfcAfgUfadTdT






0029
418
436
ccaUfgCfaAfcCfuGfaCf
627
AfGfcAfuUfgCfgUfcAf
926





gCfaAfuGfcUf(invdT)

gGfuUfgCfadTdT






0030
419
437
ccaGfcAfaCfcUfgAfcGf
628
GfAfgCfaUfuGfcGfuCf
927





cAfaUfgCfuCf(invdT)

aGfgUfuGfcdTdT






0031
420
438
ccaCfaAfcCfuGfaCfgCf
629
UfGfaGfcAfuUfgCfgUf
928





aAfuGfcUfcAf(invdT)

cAfgGfuUfgdTdT






0032
421
439
ccaAfaCfcUfgAfcGfcAf
630
CfUfgAfgCfaUfuGfcGf
929





aUfgCfuCfaGf(invdT)

uCfaGfgUfudTdT






0033
422
440
ccaAfcCfuGfaCfgCfaAf
631
UfCfuGfaGfcAfuUfgCf
930





uGfcUfcAfgAf(invdT)

gUfcAfgGfudTdT






0034
423
441
ccaCfcUfgAfcGfcAfaUf
632
GfUfcUfgAfgCfaUfuGf
931





gCfuCfaGfaCf(invdT)

cGfuCfaGfgdTdT






0035
424
442
ccaCfuGfaCfgCfaAfuGf
633
CfGfuCfuGfaGfcAfuUf
932





cUfcAfgAfcGf(invdT)

gCfgUfcAfgdTdT






0036
425
443
ccaUfgAfcGfcAfaUfgCf
634
GfCfgUfcUfgAfgCfaUf
933





uCfaGfaCfgCf(invdT)

uGfcGfuCfadTdT






0037
465
483
ccaUfcCfgAfcUfgUfuAf
635
AfAfcCfgGfgGfuAfaCf
934





cCfcCfgGfuUf(invdT)

aGfuCfgGfadTdT






0038
469
487
ccaAfcUfgUfuAfcCfcCf
636
UfUfgGfaAfcCfgGfgGf
935





gGfuUfcCfaAf(invdT)

uAfaCfaGfudTdT






0039
470
488
ccaCfuGfuUfaCfcCfcGf
637
CfUfuGfgAfaCfcGfgGf
936





gUfuCfcAfaGf(invdT)

gUfaAfcAfgdTdT






0040
471
489
ccaUfgUfuAfcCfcCfgGf
638
GfCfuUfgGfaAfcCfgGf
937





uUfcCfaAfgCf(invdT)

gGfuAfaCfadTdT






0041
473
491
ccaUfuAfcCfcCfgGfuUf
639
AfGfgCfuUfgGfaAfcCf
938





cCfaAfgCfcUf(invdT)

gGfgGfuAfadTdT






0042
474
492
ccaUfaCfcCfcGfgUfuCf
640
UfAfgGfcUfuGfgAfaCf
939





cAfaGfcCfuAf(invdT)

cGfgGfgUfadTdT






0043
480
498
ccaGfgUfuCfcAfaGfcCf
641
AfGfcCfuCfuAfgGfcUf
940





uAfgAfgGfcUf(invdT)

uGfgAfaCfcdTdT






0044
48
499
ccaGfuUfcCfaAfgCfcUf
642
GfAfgCfcUfcUfaGfgCf
941





aGfaGfgCfuCf(invdT)

uUfgGfaAfcdTdT






0045
489
507
ccaCfcUfaGfaGfgCfuCf
643
UfUfcGfgAfaGfgAfgCf
942





cUfuCfcGfaAf(invdT)

cUfcUfaGfgdTdT






0046
490
508
ccaCfuAfgAfgGfcUfcCf
644
GfUfuCfgGfaAfgGfaGf
943





uUfcCfgAfaCf(invdT)

cCfuCfuAfgdTdT






0047
495
513
ccaGfgCfuCfcUfuCfcGf
645
UfGfcUfuGfuUfcGfgAf
944





aAfcAfaGfcAf(invdT)

aGfgAfgCfcdTdT






0048
499
517
ccaCfcUfuCfcGfaAfcAf
646
UfCfgGfuGfcUfuGfuUf
945





aGfcAfcCfgAf(invdT)

cGfgAfaGfgdTdT






0049
500
518
ccaCfuUfcCfgAfaCfaAf
647
GfUfcGfgUfgCfuUfgUf
946





gCfaCfcGfaCf(invdT)

uCfgGfaAfgdTdT






0050
501
519
ccaUfuCfcGfaAfcAfaGf
648
AfGfuCfgGfuGfcUfuGf
947





cAfcCfgAfcUf(invdT)

uUfcGfgAfadTdT






0051
502
520
ccaUfcCfgAfaCfaAfgCf
649
CfAfgUfcGfgUfgCfuUf
948





aCfcGfaCfuGf(invdT)

gUfuCfgGfadTdT






0052
503
521
ccaCfcGfaAfcAfaGfcAf
650
UfCfaGfuCfgGfuGfcUf
949





cCfgAfcUfgAf(invdT)

uGfuUfcGfgdTdT






0053
505
523
ccaGfaAfcAfaGfcAfcCf
651
GfCfuCfaGfuCfgGfuGf
950





gAfcUfgAfgCf(invdT)

cUfuGfuUfcdTdT






0054
506
524
ccaAfaCfaAfgCfaCfcGf
652
UfGfcUfcAfgUfcGfgUf
951





aCfuGfaGfcAf(invdT)

gCfuUfgUfudTdT






0055
507
525
ccaAfcAfaGfcAfcCfgAf
653
UfUfgCfuCfaGfuCfgGf
952





cUfgAfgCfaAf(invdT)

uGfcUfuGfudTdT






0056
508
526
ccaCfaAfgCfaCfcGfaCf
654
UfUfuGfcUfcAfgUfcGf
953





uGfaGfcAfaAf(invdT)

gUfgCfuUfgdTdT






0057
509
527
ccaAfaGfcAfcCfgAfcUf
655
CfUfuUfgCfuCfaGfuCf
954





gAfgCfaAfaGf(invdT)

gGfuGfcUfudTdT






0058
510
528
ccaAfgCfaCfcGfaCfuGf
656
CfCfuUfuGfcUfcAfgUf
955





aGfcAfaAfgGf(invdT)

cGfgUfgCfudTdT






0059
552
570
ccaUfgGfuAfaUfgGfaCf
657
AfUfaAfcUfcUfgUfcCf
956





aGfaGfuUfaUf(invdT)

aUfuAfcCfadTdT






0060
554
572
ccaGfuAfaUfgGfaCfaGf
658
CfGfaUfaAfcUfcUfgUf
957





aGfuUfaUfcGf(invdT)

cCfaUfuAfcdTdT






0061
555
573
ccaUfaAfuGfgAfcAfgAf
659
UfCfgAfuAfaCfuCfuGf
958





gUfuAfuCfgAf(invdT)

uCfcAfuUfadTdT






0062
563
581
ccaAfgAfgUfuAfuCfgAf
660
UfAfuGfuGfcCfuCfgAf
959





gGfcAfcAfuAf(invdT)

uAfaCfuCfudTdT






0063
564
582
ccaGfaGfuUfaUfcGfaGf
661
GfUfaUfgUfgCfcUfcGf
960





gCfaCfaUfaCf(invdT)

aUfaAfcUfcdTdT






0064
565
583
ccaAfgUfuAfuCfgAfgGf
662
AfGfuAfuGfuGfcCfuCf
961





cAfcAfuAfcUf(invdT)

gAfuAfaCfudTdT






0065
566
584
ccaGfuUfaUfcGfaGfgCf
663
GfAfgUfaUfgUfgCfcUf
962





aCfaUfaCfuCf(invdT)

CGfaUfaAfcdTdT






0066
567
585
ccaUfuAfuCfgAfgGfcAf
664
GfGfaGfuAfuGfuGfcCf
963





cAfuAfcUfcCf(invdT)

uCfgAfuAfadTdT






0067
574
592
ccaGfgCfaCfaUfaCfuCf
665
CfAfgUfgGfuGfgAfgUf
964





cAfcCfaCfuGf(invdT)

aUfgUfgCfcdTdT






0068
578
596
ccaCfaUfaCfuCfcAfcCf
666
GfUfgAfcAfgUfgGfuGf
965





aCfuGfuCfaCf(invdT)

gAfgUfaUfgdTdT






0069
598
616
ccaGfgAfaGfaAfcCfuGf
667
AfAfgCfuUfgGfcAfgGf
966





cCfaAfgCfuUf(invdT)

uUfcUfuCfcdTdT






0070
624
642
ccaUfaUfgAfcAfcCfaCf
668
AfUfgCfgAfgUfgUfgGf
967





aCfuCfgCfaUf(invdT)

uGfuCfaUfadTdT






0071
625
643
ccaAfuGfaCfaCfcAfcAf
669
UfAfuGfcGfaGfuGfuGf
968





cUfcGfcAfuAf(invdT)

gUfgUfcAfudTdT






0072
626
644
ccaUfgAfcAfcCfaCfaCf
670
CfUfaUfgCfgAfgUfgUf
969





uCfgCfaUfaGf(invdT)

gGfuGfuCfadTdT






0073
627
645
ccaGfaCfaCfcAfcAfcUf
671
AfCfuAfuGfcGfaGfuGf
970





cGfcAfuAfgUf(invdT)

uGfgUfgUfcdTdT






0074
628
646
ccaAfcAfcCfaCfaCfuCf
672
GfAfcUfaUfgCfgAfgUf
971





gCfaUfaGfuCf(invdT)

gUfgGfuGfudTdT






0075
630
648
ccaAfcCfaCfaCfuCfgCf
673
CfCfgAfcUfaUfgCfgAf
972





aUfaGfuCfgGf(invdT)

gUfgUfgGfudTdT






0076
63
649
ccaCfcAfcAfcUfcGfcAf
674
UfCfcGfaCfuAfuGfcGf
973





uAfgUfcGfgAf(invdT)

aGfuGfuGfgdTdT






0077
632
650
ccaCfaCfaCfuCfgCfaUf
675
GfUfcCfgAfcUfaUfgCf
974





aGfuCfgGfaCf(invdT)

gAfgUfgUfgdTdT






0078
633
651
ccaAfcAfcUfcGfcAfuAf
676
GfGfuCfcGfaCfuAfuGf
975





gUfcGfgAfcCf(invdT)

CGfaGfuGfudTdT






0079
640
658
ccaCfaUfaGfuCfgGfaCf
677
AfUfuCfuGfgGfgUfcCf
976





cCfcAfgAfaUf(invdT)

gAfcUfaUfgdTdT






0080
641
659
ccaAfuAfgUfcGfgAfcCf
678
UfAfuUfcUfgGfgGfuCf
977





cCfaGfaAfuAf(invdT)

cGfaCfuAfudTdT






0081
642
660
ccaUfaGfuCfgGfaCfcCf
679
GfUfaUfuCfuGfgGfgUf
978





cAfgAfaUfaCf(invdT)

cCfgAfcUfadTdT






0082
643
661
ccaAfgUfcGfgAfcCfcCf
680
AfGfuAfuUfcUfgGfgGf
979





aGfaAfuAfcUf(invdT)

uCfcGfaCfudTdT






0083
644
662
ccaGfuCfgGfaCfcCfcAf
681
UfAfgUfaUfuCfuGfgGf
980





gAfaUfaCfuAf(invdT)

gUfcCfgAfcdTdT






0084
645
663
ccaUfcGfgAfcCfcCfaGf
682
GfUfaGfuAfuUfcUfgGf
981





aAfuAfcUfaCf(invdT)

gGfuCfcGfadTdT






0085
646
664
ccaCfgGfaCfcCfcAfgAf
683
GfGfuAfgUfaUfuCfuGf
982





aUfaCfuAfcCf(invdT)

gGfgUfcCfgdTdT






0086
1191
1209
ccaAfcAfaGfcAfcCfgAf
684
CfUfgCfuCfaGfuCfgGf
983





cUfgAfgCfaGf(invdT)

uGfcUfuGfudTdT






0087
1193
1211
ccaAfaGfcAfcCfgAfcUf
685
CfUfcUfgCfuCfaGfuCf
984





gAfgCfaGfaGf(invdT)

gGfuGfcUfudTdT






0088
1234
1252
ccaCfaCfgGfuAfaUfgGf
686
AfAfcUfcUfgUfcCfaUf
985





aCfaGfaGfuUf(invdT)

uAfcCfgUfgdTdT






0089
1235
1253
ccaAfcGfgUfaAfuGfgAf
687
UfAfaCfuCfuGfuCfcAf
986





cAfgAfgUfuAf(invdT)

uUfaCfcGfudTdT






0090
1236
1254
ccaCfgGfuAfaUfgGfaCf
688
AfUfaAfcUfcUfgUfcCf
987





aGfaGfuUfaUf(invdT)

aUfuAfcCfgdTdT






0091
2867
2885
ccaUfuAfcCfcCfgAfuUf
689
AfGfgCfuUfgGfaAfuCf
988





cCfaAfgCfcUf(invdT)

gGfgGfuAfadTdT






0092
2868
2886
ccaUfaCfcCfcGfaUfuCf
690
UfAfgGfcUfuGfgAfaUf
989





cAfaGfcCfuAf(invdT)

cGfgGfgUfadTdT






0093
2869
2887
ccaAfcCfcCfgAfuUfcCf
691
CfUfaGfgCfuUfgGfaAf
990





aAfgCfcUfaGf(invdT)

uCfgGfgGfudTdT






0094
2870
2888
ccaCfcCfcGfaUfuCfcAf
692
UfCfuAfgGfcUfuGfgAf
991





aGfcCfuAfgAf(invdT)

aUfcGfgGfgdTdT






0095
2871
2889
ccaCfcCfgAfuUfcCfaAf
693
CfUfcUfaGfgCfuUfgGf
992





gCfcUfaGfaGf(invdT)

aAfuCfgGfgdTdT






0096
2872
2890
ccaCfcGfaUfuCfcAfaGf
694
CfCfuCfuAfgGfcUfuGf
993





cCfuAfgAfgGf(invdT)

gAfaUfcGfgdTdT






0097
2873
2891
ccaCfgAfuUfcCfaAfgCf
695
GfCfcUfcUfaGfgCfuUf
994





cUfaGfaGfgCf(invdT)

gGfaAfuCfgdTdT






0098
2874
2892
ccaGfaUfuCfcAfaGfcCf
696
AfGfcCfuCfuAfgGfcUf
995





uAfgAfgGfcUf(invdT)

uGfgAfaUfcdTdT






0099
2907
2925
ccaAfcCfaAfcUfgAfgCf
697
AfGfgCfcUfuUfgCfuCf
996





aAfaGfgCfcUf(invdT)

aGfuUfgGfudTdT






0100
2941
2959
ccaUfaCfcAfcGfgAfaAf
698
UfCfuGfuCfcAfuUfuCf
997





uGfgAfcAfgAf(invdT)

cGfuGfgUfadTdT






0101
2942
2960
ccaAfcCfaCfgGfaAfaUf
699
CfUfcUfgUfcCfaUfuUf
998





gGfaCfaGfaGf(invdT)

cCfgUfgGfudTdT






0102
2944
2962
ccaCfaCfgGfaAfaUfgGf
700
AfAfcUfcUfgUfcCfaUf
999





aCfaGfaGfuUf(invdT)

uUfcCfgUfgdTdT






0103
2945
2963
ccaAfcGfgAfaAfuGfgAf
701
UfAfaCfuCfuGfuCfcAf
1000





cAfgAfgUfuAf(invdT)

uUfuCfcGfudTdT






0104
2946
2964
ccaCfgGfaAfaUfgGfaCf
702
AfUfaAfcUfcUfgUfcCf
1001





aGfaGfuUfaUf(invdT)

aUfuUfcCfgdTdT






0105
2950
2968
ccaAfaUfgGfaCfaGfaGf
703
CfUfuGfaUfaAfcUfcUf
1002





uUfaUfcAfaGf(invdT)

gUfcCfaUfudTdT






0106
2951
2969
ccaAfuGfgAfcAfgAfgUf
704
CfCfuUfgAfuAfaCfuCf
1003





uAfuCfaAfgGf(invdT)

uGfuCfcAfudTdT






0107
2953
2971
ccaGfgAfcAfgAfgUfuAf
705
UfGfcCfuUfgAfuAfaCf
1004





uCfaAfgGfcAf(invdT)

uCfuGfuCfcdTdT






0108
2954
2972
ccaGfaCfaGfaGfuUfaUf
706
GfUfgCfcUfuGfaUfaAf
1005





cAfaGfgCfaCf(invdT)

cUfcUfgUfcdTdT






0109
2955
2973
ccaAfcAfgAfgUfuAfuCf
707
UfGfuGfcCfuUfgAfuAf
1006





aAfgGfcAfcAf(invdT)

aCfuCfuGfudTdT






0110
2958
2976
ccaGfaGfuUfaUfcAfaGf
708
GfUfaUfgUfgCfcUfuGf
1007





gCfaCfaUfaCf(invdT)

aUfaAfcUfcdTdT






0111
2959
2977
ccaAfgUfuAfuCfaAfgGf
709
AfGfuAfuGfuGfcCfuUf
1008





cAfcAfuAfcUf(invdT)

gAfuAfaCfudTdT






0112
2960
2978
ccaGfuUfaUfcAfaGfgCf
710
AfAfgUfaUfgUfgCfcUf
1009





aCfaUfaCfuUf(invdT)

uGfaUfaAfcdTdT






0113
3060
3078
ccaAfaAfuGfcUfgGfcUf
711
CfUfuGfaUfcAfaGfcCf
1010





uGfaUfcAfaGf(invdT)

aGfcAfuUfudTdT






0114
3068
3086
ccaGfcUfuGfaUfcAfaGf
712
CfAfgUfaGfuUfcUfuGf
1011





aAfcUfaCfuGf(invdT)

aUfcAfaGfcdTdT






0115
3109
3127
ccaGfcCfcCfuUfgGfuGf
713
UfUfgUfaUfaAfcAfcCf
1012





uUfaUfaCfaAf(invdT)

aAfgGfgGfcdTdT






0116
3111
3129
ccaCfcCfuUfgGfuGfuUf
714
UfGfuUfgUfaUfaAfcAf
1013





aUfaCfaAfcAf(invdT)

cCfaAfgGfgdTdT






0117
3114
3132
ccaUfuGfgUfgUfuAfuAf
715
AfUfcUfgUfuGfuAfuAf
1014





cAfaCfaGfaUf(invdT)

aCfaCfcAfadTdT






0118
3117
3135
ccaGfuGfuUfaUfaCfaAf
716
GfGfgAfuCfuGfuUfgUf
1015





cAfgAfuCfcCf(invdT)

aUfaAfcAfcdTdT






0119
3121
3139
ccaUfaUfaCfaAfcAfgAf
717
CfAfcUfgGfgAfuCfuGf
1016





uCfcCfaGfuGf(invdT)

uUfgUfaUfadTdT






0120
3496
3514
ccaUfgCfaAfcCfuGfaCf
718
GfGfcAfuUfgUfgUfcAf
1017





aCfaAfuGfcCf(invdT)

gGfuUfgCfadTdT






0121
3497
3515
ccaGfcAfaCfcUfgAfcAf
719
AfGfgCfaUfuGfuGfuCf
1018





cAfaUfgCfcUf(invdT)

aGfgUfuGfcdTdT






0122
3540
3558
ccaAfaCfuCfuCfaCfgGf
720
UfGfgGfaCfcAfcCfgUf
1019





uGfgUfcCfcAf(invdT)

gAfgAfgUfudTdT






0123
3543
3561
ccaUfcUfcAfcGfgUfgGf
721
AfUfcUfgGfgAfcCfaCf
1020





uCfcCfaGfaUf(invdT)

cGfuGfaGfadTdT






0124
3547
3565
ccaAfcGfgUfgGfuCfcCf
722
UfUfgGfaUfcUfgGfgAf
1021





aGfaUfcCfaAf(invdT)

cCfaCfcGfudTdT






0125
3551
3569
ccaUfgGfuCfcCfaGfaUf
723
GfUfgCfuUfgGfaUfcUf
1022





cCfaAfgCfaCf(invdT)

gGfgAfcCfadTdT






0126
3554
3572
ccaUfcCfcAfgAfuCfcAf
724
UfCfuGfuGfcUfuGfgAf
1023





aGfcAfcAfgAf(invdT)

uCfuGfgGfadTdT






0127
3558
3576
ccaAfgAfuCfcAfaGfcAf
725
AfGfcCfuCfuGfuGfcUf
1024





cAfgAfgGfcUf(invdT)

uGfgAfuCfudTdT






0128
3559
3577
ccaGfaUfcCfaAfgCfaCf
726
AfAfgCfcUfcUfgUfgCf
1025





aGfaGfgCfuUf(invdT)

uUfgGfaUfcdTdT






0129
3560
3578
ccaAfuCfcAfaGfcAfcAf
727
GfAfaGfcCfuCfuGfuGf
1026





gAfgGfcUfuCf(invdT)

cUfuGfgAfudTdT






0130
3662
3680
ccaCfuAfcCfaCfuGfuCf
728
CfUfuCfcUfgUfgAfcAf
1027





aCfaGfgAfaGf(invdT)

gUfgGfuAfgdTdT






0131
4155
4173
ccaCfuGfcAfaCfcUfgAf
729
AfCfaUfuGfcGfuCfaGf
1028





cGfcAfaUfgUf(invdT)

gUfuGfcAfgdTdT






0132
4156
4174
ccaUfgCfaAfcCfuGfaCf
730
GfAfcAfuUfgCfgUfcAf
1029





gCfaAfuGfuCf(invdT)

gGfuUfgCfadTdT






0133
4157
4175
ccaGfcAfaCfcUfgAfcGf
731
GfGfaCfaUfuGfcGfuCf
1030





cAfaUfgUfcCf(invdT)

aGfgUfuGfcdTdT






0134
4256
4274
ccaCfuGfaAfaAfcAfgCf
732
AfCfcCfcAfgUfgCfuGf
1031





aCfuGfgGfgUf(invdT)

uUfuUfcAfgdTdT






0135
4300
4318
ccaCfaGfaGfuUfaUfcGf
733
GfUfgUfgCfcUfcGfaUf
1032





aGfgCfaCfaCf(invdT)

aAfcUfcUfgdTdT






0136
4301
4319
ccaAfgAfgUfuAfuCfgAf
734
AfGfuGfuGfcCfuCfgAf
1033





gGfcAfcAfcUf(invdT)

uAfaCfuCfudTdT






0137
4302
4320
ccaGfaGfuUfaUfcGfaGf
735
GfAfgUfgUfgCfcUfcGf
1034





gCfaCfaCfuCf(invdT)

aUfaAfcUfcdTdT






0138
4303
4321
ccaAfgUfuAfuCfgAfgGf
736
AfGfaGfuGfuGfcCfuCf
1035





cAfcAfcUfcUf(invdT)

gAfuAfaCfudTdT






0139
4304
4322
ccaGfuUfaUfcGfaGfgCf
737
GfAfgAfgUfgUfgCfcUf
1036





aCfaCfuCfuCf(invdT)

CGfaUfaAfcdTdT






0140
4305
4323
ccaUfuAfuCfgAfgGfcAf
738
GfGfaGfaGfuGfuGfcCf
1037





cAfcUfcUfcCf(invdT)

uCfgAfuAfadTdT






0141
4306
4324
ccaUfaUfcGfaGfgCfaCf
739
UfGfgAfgAfgUfgUfgCf
1038





aCfuCfuCfcAf(invdT)

cUfcGfaUfadTdT






0142
4307
4325
ccaAfuCfgAfgGfcAfcAf
740
GfUfgGfaGfaGfuGfuGf
1039





cUfcUfcCfaCf(invdT)

cCfuCfgAfudTdT






0143
4312
4330
ccaGfgCfaCfaCfuCfuCf
741
UfAfgUfgGfuGfgAfgAf
1040





cAfcCfaCfuAf(invdT)

gUfgUfgCfcdTdT






0144
4319
4337
ccaUfcUfcCfaCfcAfcUf
742
CfCfuGfuGfaUfaGfuGf
1041





aUfcAfcAfgGf(invdT)

gUfgGfaGfadTdT






0145
4359
4377
ccaGfuCfuAfuGfaCfaCf
743
CfCfaAfuGfuGfgUfgUf
1042





cAfcAfuUfgGf(invdT)

cAfuAfgAfcdTdT






0146
4362
4380
ccaUfaUfgAfcAfcCfaCf
744
AfUfgCfcAfaUfgUfgGf
1043





aUfuGfgCfaUf(invdT)

uGfuCfaUfadTdT






0147
4366
4384
ccaAfcAfcCfaCfaUfuGf
745
UfCfcGfaUfgCfcAfaUf
1044





gCfaUfcGfgAf(invdT)

gUfgGfuGfudTdT






0148
4367
4385
ccaCfaCfcAfcAfuUfgGf
746
CfUfcCfgAfuGfcCfaAf
1045





cAfuCfgGfaGf(invdT)

uGfuGfgUfgdTdT






0149
4368
4386
ccaAfcCfaCfaUfuGfgCf
747
CfCfuCfcGfaUfgCfcAf
1046





aUfcGfgAfgGf(invdT)

aUfgUfgGfudTdT






0150
4369
4387
ccaCfcAfcAfuUfgGfcAf
748
UfCfcUfcCfgAfuGfcCf
1047





uCfgGfaGfgAf(invdT)

aAfuGfuGfgdTdT






0151
4370
4388
ccaCfaCfaUfuGfgCfaUf
749
AfUfcCfuCfcGfaUfgCf
1048





cGfgAfgGfaUf(invdT)

cAfaUfgUfgdTdT






0152
4371
4389
ccaAfcAfuUfgGfcAfuCf
750
GfAfuCfcUfcCfgAfuGf
1049





gGfaGfgAfuCf(invdT)

cCfaAfuGfudTdT






0153
4372
4390
ccaCfaUfuGfgCfaUfcGf
751
GfGfaUfcCfuCfcGfaUf
1050





gAfgGfaUfcCf(invdT)

gCfcAfaUfgdTdT






0154
4373
4391
ccaAfuUfgGfcAfuCfgGf
752
GfGfgAfuCfcUfcCfgAf
1051





aGfgAfuCfcCf(invdT)

uGfcCfaAfudTdT






0155
4376
4394
ccaGfgCfaUfcGfgAfgGf
753
AfAfuGfgGfaUfcCfuCf
1052





aUfcCfcAfuUf(invdT)

cGfaUfgCfcdTdT






0156
4497
4515
ccaCfuGfcAfaCfcUfgAf
754
AfCfaUfcGfuGfuCfaGf
1053





cAfcGfaUfgUf(invdT)

gUfuGfcAfgdTdT






0157
4498
4516
ccaUfgCfaAfcCfuGfaCf
755
GfAfcAfuCfgUfgUfcAf
1054





aCfgAfuGfuCf(invdT)

gGfuUfgCfadTdT






0158
4499
4517
ccaGfcAfaCfcUfgAfcAf
756
GfGfaCfaUfcGfuGfuCf
1055





cGfaUfgUfcCf(invdT)

aGfgUfuGfcdTdT






0159
4500
4518
ccaCfaAfcCfuGfaCfaCf
757
UfGfgAfcAfuCfgUfgUf
1056





gAfuGfuCfcAf(invdT)

cAfgGfuUfgdTdT






0160
4501
4519
ccaAfaCfcUfgAfcAfcGf
758
CfUfgGfaCfaUfcGfuGf
1057





aUfgUfcCfaGf(invdT)

uCfaGfgUfudTdT






0161
4503
4521
ccaCfcUfgAfcAfcGfaUf
759
CfAfcUfgGfaCfaUfcGf
1058





gUfcCfaGfuGf(invdT)

uGfuCfaGfgdTdT






0162
4504
4522
ccaCfuGfaCfaCfgAfuGf
760
UfCfaCfuGfgAfcAfuCf
1059





uCfcAfgUfgAf(invdT)

gUfgUfcAfgdTdT






0163
4505
4523
ccaUfgAfcAfcGfaUfgUf
761
GfUfcAfcUfgGfaCfaUf
1060





cCfaGfuGfaCf(invdT)

cGfuGfuCfadTdT






0164
4506
4524
ccaGfaCfaCfgAfuGfuCf
762
UfGfuCfaCfuGfgAfcAf
1061





cAfgUfgAfcAf(invdT)

uCfgUfgUfcdTdT






0165
4507
4525
ccaAfcAfcGfaUfgUfcCf
763
CfUfgUfcAfcUfgGfaCf
1062





aGfuGfaCfaGf(invdT)

aUfcGfuGfudTdT






0166
4510
4528
ccaCfgAfuGfuCfcAfgUf
764
AfUfuCfuGfuCfaCfuGf
1063





gAfcAfgAfaUf(invdT)

gAfcAfuCfgdTdT






0167
4634
4652
ccaGfuGfaUfgGfaCfgGf
765
CfGfaUfaAfcUfcCfgUf
1064





aGfuUfaUfcGf(invdT)

cCfaUfcAfcdTdT






0168
4635
4653
ccaUfgAfuGfgAfcGfgAf
766
UfCfgAfuAfaCfuCfcGf
1065





gUfuAfuCfgAf(invdT)

uCfcAfuCfadTdT






0169
4636
4654
ccaGfaUfgGfaCfgGfaGf
767
CfUfcGfaUfaAfcUfcCf
1066





uUfaUfcGfaGf(invdT)

gUfcCfaUfcdTdT






0170
4637
4655
ccaAfuGfgAfcGfgAfgUf
768
CfCfuCfgAfuAfaCfuCf
1067





uAfuCfgAfgGf(invdT)

cGfuCfcAfudTdT






0171
4638
4656
ccaUfgGfaCfgGfaGfuUf
769
GfCfcUfcGfaUfaAfcUf
1068





aUfcGfaGfgCf(invdT)

cCfgUfcCfadTdT






0172
4639
4657
ccaGfgAfcGfgAfgUfuAf
770
UfGfcCfuCfgAfuAfaCf
1069





uCfgAfgGfcAf(invdT)

uCfcGfuCfcdTdT






0173
4644
4662
ccaGfaGfuUfaUfcGfaGf
771
GfGfaUfaUfgCfcUfcGf
1070





gCfaUfaUfcCf(invdT)

aUfaAfcUfcdTdT






0174
4645
4663
ccaAfgUfuAfuCfgAfgGf
772
AfGfgAfuAfuGfcCfuCf
1071





cAfuAfuCfcUf(invdT)

gAfuAfaCfudTdT






0175
4646
4664
ccaGfuUfaUfcGfaGfgCf
773
GfAfgGfaUfaUfgCfcUf
1072





aUfaUfcCfuCf(invdT)

CGfaUfaAfcdTdT






0176
4647
4665
ccaUfuAfuCfgAfgGfcAf
774
GfGfaGfgAfuAfuGfcCf
1073





uAfuCfcUfcCf(invdT)

uCfgAfuAfadTdT






0177
4678
4696
ccaGfgAfaGfgAfcCfuGf
775
AfAfgAfuUfgAfcAfgGf
1074





uCfaAfuCfuUf(invdT)

uCfcUfuCfcdTdT






0178
4680
4698
ccaAfaGfgAfcCfuGfuCf
776
CfCfaAfgAfuUfgAfcAf
1075





aAfuCfuUfgGf(invdT)

gGfuCfcUfudTdT






0179
4681
4699
ccaAfgGfaCfcUfgUfcAf
777
AfCfcAfaGfaUfuGfaCf
1076





aUfcUfuGfgUf(invdT)

aGfgUfcCfudTdT






0180
4682
4700
ccaGfgAfcCfuGfuCfaAf
778
GfAfcCfaAfgAfuUfgAf
1077





uCfuUfgGfuCf(invdT)

cAfgGfuCfcdTdT






0181
4753
4771
ccaGfgCfcUfgAfcCfgAf
779
AfGfuAfgUfuCfuCfgGf
1078





gAfaCfuAfcUf(invdT)

uCfaGfgCfcdTdT






0182
4755
4773
ccaCfcUfgAfcCfgAfgAf
780
GfCfaGfuAfgUfuCfuCf
1079





aCfuAfcUfgCf(invdT)

gGfuCfaGfgdTdT






0183
4756
4774
ccaCfuGfaCfcGfaGfaAf
781
UfGfcAfgUfaGfuUfcUf
1080





cUfaCfuGfcAf(invdT)

cGfgUfcAfgdTdT






0184
4757
4775
ccaUfgAfcCfgAfgAfaCf
782
CfUfgCfaGfuAfgUfuCf
1081





uAfcUfgCfaGf(invdT)

uCfgGfuCfadTdT






0185
4775
4793
ccaGfgAfaUfcCfaGfaUf
783
UfUfcCfcAfgAfaUfcUf
1082





uCfuGfgGfaAf(invdT)

gGfaUfuCfcdTdT






0186
4777
4795
ccaAfaUfcCfaGfaUfuCf
784
GfUfuUfcCfcAfgAfaUf
1083





uGfgGfaAfaCf(invdT)

cUfgGfaUfudTdT






0187
4786
4804
ccaUfcUfgGfgAfaAfcAf
785
AfCfcAfgGfgUfuGfuUf
1084





aCfcCfuGfgUf(invdT)

uCfcCfaGfadTdT






0188
4787
4805
ccaCfuGfgGfaAfaCfaAf
786
CfAfcCfaGfgGfuUfgUf
1085





cCfcUfgGfuGf(invdT)

uUfcCfcAfgdTdT






0189
4789
4807
ccaGfgGfaAfaCfaAfcCf
787
AfAfcAfcCfaGfgGfuUf
1086





cUfgGfuGfuUf(invdT)

gUfuUfcCfcdTdT






0190
4791
4809
ccaGfaAfaCfaAfcCfcUf
788
GfUfaAfcAfcCfaGfgGf
1087





gGfuGfuUfaCf(invdT)

uUfgUfuUfcdTdT






0191
4792
4810
ccaAfaAfcAfaCfcCfuGf
789
UfGfuAfaCfaCfcAfgGf
1088





gUfgUfuAfcAf(invdT)

gUfuGfuUfudTdT






0192
4793
4811
ccaAfaCfaAfcCfcUfgGf
790
GfUfgUfaAfcAfcCfaGf
1089





uGfuUfaCfaCf(invdT)

gGfuUfgUfudTdT






0193
4794
4812
ccaAfcAfaCfcCfuGfgUf
791
UfGfuGfuAfaCfaCfcAf
1090





gUfuAfcAfcAf(invdT)

gGfgUfuGfudTdT






0194
4795
4813
ccaCfaAfcCfcUfgGfuGf
792
UfUfgUfgUfaAfcAfcCf
1091





uUfaCfaCfaAf(invdT)

aGfgGfuUfgdTdT






0195
4796
4814
ccaAfaCfcCfuGfgUfgUf
793
GfUfuGfuGfuAfaCfaCf
1092





uAfcAfcAfaCf(invdT)

cAfgGfgUfudTdT






0196
4820
4838
ccaCfgUfgUfgUfgAfgGf
794
UfAfcUfcCfcAfcCfuCf
1093





uGfgGfaGfuAf(invdT)

aCfaCfaCfgdTdT






0197
4834
4852
ccaGfaGfuAfcUfgCfaAf
795
GfUfgUfcAfgAfuUfgCf
1094





uCfuGfaCfaCf(invdT)

aGfuAfcUfcdTdT






0198
4840
4858
ccaUfgCfaAfuCfuGfaCf
796
AfGfcAfuUfgUfgUfcAf
1095





aCfaAfuGfcUf(invdT)

gAfuUfgCfadTdT






0199
4841
4859
ccaGfcAfaUfcUfgAfcAf
797
GfAfgCfaUfuGfuGfuCf
1096





cAfaUfgCfuCf(invdT)

aGfaUfuGfcdTdT






0200
4842
4860
ccaCfaAfuCfuGfaCfaCf
798
UfGfaGfcAfuUfgUfgUf
1097





aAfuGfcUfcAf(invdT)

cAfgAfuUfgdTdT






0201
4886
4904
ccaCfuCfcCfaCfuGfuUf
799
AfCfuGfgAfaCfaAfcAf
1098





gUfuCfcAfgUf(invdT)

gUfgGfgAfgdTdT






0202
4887
4905
ccaUfcCfcAfcUfgUfuGf
800
AfAfcUfgGfaAfcAfaCf
1099





uUfcCfaGfuUf(invdT)

aGfuGfgGfadTdT






0203
4889
4907
ccaCfcAfcUfgUfuGfuUf
801
GfGfaAfcUfgGfaAfcAf
1100





cCfaGfuUfcCf(invdT)

aCfaGfuGfgdTdT






0204
4890
4908
ccaCfaCfuGfuUfgUfuCf
802
UfGfgAfaCfuGfgAfaCf
1101





cAfgUfuCfcAf(invdT)

aAfcAfgUfgdTdT






0205
4894
4912
ccaGfuUfgUfuCfcAfgUf
803
UfGfcUfuGfgAfaCfuGf
1102





uCfcAfaGfcAf(invdT)

gAfaCfaAfcdTdT






0206
4896
4914
ccaUfgUfuCfcAfgUfuCf
804
CfAfuGfcUfuGfgAfaCf
1103





cAfaGfcAfuGf(invdT)

uGfgAfaCfadTdT






0207
4897
4915
ccaGfuUfcCfaGfuUfcCf
805
CfCfaUfgCfuUfgGfaAf
1104





aAfgCfaUfgGf(invdT)

cUfgGfaAfcdTdT






0208
4911
4929
ccaCfaUfgGfaGfgCfuCf
806
UfUfcAfgAfaUfgAfgCf
1105





aUfuCfuGfaAf(invdT)

cUfcCfaUfgdTdT






0209
4912
4930
ccaAfuGfgAfgGfcUfcAf
807
CfUfuCfaGfaAfuGfaGf
1106





uUfcUfgAfaGf(invdT)

cCfuCfcAfudTdT






0210
4914
4932
ccaGfgAfgGfcUfcAfuUf
808
UfGfcUfuCfaGfaAfuGf
1107





cUfgAfaGfcAf(invdT)

aGfcCfuCfcdTdT






0211
4921
4939
ccaCfaUfuCfuGfaAfgCf
809
UfUfgGfuGfcUfgCfuUf
1108





aGfcAfcCfaAf(invdT)

cAfgAfaUfgdTdT






0212
4927
4945
ccaGfaAfgCfaGfcAfcCf
810
GfCfuCfaGfuUfgGfuGf
1109





aAfcUfgAfgCf(invdT)

cUfgCfuUfcdTdT






0213
4930
4948
ccaGfcAfgCfaCfcAfaCf
811
UfUfuGfcUfcAfgUfuGf
1110





uGfaGfcAfaAf(invdT)

gUfgCfuGfcdTdT






0214
4960
4978
ccaCfgGfcAfgUfgCfuAf
812
UfAfcCfaUfgGfuAfgCf
1111





cCfaUfgGfuAf(invdT)

aCfuGfcCfgdTdT






0215
4963
4981
ccaCfaGfuGfcUfaCfcAf
813
CfAfuUfaCfcAfuGfgUf
1112





uGfgUfaAfuGf(invdT)

aGfcAfcUfgdTdT






0216
4965
4983
ccaGfuGfcUfaCfcAfuGf
814
GfCfcAfuUfaCfcAfuGf
1113





gUfaAfuGfgCf(invdT)

gUfaGfcAfcdTdT






0217
4972
4990
ccaCfaUfgGfuAfaUfgGf
815
AfAfcUfcUfgGfcCfaUf
1114





cCfaGfaGfuUf(invdT)

uAfcCfaUfgdTdT






0218
4975
4993
ccaGfgUfaAfuGfgCfcAf
816
GfAfuAfaCfuCfuGfgCf
1115





gAfgUfuAfuCf(invdT)

cAfuUfaCfcdTdT






0219
4976
4994
ccaGfuAfaUfgGfcCfaGf
817
CfGfaUfaAfcUfcUfgGf
1116





aGfuUfaUfcGf(invdT)

cCfaUfuAfcdTdT






0220
4977
4995
ccaUfaAfuGfgCfcAfgAf
818
UfCfgAfuAfaCfuCfuGf
1117





gUfuAfuCfgAf(invdT)

gCfcAfuUfadTdT






0221
4980
4998
ccaUfgGfcCfaGfaGfuUf
819
GfCfcUfcGfaUfaAfcUf
1118





aUfcGfaGfgCf(invdT)

cUfgGfcCfadTdT






0222
4981
4999
ccaGfgCfcAfgAfgUfuAf
820
UfGfcCfuCfgAfuAfaCf
1119





uCfgAfgGfcAf(invdT)

uCfuGfgCfcdTdT






0223
4982
5000
ccaGfcCfaGfaGfuUfaUf
821
GfUfgCfcUfcGfaUfaAf
1120





cGfaGfgCfaCf(invdT)

cUfcUfgGfcdTdT






0224
4983
5001
ccaCfcAfgAfgUfuAfuCf
822
UfGfuGfcCfuCfgAfuAf
1121





gAfgGfcAfcAf(invdT)

aCfuCfuGfgdTdT






0225
4985
5003
ccaAfgAfgUfuAfuCfgAf
823
AfAfuGfuGfcCfuCfgAf
1122





gGfcAfcAfuUf(invdT)

uAfaCfuCfudTdT






0226
4986
5004
ccaGfaGfuUfaUfcGfaGf
824
GfAfaUfgUfgCfcUfcGf
1123





gCfaCfaUfuCf(invdT)

aUfaAfcUfcdTdT






0227
4987
5005
ccaAfgUfuAfuCfgAfgGf
825
AfGfaAfuGfuGfcCfuCf
1124





cAfcAfuUfcUf(invdT)

gAfuAfaCfudTdT






0228
4997
5015
ccaGfcAfcAfuUfcUfcCf
826
AfCfaGfuGfgUfgGfaGf
1125





aCfcAfcUfgUf(invdT)

aAfuGfuGfcdTdT






0229
5001
5019
ccaAfuUfcUfcCfaCfcAf
827
UfGfuGfaCfaGfuGfgUf
1126





cUfgUfcAfcAf(invdT)

gGfaGfaAfudTdT






0230
5016
5034
ccaCfaCfaGfgAfaGfgAf
828
UfUfgAfcAfuGfuCfcUf
1127





CAfuGfuCfaAf(invdT)

uCfcUfgUfgdTdT






0231
5021
5039
ccaGfaAfgGfaCfaUfgUf
829
CfAfaGfaUfuGfaCfaUf
1128





cAfaUfcUfuGf(invdT)

gUfcCfuUfcdTdT






0232
5149
5167
ccaUfuUfaCfcAfuGfgAf
830
UfGfcUfgGfgGfuCfcAf
1129





cCfcCfaGfcAf(invdT)

uGfgUfaAfadTdT






0233
5150
5168
ccaUfuAfcCfaUfgGfaCf
831
AfUfgCfuGfgGfgUfcCf
1130





cCfcAfgCfaUf(invdT)

aUfgGfuAfadTdT






0234
5180
5198
ccaAfcUfgCfaAfcCfuGf
832
CfAfuCfgCfgUfcAfgGf
1131





aCfgCfgAfuGf(invdT)

uUfgCfaGfudTdT






0235
5186
5204
ccaAfcCfuGfaCfgCfgAf
833
UfCfuGfaGfcAfuCfgCf
1132





uGfcUfcAfgAf(invdT)

gUfcAfgGfudTdT






0236
5189
5207
ccaUfgAfcGfcGfaUfgCf
834
GfUfgUfcUfgAfgCfaUf
1133





uCfaGfaCfaCf(invdT)

cGfcGfuCfadTdT






0237
5190
5208
ccaGfaCfgCfgAfuGfcUf
835
UfGfuGfuCfuGfaGfcAf
1134





cAfgAfcAfcAf(invdT)

uCfgCfgUfcdTdT






0238
5191
5209
ccaAfcGfcGfaUfgCfuCf
836
CfUfgUfgUfcUfgAfgCf
1135





aGfaCfaCfaGf(invdT)

aUfcGfcGfudTdT






0239
5192
5210
ccaCfgCfgAfuGfcUfcAf
837
UfCfuGfuGfuCfuGfaGf
1136





gAfcAfcAfgAf(invdT)

cAfuCfgCfgdTdT






0240
5761
5779
ccaGfaAfgUfgAfaCfcUf
838
GfAfgAfuUfcGfaGfgUf
1137





cGfaAfuCfuCf(invdT)

uCfaCfuUfcdTdT






0241
5922
5940
ccaCfaGfgAfcUfgAfaUf
839
GfAfuGfuAfaCfaUfuCf
1138





gUfuAfcAfuCf(invdT)

aGfuCfcUfgdTdT






0242
5956
5974
ccaAfcCfcAfaGfgUfaCf
840
UfCfcCfaAfaGfgUfaCf
1139





cUfuUfgGfgAf(invdT)

cUfuGfgGfudTdT






0243
5957
5975
ccaCfcCfaAfgGfuAfcCf
841
GfUfcCfcAfaAfgGfuAf
1140





uUfuGfgGfaCf(invdT)

cCfuUfgGfgdTdT






0244
5964
5982
ccaUfaCfcUfuUfgGfgAf
842
AfAfgGfcCfaGfuCfcCf
1141





cUfgGfcCfuUf(invdT)

aAfaGfgUfadTdT






0245
5965
5983
ccaAfcCfuUfuGfgGfaCf
843
GfAfaGfgCfcAfgUfcCf
1142





uGfgCfcUfuCf(invdT)

cAfaAfgGfudTdT






0246
6323
6341
ccaGfaCfaGfcAfaUfcAf
844
UfCfuUfcGfuUfuGfaUf
1143





aAfcGfaAfgAf(invdT)

uGfcUfgUfcdTdT






0247
6324
6342
ccaAfcAfgCfaAfuCfaAf
845
GfUfcUfuCfgUfuUfgAf
1144





aCfgAfaGfaCf(invdT)

uUfgCfuGfudTdT






0248
6325
6343
ccaCfaGfcAfaUfcAfaAf
846
UfGfuCfuUfcGfuUfuGf
1145





cGfaAfgAfcAf(invdT)

aUfuGfcUfgdTdT






0249
6326
6344
ccaAfgCfaAfuCfaAfaCf
847
GfUfgUfcUfuCfgUfuUf
1146





gAfaGfaCfaCf(invdT)

gAfuUfgCfudTdT






0250
6327
6345
ccaGfcAfaUfcAfaAfcGf
848
AfGfuGfuCfuUfcGfuUf
1147





aAfgAfcAfcUf(invdT)

uGfaUfuGfcdTdT






0251
6328
6346
ccaCfaAfuCfaAfaCfgAf
849
CfAfgUfgUfcUfuCfgUf
1148





aGfaCfaCfuGf(invdT)

uUfgAfuUfgdTdT






0252
6330
6348
ccaAfuCfaAfaCfgAfaGf
850
AfAfcAfgUfgUfcUfuCf
1149





aCfaCfuGfuUf(invdT)

gUfuUfgAfudTdT






0253
6331
6349
ccaUfcAfaAfcGfaAfgAf
851
GfAfaCfaGfuGfuCfuUf
1150





cAfcUfgUfuCf(invdT)

cGfuUfuGfadTdT






0254
6332
6350
ccaCfaAfaCfgAfaGfaCf
852
GfGfaAfcAfgUfgUfcUf
1151





aCfuGfuUfcCf(invdT)

uCfgUfuUfgdTdT






0255
6333
6351
ccaAfaAfcGfaAfgAfcAf
853
GfGfgAfaCfaGfuGfuCf
1152





cUfgUfuCfcCf(invdT)

uUfcGfuUfudTdT






0256
6334
6352
ccaAfaCfgAfaGfaCfaCf
854
UfGfgGfaAfcAfgUfgUf
1153





uGfuUfcCfcAf(invdT)

cUfuCfgUfudTdT






0257
6335
6353
ccaAfcGfaAfgAfcAfcUf
855
CfUfgGfgAfaCfaGfuGf
1154





gUfuCfcCfaGf(invdT)

uCfuUfcGfudTdT






0258
6336
6354
ccaCfgAfaGfaCfaCfuGf
856
GfCfuGfgGfaAfcAfgUf
1155





uUfcCfcAfgCf(invdT)

gUfcUfuCfgdTdT






0259
6337
6355
ccaGfaAfgAfcAfcUfgUf
857
AfGfcUfgGfgAfaCfaGf
1156





uCfcCfaGfcUf(invdT)

uGfuCfuUfcdTdT






0260
6338
6356
ccaAfaGfaCfaCfuGfuUf
858
UfAfgCfuGfgGfaAfcAf
1157





cCfcAfgCfuAf(invdT)

gUfgUfcUfudTdT






0261
6339
6357
ccaAfgAfcAfcUfgUfuCf
859
GfUfaGfcUfgGfgAfaCf
1158





cCfaGfcUfaCf(invdT)

aGfuGfuCfudTdT






0262
6340
6358
ccaGfaCfaCfuGfuUfcCf
860
GfGfuAfgCfuGfgGfaAf
1159





cAfgCfuAfcCf(invdT)

cAfgUfgUfcdTdT






0263
6341
6359
ccaAfcAfcUfgUfuCfcCf
861
UfGfgUfaGfcUfgGfgAf
1160





aGfcUfaCfcAf(invdT)

aCfaGfuGfudTdT






0264
6350
6368
ccaCfcAfgCfuAfcCfaGf
862
UfGfgCfaUfaGfcUfgGf
1161





cUfaUfgCfcAf(invdT)

uAfgCfuGfgdTdT






0265
6351
6369
ccaCfaGfcUfaCfcAfgCf
863
UfUfgGfcAfuAfgCfuGf
1162





uAfuGfcCfaAf(invdT)

gUfaGfcUfgdTdT






0266
6352
6370
ccaAfgCfuAfcCfaGfcUf
864
UfUfuGfgCfaUfaGfcUf
1163





aUfgCfcAfaAf(invdT)

gGfuAfgCfudTdT






0267
6353
6371
ccaGfcUfaCfcAfgCfuAf
865
GfUfuUfgGfcAfuAfgCf
1164





uGfcCfaAfaCf(invdT)

uGfgUfaGfcdTdT






0268
6354
6372
ccaCfuAfcCfaGfcUfaUf
866
GfGfuUfuGfgCfaUfaGf
1165





gCfcAfaAfcCf(invdT)

cUfgGfuAfgdTdT






0269
6355
6373
ccaUfaCfcAfgCfuAfuGf
867
AfGfgUfuUfgGfcAfuAf
1166





cCfaAfaCfcUf(invdT)

gCfuGfgUfadTdT






0270
6376
6394
ccaGfcAfuUfuUfuGfgUf
868
AfCfaAfaAfaUfaCfcAf
1167





aUfuUfuUfgUf(invdT)

aAfaAfuGfcdTdT






0271
6377
6395
ccaCfaUfuUfuUfgGfuAf
869
CfAfcAfaAfaAfuAfcCf
1168





uUfuUfuGfuGf(invdT)

aAfaAfaUfgdTdT






0272
6378
6396
ccaAfuUfuUfuGfgUfaUf
870
AfCfaCfaAfaAfaUfaCf
1169





uUfuUfgUfgUf(invdT)

cAfaAfaAfudTdT






0273
6379
6397
ccaUfuUfuUfgGfuAfuUf
871
UfAfcAfcAfaAfaAfuAf
1170





uUfuGfuGfuAf(invdT)

cCfaAfaAfadTdT






0274
6380
6398
ccaUfuUfuGfgUfaUfuUf
872
AfUfaCfaCfaAfaAfaUf
1171





uUfgUfgUfaUf(invdT)

aCfcAfaAfadTdT






0275
6381
6399
ccaUfuUfgGfuAfuUfuUf
873
UfAfuAfcAfcAfaAfaAf
1172





uGfuGfuAfuAf(invdT)

uAfcCfaAfadTdT






0276
6382
6400
ccaUfuGfgUfaUfuUfuUf
874
UfUfaUfaCfaCfaAfaAf
1173





gUfgUfaUfaAf(invdT)

aUfaCfcAfadTdT






0277
6383
6401
ccaUfgGfuAfuUfuUfuGf
875
CfUfuAfuAfcAfcAfaAf
1174





uGfuAfuAfaGf(invdT)

aAfuAfcCfadTdT






0278
6384
6402
ccaGfgUfaUfuUfuUfgUf
876
GfCfuUfaUfaCfaCfaAf
1175





gUfaUfaAfgCf(invdT)

aAfaUfaCfcdTdT






0279
6385
6403
ccaGfuAfuUfuUfuGfuGf
877
AfGfcUfuAfuAfcAfcAf
1176





uAfuAfaGfcUf(invdT)

aAfaAfuAfcdTdT






0280
6386
6404
ccaUfaUfuUfuUfgUfgUf
878
AfAfgCfuUfaUfaCfaCf
1177





aUfaAfgCfuUf(invdT)

aAfaAfaUfadTdT






0281
6387
6405
ccaAfuUfuUfuGfuGfuAf
879
AfAfaGfcUfuAfuAfcAf
1178





uAfaGfcUfuUf(invdT)

cAfaAfaAfudTdT






0282
6388
6406
ccaUfuUfuUfgUfgUfaUf
880
AfAfaAfgCfuUfaUfaCf
1179





aAfgCfuUfuUf(invdT)

aCfaAfaAfadTdT






0283
6455
6473
ccaUfgUfuAfaAfaAfuAf
881
GfCfaGfaGfuUfuAfuUf
1180





aAfcUfcUfgCf(invdT)

uUfuAfaCfadTdT






0284
6456
6474
ccaGfuUfaAfaAfaUfaAf
882
UfGfcAfgAfgUfuUfaUf
1181





aCfuCfuGfcAf(invdT)

uUfuUfaAfcdTdT






0285
6457
6475
ccaUfuAfaAfaAfuAfaAf
883
GfUfgCfaGfaGfuUfuAf
1182





cUfcUfgCfaCf(invdT)

uUfuUfuAfadTdT






0286
6458
6476
ccaUfaAfaAfaUfaAfaCf
884
AfGfuGfcAfgAfgUfuUf
1183





uCfuGfcAfcUf(invdT)

aUfuUfuUfadTdT






0287
6459
6477
ccaAfaAfaAfuAfaAfcUf
885
AfAfgUfgCfaGfaGfuUf
1184





cUfgCfaCfuUf(invdT)

uAfuUfuUfudTdT






0288
6460
6478
ccaAfaAfaUfaAfaCfuCf
886
UfAfaGfuGfcAfgAfgUf
1185





uGfcAfcUfuAf(invdT)

uUfaUfuUfudTdT






0289
6461
6479
ccaAfaAfuAfaAfcUfcUf
887
AfUfaAfgUfgCfaGfaGf
1186





gCfaCfuUfaUf(invdT)

uUfuAfuUfudTdT






0290
6462
6480
ccaAfaUfaAfaCfuCfuGf
888
AfAfuAfaGfuGfcAfgAf
1187





cAfcUfuAfuUf(invdT)

gUfuUfaUfudTdT






0291
6463
6481
ccaAfuAfaAfcUfcUfgCf
889
AfAfaUfaAfgUfgCfaGf
1188





aCfuUfaUfuUf(invdT)

aGfuUfuAfudTdT






0292
6464
6482
ccaUfaAfaCfuCfuGfcAf
890
AfAfaAfuAfaGfuGfcAf
1189





cUfuAfuUfuUf(invdT)

gAfgUfuUfadTdT






0293
6465
6483
ccaAfaAfcUfcUfgCfaCf
891
CfAfaAfaUfaAfgUfgCf
1190





uUfaUfuUfuGf(invdT)

aGfaGfuUfudTdT






0294
6466
6484
ccaAfaCfuCfuGfcAfcUf
892
UfCfaAfaAfuAfaGfuGf
1191





uAfuUfuUfgAf(invdT)

cAfgAfgUfudTdT






0295
6467
6485
ccaAfcUfcUfgCfaCfuUf
893
AfUfcAfaAfaUfaAfgUf
1192





aUfuUfuGfaUf(invdT)

gCfaGfaGfudTdT






0296
6468
6486
ccaCfuCfuGfcAfcUfuAf
894
AfAfuCfaAfaAfuAfaGf
1193





uUfuUfgAfuUf(invdT)

uGfcAfgAfgdTdT






0297
6469
6487
ccaUfcUfgCfaCfuUfaUf
895
AfAfaUfcAfaAfaUfaAf
1194





uUfuGfaUfuUf(invdT)

gUfgCfaGfadTdT






0298
6470
6488
ccaCfuGfcAfcUfuAfuUf
896
CfAfaAfuCfaAfaAfuAf
1195





uUfgAfuUfuGf(invdT)

aGfuGfcAfgdTdT






0299
6471
6489
ccaUfgCfaCfuUfaUfuUf
897
UfCfaAfaUfcAfaAfaUf
1196





uGfaUfuUfgAf(invdT)

aAfgUfgCfadTdT









In some embodiments, the dsRNA comprises one or more modified nucleotides described in PCT Publication WO 2019/170731, the disclosure of which is incorporated herein in its entirety. In such modified nucleotides, the ribose ring has been replaced by a six-membered heterocyclic ring. Such a modified nucleotide has the structure of formula (I):




embedded image


wherein:

    • B is a heterocyclic nucleobase;
    • one of L1 and L2 is an internucleoside linking group linking the compound of formula (I) to a polynucleotide and the other of L1 and L2 is H, a protecting group, a phosphorus moiety or an internucleoside linking group linking the compound of formula (I) to a polynucleotide,
    • Y is O, NH, NR1 or N—C(═O)—R1, wherein R1 is:
    • a (C1-C20) alkyl group, optionally substituted by one or more groups selected from an halogen atom, a (C1-C6) alkyl group, a (C3-C8) cycloalkyl group, a (C3-C14) heterocycle, a (C6-C14) aryl group, a (C5-C14) heteroaryl group, —O—Z1, —N(Z1)(Z2), —S—Z1, —CN, —C(=J)-O—Z1, —O—C(=J)-Z1, —C(=J)-N(Z1)(Z2), and —N(Z1)-C(=J)-Z2, wherein


J is O or S,

each of Z1 and Z2 is, independently, H, a (C1-C6) alkyl group, optionally substituted by one or more groups selected from a halogen atom and a (C1-C6) alkyl group,


a (C3-C8) cycloalkyl group, optionally substituted by one or more groups selected from a halogen atom and a (C1-C6) alkyl group,


a group —[C(═O)]m-R2-(O—CH2—CH2)p-R3, wherein


m is an integer meaning 0 or 1,


p is an integer ranging from 0 to 10,


R2 is a (C1-C20) alkylene group optionally substituted by a (C1-C6) alkyl group, —O—Z3, —N(Z3)(Z4), —S—Z3, —CN, —C(═K)—O—Z3, —O—C(═K)—Z3, —C(═K)—N(Z3)(Z4), or —N(Z3)-C(═K)—Z4, wherein


K is O or S,

each of Z3 and Z4 is, independently, H, a (C1-C6) alkyl group, optionally substituted by one or more groups selected from a halogen atom and a (C1-C6) alkyl group, and


R3 is selected from the group consisting of a hydrogen atom, a (C1-C6) alkyl group, a (C1-C6) alkoxy group, a (C3-C8) cycloalkyl group, a (C3-C14) heterocycle, a (C6-C14) aryl group or a (C5-C14) heteroaryl group, or R3 is a cell targeting moiety,

    • X1 and X2 are each, independently, a hydrogen atom, a (C1-C6) alkyl group, and
    • each of Ra, Rb, Rc and Rd is, independently, H or a (C1-C6) alkyl group,


      or is a pharmaceutically acceptable salt thereof.


In some embodiments, Y is NR1, R1 is a non-substituted (C1-C20) alkyl group, and L1, L2, Ra, Rb, Rc, Rd, X1, X2, R2, R3 and B have the same meaning as defined for the general formula (I), or a pharmaceutically acceptable salt thereof.


In some embodiments, Y is NR1, R1 is a non-substituted (C1-C16) alkyl group, which includes an alkyl group selected from a group comprising methyl, isopropyl, butyl, octyl, hexadecyl, and L1, L2, Ra, Rb, Rc, Rd, X1, X2, R2, R3 and B have the same meaning as defined for the general formula (I), or a pharmaceutically acceptable salt thereof.


In some embodiments, Y is NR1, R1 is a (C3-C8) cycloalkyl group, optionally substituted by one or more groups selected from a halogen atom and a (C1-C6) alkyl group, and L1, L2, Ra, Rb, Rc, Rd, X1, X2, R2, R3 and B have the same meaning as defined for the general formula (I), or a pharmaceutically acceptable salt thereof.


In some embodiments, Y is NR1, R1 is a cyclohexyl group, and L1, L2, Ra, Rb, Rc, Rd, X1, X2, R2, R3 and B have the same meaning as defined for the general formula (I), or a pharmaceutically acceptable salt thereof.


In some embodiments, Y is NR1, R1 is a (C1-C20) alkyl group substituted by a (C6-C14) aryl group and L1, L2, Ra, Rb, Rc, Rd, X1, X2, R2, R3 and B have the same meaning as defined for the general formula (I), or a pharmaceutically acceptable salt thereof.


In some embodiments, Y is NR1, R1 is a methyl group substituted by a phenyl group, and L1, L2, Ra, Rb, Rc, Rd, X1, X2, R2, R3 and B have the same meaning as defined for the general formula (I), or a pharmaceutically acceptable salt thereof.


In some embodiments, Y is N—C(═O)—R1, R1 is an optionally substituted (C1-C20) alkyl group, and L1, L2, Ra, Rb, Rc, Rd, X1, X2, R2, R3 and B have the same meaning as defined for the general formula (I), or a pharmaceutically acceptable salt thereof.


In some embodiments, Y is N—C(═O)—R1, R1 is selected from a group comprising methyl and pentadecyl and L1, L2, Ra, Rb, Rc, Rd, X1, X2, R2, R3 and B have the same meaning as defined for the general formula (I), or a pharmaceutically acceptable salt thereof.


In some embodiments, the dsRNA comprises one or more compounds of formula (I) wherein Y is

    • a) NR1, wherein R1 is a non-substituted (C1-C20) alkyl group;
    • b) NR1, wherein R1 is a non-substituted (C1-C16) alkyl group, which includes an alkyl group selected from a group comprising methyl, isopropyl, butyl, octyl, and hexadecyl;
    • c) NR1, wherein R1 is a (C3-C8) cycloalkyl group, optionally substituted by one or more groups selected from a halogen atom and a (C1-C6) alkyl group;
    • d) NR1, wherein R1 is a cyclohexyl group;
    • e) NR1, wherein R1 is a (C1-C20) alkyl group substituted by a (C6-C14) aryl group;
    • f) NR1, wherein R1 is a methyl group substituted by a phenyl group;
    • g) N—C(═O)—R1, wherein R1 is an optionally substituted (C1-C20) alkyl group; or
    • h) N—C(═O)—R1, wherein R1 is methyl or pentadecyl.


In some embodiments, B is selected from a group comprising a pyrimidine, a substituted pyrimidine, a purine and a substituted purine, or a pharmaceutically acceptable salt thereof.


In some embodiments, the internucleoside linking group in the dsRNA is independently selected from the group consisting of phosphodiester, phosphotriester, phosphorothioate, phosphorodithioate, alkyl-phosphonate and phosphoramidate backbone linking groups, or a pharmaceutically acceptable salt thereof. In some embodiments, the dsRNA comprises one or more internucleoside linking groups independently selected from the group consisting of phosphodiester, phosphotriester, phosphorothioate, phosphorodithioate, alkyl-phosphonate and phosphoramidate backbone linking groups, or a pharmaceutically acceptable salt thereof.


In some embodiments, the dsRNA comprises from 2 to 10 compounds of formula (I), or a pharmaceutically acceptable salt thereof. In a particular embodiment, the 2 to 10 compounds of formula (I) are on the sense strand.


In further embodiments, the dsRNA comprises one or more targeted nucleotides or a pharmaceutically acceptable salt thereof.


In some embodiments, R3 is of the formula (II):




embedded image


wherein A1, A2 and A3 are OH,


A4 is OH or NHC(═O)—R5, wherein R5 is a (C1-C6) alkyl group, optionally substituted by a halogen atom. or a pharmaceutically acceptable salt thereof


In some embodiments, R3 is N-acetyl-galactosamine, or a pharmaceutically acceptable salt thereof The precursors that can be used to make modified siRNAs having nucleotides of


formula (I) are exemplified in Table A below. Table A shows examples of phosphoramidite nucleotide analogs for oligonucleotide synthesis. In the (2S,6R) diastereomeric series, the phosphoramidites as nucleotide precursors are abbreviated with a “pre-1”, the nucleotide analogs are abbreviated with an “l”, followed by the nucleobase and a number, which specifies the group Y in formula (I). To distinguish both stereochemistries, the analogues (2R,6R)-diastereoisomers are indicated with an additional “b.” Targeted nucleotide precursors, targeted nucleotide analogs and solid supports are abbreviated as described above, but with an “lg” instead of the “l.”













TABLE A








Name in





Precursor
oligo-



No
Structure
name
sequence
Stereochemistry



















1


embedded image


pre-lT3
lT3
(2S,6R)





2


embedded image


pre-lU3
lU3
(2S,6R)





3


embedded image


pre-lG3
lG3
(2S,6R)





4


embedded image


pre-lA3
lA3
(2S,6R)





5


embedded image


pre-lC3
lC3
(2S,6R)





6


embedded image


pre-lT3b
lT3b
(2R,6R)





7


embedded image


pre-lU3b
lU3b
(2R,6R)





8


embedded image


pre-lG3b
lG3b
(2R,6R)





9


embedded image


pre-lA3b
lA3b
(2R,6R)





10


embedded image


pre-lC3b
lC3b
(2R,6R)





11


embedded image


pre-lT2
lT2
(2S,6R)





12


embedded image


pre-lT6
lT6
(2S,6R)





13


embedded image


pre-lT7
lT7
(2S,6R)





14


embedded image


pre-lT8
lT8
(2S,6R)





15


embedded image


pre-lT4
lT4
(2S,6R)





16


embedded image


pre-lT5
lT5
(2S,6R)





17


embedded image


pre-lT9
lT9
(2S,6R)





18


embedded image


pre-lT10
lT10
(2S,6R)





19


embedded image


pre-lT1
lT1
(2S,6R)





20


embedded image


pre-lU1
lU1
(2S,6R)





21


embedded image


pre-lG1
lG1
(2S,6R)





22


embedded image


pre-lC1
lC1
(2S,6R)





23


embedded image


pre-lT1b
lT1b
(2R,6R)





24


embedded image


pre-lU1b
lU1b
(2R,6R)





25


embedded image


pre-lC1b
lC1b
(2R,6R)





26


embedded image


pre-lgT9
lgT9
(2S,6R)





27


embedded image


pre-lgT8
lgT8
(2S,6R)





28


embedded image


pre-lgT7
lgT7
(2S,6R)





29


embedded image


pre-lgT6
lgT6
(2S,6R)





30


embedded image


pre-lgT5
lgT5
(2S,6R)





31


embedded image


pre-lgT3
lgT3
(2S,6R)





32


embedded image


pre-lgT4
lgT4
(2S,6R)





33


embedded image


pre-lgT12
lgT12
(2S,6R)





34


embedded image


pre-lgT11
lgT11
(2S,6R)





35


embedded image


pre-lgT10
lgT10
(2S,6R)





36


embedded image


pre-lgT1
lgT1
(2S,6R)





37


embedded image


pre-lgT2
lgT2
(2S,6R)





38


embedded image


pre-lU4
lU4
(2S,6R)





39


embedded image


pre-lG4
lG4
(2S,6R)





40


embedded image


pre-lA4
lA4
(2S,6R)





41


embedded image


pre-lC4
lC4
(2S,6R)





42


embedded image


pre-lA4b
lA4b
(2R,6R)





43


embedded image


pre-lA1
lA1
(2S,6R)





44


embedded image


pre-lA1b
lA1b
(2R,6R)





45


embedded image


pre-lT4b
lT4b
(2R,6R)





46


embedded image


pre-lG1b
lG1b
(2R,6R)









The modified nucleotides of formula (I) may be incorporated at the 5′, 3′, or both ends of the sense strand and/or antisense strand of the dsRNA. By way of example, one or more (e.g., 1, 2, 3, 4, or 5 or more) modified nucleotides may be incorporated at the 5′ end of the sense strand of the dsRNA. In some embodiments, one or more (e.g., 1, 2, 3, or more) modified nucleotides are positioned in the 5′ end of the sense strand, where the modified nucleotides do not complement the antisense sequence but may be optionally paired with an equal or smaller number of complementary nucleotides at the corresponding 3′ end of the antisense strand. In a particular embodiment, the sense strand comprises two to five compounds of formula (I) at the 5′ end, and/or comprises one to three compounds of formula (I) at the 3′ end.


In some embodiments,

    • a) the two to five compounds of formula (I) at the 5′ end of the sense strand comprise lgT3, optionally comprising three consecutive lgT3 nucleotides; and/or
    • b) the one to three compounds of formula (I) at the 3′ end of the sense strand comprise lT4; optionally comprising two consecutive lT4.


In some embodiments, the dsRNA may comprise a sense strand having a sense sequence of 17, 18, or 19 nucleotides in length, where three to five nucleotides of formula (I) (e.g., three consecutive lgT3 or lgT7 with or without additional nucleotides of formula (I)) are placed in the 5′ end of the sense sequence, making the sense strand 20, 21, or 22 nucleotides in length. In such embodiments, the sense strand may additionally comprise two consecutive nucleotides of formula (I) (e.g., 1T4 or lT3) at the 3′ of the sense sequence, making the sense strand 22, 23, or 24 nucleotides in length. The dsRNA may comprise an antisense sequence of 19 nucleotides in length, where the antisense sequence may additionally be linked to 2 modified nucleotides or deoxyribonucleotides (e.g., dT) at its 3′ end, making the antisense strand 21 nucleotides in length. In further embodiments, the sense strand of the dsRNA contains only naturally occurring internucleotide bonds (phosphodiester bond), where the antisense strand may optionally contain non-naturally occurring internucleotide bonds. For example, the antisense strand may contain phosphorothioate bonds in the backbone near or at its 5′ and/or 3′ ends.


In some embodiments, the use of modified nucleotides of formula (I) circumvents the need for other RNA modifications such as the use of non-naturally occurring internucleotide bonds, thereby simplifying the chemical synthesis of dsRNAs. Moreover, the modified nucleotides of formula (I) can be readily made to contain cell targeted moieties such as GalNAc derivatives (which include GalNAc itself), enhancing the delivery efficiency of dsRNAs incorporating such nucleotides. Further, it has been shown that dsRNAs incorporating modified nucleotides of formula (I), e.g., at the sense strand, significantly improve the stability and therapeutic potency of the dsRNAs.


Table 3 below lists the sequences of exemplary modified GalNAc-siRNA constructs derived from selected siRNA constructs listed in Table 2. In the table, mX=2′-O-Me nucleotide; fX=2′-F nucleotide; dX=DNA nucleotide; PO=phosphodiester linkage; PS=phosphorothioate bond. In these constructs, the sequences of their sense strands and antisense strands correspond to the sense and antisense sequences of the constructs in Table 1 with the same construct numbers, but for the inclusion of (1) the modified 2′-O-Me nucleotides and 2′-F nucleotides, (2) 3 lgT3 nucleotides at the 5′ end of the sense strand sequence, and (3) phosphorothioate bonds.









TABLE 3







Exemplary LPA GalNAc-siRNA Constructs












siLPA
Parent
Sense strand sequence

Antisense strand sequence



#
CNST#
(5′-3′)
SEQ
(5′-3′)
SEQ





300
  4
lgT3-PO-lgT3-PO-lgT3-PO-
1197
fA-PS-fC-PS-mG-PO-
1214




fC-PO-mA-PO-fG-PO-mA-PO-

fU-PO-mG-PO-fC-PO-





fG-PO-mU-PO-fU-PO-mA-PO-

mC-PO-fU-PO-mC-PO-





fU-PO-mC-PO-fG-PO-mA-PO-

fG-PO-mA-PO-fU-PO-





fG-PO-mG-PO-fC-PO-mA-PO-

mA-PO-fA-PO-mC-PO-





fC-PS-mG-PS-fU

fU-PO-mC-PO-fU-PO-







mG-PS-dT-PS-dT






301
  7
lgT3-PO-lgT3-PO-lgT3-PO-
1198
fA-PS-fG-PS-mU-PO-
1215




fA-PO-mG-PO-fU-PO-mU-PO-

fA-PO-mC-PO-fG-PO-





fA-PO-mU-PO-fC-PO-mG-PO-

mU-PO-fG-PO-mC-PO-





fA-PO-mG-PO-fG-PO-mC-PO-

fC-PO-mU-PO-fC-PO-





fA-PO-mC-PO-fG-PO-mU-PO-

mG-PO-fA-PO-mU-PO-





fA-PS-mC-PS-fU

fA-PO-mA-PO-fC-PO-







mU-PS-dT-PS-dT






302
 19
lgT3-PO-lgT3-PO-lgT3-PO-
1199
fU-PS-fA-PS-mG-PO-
1216




fA-PO-mU-PO-fA-PO-mG-PO-

fU-PO-mU-PO-fU-PO-





fG-PO-mA-PO-fC-PO-mC-PO-

mU-PO-fC-PO-mU-PO-





fA-PO-mC-PO-fA-PO-mG-PO-

fG-PO-mU-PO-fG-PO-





fA-PO-mA-PO-fA-PO-mA-PO-

mG-PO-fU-PO-mC-PO-





fC-PS-mU-PS-fA

fC-PO-mU-PO-fA-PO-







mU-PS-dT-PS-dT






303
 90
lgT3-PO-lgT3-PO-lgT3-PO-
1200
fA-PS-fU-PS-mA-PO-
1217




fC-PO-mG-PO-fG-PO-mU-PO-

fA-PO-mC-PO-fU-PO-





fA-PO-mA-PO-fU-PO-mG-PO-

mC-PO-fU-PO-mG-PO-





fG-PO-mA-PO-fC-PO-mA-PO-

fU-PO-mC-PO-fC-PO-





fG-PO-mA-PO-fG-PO-mU-PO-

mA-PO-fU-PO-mU-PO-





fU-PS-mA-PS-fU

fA-PO-mC-PO-fC-PO-







mG-PS-dT-PS-dT






304
104
lgT3-PO-lgT3-PO-lgT3-PO-
1201
fA-PS-fU-PS-mA-PO-
1218




fC-PO-mG-PO-fG-PO-mA-PO-

fA-PO-mC-PO-fU-PO-





fA-PO-mA-PO-fU-PO-mG-PO-

mC-PO-fU-PO-mG-PO-





fG-PO-mA-PO-fC-PO-mA-PO-

fU-PO-mC-PO-fC-PO-





fG-PO-mA-PO-fG-PO-mU-PO-

mA-PO-fU-PO-mU-PO-





fU-PS-mA-PS-fU

fU-PO-mC-PO-fC-PO-







mG-PS-dT-PS-dT






305
107
lgT3-PO-lgT3-PO-lgT3-PO-
1202
fU-PS-fG-PS-mC-PO-
1219




fG-PO-mG-PO-fA-PO-mC-PO-

fC-PO-mU-PO-fU-PO-





fA-PO-mG-PO-fA-PO-mG-PO-

mG-PO-LA-PO-mU-PO-





fU-PO-mU-PO-fA-PO-mU-PO-

fA-PO-mA-PO-fC-PO-





fC-PO-mA-PO-fA-PO-mG-PO-

mU-PO-fC-PO-mU-PO-





fG-PS-mC-PS-fA

fG-PO-mU-PO-fC-PO-







mC-PS-dT-PS-dT






306
108
lgT3-PO-lgT3-PO-lgT3-PO-
1203
fG-PS-fU-PS-mG-PO-
1220




fG-PO-mA-PO-fC-PO-mA-PO-

fC-PO-mC-PO-fU-PO-





fG-PO-mA-PO-fG-PO-mU-PO-

mU-PO-fG-PO-mA-PO-





fU-PO-mA-PO-fU-PO-mC-PO-

fU-PO-mA-PO-fA-PO-





fA-PO-mA-PO-fG-PO-mG-PO-

mC-PO-fU-PO-mC-PO-





fC-PS-mA-PS-fC

fU-PO-mG-PO-fU-PO-







mC-PS-dT-PS-dT






307
110
lgT3-PO-lgT3-PO-lgT3-PO-
1204
fG-PS-fU-PS-mA-PO-
1221




fG-PO-mA-PO-fG-PO-mU-PO-

fU-PO-mG-PO-fU-PO-





fU-PO-mA-PO-fU-PO-mC-PO-

mG-PO-fC-PO-mC-PO-





fA-PO-mA-PO-fG-PO-mG-PO-

fU-PO-mU-PO-fG-PO-





fC-PO-mA-PO-fC-PO-mA-PO-

mA-PO-fU-PO-mA-PO-





fU-PS-mA-PS-fC

fA-PO-mC-PO-fU-PO-







mC-PS-dT-PS-dT






308
111
lgT3-PO-lgT3-PO-lgT3-PO-
1205
fA-PS-fG-PS-mU-PO-
1222




fA-PO-mG-PO-fU-PO-mU-PO-

fA-PO-mU-PO-fG-PO-





fA-PO-mU-PO-fC-PO-mA-PO-

mU-PO-fG-PO-mC-PO-





fA-PO-mG-PO-fG-PO-mC-PO-

fC-PO-mU-PO-fU-PO-





fA-PO-mC-PO-LA-PO-mU-PO-

mG-PO-fA-PO-mU-PO-





fA-PS-mC-PS-fU

fA-PO-mA-PO-fC-PO-







mU-PS-dT-PS-dT






309
168
lgT3-PO-lgT3-PO-lgT3-PO-
1206
fU-PS-fC-PS-mG-PO-
1223




fU-PO-mG-PO-fA-PO-mU-PO-

fA-PO-mU-PO-fA-PO-





fG-PO-mG-PO-LA-PO-mC-PO-

mA-PO-fC-PO-mU-PO-





fG-PO-mG-PO-LA-PO-mG-PO-

fC-PO-mC-PO-fG-PO-





fU-PO-mU-PO-fA-PO-mU-PO-

mU-PO-fC-PO-mC-PO-





fC-PS-mG-PS-fA

fA-PO-mU-PO-fC-PO-







mA-PS-dT-PS-dT






310
169
lgT3-PO-lgT3-PO-lgT3-PO-
1207
fC-PS-fU-PS-mC-PO-
1224




fG-PO-mA-PO-fU-PO-mG-PO-

fG-PO-mA-PO-fU-PO-





fG-PO-mA-PO-fC-PO-mG-PO-

mA-PO-fA-PO-mC-PO-





fG-PO-mA-PO-fG-PO-mU-PO-

fU-PO-mC-PO-fC-PO-





fU-PO-mA-PO-fU-PO-mC-PO-

mG-PO-fU-PO-mC-PO-





fG-PS-mA-PS-fG

fC-PO-mA-PO-fU-PO-







mC-PS-dT-PS-dT






311
172
lgT3-PO-lgT3-PO-lgT3-PO-
1208
fU-PS-fG-PS-mC-PO-
1225




fG-PO-mG-PO-fA-PO-mC-PO-

fC-PO-mU-PO-fC-PO-





fG-PO-mG-PO-fA-PO-mG-PO-

mG-PO-fA-PO-mU-PO-





fU-PO-mU-PO-fA-PO-mU-PO-

fA-PO-mA-PO-fC-PO-





fC-PO-mG-PO-fA-PO-mG-PO-

mU-PO-fC-PO-mC-PO-





fG-PS-mC-PS-fA

fG-PO-mU-PO-fC-PO-







mC-PS-dT-PS-dT






312
200
lgT3-PO-lgT3-PO-lgT3-PO-
1209
fU-PS-fG-PS-mA-PO-
1226




fC-PO-mA-PO-fA-PO-mU-PO-

fG-PO-mC-PO-fA-PO-





fC-PO-mU-PO-fG-PO-mA-PO-

mU-PO-fU-PO-mG-PO-





fC-PO-mA-PO-fC-PO-mA-PO-

fU-PO-mG-PO-fU-PO-





fA-PO-mU-PO-fG-PO-mC-PO-

mC-PO-fA-PO-mG-PO-





fU-PS-mC-PS-fA

fA-PO-mU-PO-fU-PO-







mG-PS-dT-PS-dT






313
221
lgT3-PO-lgT3-PO-lgT3-PO-
1210
fG-PS-fC-PS-mC-PO-
1227




fU-PO-mG-PO-fG-PO-mC-PO-

fU-PO-mC-PO-fG-PO-





fC-PO-mA-PO-fG-PO-mA-PO-

mA-PO-fU-PO-mA-PO-





fG-PO-mU-PO-fU-PO-mA-PO-

fA-PO-mC-PO-fU-PO-





fU-PO-mC-PO-fG-PO-mA-PO-

mC-PO-fU-PO-mG-PO-





fG-PS-mG-PS-fC

fG-PO-mC-PO-fC-PO-







mA-PS-dT-PS-dT






314
223
lgT3-PO-lgT3-PO-lgT3-PO-
1211
fG-PS-fU-PS-mG-PO-
1228




fG-PO-mC-PO-fC-PO-mA-PO-

fC-PO-mC-PO-fU-PO-





fG-PO-mA-PO-fG-PO-mU-PO-

mC-PO-fG-PO-mA-PO-





fU-PO-mA-PO-fU-PO-mC-PO-

fU-PO-mA-PO-fA-PO-





fG-PO-mA-PO-fG-PO-mG-PO-

mC-PO-fU-PO-mC-PO-





fC-PS-mA-PS-fC

fU-PO-mG-PO-fG-PO-







mC-PS-dT-PS-dT






315
279
lgT3-PO-lgT3-PO-lgT3-PO-
1212
fA-PS-fG-PS-mC-PO-
1229




fG-PO-mU-PO-fA-PO-mU-PO-

fU-PO-mU-PO-LA-PO-





fU-PO-mU-PO-fU-PO-mU-PO-

mU-PO-LA-PO-mC-PO-





fG-PO-mU-PO-fG-PO-mU-PO-

fA-PO-mC-PO-fA-PO-





fA-PO-mU-PO-fA-PO-mA-PO-

mA-PO-LA-PO-mA-PO-





fG-PS-mC-PS-fU

fA-PO-mU-PO-fA-PO-







mC-PS-dT-PS-dT






316
298
lgT3-PO-lgT3-PO-lgT3-PO-
1213
fC-PS-fA-PS-mA-PO-
1230




fC-PO-mU-PO-fG-PO-mC-PO-

fA-PO-mU-PO-fC-PO-





fA-PO-mC-PO-fU-PO-mU-PO-

mA-PO-fA-PO-mA-PO-





fA-PO-mU-PO-fU-PO-mU-PO-

fA-PO-mU-PO-LA-PO-





fU-PO-mG-PO-fA-PO-mU-PO-

mA-PO-fG-PO-mU-PO-





fU-PS-mU-PS-fG

fG-PO-mC-PO-fA-PO-







mG-PS-dT-PS-dT









The sense strand and antisense strand of the dsRNA respectively comprise the nucleotide sequences of:

    • a) SEQ ID NOs: 1231 and 1429;
    • b) SEQ ID NOs: 1307 and 1505;
    • c) SEQ ID NOs: 1308 and 1506;
    • d) SEQ ID NOs: 1325 and 1523;
    • e) SEQ ID NOs: 1328 and 1526; or
    • f) SEQ ID NOs: 1369 and 1567.


Table 4 below lists the sequences of optimized GalNAc-siRNA constructs derived from selected LPA GalNAc-siRNA constructs listed in Table 3. In Table 4, mX=2′-O-Me nucleotide; fX=2′-F nucleotide; dX=DNA nucleotide; lx=locked nucleic acid (LNA) nucleotide; PO=phosphodiester linkage; and PS=phosphorothioate bond. In these constructs, the sequences of their sense strands and antisense strands correspond to the sense and antisense sequences of the corresponding constructs in Table 1, but for the inclusion of (1) the modified 2′-O-Me nucleotides and 2′-F nucleotides, (2) 3 lgT3 nucleotides at the 5′ end of the sense strands, (3) 2 lT4 nucleotides at the 3′ end of the sense strands, (4) one or more LNA nucleotides in the sense and/or antisense strands, and/or (5) phosphorothioate bonds.









TABLE 4







Exemplary Optimized LPA GalNAc-siRNA Constructs












SiLPA
Parent
Sense strand sequence

Antisense strand sequence



#
siLPA#
(5′-3′)
SEQ
(5′-3′)
SEQ





317
307
lgT3-PO-lgT3-PO-lgT3-
1231
mG-PS-fU-PS-mA-PO-
1429




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





mA-PS-mC

mC-PS-mA-PS-mA






318
307
lgT3-PO-lgT3-PO-lgT3-
1232
mG-PS-fU-PS-mA-PO-
1430




PO-mG-PO-mA-PO-mG-PO-

mU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-LA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





mA-PS-mC

mC-PS-mA-PS-mA






319
307
lgT3-PO-lgT3-PO-lgT3-
1233
mG-PS-fU-PS-mA-PO-
1431




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





mA-PS-mC

mC-PS-mA-PS-mA






320
307
lgT3-PO-lgT3-PO-lgT3-
1234
mG-PS-fU-PS-mA-PO-
1432




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





mA-PS-mC

mC-PS-mA-PS-mA






321
307
lgT3-PO-lgT3-PO-lgT3-
1235
fG-PS-fU-PS-mA-PO-
1433




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

fU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-fU-PO-





mA-PS-mC

mC-PS-dT-PS-dT






322
307
lgT3-PO-lgT3-PO-lgT3-
1236
mG-PS-fU-PS-mA-PO-
1434




PO-1G-PO-LA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





mA-PS-mC

mC-PS-mA-PS-mA






323
307
lgT3-PO-lgT3-PO-lgT3-
1237
mG-PS-fU-PS-mA-PO-
1435




PO-1G-PO-LA-PO-mG-PO-

mU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





mA-PS-mC

mC-PS-mA-PS-mA






324
307
lgT3-PO-lgT3-PO-lgT3-
1238
mG-PS-fU-PS-mA-PO-
1436




PO-1G-PO-lA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-fC-PO-





PO-fC-PO-LA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





mA-PS-mC

mC-PS-mA-PS-mA






325
307
lgT3-PO-lgT3-PO-lgT3-
1239
mG-PS-fU-PS-mA-PO-
1437




PO-1G-PO-LA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





mA-PS-mC

mC-PS-mA-PS-mA






326
307
lgT3-PO-lgT3-PO-lgT3-
1240
fG-PS-fU-PS-mA-PO-
1438




PO-1G-PO-LA-PO-mG-PO-

fU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

fU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-fU-PO-





mA-PS-mC

mC-PS-dT-PS-dT






327
307
lgT3-PO-lgT3-PO-lgT3-
1241
mG-PS-fU-PS-mA-PO-
1439




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






328
307
lgT3-PO-lgT3-PO-lgT3-
1242
mG-PS-fU-PS-mA-PO-
1440




PO-mG-PO-mA-PO-mG-PO-

mU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






329
307
lgT3-PO-lgT3-PO-lgT3-
1243
mG-PS-fU-PS-mA-PO-
1441




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






330
307
lgT3-PO-lgT3-PO-lgT3-
1244
mG-PS-fU-PS-mA-PO-
1442




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






331
307
lgT3-PO-lgT3-PO-lgT3-
1245
fG-PS-fU-PS-mA-PO-
1443




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

fU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-fU-PO-





lT4-PO-lT4

mC-PS-dT-PS-dT






332
307
lgT3-PO-lgT3-PO-lgT3-
1246
mG-PS-fU-PS-mA-PO-
1444




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





lT4-PO-lT4

mC-PS-LA-PS-lA






333
307
lgT3-PO-lgT3-PO-lgT3-
1247
mG-PS-fU-PS-mA-PO-
1445




PO-mG-PO-mA-PO-mG-PO-

mU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





lT4-PO-lT4

mC-PS-LA-PS-lA






334
307
lgT3-PO-lgT3-PO-lgT3-
1248
mG-PS-fU-PS-mA-PO-
1446




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





lT4-PO-lT4

mC-PS-LA-PS-lA






335
307
lgT3-PO-lgT3-PO-lgT3-
1249
mG-PS-fU-PS-mA-PO-
1447




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





lT4-PO-lT4

mC-PS-LA-PS-lA






336
307
lgT3-PS-lgT3-PS-lgT3-
1250
mG-PS-fU-PS-mA-PO-
1448




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






337
307
lgT3-PS-lgT3-PS-lgT3-
1251
mG-PS-fU-PS-mA-PO-
1449




PO-mG-PO-mA-PO-mG-PO-

mU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






338
307
lgT3-PS-lgT3-PS-lgT3-
1252
mG-PS-fU-PS-mA-PO-
1450




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






339
307
lgT3-PS-lgT3-PS-lgT3-
1253
mG-PS-fU-PS-mA-PO-
1451




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






340
307
lgT3-PS-lgT3-PS-lgT3-
1254
fG-PS-fU-PS-mA-PO-
1452




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

fU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-fU-PO-





lT4-PS-lT4

mC-PS-dT-PS-dT






341
307
lgT3-PS-lgT3-PS-lgT3-
1255
mG-PS-fU-PS-mA-PO-
1453




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





lT4-PS-lT4

mC-PS-LA-PS-lA






342
307
lgT3-PS-lgT3-PS-lgT3-
1256
mG-PS-fU-PS-mA-PO-
1454




PO-mG-PO-mA-PO-mG-PO-

mU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





lT4-PS-lT4

mC-PS-LA-PS-lA






343
307
lgT3-PS-lgT3-PS-lgT3-
1257
mG-PS-fU-PS-mA-PO-
1455




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





lT4-PS-lT4

mC-PS-LA-PS-lA






344
307
lgT3-PS-lgT3-PS-lgT3-
1258
mG-PS-fU-PS-mA-PO-
1456




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





lT4-PS-lT4

mC-PS-LA-PS-lA






345
307
lgT3-PO-lgT3-PO-lgT3-
1259
mG-PS-fU-PS-mA-PO-
1457




PO-1G-PO-LA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






346
307
lgT3-PO-lgT3-PO-lgT3-
1260
mG-PS-fU-PS-mA-PO-
1458




PO-1G-PO-LA-PO-mG-PO-

mU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






347
307
lgT3-PO-lgT3-PO-lgT3-
1261
mG-PS-fU-PS-mA-PO-
1459




PO-1G-PO-lA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






348
307
lgT3-PO-lgT3-PO-lgT3-
1262
mG-PS-fU-PS-mA-PO-
1460




PO-1G-PO-LA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






349
307
lgT3-PO-lgT3-PO-lgT3-
1263
fG-PS-fU-PS-mA-PO-
1461




PO-1G-PO-LA-PO-mG-PO-

fU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

fU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-fU-PO-





lT4-PO-lT4

mC-PS-dT-PS-dT






350
307
lgT3-PS-lgT3-PS-lgT3-
1264
mG-PS-fU-PS-mA-PO-
1462




PO-1G-PO-lA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






351
307
lgT3-PS-lgT3-PS-lgT3-
1265
mG-PS-fU-PS-mA-PO-
1463




PO-1G-PO-LA-PO-mG-PO-

mU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






352
307
lgT3-PS-lgT3-PS-lgT3-
1266
mG-PS-fU-PS-mA-PO-
1464




PO-1G-PO-LA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






353
307
lgT3-PS-lgT3-PS-lgT3-
1267
mG-PS-fU-PS-mA-PO-
1465




PO-1G-PO-lA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-mU-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






354
307
lgT3-PS-lgT3-PS-lgT3-
1268
fG-PS-fU-PS-mA-PO-
1466




PO-1G-PO-LA-PO-mG-PO-

fU-PO-mG-PO-fU-PO-





MU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

fU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PS-

fA-PO-mC-PO-fU-PO-





lT4-PS-lT4

mC-PS-dT-PS-dT






355
307
lgT3-PO-lgT3-PO-lgT3-
1269
mG-PS-fU-PS-mA-PO-
1467




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






356
307
lgT3-PO-lgT3-PO-lgT3-
1270
mG-PS-fU-PS-mA-PO-
1468




PO-mG-PO-mA-PO-mG-PO-

mU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






357
307
lgT3-PO-lgT3-PO-lgT3-
1271
mG-PS-fU-PS-mA-PO-
1469




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






358
307
lgT3-PO-lgT3-PO-lgT3-
1272
mG-PS-fU-PS-mA-PO-
1470




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






359
307
lgT3-PO-lgT3-PO-lgT3-
1273
fG-PS-fU-PS-mA-PO-
1471




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

fU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-fU-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-dT-PS-dT






360
307
lgT3-PO-lgT3-PO-lgT3-
1274
mG-PS-fU-PS-mA-PO-
1472




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-LA-PS-lA






36
307
lgT3-PO-lgT3-PO-lgT3-
1275
mG-PS-fU-PS-mA-PO-
1473




PO-mG-PO-mA-PO-mG-PO-

mU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-LA-PS-lA






362
307
lgT3-PO-lgT3-PO-lgT3-
1276
mG-PS-fU-PS-mA-PO-
1474




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-LA-PS-lA






363
|307
lgT3-PO-lgT3-PO-lgT3-
1277
mG-PS-fU-PS-mA-PO-
1475




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-fC-PO-





PO-fC-PO-A-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-LA-PS-lA






364
307
lgT3-PS-lgT3-PS-lgT3-
1278
mG-PS-fU-PS-mA-PO-
1476




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






365
307
lgT3-PS-lgT3-PS-lgT3-
1279
mG-PS-fU-PS-mA-PO-
1477




PO-mG-PO-mA-PO-mG-PO-

mU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






366
307
lgT3-PS-lgT3-PS-lgT3-
1280
mG-PS-fU-PS-mA-PO-
1478




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






367
307
lgT3-PS-lgT3-PS-lgT3-
1281
mG-PS-fU-PS-mA-PO-
1479




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






368
307
lgT3-PS-lgT3-PS-lgT3-
1282
fG-PS-fU-PS-mA-PO-
1480




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

fU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-fU-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-dT-PS-dT






369
307
lgT3-PS-lgT3-PS-lgT3-
1283
mG-PS-fU-PS-mA-PO-
1481




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-LA-PS-lA






370
307
lgT3-PS-lgT3-PS-lgT3-
1284
mG-PS-fU-PS-mA-PO-
1482




PO-mG-PO-mA-PO-mG-PO-

mU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-LA-PS-lA






371
307
lgT3-PS-lgT3-PS-lgT3-
1285
mG-PS-fU-PS-mA-PO-
1483




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-LA-PS-lA






372
307
lgT3-PS-lgT3-PS-lgT3-
1286
mG-PS-fU-PS-mA-PO-
1484




PO-mG-PO-mA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-LA-PS-lA






373
307
lgT3-PO-lgT3-PO-lgT3-
1287
mG-PS-fU-PS-mA-PO-
1485




PO-1G-PO-lA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






374
307
lgT3-PO-lgT3-PO-lgT3-
1288
mG-PS-fU-PS-mA-PO-
1486




PO-1G-PO-LA-PO-mG-PO-

mU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






375
307
lgT3-PO-lgT3-PO-lgT3-
1289
mG-PS-fU-PS-mA-PO-
1487




PO-1G-PO-lA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






376
307
lgT3-PO-lgT3-PO-lgT3-
1290
mG-PS-fU-PS-mA-PO-
1488




PO-1G-PO-LA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






377
307
lgT3-PO-lgT3-PO-lgT3-
1291
fG-PS-fU-PS-mA-PO-
1489




PO-1G-PO-LA-PO-mG-PO-

fU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

fU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-fU-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-dT-PS-dT






378
307
lgT3-PS-lgT3-PS-lgT3-
1292
mG-PS-fU-PS-mA-PO-
1490




PO-1G-PO-LA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






379
307
lgT3-PS-lgT3-PS-lgT3-
1293
mG-PS-fU-PS-mA-PO-
1491




PO-1G-PO-lA-PO-mG-PO-

mU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






380
307
lgT3-PS-lgT3-PS-lgT3-
1294
mG-PS-fU-PS-mA-PO-
1492




PO-1G-PO-LA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-fC-PO-





PO-fC-PO-LA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






381
|307
lgT3-PS-lgT3-PS-lgT3-
1295
mG-PS-fU-PS-mA-PO-
1493




PO-1G-PO-LA-PO-mG-PO-

fU-PO-mG-PO-mU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-mC-PO-fC-PO-





PO-fC-PO-fA-PO-mA-PO-

mU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-mU-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






382
307
lgT3-PS-lgT3-PS-lgT3-
1296
fG-PS-fU-PS-mA-PO-
1494




PO-1G-PO-lA-PO-mG-PO-

fU-PO-mG-PO-fU-PO-





mU-PO-fU-PO-mA-PO-fU-

mG-PO-fC-PO-mC-PO-





PO-fC-PO-fA-PO-mA-PO-

fU-PO-mU-PO-mG-PO-





mG-PO-mG-PO-mC-PO-mA-

mA-PO-fU-PO-mA-PO-





PO-mC-PO-mA-PO-mU-PO-

fA-PO-mC-PO-fU-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-dT-PS-dT






383
311
lgT3-PO-lgT3-PO-lgT3-
1297
mU-PS-fG-PS-mC-PO-
1495




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-mC-PO-





mC-PS-mA

mC-PS-mA-PS-mA






384
311
lgT3-PO-lgT3-PO-lgT3-
1298
mU-PS-fG-PS-mC-PO-
1496




PO-mG-PO-mG-PO-mA-PO-

mC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-mC-PO-





mC-PS-mA

mC-PS-mA-PS-mA






385
311
lgT3-PO-lgT3-PO-lgT3-
1299
Hy-mU-PS-fG-PS-mC-
1497




PO-mG-PO-mG-PO-mA-PO-

PO-fC-PO-mU-PO-mC-





mC-PO-fG-PO-mG-PO-fA-

PO-mG-PO-fA-PO-fU-





PO-fG-PO-fU-PO-mU-PO-

PO-mA-PO-mA-PO-mC-





mA-PO-mU-PO-mC-PO-mG-

PO-mU-PO-fC-PO-mC-





PO-mA-PO-mG-PO-mG-PS-

PO-fG-PO-mU-PO-mC-





mC-PS-mA

PO-mC-PS-mA-PS-mA






386
311
lgT3-PO-lgT3-PO-lgT3-
1300
mU-PS-fG-PS-mC-PO-
1498




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-mC-PO-





mC-PS-mA

mC-PS-mA-PS-mA






387
311
lgT3-PO-lgT3-PO-lgT3-
1301
fU-PS-fG-PS-mC-PO-
1499




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

fA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-fC-PO-





mC-PS-mA

mC-PS-dT-PS-dT






388
311
lgT3-PO-lgT3-PO-lgT3-
1302
mU-PS-fG-PS-mC-PO-
1500




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-mC-PO-





mC-PS-mA

mC-PS-mA-PS-mA






389
311
lgT3-PO-lgT3-PO-lgT3-
1303
mU-PS-fG-PS-mC-PO-
1501




PO-1G-PO-1G-PO-mA-PO-

mC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-mC-PO-





mC-PS-mA

mC-PS-mA-PS-mA






390
311
lgT3-PO-lgT3-PO-lgT3-
1304
mU-PS-fG-PS-mC-PO-
1502




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-mC-PO-





mC-PS-mA

mC-PS-mA-PS-mA






391
311
lgT3-PO-lgT3-PO-lgT3-
1305
mU-PS-fG-PS-mC-PO-
1503




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-mC-PO-





mC-PS-mA

mC-PS-mA-PS-mA






392
311
lgT3-PO-lgT3-PO-lgT3-
1306
fU-PS-fG-PS-mC-PO-
1504




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

fA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-fC-PO-





mC-PS-mA

mC-PS-dT-PS-dT






393
311
lgT3-PO-lgT3-PO-lgT3-
1307
mU-PS-fG-PS-mC-PO-
1505




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






394
311
lgT3-PO-lgT3-PO-lgT3-
1308
mU-PS-fG-PS-mC-PO-
1506




PO-mG-PO-mG-PO-mA-PO-

mC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






395
311
lgT3-PO-lgT3-PO-lgT3-
1309
mU-PS-fG-PS-mC-PO-
1507




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






396
311
lgT3-PO-lgT3-PO-lgT3-
1310
mU-PS-fG-PS-mC-PO-
1508




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






397
311
lgT3-PO-lgT3-PO-lgT3-
1311
fU-PS-fG-PS-mC-PO-
1509




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

fA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-fC-PO-





lT4-PO-lT4

mC-PS-dT-PS-dT






398
311
lgT3-PO-lgT3-PO-lgT3-
1312
mU-PS-fG-PS-mC-PO-
1510




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





lT4-PO-lT4

mC-PS-LA-PS-lA






399
311
lgT3-PO-lgT3-PO-lgT3-
1313
mU-PS-fG-PS-mC-PO-
1511




PO-mG-PO-mG-PO-mA-PO-

mC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





lT4-PO-lT4

mC-PS-LA-PS-lA






400
311
lgT3-PO-lgT3-PO-lgT3-
1314
mU-PS-fG-PS-mC-PO-
1512




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





lT4-PO-lT4

mC-PS-LA-PS-lA






401
311
lgT3-PO-lgT3-PO-lgT3-
1315
mU-PS-fG-PS-mC-PO-
1513




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





lT4-PO-lT4

mC-PS-LA-PS-lA






402
311
lgT3-PS-lgT3-PS-lgT3-
1316
mU-PS-fG-PS-mC-PO-
1514




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-fG-





PO-mA-PO-mG-PO-mG-PS-

PO-mU-PO-mC-PO-mC-





lT4-PS-lT4

PS-mA-PS-mA






403
311
lgT3-PS-lgT3-PS-lgT3-
1317
mU-PS-fG-PS-mC-PO-
1515




PO-mG-PO-mG-PO-mA-PO-

mC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-mC-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






404
311
lgT3-PS-lgT3-PS-lgT3-
1318
mU-PS-fG-PS-mC-PO-
1516




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-mC-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






405
311
lgT3-PS-lgT3-PS-lgT3-
1319
mU-PS-fG-PS-mC-PO-
1517




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-mC-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






406
311
lgT3-PS-lgT3-PS-lgT3-
1320
fU-PS-fG-PS-mC-PO-
1518




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

fA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-fC-PO-





lT4-PS-lT4

mC-PS-dT-PS-dT






407
311
lgT3-PS-lgT3-PS-lgT3-
1321
mU-PS-fG-PS-mC-PO-
1519




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-mC-PO-





lT4-PS-lT4

mC-PS-lA-PS-lA






408
311
lgT3-PS-lgT3-PS-lgT3-
1322
mU-PS-fG-PS-mC-PO-
1520




PO-mG-PO-mG-PO-mA-PO-

mC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-mC-PO-





lT4-PS-lT4

mC-PS-LA-PS-lA






409
311
lgT3-PS-lgT3-PS-lgT3-
1323
mU-PS-fG-PS-mC-PO-
1521




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-mC-PO-





lT4-PS-lT4

mC-PS-lA-PS-lA






410
311
lgT3-PS-lgT3-PS-lgT3-
1324
mU-PS-fG-PS-mC-PO-
1522




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

EG-PO-mU-PO-mC-PO-





lT4-PS-lT4

mC-PS-lA-PS-lA






411
311
lgT3-PO-lgT3-PO-lgT3-
1325
mU-PS-fG-PS-mC-PO-
1523




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






412
311
lgT3-PO-lgT3-PO-lgT3-
1326
mU-PS-fG-PS-mC-PO-
1524




PO-1G-PO-1G-PO-mA-PO-

mC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






413
311
lgT3-PO-lgT3-PO-lgT3-
1327
mU-PS-fG-PS-mC-PO-
1525




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






414
311
lgT3-PO-lgT3-PO-lgT3-
1328
mU-PS-fG-PS-mC-PO-
1526




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






415
311
lgT3-PO-lgT3-PO-lgT3-
1329
fU-PS-fG-PS-mC-PO-
1527




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-LA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

fA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-fC-PO-





lT4-PO-lT4

mC-PS-dT-PS-dT






416
311
lgT3-PS-lgT3-PS-lgT3-
1330
mU-PS-fG-PS-mC-PO-
1528




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-mC-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






417
311
lgT3-PS-lgT3-PS-lgT3-
1331
mU-PS-fG-PS-mC-PO-
1529




PO-1G-PO-1G-PO-mA-PO-

mC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-mC-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






418
311
lgT3-PS-lgT3-PS-lgT3-
1332
mU-PS-fG-PS-mC-PO-
1530




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-mC-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






419
311
lgT3-PS-lgT3-PS-lgT3-
1333
mU-PS-fG-PS-mC-PO-
1531




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-mC-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






420
311
lgT3-PS-lgT3-PS-lgT3-
1334
fU-PS-fG-PS-mC-PO-
1532




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

fA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PS-

fG-PO-mU-PO-fC-PO-





lT4-PS-lT4

mC-PS-dT-PS-dT






421
311
lgT3-PO-lgT3-PO-lgT3-
1335
mU-PS-fG-PS-mC-PO-
1533




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






422
311
lgT3-PO-lgT3-PO-lgT3-
1336
mU-PS-fG-PS-mC-PO-
1534




PO-mG-PO-mG-PO-mA-PO-

mC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






423
311
lgT3-PO-lgT3-PO-lgT3-
1337
mU-PS-fG-PS-mC-PO-
1535




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-LA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






424
311
lgT3-PO-lgT3-PO-lgT3-
1338
mU-PS-fG-PS-mC-PO-
1536




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






425
311
lgT3-PO-lgT3-PO-lgT3-
1339
fU-PS-fG-PS-mC-PO-
1537




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

fA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-fC-PO-





mC-PO-mA-PO-lT4-PO-lT4

mC-PS-dT-PS-dT






426
311
lgT3-PO-lgT3-PO-lgT3-
1340
mU-PS-fG-PS-mC-PO-
1538




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PO-lT4-PO-lT4

mC-PS-lA-PS-lA






427
311
lgT3-PO-lgT3-PO-lgT3-
1341
mU-PS-fG-PS-mC-PO-
1539




PO-mG-PO-mG-PO-mA-PO-

mC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PO-lT4-PO-lT4

mC-PS-LA-PS-LA






428
311
lgT3-PO-lgT3-PO-lgT3-
1342
mU-PS-fG-PS-mC-PO-
1540




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PO-lT4-PO-lT4

mC-PS-LA-PS-lA






429
311
lgT3-PO-lgT3-PO-lgT3-
1343
mU-PS-fG-PS-mC-PO-
1541




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PO-lT4-PO-lT4

mC-PS-LA-PS-lA






430
311
lgT3-PS-lgT3-PS-lgT3-
1344
mU-PS-fG-PS-mC-PO-
1542




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






431
311
lgT3-PS-lgT3-PS-lgT3-
1345
mU-PS-fG-PS-mC-PO-
1543




PO-mG-PO-mG-PO-mA-PO-

mC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






432
311
lgT3-PS-lgT3-PS-lgT3-
1346
mU-PS-fG-PS-mC-PO-
1544




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






433
311
lgT3-PS-lgT3-PS-lgT3-
1347
mU-PS-fG-PS-mC-PO-
1545




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






434
311
lgT3-PS-lgT3-PS-lgT3-
1348
fU-PS-fG-PS-mC-PO-
1546




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

fA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-fC-PO-





mC-PO-mA-PS-lT4-PS-lT4

mC-PS-dT-PS-dT






435
311
lgT3-PS-lgT3-PS-lgT3-
1349
mU-PS-fG-PS-mC-PO-
1547




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PS-lT4-PS-lT4

mC-PS-LA-PS-lA






436
311
lgT3-PS-lgT3-PS-lgT3-
|1350
mU-PS-fG-PS-mC-PO-
1548




PO-mG-PO-mG-PO-mA-PO-

mC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PS-lT4-PS-lT4

mC-PS-LA-PS-lA






437
311
lgT3-PS-lgT3-PS-lgT3-
1351
mU-PS-fG-PS-mC-PO-
1549




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PS-lT4-PS-lT4

mC-PS-LA-PS-lA






438
311
lgT3-PS-lgT3-PS-lgT3-
1352
mU-PS-fG-PS-mC-PO-
1550




PO-mG-PO-mG-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PS-lT4-PS-lT4

mC-PS-LA-PS-LA






439
311
lgT3-PO-lgT3-PO-lgT3-
1353
mU-PS-fG-PS-mC-PO-
1551




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






440
311
lgT3-PO-lgT3-PO-lgT3-
1354
mU-PS-fG-PS-mC-PO-
1552




PO-1G-PO-1G-PO-mA-PO-

mC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






441
311
lgT3-PO-lgT3-PO-lgT3-
1355
mU-PS-fG-PS-mC-PO-
1553




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






442
311
lgT3-PO-lgT3-PO-lgT3-
1356
mU-PS-fG-PS-mC-PO-
1554




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






443
311
lgT3-PO-lgT3-PO-lgT3-
1357
fU-PS-fG-PS-mC-PO-
1555




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-LA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

fA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-fC-PO-





mC-PO-mA-PO-lT4-PO-lT4

mC-PS-dT-PS-dT






444
311
lgT3-PS-lgT3-PS-lgT3-
1358
mU-PS-fG-PS-mC-PO-
1556




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






445
311
lgT3-PS-lgT3-PS-lgT3-
1359
mU-PS-fG-PS-mC-PO-
1557




PO-1G-PO-1G-PO-mA-PO-

mC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






446
311
lgT3-PS-lgT3-PS-lgT3-
1360
mU-PS-fG-PS-mC-PO-
1558




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






447
311
lgT3-PS-lgT3-PS-lgT3-
1361
mU-PS-fG-PS-mC-PO-
1559




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-mC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-mA-PO-fU-PO-





PO-fG-PO-fU-PO-mU-PO-

mA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-mC-PO-





mC-PO-mA-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






448
311
lgT3-PS-lgT3-PS-lgT3-
1362
fU-PS-fG-PS-mC-PO-
1560




PO-1G-PO-1G-PO-mA-PO-

fC-PO-mU-PO-fC-PO-





mC-PO-fG-PO-mG-PO-fA-

mG-PO-fA-PO-mU-PO-





PO-fG-PO-fU-PO-mU-PO-

fA-PO-mA-PO-mC-PO-





mA-PO-mU-PO-mC-PO-mG-

mU-PO-fC-PO-mC-PO-





PO-mA-PO-mG-PO-mG-PO-

fG-PO-mU-PO-fC-PO-





mC-PO-mA-PS-lT4-PS-lT4

mC-PS-dT-PS-dT






449
314
lgT3-PO-lgT3-PO-lgT3-
1363
mG-PS-fU-PS-mG-PO-
1561




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





mA-PS-mC

mC-PS-mA-PS-mA






450
314
lgT3-PO-lgT3-PO-lgT3-
1364
mG-PS-fU-PS-mG-PO-
1562




PO-mG-PO-mC-PO-mC-PO-

mC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





mA-PS-mC

mC-PS-mA-PS-mA






451
314
lgT3-PO-lgT3-PO-lgT3-
1365
mG-PS-fU-PS-mG-PO-
1563




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





mA-PS-mC

mC-PS-mA-PS-mA






452
314
lgT3-PO-lgT3-PO-lgT3-
1366
mG-PS-fU-PS-mG-PO-
1564




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





mA-PS-mC

mC-PS-mA-PS-mA






453
314
lgT3-PO-lgT3-PO-lgT3-
1367
fG-PS-fU-PS-mG-PO-
1565




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

fU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-fG-PO-





mA-PS-mC

mC-PS-dT-PS-dT






454
314
lgT3-PO-lgT3-PO-lgT3-
1368
mG-PS-fU-PS-mG-PO-
1566




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





mA-PS-mC

mC-PS-mA-PS-mA






455
314
lgT3-PO-lgT3-PO-lgT3-
1369
mG-PS-fU-PS-mG-PO-
1567




PO-1G-PO-1C-PO-mC-PO-

mC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





mA-PS-mC

mC-PS-mA-PS-mA






456
314
lgT3-PO-lgT3-PO-lgT3-
1370
mG-PS-fU-PS-mG-PO-
1568




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-LA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





mA-PS-mC

mC-PS-mA-PS-mA






457
314
lgT3-PO-lgT3-PO-lgT3-
1371
mG-PS-fU-PS-mG-PO-
1569




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





mA-PS-mC

mC-PS-mA-PS-mA






458
314
lgT3-PO-lgT3-PO-lgT3-
1372
fG-PS-fU-PS-mG-PO-
1570




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

fU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-fG-PO-





mA-PS-mC

mC-PS-dT-PS-dT






459
314
lgT3-PO-lgT3-PO-lgT3-
1373
mG-PS-fU-PS-mG-PO-
1571




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






460
314
lgT3-PO-lgT3-PO-lgT3-
1374
mG-PS-fU-PS-mG-PO-
1572




PO-mG-PO-mC-PO-mC-PO-

mC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






461
314
lgT3-PO-lgT3-PO-lgT3-
1375
mG-PS-fU-PS-mG-PO-
1573




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






462
314
lgT3-PO-lgT3-PO-lgT3-
1376
mG-PS-fU-PS-mG-PO-
1574




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






463
314
lgT3-PO-lgT3-PO-lgT3-
1377
fG-PS-fU-PS-mG-PO-
1575




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

fU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-fG-PO-





lT4-PO-lT4

mC-PS-dT-PS-dT






464
314
lgT3-PO-lgT3-PO-lgT3-
1378
mG-PS-fU-PS-mG-PO-
1576




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





lT4-PO-lT4

mC-PS-LA-PS-lA






465
314
lgT3-PO-lgT3-PO-lgT3-
1379
mG-PS-fU-PS-mG-PO-
1577




PO-mG-PO-mC-PO-mC-PO-

mC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





lT4-PO-lT4

mC-PS-LA-PS-lA






466
314
lgT3-PO-lgT3-PO-lgT3-
1380
mG-PS-fU-PS-mG-PO-
1578




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





lT4-PO-lT4

mC-PS-LA-PS-lA






467
314
lgT3-PO-lgT3-PO-lgT3-
1381
mG-PS-fU-PS-mG-PO-
1579




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-LA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





lT4-PO-lT4

mC-PS-LA-PS-lA






468
314
lgT3-PS-lgT3-PS-lgT3-
1382
mG-PS-fU-PS-mG-PO-
1580




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






469
314
lgT3-PS-lgT3-PS-lgT3-
1383
mG-PS-fU-PS-mG-PO-
1581




PO-mG-PO-mC-PO-mC-PO-

mC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






470
314
lgT3-PS-lgT3-PS-lgT3-
1384
mG-PS-fU-PS-mG-PO-
1582




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-A-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






471
314
lgT3-PS-lgT3-PS-lgT3-
1385
mG-PS-fU-PS-mG-PO-
1583




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






472
314
lgT3-PS-lgT3-PS-lgT3-
1386
£G-PS-fU-PS-mG-PO-
1584




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

fU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-fG-PO-





lT4-PS-lT4

mC-PS-dT-PS-dT






473
314
lgT3-PS-lgT3-PS-lgT3-
1387
mG-PS-fU-PS-mG-PO-
1585




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





lT4-PS-lT4

mC-PS-LA-PS-lA






474
314
lgT3-PS-lgT3-PS-lgT3-
1388
mG-PS-fU-PS-mG-PO-
1586




PO-mG-PO-mC-PO-mC-PO-

mC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





lT4-PS-lT4

mC-PS-LA-PS-LA






475
314
lgT3-PS-lgT3-PS-lgT3-
1389
mG-PS-fU-PS-mG-PO-
1587




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





lT4-PS-lT4

mC-PS-LA-PS-lA






476
314
lgT3-PS-lgT3-PS-lgT3-
1390
mG-PS-fU-PS-mG-PO-
1588




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-LA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





lT4-PS-lT4

mC-PS-LA-PS-lA






477
314
lgT3-PO-lgT3-PO-lgT3-
1391
mG-PS-fU-PS-mG-PO-
1589




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






478
314
lgT3-PO-lgT3-PO-lgT3-
1392
mG-PS-fU-PS-mG-PO-
1590




PO-1G-PO-1C-PO-mC-PO-

mC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






479
314
lgT3-PO-lgT3-PO-lgT3-
1393
mG-PS-fU-PS-mG-PO-
1591




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






480
314
lgT3-PO-lgT3-PO-lgT3-
1394
mG-PS-fU-PS-mG-PO-
1592




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





lT4-PO-lT4

mC-PS-mA-PS-mA






48
314
lgT3-PO-lgT3-PO-lgT3-
1395
fG-PS-fU-PS-mG-PO-
1593




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

fU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-fG-PO-





lT4-PO-lT4

mC-PS-dT-PS-dT






482
314
lgT3-PS-lgT3-PS-lgT3-
1396
mG-PS-fU-PS-mG-PO-
1594




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






483
314
lgT3-PS-lgT3-PS-lgT3-
1397
mG-PS-fU-PS-mG-PO-
1595




PO-1G-PO-1C-PO-mC-PO-

mC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






484
314
lgT3-PS-lgT3-PS-lgT3-
1398
mG-PS-fU-PS-mG-PO-
1596




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






485
314
lgT3-PS-lgT3-PS-lgT3-
1399
mG-PS-fU-PS-mG-PO-
|1597




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-mG-PO-





lT4-PS-lT4

mC-PS-mA-PS-mA






486
314
lgT3-PS-lgT3-PS-lgT3-
1400
fG-PS-fU-PS-mG-PO-
1598




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

fU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PS-

fU-PO-mG-PO-fG-PO-





lT4-PS-lT4

mC-PS-dT-PS-dT






487
314
lgT3-PO-lgT3-PO-lgT3-
1401
mG-PS-fU-PS-mG-PO-
1599




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






488
314
lgT3-PO-lgT3-PO-lgT3-
1402
mG-PS-fU-PS-mG-PO-
1600




PO-mG-PO-mC-PO-mC-PO-

mC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-mA-PS-mA-Hy






489
314
lgT3-PO-lgT3-PO-lgT3-
1403
mG-PS-fU-PS-mG-PO-
1601




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






490
314
lgT3-PO-lgT3-PO-lgT3-
1404
mG-PS-fU-PS-mG-PO-
|1602




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






491
314
lgT3-PO-lgT3-PO-lgT3-
1405
fG-PS-fU-PS-mG-PO-
1603




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

fU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-fG-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-dT-PS-dT






492
314
lgT3-PO-lgT3-PO-lgT3-
1406
mG-PS-fU-PS-mG-PO-
1604




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-LA-PS-lA






493
314
lgT3-PO-lgT3-PO-lgT3-
1407
mG-PS-fU-PS-mG-PO-
1605




PO-mG-PO-mC-PO-mC-PO-

mC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-LA-PS-lA






494
314
lgT3-PO-lgT3-PO-lgT3-
1408
mG-PS-fU-PS-mG-PO-
1606




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-lA-PS-lA






495
314
lgT3-PO-lgT3-PO-lgT3-
1409
mG-PS-fU-PS-mG-PO-
1607




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-LA-PS-lA






496
314
lgT3-PS-lgT3-PS-lgT3-
1410
mG-PS-fU-PS-mG-PO-
1608




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






497
314
lgT3-PS-lgT3-PS-lgT3-
1411
mG-PS-fU-PS-mG-PO-
1609




PO-mG-PO-mC-PO-mC-PO-

mC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






498
314
lgT3-PS-lgT3-PS-lgT3-
1412
mG-PS-fU-PS-mG-PO-
1610




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






499
314
lgT3-PS-lgT3-PS-lgT3-
1413
mG-PS-fU-PS-mG-PO-
|1611




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






500
314
lgT3-PS-lgT3-PS-lgT3-
1414
fG-PS-fU-PS-mG-PO-
1612




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

fU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-fG-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-dT-PS-dT






501
314
lgT3-PS-lgT3-PS-lgT3-
1415
mG-PS-fU-PS-mG-PO-
1613




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-lA-PS-lA






502
314
lgT3-PS-lgT3-PS-lgT3-
1416
mG-PS-fU-PS-mG-PO-
1614




PO-mG-PO-mC-PO-mC-PO-

mC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-LA-PS-lA






503
314
lgT3-PS-lgT3-PS-lgT3-
1417
mG-PS-fU-PS-mG-PO-
1615




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-LA-PS-lA






504
314
lgT3-PS-lgT3-PS-lgT3-
1418
mG-PS-fU-PS-mG-PO-
1616




PO-mG-PO-mC-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-LA-PS-lA






505
314
lgT3-PO-lgT3-PO-lgT3-
1419
mG-PS-fU-PS-mG-PO-
1617




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






506
314
lgT3-PO-lgT3-PO-lgT3-
1420
mG-PS-fU-PS-mG-PO-
1618




PO-1G-PO-1C-PO-mC-PO-

mC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






507
314
lgT3-PO-lgT3-PO-lgT3-
1421
mG-PS-fU-PS-mG-PO-
1619




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






508
314
lgT3-PO-lgT3-PO-lgT3-
1422
mG-PS-fU-PS-mG-PO-
1620




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-LA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-mA-PS-mA






509
314
lgT3-PO-lgT3-PO-lgT3-
1423
fG-PS-fU-PS-mG-PO-
1621




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

fU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-fG-PO-





mA-PO-mC-PO-lT4-PO-lT4

mC-PS-dT-PS-dT






510
314
lgT3-PS-lgT3-PS-lgT3-
1424
mG-PS-fU-PS-mG-PO-
1622




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






511
314
lgT3-PS-lgT3-PS-lgT3-
1425
mG-PS-fU-PS-mG-PO-
1623




PO-1G-PO-1C-PO-mC-PO-

mC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






512
314
lgT3-PS-lgT3-PS-lgT3-
1426
mG-PS-fU-PS-mG-PO-
1624




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-mA-PS-mA






513
314
lgT3-PS-lgT3-PS-lgT3-
1427
mG-PS-fU-PS-mG-PO-
1625




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-mU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-mG-PO-fA-PO-





PO-fU-PO-fU-PO-mA-PO-

mU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-mG-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-mA-PS-mA-Hy






514
314
lgT3-PS-lgT3-PS-lgT3-
1428
fG-PS-fU-PS-mG-PO-
1626




PO-1G-PO-1C-PO-mC-PO-

fC-PO-mC-PO-fU-PO-





mA-PO-fG-PO-mA-PO-fG-

mC-PO-fG-PO-mA-PO-





PO-fU-PO-fU-PO-mA-PO-

fU-PO-mA-PO-mA-PO-





mU-PO-mC-PO-mG-PO-mA-

mC-PO-fU-PO-mC-PO-





PO-mG-PO-mG-PO-mC-PO-

fU-PO-mG-PO-fG-PO-





mA-PO-mC-PS-lT4-PS-lT4

mC-PS-dT-PS-dT









While the exemplary siRNAs shown in Tables 2, 3, and 4 include nucleotide modifications, siRNAs having the same or substantially the same sequences but different numbers, patterns, and/or types of modifications, are also contemplated.


In some embodiments, a dsRNA comprises a sense strand shown in Table 1 with the addition of nucleotides (or modified versions thereof) at either or both of its termini. For example, the dsRNA comprises a sense strand shown in Table 1 with the addition of a 5′ CCA and/or a 3′ invdT. In some embodiments, a dsRNA comprises an antisense strand shown in Table 1 with the addition of nucleotides (or modified versions thereof) at either or both of its termini. For example, the dsRNA comprises an antisense strand shown in Table 1 with the addition of a 3′ dTdT. In certain embodiments, a dsRNA comprises a pair of sense and antisense strands as shown in Table 1, with the addition of a 5′ CCA and a 3′ invdT to the sense strand and with the addition of a 3′ dTdT to the antisense strand. In certain embodiments, a dsRNA comprises a pair of sense and antisense strands as shown in Table 2, with the addition of a 5′ lgT3-1gT3-1gT3 and a 3′ 1T4-lT4 to the sense strand.


In some embodiments, a dsRNA of the present disclosure comprises a sense sequence that is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical in sequence to a sense sequence shown in Table 1. In some embodiments, a dsRNA of the present disclosure comprises an antisense sequence that is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical in sequence to an antisense sequence shown in Table 1. In some embodiments, a dsRNA of the present disclosure comprises sense and antisense sequences that are at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical in sequence to sense and antisense sequences, respectively, shown in Table 1. In certain embodiments, the dsRNA comprises sense and antisense strands having the sequences shown in Table 2. In certain embodiments, the dsRNA comprises sense and antisense strands having the sequences shown in Tables 3 and 4. In certain embodiments, the dsRNA is selected from the dsRNA in Tables 1-4.


The “percentage identity” between two nucleotide sequences is determined by comparing the two optimally-aligned sequences in which the nucleic acid sequence to compare can have additions or deletions compared to the reference sequence for optimal alignment between the two sequences. “Percentage identity” is calculated by determining the number of positions at which the nucleotide residue is identical between the two sequences, preferably between the two complete sequences, dividing the number of identical positions by the total number of positions in the alignment window and multiplying the result by 100 to obtain the percentage identity between the two sequences. For purposes herein, when determining “percentage identity” between two nucleotide sequences, modifications to the nucleotides are not considered. For example, a sequence of 5′-mC-fU-mA-fG-3′ is considered having 100% sequence identity as a sequence of 5′-CUAG-3′.


I.5 dsRNA Conjugates


The present dsRNAs may be covalently or noncovalently linked to one or more ligands or moieties. Examples of such ligands and moieties may be found, e.g., in Jeong et al., Bioconjugate Chem. (2009) 20:5-14 and Sebestyen et al., Methods Mol Biol. (2015) 1218:163-86. In some embodiments, the dsRNA is conjugated/attached to one or more ligands via a linker. Any linker known in the art may be used, including, for example, multivalent (e.g., bivalent, trivalent, or tetravalent) branched linkers. The linker may be cleavable or non-cleavable. Conjugating a ligand to a dsRNA may alter its distribution, enhance its cellular absorption and/or targeting to a particular tissue and/or uptake by one or more specific cell types (e.g., liver cells), and/or enhance the lifetime or half-life of the dsRNA. In some embodiments, a hydrophobic ligand is conjugated to the dsRNA to facilitate direct permeation of the cellular membrane and/or uptake across cells (e.g., liver cells). For LPA mRNA-targeting dsRNAs (e.g., siRNAs), the target tissue may be the liver, including parenchymal cells of the liver (e.g., hepatocytes). In some embodiments, the dsRNA is conjugated to one or more ligands with or without a linker.


In some embodiments, the dsRNA of the present disclosure is conjugated to a cell-targeting ligand. A cell-targeting ligand refers to a molecular moiety that facilitates delivery of the dsRNA to the target cell, which encompasses (i) increased specificity of the dsRNA to bind to cells expressing the selected target receptors (e.g., target proteins); (ii) increased uptake of the dsRNA by the target cells; and (iii) increased ability of the dsRNA to be appropriately processed once it has entered into a target cell, such as increased intracellular release of an siRNA, e.g., by facilitating the translocation of the siRNA from transport vesicles into the cytoplasm. The ligand may be, for example, a protein (e.g., a glycoprotein), a peptide, a lipid, a carbohydrate, an aptamer, or a molecule having a specific affinity for a co-ligand.


Specific examples of ligands include, without limitation, an antibody or antigen-binding fragment thereof that binds to a specific receptor on a liver cell, thyrotropin, melanotropin, surfactant protein A, mucin carbohydrate, multivalent lactose, multivalent galactose, multivalent mannose, multivalent fucose, N-acetylgalactosamine, N-acetylglucosamine, transferrin, bisphosphonate, a steroid, bile acid, lipopolysaccharide, a recombinant or synthetic molecule such as a synthetic polymer, polyamino acids, an alpha helical peptide, polyglutamate, polyaspartate, lectins, and cofactors. In some embodiments, the ligand is one or more dyes, crosslinkers, polycyclic aromatic hydrocarbons, peptide conjugates (e.g., antennapedia peptide, Tat peptide), polyethylene glycol (PEG), enzymes, haptens, transport/absorption facilitators, synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, or imidazole clusters), human serum albumin (HSA), or LDL.


In some embodiments, the dsRNA is conjugated to one or more cholesterol derivatives or lipophilic moieties such as cholesterol or a cholesterol derivative; cholic acid; a vitamin (such as folate, vitamin A, vitamin E (tocopherol), biotin, or pyridoxal); bile or fatty acid conjugates, including both saturated and non-saturated (such as lauroyl (C12), myristoyl (C14), palmitoyl (C16), stearoyl (C18) and docosanyl (C22), lithocholic acid and/or lithocholic acid oleylamine conjugate (lithocholic-oleyl, C43)); polymeric backbones or scaffolds (such as PEG, triethylene glycol (TEG), hexaethylene glycol (HEG), poly(lactic-co-glycolic acid) (PLGA), poly(lactide-co-glycolide) (PLG), hydrodynamic polymers); steroids (such as dihydrotestosterone); terpene (such as triterpene); cationic lipids or peptides; and/or a lipid or lipid-based molecule. Such a lipid or lipid-based molecule may bind a serum protein, e.g., human serum albumin (HSA). A lipid-based ligand may be used to modulate (e.g., control) the binding of the conjugate to a target tissue. For example, a lipid or lipid-based ligand that binds to HSA more strongly will be less likely to be targeted to the kidney and therefore less likely to be cleared from the body.


In some embodiments, the cell-targeting moiety or ligand is a N-acetylgalactosamine (GalNAc) derivative. In some embodiments, the dsRNA is attached to one or more (e.g., two, three, four, or more) GalNAc derivatives. The attachment may be via one or more linkers (e.g., two, three, four, or more linkers). In some embodiments, a linker described herein is a multivalent (e.g., bivalent, trivalent, or tetravalent) branched linker. In some embodiments, the dsRNA is attached to two or more GalNAc derivatives via a bivalent branched linker. In some embodiments, the dsRNA is attached to three or more GalNAc derivatives via a trivalent branched linker. In some embodiments, the dsRNA is attached to three or more GalNAc derivatives with or without linkers. In some embodiments, the dsRNA is attached to four or more GalNAc derivatives via four separate linkers. In some embodiments, the dsRNA is attached to four or more GalNAc derivatives via a tetravalent branched linker. In some embodiments, the one or more GalNAc derivatives is attached to the 3′-end of the sense strand, the 3′-end of the antisense strand, the 5′-end of the sense strand, and/or the 5′-end of the antisense strand of the dsRNA. Exemplary and non-limiting conjugates and linkers are described, e.g., in Biessen et al., Bioconjugate Chem. (2002) 13(2):295-302; Cedillo et al., Molecules (2017) 22(8):E1356; Grijalvo et al., Genes (2018) 9(2):E74; Huang et al., Molecular Therapy: Nucleic Acids (2017) 6:116-32; Nair et al., J Am Chem Soc. (2014) 136:16958-61; Ostergaard et al., Bioconjugate Chem. (2015) 26:1451-5; Springer et al., Nucleic Acid Therapeutics (2018) 28(3):109-18; and U.S. Pat. Nos. 8,106,022, 9,127,276, and 8,927,705. GalNAc conjugation can be readily performed by methods well known in the art (e.g., as described in the above documents).


In some embodiments, the ligand is N-acetylgalactosamine (GalNAc) and the dsRNA is conjugated to one or more GalNAc.


II. Methods of Making dsRNAs

A dsRNA of the present disclosure may be synthesized by any method known in the art. For example, a dsRNA may be synthesized by use of an automated synthesizer, by in vitro transcription and purification (e.g., using commercially available in vitro RNA synthesis kits), by transcription and purification from cells (e.g., cells comprising an expression cassette/vector encoding the dsRNA), and the like. In some embodiments, the sense and antisense strands of the dsRNA are synthesized separately and then annealed to form the dsRNA. In some embodiments, the dsRNA comprising modified nucleotides of formula (I) and optionally conjugated to a cell targeting moiety (e.g., GalNAc) may be prepared according to the disclosure of PCT Publication WO 2019/170731.


Ligand-conjugated dsRNAs and ligand molecules bearing sequence-specific linked nucleosides of the present disclosure may be assembled by any method known in the art, including, for example, assembly on a suitable polynucleotide synthesizer utilizing standard nucleotide or nucleoside precursors, or nucleotide or nucleoside conjugate precursors that already bear the linking moiety, ligand-nucleotide, or nucleoside-conjugated precursors that already bear the ligand molecule, or non-nucleoside ligand-bearing building blocks.


Ligand-conjugated dsRNAs of the present disclosure may be synthesized by any method known in the art, including, for example, by the use of a dsRNA bearing a pendant reactive functionality such as that derived from the attachment of a linking molecule onto the dsRNA. In some embodiments, this reactive oligonucleotide may be reacted directly with commercially-available ligands, ligands that are synthesized bearing any of a variety of protecting groups, or ligands that have a linking moiety attached thereto. In some embodiments, the methods facilitate the synthesis of ligand-conjugated dsRNA by the use of nucleoside monomers that have been appropriately conjugated with ligands and that may further be attached to a solid support material. In some embodiments, a dsRNA bearing an aralkyl ligand attached to the 3′-end of the dsRNA is prepared by first covalently attaching a monomer building block to a controlled-pore-glass support via a long-chain aminoalkyl group; then, nucleotides are bonded via standard solid-phase synthesis techniques to the monomer building-block bound to the solid support. The monomer building-block may be a nucleoside or other organic compound that is compatible with solid-phase synthesis.


In some embodiments, functionalized nucleoside sequences of the present disclosure possessing an amino group at the 5′-terminus are prepared using a polynucleotide synthesizer, and then reacted with an active ester derivative of a selected ligand. Active ester derivatives are well known to one of ordinary skill in the art. The reaction of the amino group and the active ester produces an oligonucleotide in which the selected ligand is attached to the 5′-position through a linking group. The amino group at the 5′-terminus can be prepared utilizing a 5′-amino-modifier C6 reagent. In some embodiments, ligand molecules are conjugated to oligonucleotides at the 5′-position by the use of a ligand-nucleoside phosphoramidite wherein the ligand is linked to the 5′-hydroxy group directly or indirectly via a linker. Such ligand-nucleoside phosphoramidites are typically used at the end of an automated synthesis procedure to provide a ligand-conjugated oligonucleotide bearing the ligand at the 5′-terminus.


In some embodiments, click chemistry is used to synthesize siRNA conjugates. See, e.g., Astakhova et al., Mol Pharm. (2018) 15(8):2892-9; Mercier et al., Bioconjugate Chem. (2011) 22(1):108-14.


III. Compositions and Delivery of dsRNAs

Certain aspects of the present disclosure relate to compositions (e.g., pharmaceutical compositions) comprising a dsRNA as described herein. In some embodiments, the composition further comprises a pharmaceutically acceptable excipient. In some embodiments, the composition is useful for treating a disease or disorder associated with the expression or activity of the LPA gene. In some embodiments, the disease or disorder associated with the expression of the LPA gene is a lipid metabolism disorder such as hypertriglyceridemia and/or any other condition described herein. Compositions of the present disclosure may be formulated based upon the mode of delivery, including, for example, compositions formulated for delivery to the liver via parenteral administration.


The present dsRNAs can be formulated with a pharmaceutically acceptable excipient. Pharmaceutically acceptable excipients can be liquid or solid, and may be selected with the planned manner of administration in mind so as to provide for the desired bulk, consistency, and other pertinent transport and chemical properties. Any known pharmaceutically acceptable excipient may be used, including, for example, water, saline solution, binding agents (e.g., polyvinylpyrrolidone or hydroxypropyl methylcellulose), fillers (e.g., lactose and other sugars, gelatin, or calcium sulfate), lubricants (e.g., starch, polyethylene glycol, or sodium acetate), disintegrates (e.g., starch or sodium starch glycolate), calcium salts (e.g., calcium sulfate, calcium chloride, calcium phosphate, and hydroxyapatite), and wetting agents (e.g., sodium lauryl sulfate).


The present dsRNAs can be formulated into compositions (e.g., pharmaceutical compositions) containing the dsRNA admixed, encapsulated, conjugated, or otherwise associated with other molecules, molecular structures, or mixtures of nucleic acids. For example, a composition comprising one or more dsRNAs as described herein can contain other therapeutic agents such as other lipid lowering agents (e.g., statins). In some embodiments, the composition (e.g., pharmaceutical composition) further comprises a delivery vehicle as described herein.


A dsRNA of the present disclosure may be delivered directly or indirectly. In some embodiments, the dsRNA is delivered directly by administering a pharmaceutical composition comprising the dsRNA to a subject. In some embodiments, the dsRNA is delivered indirectly by administering one or more vectors described below.


A dsRNA of the present disclosure may be delivered by any method known in the art, including, for example, by adapting a method of delivering a nucleic acid molecule for use with a dsRNA (see, e.g., Akhtar et al., Trends Cell Biol. (1992) 2(5):139-44; PCT Publication WO 94/02595), or via additional methods known in the art (see, e.g., Kanasty et al., Nature Materials (2013) 12:967-77; Wittrup and Lieberman, Nature Reviews Genetics (2015) 16:543-52; Whitehead et al., Nature Reviews Drug Discovery (2009) 8:129-38; Gary et al., J Control Release (2007) 121(1-2):64-73; Wang et al., AAPS J. (2010) 12(4):492-503; Draz et al., Theranostics (2014) 4(9):872-92; Wan et al., Drug Deliv Transl Res. (2013) 4(1):74-83; Erdmann and Barciszewski (eds.) (2010) “RNA Technologies and Their Applications,” Springer-Verlag Berlin Heidelberg, DOI 10.1007/978-3-642-12168-5; Xu and Wang, Asian Journal of Pharmaceutical Sciences (2015) 10(1):1-12). For in vivo delivery, dsRNA can be injected into a tissue site or administered systemically (e.g., in nanoparticle form via inhalation). In vivo delivery can also be mediated by a beta-glucan delivery system (see, e.g., Tesz et al., Biochem J. (2011) 436(2):351-62). In vitro introduction into a cell includes methods known in the art such as electroporation and lipofection.


In some embodiments, a dsRNA of the present disclosure is delivered by a delivery vehicle comprising the dsRNA. In some embodiments, the delivery vehicle is a liposome, lipoplex, complex, or nanoparticle.


III.1 Liposomal Formulations


Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior. In some embodiments, a liposome is a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers. The aqueous portion contains the composition to be delivered. Cationic liposomes possess the advantage of being able to fuse to the cell wall. Advantages of liposomes include, e.g., that liposomes obtained from natural phospholipids are biocompatible and biodegradable; that liposomes can incorporate a wide range of water and lipid soluble drugs; and that liposomes can protect encapsulated drugs in their internal compartments from metabolism and degradation (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes. For example, engineered cationic liposomes and sterically stabilized liposomes can be used to deliver the dsRNA. See, e.g., Podesta et al., Methods Enzymol. (2009) 464:343-54; U.S. Pat. No. 5,665,710.


III.2 Nucleic Acid-Lipid Particles


In some embodiments, a dsRNA of the present disclosure is fully encapsulated in a lipid formulation, e.g., to form a nucleic acid-lipid particle such as, without limitation, a SPLP, pSPLP, or SNALP. As used herein, the term “SNALP” refers to a stable nucleic acid-lipid particle, including SPLP. As used herein, the term “SPLP” refers to a nucleic acid-lipid particle comprising plasmid DNA encapsulated within a lipid vesicle. Nucleic acid-lipid particles, e.g., SNALPs, typically contain a cationic lipid, a non-cationic lipid, and a lipid that prevents aggregation of the particle (e.g., a PEG-lipid conjugate). SNALPs and SPLPs are useful for systemic applications, as they exhibit extended circulation lifetimes following intravenous (i.v.) injection and accumulate at distal sites (e.g., sites physically separated from the administration site). SPLPs include “pSPLPs,” which include an encapsulated condensing agent-nucleic acid complex as set forth in PCT Publication WO 00/03683.


In some embodiments, dsRNAs when present in nucleic acid-lipid particles are resistant in aqueous solution to degradation with a nuclease. Nucleic acid-lipid particles and their methods of preparation are disclosed in, e.g., U.S. Pat. Nos. 5,976,567; 5,981,501; 6,534,484; 6,586,410; and 6,815,432; and PCT Publication WO 96/40964.


In some embodiments, the nucleic acid-lipid particles comprise a cationic lipid. Any cationic lipid or mixture thereof known in the art may be used. In some embodiments, the nucleic acid-lipid particles comprise a non-cationic lipid. Any non-cationic lipid or mixture thereof known in the art may be used. In some embodiments, the nucleic acid-lipid particle comprises a conjugated lipid (e.g., to prevent aggregation). Any conjugated lipid known in the art may be used.


III.3 Additional Formulations


Factors that are important to consider in order to successfully deliver a dsRNA molecule in vivo include: (1) biological stability of the delivered molecule, (2) preventing nonspecific effects, and (3) accumulation of the delivered molecule in the target tissue. The nonspecific effects of a dsRNA can be minimized by local administration, for example by direct injection or implantation into a tissue or topically administering the preparation. For administering a dsRNA systemically for the treatment of a disease, the dsRNA may be modified or alternatively delivered using a drug delivery system; both methods act to prevent the rapid degradation of the dsRNA by endo- and exonucleases in vivo. Modification of the RNA or the pharmaceutical excipient may also permit targeting of the dsRNA composition to the target tissue and avoid undesirable off-target effects. As described above, dsRNA molecules may be modified by chemical conjugation to lipophilic groups such as cholesterol to enhance cellular uptake and prevent degradation. In some embodiments, the dsRNA is delivered using drug delivery systems such as a nanoparticle (e.g., a calcium phosphate nanoparticle), a dendrimer, a polymer, liposomes, or a cationic delivery system. Positively charged cationic delivery systems facilitate binding of a dsRNA molecule (negatively charged) and also enhance interactions at the negatively charged cell membrane to permit efficient uptake of a dsRNA by the cell. Cationic lipids, dendrimers, or polymers can either be bound to a dsRNA, or induced to form a vesicle or micelle (See, e.g., Kim et al., Journal of Controlled Release (2008) 129(2):107-16) that encases a dsRNA. The formation of vesicles or micelles further prevents degradation of the dsRNA when administered systemically. Methods for making and administering cationic-dsRNA complexes are known in the art. In some embodiments, a dsRNA may form a complex with cyclodextrin for systemic administration.


III.4 Vector-Encoded dsRNAs


A dsRNA of the present disclosure may be delivered to the target cell indirectly by introducing into the target cell a recombinant vector (DNA or RNA vector) encoding the dsRNA. The dsRNA will be expressed from the vector inside the cell, e.g., in the form of shRNA, where the shRNA is subsequently processed into siRNA intracellularly. In some embodiments, the vector is a plasmid, cosmid, or viral vector. In some embodiments, the vector is compatible with expression in prokaryotic cells. In some embodiments, the vector is compatible with expression in E. coli. In some embodiments, the vector is compatible with expression in eukaryotic cells. In some embodiments, the vector is compatible with expression in yeast cells. In some embodiments, the vector is compatible with expression in vertebrate cells. Any expression vector capable of encoding dsRNA known in the art may be used, including, for example, vectors derived from adenovirus (AV), adeno-associated virus (AAV), retroviruses (e.g., lentiviruses (LV), Rhabdoviruses, murine leukemia virus, etc.), herpes virus, SV40 virus, polyoma virus, papilloma virus, picornavirus, pox virus (e.g., orthopox or avipox), and the like. The tropism of viral vectors or viral-derived vectors may be modified by pseudotyping the vectors with envelope proteins or other surface antigens from one or more other viruses, or by substituting different viral capsid proteins, as appropriate. For example, lentiviral vectors may be pseudotypes with surface proteins from vesicular stomatitis virus (VSV), rabies, Ebola, Mokola, and the like. AAV vectors may be made to target different cells by engineering the vectors to express different capsid protein serotypes. For example, an AAV vector expressing a serotype 2 capsid on a serotype 2 genome is called AAV 2/2. This serotype 2 capsid gene in the AAV 2/2 vector can be replaced by a serotype capsid gene to produce an AAV 2/5 vector. Techniques for constructing AAV vectors which express different capsid protein serotypes have been described previously (see, e.g., Rabinowitz et al., J. Virol. (2002) 76:791-801).


Selection of recombinant vectors, methods for inserting nucleic acid sequences into the vector for expressing a dsRNA, and methods of delivering vectors into one or more cells of interest are known in the art. See, e.g., Domburg, Gene Therap. (1995) 2:301-10; Eglitis et al., Biotechniques (1998) 6:608-14; Miller, Hum Gene Therap. (1990) 1:5-14; Anderson et al., Nature (1998) 392:25-30; Xia et al., Nat. Biotech. (2002) 20:1006-10; Robinson et al., Nat Genet. (2003) 33:401-6; Samulski et al., J. Virol. (1987) 61:3096-101; Fisher et al., J Virol. (1996) 70:520-32; Samulski et al., J Virol. (1989) 63:3822-6; U.S. Pat. Nos. 5,252,479 and 5,139,941; and PCT Publications WO 94/13788 and WO 93/24641.


Vectors useful for the delivery of a dsRNA as described herein may include regulatory elements (e.g., heterologous promoter, enhancer, etc.) sufficient for expression of the dsRNA in the desired target cell or tissue. In some embodiments, the vector comprises one or more sequences encoding the dsRNA linked to one or more heterologous promoters. Any heterologous promoter known in the art capable of expressing a dsRNA may be used, including, for example, the U6 or H1 RNA pol III promoters, the T7 promoter, and the cytomegalovirus promoter. The one or more heterologous promoters may be an inducible promoter, a repressible promoter, a regulatable promoter, and/or a tissue-specific promoter. Selection of additional promoters is within the abilities of one of ordinary skill in the art. In some embodiments, the regulatory elements are selected to provide constitutive expression. In some embodiments, the regulatory elements are selected to provide regulated/inducible/repressible expression. In some embodiments, the regulatory elements are selected to provide tissue-specific expression. In some embodiments, the regulatory elements and sequence encoding the dsRNA form a transcription unit.


A dsRNA of the present disclosure may be expressed from transcription units inserted into DNA or RNA vectors (see, e.g., Couture et al., TIG (1996) 12:5-10; PCT Patent Publications WO 00/22113 and WO 00/22114; and U.S. Pat. No. 6,054,299). Expression may be transient (on the order of hours to weeks) or sustained (weeks to months or longer), depending upon the specific construct used and the target tissue or cell type. These transgenes can be introduced as a linear construct, a circular plasmid, or a viral vector, which can be an integrating or non-integrating vector. The transgene can also be constructed to permit it to be inherited as an extrachromosomal plasmid (Gassmann et al., PNAS (1995) 92:1292).


In some embodiments, the sense and antisense strands of a dsRNA are encoded on separate expression vectors. In some embodiments, the sense and antisense strands are expressed on two separate expression vectors that are co-introduced (e.g., by transfection or infection) into the same target cell. In some embodiments, the sense and antisense strands are encoded on the same expression vector. In some embodiments, the sense and antisense strands are transcribed from separate promoters which are located on the same expression vector. In some embodiments, the sense and antisense strands are transcribed from the same promoter on the same expression vector. In some embodiments, the sense and antisense strands are transcribed from the same promoter as an inverted repeat joined by a linker polynucleotide sequence such that the dsRNA has a stem and loop structure.


IV. dsRNA Therapy

Certain aspects of the present disclosure relate to methods for inhibiting the expression of the LPA gene in a subject (e.g., a primate subject such as a human) comprising administering a therapeutically effective amount of one or more dsRNAs of the present disclosure, one or more vectors of the present disclosure, or one or more pharmaceutical compositions of the present disclosure. Certain aspects of the present disclosure relate to methods of treating and/or preventing one or more conditions described herein (e.g., an Lp(a)-associated condition such as a cardiovascular disease (CVD) including atherosclerosis, peripheral artery disease, aortic valve calcification, thrombosis, or stroke), comprising administering one or more dsRNAs of the present disclosure and/or one or more vectors of the present disclosure and/or one or more pharmaceutical compositions comprising one or more dsRNAs as described herein. In some embodiments, downregulating LPA expression in a subject alleviates one or more symptoms of a condition described herein (e.g., a high Lp(a)-associated condition such as a CVD) in the subject.


The pharmaceutical composition of the present disclosure may be administered in dosages sufficient to inhibit expression of the LPA gene. In some embodiments, a suitable dose of a dsRNA described herein is in the range of 0.001 mg/kg-200 mg/kg body weight of the recipient. In certain embodiments, a suitable dose is in the range of 0.001 mg/kg-50 mg/kg body weight of the recipient, e.g., in the range of 0.001 mg/kg-20 mg/kg body weight of the recipient. Treatment of a subject with a therapeutically effective amount of a pharmaceutical composition can include a single treatment or a series of treatments.


As used herein, the terms “therapeutically effective amount” and “prophylactically effective amount” refer to an amount that provides a therapeutic benefit in the treatment, prevention, or management of pathological processes mediated by LPA expression, or an overt symptom of pathological processes mediated by LPA expression.


As used herein, the term “Lp(a)-associated condition” or “high Lp(a)-associated condition” is intended to include any condition in which decreasing the plasma concentration of Lp(a) is beneficial. Such a condition may be caused, for example, by excessive production of Lp(a), production of certain apo(a) isoforms linked to diseased conditions, LPA gene mutations that increase Lp(a) levels, abnormal apo(a) cleavage that leads to increased levels, or decreased degradation and clearance, and/or abnormal interactions between Lp(a) and other proteins or other endogenous or exogenous substances (e.g., plasminogen receptor) such that Lp(a) level is increased or degradation is decreased. A Lp(a)-associated condition may be, e.g., a cardiovascular disease. A condition associated with high Lp(a) levels may be relatively insensitive to life style changes and common statin drugs, and are therefore hard to treat. An Lp(a) associated condition as defined herein may be selected from lipidemia (e.g., hyperlipidemia), dyslipidemia (e.g., atherogenic dyslipidemia, diabetic dyslipidemia, or mixed dyslipidemia), hyperlipoproteinemia, hyperapobetalipoproteinemia, coronary artery disease, myocardial infarction, peripheral artery disease, metabolic syndrome, acute coronary syndrome, aortic valve stenosis, aortic valve calcification, aortic valve regurgitation, aortic dissection, retinal artery occlusion, cerebrovascular disease, mesenteric ischemia, superior mesenteric artery occlusion, restenosis, renal artery stenosis, angina, cerebrovascular atherosclerosis, cerebrovascular disease, and venous thrombosis.


In some embodiments, a dsRNA described herein is used to treat a subject with a cardiovascular disease (CVD) such as chronic heart disease (CHD) or any symptoms or conditions associated with a CVD. In certain embodiments, a dsRNA described herein is used to treat a patient with hypercholesterolemia (e.g., statin-resistant hypercholesterolemia, and heterozygous or homozygous familial hypercholesterolemia) myocardial infarction (MI), peripheral arterial disease (PAD), calcific aortic valve disease (CAVD), atherosclerotic cardiovascular disease (ASCVD), atherosclerosis, dyslipidemia, thrombosis, or stroke.


In some embodiments, a dsRNA described herein is used to treat a subject having one or more conditions selected from: lipidemia (e.g., hyperlipidemia), dyslipidemia (e.g., atherogenic dyslipidemia, diabetic dyslipidemia, or mixed dyslipidemia), hyperlipoproteinemia, hyperapobetalipoproteinemia, coronary artery disease, metabolic syndrome, acute coronary syndrome, aortic valve stenosis, aortic valve calcification, aortic valve regurgitation, aortic dissection, retinal artery occlusion, cerebrovascular disease, mesenteric ischemia, superior mesenteric artery occlusion, restenosis, renal artery stenosis, angina, cerebrovascular atherosclerosis, cerebrovascular disease, and venous thrombosis.


In some embodiments, a dsRNA described herein may be used to manage body weight or reduce fat mass in a subject.


In some embodiments, a dsRNA as described herein inhibits expression of the human LPA gene, or both human and cynomolgus LPA genes. The expression of the LPA gene in a subject may be inhibited, or Lp(a) levels in the subject may be reduced, by at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 99%, or about 100% after treatment as compared to pretreatment levels. In some embodiments, expression of the LPA gene is inhibited, or Lp(a) levels in the subject may be reduced, by at least about 2, at least about 5, at least about 10, at least about 15, at least about 20, at least about 25, at least about 50, at least about 75, or at least about 100-fold after treatment as compared to pretreatment levels. In some embodiments, the LPA gene is inhibited, or Lp(a) levels are reduced, in the liver of the subject.


In some embodiments, expression of the LPA gene is decreased by the dsRNA for about 12 or more, 24 or more, or 36 or more hours. In some embodiments, expression of the LPA gene is decreased for an extended duration, e.g., at least about two, three, four, five, or six days or more, e.g., about one week, two weeks, three weeks, or four weeks or longer.


As used herein, the terms “inhibit the expression of” or “inhibiting expression of,” insofar as they refer to the LPA gene, refer to at least partial suppression of expression of the LPA gene, as manifested by a reduction in the amount of mRNA transcribed from the LPA gene in a first cell or group of cells treated such that expression of the LPA gene is inhibited, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has or have not been so treated (control cells). Such inhibition can be assessed, e.g., by Northern analysis, in situ hybridization, B-DNA analysis, expression profiling, transcription of reporter constructs, and other techniques known in the art. As used herein, the term “inhibiting” is used interchangeably with “reducing,” “silencing,” “downregulating,” “suppressing,” and other similar terms, and include any level of inhibition. The degree of inhibition is usually expressed in terms of (((mRNA in control cells)−(mRNA in treated cells))/(mRNA in control cells))×100%.


Alternatively, the degree of inhibition may be given in terms of a reduction of a parameter that is functionally linked to LPA gene transcription, e.g., the amount of protein encoded by the LPA gene in a cell (as assessed, e.g., by Western analysis, expression of a reporter protein, ELISA, immunoprecipitation, or other techniques known in the art), or the number of cells displaying a certain phenotype, e.g., apoptosis. In principle, LPA gene silencing may be determined in any cell expressing the target, either constitutively or by genomic engineering, and by any appropriate assay. However, when a reference is needed in order to determine whether a given dsRNA inhibits the expression of the LPA gene by a certain degree and therefore is encompassed by the present disclosure, the assays provided in the Examples below shall serve as such a reference.


A dsRNA or pharmaceutical composition described herein may be administered by any means known in the art, including, without limitation, oral or parenteral routes, including intravenous, intramuscular, subcutaneous, pulmonary, transdermal, and airway (aerosol) administration. Typically, when treating a patient with hypercholesterolemia or another CVD condition, the dsRNA molecules are administered systemically via parenteral means. In some embodiments, the dsRNAs and/or compositions are administered by subcutaneous administration. In some embodiments, the dsRNAs and/or compositions are administered by intravenous administration. In some embodiments, the dsRNAs and/or compositions are administered by pulmonary administration.


As used herein, in the context of LPA expression, the terms “treat,” “treatment” and the like refer to relief from or alleviation of pathological processes mediated by target gene expression. In the context of the present disclosure, insofar as it relates to any of the conditions recited herein, the terms “treat,” “treatment,” and the like refer to relieving or alleviating one or more symptoms associated with said condition. As used herein, to “alleviate” a disease, disorder or condition means reducing the severity and/or occurrence frequency of the symptoms of the disease, disorder, or condition. Further, references herein to “treatment” include references to curative, palliative and prophylactic treatment.


As used herein, the terms “prevent” or “delay progression of” (and grammatical variants thereof), with respect to a condition relate to prophylactic treatment of a condition, e.g., in an individual suspected to have or be at risk for developing the condition. Prevention may include, but is not limited to, preventing or delaying onset or progression of the condition and/or maintaining one or more symptoms of the disease at a desired or sub-pathological level.


It is understood that the dsRNAs of the present disclosure may be for use in a treatment as described herein, may be used in a method of treatment as described herein, and/or may be for use in the manufacture of a medicament for a treatment as described herein.


In some embodiments, a dsRNA of the present disclosure is administered in combination with one or more additional therapeutic agents, such as other siRNA therapeutic agents, monoclonal antibodies, and small molecules, to provide a greater improvement to the condition of the patient than administration of the dsRNA alone. In certain embodiments, the additional therapeutic agent provides an anti-inflammatory effect. In certain embodiments, the additional therapeutic agent is an agent that treats hypertriglyceridemia, such as a lipid-lowering agent.


In some embodiments, the additional agent may be one or more of a PCSK9 inhibitor, an HMG-CoA reductase inhibitor (e.g., a statin), an ANGPTL3 or ANGPTL8 inhibitor, a fibrate, a bile acid sequestrant, niacin (nicotinic acid), an antiplatelet agent, an angiotensin converting enzyme inhibitor, an angiotensin II receptor antagonist (e.g., losartan potassium), an acyl-CoA cholesterol acetyltransferase (ACAT) inhibitor, a cholesterol absorption inhibitor, a cholesterol ester transfer protein (CETP) inhibitor, a microsomal triglyceride transfer protein (MTTP) inhibitor, a cholesterol modulator, a bile acid modulator, a peroxisome proliferation activated receptor (PPAR) agonist, an omega-3 fatty acid (e.g., fish oil or flaxseed oil), and insulin or an insulin analog. Particular examples include, without limitation, atorvastatin, pravastatin, simvastatin, lovastatin, fluvastatin, cerivastatin, rosuvastatin, pitavastatin, ezetimibe, bezafibrate, clofibrate, fenofibrate, gemfibrozil, ciprofibrate, cholestyramine, colestipol, colesevelam, and niacin.


In certain embodiments, a dsRNA as described herein may be administered in combination with another therapeutic intervention such as lipid lowering, weight loss, dietary modification, and/or moderate exercise.


Genetic predisposition plays a role in the development of target gene associated diseases, e.g., high Lp(a) levels. Therefore, a subject in need of treatment with one or more dsRNAs of the present disclosure may be identified by taking a family history, or, for example, screening for one or more genetic markers or variants, in particular Lp(a) KIV2 polymorphism. In certain embodiments, a subject in need of treatment with one or more dsRNAs of the present disclosure may be identified by screening for variants in any of these genes or any combination thereof.


A healthcare provider, such as a doctor, nurse, or family member, can take a family history before prescribing or administering a dsRNA of the present disclosure. In addition, a test may be performed to determine a genotype or phenotype. For example, a DNA test or an apo(a) isoform separation test may be performed on a sample from the subject, e.g., a blood sample, to identify the LPA genotype and the circulating Lp(a) phenotype before the dsRNA is administered to the subject.


V. Kits and Articles of Manufacture

Certain aspects of the present disclosure relate to an article of manufacture or a kit comprising one or more of the dsRNAs, vectors, or compositions (e.g., pharmaceutical compositions) as described herein useful for the treatment and/or prevention of a high Lp(a)-associated condition (e.g., a peripheral artery disease, atherosclerosis, or aortic valve calcification). The article of manufacture or kit may further comprise a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, IV solution bags, etc. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition which is by itself or combined with another composition effective for treating or preventing the disease and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). At least one active agent in the composition is a dsRNA as described herein. The label or package insert indicates that the composition is used for treating a high Lp(a)-associated condition. In some embodiments, the condition is a CVD and/or another condition described herein. Moreover, the article of manufacture or kit may comprise (a) a first container with a composition contained therein, wherein the composition comprises a dsRNA as described herein; and (b) a second container with a composition contained therein, wherein the composition comprises a second therapeutic agent (e.g., an additional agent as described herein). The article of manufacture or kit in this aspect of the present disclosure may further comprise a package insert indicating that the compositions can be used to treat a particular disease. Alternatively, or additionally, the article of manufacture or kit may further comprise a second (or third) container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and/or user standpoint, including other buffers, diluents, filters, needles, and syringes.


Unless otherwise defined herein, scientific and technical terms used in connection with the present disclosure shall have the meanings that are commonly understood by those of ordinary skill in the art. Exemplary methods and materials are described below, although methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure. In case of conflict, the present specification, including definitions, will control.


Generally, nomenclature used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics, analytical chemistry, synthetic organic chemistry, medicinal and pharmaceutical chemistry, and protein and nucleic acid chemistry and hybridization described herein are those well-known and commonly used in the art. Enzymatic reactions and purification techniques are performed according to the manufacturer's specifications, as commonly accomplished in the art or as described herein.


Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Throughout this specification and embodiments, the words “have” and “comprise,” or variations such as “has,” “having,” “comprises,” or “comprising,” will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.


All publications and other references mentioned herein are incorporated by reference in their entirety. Although a number of documents are cited herein, this citation does not constitute an admission that any of these documents form part of the common general knowledge in the art.


EXAMPLES

In order for the present disclosure to be better understood, the following examples are set forth. These examples are for illustration only and are not to be construed as limiting the scope of the present disclosure in any manner.


Example 1: siRNA Synthesis and Purification

siRNAs, including non-targeting control siRNAs (NT control), were produced using solid phase oligonucleotide synthesis.


An LPA siRNA screening library comprising 299 19-mer LPA siRNA sequences with G+C content was designed to fully match the human mRNA transcript (NM_005577.2) with maximum one mismatch allowed to the orthologous cynomolgus mRNA sequence (XM_015448517). These LPA siRNA sequences comprise a fixed pattern of 2′-O-methyl and 2′-fluoro modified nucleotides (Table 1). All sense and antisense strand sequences were in silico profiled against the human RefSeq RNA database version 2016-02-23. Off-target transcripts with RNA-Seq expression (Illumina Body Atlas) FPKM<0.5 in human liver tissue were not considered. The only exception represents the LPAL2 pseudogene where off-target hits were accepted. siRNA sequences with >2 mismatches to any other potential human off-target transcript expressed in human liver were used for the library design.


Unconjugated LPA siRNAs, including non-targeting control siRNAs (“LV2” and “LV3”), were synthesized at a scale of 1 μmol (in vitro) or 10 μmol (in vivo) on a ABI 394 DNA/RNA or BioAutomation MerMade 12 synthesizer using commercially available 5′-O-DMT-3′-O-(2-cyanoethyl-N,N-diisopropyl) phosphoramidite monomers (SAFC) of uridine, 4-N-acetylcytidine (CAc), 6-N-benzoyladenosine (A B z) and 2-N-isobutyrylguanosine (G′ B ‘) with 2’- or 2′-F modification, and the solid supports 5′-O-DMT-thymidine-CPG and 3′-O-DMT-thymidine-CPG (invdT, Link) following standard protocols for solid phase synthesis and deprotection (Beaucage, Curr Opi Drug Discov Devel. (2008) 11:203-16; Mueller et al., Curr Org Synth. (2004) 1:293-307).


Phosphoramidite building blocks were used as 0.1 M solutions in acetonitrile and activated with 5-(bis-3,5-trifluoromethylphenyl)-1H-tetrazole (activator 42, 0.25 M in acetonitrile, Sigma Aldrich). Reaction times of 300 s were used for the phosphoramidite couplings. As capping reagents, acetic anhydride in THF (CapA for ABI, Sigma Aldrich) and N-methylimidazole in THF (CapB for ABI, Sigma Aldrich) were used. As oxidizing reagent, iodine in THF/pyridine/water (0.02 M; oxidizer for ABI, Sigma Aldrich) was used. Deprotection of the DMT-protecting group was done using dichloroacetic acid in DCM (DCA deblock, Sigma Aldrich). Final cleavage from solid support and deprotection (acyl- and cyanoethyl-protecting groups) was achieved with NH3 (32% aqueous solution/ethanol, v/v 3:1).


The crude oligonucleotides were analyzed by IEX and LC-MS, and purified by anion-exchange high-performance liquid chromatography (IEX-HPLC) using a linear gradient of 10-65% buffer B in 30 min. ÄKTA purifier (Thermo Fisher Scientific DNAPac PA200 semi prep ion exchange column, 8 μm particles, width 22 mm×length 250 mm).

    • Buffer A: 1.50 l H2O, 2.107 g NaClO4, 438 mg EDTA, 1.818 g TRIS, 540.54 g urea, pH 7.4.
    • Buffer B: 1.50 l H2O, 105.34 g NaClO4, 438 mg EDTA, 1.818 g TRIS, 540.54 g urea, pH 7.4.


Isolation of the oligonucleotides was achieved by precipitation, induced by the addition of 4 volumes of ethanol and storing at −20° C.


To ensure high fidelity of the data, all single strands were HPLC purified to >85% purity. The purity and identity of the oligonucleotides was confirmed by ion exchange chromatography and LC-MS, respectively.


Positive control LPA siRNAs s8263 and s8264 were purchased from Ambion (now Thermo Fisher Scientific).


For the in vitro and in vivo experiments, stock solutions (100 μM and 10 mg/ml, respectively) of siRNAs in PBS were prepared by mixing equimolar amounts of complementary sense and antisense strands in 1×PBS buffer. The solutions were heated to 90° C. for 10 min and allowed to slowly cool to room temperature to complete the annealing process. siRNAs were further characterized by HPLC and were stored frozen until use.


siRNA Sequences


The sequences of each siRNA, and sequences including nucleotide modifications, are shown in Tables 1, 2, 3, and 4, supra.


Example 2: Identification of siRNAs for Inhibition of Human LPA Expression

Methods


Cells and Tissue Culture


Human Hep3B cells were grown at 37° C., 5% CO2 and 95% RH, and cultivated in EMEM medium (ATCC®, cat. no. 30-2003™) supplemented with 10% FBS.


Human HuH-7 cells were grown at 37° C., 5% CO2 and 95% RH, and cultivated in MEM medium (ThermoFisher, cat. no. 41090) supplemented with 1×NEAA (ThermoFisher, cat. no. 11140035), 1% sodium pyruvate (Sigma, cat. no. S8636) and 10% FBS.


HepG2 cells stably overexpressing a pmirGLO-LPA dual luciferase reporter plasmid (see below) were grown at 37° C., 5% CO2 and 95% RH, and cultivated in MEM medium (ThermoFisher, cat. no. 41090) supplemented with 1×NEAA (ThermoFisher, cat. no. 11140035), 1% sodium pyruvate (Sigma, cat. no. S8636), 10% FBS and 600 μg/ml G418 sulfate (Geneticin™ Selective Antibiotic; ThermoFisher, cat. no. 10131035).


HepG2 cells stably overexpressing a human LPA cDNA construct (Brunner et al., Proc Natl Acad Sci. (1993) 90(24):11643-7) were grown at 37° C., 5% CO2 and 95% RH, and cultivated in DMEM/F12 medium (Lonza, cat. no. BE12-719F) supplemented with 10% FBS.


Primary human (BioreclamationlVT, cat. no. M00995-P) and cynomolgus (Primacyt, cat. no. CHCP-I-T) hepatocytes were cultured as follows: cryopreserved cells were thawed and plated using a plating and thawing kit (Primacyt, cat. no. PTK-1), and were incubated at 37° C., 5% CO2 and 95% RH. 6 hours after plating, the medium was changed to maintenance medium (KaLy-Cell, cat. no. KLC-MM) supplemented with 1% FBS.


Primary hepatocytes from female apo(a) transgenic mice (see below) were isolated freshly before the experiments based on a protocol adapted from Seglen, P. O. (1976): Preparation of Isolated Rat Liver Cells; Methods in Cell Biology, 13: 29-83. Plating of isolated hepatocytes was done for 3-5 hours at 37° C., 5% CO2 and 95% RH in Williams' E medium (Thermo Fisher, cat. no. 22551) supplemented with 2 mM glutamine (Thermo Fisher, cat. no. 25030), 100 U/ml Penicillin-Streptomycin (Thermo Fisher, cat. no. 15140), 1 μg/ml Dexamethason (Sigma, cat. no. D1756), 1×ITS solution (Thermo Fisher, cat. no. 41400), and 5% FBS. After plating, the medium was changed to cultivation medium that was identical to plating medium except for the addition of 1% FBS. No further medium change was done during the incubation period of 48 or 72 hours.


pmirGLO Dual Luciferase Reporter Assay


For siRNA screening purposes, the full-length human LPA cDNA sequence (NM_005577.2) was sub-cloned into the multiple cloning site of a commercially available, dual luciferase reporter-based pmirGLO screening plasmid (Promega, cat. no. E1330) which generated a Firefly luciferase/LPA fusion mRNA. For transient plasmid transfections, 45 μg of the pmirGLO-LPA plasmid was transfected in a fast-forward setup for 18 hours into 18 mio. Hep3B cells in T225 flasks (Falcon®, cat. no. 353138) using FuGene® HD transfection reagent (Promega, cat. no. E2311). 1 nM and 10 nM siRNA transfections of 5000 plasmid pre-transfected Hep3B cells per well in 384 well plates (Greiner-Bio CELLSTAR®, cat. no. 781098) using Lipofectamine™ RNAiMAX (ThermoFisher, cat. no. 13778150) was done next day in a reverse setup and cells were incubated for 48 hours. Gene knockdown was determined by measuring Firefly luciferase levels normalized to the levels of constitutively-expressed Renilla luciferase, also encoded by the pmirGLO plasmid, using the Dual-Glo® Luciferase Assay (Promega, cat. no. E2940).


IC50 Measurements


For IC50 experiments with the pmirGLO-LPA reporter plasmid in a stable HepG2 cell clone, 2 μg of Cla-I linearized pmirGLO-LPA plasmid was transfected per well in Collagen-I coated 6-well plates (BD, cat. no. 356400) using 80-90% confluent HepG2 cells and FuGene HD transfection reagent in a 3.5:1 ratio (μl FuGene HD vs. μg plasmid). Polyclonal cells were expanded in Collagen-I coated T75 flasks (Corning, cat. no. 356485) by adding 600 μg/ml G418 to the culture medium, and single cell cloned in Collagen-I coated 384-well plates (Corning, cat. no. 354664) using an IncuCyte® ZOOM Live-Cell Imaging System (Essen BioScience). Single cell clones were characterized by qPCR analysis for LPA expression levels (see below) as well as relative Firefly and Renilla luciferase abundance.


For IC50 measurements with a transfection reagent, 30,000 primary transgenic apo(a) mouse hepatocytes in Collagen-I coated human Hep3B cells in 96-well plates were transfected with Lipofectamine™ RNAiMAX in a fast-forward setup for 72 hours with the indicated LPA siRNAs at 7 concentrations starting from 25 nM-0.1 pM using 8-fold dilution steps. The half maximal inhibitory concentration (IC50) for each siRNA was determined by nonlinear regression using iterative fitting procedures developed on SAS9.4 software. Results were obtained using the 4-parameter logistic model according to Ratkovsky and Reedy (Biometrics (1986) 42(3):575-82). The adjustment was obtained by non-linear regression using the Levenberg-Marquardt algorithm in SAS software.


IC50 values using the stable HepG2-pmirGLO-LPA cell clone were generated as follows: 5000 cells per well in Collagen-I coated 384 well plates were reverse transfected with Lipofectamine™ RNAiMAX and LPA siRNA reagents for 48 hours at 9 concentrations ranging from 40 nM-0.6 pM using 4-fold dilution steps.


siRNA Transfections


For knockdown experiments in HepG2-LPA and HuH-7 cells, 17,000 and 25,000 cells/well were used in Collagen-I coated (Corning® Biocoat™, cat. no. 356407) and non-coated 96-well plates (Greiner CELLSTAR®, cat. no. 655180), respectively. For knockdown experiments in primary human, cynomolgus, and transgenic apo(a) mouse hepatocytes, 40,000-50,000 cells/well were used in Collagen-I coated 96-well plates. The cells were transfected with LPA siRNAs at 1 or 10 nM using 0.2 μL/well of Lipofectamine™ RNAiMAX transfection reagent (Thermo Fisher) according to the manufacturer's protocol in a reverse (HepG2-LPA) or fast-forward (primary hepatocytes) transfection setup, and incubated for 48-72 h without medium change. Usually, N=4 technical replicates were carried out per test sample.


mRNA Expression Analysis


48 or 72 hours after siRNA transfection or free siRNA uptake, the cellular RNA was harvested by usage of Promega's SV96 total RNA isolation system (cat. no. Z3500) according to the manufacturer's protocol, including a DNase step during the procedure.


For cDNA synthesis, the ThermoFisher TaqMan™ Reverse Transcriptase kit (cat. no. N8080234) was used. cDNA was synthesized from 30 ng RNA using 1.2 μL 10×RT buffer, 2.64 μL MgCl2 (25 mM), 2.4 μL dNTPs (10 mM), 0.6 μL random hexamers (50 μM), 0.6 μL Oligo(dT)16 (SEQ ID NO: 1631) (50 μM), 0.24 μL RNase inhibitor (20 U/μL) and 0.3 μL Multiscribe™ (50 U/μL) in a total volume of 12 μL. Samples were incubated at 25° C. for 10 minutes and 42° C. for 60 minutes. The reaction was stopped by heating to 95° C. for 5 minutes.


Human and cynomolgus LPA mRNA levels were quantified by qPCR using the ThermoFisher TaqMan™ Universal PCR Master Mix (cat. no. 4305719) and the following TaqMan Gene Expression assays:
















LPA
PLG




















Human
Hs00916691_m1
Hs00264877_m1




Hs00534377_m1



Cynomolgus
Rh02789265_m1
Mf02789292_m1










PCR was performed in technical duplicates with an ABI Prism 7900 system under the following PCR conditions: 2 minutes at 50° C., 10 minutes at 95° C., 40 cycles with 95° C. for 15 seconds and 1 minute at 60° C. PCR was set up as a simplex PCR detecting the target gene in one reaction and the housekeeping gene (human/cynomolgus RPL37A) for normalization in a parallel reaction. The final volume for the PCR reaction was 12.5 μL in a 1×PCR master mix; RPL37A primers were used at a final concentration of 50 nM and the probe was used at a final concentration of 200 nM. The ΔΔCt method was applied to calculate relative expression levels of the target transcripts. Percentage of target gene expression was calculated by normalization based on the levels of the LV2 or LV3 non-silencing siRNA control sequence.


Cytotoxicity Measurement


Cytotoxicity was measured 72 hours after 5 nM and 50 nM siRNA transfections of a culture of 20,000 HepG2-LPA cells per 96-well by determining the ratio of cellular viability/toxicity in each sample. Cell viability was measured by determination of the intracellular ATP content using the CellTiter-Glo assay (Promega, cat. no. G7570) according to the manufacturer's protocol. Cell toxicity was measured in the supernatant using the ToxiLight assay (Lonza, cat. no. LT07-217) according to the manufacturer's protocol. AllStars Hs Cell Death siRNA (Qiagen, cat. no. SI04381048), 25 μM Ketoconazole (Calbiochem, cat. no. 420600) and 1% Triton X-100 (Sigma, cat. no. T9284) were used as positive controls.


Results


As shown in FIGS. 1A and 1B, transient transfection of Hep3B cells with the pmirGLO-LPA plasmid followed by transfection of the LPA siRNA library with said Hep3B cells at 1 or 10 nM correlated very well with correlation coefficients of R2=0.78 (1 nM LPA siRNA) and R2=0.74 (10 nM LPA siRNA). FIGS. 1A and 1B also demonstrate the identification of highly potent LPA siRNA reagents. Only a small fraction of LPA siRNA sequences exhibited knockdown activities>75% (1 nM siRNA concentration) and >85% (10 nM siRNA concentration). 34 active LPA siRNA reagents with only a single 100% matching site within the human LPA mRNA sequence were selected for further characterization using in vitro assays.


IC50 and Imax values of the 34 selected LPA siRNAs from two independent experiments are depicted in Table 5.









TABLE 5







Activity of selected siRNAs in HepG2


cells transfected with pmirGLO-LPA












Experiment 1

Experiment 2














Compound
Imax %
IC50 [nM]
Imax %
IC50 [nM]

















siLPA#0004
92.6
0.546
93.1
0.481



siLPA#0007
87.4
0.376
93.2
0.299



siLPA#0019
80.8
0.943
90.4
1.09



siLPA#0059
93.6
0.554
92.6
0.274



siLPA#0102
81.3
0.388
86.3
0.578



siLPA#0103
83.1
8.96
90.4
22.5



siLPA#0104
96.3
0.239
94.5
0.285



siLPA#0105
85.0
1.66
94.1
4.78



siLPA#0107
94.4
0.384
95.3
0.733



siLPA#0108
85.2
0.269
90.3
0.774



siLPA#0109
88.7
1.28
87.4
5.76



siLPA#0110
90.8
0.475
93.0
5.92



siLPA#0111
91.9
0.272
91.8
2.13



siLPA#0138
87.9
0.752
86.9
1.08



siLPA#0141
77.5
0.595
88.9
1.75



siLPA#0168
78.3
0.886
90.4
1.30



siLPA#0169
84.1
1.63
92.9
0.780



siLPA#0172
92.0
0.115
96.3
0.684



siLPA#0174
84.5
1.11
86.1
1.2



siLPA#0200
90.8
0.865
89.5
0.228



siLPA#0204
83.6
1.19
87.2
0.740



siLPA#0208
93.4
1.24
84.7
1.38



siLPA#0214
88.2
4.33
91.0
4.71



siLPA#0217
76.0
5.06
83.0
3.13



siLPA#0220
78.6
1.31
88.2
0.969



siLPA#0221
92.5
0.955
89.9
0.848



siLPA#0223
95.2
0.534
96.5
0.502



siLPA#0224
81.3
1.7
87.7
0.861



siLPA#0228
88.7
0.268
88.7
0.687



siLPA#0277
79.9
0.823
88.8
1.39



siLPA#0279
92.1
0.521
91.3
0.471



siLPA#0282
78.6
1.61
86.5
0.394



siLPA#0296
74.3
3.46
85.3
1.96



siLPA#0298
90.4
0.656
91.1
0.913










The 34 selected siRNAs were further evaluated for LPA mRNA knockdown activity in HepG2-LPA cells stably overexpressing a human LPA cDNA construct (FIG. 2A). This cell line was identified as being not suitable for the characterization of all LPA siRNAs regarding mRNA knockdown activity because the cDNA clone misses the last 196 nucleotides of the 3′ untranslated region (UTR) of the human LPA mRNA (NM_005577.2) (Brunner et al., Proc Natl Acad Sci. (1993) 90(24):11643-7). Therefore, the 34 LPA siRNA reagents were further investigated for LPA mRNA knockdown activity in primary transgenic apo(a) mouse hepatocytes (FIG. 2B) and in primary cynomolgus hepatocytes (FIG. 2C).


The specificity of the 34 selected LPA siRNAs was evaluated by assessing their ability to repress the mRNA expression levels of human plasminogen, the closest protein-coding orthologue of apo(a). PLG mRNA levels were determined in the human HuH-7 cell line (FIG. 3A) as well as in primary human (FIG. 3B) and cynomolgus (FIG. 3C) hepatocytes transfected with LPA siRNAs.


Next, the 34 selected LPA siRNAs were transfected into HepG2-LPA overexpressing cells and assayed for off-target effects by measuring cellular viability (intracellular ATP content) and toxicity (extracellular adenylate kinase levels) from the same cell culture well (FIG. 4).


Subsequently, less potent siRNAs with IC50>1 nM or Imax<90% in both pmirGLO-LPA experiments in the stable HepG2 cell clone (see Table 5) were filtered out. In total, 17 LPA siRNAs were selected for additional IC50 experiments in primary transgenic apo(a) mouse hepatocytes. IC50 and Imax values are listed in Table 6.


Taken together, these results highlight the identification of siRNAs capable of potent and specific inhibition of human and cynomolgus LPA mRNA expression in human cells.









TABLE 6







Activity of selected siRNAs in apo(a) mouse hepatocytes











Compound
Imax %
IC50 [nM]















siLPA#0004
91.1
0.0049



siLPA#0007
88.4
0.0058



siLPA#0019
84.8
0.013



siLPA#0090
90.8
0.0113



siLPA#0104
92.1
0.0197



siLPA#0107
92.9
0.003



siLPA#0108
93.2
0.0076



siLPA#0110
95.6
0.009



siLPA#0111
94.8
0.0115



siLPA#0168
92.9
0.021



siLPA#0169
96.2
0.0204



siLPA#0172
92.9
0.0025



siLPA#0200
94.5
0.003



siLPA#0221
91.8
0.0139



siLPA#0223
91.4
0.0041



siLPA#0279
95.2
0.0393



siLPA#0298
93.0
0.0343










Example 3: Identification of Active GalNAc-Conjugated siRNAs for Inhibition of Human and Cynomolgus LPA Expression

Methods


GalNAc-siRNAs, including non-targeting control siRNAs (NT control), were generated based on the indicated sequences (see sequence listings above) as described in WO 2019/170731.


Cell and Tissue Culture


Human (BioreclamationlVT, cat. no. M00995-P) and cynomolgus (Primacyt, cat. no. CHCP-I-T) primary hepatocytes were cultured as described above in Example 2.


Human peripheral blood mononuclear cells (PBMCs) were isolated from approximately 16 ml of blood from three healthy donors that were collected in Vacutainer® CPT™ tubes coated with sodium heparin (BD, cat. no. 362780) according to manufacturer's instructions.


Human Apo(a) Transgenic Mouse Model


The female mice used in the following experiments carried a YAC genomic locus comprising the full-length human LPA gene [Nat Genet. 1995 9(4):424-31]. The transgenic model, strain FVB/N-Tg(LPA,LPAL2,PLG)1Hgc/Mmmh, was in-licensed from University of California, Berkeley, USA.


Assays


mRNA expression analysis was performed as described above in Example 2.


For IC50 measurements in primary human, cynomolgus and transgenic apo(a) mouse hepatocytes under free uptake conditions, 70,000 (human and cynomolgus) or 30,000 (transgenic apo(a) mouse) cells in Collagen-I coated 96-well plates were incubated for 72 hours without medium change with the siRNA-GalNAc conjugates at concentrations ranging from 10 μM-0.01 nM (human and cynomolgus) or 1 μM-0.001 μM (transgenic apo(a) mouse) using 10-fold dilution steps.


Cytotoxicity and cell viability were measured as described above in Example 2.


siRNA Stability in Mouse Serum


Modified siRNAs were tested for nuclease stability in 50% mouse serum. 160 μl of 2.5 μM siRNA in 1×DPBS (Life Technologies, cat. no. 14190-094) and 160 μl mouse serum (Sigma, cat. no. M5905) were incubated at 37° C. for up to 168 h. At each time-point (0 h, 8 h, 24 h, 48 h, 72 h, 96 h and 168 h), 20 μl of the reaction was taken out and quenched with a stop solution (Tissue & Cell Lysis Solution (Epicentre, cat. no. MTC096H), Proteinase K (Sigma, cat. no. P2308), water) at 65° C. for 30 min. Prior to HPLC analysis on a Waters 2695 Separation Module and a 2487 Dual Absorbance Detector, RNase-free water was added to each sample. The solution was analyzed by HPLC using a DNAPac PA200 analytical column (Thermo Scientific, cat. no. 063000).















Time (min)
Flow (mL/min)
% Buffer A*
% Buffer B**


















0
1
75
25


20
1
35
65











    • Buffer A: 20 mM sodium phosphate (Sigma, Cat. No. 342483), pH 11;

    • Buffer B: 20 mM sodium phosphate (Sigma, Cat. No. 342483), 1 M sodium bromide (Sigma, Cat. No. 02119), pH 11.





Serum half-lives were estimated for both strands of the siRNA.


apo(a) ELISA Assay


100 μl of 1:4 pre-diluted supernatants from primary transgenic apo(a) mouse hepatocytes treated with the indicated concentrations of LPA GalNAc-siRNA conjugates were used for apo(a) protein determination by CellBiolabs ELISA kit (cat. no. STA-359) according to the supplier's manual. OD450 measurements were done with a TECAN Infinite M1000 Pro instrument and TECAN's Magellan software module. Percentage of apo(a) protein expression was calculated by normalization based on the mean levels of the LV2 non-silencing siRNA control sequence.


For apo(a) determination from transgenic apo(a) mouse serum samples, blood was drawn as follows: for generation of maximum 30 μl serum, blood was taken from the vena saphena using Minivette® and microvettes from Sarstedt (cat. no. 17.2111.050 and 20.1280). For generation of maximum 100 μl serum, retroorbital blood was taken using a micropipette (Sigma, cat. no. BR709109) and a microvette (Sarstedt, cat. no. 20.1291). Prior to centrifugation at 4° C. for 10 minutes at 3500×g, the coagulation of the samples was done for 30 minutes at room temperature. Serum samples were diluted 1:5,000-1:20,000 for apo(a) ELISA measurement.


PLG ELISA Assay


100 μl of 1:4 pre-diluted supernatants from primary human hepatocytes treated with the indicated concentrations of LPA GalNAc-siRNA conjugates were used for plasminogen protein determination by Abnova ELISA kit (cat. no. KA3897) according to the supplier's manual. OD450 measurements were done with a TECAN Infinite M1000 Pro instrument and TECAN's Magellan software module. Percentage of PLG protein expression was calculated by normalization based on the mean levels of the LV2 non-silencing siRNA control sequence.


IFNα Determination


Protein concentration of human IFNα2a and 7 other cytokines was quantified in the supernatant of human PBMCs by using 25 μl of the cell culture supernatant and applying MesoScale Discovery's electrochemiluminescence U-PLEX assay technology (cat. no. K151VHK) according to the supplier's protocol.


RNA-Seq Off-Target Analysis


In order to test for potential off-target activities of LPA GalNAc-siRNA conjugates, RNA-Seq analysis was undertaken by using primary human hepatocytes. For this purpose, 400,000 primary human hepatocytes from two different donors with N=2 technical replicates each were seeded per well of Collagen-I coated 24-well plates (Corning, cat. no. 354408). Incubation with 5 μM of LPA GalNAc-siRNA conjugate without medium change was done for 72 hours. Cell lysis was undertaken with 350 μl RLT buffer (Qiagen, cat. no. 79216) per well and one freeze-thaw cycle at −80° C. Isolation of total RNA including small RNAs<200 nucleotides was done using a miRNeasy Mini kit (Qiagen, cat. no. 217004) including an optional on-column DNase digestion step (Qiagen, cat. no. 79254) according to the manufacturer's protocol. Integrity of the RNA samples was examined by applying Agilent's 2100 Bioanalyzer Total RNA Nano assay (cat. no. 5067-1511). RNA samples with RIN values>8 were included for RNA-Seq profiling. 400 ng of the RNA samples were then converted into RNA-Seq libraries using the TruSeq Stranded Total RNA LT Sample Prep Kit (with Ribo-Zero Gold) from Illumina (cat. no. RS-122-2301 and RS-122-2302). The resulting libraries were sequenced by paired-end sequencing (2×75 bp) on a NextSeq 500 instrument at ˜45 million reads per library using the NextSeq® 500/550 High Output v2 Kit (cat. no. FC-404-2002).


RNA-Seq data analysis pipeline is based on Array Studio (Qiagen). Briefly, raw data QC was performed, then a filtering step was applied to remove reads corresponding to rRNAs as well as reads having low quality score. Mapping and quantification were performed using OSA4 (Hu et al., Bioinformatics (2012) 28(14):1933-4) (Omicsoft Sequence Aligner, version 4). Reference Human Genome B38 was used for mapping and genes or transcripts were quantified based on Ensembl gene model. Differentially expressed transcripts were identified with DESeq2 (http://www.bioconductor.org/packages/3.2/bioc/html/DESeq2.html) and Voom (Law et al., Genome Biology (2014) 15:R29]. The variable multiplicity was taken into account and false discovery rate (FDR) adjusted p-values were calculated with the Benjamini-Hochberg (BH) correction (Benjamini & Hochberg, J Roy Statist Soc. (1995) B57:289-300).


Results


Following identification of potent LPA siRNAs as described in Example 2, the inventors went on to demonstrate whether the selected molecules retain their activity in the context of a GalNAc-conjugate suitable for liver-specific siRNA delivery in vivo. The inventors also assessed whether this activity holds up in additional hepatocytes from M. fascicularis (cynomolgus monkey), a pre-clinical species. For this purpose, the 17 selected LPA siRNAs were conjugated to three consecutive modified GalNAc conjugated nucleotides at the 5′ end of respective siRNA sense strands as shown in Table 3.


The results of the IC50 measurements by free uptake experiments in primary human and transgenic apo(a) mouse hepatocytes (Table 7) demonstrate the identification of potent LPA GalNAc-siRNAs in both cell types in the absence of transfection conditions.


Interestingly, the same IC50 experiment described above but using primary cynomolgus hepatocytes (Table 7) shows that the presence of a mismatch of an LPA GalNAc-siRNA to the cynomolgus LPA mRNA sequence has mixed impact on retained siRNA knockdown activity. The activity of human LPA GalNAc-siRNAs with a mismatch to cynomolgus species could therefore not be predicted per se, but is dependent on the sequence context and needs to be tested experimentally.









TABLE 7







Imax and IC50 of selected LPA GalNAc-siRNAs in primary hepatocytes











human
transgenic apo(a) mouse
cynomolgus













Compound
Imax %
IC50 [nM]
Imax %
IC50 [nM]
Imax %
IC50 [nM]
















siLPA #0300
76.3
6.0
88.4
0.27
66.7
3.1


siLPA #0301
55.0
306.0
90.7
0.266
64.5
5.9


siLPA #0302
55.9
41.2
94.6
0.242
54.7
1.2


siLPA #0303
63.7
2.0
92.2
0.0117
84.1
3.8


siLPA #0304
53.6
11.7
90.0
0.0369
81.4
2.4


siLPA #0305
77.7
2.5
91.1
0.107
96.2
2.6


siLPA #0306
77.0
4.4
90.7
0.0911
87.8
8.8


siLPA #0307
79.2
4.7
90.9
0.173
84.5
15.1


siLPA #0308
44.7
104.0
89.1
0.95
53.4
69.4


siLPA #0309
61.3
52.4
91.1
0.6
90.3
914.0


siLPA #0310
50.9
210.0
93.2
0.158
74.2
21.8


siLPA #0311
52.3
0.3
90.6
0.96
86.0
13.3


siLPA #0312
63.0
0.8
94.8
0.577
69.7
33.2


siLPA #0313
73.8
n.d.
91.8
0.293
87.3
89.7


siLPA #0314
50.7
4.4
89.8
0.101
83.7
5.3


siLPA #0315
82.6
68.6
92.3
0.0877
21.3
232.0


siLPA #0316
65.5
n.d.
88.9
0.308
1.5
n.a.









The specificity of the 17 selected LPA GalNAc-siRNAs was evaluated by IC50-based testing of their ability to repress mRNA expression levels of human plasminogen in primary human hepatocytes under free uptake conditions. As shown in Table 8, some sequences with a clear effect on plasminogen mRNA reduction were identified. In order to confirm an effect on the protein level, cell culture supernatants of three siRNA concentrations from the same human hepatocyte experiment were used for a plasminogen ELISA readout (FIG. 5).









TABLE 8







Imax and IC50 of selected GalNAc-siRNAs for PLG


mRNA expression in primary human hepatocytes











Compound
Imax %
IC50 [nM]















siLPA#0300
−0.5
n.a.



siLPA#0301
20.7
>10000



siLPA#0302
38.7
157.0



siLPA#0303
23.3
>10000



siLPA#0304
4.8
110.0



siLPA#0305
59.7
1060.0



siLPA#0306
−4.3
n.a.



siLPA#0307
−51.5
n.a.



siLPA#0308
−7.9
n.a.



siLPA#0309
23.8
>10000



siLPA#0310
12.9
n.a.



siLPA#0311
13.5
n.a.



siLPA#0312
−3.1
n.a.



siLPA#0313
17.5
n.a.



siLPA#0314
13.3
n.a.



siLPA#0315
7.6
n.a.



siLPA#0316
38.1
>10000







n.a. = not active






Next, a cytotoxicity assay was performed in HepG2-LPA overexpressing cells to exclude potentially toxic LPA GalNAc-siRNAs (FIG. 6).


The innate immune response to the 17 selected LPA GalNAc-siRNAs was measured in vitro in human cells by examining the production of interferon α2a secreted from human primary PMBCs isolated from three different healthy donors in response to transfection of the siRNAs. No signs of immune stimulation in human PBMCs were observed for any of the tested LPA GalNAc-siRNAs (FIG. 7).


The LPA GalNAc-siRNAs were also tested for their in vitro nuclease stability in 50% murine serum by determining their relative stability and half-lives (Table 9). Half-lives ranged between ˜24 and ˜96 hours.









TABLE 9







Nuclease stability of selected GalNAc-


siRNAs in 50% mouse serum










Compound
t1/2















siLPA#0300
>24
h



siLPA#0301
>48
h



siLPA#0302
>24
h



siLPA#0303
>48
h



siLPA#0304
>48
h



siLPA#0305
96
h



siLPA#0306
>48
h



siLPA#0307
>48
h



siLPA#0308
>48
h



siLPA#0309
>96
h



siLPA#0310
>48
h



siLPA#0311
>72
h



siLPA#0312
>24
h



siLPA#0313
>24
h



siLPA#0314
72
h



siLPA#0315
>96
h



siLPA#0316
>48
h










Finally, the 17 selected LPA GalNAc-siRNAs were tested in vivo in a transgenic mouse model secreting human apo(a) protein from murine liver tissue (FIG. 8). After subcutaneous administration of the selected compounds at a single 5 mg/kg dose, target protein levels were reduced between 68% and 96% (KD max) compared to animals treated with PBS vehicle control. Depending on the compound, the levels returned to 50% of the maximum knockdown (KD50) between ˜day 7 and ˜day 25 post treatment.


Three LPA GalNAc-siRNAs were selected that comprise a strong in vitro and in vivo on-target activity, retained cross-species activity in cynomolgus hepatocytes, and no off-target activity on plasminogen in human hepatocytes. The overall specificity of siLPA #0307, siLPA #0311 and siLPA #0314 was tested by RNA-Seq whole transcriptome analysis using primary human hepatocytes from two different donors treated with 5 μM LPA GalNAc-siRNAs for 72 hours. As shown in FIG. 9, the specificity of the three selected LPA GalNAc-siRNAs was confirmed, LPA being the most downregulated transcript in all of the three analyses.


In summary, the inventors have demonstrated the successful identification of potent, specific, and non-immunogenic LPA GalNAc-siRNAs that strongly reduce expression of the human LPA mRNA and translated apo(a) protein in relevant in vitro and in vivo models.


Example 4: Lead Optimization of GalNAc-Conjugated LPA siRNA Sequences

Based on the results from Example 3, the three parent sequences of the selected LPA GalNAc-siRNAs (siLPA #0307, siLPA #0311, and siLPA #0314) were used for an optimization campaign that included 66 different chemical modifications per siRNA sequence. The resulting sequences and modification pattern are shown in Table 4. All experiments were done as described in Examples 2 and 3 above.


The in vitro activity of these optimization libraries was tested in freshly isolated primary hepatocytes from female apo(a) transgenic mice under free uptake conditions using 0.2 nM, 1 nM, and 5 nM concentrations of LPA GalNAc-siRNAs. As depicted in FIG. 10, the optimization libraries based on selected sequences siLPA #0307 and siLPA #0311 were identified to exhibit a higher overall in vitro activity as compared to lead sequence siLPA #0314.


In order to evaluate improved stability features of the optimized LPA GalNAc-siRNAs, the optimization libraries were assayed for their in vitro half-lives in 50% mouse serum. As demonstrated in Table 10, a large number of modifications were identified with improved nuclease stability as compared to the respective parent molecules.














TABLE 10





siLPA ID
t1/2
siLPA ID
t1/2
siLPA ID
t1/2





















siLPA#0307
>48 h
siLPA#0311
>72 h
siLPA#0314
72
h


(parent)

(parent)

(parent)


siLPA#0317
>72 h
siLPA#0383
>72 h
siLPA#0449
168
h


siLPA#0318
>72 h
siLPA#0384
>72 h
siLPA#0450
168
h


siLPA#0319
>72 h
siLPA#0385
>72 h
siLPA#0451
>96
h


siLPA#0320
>72 h
siLPA#0386
>72 h
siLPA#0452
168
h


siLPA#0321
>72 h
siLPA#0387
>96 h
siLPA#0453
>96
h


siLPA#0322
>72 h
siLPA#0388
>96 h
siLPA#0454
168
h


siLPA#0323
>72 h
siLPA#0389
>96 h
siLPA#0455
>96
h


siLPA#0324
>72 h
siLPA#0390
>96 h
siLPA#0456
>96
h


siLPA#0325
>72 h
siLPA#0391
>96 h
siLPA#0457
>96
h


siLPA#0326
>72 h
siLPA#0392
>96 h
siLPA#0458
>96
h


siLPA#0327
>72 h
siLPA#0393
>96 h
siLPA#0459
168
h


siLPA#0328
>72 h
siLPA#0394
>96 h
siLPA#0460
168
h


siLPA#0329
>72 h
siLPA#0395
>96 h
siLPA#0461
>96
h


siLPA#0330
>72 h
siLPA#0396
>96 h
siLPA#0462
168
h


siLPA#0331
>72 h
siLPA#0397
>96 h
siLPA#0463
168
h


siLPA#0332
>72 h
siLPA#0398
>96 h
siLPA#0464
168
h


siLPA#0333
>72 h
siLPA#0399
>96 h
siLPA#0465
168
h


siLPA#0334
>72 h
siLPA#0400
>96 h
siLPA#0466
>96
h


siLPA#0335
>72 h
siLPA#0401
>96 h
siLPA#0467
>96
h


siLPA#0336
>72 h
siLPA#0402
>72 h
siLPA#0468
168
h


siLPA#0337
>72 h
siLPA#0403
>72 h
siLPA#0469
168
h


siLPA#0338
>72 h
siLPA#0404
>72 h
siLPA#0470
168
h


siLPA#0339
>72 h
siLPA#0405
>72 h
siLPA#0471
168
h


siLPA#0340
>72 h
siLPA#0406
>72 h
siLPA#0472
168
h


siLPA#0341
>72 h
siLPA#0407
>96 h
siLPA#0473
168
h


siLPA#0342
>72 h
siLPA#0408
>96 h
siLPA#0474
>96
h


siLPA#0343
>72 h
siLPA#0409
>96 h
siLPA#0475
168
h


siLPA#0344
>72 h
siLPA#0410
>96 h
siLPA#0476
168
h


siLPA#0345
>72 h
siLPA#0411
>72 h
siLPA#0477
>96
h


siLPA#0346
>72 h
siLPA#0412
>72 h
siLPA#0478
>96
h


siLPA#0347
>72 h
siLPA#0413
>96 h
siLPA#0479
>96
h


siLPA#0348
>48 h
siLPA#0414
>96 h
siLPA#0480
>96
h


siLPA#0349
>72 h
siLPA#0415
>96 h
siLPA#0481
168
h


siLPA#0350
>72 h
siLPA#0416
>96 h
siLPA#0482
168
h


siLPA#0351
>72 h
siLPA#0417
>96 h
siLPA#0483
168
h


siLPA#0352
>72 h
siLPA#0418
>96 h
siLPA#0484
168
h


siLPA#0353
>72 h
siLPA#0419
>96 h
siLPA#0485
168
h


siLPA#0354
>72 h
siLPA#0420
>96 h
siLPA#0486
168
h


siLPA#0355
>72 h
siLPA#0421
>96 h
siLPA#0487
>72
h


siLPA#0356
>72 h
siLPA#0422
>96 h
siLPA#0488
>72
h


siLPA#0357
>72 h
siLPA#0423
>96 h
siLPA#0489
>72
h


siLPA#0358
>72 h
siLPA#0424
>96 h
siLPA#0490
>72
h


siLPA#0359
>72 h
siLPA#0425
>96 h
siLPA#0491
>72
h


siLPA#0360
>72 h
siLPA#0426
>72 h
siLPA#0492
>72
h


siLPA#0361
>72 h
siLPA#0427
>72 h
siLPA#0493
>72
h


siLPA#0362
>72 h
siLPA#0428
>72 h
siLPA#0494
>72
h


siLPA#0363
>72 h
siLPA#0429
>72 h
siLPA#0495
>72
h


siLPA#0364
>72 h
siLPA#0430
>72 h
siLPA#0496
168
h


siLPA#0365
>72 h
siLPA#0431
>72 h
siLPA#0497
168
h


siLPA#0366
>72 h
siLPA#0432
>72 h
siLPA#0498
168
h


siLPA#0367
>72 h
siLPA#0433
>72 h
siLPA#0499
168
h


siLPA#0368
>72 h
siLPA#0434
>72 h
siLPA#0500
168
h


siLPA#0369
>72 h
siLPA#0435
>72 h
siLPA#0501
>72
h


siLPA#0370
>72 h
siLPA#0436
>48 h
siLPA#0502
>72
h


siLPA#0371
>72 h
siLPA#0437
>48 h
siLPA#0503
>72
h


siLPA#0372
>72 h
siLPA#0438
>48 h
siLPA#0504
>72
h


siLPA#0373
>72 h
siLPA#0439
>72 h
siLPA#0505
>96
h


siLPA#0374
>72 h
siLPA#0440
>72 h
siLPA#0506
>96
h


siLPA#0375
>72 h
siLPA#0441
>72 h
siLPA#0507
>96
h


siLPA#0376
>72 h
siLPA#0442
>72 h
siLPA#0508
>96
h


siLPA#0377
>72 h
siLPA#0443
>96 h
siLPA#0509
>96
h


siLPA#0378
>72 h
siLPA#0444
>72 h
siLPA#0510
168
h


siLPA#0379
>72 h
siLPA#0445
>72 h
siLPA#0511
168
h


siLPA#0380
>72 h
siLPA#0446
>72 h
siLPA#0512
168
h


siLPA#0381
>72 h
siLPA#0447
>72 h
siLPA#0513
168
h


siLPA#0382
>72 h
siLPA#0448
>96 h
siLPA#0514
168
h









Next, in total 41 out of 198 optimized LPA GalNAc-siRNAs based on the three different parent sequences were selected for in vivo pharmacology testing in apo(a) transgenic mice and compared to the respective parent molecules siLPA #0307, siLPA #0311 and siLPA #0314 (FIGS. 11A-C). After subcutaneous administration of the selected compounds at a single 3 mg/kg dose, target protein levels were reduced between 56% and 99% (KDmax) compared to animals treated with PBS vehicle control. Depending on the compound, the levels returned to 50% of the maximum knockdown (KD50) between ˜day 8 and ˜day 42 post treatment. A large number of optimized molecules were identified with an improved in vivo pharmacology profile (KDmax and KD50) when compared to the respective parent sequences.


Towards the selection of advanced, optimized LPA GalNAc-siRNAs, further in vitro experiments were undertaken. The immune stimulatory potential was measured in the human PBMC assay using IFNα2a secretion to the supernatant as readout (FIG. 12). No signs of immune stimulation in human PBMCs were observed for any of the tested LPA GalNAc-siRNAs.


The cross-species activity of the 41 selected, optimized LPA GalNAc-siRNAs was evaluated in primary cynomolgus hepatocytes (FIG. 13). Interestingly, although all tested sequence modifications share one mismatch to macaque/the cynomolgus mRNA, the retained knockdown potencies differ largely among compounds.


In order to test for relative specificity of the 41 selected, optimized LPA GalNAc-siRNAs, their effect on mRNA expression levels of human plasminogen using primary human hepatocytes under free uptake conditions was measured (FIG. 14). Only a few molecules were identified with a minor effect on PLG expression levels.


Finally, some advanced, optimized LPA GalNAc-siRNAs (siLPA #0317, siLPA #0393, siLPA #0394, siLPA #0411, siLPA #0414, and siLPA #0455) were assayed in IC50 experiments under free uptake conditions using primary transgenic apo(a) mouse hepatocytes (Table 11).









TABLE 11







Activity of selected GalNAc-siRNAs in apo(a) mouse hepatocytes











Compound
Imax %
IC50 [nM]















siLPA#0317
94.7
0.0471



siLPA#0393
93.9
0.0683



siLPA#0394
96.2
0.0616



siLPA#0411
86.7
0.128



siLPA#0414
87.9
0.396



siLPA#0455
85.5
0.367










Taken together, the inventors have presented data that demonstrate the successful identification of optimized LPA GalNAc-siRNAs that exhibit significantly improved in vitro and in vivo pharmacology profiles.












LPA Sequences















Human LPA mRNA sequence-NM_00577.2. (SEQ ID NO. 1632)








   1
aggtaccttt ggggctggct ttctcaagga agcccagctc cctgtgattg agaatgaagt


  61
gtgcaatcgc tatgactggg attgggacac actttctggg cactgctggc cagtcccaaa


 121
atggaacata aggaagtggt tcttctactt cttttatttc tgaaatcagc agcacctgag


 181
caaagccatg tggtccagga ttgctaccat ggtgatggac agagttatcg aggcacgtac


 241
tccaccactg tcacaggaag gacctgccaa gcttggtcat ctatgacacc acatcaacat


 301
aataggacca cagaaaacta cccaaatgct ggcttgatca tgaactactg caggaatcca


 361
gatgctgtgg cagctcctta ttgttatacg agggatcccg gtgtcaggtg ggagtactgc


 421
aacctgacgc aatgctcaga cgcagaaggg actgccgtcg cgcctccgac tgttaccccg


 481
gttccaagcc tagaggctcc ttccgaacaa gcaccgactg agcaaaggcc tggggtgcag


 541
gagtgctacc atggtaatgg acagagttat cgaggcacat actccaccac tgtcacagga


 601
agaacctgcc aagcttggtc atctatgaca ccacactcgc atagtcggac cccagaatac


 661
tacccaaatg ctggcttgat catgaactac tgcaggaatc cagatgctgt ggcagctcct


 721
tattgttata cgagggatcc cggtgtcagg tgggagtact gcaacctgac gcaatgctca


 781
gacgcagaag ggactgccgt cgcgcctccg actgttaccc cggttccaag cctagaggct


 841
ccttccgaac aagcaccgac tgagcaaagg cctggggtgc aggagtgcta ccatggtaat


 901
ggacagagtt atcgaggcac atactccacc actgtcacag gaagaacctg ccaagcttgg


 961
tcatctatga caccacactc gcatagtcgg accccagaat actacccaaa tgctggcttg


1021
atcatgaact actgcaggaa tccagatgct gtggcagctc cttattgtta tacgagggat


1081
cccggtgtca ggtgggagta ctgcaacctg acgcaatgct cagacgcaga agggactgcc


1141
gtcgcgcctc cgactgttac cccggttcca agcctagagg ctccttccga acaagcaccg


1201
actgagcaga ggcctggggt gcaggagtgc taccacggta atggacagag ttatcgaggc


1261
acatactcca ccactgtcac tggaagaacc tgccaagctt ggtcatctat gacaccacac


1321
tcgcatagtc ggaccccaga atactaccca aatgctggct tgatcatgaa ctactgcagg


1381
aatccagatg ctgtggcagc tccttattgt tatacgaggg atcccggtgt caggtgggag


1441
tactgcaacc tgacgcaatg ctcagacgca gaagggactg ccgtcgcgcc tccgactgtt


1501
accccggttc caagcctaga ggctccttcc gaacaagcac cgactgagca aaggcctggg


1561
gtgcaggagt gctaccatgg taatggacag agttatcgag gcacatactc caccactgtc


1621
acaggaagaa cctgccaagc ttggtcatct atgacaccac actcgcatag tcggacccca


1681
gaatactacc caaatgctgg cttgatcatg aactactgca ggaatccaga tgctgtggca


1741
gctccttatt gttatacgag ggatcccggt gtcaggtggg agtactgcaa cctgacgcaa


1801
tgctcagacg cagaagggac tgccgtcgcg cctccgactg ttaccccggt tccaagccta


1861
gaggctcctt ccgaacaagc accgactgag caaaggcctg gggtgcagga gtgctaccat


1921
ggtaatggac agagttatcg aggcacatac tccaccactg tcacaggaag aacctgccaa


1981
gcttggtcat ctatgacacc acactcgcat agtcggaccc cagaatacta cccaaatgct


2041
ggcttgatca tgaactactg caggaatcca gatgctgtgg cagctcctta ttgttatacg


2101
agggatcccg gtgtcaggtg ggagtactgc aacctgacgc aatgctcaga cgcagaaggg


2161
actgccgtcg cgcctccgac tgttaccccg gttccaagcc tagaggctcc ttccgaacaa


2221
gcaccgactg agcaaaggcc tggggtgcag gagtgctacc atggtaatgg acagagttat


2281
cgaggcacat actccaccac tgtcacagga agaacctgcc aagcttggtc atctatgaca


2341
ccacactcgc atagtcggac cccagaatac tacccaaatg ctggcttgat catgaactac


2401
tgcaggaatc cagatgctgt ggcagctcct tattgttata cgagggatcc cggtgtcagg


2461
tgggagtact gcaacctgac gcaatgctca gacgcagaag ggactgccgt cgcgcctccg


2521
actgttaccc cggttccaag cctagaggct ccttccgaac aagcaccgac tgagcagagg


2581
cctggggtgc aggagtgcta ccacggtaat ggacagagtt atcgaggcac atactccacc


2641
actgtcactg gaagaacctg ccaagcttgg tcatctatga caccacactc gcatagtcgg


2701
accccagaat actacccaaa tgctggcttg atcatgaact actgcaggaa tccagatcct


2761
gtggcagccc cttattgtta tacgagggat cccagtgtca ggtgggagta ctgcaacctg


2821
acacaatgct cagacgcaga agggactgcc gtcgcgcctc caactattac cccgattcca


2881
agcctagagg ctccttctga acaagcacca actgagcaaa ggcctggggt gcaggagtgc


2941
taccacggaa atggacagag ttatcaaggc acatacttca ttactgtcac aggaagaacc


3001
tgccaagctt ggtcatctat gacaccacac tcgcatagtc ggaccccagc atactaccca


3061
aatgctggct tgatcaagaa ctactgccga aatccagatc ctgtggcagc cccttggtgt


3121
tatacaacag atcccagtgt caggtgggag tactgcaacc tgacacgatg ctcagatgca


3181
gaatggactg ccttcgtccc tccgaatgtt attctggctc caagcctaga ggcttttttt


3241
gaacaagcac tgactgagga aacccccggg gtacaggact gctactacca ttatggacag


3301
agttaccgag gcacatactc caccactgtc acaggaagaa cttgccaagc ttggtcatct


3361
atgacaccac accagcatag tcggacccca gaaaactacc caaatgctgg cctgaccagg


3421
aactactgca ggaatccaga tgctgagatt cgcccttggt gttacaccat ggatcccagt


3481
gtcaggtggg agtactgcaa cctgacacaa tgcctggtga cagaatcaag tgtccttgca


3541
actctcacgg tggtcccaga tccaagcaca gaggcttctt ctgaagaagc accaacggag


3601
caaagccccg gggtccagga ttgctaccat ggtgatggac agagttatcg aggctcattc


3661
tctaccactg tcacaggaag gacatgtcag tcttggtcct ctatgacacc acactggcat


3721
cagaggacaa cagaatatta tccaaatggt ggcctgacca ggaactactg caggaatcca


3781
gatgctgaga ttagtccttg gtgttatacc atggatccca atgtcagatg ggagtactgc


3841
aacctgacac aatgtccagt gacagaatca agtgtccttg cgacgtccac ggctgtttct


3901
gaacaagcac caacggagca aagccccaca gtccaggact gctaccatgg tgatggacag


3961
agttatcgag gctcattctc caccactgtt acaggaagga catgtcagtc ttggtcctct


4021
atgacaccac actggcatca gagaaccaca gaatactacc caaatggtgg cctgaccagg


4081
aactactgca ggaatccaga tgctgagatt cgcccttggt gttataccat ggatcccagt


4141
gtcagatggg agtactgcaa cctgacgcaa tgtccagtga tggaatcaac tctcctcaca


4201
actcccacgg tggtcccagt tccaagcaca gagcttcctt ctgaagaagc accaactgaa


4261
aacagcactg gggtccagga ctgctaccga ggtgatggac agagttatcg aggcacactc


4321
tccaccacta tcacaggaag aacatgtcag tcttggtcgt ctatgacacc acattggcat


4381
cggaggatcc cattatacta tccaaatgct ggcctgacca ggaactactg caggaatcca


4441
gatgctgaga ttcgcccttg gtgttacacc atggatccca gtgtcaggtg ggagtactgc


4501
aacctgacac gatgtccagt gacagaatcg agtgtcctca caactcccac agtggccccg


4561
gttccaagca cagaggctcc ttctgaacaa gcaccacctg agaaaagccc tgtggtccag


4621
gattgctacc atggtgatgg acggagttat cgaggcatat cctccaccac tgtcacagga


4681
aggacctgtc aatcttggtc atctatgata ccacactggc atcagaggac cccagaaaac


4741
tacccaaatg ctggcctgac cgagaactac tgcaggaatc cagattctgg gaaacaaccc


4801
tggtgttaca caaccgatcc gtgtgtgagg tgggagtact gcaatctgac acaatgctca


4861
gaaacagaat caggtgtcct agagactccc actgttgttc cagttccaag catggaggct


4921
cattctgaag cagcaccaac tgagcaaacc cctgtggtcc ggcagtgcta ccatggtaat


4981
ggccagagtt atcgaggcac attctccacc actgtcacag gaaggacatg tcaatcttgg


5041
tcatccatga caccacaccg gcatcagagg accccagaaa actacccaaa tgatggcctg


5101
acaatgaact actgcaggaa tccagatgcc gatacaggcc cttggtgttt taccatggac


5161
cccagcatca ggtgggagta ctgcaacctg acgcgatgct cagacacaga agggactgtg


5221
gtcgctcctc cgactgtcat ccaggttcca agcctagggc ctccttctga acaagactgt


5281
atgtttggga atgggaaagg ataccggggc aagaaggcaa ccactgttac tgggacgcca


5341
tgccaggaat gggctgccca ggagccccat agacacagca cgttcattcc agggacaaat


5401
aaatgggcag gtctggaaaa aaattactgc cgtaaccctg atggtgacat caatggtccc


5461
tggtgctaca caatgaatcc aagaaaactt tttgactact gtgatatccc tctctgtgca


5521
tcctcttcat ttgattgtgg gaagcctcaa gtggagccga agaaatgtcc tggaagcatt


5581
gtaggggggt gtgtggccca cccacattcc tggccctggc aagtcagtct cagaacaagg


5641
tttggaaagc acttctgtgg aggcacctta atatccccag agtgggtgct gactgctgct


5701
cactgcttga agaagtcctc aaggccttca tcctacaagg tcatcctggg tgcacaccaa


5761
gaagtgaacc tcgaatctca tgttcaggaa atagaagtgt ctaggctgtt cttggagccc


5821
acacaagcag atattgcctt gctaaagcta agcaggcctg ccgtcatcac tgacaaagta


5881
atgccagctt gtctgccatc cccagactac atggtcaccg ccaggactga atgttacatc


5941
actggctggg gagaaaccca aggtaccttt gggactggcc ttctcaagga agcccagctc


6001
cttgttattg agaatgaagt gtgcaatcac tataagtata tttgtgctga gcatttggcc


6061
agaggcactg acagttgcca gggtgacagt ggagggcctc tggtttgctt cgagaaggac


6121
aaatacattt tacaaggagt cacttcttgg ggtcttggct gtgcacgccc caataagcct


6181
ggtgtctatg ctcgtgtttc aaggtttgtt acttggattg agggaatgat gagaaataat


6241
taattggacg ggagacagag tgaagcatca acctacttag aagctgaaac gtgggtaagg


6301
atttagcatg ctggaaataa tagacagcaa tcaaacgaag acactgttcc cagctaccag


6361
ctatgccaaa ccttggcatt tttggtattt ttgtgtataa gcttttaagg tctgactgac


6421
aaattctgta ttaaggtgtc atagctatga catttgttaa aaataaactc tgcacttatt


6481
ttgatttga










human LPA mRNA sequence-NM_005577.3 (SEQ ID NO: 1627)








   1
ctgggattgg gacacacttt ctgggcactg ctggccagtc ccaaaatgga acataaggaa


  61
gtggttcttc tacttctttt atttctgaaa tcagcagcac ctgagcaaag ccatgtggtc


 121
caggattgct accatggtga tggacagagt tatcgaggca cgtactccac cactgtcaca


 181
ggaaggacct gccaagcttg gtcatctatg acaccacatc aacataatag gaccacagaa


 241
aactacccaa atgctggctt gatcatgaac tactgcagga atccagatgc tgtggcagct


 301
ccttattgtt atacgaggga tcccggtgtc aggtgggagt actgcaacct gacgcaatgc


 361
tcagacgcag aagggactgc cgtcgcgcct ccgactgtta ccccggttcc aagcctagag


 421
gctccttccg aacaagcacc gactgagcaa aggcctgggg tgcaggagtg ctaccatggt


 481
aatggacaga gttatcgagg cacatactcc accactgtca caggaagaac ctgccaagct


 541
tggtcatcta tgacaccaca ctcgcatagt cggaccccag aatactaccc aaatgctggc


 601
ttgatcatga actactgcag gaatccagat gctgtggcag ctccttattg ttatacgagg


 661
gatcccggtg tcaggtggga gtactgcaac ctgacgcaat gctcagacgc agaagggact


 721
gccgtcgcgc ctccgactgt taccccggtt ccaagcctag aggctccttc cgaacaagca


 781
ccgactgagc aaaggcctgg ggtgcaggag tgctaccatg gtaatggaca gagttatcga


 841
ggcacatact ccaccactgt cacaggaaga acctgccaag cttggtcatc tatgacacca


 901
cactcgcata gtcggacccc agaatactac ccaaatgctg gcttgatcat gaactactgc


 961
aggaatccag atgctgtggc agctccttat tgttatacga gggatcccgg tgtcaggtgg


1021
gagtactgca acctgacgca atgctcagac gcagaaggga ctgccgtcgc gcctccgact


1081
gttaccccgg ttccaagcct agaggctcct tccgaacaag caccgactga gcagaggcct


1141
ggggtgcagg agtgctacca cggtaatgga cagagttatc gaggcacata ctccaccact


1201
gtcactggaa gaacctgcca agcttggtca tctatgacac cacactcgca tagtcggacc


1261
ccagaatact acccaaatgc tggcttgatc atgaactact gcaggaatcc agatgctgtg


1321
gcagctcctt attgttatac gagggatccc ggtgtcaggt gggagtactg caacctgacg


1381
caatgctcag acgcagaagg gactgccgtc gcgcctccga ctgttacccc ggttccaagc


1441
ctagaggctc cttccgaaca agcaccgact gagcaaaggc ctggggtgca ggagtgctac


1501
catggtaatg gacagagtta tcgaggcaca tactccacca ctgtcacagg aagaacctgc


1561
caagcttggt catctatgac accacactcg catagtcgga ccccagaata ctacccaaat


1621
gctggcttga tcatgaacta ctgcaggaat ccagatgctg tggcagctcc ttattgttat


1681
acgagggatc ccggtgtcag gtgggagtac tgcaacctga cgcaatgctc agacgcagaa


1741
gggactgccg tcgcgcctcc gactgttacc ccggttccaa gcctagaggc tccttccgaa


1801
caagcaccga ctgagcaaag gcctggggtg caggagtgct accatggtaa tggacagagt


1861
tatcgaggca catactccac cactgtcaca ggaagaacct gccaagcttg gtcatctatg


1921
acaccacact cgcatagtcg gaccccagaa tactacccaa atgctggctt gatcatgaac


1981
tactgcagga atccagatgc tgtggcagct ccttattgtt atacgaggga tcccggtgtc


2041
aggtgggagt actgcaacct gacgcaatgc tcagacgcag aagggactgc cgtcgcgcct


2101
ccgactgtta ccccggttcc aagcctagag gctccttccg aacaagcacc gactgagcaa


2161
aggcctgggg tgcaggagtg ctaccatggt aatggacaga gttatcgagg cacatactcc


2221
accactgtca caggaagaac ctgccaagct tggtcatcta tgacaccaca ctcgcatagt


2281
cggaccccag aatactaccc aaatgctggc ttgatcatga actactgcag gaatccagat


2341
gctgtggcag ctccttattg ttatacgagg gatcccggtg tcaggtggga gtactgcaac


2401
ctgacgcaat gctcagacgc agaagggact gccgtcgcgc ctccgactgt taccccggtt


2461
ccaagcctag aggctccttc cgaacaagca ccgactgagc agaggcctgg ggtgcaggag


2521
tgctaccacg gtaatggaca gagttatcga ggcacatact ccaccactgt cactggaaga


2581
acctgccaag cttggtcatc tatgacacca cactcgcata gtcggacccc agaatactac


2641
ccaaatgctg gcttgatcat gaactactgc aggaatccag atcctgtggc agccccttat


2701
tgttatacga gggatcccag tgtcaggtgg gagtactgca acctgacaca atgctcagac


2761
gcagaaggga ctgccgtcgc gcctccaact attaccccga ttccaagcct agaggctcct


2821
tctgaacaag caccaactga gcaaaggcct ggggtgcagg agtgctacca cggaaatgga


2881
cagagttatc aaggcacata cttcattact gtcacaggaa gaacctgcca agcttggtca


2941
tctatgacac cacactcgca tagtcggacc ccagcatact acccaaatgc tggcttgatc


3001
aagaactact gccgaaatcc agatcctgtg gcagcccctt ggtgttatac aacagatccc


3061
agtgtcaggt gggagtactg caacctgaca cgatgctcag atgcagaatg gactgccttc


3121
gtccctccga atgttattct ggctccaagc ctagaggctt tttttgaaca agcactgact


3181
gaggaaaccc ccggggtaca ggactgctac taccattatg gacagagtta ccgaggcaca


3241
tactccacca ctgtcacagg aagaacttgc caagcttggt catctatgac accacaccag


3301
catagtcgga ccccagaaaa ctacccaaat gctggcctga ccaggaacta ctgcaggaat


3361
ccagatgctg agattcgccc ttggtgttac accatggatc ccagtgtcag gtgggagtac


3421
tgcaacctga cacaatgcct ggtgacagaa tcaagtgtcc ttgcaactct cacggtggtc


3481
ccagatccaa gcacagaggc ttcttctgaa gaagcaccaa cggagcaaag ccccggggtc


3541
caggattgct accatggtga tggacagagt tatcgaggct cattctctac cactgtcaca


3601
ggaaggacat gtcagtcttg gtcctctatg acaccacact ggcatcagag gacaacagaa


3661
tattatccaa atggtggcct gaccaggaac tactgcagga atccagatgc tgagattagt


3721
ccttggtgtt ataccatgga tcccaatgtc agatgggagt actgcaacct gacacaatgt


3781
ccagtgacag aatcaagtgt ccttgcgacg tccacggctg tttctgaaca agcaccaacg


3841
gagcaaagcc ccacagtcca ggactgctac catggtgatg gacagagtta tcgaggctca


3901
ttctccacca ctgttacagg aaggacatgt cagtcttggt cctctatgac accacactgg


3961
catcagagaa ccacagaata ctacccaaat ggtggcctga ccaggaacta ctgcaggaat


4021
ccagatgctg agattcgccc ttggtgttat accatggatc ccagtgtcag atgggagtac


4081
tgcaacctga cgcaatgtcc agtgatggaa tcaactctcc tcacaactcc cacggtggtc


4141
ccagttccaa gcacagagct tccttctgaa gaagcaccaa ctgaaaacag cactggggtc


4201
caggactgct accgaggtga tggacagagt tatcgaggca cactctccac cactatcaca


4261
ggaagaacat gtcagtcttg gtcgtctatg acaccacatt ggcatcggag gatcccatta


4321
tactatccaa atgctggcct gaccaggaac tactgcagga atccagatgc tgagattcgc


4381
ccttggtgtt acaccatgga tcccagtgtc aggtgggagt actgcaacct gacacgatgt


4441
ccagtgacag aatcgagtgt cctcacaact cccacagtgg ccccggttcc aagcacagag


4501
gctccttctg aacaagcacc acctgagaaa agccctgtgg tccaggattg ctaccatggt


4561
gatggacgga gttatcgagg catatcctcc accactgtca caggaaggac ctgtcaatct


4621
tggtcatcta tgataccaca ctggcatcag aggaccccag aaaactaccc aaatgctggc


4681
ctgaccgaga actactgcag gaatccagat tctgggaaac aaccctggtg ttacacaacc


4741
gatccgtgtg tgaggtggga gtactgcaat ctgacacaat gctcagaaac agaatcaggt


4801
gtcctagaga ctcccactgt tgttccagtt ccaagcatgg aggctcattc tgaagcagca


4861
ccaactgagc aaacccctgt ggtccggcag tgctaccatg gtaatggcca gagttatcga


4921
ggcacattct ccaccactgt cacaggaagg acatgtcaat cttggtcatc catgacacca


4981
caccggcatc agaggacccc agaaaactac ccaaatgatg gcctgacaat gaactactgc


5041
aggaatccag atgccgatac aggcccttgg tgttttacca tggaccccag catcaggtgg


5101
gagtactgca acctgacgcg atgctcagac acagaaggga ctgtggtcgc tcctccgact


5161
gtcatccagg ttccaagcct agggcctcct tctgaacaag actgtatgtt tgggaatggg


5221
aaaggatacc ggggcaagaa ggcaaccact gttactggga cgccatgcca ggaatgggct


5281
gcccaggagc cccatagaca cagcacgttc attccaggga caaataaatg ggcaggtctg


5341
gaaaaaaatt actgccgtaa ccctgatggt gacatcaatg gtccctggtg ctacacaatg


5401
aatccaagaa aactttttga ctactgtgat atccctctct gtgcatcctc ttcatttgat


5461
tgtgggaagc ctcaagtgga gccgaagaaa tgtcctggaa gcattgtagg ggggtgtgtg


5521
gcccacccac attcctggcc ctggcaagtc agtctcagaa caaggtttgg aaagcacttc


5581
tgtggaggca ccttaatatc cccagagtgg gtgctgactg ctgctcactg cttgaagaag


5641
tcctcaaggc cttcatccta caaggtcatc ctgggtgcac accaagaagt gaacctcgaa


5701
tctcatgttc aggaaataga agtgtctagg ctgttcttgg agcccacaca agcagatatt


5761
gccttgctaa agctaagcag gcctgccgtc atcactgaca aagtaatgcc agcttgtctg


5821
ccatccccag actacatggt caccgccagg actgaatgtt acatcactgg ctggggagaa


5881
acccaaggta cctttgggac tggccttctc aaggaagccc agctccttgt tattgagaat


5941
gaagtgtgca atcactataa gtatatttgt gctgagcatt tggccagagg cactgacagt


6001
tgccagggtg acagtggagg gcctctggtt tgcttcgaga aggacaaata cattttacaa


6061
ggagtcactt cttggggtct tggctgtgca cgccccaata agcctggtgt ctatgctcgt


6121
gtttcaaggt ttgttacttg gattgaggga atgatgagaa ataattaatt ggacgggaga


6181
cagagtgaag catcaaccta cttagaagct gaaacgtggg taaggattta gcatgctgga


6241
aataatagac agcaatcaaa cgaagacact gttcccagct accagctatg ccaaaccttg


6301
gcatttttgg tatttttgtg tataagcttt taaggtctga ctgacaaatt ctgtattaag


6361
gtgtcatagc tatgacattt gttaaaaata aactctgcac ttattttgat ttga










human LPA polypeptide sequence (SEQ ID NO: 1628)


MEHKEVVLLLLLFLKSAAPEQSHVVQDCYHGDGQSYRGTYSTTVTGRTCQAWSSMTPHQHNRTTENYPNAGLIMNYC


RNPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTY


STTVTGRTCQAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPT


VTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTGRTCQAWSSMTPHSHSRTPEYYPNAGLIMNYCRNP


DAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTT


VTGRTCQAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTP


VPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTGRTCQAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAV


AAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTG


RTCQAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTPVPS


LEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTGRTCQAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAVAAP


YCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTGRTC


QAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDPVAAPYCYTRDPSVRWEYCNLTQCSDAEGTAVAPPTITPIPSLEA


PSEQAPTEQRPGVQECYHGNGQSYQGTYFITVTGRTCQAWSSMTPHSHSRTPAYYPNAGLIKNYCRNPDPVAAPWCY


TTDPSVRWEYCNLTRCSDAEWTAFVPPNVILAPSLEAFFEQALTEETPGVQDCYYHYGQSYRGTYSTTVTGRTCQAW


SSMTPHQHSRTPENYPNAGLTRNYCRNPDAEIRPWCYTMDPSVRWEYCNLTQCLVTESSVLATLTVVPDPSTEASSE


EAPTEQSPGVQDCYHGDGQSYRGSFSTTVTGRTCQSWSSMTPHWHQRTTEYYPNGGLTRNYCRNPDAEISPWCYTMD


PNVRWEYCNLTQCPVTESSVLATSTAVSEQAPTEQSPTVQDCYHGDGQSYRGSFSTTVTGRTCQSWSSMTPHWHQRT


TEYYPNGGLTRNYCRNPDAEIRPWCYTMDPSVRWEYCNLTQCPVMESTLLTTPTVVPVPSTELPSEEAPTENSTGVQ


DCYRGDGQSYRGTLSTTITGRTCQSWSSMTPHWHRRIPLYYPNAGLTRNYCRNPDAEIRPWCYTMDPSVRWEYCNLT


RCPVTESSVLTTPTVAPVPSTEAPSEQAPPEKSPVVQDCYHGDGRSYRGISSTTVTGRTCQSWSSMIPHWHQRTPEN


YPNAGLTENYCRNPDSGKQPWCYTTDPCVRWEYCNLTQCSETESGVLETPTVVPVPSMEAHSEAAPTEQTPVVRQCY


HGNGQSYRGTFSTTVTGRTCQSWSSMTPHRHQRTPENYPNDGLIMNYCRNPDADTGPWCFTMDPSIRWEYCNLTRCS


DTEGTVVAPPTVIQVPSLGPPSEQDCMFGNGKGYRGKKATTVTGTPCQEWAAQEPHRHSTFIPGINKWAGLEKNYCR


NPDGDINGPWCYTMNPRKLFDYCDIPLCASSSFDCGKPQVEPKKCPGSIVGGCVAHPHSWPWQVSLRTRFGKHFCGG


TLISPEWVLTAAHCLKKSSRPSSYKVILGAHQEVNLESHVQEIEVSRLFLEPTQADIALLKLSRPAVITDKVMPACL


PSPDYMVTARTECYITGWGETQGTFGTGLLKEAQLLVIENEVCNHYKYICAEHLARGTDSCQGDSGGPLVCFEKDKY


ILQGVTSWGLGCARPNKPGVYARVSRFVTWIEGMMRNN





cynomolgus LPA mRNA sequence (SEQ ID NO: 1629)








   1
gatgctgcat acttaatgtc gaaaggttgc ttcatccaag agcctggagt tttcagagac


  61
actgtcctga aactatgtcc tgaaactatg tcattgaaac tgaaacattg tcctgaagct


 121
ggtattgggc aataccagcg cctgcaggca acagctcgga tgcacttaag atttaaatat


 181
tacccacaga agttctggct tgtctgggaa aaccttttgc taaacagaag agcaacattt


 241
tttttttttt cttttctgga atttgtaaac agcatttatt ctcagcctta ccttccaaac


 301
gttgcacttg gaacattgct gggccccgtg gaaacagaag cgaacgtcag ccaggccggc


 361
agggggcggc agaccccaca cttcgccggg cgccctcacc tccctgggag ggagtgtgca


 421
gctgccaaaa tcttcggcgg ggttcagtcc aagcgacttc agccagcaga tggtcattct


 481
cctgtgaccg tgtgtactac agactgtttc aaaaccgggc aggcaattaa caatgggaat


 541
tctgccatca tcgctgacaa agtcatccca gtttgtctgc catccccaaa ttatgtggtc


 601
gccaaccaga ctgaatgtta tgtcactggc tggggagaaa cccaagcact acctgagcaa


 661
agccatgtgg tccaggattg ctaccatggt gatggacaga gttatcaagg cacatcctcc


 721
accactgtca caggaaggac ctgccaagct tggtcatcta tggaaccaca tcagcataat


 781
agaaccacag aaaactaccc aaatgctggc ttgatcagga actactgcag gaatccagat


 841
cctgtggcag ccccttattg ttatacgatg gatcccaatg tcaggtggga gtactgcaac


 901
ctgacacaat gctcagacgc agaagggact gccgtcgcac ctccgaatgt caccccggtt


 961
ccaagcctag aggctccttc cgaacaagca ccgactgagc aaaggcctgg ggtgcaggag


1021
tgctaccacg gtaatggaca gagttatcga ggcacatact tcaccactgt gacaggaaga


1081
acctgccaag cttggtcatc tatgacaccg cactctcata gtcggacccc ggaaaactac


1141
ccaaatggtg gcttgatcag gaactactgc aggaatccag atcctgtggc agccccttat


1201
tgttatacca tggatcccaa tgtcaggtgg gagtactgca acctgacaca atgctcagac


1261
gcagaaggga ttgccgtcac acctctgact gttaccccgg ttccaagcct agaggctcct


1321
tccaagcaag caccaactga gcaaaggcct ggtgtccagg agtgctacca cggtaatgga


1381
cagagttatc gaggcacata cttcaccact gtgacaggaa gaacctgcca agcttggtca


1441
tctatgacac cacattctca tagtcgtacc ccagaaaact acccaaatgg tggcttgatc


1501
aggaactact gcaggaatcc agatcctgtg gcagcccctt attgttatac catggatccc


1561
aatgtcaggt gggagtactg caacctgaca caatgctcag acgcagaagg gactgccgtc


1621
gcacctccga ctgtcacccc ggttccaagc ctagaggctc cttccgaaca agcaccgact


1681
gagcaaaggc ctggggtgca ggagtgctac cacggtaatg gacagagtta tcgaggcaca


1741
tacttcacca ctgtgacagg aagaacctgc caagcttggt catctatgac accgcactct


1801
catagtcgga ccccggaaaa ctacccaaat ggtggcttga tcaggaacta ctgcaggaat


1861
ccagatcctg tggcagcccc ttattgttat accatggatc ccaatgtcag gtgggagtac


1921
tgcaacctga cacaatgctc agacgcagaa gggactgccg tcgcacctcc gaatgtcacc


1981
ccggttccaa gcctagaggc tccttctgag caagcaccaa ctgagcaaag gcttggggtg


2041
caggagtgct accacggtaa tggacagagt tatcgaggca catacttcac cactgtgaca


2101
ggaagaacct gccaagcttg gtcatctatg acaccacact ctcatagtcg gaccccagaa


2161
aactacccaa atgctggctt ggtcaagaac tactgccgaa atccagatcc tgtggcagcc


2221
ccttggtgtt atacaacgga tcccagtgtc aggtgggagt actgcaacct gacacgatgc


2281
tcagatgcag aagggactgc tgttgtgcct ccaaatatta ttccggttcc aagcctagag


2341
gcttttcttg aacaagaacc gactgaggaa acccccgggg tacaggagtg ctactaccat


2401
tatggacaga gttatagagg cacatactcc accactgtta caggaagaac ttgccaagct


2461
tggtcatcta tgacaccaca ccagcatagt cggaccccaa aaaactatcc aaatgctggc


2521
ctgaccagga actactgcag gaatccagat gctgagattc gcccttggtg ttataccatg


2581
gatcccagtg tcaggtggga gtactgcaac ctgacacaat gtctggtgac agaatcaagt


2641
gtccttgaaa ctctcacagt ggtcccagat ccaagcacac aggcttcttc tgaagaagca


2701
ccaacggagc aaagtcccga ggtccaggac tgctaccatg gtgatggaca gagttatcga


2761
ggctcattct ccaccactgt cacaggaagg acatgtcagt cttggtcctc tatgacacca


2821
cactggcatc agaggacaac agaatattat ccagatggtg gcctgaccag gaactactgc


2881
aggaatccag atgctgagat tcgcccttgg tgttatacca tggatcccag tgtcaggtgg


2941
gagtactgca acctgacaca atgtccagtg acagaatcaa gtgtcctcgc aacgtccatg


3001 .
gctgtttctg aacaagcacc aatggagcaa agccccgggg tccaggactg ctaccatggt


3061
gatggacaga gttatcgagg ttcattctcc accactgtca caggaaggac atgtcagtct


3121
tggtcctcta tgacaccaca ctggcatcag aggaccatag aatactaccc aaatggtggc


3181
ctgaccaaga actactgcag gaatccagat gctgagattc gcccttggtg ttataccatg


3241
gatcccagag tcagatggga gtactgcaac ctgacacaat gtgtggtgat ggaatcaagt


3301
gtccttgcaa ctcccatggt ggtcccagtt ccaagcagag aggttccttc tgaagaagca


3361
ccaactgaaa acagccctgg ggtccaggac tgctaccaag gtgatggaca gagttatcga


3421
ggcacattct ccaccactat cacaggaaga acatgtcagt cttggttgtc tatgacacca


3481
catcggcatc ggaggatccc attacgctat ccaaatgctg gcctgaccag gaactattgc


3541
agaaatccag atgctgagat tcgcccttgg tgttacacca tggatcccag tgtcaggtgg


3601
gagtactgca acctgacaca atgtccagtg acagaatcaa gtgtcctcac aactcccacg


3661
gtggtcccgg ttccaagcac agaggctcct tctgaacaag caccacctga gaaaagccct


3721
gtggtccagg attgctacca tggtgatgga cagagttatc gaggcacatc ctccaccact


3781
gtcacaggaa ggaactgtca gtcttggtca tctatgatac cacactggca tcagaggacc


3841
ccagaaaact acccaaatgc tggcctgacc aggaactact gcaggaatcc agattctggg


3901
aaacaaccct ggtgttacac gactgatcca tgtgtgaggt gggagtactg caacctgaca


3961
caatgctcag aaacagaatc aggtgtccta gagactccca ctgttgttcc ggttccaagc


4021
atggaagctc attctgaagc agcaccaact gagcaaactc ctgtggtcca gcagtgctac


4081
catggtaatg gacagagtta tcgaggcaca ttctccacca ctgtcacagg aaggacatgt


4141
caatcttggt catccatgac accacaccag cataagagga ccccggaaaa ccacccaaat


4201
gatgacttga caatgaacta ctgcaggaat ccagatgctg acacaggccc ttggtgtttt


4261
accatggacc ccagcgtcag gcgggagtac tgcaacctga cgcgatgctc agacacagaa


4321
gggactgtgg tcacacctcc gactgttatc ccggttccaa gcctagaggc tccttctgaa


4381
caagcatcct cttcatttga ttgtgggaag cctcaagtgg agccaaagaa atgtcctgga


4441
agcattgtag gtgggtgtgt ggcccaccca cattcctggc cctggcaagt cagtcttaga


4501
acaaggtttg gaaagcactt ctgtggaggc accttaatat ccccagagtg ggtgctgact


4561
gctgcttgct gcttggagac gttctcaagg ccttccttct acaaggtcat cctgggtgca


4621
caccaagaag tgaatctcga atctcacgtt caagaaatag aagtgtctag gttgttcttg


4681
gagcccatag gagcagatat tgccttgcta aagctaagca ggcctgccat catcactgac


4741
aaagtaatcc cagcctgtct gccgtctcca aattacgtga tcaccgtctg gactgaatgt


4801
tacatcactg gctggggaga aacccaaggt acctttgggg ctggccttct caaggaagcc


4861
cagcttcatg tgattgagaa tacagtgtgc aatcactacg agtttctgaa tggaagagtc


4921
aaatccaccg agctctgtgc tgggcatttg gccggaggca ctgacagatg ccagggtgac


4981
agtggagggc ctgtggtttg cttcgacaag gacaaataca ttttacgagg aataacttct


5041
tggggtcctg gctgtgcatg ccccaataag cctggtgtct atgttcgtgt ttcaagcttt


5101
gtcacttgga ttgagggagt gatgagaaat aattaattga acaagagaca gagtgaagca


5161
ttgactcacc tagaggctag aatgggggta gggatttagc acgctggaaa taacggacag


5221
taatcaaacg aagacactgt ccccagctac caactatgcc aaacctcagc atttttggta


5281
ttattgtgta taagcttttc ccgtctgact gctgggttct ccaataaggt gacatagcta


5341
tgccatttgt taaaaataaa ctctgtactt attttgattt gagtaaa










cynomolgus LPA polypeptide sequence (SEQ ID NO: 1630)


MSKGCFIQEPGVFRDTVLKLCPETMSLKLKHCPEAGIGQYQRLQATARMHLRFKYYPQKFWLVWENLLLN


RRATFFFFSFLEFVNSIYSQPYLPNVALGTLLGPVETEANVSQAGRGRQTPHFAGRPHLPGRECAAAKIF


GGVQSKRLQPADGHSPVTVCTTDCFKTGQAINNGNSAIIADKVIPVCLPSPNYVVANQTECYVTGWGETQ


ALPEQSHVVQDCYHGDGQSYQGTSSTTVTGRTCQAWSSMEPHQHNRTTENYPNAGLIRNYCRNPDPVAAP


YCYTMDPNVRWEYCNLTQCSDAEGTAVAPPNVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYFT


TVTGRTCQAWSSMTPHSHSRTPENYPNGGLIRNYCRNPDPVAAPYCYTMDPNVRWEYCNLTQCSDAEGIA


VTPLTVTPVPSLEAPSKQAPTEQRPGVQECYHGNGQSYRGTYFTTVTGRTCQAWSSMTPHSHSRTPENYP


NGGLIRNYCRNPDPVAAPYCYTMDPNVRWEYCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAPTEQRPG


VQECYHGNGQSYRGTYFTTVIGRTCQAWSSMTPHSHSRTPENYPNGGLIRNYCRNPDPVAAPYCYTMDPN


VRWEYCNLTQCSDAEGTAVAPPNVTPVPSLEAPSEQAPTEQRLGVQECYHGNGQSYRGTYFTTVIGRICQ


AWSSMTPHSHSRTPENYPNAGLVKNYCRNPDPVAAPWCYTTDPSVRWEYCNLTRCSDAEGTAVVPPNIIP


VPSLEAFLEQEPTEETPGVQECYYHYGQSYRGTYSTTVTGRTCQAWSSMTPHQHSRTPKNYPNAGLTRNY


CRNPDAEIRPWCYTMDPSVRWEYCNLTQCLVTESSVLETLTVVPDPSTQASSEEAPTEQSPEVQDCYHGD


GQSYRGSFSTTVTGRTCQSWSSMTPHWHQRTTEYYPDGGLTRNYCRNPDAEIRPWCYTMDPSVRWEYCNL


TQCPVTESSVLATSMAVSEQAPMEQSPGVQDCYHGDGQSYRGSFSTTVIGRICQSWSSMTPHWHQRTIEY


YPNGGLIKNYCRNPDAEIRPWCYTMDPRVRWEYCNLTQCVVMESSVLATPMVVPVPSREVPSEEAPTENS


PGVQDCYQGDGQSYRGIFSTTITGRTCQSWLSMTPHRHRRIPLRYPNAGLTRNYCRNPDAEIRPWCYTMD


PSVRWEYCNLTQCPVTESSVLTTPTVVPVPSTEAPSEQAPPEKSPVVQDCYHGDGQSYRGTSSTTVTGRN


CQSWSSMIPHWHQRTPENYPNAGLTRNYCRNPDSGKQPWCYTTDPCVRWEYCNLTQCSETESGVLETPTV


VPVPSMEAHSEAAPTEQTPVVQQCYHGNGQSYRGTFSTTVTGRTCQSWSSMTPHQHKRTPENHPNDDLTM


NYCRNPDADTGPWCFTMDPSVRREYCNLTRCSDTEGTVVTPPTVIPVPSLEAPSEQASSSFDCGKPQVEP


KKCPGSIVGGCVAHPHSWPWQVSLRTRFGKHFCGGTLISPEWVLTAACCLETFSRPSFYKVILGAHQEVN


LESHVQEIEVSRLFLEPIGADIALLKLSRPAIITDKVIPACLPSPNYVITVWTECYITGWGETQGTFGAG


LLKEAQLHVIENTVCNHYEFLNGRVKSTELCAGHLAGGTDRCQGDSGGPVVCFDKDKYILRGITSWGPGC


ACPNKPGVYVRVSSFVTWIEGVMRNN








Claims
  • 1. A double-stranded ribonucleic acid (dsRNA) that inhibits expression of a human LPA gene by targeting a target sequence on an RNA transcript of the LPA gene, wherein the dsRNA comprises a sense strand comprising a sense sequence, and an antisense strand comprising an antisense sequence, and wherein the target sequence is nucleotides 2958-2976, 4639-4657, 4892-5000, 220-238, 223-241, 302-320, 1236-1254, 2946-2964, 2953-2971, 2954-2972, 2959-2977, 4635-4653, 4636-4654, 4842-4860, 4980-4998, 6385-6403, or 6470-6488 of SEQ ID NO: 1632, and wherein the sense sequence is at least 90% identical to the target sequence.
  • 2. The dsRNA of claim 1, wherein the sense strand and antisense strand are complementary to each other over a region of 15-25 contiguous nucleotides.
  • 3. The dsRNA of any one of claim 1 or 2, wherein the sense strand and the antisense strand are no more than 30 nucleotides in length.
  • 4. The dsRNA of any one of claims 1 to 3, wherein the target sequence is nucleotides 2958-2976, 4639-4657, or 4982-5000 of SEQ ID NO: 1632.
  • 5. The dsRNA of any one of claims 1 to 4, wherein the dsRNA comprises an antisense sequence that is at least 90% identical to a nucleotide sequence selected from the group consisting of SEQ ID NOs: 303, 306, 318, 389, 403, 406, 407, 409, 410, 467, 468, 471, 499, 520, 522, 578, and 597.
  • 6. The dsRNA of claim 1, wherein the sense sequence and the antisense sequence are complementary, wherein: a) the sense sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 4, 7, 19, 90, 104, 107, 108, 110, 111, 168, 169, 172, 200, 221, 223, 279, and 298; orb) the antisense sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 303, 306, 318, 389, 403, 406, 407, 409, 410, 467, 468, 471, 499, 520, 522, 578, and 597.
  • 7. The dsRNA of claim 6, wherein the sense strand and antisense strand of the dsRNA respectively comprise the nucleotide sequences of: a) SEQ ID NOs: 4 and 303;b) SEQ ID NOs: 7 and 306;c) SEQ ID NOs: 19 and 318;d) SEQ ID NOs: 90 and 389;e) SEQ ID NOs: 104 and 403;f) SEQ ID NOs: 107 and 406;g) SEQ ID NOs: 108 and 407;h) SEQ ID NOs: 110 and 409;i) SEQ ID NOs: 111 and 410;j) SEQ ID NOs: 168 and 467;k) SEQ ID NOs: 169 and 468;l) SEQ ID NOs: 172 and 471;m) SEQ ID NOs: 200 and 499;n) SEQ ID NOs: 221 and 520;o) SEQ ID NOs: 223 and 522;p) SEQ ID NOs: 279 and 578; orq) SEQ ID NOs: 298 and 597.
  • 8. The dsRNA of claim 7, wherein the sense strand and antisense strand of the dsRNA respectively comprise the nucleotide sequences of: a) SEQ ID NOs: 110 and 409;b) SEQ ID NOs: 172 and 471; orc) SEQ ID NOs: 223 and 522.
  • 9. The dsRNA of any one of claims 1 to 8, wherein the dsRNA comprises one or more modified nucleotides, wherein at least one of the one or more modified nucleotides is 2′-deoxy-2′-fluoro-ribonucleotide, 2′-deoxyribonucleotide, or 2′-O-methyl-ribonucleotide.
  • 10. The dsRNA of any one of claims 1 to 9, wherein the dsRNA comprises an inverted 2′-deoxyribonucleotide at the 3′-end of its sense or antisense strand.
  • 11. The dsRNA of any one of claims 1 to 10, wherein one or both of the sense strand and the antisense strand further comprise: a) a 5′ overhang comprising one or more nucleotides; and/orb) a 3′ overhang comprising one or more nucleotides.
  • 12. The dsRNA of claim 11, wherein an overhang in the dsRNA comprises two or three nucleotides.
  • 13. The dsRNA of claim 11 or 12, wherein an overhang in the dsRNA comprises one or more thymines.
  • 14. The dsRNA of any one of claim 1 to −13, wherein the sense sequence and the antisense sequence comprise alternating 2′-O-methyl ribonucleotides and 2′-deoxy-2′-fluoro ribonucleotides.
  • 15. The dsRNA of claim 1, wherein: a) the sense strand comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 602, 605, 617, 688, 702, 705, 706, 708, 709, 766, 767, 770, 798, 819, 821, 877, and 896; orb) the antisense strand comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 901, 904, 916, 987, 1001, 1004, 1005, 1007, 1008, 1065, 1066, 1069, 1097, 1118, 1120, 1176, and 1195.
  • 16. The dsRNA of claim 15, wherein: a) the sense strand comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs:708, 770, and 821; orb) the antisense strand comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1007, 1069, and 1120.
  • 17. The dsRNA of claim 16, wherein the sense strand and antisense strand of the dsRNA respectively comprise the nucleotide sequences of: a) SEQ ID NOs: 602 and 901;b) SEQ ID NOs: 605 and 904;c) SEQ ID NOs: 617 and 916;d) SEQ ID NOs: 688 and 987;e) SEQ ID NOs: 702 and 1001;f) SEQ ID NOs: 705 and 1004;g) SEQ ID NOs: 706 and 1005;h) SEQ ID NOs: 708 and 1007;i) SEQ ID NOs: 709 and 1008;j) SEQ ID NOs: 766 and 1065;k) SEQ ID NOs: 767 and 1066;l) SEQ ID NOs: 770 and 1069;m) SEQ ID NOs: 798 and 1097;n) SEQ ID NOs: 819 and 1118;o) SEQ ID NOs: 821 and 1120;p) SEQ ID NOs: 877 and 1176; orq) SEQ ID NOs: 896 and 1195.
  • 18. The dsRNA of claim 17, wherein the sense strand and antisense strand of the dsRNA respectively comprise the nucleotide sequences of: a) SEQ ID NOs: 708 and 1007;b) SEQ ID NOs: 770 and 1069; orc) SEQ ID NOs: 821 and 1120.
  • 19. The dsRNA of any one of claims 1 to 18, wherein the dsRNA is conjugated to one or more ligands with or without a linker.
  • 20. The dsRNA of claim 19, wherein the ligand is N-acetylgalactosamine (GalNAc) and the dsRNA is conjugated to one or more GalNAc.
  • 21. The dsRNA of any one of claims 1 to 20, wherein the dsRNA is a small interfering RNA (siRNA).
  • 22. The dsRNA of any one of claims 1 to 21, wherein one or both strands of the dsRNA comprise one or more compounds having the structure of
  • 23. The dsRNA of claim 22, comprising one or more compounds of formula (I) wherein Y is a) NR1, R1 is a non-substituted (C1-C20) alkyl group;b) NR1, R1 is a non-substituted (C1-C16) alkyl group, which includes an alkyl group selected from a group comprising methyl, isopropyl, butyl, octyl, and hexadecyl;c) NR1, R1 is a (C3-C8) cycloalkyl group, optionally substituted by one or more groups selected from a halogen atom and a (C1-C6) alkyl group;d) NR1, R1 is a cyclohexyl group;e) NR1, R1 is a (C1-C20) alkyl group substituted by a (C6-C14) aryl group;f) NR1, R1 is a methyl group substituted by a phenyl group;g) N—C(═O)—R1, R1 is an optionally substituted (C1-C20) alkyl group; orh) N—C(═O)—R1, R1 is methyl or pentadecyl.
  • 24. The dsRNA of claim 22 or 23, comprising one or more compounds of formula (I) wherein B is selected from a group consisting of a pyrimidine, a substituted pyrimidine, a purine and a substituted purine, or a pharmaceutically acceptable salt thereof.
  • 25. The dsRNA of any one of claims 22 to 24, wherein R3 is of the formula (II):
  • 26. The dsRNA of any one of claims 22 to 25, wherein R3 is N-acetyl-galactosamine, or a pharmaceutically acceptable salt thereof.
  • 27. The dsRNA of any one of claims 22 to 26, comprising one or more nucleotides from Table A.
  • 28. The dsRNA of claims 22 to 27, comprising from 2 to 10 compounds of formula (I), or a pharmaceutically acceptable salt thereof.
  • 29. The dsRNA of claim 28, wherein the 2 to 10 compounds of formula (I) are on the sense strand.
  • 30. The dsRNA of any one of claims 22 to 29, wherein the sense strand comprises two to five compounds of formula (I) at the 5′ end, and/or comprises one to three compounds of formula (I) at the 3′ end.
  • 31. The dsRNA of claim 30, wherein a) the two to five compounds of formula (I) at the 5′ end of the sense strand comprise lgT3, optionally comprising three consecutive lgT3 nucleotides; and/orb) the one to three compounds of formula (I) at the 3′ end of the sense strand comprise 1T4; optionally comprising two consecutive 1T4.
  • 32. The dsRNA of any one of claims 1 to 31, comprising one or more internucleoside linking groups independently selected from the group consisting of phosphodiester, phosphotriester, phosphorothioate, phosphorodithioate, alkyl-phosphonate and phosphoramidate backbone linking groups, or a pharmaceutically acceptable salt thereof.
  • 33. The dsRNA of any one of claims 1 to 32, selected from the dsRNAs in Tables 1-4.
  • 34. The dsRNA of any one of claims 1 to 33, wherein the sense strand and antisense strand of the dsRNA respectively comprise the nucleotide sequences of: a) SEQ ID NOs: 1231 and 1429;b) SEQ ID NOs: 1307 and 1505;c) SEQ ID NOs: 1308 and 1506;d) SEQ ID NOs: 1325 and 1523;e) SEQ ID NOs: 1328 and 1526; orf) SEQ ID NOs: 1369 and 1567.
  • 35. A pharmaceutical composition comprising the dsRNA of any one of claims 1 to 34 and a pharmaceutically acceptable excipient.
  • 36. The dsRNA of any one of claims 1 to 34 or the composition of claim 35 for their use in inhibiting LPA expression, reducing Lp(a) levels, or treating an Lp(a)-associated condition in a human in need thereof.
  • 37. The dsRNA or composition for their use according to claim 36, wherein the human has or is at risk of having a lipid metabolism disorder or a cardiovascular disease (CVD).
  • 38. The dsRNA or composition for their use according to claim 36, wherein the human has or is at risk of having hypercholesterolemia, dyslipidemia, myocardial infarction, atherosclerotic cardiovascular disease, atherosclerosis, peripheral artery disease, calcific aortic valve disease, thrombosis, or stroke.
  • 39. A method of treating and/or preventing one or more Lp(a)-associated conditions comprising administering one or more dsRNAs as defined in any one of claims 1 to 34, and/or one or more pharmaceutical compositions as defined in claim 35.
Priority Claims (1)
Number Date Country Kind
20306222.9 Oct 2020 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2021/078569 10/15/2021 WO