RNA interference in dermal and fibrotic indications

Abstract
The present invention relates to RNAi constructs with improved tissue and cellular uptake characteristics and methods of use of these compounds in dermal and fibrotic applications.
Description
FIELD OF INVENTION

The invention pertains to the field of RNA interference (RNAi). The invention more specifically relates to nucleic acid molecules with improved in vivo delivery properties and their use for dermal and fibrotic indications.


BACKGROUND OF INVENTION

Complementary oligonucleotide sequences are promising therapeutic agents and useful research tools in elucidating gene functions. However, prior art oligonucleotide molecules suffer from several problems that may impede their clinical development, and frequently make it difficult to achieve intended efficient inhibition of gene expression (including protein synthesis) using such compositions in vivo.


A major problem has been the delivery of these compounds to cells and tissues. Conventional double-stranded RNAi compounds, 19-29 bases long, form a highly negatively-charged rigid helix of approximately 1.5 by 10-15 nm in size. This rod type molecule cannot get through the cell-membrane and as a result has very limited efficacy both in vitro and in vivo. As a result, all conventional RNAi compounds require some kind of a delivery vehicle to promote their tissue distribution and cellular uptake. This is considered to be a major limitation of the RNAi technology.


There have been previous attempts to apply chemical modifications to oligonucleotides to improve their cellular uptake properties. One such modification was the attachment of a cholesterol molecule to the oligonucleotide. A first report on this approach was by Letsinger et al., in 1989. Subsequently, ISIS Pharmaceuticals, Inc. (Carlsbad, Calif.) reported on more advanced techniques in attaching the cholesterol molecule to the oligonucleotide (Manoharan, 1992).


With the discovery of siRNAs in the late nineties, similar types of modifications were attempted on these molecules to enhance their delivery profiles. Cholesterol molecules conjugated to slightly modified (Soutschek, 2004) and heavily modified (Wolfrum, 2007) siRNAs appeared in the literature. Yamada et al., 2008 also reported on the use of advanced linker chemistries which further improved cholesterol mediated uptake of siRNAs. In spite of all this effort, the uptake of these types of compounds appears to be inhibited in the presence of biological fluids resulting in highly limited efficacy in gene silencing in vivo, limiting the applicability of these compounds in a clinical setting.


SUMMARY OF INVENTION

Described herein is the efficient in vivo delivery of sd-rxRNA molecules to the skin and the use of such molecules for gene silencing. This class of RNAi molecules has superior efficacy both in vitro and in vivo than previously described RNAi molecules. Molecules associated with the invention have widespread potential as therapeutics for disorders or conditions associated with compromised skin and fibrosis.


Aspects of the invention relate to double-stranded ribonucleic acids (dsRNAs) including a sense strand and an antisense strand wherein the antisense strand is complementary to at least 12 contiguous nucleotides of a sequence selected from the sequences within Tables 2, 5, 6, 9, 11, 12, 13, 14, 15, 16, 17 and 23, and wherein the dsRNA is an sd-rxRNA.


Further aspects of the invention relate to double-stranded ribonucleic acids (dsRNAs) comprising a sense strand and an antisense strand wherein the sense strand and/or the antisense strand comprises at least 12 contiguous nucleotides of a sequence selected from the sequences within Tables 1-27, and wherein the dsRNA is an sd-rxRNA.


Further aspects of the invention relate to double-stranded ribonucleic acids (dsRNAs) comprising a sense strand and an antisense strand wherein the antisense strand is complementary to at least 12 contiguous nucleotides of a sequence selected from the sequences within Tables 2, 5, 6, 9, 11, 12, 13, 14, 15, 16, 17 and 23, and wherein the dsRNA is an rxRNAori.


Further aspects of the invention relate to double-stranded ribonucleic acids (dsRNAs) comprising a sense strand and an antisense strand wherein the sense strand and/or the antisense strand comprises at least 12 contiguous nucleotides of a sequence selected from the sequences within Tables 1-27, and wherein the dsRNA is an rxRNAori.


In some embodiments, the dsRNA is directed against CTGF. In some embodiments, the antisense strand of the dsRNA is complementary to at least 12 contiguous nucleotides of a sequence selected from the sequences within Tables 11, 12 and 15. In some embodiments, the sense strand and/or the antisense strand comprises at least 12 contiguous nucleotides of a sequence selected from the sequences within Tables 10, 11, 12, 15, 20 and 24.


In some embodiments, the sense strand comprises at least 12 contiguous nucleotides of a sequence selected from the group consisting of: SEQ ID NOs: 2463, 3429, 2443, 3445, 2459, 3493, 2465 and 3469. In some embodiments, the antisense strand comprises at least 12 contiguous nucleotides of a sequence selected from the group consisting of: 2464, 3430, 4203, 3446, 2460, 3494, 2466 and 3470.


In certain embodiments, the sense strand comprises SEQ ID NO:2463 and the antisense strand comprises SEQ ID NO:2464. In certain embodiments, the sense strand comprises SEQ ID NO:3429 and the antisense strand comprises SEQ ID NO:3430.


In certain embodiments, the sense strand comprises SEQ ID NO:2443 and the antisense strand comprises SEQ ID NO:4203. In certain embodiments, the sense strand comprises SEQ ID NO:3445 and the antisense strand comprises SEQ ID NO:3446.


In certain embodiments, the sense strand comprises SEQ ID NO:2459 and the antisense strand comprises SEQ ID NO:2460. In certain embodiments, the sense strand comprises SEQ ID NO:3493 and the antisense strand comprises SEQ ID NO:3494.


In certain embodiments, the sense strand comprises SEQ ID NO:2465 and the antisense strand comprises SEQ ID NO:2466. In certain embodiments, the sense strand comprises SEQ ID NO:3469 and the antisense strand comprises SEQ ID NO:3470.


In some embodiments, the sense strand comprises at least 12 contiguous nucleotides of a sequence selected from the group consisting of: SEQ ID NOs: 1835, 1847, 1848 and 1849. In certain embodiments, the sense strand comprises a sequence selected from the group consisting of: SEQ ID NOs: 1835, 1847, 1848 and 1849.


In some embodiments, the dsRNA is hydrophobically modified. In certain embodiments, the dsRNA is linked to a hydrophobic conjugate.


Aspects of the invention relate to compositions comprising the dsRNA described herein. In some embodiments, the composition comprises dsRNA directed against genes encoding for more than one protein.


In some embodiments, the composition is formulated for delivery to the skin. In certain embodiments, the composition is in a neutral formulation. In some embodiments, the composition is formulated for topical delivery or for intradermal injection.


Aspects of the invention relate to methods comprising delivering any of the dsRNA described herein or a composition comprising any of the dsRNA described herein to the skin of a subject in need thereof.


Aspects of the invention relate to methods comprising administering to a subject in need thereof a therapeutically effective amount of a double stranded ribonucleic acid (dsRNA) comprising a sense strand and an antisense strand wherein the antisense strand is complementary to at least 12 contiguous nucleotides of a sequence selected from the sequences within Tables 2, 5, 6, 9, 11, 12, 13, 14, 15, 16, 17 and 23, and wherein the dsRNA is an sd-rxRNA.


Further aspects of the invention relate to methods comprising administering to a subject in need thereof a therapeutically effective amount of a double stranded ribonucleic acid (dsRNA) comprising a sense strand and an antisense strand wherein the sense strand and/or the antisense strand comprises at least 12 contiguous nucleotides of a sequence selected from the sequences within Tables 1-27, and wherein the dsRNA is an sd-rxRNA.


Further aspects of the invention relate to methods comprising administering to a subject in need thereof a therapeutically effective amount of a double stranded ribonucleic acid (dsRNA) comprising a sense strand and an antisense strand wherein the antisense strand is complementary to at least 12 contiguous nucleotides of a sequence selected from the sequences within Tables 2, 5, 6, 9, 11, 12, 13, 14, 15, 16, 17 and 23, and wherein the dsRNA is an rxRNAori.


Further aspects of the invention relate to methods comprising administering to a subject in need thereof a therapeutically effective amount of a double stranded ribonucleic acid (dsRNA) comprising a sense strand and an antisense strand wherein the sense strand and/or the antisense strand comprises at least 12 contiguous nucleotides of a sequence selected from the sequences within Tables 1-27, and wherein the dsRNA is an rxRNAori.


In some embodiments, the method is a method for treating compromised skin. In some embodiments, the method is a method for treating or preventing a fibrotic disorder.


In some embodiments, the dsRNA is administered via intradermal injection. In some embodiments, the dsRNA is administered locally to the skin. In some embodiments, two or more nucleic acid molecules are administered simultaneously or sequentially.


In some embodiments, one or more of the dsRNAs is hydrophobically modified. In certain embodiments, one or more of the dsRNAs is linked to a hydrophobic conjugate.


In some embodiments, the dsRNA is directed against CTGF. In certain embodiments, the antisense strand of the dsRNA is complementary to at least 12 contiguous nucleotides of a sequence selected from the sequences within Tables 11, 12 and 15. In some embodiments, the sense strand and/or the antisense strand comprises at least 12 contiguous nucleotides of a sequence selected from the sequences within Tables 10, 11, 12, 15, 20 and 24.


In some embodiments, the sense strand comprises at least 12 contiguous nucleotides of a sequence selected from the group consisting of: SEQ ID NOs: 2463, 3429, 2443, 3445, 2459, 3493, 2465 and 3469. In certain embodiments, the antisense strand comprises at least 12 contiguous nucleotides of a sequence selected from the group consisting of: 2464, 3430, 4203, 3446, 2460, 3494, 2466 and 3470.


In certain embodiments, the sense strand comprises SEQ ID NO:2463 and the antisense strand comprises SEQ ID NO:2464. In certain embodiments, the sense strand comprises SEQ ID NO:3429 and the antisense strand comprises SEQ ID NO:3430.


In certain embodiments, the sense strand comprises SEQ ID NO:2443 and the antisense strand comprises SEQ ID NO:4203. In certain embodiments, the sense strand comprises SEQ ID NO:3445 and the antisense strand comprises SEQ ID NO:3446.


In certain embodiments, the sense strand comprises SEQ ID NO:2459 and the antisense strand comprises SEQ ID NO:2460. In certain embodiments, the sense strand comprises SEQ ID NO:3493 and the antisense strand comprises SEQ ID NO:3494.


In certain embodiments, the sense strand comprises SEQ ID NO:2465 and the antisense strand comprises SEQ ID NO:2466. In certain embodiments, the sense strand comprises SEQ ID NO:3469 and the antisense strand comprises SEQ ID NO:3470.


In some embodiments, the sense strand comprises at least 12 contiguous nucleotides of a sequence selected from the group consisting of: SEQ ID NOs: 1835, 1847, 1848 and 1849. In some embodiments, the sense strand comprises a sequence selected from the group consisting of: SEQ ID NOs: 1835, 1847, 1848 and 1849.


Aspects of the invention relate to treating or preventing a fibrotic disorder. In some embodiments, the fibrotic disorder is selected from the group consisting of pulmonary fibrosis, liver cirrhosis, scleroderma and glomerulonephritis, lung fibrosis, liver fibrosis, skin fibrosis, muscle fibrosis, radiation fibrosis, kidney fibrosis, proliferative vitreoretinopathy, restenosis and uterine fibrosis, and trabeculectomy failure due to scarring.


In some embodiments, the dsRNA are administered via intradermal injection, while in other embodiments, the one or more dsRNA are administered subcutaneously or epicutaneously.


The one or more dsRNA can be administered prior to, during and/or after a medical procedure. In some embodiments, administration occurs within 8 days prior to or within 8 days after the medical procedure. In some embodiments, the medical procedure is surgery. In certain embodiments, the surgery is elective. In some embodiments, the surgery comprises epithelial grafting or skin grafting. In some embodiments, the one or more double stranded nucleic acid molecules are administered to a graft donor site and/or a graft recipient site.


Aspects of the invention relate to methods for administering one or more dsRNA prior to, during and/or after an injury. In some embodiments, the subject has a wound such as a chronic wound. In certain embodiments, the wound is a result of elective surgery. The wound can be external or internal. In some embodiments, the dsRNA is administered after burn injury.


Methods described herein include methods for promoting wound healing and methods for preventing scarring.


In some embodiments, one or more of the dsRNA administered to a subject is directed against a gene selected from the group consisting of TGFB1, TGFB2, hTGFB1, hTGFB2, PTGS2, SPP1, hSPP1, CTGF or hCTGF. In some embodiments, the one or more dsRNA are administered on the skin of the subject. In certain embodiments, the one or more dsRNA molecules are in the form of a cream or ointment. In some embodiments, two or more or three or more nucleic acids are administered. Two or more nucleic acid molecules can be administered simultaneously or sequentially.


Aspects of the invention related to nucleic acids that are optimized. In some embodiments, one or more double stranded nucleic acid molecules are hydrophobically modified. In certain embodiments, the one or more double stranded nucleic acid molecules are linked to a hydrophobic conjugate or multiple hydrophobic conjugates. In some embodiments, the one or more double stranded nucleic acid molecule are linked to a lipophilic group. In certain embodiments, the lipophilic group is linked to the passenger strand of the one or more double stranded nucleic acid molecules. In some embodiment, the one or more double stranded nucleic acid molecules are linked to cholesterol, a long chain alkyl cholesterol analog, vitamin A or vitamin E. In some embodiments, the one or more double stranded nucleic acid molecules is attached to chloroformate.


Aspects of the invention related to nucleic acids that are optimized through modifications. In some embodiments, the one or more double stranded nucleic acid molecules includes at least one 2′ O methyl or 2′ fluoro modification and/or at least one 5 methyl C or U modification. In some embodiments, the one or more double stranded nucleic acid molecules has a guide strand of 16-28 nucleotides in length. In certain embodiments, at least 40% of the nucleotides of the one or more double stranded nucleic acid molecules are modified. Double stranded nucleic acid molecules described herein can also be attached to linkers. In some embodiments, the linker is protonatable.


Aspects of the invention relate to double stranded nucleic acid molecules that contain at least two single stranded regions. In some embodiments, the single stranded regions contain phosphorothioate modifications. In certain embodiments, the single stranded regions are located at the 3′ end of the guide strand and the 5′ end of the passenger strand.


Aspects of the invention relate to methods for delivering a nucleic acid to a subject, involving administering to a subject within 8 days prior to a medical procedure a therapeutically effective amount for treating compromised skin of one or more sd-rxRNAs.


Each of the limitations of the invention can encompass various embodiments of the invention. It is, therefore, anticipated that each of the limitations of the invention involving any one element or combinations of elements can be included in each aspect of the invention. This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.





BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:



FIG. 1 demonstrates the expression profiles for non-limiting examples of target genes including MAP4K4, SPP1, CTGF, PTGS2 and TGFB1. As expected, target gene expression is elevated early and returns to normal by day 10.



FIG. 2 presents schematics depicting an experimental approach to visualizing tissue after intradermal injection.



FIG. 3 demonstrates silencing of MAP4K4 following intradermal injection of sd-rxRNA targeting MAP4K4.



FIG. 4 demonstrates silencing of MAP4K4, PPIB and CTGF following intradermal injection of sd-rxRNA molecules targeting each gene.



FIG. 5 demonstrates silencing of MAP4K4 following intradermal injection of sd-rxRNA targeting MAP4K4. Normalized expression of MAP4K4 relative to controls is demonstrated.



FIG. 6 demonstrates silencing of PPIB following intradermal injection of sd-rxRNA targeting PPIB. Normalized expression of PPIB relative to controls is demonstrated.



FIG. 7 demonstrates the duration of PPIB silencing following intradermal injection of sd-rxRNA targeting PPIB.



FIG. 8 demonstrates the duration of MAP4K4 silencing following intradermal injection of sd-rxRNA targeting MAP4K4.



FIG. 9 demonstrates equivalent silencing achieved using two different dosing regimens.



FIG. 10 demonstrates examples of sd-rxRNA molecules targeting CTGF that are efficacious for gene silencing.



FIG. 11 demonstrates examples of sd-rxRNA molecules targeting CTGF that are efficacious for gene silencing.



FIG. 12 demonstrates a dose response for sd-rxRNA molecules targeting CTGF.



FIG. 13 demonstrates a sample of an original sd-rxRNA screen.



FIG. 14 presents data on a hit from the original sd-rxRNA screen.



FIG. 15 demonstrates gene expression of PTGS2 following administration of sd-rxRNA targeting PTGS2.



FIG. 16 demonstrates gene expression of hTGFB1 following administration of sd-rxRNA targeting hTGFB1.



FIG. 17 demonstrates gene expression of hTGFB1 following administration of sd-rxRNA targeting hTGFB1.



FIG. 18 demonstrates results of TGFB1 sd-rxRNA screening.



FIG. 19 demonstrates gene expression of TGFB2 following administration of sd-rxRNA targeting TGFB2.



FIG. 20 demonstrates gene expression of TGFB2 following administration of sd-rxRNA targeting TGFB2.



FIG. 21 demonstrates gene expression of TGFB2 following administration of sd-rxRNA targeting TGFB2.



FIG. 22 demonstrates gene expression of TGFB2 following administration of sd-rxRNA targeting TGFB2.



FIG. 23 demonstrates gene expression of TGFB2 following administration of sd-rxRNA targeting TGFB2.



FIG. 24 demonstrates results of TGFB2 sd-rxRNA screening.



FIG. 25 demonstrates identification of potent hSPP1 sd-rxRNAs.



FIG. 26 demonstrates identification of potent hSPP1 sd-rxRNAs.



FIG. 27 demonstrates identification of potent hSPP1 sd-rxRNAs.



FIG. 28 demonstrates SPP1 sd-rxRNA compound selection.



FIG. 29 demonstrates that variation of linker chemistry does not influence silencing activity of sd-rxRNAs in vitro. Two different linker chemistries were evaluated, a hydroxyproline linker and ribo linker, on multiple sd-rxRNAs (targeting Map4k4 or PPIB) in passive uptake assays to determine linkers which favor self delivery. HeLa cells were transfected in the absence of a delivery vehicle (passive transfection) with sd-rxRNAs at 1 uM, 0.1 uM or 0.01 uM for 48 hrs. Use of either linker results in an efficacious delivery of sd-rxRNA.



FIG. 30 depicts CTGF as a central factor in the pathway to fibrosis.



FIG. 31 depicts the phases of wound healing.



FIG. 32 depicts the chemical optimization of sd-rxRNA leads.



FIG. 33 demonstrates that chemically optimized CTGF L1 sd-rxRNAs are active.



FIG. 34 demonstrates in vitro efficacy of chemically optimized CTGF L1 sd-rxRNAs.



FIG. 35 demonstrates in vitro stability of chemically optimized CTGF L1 sd-rxRNAs.



FIG. 36 demonstrates that chemically optimized CTGF L2 sd-rxRNAs are active.



FIG. 37 demonstrates in vitro efficacy of chemically optimized CTGF L2 sd-rxRNAs.



FIG. 38 demonstrates in vitro stability of chemically optimized CTGF L2 sd-rxRNAs.



FIG. 39 provides a summary of compounds that are active in vivo.



FIG. 40 demonstrates that treatment with CTGF L1B target sequence resulted in mRNA silencing.



FIG. 41 demonstrates that treatment with CTGF L2 target sequence resulted in mRNA silencing.



FIG. 42 demonstrates CTGF silencing after two intradermal injections of RXi-109.



FIG. 43 demonstrates the duration of CTGF silencing in skin after intradermal injection of the sd-rxRNA in SD rats. Eight millimeter skin biopsies were harvested, and mRNA levels were quantified by QPCR and normalized to a housekeeping gene. Shown is percent (%) silencing vs. Non Targeting Control (NTC); PBS at each time point is one experimental group; * p≤0.04; ** p≤0.002.



FIG. 44 demonstrates that chemically optimized CTGF L3 sd-rxRNAs are active.



FIG. 45 demonstrates absolute luminescence of CTGF L4 sd-rxRNAs.



FIG. 46 demonstrates that chemically optimized CTGF L4 sd-rxRNAs are active.



FIG. 47 demonstrates changes in mRNA expression levels of CTGF, α-SM actin, collagen 1A2, and collagen 3A1 after intradermal injection of CTFG sd-rxRNA in SD rats. mRNA levels were quantified by qPCR.



FIG. 48 demonstrates that there is no apparent delay in wound healing with treatment of CTGF-targeting sd-rxRNA. Some changes was observed with treatment of a combination of CTGF- and COX2-targeting sd-rxRNAs.



FIG. 49 demonstrates that administration of sd-rxRNAs decreases wound width over the course of at least 9 days. The graph shows microscopic measurements of wound width in rats on days 3, 6, and 9 post-wounding. Each group represents 5 rats. Two non-serial sections from each wound were measured and the average width of the two was calculated per wound. *p<0.05 vs. PBS an NTC.



FIG. 50 demonstrates that administration of sd-rxRNAs decreases wound area over the course of at least 9 days. The graph shows microscopic measurements of wound width in rats on days 3, 6, and 9 post-wounding. Each group represents 5 rats. Two non-serial sections from each wound were measured and the average width of the two was calculated per wound. *p<0.05 vs. PBS an NTC.



FIG. 51 demonstrates that administration of sd-rxRNAs increase the percentage of wound re-epithelialization over the course of at least 9 days. The graph shows microscopic measurements of wound width in rats on days 3, 6, and 9 post-wounding. Each group represents 5 rats. Two non-serial sections from each wound were measured and the average width of the two was calculated per wound. *p<0.05 vs. PBS an NTC.



FIG. 52 demonstrates that administration of sd-rxRNAs increases the average granulation tissue maturity scores over the course of at least 9 days. The graph shows microscopic measurements of wound width in rats on days 3, 6, and 9 post-wounding (5=mature, 1=immature). Each group represents 5 rats.



FIG. 53 demonstrates CD68 labeling in day 9 wounds (0=no labeling, 3=substantial labeling). Each group represents 5 rats.



FIG. 54 demonstrates that CTGF leads have different toxicity levels in vitro.



FIG. 55 shows percentage (%) of cell viability after RXI 109 dose escalation (oligos formulated in PBS).



FIG. 56 is a schematic of Phases 1 and 2 clinical trial design.



FIG. 57 is a schematic of Phases 1 and 2 clinical trial design.



FIG. 58 demonstrates a percent (%) decrease in PPIB expression in the liver relative to PBS control. Lipoid formulated rxRNAs (10 mg/kg) were delivery systemically to Balb/c mice (n=5) by single tail vein injections. Liver tissue was harvested at 24 hours after injection and expression was analyzed by qPCR (normalized to β-actin). Map4K4 rxRNAori also showed significant silencing (˜83%, p<0.001) although Map4K4 sd-rxRNA did not significantly reduce target gene expression (˜17%, p=0.019). TD.035.2278, Published lipidoid delivery reagent, 98N12-5(1), from Akinc, 2009.



FIG. 59 demonstrates that chemically optimized PTGS2 L1 sd-rxRNAs are active.



FIG. 60 demonstrates that chemically optimized PTGS2 L2 sd-rxRNAs are active.



FIG. 61 demonstrates that chemically optimized hTGFB1 L1 sd-rxRNAs are active.



FIG. 62 demonstrates that chemically optimized hTGFB1 L1 sd-rxRNAs are active.



FIG. 63 demonstrates that chemically optimized hTGFB2 L1 sd-rxRNAs are active.



FIG. 64 demonstrates that chemically optimized hTGFB2 sd-rxRNAs are active.





DETAILED DESCRIPTION

Aspects of the invention relate to methods and compositions involved in gene silencing. The invention is based at least in part on the surprising discovery that administration of sd-rxRNA molecules to the skin, such as through intradermal injection or subcutaneous administration, results in efficient silencing of gene expression in the skin. Highly potent sd-rxRNA molecules that target genes including SPP1, CTGF, PTGS2, TGFB1 and TGFB2 were also identified herein through cell-based screening. sd-rxRNAs represent a new class of therapeutic RNAi molecules with significant potential in treatment of compromised skin.


sd-rxRNA Molecules


Aspects of the invention relate to sd-rxRNA molecules. As used herein, an “sd-rxRNA” or an “sd-rxRNA molecule” refers to a self-delivering RNA molecule such as those described in, and incorporated by reference from, PCT Publication No. WO2010/033247 (Application No. PCT/US2009/005247), filed on Sep. 22, 2009, and entitled “REDUCED SIZE SELF-DELIVERING RNAI COMPOUNDS,” and PCT application PCT/US2009/005246, filed on Sep. 22, 2009, and entitled “RNA INTERFERENCE IN SKIN INDICATIONS.” Briefly, an sd-rxRNA, (also referred to as an sd-rxRNAnano) is an isolated asymmetric double stranded nucleic acid molecule comprising a guide strand, with a minimal length of 16 nucleotides, and a passenger strand of 8-18 nucleotides in length, wherein the double stranded nucleic acid molecule has a double stranded region and a single stranded region, the single stranded region having 4-12 nucleotides in length and having at least three nucleotide backbone modifications. In preferred embodiments, the double stranded nucleic acid molecule has one end that is blunt or includes a one or two nucleotide overhang. sd-rxRNA molecules can be optimized through chemical modification, and in some instances through attachment of hydrophobic conjugates.


In some embodiments, an sd-rxRNA comprises an isolated double stranded nucleic acid molecule comprising a guide strand and a passenger strand, wherein the region of the molecule that is double stranded is from 8-15 nucleotides long, wherein the guide strand contains a single stranded region that is 4-12 nucleotides long, wherein the single stranded region of the guide strand contains 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 phosphorothioate modifications, and wherein at least 40% of the nucleotides of the double stranded nucleic acid are modified.


The polynucleotides of the invention are referred to herein as isolated double stranded or duplex nucleic acids, oligonucleotides or polynucleotides, nano molecules, nano RNA, sd-rxRNAnano, sd-rxRNA or RNA molecules of the invention.


sd-rxRNAs are much more effectively taken up by cells compared to conventional siRNAs. These molecules are highly efficient in silencing of target gene expression and offer significant advantages over previously described RNAi molecules including high activity in the presence of serum, efficient self delivery, compatibility with a wide variety of linkers, and reduced presence or complete absence of chemical modifications that are associated with toxicity.


In contrast to single-stranded polynucleotides, duplex polynucleotides have traditionally been difficult to deliver to a cell as they have rigid structures and a large number of negative charges which makes membrane transfer difficult. sd-rxRNAs however, although partially double-stranded, are recognized in vivo as single-stranded and, as such, are capable of efficiently being delivered across cell membranes. As a result the polynucleotides of the invention are capable in many instances of self delivery. Thus, the polynucleotides of the invention may be formulated in a manner similar to conventional RNAi agents or they may be delivered to the cell or subject alone (or with non-delivery type carriers) and allowed to self deliver. In one embodiment of the present invention, self delivering asymmetric double-stranded RNA molecules are provided in which one portion of the molecule resembles a conventional RNA duplex and a second portion of the molecule is single stranded.


The oligonucleotides of the invention in some aspects have a combination of asymmetric structures including a double stranded region and a single stranded region of 5 nucleotides or longer, specific chemical modification patterns and are conjugated to lipophilic or hydrophobic molecules. This class of RNAi like compounds have superior efficacy in vitro and in vivo. It is believed that the reduction in the size of the rigid duplex region in combination with phosphorothioate modifications applied to a single stranded region contribute to the observed superior efficacy.


The invention is based at least in part on the surprising discovery that sd-rxRNA molecules are delivered efficiently in vivo to the skin through a variety of methods including intradermal injection and subcutaneous administration. Furthermore, sd-rxRNA molecules are efficient in mediating gene silencing in the region of the skin where they are targeted.


Aspects of the invention relate to the use of cell-based screening to identify potent sd-rxRNA molecules. Described herein is the identification of potent sd-rxRNA molecules that target a subset of genes including SPP1, CTFG, PTGS2, TGFB1 and TGFB2. In some embodiments, a target gene is selected and an algorithm is applied to identify optimal target sequences within that gene (Example 2). For example, many sequences can be selected for one gene. In some instances, the sequences that are identified are generated as RNAi compounds for a first round of testing. For example, the RNAi compounds based on the optimal predicted sequences can initially be generated as rxRNAori (“ori”) sequences for the first round of screening. After identifying potent RNAi compounds, these can be generated as sd-rxRNA molecules.


dsRNA formulated according to the invention also includes rxRNAori. rxRNAori refers to a class of RNA molecules described in and incorporated by reference from PCT Publication No. WO2009/102427 (Application No. PCT/US2009/000852), filed on Feb. 11, 2009, and entitled, “MODIFIED RNAI POLYNUCLEOTIDES AND USES THEREOF.”


In some embodiments, an rxRNAori molecule comprises a double-stranded RNA (dsRNA) construct of 12-35 nucleotides in length, for inhibiting expression of a target gene, comprising: a sense strand having a 5′-end and a 3′-end, wherein the sense strand is highly modified with 2′-modified ribose sugars, and wherein 3-6 nucleotides in the central portion of the sense strand are not modified with 2′-modified ribose sugars and, an antisense strand having a 5′-end and a 3′-end, which hybridizes to the sense strand and to mRNA of the target gene, wherein the dsRNA inhibits expression of the target gene in a sequence-dependent manner.


rxRNAori can contain any of the modifications described herein. In some embodiments, at least 30% of the nucleotides in the rxRNAori are modified. For example, at least 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% of the nucleotides in the rxRNAori are modified. In some embodiments, 100% of the nucleotides in the sd-rxRNA are modified. In some embodiments, only the passenger strand of the rxRNAori contains modifications.


In some embodiments, the RNAi compounds of the invention comprise an asymmetric compound comprising a duplex region (required for efficient RISC entry of 8-15 bases long) and single stranded region of 4-12 nucleotides long; with a 13 or 14 nucleotide duplex. A 6 or 7 nucleotide single stranded region is preferred in some embodiments. The single stranded region of the new RNAi compounds also comprises 2-12 phosphorothioate internucleotide linkages (referred to as phosphorothioate modifications). 6-8 phosphorothioate internucleotide linkages are preferred in some embodiments. Additionally, the RNAi compounds of the invention also include a unique chemical modification pattern, which provides stability and is compatible with RISC entry. The combination of these elements has resulted in unexpected properties which are highly useful for delivery of RNAi reagents in vitro and in vivo.


The chemical modification pattern, which provides stability and is compatible with RISC entry includes modifications to the sense, or passenger, strand as well as the antisense, or guide, strand. For instance the passenger strand can be modified with any chemical entities which confirm stability and do not interfere with activity. Such modifications include 2′ ribo modifications (O-methyl, 2′ F, 2 deoxy and others) and backbone modification like phosphorothioate modifications. A preferred chemical modification pattern in the passenger strand includes Omethyl modification of C and U nucleotides within the passenger strand or alternatively the passenger strand may be completely Omethyl modified.


The guide strand, for example, may also be modified by any chemical modification which confirms stability without interfering with RISC entry. A preferred chemical modification pattern in the guide strand includes the majority of C and U nucleotides being 2′ F modified and the 5′ end being phosphorylated. Another preferred chemical modification pattern in the guide strand includes 2′ Omethyl modification of position 1 and C/U in positions 11-18 and 5′ end chemical phosphorylation. Yet another preferred chemical modification pattern in the guide strand includes 2′Omethyl modification of position 1 and C/U in positions 11-18 and 5′ end chemical phosphorylation and 2′F modification of C/U in positions 2-10. In some embodiments the passenger strand and/or the guide strand contains at least one 5-methyl C or U modifications.


In some embodiments, at least 30% of the nucleotides in the sd-rxRNA are modified. For example, at least 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% of the nucleotides in the sd-rxRNA are modified. In some embodiments, 100% of the nucleotides in the sd-rxRNA are modified.


The above-described chemical modification patterns of the oligonucleotides of the invention are well tolerated and actually improved efficacy of asymmetric RNAi compounds.


It was also demonstrated experimentally herein that the combination of modifications to RNAi when used together in a polynucleotide results in the achievement of optimal efficacy in passive uptake of the RNAi. Elimination of any of the described components (Guide strand stabilization, phosphorothioate stretch, sense strand stabilization and hydrophobic conjugate) or increase in size in some instances results in sub-optimal efficacy and in some instances complete lost of efficacy. The combination of elements results in development of a compound, which is fully active following passive delivery to cells such as HeLa cells.


The data in the Examples presented below demonstrates high efficacy of the oligonucleotides of the invention both in vitro in variety of cell types and in vivo upon local and systemic administration.


The sd-rxRNA can be further improved in some instances by improving the hydrophobicity of compounds using of novel types of chemistries. For example one chemistry is related to use of hydrophobic base modifications. Any base in any position might be modified, as long as modification results in an increase of the partition coefficient of the base. The preferred locations for modification chemistries are positions 4 and 5 of the pyrimidines. The major advantage of these positions is (a) ease of synthesis and (b) lack of interference with base-pairing and A form helix formation, which are essential for RISC complex loading and target recognition. A version of sd-rxRNA compounds where multiple deoxy Uridines are present without interfering with overall compound efficacy was used. In addition major improvement in tissue distribution and cellular uptake might be obtained by optimizing the structure of the hydrophobic conjugate. In some of the preferred embodiment the structure of sterol is modified to alter (increase/decrease) C17 attached chain. This type of modification results in significant increase in cellular uptake and improvement of tissue uptake prosperities in vivo.


Aspects of the invention relate to double-stranded ribonucleic acid molecules (dsRNA) such as sd-rxRNA and rxRNAori. dsRNA associated with the invention can comprise a sense strand and an antisense strand wherein the antisense strand is complementary to at least 12 contiguous nucleotides of a sequence selected from the sequences within Tables 2, 5, 6, 9, 11, 12, 13, 14, 15, 16, 17 and 23. For example, the antisense strand can be complementary to at least 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 contiguous nucleotides, or can be complementary to 25 nucleotides of a sequence selected from the sequences within Tables 2, 5, 6, 9, 11, 12, 13, 14, 15, 16, 17 and 23.


dsRNA associated with the invention can comprise a sense strand and an antisense strand wherein the sense strand and/or the antisense strand comprises at least 12 contiguous nucleotides of a sequence selected from the sequences within Tables 1-27. For example, the sense strand and/or the antisense strand can comprise at least 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 contiguous nucleotides, or can comprise 25 nucleotides of a sequence selected from the sequences within Tables 1-27.


Aspects of the invention relate to dsRNA directed against CTGF. For example, the antisense strand of a dsRNA directed against CTGF can be complementary to at least 12 contiguous nucleotides of a sequence selected from the sequences within Tables 11, 12 and 15. The sense strand and/or the antisense strand of a dsRNA directed against CTGF can comprises at least 12 contiguous nucleotides of a sequence selected from the sequences within Tables 10, 11, 12, 15, 20 and 24.


In some embodiments, the sense strand comprises at least 12 contiguous nucleotides of a sequence selected from the group consisting of: SEQ ID NOs: 2463, 3429, 2443, 3445, 2459, 3493, 2465 and 3469. In certain embodiments, the sense strand comprises or consists of a sequence selected from the group consisting of: SEQ ID NOs: 2463, 3429, 2443, 3445, 2459, 3493, 2465 and 3469.


In some embodiments, the antisense strand comprises at least 12 contiguous nucleotides of a sequence selected from the group consisting of: 2464, 3430, 4203, 3446, 2460, 3494, 2466 and 3470. In certain embodiments, the antisense strand comprises or consists of a sequence selected from the group consisting of: 2464, 3430, 4203, 3446, 2460, 3494, 2466 and 3470.


In a preferred embodiment, the sense strand comprises SEQ ID NO:2463 (GCACCUUUCUAGA) and the antisense strand comprises SEQ ID NO:2464 (UCUAGAAAGGUGCAAACAU). The sequences of SEQ ID NO:2463 and SEQ ID NO:2464 can be modified in a variety of ways according to modifications described herein. A preferred modification pattern for SEQ ID NO:2463 is depicted by SEQ ID NO:3429 (G.mC. A.mC.mC.mU.mU.mU.mC.mU. A*mG*mA.TEG-Chl). A preferred modification pattern for SEQ ID NO:2464 is depicted by SEQ ID NO:3430 (P.mU.fC.fU. A. G.mA. A.mA. G. G.fU. G.mC* A* A* A*mC* A* U). An sd-rxRNA consisting of SEQ ID NO:3429 and SEQ ID NO:3430 is also referred to as RXi-109.


In another preferred embodiment, the sense strand comprises SEQ ID NO:2443 (UUGCACCUUUCUAA) and the antisense strand comprises SEQ ID NO:4203 (UUAGAAAGGUGCAAACAAGG). The sequences of SEQ ID NO:2443 and SEQ ID NO:4203 can be modified in a variety of ways according to modifications described herein. A preferred modification pattern for SEQ ID NO:2443 is depicted by SEQ ID NO:3445 (mU.mU. G.mC. A.mC.mC.mU.mU.mU.mC.mU*mA*mA.TEG-Chl). A preferred modification pattern for SEQ ID NO:4203 is depicted by SEQ ID NO:3446 (P.mU.fU. A. G. A.mA. A. G. G.fU. G.fC.mA.mA*mA*fC*mA*mA*mG* G.).


In another preferred embodiment, the sense strand comprises SEQ ID NO:2459 (GUGACCAAAAGUA) and the antisense strand comprises SEQ ID NO:2460 (UACUUUUGGUCACACUCUC). The sequences of SEQ ID NO:2459 and SEQ ID NO:2460 can be modified in a variety of ways according to modifications described herein. A preferred modification pattern for SEQ ID NO:2459 is depicted by SEQ ID NO:3493 (G.mU. G. A.mC.mC. A. A. A. A. G*mU*mA.TEG-Chl). A preferred modification pattern for SEQ ID NO:2460 is depicted by SEQ ID NO:3494 (P.mU. A.fC.fU.fU.fU.fU. G. G.fU.mC. A.mC* A*mC*mU*mC*mU* C.).


In another preferred embodiment, the sense strand comprises SEQ ID NO:2465 (CCUUUCUAGUUGA) and the antisense strand comprises SEQ ID NO:2466 (UCAACUAGAAAGGUGCAAA). The sequences of SEQ ID NO:2465 and SEQ ID NO:2466 can be modified in a variety of ways according to modifications described herein. A preferred modification pattern for SEQ ID NO:2465 is depicted by SEQ ID NO:3469 (mC.mC.mU.mU.mU.mC.mU. A. G.mU.mU*mG*mA.TEG-Chl). A preferred modification pattern for SEQ ID NO:2466 is depicted by SEQ ID NO:3470 (P.mU.fC. A. A.fC.fU. A. G. A.mA. A. G. G*fU*mG*fC*mA*mA* A.).


A preferred embodiment of an rxRNAori directed against CTGF can comprise at least 12 contiguous nucleotides of a sequence selected from the group consisting of: SEQ ID NOs:1835, 1847, 1848 and 1849. In some embodiments, the sense strand of the rxRNAori comprises or consists of SEQ ID NOs:1835, 1847, 1848 or 1849.


Aspects of the invention relate to compositions comprising dsRNA such as sd-rxRNA and rxRNAori. In some embodiments compositions comprise two or more dsRNA that are directed against different genes.


This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.


Thus, aspects of the invention relate to isolated double stranded nucleic acid molecules comprising a guide (antisense) strand and a passenger (sense) strand. As used herein, the term “double-stranded” refers to one or more nucleic acid molecules in which at least a portion of the nucleomonomers are complementary and hydrogen bond to form a double-stranded region. In some embodiments, the length of the guide strand ranges from 16-29 nucleotides long. In certain embodiments, the guide strand is 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, or 29 nucleotides long. The guide strand has complementarity to a target gene. Complementarity between the guide strand and the target gene may exist over any portion of the guide strand. Complementarity as used herein may be perfect complementarity or less than perfect complementarity as long as the guide strand is sufficiently complementary to the target that it mediates RNAi. In some embodiments complementarity refers to less than 25%, 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% mismatch between the guide strand and the target. Perfect complementarity refers to 100% complementarity. Thus the invention has the advantage of being able to tolerate sequence variations that might be expected due to genetic mutation, strain polymorphism, or evolutionary divergence. For example, siRNA sequences with insertions, deletions, and single point mutations relative to the target sequence have also been found to be effective for inhibition. Moreover, not all positions of a siRNA contribute equally to target recognition. Mismatches in the center of the siRNA are most critical and essentially abolish target RNA cleavage. Mismatches upstream of the center or upstream of the cleavage site referencing the antisense strand are tolerated but significantly reduce target RNA cleavage. Mismatches downstream of the center or cleavage site referencing the antisense strand, preferably located near the 3′ end of the antisense strand, e.g. 1, 2, 3, 4, 5 or 6 nucleotides from the 3′ end of the antisense strand, are tolerated and reduce target RNA cleavage only slightly.


While not wishing to be bound by any particular theory, in some embodiments, the guide strand is at least 16 nucleotides in length and anchors the Argonaute protein in RISC. In some embodiments, when the guide strand loads into RISC it has a defined seed region and target mRNA cleavage takes place across from position 10-11 of the guide strand. In some embodiments, the 5′ end of the guide strand is or is able to be phosphorylated. The nucleic acid molecules described herein may be referred to as minimum trigger RNA.


In some embodiments, the length of the passenger strand ranges from 8-15 nucleotides long. In certain embodiments, the passenger strand is 8, 9, 10, 11, 12, 13, 14 or 15 nucleotides long. The passenger strand has complementarity to the guide strand. Complementarity between the passenger strand and the guide strand can exist over any portion of the passenger or guide strand. In some embodiments, there is 100% complementarity between the guide and passenger strands within the double stranded region of the molecule.


Aspects of the invention relate to double stranded nucleic acid molecules with minimal double stranded regions. In some embodiments the region of the molecule that is double stranded ranges from 8-15 nucleotides long. In certain embodiments, the region of the molecule that is double stranded is 8, 9, 10, 11, 12, 13, 14 or 15 nucleotides long. In certain embodiments the double stranded region is 13 or 14 nucleotides long. There can be 100% complementarity between the guide and passenger strands, or there may be one or more mismatches between the guide and passenger strands. In some embodiments, on one end of the double stranded molecule, the molecule is either blunt-ended or has a one-nucleotide overhang. The single stranded region of the molecule is in some embodiments between 4-12 nucleotides long. For example the single stranded region can be 4, 5, 6, 7, 8, 9, 10, 11 or 12 nucleotides long. However, in certain embodiments, the single stranded region can also be less than 4 or greater than 12 nucleotides long. In certain embodiments, the single stranded region is 6 nucleotides long.


RNAi constructs associated with the invention can have a thermodynamic stability (ΔG) of less than −13 kkal/mol. In some embodiments, the thermodynamic stability (ΔG) is less than −20 kkal/mol. In some embodiments there is a loss of efficacy when (ΔG) goes below −21 kkal/mol. In some embodiments a (ΔG) value higher than −13 kkal/mol is compatible with aspects of the invention. Without wishing to be bound by any theory, in some embodiments a molecule with a relatively higher (ΔG) value may become active at a relatively higher concentration, while a molecule with a relatively lower (ΔG) value may become active at a relatively lower concentration. In some embodiments, the (ΔG) value may be higher than −9 kkcal/mol. The gene silencing effects mediated by the RNAi constructs associated with the invention, containing minimal double stranded regions, are unexpected because molecules of almost identical design but lower thermodynamic stability have been demonstrated to be inactive (Rana et al. 2004).


Without wishing to be bound by any theory, results described herein suggest that a stretch of 8-10 bp of dsRNA or dsDNA will be structurally recognized by protein components of RISC or co-factors of RISC. Additionally, there is a free energy requirement for the triggering compound that it may be either sensed by the protein components and/or stable enough to interact with such components so that it may be loaded into the Argonaute protein. If optimal thermodynamics are present and there is a double stranded portion that is preferably at least 8 nucleotides then the duplex will be recognized and loaded into the RNAi machinery.


In some embodiments, thermodynamic stability is increased through the use of LNA bases. In some embodiments, additional chemical modifications are introduced. Several non-limiting examples of chemical modifications include: 5′ Phosphate, 2′-O-methyl, 2′-O-ethyl, 2′-fluoro, ribothymidine, C-5 propynyl-dC (pdC) and C-5 propynyl-dU (pdU); C-5 propynyl-C (pC) and C-5 propynyl-U (pU); 5-methyl C, 5-methyl U, 5-methyl dC, 5-methyl dU methoxy, (2,6-diaminopurine), 5′-Dimethoxytrityl-N4-ethyl-2′-deoxyCytidine and MGB (minor groove binder). It should be appreciated that more than one chemical modification can be combined within the same molecule.


Molecules associated with the invention are optimized for increased potency and/or reduced toxicity. For example, nucleotide length of the guide and/or passenger strand, and/or the number of phosphorothioate modifications in the guide and/or passenger strand, can in some aspects influence potency of the RNA molecule, while replacing 2′-fluoro (2′F) modifications with 2′-O-methyl (2′OMe) modifications can in some aspects influence toxicity of the molecule. Specifically, reduction in 2′F content of a molecule is predicted to reduce toxicity of the molecule. The Examples section presents molecules in which 2′F modifications have been eliminated, offering an advantage over previously described RNAi compounds due to a predicted reduction in toxicity. Furthermore, the number of phosphorothioate modifications in an RNA molecule can influence the uptake of the molecule into a cell, for example the efficiency of passive uptake of the molecule into a cell. Preferred embodiments of molecules described herein have no 2′F modification and yet are characterized by equal efficacy in cellular uptake and tissue penetration. Such molecules represent a significant improvement over prior art, such as molecules described by Accell and Wolfrum, which are heavily modified with extensive use of 2′F.


In some embodiments, a guide strand is approximately 18-19 nucleotides in length and has approximately 2-14 phosphate modifications. For example, a guide strand can contain 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or more than 14 nucleotides that are phosphate-modified. The guide strand may contain one or more modifications that confer increased stability without interfering with RISC entry. The phosphate modified nucleotides, such as phosphorothioate modified nucleotides, can be at the 3′ end, 5′ end or spread throughout the guide strand. In some embodiments, the 3′ terminal 10 nucleotides of the guide strand contains 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 phosphorothioate modified nucleotides. The guide strand can also contain 2′F and/or 2′OMe modifications, which can be located throughout the molecule. In some embodiments, the nucleotide in position one of the guide strand (the nucleotide in the most 5′ position of the guide strand) is 2′OMe modified and/or phosphorylated. C and U nucleotides within the guide strand can be 2′F modified. For example, C and U nucleotides in positions 2-10 of a 19 nt guide strand (or corresponding positions in a guide strand of a different length) can be 2′F modified. C and U nucleotides within the guide strand can also be 2′OMe modified. For example, C and U nucleotides in positions 11-18 of a 19 nt guide strand (or corresponding positions in a guide strand of a different length) can be 2′OMe modified. In some embodiments, the nucleotide at the most 3′ end of the guide strand is unmodified. In certain embodiments, the majority of Cs and Us within the guide strand are 2′F modified and the 5′ end of the guide strand is phosphorylated. In other embodiments, position 1 and the Cs or Us in positions 11-18 are 2′OMe modified and the 5′ end of the guide strand is phosphorylated. In other embodiments, position 1 and the Cs or Us in positions 11-18 are 2′OMe modified, the 5′ end of the guide strand is phosphorylated, and the Cs or Us in position 2-10 are 2′F modified.


In some aspects, an optimal passenger strand is approximately 11-14 nucleotides in length. The passenger strand may contain modifications that confer increased stability. One or more nucleotides in the passenger strand can be 2′OMe modified. In some embodiments, one or more of the C and/or U nucleotides in the passenger strand is 2′OMe modified, or all of the C and U nucleotides in the passenger strand are 2′OMe modified. In certain embodiments, all of the nucleotides in the passenger strand are 2′OMe modified. One or more of the nucleotides on the passenger strand can also be phosphate-modified such as phosphorothioate modified. The passenger strand can also contain 2′ ribo, 2′F and 2 deoxy modifications or any combination of the above. As demonstrated in the Examples, chemical modification patterns on both the guide and passenger strand are well tolerated and a combination of chemical modifications is shown herein to lead to increased efficacy and self-delivery of RNA molecules.


Aspects of the invention relate to RNAi constructs that have extended single-stranded regions relative to double stranded regions, as compared to molecules that have been used previously for RNAi. The single stranded region of the molecules may be modified to promote cellular uptake or gene silencing. In some embodiments, phosphorothioate modification of the single stranded region influences cellular uptake and/or gene silencing. The region of the guide strand that is phosphorothioate modified can include nucleotides within both the single stranded and double stranded regions of the molecule. In some embodiments, the single stranded region includes 2-12 phosphorothioate modifications. For example, the single stranded region can include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 phosphorothioate modifications. In some instances, the single stranded region contains 6-8 phosphorothioate modifications.


Molecules associated with the invention are also optimized for cellular uptake. In RNA molecules described herein, the guide and/or passenger strands can be attached to a conjugate. In certain embodiments the conjugate is hydrophobic. The hydrophobic conjugate can be a small molecule with a partition coefficient that is higher than 10. The conjugate can be a sterol-type molecule such as cholesterol, or a molecule with an increased length polycarbon chain attached to C17, and the presence of a conjugate can influence the ability of an RNA molecule to be taken into a cell with or without a lipid transfection reagent. The conjugate can be attached to the passenger or guide strand through a hydrophobic linker. In some embodiments, a hydrophobic linker is 5-12C in length, and/or is hydroxypyrrolidine-based. In some embodiments, a hydrophobic conjugate is attached to the passenger strand and the CU residues of either the passenger and/or guide strand are modified. In some embodiments, at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% of the CU residues on the passenger strand and/or the guide strand are modified. In some aspects, molecules associated with the invention are self-delivering (sd). As used herein, “self-delivery” refers to the ability of a molecule to be delivered into a cell without the need for an additional delivery vehicle such as a transfection reagent.


Aspects of the invention relate to selecting molecules for use in RNAi. Molecules that have a double stranded region of 8-15 nucleotides can be selected for use in RNAi. In some embodiments, molecules are selected based on their thermodynamic stability (ΔG). In some embodiments, molecules will be selected that have a (ΔG) of less than −13 kkal/mol. For example, the (ΔG) value may be −13, −14, −15, −16, −17, −18, −19, −21, −22 or less than −22 kkal/mol. In other embodiments, the (ΔG) value may be higher than −13 kkal/mol. For example, the (ΔG) value may be −12, −11, −10, −9, −8, −7 or more than −7 kkal/mol. It should be appreciated that ΔG can be calculated using any method known in the art. In some embodiments ΔG is calculated using Mfold, available through the Mfold internet site (http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi)). Methods for calculating ΔG are described in, and are incorporated by reference from, the following references: Zuker, M. (2003) Nucleic Acids Res., 31(13):3406-15; Mathews, D. H., Sabina, J., Zuker, M. and Turner, D. H. (1999) J. Mol. Biol. 288:911-940; Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., and Turner, D. H. (2004) Proc. Natl. Acad. Sci. 101:7287-7292; Duan, S., Mathews, D. H., and Turner, D. H. (2006) Biochemistry 45:9819-9832; Wuchty, S., Fontana, W., Hofacker, I. L., and Schuster, P. (1999) Biopolymers 49:145-165.


In certain embodiments, the polynucleotide contains 5′- and/or 3′-end overhangs. The number and/or sequence of nucleotides overhang on one end of the polynucleotide may be the same or different from the other end of the polynucleotide. In certain embodiments, one or more of the overhang nucleotides may contain chemical modification(s), such as phosphorothioate or 2′-OMe modification.


In certain embodiments, the polynucleotide is unmodified. In other embodiments, at least one nucleotide is modified. In further embodiments, the modification includes a 2′-H or 2′-modified ribose sugar at the 2nd nucleotide from the 5′-end of the guide sequence. The “2nd nucleotide” is defined as the second nucleotide from the 5′-end of the polynucleotide.


As used herein, “2′-modified ribose sugar” includes those ribose sugars that do not have a 2′-OH group. “2′-modified ribose sugar” does not include 2′-deoxyribose (found in unmodified canonical DNA nucleotides). For example, the 2′-modified ribose sugar may be 2′-O-alkyl nucleotides, 2′-deoxy-2′-fluoro nucleotides, 2′-deoxy nucleotides, or combination thereof.


In certain embodiments, the 2′-modified nucleotides are pyrimidine nucleotides (e.g., C/U). Examples of 2′-O-alkyl nucleotides include 2′-O-methyl nucleotides, or 2′-O-allyl nucleotides.


In certain embodiments, the sd-rxRNA polynucleotide of the invention with the above-referenced 5′-end modification exhibits significantly (e.g., at least about 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or more) less “off-target” gene silencing when compared to similar constructs without the specified 5′-end modification, thus greatly improving the overall specificity of the RNAi reagent or therapeutics.


As used herein, “off-target” gene silencing refers to unintended gene silencing due to, for example, spurious sequence homology between the antisense (guide) sequence and the unintended target mRNA sequence.


According to this aspect of the invention, certain guide strand modifications further increase nuclease stability, and/or lower interferon induction, without significantly decreasing RNAi activity (or no decrease in RNAi activity at all).


In some embodiments, wherein the RNAi construct involves a hairpin, the 5′-stem sequence may comprise a 2′-modified ribose sugar, such as 2′-O-methyl modified nucleotide, at the 2nd nucleotide on the 5′-end of the polynucleotide and, in some embodiments, no other modified nucleotides. The hairpin structure having such modification may have enhanced target specificity or reduced off-target silencing compared to a similar construct without the 2′-O-methyl modification at said position.


Certain combinations of specific 5′-stem sequence and 3′-stem sequence modifications may result in further unexpected advantages, as partly manifested by enhanced ability to inhibit target gene expression, enhanced serum stability, and/or increased target specificity, etc.


In certain embodiments, the guide strand comprises a 2′-O-methyl modified nucleotide at the 2nd nucleotide on the 5′-end of the guide strand and no other modified nucleotides.


In other aspects, the sd-rxRNA structures of the present invention mediates sequence-dependent gene silencing by a microRNA mechanism. As used herein, the term “microRNA” (“miRNA”), also referred to in the art as “small temporal RNAs” (“stRNAs”), refers to a small (10-50 nucleotide) RNA which are genetically encoded (e.g., by viral, mammalian, or plant genomes) and are capable of directing or mediating RNA silencing. An “miRNA disorder” shall refer to a disease or disorder characterized by an aberrant expression or activity of an miRNA.


microRNAs are involved in down-regulating target genes in critical pathways, such as development and cancer, in mice, worms and mammals. Gene silencing through a microRNA mechanism is achieved by specific yet imperfect base-pairing of the miRNA and its target messenger RNA (mRNA). Various mechanisms may be used in microRNA-mediated down-regulation of target mRNA expression.


miRNAs are noncoding RNAs of approximately 22 nucleotides which can regulate gene expression at the post transcriptional or translational level during plant and animal development. One common feature of miRNAs is that they are all excised from an approximately 70 nucleotide precursor RNA stem-loop termed pre-miRNA, probably by Dicer, an RNase III-type enzyme, or a homolog thereof. Naturally-occurring miRNAs are expressed by endogenous genes in vivo and are processed from a hairpin or stem-loop precursor (pre-miRNA or pri-miRNAs) by Dicer or other RNAses. miRNAs can exist transiently in vivo as a double-stranded duplex but only one strand is taken up by the RISC complex to direct gene silencing.


In some embodiments a version of sd-rxRNA compounds, which are effective in cellular uptake and inhibiting of miRNA activity are described. Essentially the compounds are similar to RISC entering version but large strand chemical modification patterns are optimized in the way to block cleavage and act as an effective inhibitor of the RISC action. For example, the compound might be completely or mostly Omethyl modified with the PS content described previously. For these types of compounds the 5′ phosphorilation is not necessary. The presence of double stranded region is preferred as it is promotes cellular uptake and efficient RISC loading.


Another pathway that uses small RNAs as sequence-specific regulators is the RNA interference (RNAi) pathway, which is an evolutionarily conserved response to the presence of double-stranded RNA (dsRNA) in the cell. The dsRNAs are cleaved into ˜20-base pair (bp) duplexes of small-interfering RNAs (siRNAs) by Dicer. These small RNAs get assembled into multiprotein effector complexes called RNA-induced silencing complexes (RISCs). The siRNAs then guide the cleavage of target mRNAs with perfect complementarity.


Some aspects of biogenesis, protein complexes, and function are shared between the siRNA pathway and the miRNA pathway. The subject single-stranded polynucleotides may mimic the dsRNA in the siRNA mechanism, or the microRNA in the miRNA mechanism.


In certain embodiments, the modified RNAi constructs may have improved stability in serum and/or cerebral spinal fluid compared to an unmodified RNAi constructs having the same sequence.


In certain embodiments, the structure of the RNAi construct does not induce interferon response in primary cells, such as mammalian primary cells, including primary cells from human, mouse and other rodents, and other non-human mammals. In certain embodiments, the RNAi construct may also be used to inhibit expression of a target gene in an invertebrate organism.


To further increase the stability of the subject constructs in vivo, the 3′-end of the hairpin structure may be blocked by protective group(s). For example, protective groups such as inverted nucleotides, inverted abasic moieties, or amino-end modified nucleotides may be used. Inverted nucleotides may comprise an inverted deoxynucleotide. Inverted abasic moieties may comprise an inverted deoxyabasic moiety, such as a 3′,3′-linked or 5′,5′-linked deoxyabasic moiety.


The RNAi constructs of the invention are capable of inhibiting the synthesis of any target protein encoded by target gene(s). The invention includes methods to inhibit expression of a target gene either in a cell in vitro, or in vivo. As such, the RNAi constructs of the invention are useful for treating a patient with a disease characterized by the overexpression of a target gene.


The target gene can be endogenous or exogenous (e.g., introduced into a cell by a virus or using recombinant DNA technology) to a cell. Such methods may include introduction of RNA into a cell in an amount sufficient to inhibit expression of the target gene. By way of example, such an RNA molecule may have a guide strand that is complementary to the nucleotide sequence of the target gene, such that the composition inhibits expression of the target gene.


The invention also relates to vectors expressing the subject hairpin constructs, and cells comprising such vectors or the subject hairpin constructs. The cell may be a mammalian cell in vivo or in culture, such as a human cell.


The invention further relates to compositions comprising the subject RNAi constructs, and a pharmaceutically acceptable carrier or diluent.


Another aspect of the invention provides a method for inhibiting the expression of a target gene in a mammalian cell, comprising contacting the mammalian cell with any of the subject RNAi constructs.


The method may be carried out in vitro, ex vivo, or in vivo, in, for example, mammalian cells in culture, such as a human cell in culture.


The target cells (e.g., mammalian cell) may be contacted in the presence of a delivery reagent, such as a lipid (e.g., a cationic lipid) or a liposome.


Another aspect of the invention provides a method for inhibiting the expression of a target gene in a mammalian cell, comprising contacting the mammalian cell with a vector expressing the subject RNAi constructs.


In one aspect of the invention, a longer duplex polynucleotide is provided, including a first polynucleotide that ranges in size from about 16 to about 30 nucleotides; a second polynucleotide that ranges in size from about 26 to about 46 nucleotides, wherein the first polynucleotide (the antisense strand) is complementary to both the second polynucleotide (the sense strand) and a target gene, and wherein both polynucleotides form a duplex and wherein the first polynucleotide contains a single stranded region longer than 6 bases in length and is modified with alternative chemical modification pattern, and/or includes a conjugate moiety that facilitates cellular delivery. In this embodiment, between about 40% to about 90% of the nucleotides of the passenger strand between about 40% to about 90% of the nucleotides of the guide strand, and between about 40% to about 90% of the nucleotides of the single stranded region of the first polynucleotide are chemically modified nucleotides.


In an embodiment, the chemically modified nucleotide in the polynucleotide duplex may be any chemically modified nucleotide known in the art, such as those discussed in detail above. In a particular embodiment, the chemically modified nucleotide is selected from the group consisting of 2′ F modified nucleotides, 2′-O-methyl modified and 2′deoxy nucleotides. In another particular embodiment, the chemically modified nucleotides results from “hydrophobic modifications” of the nucleotide base. In another particular embodiment, the chemically modified nucleotides are phosphorothioates. In an additional particular embodiment, chemically modified nucleotides are combination of phosphorothioates, 2′-O-methyl, 2′deoxy, hydrophobic modifications and phosphorothioates. As these groups of modifications refer to modification of the ribose ring, back bone and nucleotide, it is feasible that some modified nucleotides will carry a combination of all three modification types.


In another embodiment, the chemical modification is not the same across the various regions of the duplex. In a particular embodiment, the first polynucleotide (the passenger strand), has a large number of diverse chemical modifications in various positions. For this polynucleotide up to 90% of nucleotides might be chemically modified and/or have mismatches introduced. In another embodiment, chemical modifications of the first or second polynucleotide include, but not limited to, 5′ position modification of Uridine and Cytosine (4-pyridyl, 2-pyridyl, indolyl, phenyl (C6H5OH); tryptophanyl (C8H6N)CH2CH(NH2)CO), isobutyl, butyl, aminobenzyl; phenyl; naphthyl, etc), where the chemical modification might alter base pairing capabilities of a nucleotide. For the guide strand an important feature of this aspect of the invention is the position of the chemical modification relative to the 5′ end of the antisense and sequence. For example, chemical phosphorylation of the 5′ end of the guide strand is usually beneficial for efficacy. O-methyl modifications in the seed region of the sense strand (position 2-7 relative to the 5′ end) are not generally well tolerated, whereas 2′F and deoxy are well tolerated. The mid part of the guide strand and the 3′ end of the guide strand are more permissive in a type of chemical modifications applied. Deoxy modifications are not tolerated at the 3′ end of the guide strand.


A unique feature of this aspect of the invention involves the use of hydrophobic modification on the bases. In one embodiment, the hydrophobic modifications are preferably positioned near the 5′ end of the guide strand, in other embodiments, they localized in the middle of the guides strand, in other embodiment they localized at the 3′ end of the guide strand and yet in another embodiment they are distributed thought the whole length of the polynucleotide. The same type of patterns is applicable to the passenger strand of the duplex.


The other part of the molecule is a single stranded region. The single stranded region is expected to range from 6 to 40 nucleotides.


In one embodiment, the single stranded region of the first polynucleotide contains modifications selected from the group consisting of between 40% and 90% hydrophobic base modifications, between 40%-90% phosphorothioates, between 40%-90% modification of the ribose moiety, and any combination of the preceding.


Efficiency of guide strand (first polynucleotide) loading into the RISC complex might be altered for heavily modified polynucleotides, so in one embodiment, the duplex polynucleotide includes a mismatch between nucleotide 9, 11, 12, 13, or 14 on the guide strand (first polynucleotide) and the opposite nucleotide on the sense strand (second polynucleotide) to promote efficient guide strand loading.


More detailed aspects of the invention are described in the sections below.


Duplex Characteristics


Double-stranded oligonucleotides of the invention may be formed by two separate complementary nucleic acid strands. Duplex formation can occur either inside or outside the cell containing the target gene.


As used herein, the term “duplex” includes the region of the double-stranded nucleic acid molecule(s) that is (are) hydrogen bonded to a complementary sequence. Double-stranded oligonucleotides of the invention may comprise a nucleotide sequence that is sense to a target gene and a complementary sequence that is antisense to the target gene. The sense and antisense nucleotide sequences correspond to the target gene sequence, e.g., are identical or are sufficiently identical to effect target gene inhibition (e.g., are about at least about 98% identical, 96% identical, 94%, 90% identical, 85% identical, or 80% identical) to the target gene sequence.


In certain embodiments, the double-stranded oligonucleotide of the invention is double-stranded over its entire length, i.e., with no overhanging single-stranded sequence at either end of the molecule, i.e., is blunt-ended. In other embodiments, the individual nucleic acid molecules can be of different lengths. In other words, a double-stranded oligonucleotide of the invention is not double-stranded over its entire length. For instance, when two separate nucleic acid molecules are used, one of the molecules, e.g., the first molecule comprising an antisense sequence, can be longer than the second molecule hybridizing thereto (leaving a portion of the molecule single-stranded). Likewise, when a single nucleic acid molecule is used a portion of the molecule at either end can remain single-stranded.


In one embodiment, a double-stranded oligonucleotide of the invention contains mismatches and/or loops or bulges, but is double-stranded over at least about 70% of the length of the oligonucleotide. In another embodiment, a double-stranded oligonucleotide of the invention is double-stranded over at least about 80% of the length of the oligonucleotide. In another embodiment, a double-stranded oligonucleotide of the invention is double-stranded over at least about 90%-95% of the length of the oligonucleotide. In another embodiment, a double-stranded oligonucleotide of the invention is double-stranded over at least about 96%-98% of the length of the oligonucleotide. In certain embodiments, the double-stranded oligonucleotide of the invention contains at least or up to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 mismatches.


Modifications


The nucleotides of the invention may be modified at various locations, including the sugar moiety, the phosphodiester linkage, and/or the base.


In some embodiments, the base moiety of a nucleoside may be modified. For example, a pyrimidine base may be modified at the 2, 3, 4, 5, and/or 6 position of the pyrimidine ring. In some embodiments, the exocyclic amine of cytosine may be modified. A purine base may also be modified. For example, a purine base may be modified at the 1, 2, 3, 6, 7, or 8 position. In some embodiments, the exocyclic amine of adenine may be modified. In some cases, a nitrogen atom in a ring of a base moiety may be substituted with another atom, such as carbon. A modification to a base moiety may be any suitable modification. Examples of modifications are known to those of ordinary skill in the art. In some embodiments, the base modifications include alkylated purines or pyrimidines, acylated purines or pyrimidines, or other heterocycles.


In some embodiments, a pyrimidine may be modified at the 5 position. For example, the 5 position of a pyrimidine may be modified with an alkyl group, an alkynyl group, an alkenyl group, an acyl group, or substituted derivatives thereof. In other examples, the 5 position of a pyrimidine may be modified with a hydroxyl group or an alkoxyl group or substituted derivative thereof. Also, the N4 position of a pyrimidine may be alkylated. In still further examples, the pyrimidine 5-6 bond may be saturated, a nitrogen atom within the pyrimidine ring may be substituted with a carbon atom, and/or the O2 and O4 atoms may be substituted with sulfur atoms. It should be understood that other modifications are possible as well.


In other examples, the N7 position and/or N2 and/or N3 position of a purine may be modified with an alkyl group or substituted derivative thereof. In further examples, a third ring may be fused to the purine bicyclic ring system and/or a nitrogen atom within the purine ring system may be substituted with a carbon atom. It should be understood that other modifications are possible as well.


Non-limiting examples of pyrimidines modified at the 5 position are disclosed in U.S. Pat. No. 5,591,843, U.S. Pat. No. 7,205,297, U.S. Pat. No. 6,432,963, and U.S. Pat. No. 6,020,483; non-limiting examples of pyrimidines modified at the N4 position are disclosed in U.S. Pat. No. 5,580,731; non-limiting examples of purines modified at the 8 position are disclosed in U.S. Pat. No. 6,355,787 and U.S. Pat. No. 5,580,972; non-limiting examples of purines modified at the N6 position are disclosed in U.S. Pat. No. 4,853,386, U.S. Pat. No. 5,789,416, and U.S. Pat. No. 7,041,824; and non-limiting examples of purines modified at the 2 position are disclosed in U.S. Pat. No. 4,201,860 and U.S. Pat. No. 5,587,469, all of which are incorporated herein by reference.


Non-limiting examples of modified bases include N4,N4-ethanocytosine, 7-deazaxanthosine, 7-deazaguanosine, 8-oxo-N6-methyladenine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5-carboxymethylaminomethyl uracil, dihydrouracil, inosine, N6-isopentenyl-adenine, 1-methyladenine, 1-methylpseudouracil, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-methyladenine, 7-methylguanine, 5-methylaminomethyl uracil, 5-methoxy aminomethyl-2-thiouracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, pseudouracil, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, 2-thiocytosine, and 2,6-diaminopurine. In some embodiments, the base moiety may be a heterocyclic base other than a purine or pyrimidine. The heterocyclic base may be optionally modified and/or substituted.


Sugar moieties include natural, unmodified sugars, e.g., monosaccharide (such as pentose, e.g., ribose, deoxyribose), modified sugars and sugar analogs. In general, possible modifications of nucleomonomers, particularly of a sugar moiety, include, for example, replacement of one or more of the hydroxyl groups with a halogen, a heteroatom, an aliphatic group, or the functionalization of the hydroxyl group as an ether, an amine, a thiol, or the like.


One particularly useful group of modified nucleomonomers are 2′-O-methyl nucleotides. Such 2′-O-methyl nucleotides may be referred to as “methylated,” and the corresponding nucleotides may be made from unmethylated nucleotides followed by alkylation or directly from methylated nucleotide reagents. Modified nucleomonomers may be used in combination with unmodified nucleomonomers. For example, an oligonucleotide of the invention may contain both methylated and unmethylated nucleomonomers.


Some exemplary modified nucleomonomers include sugar- or backbone-modified ribonucleotides. Modified ribonucleotides may contain a non-naturally occurring base (instead of a naturally occurring base), such as uridines or cytidines modified at the 5′-position, e.g., 5′-(2-amino)propyl uridine and 5′-bromo uridine; adenosines and guanosines modified at the 8-position, e.g., 8-bromo guanosine; deaza nucleotides, e.g., 7-deaza-adenosine; and N-alkylated nucleotides, e.g., N6-methyl adenosine. Also, sugar-modified ribonucleotides may have the 2′-OH group replaced by a H, alxoxy (or OR), R or alkyl, halogen, SH, SR, amino (such as NH2, NHR, NR2), or CN group, wherein R is lower alkyl, alkenyl, or alkynyl.


Modified ribonucleotides may also have the phosphodiester group connecting to adjacent ribonucleotides replaced by a modified group, e.g., of phosphorothioate group. More generally, the various nucleotide modifications may be combined.


Although the antisense (guide) strand may be substantially identical to at least a portion of the target gene (or genes), at least with respect to the base pairing properties, the sequence need not be perfectly identical to be useful, e.g., to inhibit expression of a target gene's phenotype. Generally, higher homology can be used to compensate for the use of a shorter antisense gene. In some cases, the antisense strand generally will be substantially identical (although in antisense orientation) to the target gene.


The use of 2′-O-methyl modified RNA may also be beneficial in circumstances in which it is desirable to minimize cellular stress responses. RNA having 2′-O-methyl nucleomonomers may not be recognized by cellular machinery that is thought to recognize unmodified RNA. The use of 2′-O-methylated or partially 2′-O-methylated RNA may avoid the interferon response to double-stranded nucleic acids, while maintaining target RNA inhibition. This may be useful, for example, for avoiding the interferon or other cellular stress responses, both in short RNAi (e.g., siRNA) sequences that induce the interferon response, and in longer RNAi sequences that may induce the interferon response.


Overall, modified sugars may include D-ribose, 2′-O-alkyl (including 2′-O-methyl and 2′-O-ethyl), i.e., 2′-alkoxy, 2′-amino, 2′-S-alkyl, 2′-halo (including 2′-fluoro), 2′-methoxyethoxy, 2′-allyloxy (—OCH2CH═CH2), 2′-propargyl, 2′-propyl, ethynyl, ethenyl, propenyl, and cyano and the like. In one embodiment, the sugar moiety can be a hexose and incorporated into an oligonucleotide as described (Augustyns, K., et al., Nucl. Acids. Res. 18:4711 (1992)). Exemplary nucleomonomers can be found, e.g., in U.S. Pat. No. 5,849,902, incorporated by reference herein.


Definitions of specific functional groups and chemical terms are described in more detail below. For purposes of this invention, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th Ed., inside cover, and specific functional groups are generally defined as described therein. Additionally, general principles of organic chemistry, as well as specific functional moieties and reactivity, are described in Organic Chemistry, Thomas Sorrell, University Science Books, Sausalito: 1999, the entire contents of which are incorporated herein by reference.


Certain compounds of the present invention may exist in particular geometric or stereoisomeric forms. The present invention contemplates all such compounds, including cis- and trans-isomers, R- and S-enantiomers, diastereomers, .2D)-isomers, (L)-isomers, the racemic mixtures thereof, and other mixtures thereof, as falling within the scope of the invention. Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention.


Isomeric mixtures containing any of a variety of isomer ratios may be utilized in accordance with the present invention. For example, where only two isomers are combined, mixtures containing 50:50, 60:40, 70:30, 80:20, 90:10, 95:5, 96:4, 97:3, 98:2, 99:1, or 100:0 isomer ratios are all contemplated by the present invention. Those of ordinary skill in the art will readily appreciate that analogous ratios are contemplated for more complex isomer mixtures.


If, for instance, a particular enantiomer of a compound of the present invention is desired, it may be prepared by asymmetric synthesis, or by derivation with a chiral auxiliary, where the resulting diastereomeric mixture is separated and the auxiliary group cleaved to provide the pure desired enantiomers. Alternatively, where the molecule contains a basic functional group, such as amino, or an acidic functional group, such as carboxyl, diastereomeric salts are formed with an appropriate optically-active acid or base, followed by resolution of the diastereomers thus formed by fractional crystallization or chromatographic means well known in the art, and subsequent recovery of the pure enantiomers.


In certain embodiments, oligonucleotides of the invention comprise 3′ and 5′ termini (except for circular oligonucleotides). In one embodiment, the 3′ and 5′ termini of an oligonucleotide can be substantially protected from nucleases e.g., by modifying the 3′ or 5′ linkages (e.g., U.S. Pat. No. 5,849,902 and WO 98/13526). For example, oligonucleotides can be made resistant by the inclusion of a “blocking group.” The term “blocking group” as used herein refers to substituents (e.g., other than OH groups) that can be attached to oligonucleotides or nucleomonomers, either as protecting groups or coupling groups for synthesis (e.g., FITC, propyl (CH2—CH2—CH3), glycol (—O—CH2—CH2—O—) phosphate (PO32−), hydrogen phosphonate, or phosphoramidite). “Blocking groups” also include “end blocking groups” or “exonuclease blocking groups” which protect the 5′ and 3′ termini of the oligonucleotide, including modified nucleotides and non-nucleotide exonuclease resistant structures.


Exemplary end-blocking groups include cap structures (e.g., a 7-methylguanosine cap), inverted nucleomonomers, e.g., with 3′-3′ or 5′-5′ end inversions (see, e.g., Ortiagao et al. 1992. Antisense Res. Dev. 2:129), methylphosphonate, phosphoramidite, non-nucleotide groups (e.g., non-nucleotide linkers, amino linkers, conjugates) and the like. The 3′ terminal nucleomonomer can comprise a modified sugar moiety. The 3′ terminal nucleomonomer comprises a 3′-0 that can optionally be substituted by a blocking group that prevents 3′-exonuclease degradation of the oligonucleotide. For example, the 3′-hydroxyl can be esterified to a nucleotide through a 3′→3′ internucleotide linkage. For example, the alkyloxy radical can be methoxy, ethoxy, or isopropoxy, and preferably, ethoxy. Optionally, the 3′→3′linked nucleotide at the 3′ terminus can be linked by a substitute linkage. To reduce nuclease degradation, the 5′ most 3′→5′ linkage can be a modified linkage, e.g., a phosphorothioate or a P-alkyloxyphosphotriester linkage. Preferably, the two 5′ most 3′→5′ linkages are modified linkages. Optionally, the 5′ terminal hydroxy moiety can be esterified with a phosphorus containing moiety, e.g., phosphate, phosphorothioate, or P-ethoxyphosphate.


One of ordinary skill in the art will appreciate that the synthetic methods, as described herein, utilize a variety of protecting groups. By the term “protecting group,” as used herein, it is meant that a particular functional moiety, e.g., O, S, or N, is temporarily blocked so that a reaction can be carried out selectively at another reactive site in a multifunctional compound. In certain embodiments, a protecting group reacts selectively in good yield to give a protected substrate that is stable to the projected reactions; the protecting group should be selectively removable in good yield by readily available, preferably non-toxic reagents that do not attack the other functional groups; the protecting group forms an easily separable derivative (more preferably without the generation of new stereogenic centers); and the protecting group has a minimum of additional functionality to avoid further sites of reaction. As detailed herein, oxygen, sulfur, nitrogen, and carbon protecting groups may be utilized. Hydroxyl protecting groups include methyl, methoxylmethyl (MOM), methylthiomethyl (MTM), t-butylthiomethyl, (phenyldimethylsilyl)methoxymethyl (SMOM), benzyloxymethyl (BOM), p-methoxybenzyloxymethyl (PMBM), (4-methoxyphenoxy)methyl (p-AOM), guaiacolmethyl (GUM), t-butoxymethyl, 4-pentenyloxymethyl (POM), siloxymethyl, 2-methoxyethoxymethyl (MEM), 2,2,2-trichloroethoxymethyl, bis(2-chloroethoxy)methyl, 2-(trimethylsilyl)ethoxymethyl (SEMOR), tetrahydropyranyl (THP), 3-bromotetrahydropyranyl, tetrahydrothiopyranyl, 1-methoxycyclohexyl, 4-methoxytetrahydropyranyl (MTHP), 4-methoxytetrahydrothiopyranyl, 4-methoxytetrahydrothiopyranyl S,S-dioxide, 1-[(2-chloro-4-methyl)phenyl]-4-methoxypiperidin-4-yl (CTMP), 1,4-dioxan-2-yl, tetrahydrofuranyl, tetrahydrothiofuranyl, 2,3,3a,4,5,6,7,7a-octahydro-7,8,8-trimethyl-4,7-methanobenzofuran-2-yl, 1-ethoxyethyl, 1-(2-chloroethoxy)ethyl, 1-methyl-1-methoxyethyl, 1-methyl-1-benzyloxyethyl, 1-methyl-1-benzyloxy-2-fluoroethyl, 2,2,2-trichloroethyl, 2-trimethylsilylethyl, 2-(phenylselenyl)ethyl, t-butyl, allyl, p-chlorophenyl, p-methoxyphenyl, 2,4-dinitrophenyl, benzyl, p-methoxybenzyl, 3,4-dimethoxybenzyl, o-nitrobenzyl, p-nitrobenzyl, p-halobenzyl, 2,6-dichlorobenzyl, p-cyanobenzyl, p-phenylbenzyl, 2-picolyl, 4-picolyl, 3-methyl-2-picolyl N-oxido, diphenylmethyl, p,p′-dinitrobenzhydryl, 5-dibenzosuberyl, triphenylmethyl, α-naphthyldiphenylmethyl, p-methoxyphenyldiphenylmethyl, di(p-methoxyphenyl)phenylmethyl, tri(p-methoxyphenyl)methyl, 4-(4′-bromophenacyloxyphenyl)diphenylmethyl, 4,4′,4″-tris(4,5-dichlorophthalimidophenyl)methyl, 4,4′,4″-tris(levulinoyloxyphenyl)methyl, 4,4′,4″-tris(benzoyloxyphenyl)methyl, 3-(imidazol-1-yl)bis(4′,4″-dimethoxyphenyl)methyl, 1,1-bis(4-methoxyphenyl)-1′-pyrenylmethyl, 9-anthryl, 9-(9-phenyl)xanthenyl, 9-(9-phenyl-10-oxo)anthryl, 1,3-benzodithiolan-2-yl, benzisothiazolyl S,S-dioxido, trimethylsilyl (TMS), triethylsilyl (TES), triisopropylsilyl (TIPS), dimethylisopropylsilyl (IPDMS), diethylisopropylsilyl (DEIPS), dimethylthexylsilyl, t-butyldimethylsilyl (TBDMS), t-butyldiphenylsilyl (TBDPS), tribenzylsilyl, tri-p-xylylsilyl, triphenylsilyl, diphenylmethylsilyl (DPMS), t-butylmethoxyphenylsilyl (TBMPS), formate, benzoylformate, acetate, chloroacetate, dichloroacetate, trichloroacetate, trifluoroacetate, methoxyacetate, triphenylmethoxyacetate, phenoxyacetate, p-chlorophenoxyacetate, 3-phenylpropionate, 4-oxopentanoate (levulinate), 4,4-(ethylenedithio)pentanoate (levulinoyldithioacetal), pivaloate, adamantoate, crotonate, 4-methoxycrotonate, benzoate, p-phenylbenzoate, 2,4,6-trimethylbenzoate (mesitoate), alkyl methyl carbonate, 9-fluorenylmethyl carbonate (Fmoc), alkyl ethyl carbonate, alkyl 2,2,2-trichloroethyl carbonate (Troc), 2-(trimethylsilyl)ethyl carbonate (TMSEC), 2-(phenylsulfonyl) ethyl carbonate (Psec), 2-(triphenylphosphonio) ethyl carbonate (Peoc), alkyl isobutyl carbonate, alkyl vinyl carbonate alkyl allyl carbonate, alkyl p-nitrophenyl carbonate, alkyl benzyl carbonate, alkyl p-methoxybenzyl carbonate, alkyl 3,4-dimethoxybenzyl carbonate, alkyl o-nitrobenzyl carbonate, alkyl p-nitrobenzyl carbonate, alkyl S-benzyl thiocarbonate, 4-ethoxy-1-napththyl carbonate, methyl dithiocarbonate, 2-iodobenzoate, 4-azidobutyrate, 4-nitro-4-methylpentanoate, o-(dibromomethyl)benzoate, 2-formylbenzenesulfonate, 2-(methylthiomethoxy)ethyl, 4-(methylthiomethoxy)butyrate, 2-(methylthiomethoxymethyl)benzoate, 2,6-dichloro-4-methylphenoxyacetate, 2,6-dichloro-4-(1,1,3,3-tetramethylbutyl)phenoxyacetate, 2,4-bis(1,1-dimethylpropyl)phenoxyacetate, chlorodiphenylacetate, isobutyrate, monosuccinoate, (E)-2-methyl-2-butenoate, o-(methoxycarbonyl)benzoate, α-naphthoate, nitrate, alkyl N,N,N′,N′-tetramethylphosphorodiamidate, alkyl N-phenylcarbamate, borate, dimethylphosphinothioyl, alkyl 2,4-dinitrophenylsulfenate, sulfate, methanesulfonate (mesylate), benzylsulfonate, and tosylate (Ts). For protecting 1,2- or 1,3-diols, the protecting groups include methylene acetal, ethylidene acetal, 1-t-butylethylidene ketal, 1-phenylethylidene ketal, (4-methoxyphenyl)ethylidene acetal, 2,2,2-trichloroethylidene acetal, acetonide, cyclopentylidene ketal, cyclohexylidene ketal, cycloheptylidene ketal, benzylidene acetal, p-methoxybenzylidene acetal, 2,4-dimethoxybenzylidene ketal, 3,4-dimethoxybenzylidene acetal, 2-nitrobenzylidene acetal, methoxymethylene acetal, ethoxymethylene acetal, dimethoxymethylene ortho ester, 1-methoxyethylidene ortho ester, 1-ethoxyethylidine ortho ester, 1,2-dimethoxyethylidene ortho ester, α-methoxybenzylidene ortho ester, 1-(N,N-dimethylamino)ethylidene derivative, α-(N,N′-dimethylamino)benzylidene derivative, 2-oxacyclopentylidene ortho ester, di-t-butylsilylene group (DTBS), 1,3-(1,1,3,3-tetraisopropyldisiloxanylidene) derivative (TIPDS), tetra-t-butoxydisiloxane-1,3-diylidene derivative (TBDS), cyclic carbonates, cyclic boronates, ethyl boronate, and phenyl boronate. Amino-protecting groups include methyl carbamate, ethyl carbamante, 9-fluorenylmethyl carbamate (Fmoc), 9-(2-sulfo)fluorenylmethyl carbamate, 9-(2,7-dibromo)fluoroenylmethyl carbamate, 2,7-di-t-butyl-[9-(10,10-dioxo-10,10,10,10-tetrahydrothioxanthyl)]methyl carbamate (DBD-Tmoc), 4-methoxyphenacyl carbamate (Phenoc), 2,2,2-trichloroethyl carbamate (Troc), 2-trimethylsilylethyl carbamate (Teoc), 2-phenylethyl carbamate (hZ), 1-(1-adamantyl)-1-methylethyl carbamate (Adpoc), 1,1-dimethyl-2-haloethyl carbamate, 1,1-dimethyl-2,2-dibromoethyl carbamate (DB-t-BOC), 1,1-dimethyl-2,2,2-trichloroethyl carbamate (TCBOC), 1-methyl-1-(4-biphenylyl)ethyl carbamate (Bpoc), 1-(3,5-di-t-butylphenyl)-1-methylethyl carbamate (t-Bumeoc), 2-(2′- and 4′-pyridyl)ethyl carbamate (Pyoc), 2-(N,N-dicyclohexylcarboxamido)ethyl carbamate, t-butyl carbamate (BOC), 1-adamantyl carbamate (Adoc), vinyl carbamate (Voc), allyl carbamate (Alloc), 1-isopropylallyl carbamate (Ipaoc), cinnamyl carbamate (Coc), 4-nitrocinnamyl carbamate (Noc), 8-quinolyl carbamate, N-hydroxypiperidinyl carbamate, alkyldithio carbamate, benzyl carbamate (Cbz), p-methoxybenzyl carbamate (Moz), p-nitobenzyl carbamate, p-bromobenzyl carbamate, p-chlorobenzyl carbamate, 2,4-dichlorobenzyl carbamate, 4-methylsulfinylbenzyl carbamate (Msz), 9-anthrylmethyl carbamate, diphenylmethyl carbamate, 2-methylthioethyl carbamate, 2-methylsulfonylethyl carbamate, 2-(p-toluenesulfonyl)ethyl carbamate, [2-(1,3-dithianyl)]methyl carbamate (Dmoc), 4-methylthiophenyl carbamate (Mtpc), 2,4-dimethylthiophenyl carbamate (Bmpc), 2-phosphonioethyl carbamate (Peoc), 2-triphenylphosphonioisopropyl carbamate (Ppoc), 1,1-dimethyl-2-cyanoethyl carbamate, m-chloro-p-acyloxybenzyl carbamate, p-(dihydroxyboryl)benzyl carbamate, 5-benzisoxazolylmethyl carbamate, 2-(trifluoromethyl)-6-chromonylmethyl carbamate (Tcroc), m-nitrophenyl carbamate, 3,5-dimethoxybenzyl carbamate, o-nitrobenzyl carbamate, 3,4-dimethoxy-6-nitrobenzyl carbamate, phenyl(o-nitrophenyl)methyl carbamate, phenothiazinyl-(10)-carbonyl derivative, N′-p-toluenesulfonylaminocarbonyl derivative, N′-phenylaminothiocarbonyl derivative, t-amyl carbamate, S-benzyl thiocarbamate, p-cyanobenzyl carbamate, cyclobutyl carbamate, cyclohexyl carbamate, cyclopentyl carbamate, cyclopropylmethyl carbamate, p-decyloxybenzyl carbamate, 2,2-dimethoxycarbonylvinyl carbamate, o-(N,N-dimethylcarboxamido)benzyl carbamate, 1,1-dimethyl-3-(N,N-dimethylcarboxamido)propyl carbamate, 1,1-dimethylpropynyl carbamate, di(2-pyridyl)methyl carbamate, 2-furanylmethyl carbamate, 2-iodoethyl carbamate, isoborynl carbamate, isobutyl carbamate, isonicotinyl carbamate, p-(p′-methoxyphenylazo)benzyl carbamate, 1-methylcyclobutyl carbamate, 1-methylcyclohexyl carbamate, 1-methyl-1-cyclopropylmethyl carbamate, 1-methyl-1-(3,5-dimethoxyphenyl)ethyl carbamate, 1-methyl-1-(p-phenylazophenyl)ethyl carbamate, 1-methyl-1-phenylethyl carbamate, 1-methyl-1-(4-pyridyl)ethyl carbamate, phenyl carbamate, p-(phenylazo)benzyl carbamate, 2,4,6-tri-t-butylphenyl carbamate, 4-(trimethylammonium)benzyl carbamate, 2,4,6-trimethylbenzyl carbamate, formamide, acetamide, chloroacetamide, trichloroacetamide, trifluoroacetamide, phenylacetamide, 3-phenylpropanamide, picolinamide, 3-pyridylcarboxamide, N-benzoylphenylalanyl derivative, benzamide, p-phenylbenzamide, o-nitophenylacetamide, o-nitrophenoxyacetamide, acetoacetamide, (N′-dithiobenzyloxycarbonylamino)acetamide, 3-(p-hydroxyphenyl)propanamide, 3-(o-nitrophenyl)propanamide, 2-methyl-2-(o-nitrophenoxy)propanamide, 2-methyl-2-(o-phenylazophenoxy)propanamide, 4-chlorobutanamide, 3-methyl-3-nitrobutanamide, o-nitrocinnamide, N-acetylmethionine derivative, o-nitrobenzamide, o-(benzoyloxymethyl)benzamide, 4,5-diphenyl-3-oxazolin-2-one, N-phthalimide, N-dithiasuccinimide (Dts), N-2,3-diphenylmaleimide, N-2,5-dimethylpyrrole, N-1,1,4,4-tetramethyldisilylazacyclopentane adduct (STABASE), 5-substituted 1,3-dimethyl-1,3,5-triazacyclohexan-2-one, 5-substituted 1,3-dibenzyl-1,3,5-triazacyclohexan-2-one, 1-substituted 3,5-dinitro-4-pyridone, N-methylamine, N-allylamine, N-[2-(trimethylsilyl)ethoxy]methylamine (SEM), N-3-acetoxypropylamine, N-(1-isopropyl-4-nitro-2-oxo-3-pyroolin-3-yl)amine, quaternary ammonium salts, N-benzylamine, N-di(4-methoxyphenyl)methylamine, N-5-dibenzosuberylamine, N-triphenylmethylamine (Tr), N-[(4-methoxyphenyl)diphenylmethyl]amine (MMTr), N-9-phenylfluorenylamine (PhF), N-2,7-dichloro-9-fluorenylmethyleneamine, N-ferrocenylmethylamino (Fcm), N-2-picolylamino N′-oxide, N-1,1-dimethylthiomethyleneamine, N-benzylideneamine, N-p-methoxybenzylideneamine, N-diphenylmethyleneamine, N-[(2-pyridyl)mesityl]methyleneamine, N—(N′,N′-dimethylaminomethylene)amine, N,N′-isopropylidenediamine, N-p-nitrobenzylideneamine, N-salicylideneamine, N-5-chlorosalicylideneamine, N-(5-chloro-2-hydroxyphenyl)phenylmethyleneamine, N-cyclohexylideneamine, N-(5,5-dimethyl-3-oxo-1-cyclohexenyl)amine, N-borane derivative, N-diphenylborinic acid derivative, N-[phenyl(pentacarbonylchromium- or tungsten)carbonyl]amine, N-copper chelate, N-zinc chelate, N-nitroamine, N-nitrosoamine, amine N-oxide, diphenylphosphinamide (Dpp), dimethylthiophosphinamide (Mpt), diphenylthiophosphinamide (Ppt), dialkyl phosphoramidates, dibenzyl phosphoramidate, diphenyl phosphoramidate, benzenesulfenamide, o-nitrobenzenesulfenamide (Nps), 2,4-dinitrobenzenesulfenamide, pentachlorobenzenesulfenamide, 2-nitro-4-methoxybenzenesulfenamide, triphenylmethylsulfenamide, 3-nitropyridinesulfenamide (Npys), p-toluenesulfonamide (Ts), benzenesulfonamide, 2,3,6,-trimethyl-4-methoxybenzenesulfonamide (Mtr), 2,4,6-trimethoxybenzenesulfonamide (Mtb), 2,6-dimethyl-4-methoxybenzenesulfonamide (Pme), 2,3,5,6-tetramethyl-4-methoxybenzenesulfonamide (Mte), 4-methoxybenzenesulfonamide (Mbs), 2,4,6-trimethylbenzenesulfonamide (Mts), 2,6-dimethoxy-4-methylbenzenesulfonamide (iMds), 2,2,5,7,8-pentamethylchroman-6-sulfonamide (Pmc), methanesulfonamide (Ms), β-trimethylsilylethanesulfonamide (SES), 9-anthracenesulfonamide, 4-(4′,8′-dimethoxynaphthylmethyl)benzenesulfonamide (DNMBS), benzylsulfonamide, trifluoromethylsulfonamide, and phenacylsulfonamide. Exemplary protecting groups are detailed herein. However, it will be appreciated that the present invention is not intended to be limited to these protecting groups; rather, a variety of additional equivalent protecting groups can be readily identified using the above criteria and utilized in the method of the present invention. Additionally, a variety of protecting groups are described in Protective Groups in Organic Synthesis, Third Ed. Greene, T. W. and Wuts, P. G., Eds., John Wiley & Sons, New York: 1999, the entire contents of which are hereby incorporated by reference.


It will be appreciated that the compounds, as described herein, may be substituted with any number of substituents or functional moieties. In general, the term “substituted” whether preceded by the term “optionally” or not, and substituents contained in formulas of this invention, refer to the replacement of hydrogen radicals in a given structure with the radical of a specified substituent. When more than one position in any given structure may be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position. As used herein, the term “substituted” is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic substituents of organic compounds. Heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valencies of the heteroatoms. Furthermore, this invention is not intended to be limited in any manner by the permissible substituents of organic compounds. Combinations of substituents and variables envisioned by this invention are preferably those that result in the formation of stable compounds useful in the treatment, for example, of infectious diseases or proliferative disorders. The term “stable”, as used herein, preferably refers to compounds which possess stability sufficient to allow manufacture and which maintain the integrity of the compound for a sufficient period of time to be detected and preferably for a sufficient period of time to be useful for the purposes detailed herein.


The term “aliphatic,” as used herein, includes both saturated and unsaturated, straight chain (i.e., unbranched), branched, acyclic, cyclic, or polycyclic aliphatic hydrocarbons, which are optionally substituted with one or more functional groups. As will be appreciated by one of ordinary skill in the art, “aliphatic” is intended herein to include, but is not limited to, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, and cycloalkynyl moieties. Thus, as used herein, the term “alkyl” includes straight, branched and cyclic alkyl groups. An analogous convention applies to other generic terms such as “alkenyl,” “alkynyl,” and the like. Furthermore, as used herein, the terms “alkyl,” “alkenyl,” “alkynyl,” and the like encompass both substituted and unsubstituted groups. In certain embodiments, as used herein, “lower alkyl” is used to indicate those alkyl groups (cyclic, acyclic, substituted, unsubstituted, branched, or unbranched) having 1-6 carbon atoms.


In certain embodiments, the alkyl, alkenyl, and alkynyl groups employed in the invention contain 1-20 aliphatic carbon atoms. In certain other embodiments, the alkyl, alkenyl, and alkynyl groups employed in the invention contain 1-10 aliphatic carbon atoms. In yet other embodiments, the alkyl, alkenyl, and alkynyl groups employed in the invention contain 1-8 aliphatic carbon atoms. In still other embodiments, the alkyl, alkenyl, and alkynyl groups employed in the invention contain 1-6 aliphatic carbon atoms. In yet other embodiments, the alkyl, alkenyl, and alkynyl groups employed in the invention contain 1-4 carbon atoms. Illustrative aliphatic groups thus include, but are not limited to, for example, methyl, ethyl, n-propyl, isopropyl, cyclopropyl, —CH2-cyclopropyl, vinyl, allyl, n-butyl, sec-butyl, isobutyl, tert-butyl, cyclobutyl, —CH2-cyclobutyl, n-pentyl, sec-pentyl, isopentyl, tert-pentyl, cyclopentyl, —CH2-cyclopentyl, n-hexyl, sec-hexyl, cyclohexyl, —CH2-cyclohexyl moieties and the like, which again, may bear one or more substituents. Alkenyl groups include, but are not limited to, for example, ethenyl, propenyl, butenyl, 1-methyl-2-buten-1-yl, and the like. Representative alkynyl groups include, but are not limited to, ethynyl, 2-propynyl (propargyl), 1-propynyl, and the like.


Some examples of substituents of the above-described aliphatic (and other) moieties of compounds of the invention include, but are not limited to aliphatic; heteroaliphatic; aryl; heteroaryl; arylalkyl; heteroarylalkyl; alkoxy; aryloxy; heteroalkoxy; heteroaryloxy; alkylthio; arylthio; heteroalkylthio; heteroarylthio; —F; —Cl; —Br; —I; —OH; —NO2; —CN; —CF3; —CH2CF3; —CHCl2; —CH2OH; —CH2CH2OH; —CH2NH2; —CH2SO2CH3; —C(O)Rx; —CO2(Rx); —CON(Rx)2; —OC(O)Rx; —OCO2Rx; —OCON(Rx)2; —N(Rx)2; —S(O)2Rx; —NRx(CO)Rx wherein each occurrence of Rx independently includes, but is not limited to, aliphatic, heteroaliphatic, aryl, heteroaryl, arylalkyl, or heteroarylalkyl, wherein any of the aliphatic, heteroaliphatic, arylalkyl, or heteroarylalkyl substituents described above and herein may be substituted or unsubstituted, branched or unbranched, cyclic or acyclic, and wherein any of the aryl or heteroaryl substituents described above and herein may be substituted or unsubstituted. Additional examples of generally applicable substituents are illustrated by the specific embodiments described herein.


The term “heteroaliphatic,” as used herein, refers to aliphatic moieties that contain one or more oxygen, sulfur, nitrogen, phosphorus, or silicon atoms, e.g., in place of carbon atoms. Heteroaliphatic moieties may be branched, unbranched, cyclic or acyclic and include saturated and unsaturated heterocycles such as morpholino, pyrrolidinyl, etc. In certain embodiments, heteroaliphatic moieties are substituted by independent replacement of one or more of the hydrogen atoms thereon with one or more moieties including, but not limited to aliphatic; heteroaliphatic; aryl; heteroaryl; arylalkyl; heteroarylalkyl; alkoxy; aryloxy; heteroalkoxy; heteroaryloxy; alkylthio; arylthio; heteroalkylthio; heteroarylthio; —F; —Cl; —Br; —I; —OH; —NO2; —CN; —CF3; —CH2CF3; —CHCl2; —CH2OH; —CH2CH2OH; —CH2NH2; —CH2SO2CH3; —C(O)Rx; —CO2(Rx); —CON(Rx)2; —OC(O)Rx; —OCO2Rx; —OCON(Rx)2; —N(Rx)2; —S(O)2Rx; —NRx(CO)Rx, wherein each occurrence of Rx independently includes, but is not limited to, aliphatic, heteroaliphatic, aryl, heteroaryl, arylalkyl, or heteroarylalkyl, wherein any of the aliphatic, heteroaliphatic, arylalkyl, or heteroarylalkyl substituents described above and herein may be substituted or unsubstituted, branched or unbranched, cyclic or acyclic, and wherein any of the aryl or heteroaryl substituents described above and herein may be substituted or unsubstituted. Additional examples of generally applicable substitutents are illustrated by the specific embodiments described herein.


The terms “halo” and “halogen” as used herein refer to an atom selected from fluorine, chlorine, bromine, and iodine.


The term “alkyl” includes saturated aliphatic groups, including straight-chain alkyl groups (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, etc.), branched-chain alkyl groups (isopropyl, tert-butyl, isobutyl, etc.), cycloalkyl (alicyclic) groups (cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl), alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups. In certain embodiments, a straight chain or branched chain alkyl has 6 or fewer carbon atoms in its backbone (e.g., C1-C6 for straight chain, C3-C6 for branched chain), and more preferably 4 or fewer. Likewise, preferred cycloalkyls have from 3-8 carbon atoms in their ring structure, and more preferably have 5 or 6 carbons in the ring structure. The term C1-C6 includes alkyl groups containing 1 to 6 carbon atoms.


Moreover, unless otherwise specified, the term alkyl includes both “unsubstituted alkyls” and “substituted alkyls,” the latter of which refers to alkyl moieties having independently selected substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety. Cycloalkyls can be further substituted, e.g., with the substituents described above. An “alkylaryl” or an “arylalkyl” moiety is an alkyl substituted with an aryl (e.g., phenylmethyl (benzyl)). The term “alkyl” also includes the side chains of natural and unnatural amino acids. The term “n-alkyl” means a straight chain (i.e., unbranched) unsubstituted alkyl group.


The term “alkenyl” includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double bond. For example, the term “alkenyl” includes straight-chain alkenyl groups (e.g., ethylenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, etc.), branched-chain alkenyl groups, cycloalkenyl (alicyclic) groups (cyclopropenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl), alkyl or alkenyl substituted cycloalkenyl groups, and cycloalkyl or cycloalkenyl substituted alkenyl groups. In certain embodiments, a straight chain or branched chain alkenyl group has 6 or fewer carbon atoms in its backbone (e.g., C2-C6 for straight chain, C3-C6 for branched chain). Likewise, cycloalkenyl groups may have from 3-8 carbon atoms in their ring structure, and more preferably have 5 or 6 carbons in the ring structure. The term C2-C6 includes alkenyl groups containing 2 to 6 carbon atoms.


Moreover, unless otherwise specified, the term alkenyl includes both “unsubstituted alkenyls” and “substituted alkenyls,” the latter of which refers to alkenyl moieties having independently selected substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety.


The term “alkynyl” includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but which contain at least one triple bond. For example, the term “alkynyl” includes straight-chain alkynyl groups (e.g., ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, etc.), branched-chain alkynyl groups, and cycloalkyl or cycloalkenyl substituted alkynyl groups. In certain embodiments, a straight chain or branched chain alkynyl group has 6 or fewer carbon atoms in its backbone (e.g., C2-C6 for straight chain, C3-C6 for branched chain). The term C2-C6 includes alkynyl groups containing 2 to 6 carbon atoms.


Moreover, unless otherwise specified, the term alkynyl includes both “unsubstituted alkynyls” and “substituted alkynyls,” the latter of which refers to alkynyl moieties having independently selected substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety.


Unless the number of carbons is otherwise specified, “lower alkyl” as used herein means an alkyl group, as defined above, but having from one to five carbon atoms in its backbone structure. “Lower alkenyl” and “lower alkynyl” have chain lengths of, for example, 2-5 carbon atoms.


The term “alkoxy” includes substituted and unsubstituted alkyl, alkenyl, and alkynyl groups covalently linked to an oxygen atom. Examples of alkoxy groups include methoxy, ethoxy, isopropyloxy, propoxy, butoxy, and pentoxy groups. Examples of substituted alkoxy groups include halogenated alkoxy groups. The alkoxy groups can be substituted with independently selected groups such as alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulffiydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfmyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moieties. Examples of halogen substituted alkoxy groups include, but are not limited to, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chloromethoxy, dichloromethoxy, trichloromethoxy, etc.


The term “hydrophobic modifications’ include bases modified in a fashion, where (1) overall hydrophobicity of the base is significantly increases, (2) the base is still capable of forming close to regular Watson-Crick interaction. Some, of the examples of base modifications include but are not limited to 5-position uridine and cytidine modifications like phenyl,


4-pyridyl, 2-pyridyl, indolyl, and isobutyl, phenyl (C6H5OH); tryptophanyl (C8H6N)CH2CH(NH2)CO), Isobutyl, butyl, aminobenzyl; phenyl; naphthyl, For purposes of the present invention, the term “overhang” refers to terminal non-base pairing nucleotide(s) resulting from one strand or region extending beyond the terminus of the complementary strand to which the first strand or region forms a duplex. One or more polynucleotides that are capable of forming a duplex through hydrogen bonding can have overhangs. The overhand length generally doesn't exceed 5 bases in length.


The term “heteroatom” includes atoms of any element other than carbon or hydrogen. Preferred heteroatoms are nitrogen, oxygen, sulfur and phosphorus.


The term “hydroxy” or “hydroxyl” includes groups with an —OH or —O (with an appropriate counterion).


The term “halogen” includes fluorine, bromine, chlorine, iodine, etc. The term “perhalogenated” generally refers to a moiety wherein all hydrogens are replaced by halogen atoms.


The term “substituted” includes independently selected substituents which can be placed on the moiety and which allow the molecule to perform its intended function. Examples of substituents include alkyl, alkenyl, alkynyl, aryl, (CR′R″)0-3NR′R″, (CR′R″)0-3CN, NO2, halogen, (CR′R″)0-3C(halogen)3, (CR′R″)0-3CH(halogen)2, (CR′R″)0-3CH2(halogen), (CR′R″)0-3CONR′R″, (CR′R″)0-3S(O)1-2NR′R″, (CR′R″)0-3CHO, (CR′R″)0-3O(CR′R″)0-3H, (CR′R″)0-3S(O)0-2R′, (CR′R″)0-3O(CR′R″)0-3H, (CR′R″)0-3COR′, (CR′R″)0-3CO2R′, or (CR′R″)0-3OR′ groups; wherein each R′ and R″ are each independently hydrogen, a C1-C5 alkyl, C2-C5 alkenyl, C2-C5 alkynyl, or aryl group, or R′ and R″ taken together are a benzylidene group or a —(CH2)2O(CH2)2— group.


The term “amine” or “amino” includes compounds or moieties in which a nitrogen atom is covalently bonded to at least one carbon or heteroatom. The term “alkyl amino” includes groups and compounds wherein the nitrogen is bound to at least one additional alkyl group. The term “dialkyl amino” includes groups wherein the nitrogen atom is bound to at least two additional alkyl groups.


The term “ether” includes compounds or moieties which contain an oxygen bonded to two different carbon atoms or heteroatoms. For example, the term includes “alkoxyalkyl,” which refers to an alkyl, alkenyl, or alkynyl group covalently bonded to an oxygen atom which is covalently bonded to another alkyl group.


The terms “polynucleotide,” “nucleotide sequence,” “nucleic acid,” “nucleic acid molecule,” “nucleic acid sequence,” and “oligonucleotide” refer to a polymer of two or more nucleotides. The polynucleotides can be DNA, RNA, or derivatives or modified versions thereof. The polynucleotide may be single-stranded or double-stranded. The polynucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, its hybridization parameters, etc. The polynucleotide may comprise a modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, and 2,6-diaminopurine. The polynucleotide may comprise a modified sugar moiety (e.g., 2′-fluororibose, ribose, 2′-deoxyribose, 2′-O-methylcytidine, arabinose, and hexose), and/or a modified phosphate moiety (e.g., phosphorothioates and 5′-N-phosphoramidite linkages). A nucleotide sequence typically carries genetic information, including the information used by cellular machinery to make proteins and enzymes. These terms include double- or single-stranded genomic and cDNA, RNA, any synthetic and genetically manipulated polynucleotide, and both sense and antisense polynucleotides. This includes single- and double-stranded molecules, i.e., DNA-DNA, DNA-RNA, and RNA-RNA hybrids, as well as “protein nucleic acids” (PNA) formed by conjugating bases to an amino acid backbone.


The term “base” includes the known purine and pyrimidine heterocyclic bases, deazapurines, and analogs (including heterocyclic substituted analogs, e.g., aminoethyoxy phenoxazine), derivatives (e.g., 1-alkyl-, 1-alkenyl-, heteroaromatic- and 1-alkynyl derivatives) and tautomers thereof. Examples of purines include adenine, guanine, inosine, diaminopurine, and xanthine and analogs (e.g., 8-oxo-N6-methyladenine or 7-diazaxanthine) and derivatives thereof. Pyrimidines include, for example, thymine, uracil, and cytosine, and their analogs (e.g., 5-methylcytosine, 5-methyluracil, 5-(1-propynyl)uracil, 5-(1-propynyl)cytosine and 4,4-ethanocytosine). Other examples of suitable bases include non-purinyl and non-pyrimidinyl bases such as 2-aminopyridine and triazines.


In a preferred embodiment, the nucleomonomers of an oligonucleotide of the invention are RNA nucleotides. In another preferred embodiment, the nucleomonomers of an oligonucleotide of the invention are modified RNA nucleotides. Thus, the oligonucleotides contain modified RNA nucleotides.


The term “nucleoside” includes bases which are covalently attached to a sugar moiety, preferably ribose or deoxyribose. Examples of preferred nucleosides include ribonucleosides and deoxyribonucleosides. Nucleosides also include bases linked to amino acids or amino acid analogs which may comprise free carboxyl groups, free amino groups, or protecting groups. Suitable protecting groups are well known in the art (see P. G. M. Wuts and T. W. Greene, “Protective Groups in Organic Synthesis”, 2nd Ed., Wiley-Interscience, New York, 1999).


The term “nucleotide” includes nucleosides which further comprise a phosphate group or a phosphate analog.


The nucleic acid molecules may be associated with a hydrophobic moiety for targeting and/or delivery of the molecule to a cell. In certain embodiments, the hydrophobic moiety is associated with the nucleic acid molecule through a linker. In certain embodiments, the association is through non-covalent interactions. In other embodiments, the association is through a covalent bond. Any linker known in the art may be used to associate the nucleic acid with the hydrophobic moiety. Linkers known in the art are described in published international PCT applications, WO 92/03464, WO 95/23162, WO 2008/021157, WO 2009/021157, WO 2009/134487, WO 2009/126933, U.S. Patent Application Publication 2005/0107325, U.S. Pat. No. 5,414,077, U.S. Pat. No. 5,419,966, U.S. Pat. No. 5,512,667, U.S. Pat. No. 5,646,126, and U.S. Pat. No. 5,652,359, which are incorporated herein by reference. The linker may be as simple as a covalent bond to a multi-atom linker. The linker may be cyclic or acyclic. The linker may be optionally substituted. In certain embodiments, the linker is capable of being cleaved from the nucleic acid. In certain embodiments, the linker is capable of being hydrolyzed under physiological conditions. In certain embodiments, the linker is capable of being cleaved by an enzyme (e.g., an esterase or phosphodiesterase). In certain embodiments, the linker comprises a spacer element to separate the nucleic acid from the hydrophobic moiety. The spacer element may include one to thirty carbon or heteroatoms. In certain embodiments, the linker and/or spacer element comprises protonatable functional groups. Such protonatable functional groups may promote the endosomal escape of the nucleic acid molecule. The protonatable functional groups may also aid in the delivery of the nucleic acid to a cell, for example, neutralizing the overall charge of the molecule. In other embodiments, the linker and/or spacer element is biologically inert (that is, it does not impart biological activity or function to the resulting nucleic acid molecule).


In certain embodiments, the nucleic acid molecule with a linker and hydrophobic moiety is of the formulae described herein. In certain embodiments, the nucleic acid molecule is of the formula:




embedded image



wherein


X is N or CH;


A is a bond; substituted or unsubstituted, cyclic or acyclic, branched or unbranched aliphatic; or substituted or unsubstituted, cyclic or acyclic, branched or unbranched heteroaliphatic;


R1 is a hydrophobic moiety;


R2 is hydrogen; an oxygen-protecting group; cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic; cyclic or acyclic, substituted or unsubstituted, branched or unbranched heteroaliphatic; substituted or unsubstituted, branched or unbranched acyl; substituted or unsubstituted, branched or unbranched aryl; substituted or unsubstituted, branched or unbranched heteroaryl; and


R3 is a nucleic acid.


In certain embodiments, the molecule is of the formula:




embedded image



In certain embodiments, the molecule is of the formula:




embedded image



In certain embodiments, the molecule is of the formula:




embedded image



In certain embodiments, the molecule is of the formula:




embedded image



In certain embodiments, X is N. In certain embodiments, X is CH.


In certain embodiments, A is a bond. In certain embodiments, A is substituted or unsubstituted, cyclic or acyclic, branched or unbranched aliphatic. In certain embodiments, A is acyclic, substituted or unsubstituted, branched or unbranched aliphatic. In certain embodiments, A is acyclic, substituted, branched or unbranched aliphatic. In certain embodiments, A is acyclic, substituted, unbranched aliphatic. In certain embodiments, A is acyclic, substituted, unbranched alkyl. In certain embodiments, A is acyclic, substituted, unbranched C1-20 alkyl. In certain embodiments, A is acyclic, substituted, unbranched C1-12 alkyl. In certain embodiments, A is acyclic, substituted, unbranched C1-10 alkyl. In certain embodiments, A is acyclic, substituted, unbranched C1-8 alkyl. In certain embodiments, A is acyclic, substituted, unbranched C1-6 alkyl. In certain embodiments, A is substituted or unsubstituted, cyclic or acyclic, branched or unbranched heteroaliphatic. In certain embodiments, A is acyclic, substituted or unsubstituted, branched or unbranched heteroaliphatic. In certain embodiments, A is acyclic, substituted, branched or unbranched heteroaliphatic. In certain embodiments, A is acyclic, substituted, unbranched heteroaliphatic.


In certain embodiments, A is of the formula:




embedded image



In certain embodiments, A is of one of the formulae:




embedded image



In certain embodiments, A is of one of the formulae:




embedded image



In certain embodiments, A is of one of the formulae:




embedded image



In certain embodiments, A is of the formula:




embedded image



In certain embodiments, A is of the formula:




embedded image



In certain embodiments, A is of the formula:




embedded image



wherein


each occurrence of R is independently the side chain of a natural or unnatural amino acid; and


n is an integer between 1 and 20, inclusive. In certain embodiments, A is of the formula:




embedded image


In certain embodiments, each occurrence of R is independently the side chain of a natural amino acid. In certain embodiments, n is an integer between 1 and 15, inclusive. In certain embodiments, n is an integer between 1 and 10, inclusive. In certain embodiments, n is an integer between 1 and 5, inclusive.


In certain embodiments, A is of the formula:




embedded image



wherein n is an integer between 1 and 20, inclusive. In certain embodiments, A is of the formula:




embedded image



In certain embodiments, n is an integer between 1 and 15, inclusive. In certain embodiments, n is an integer between 1 and 10, inclusive. In certain embodiments, n is an integer between 1 and 5, inclusive.


In certain embodiments, A is of the formula:




embedded image



wherein n is an integer between 1 and 20, inclusive. In certain embodiments, A is of the formula:




embedded image



In certain embodiments, n is an integer between 1 and 15, inclusive. In certain embodiments, n is an integer between 1 and 10, inclusive. In certain embodiments, n is an integer between 1 and 5, inclusive.


In certain embodiments, the molecule is of the formula:




embedded image



wherein X, R1, R2, and R3 are as defined herein; and


A′ is substituted or unsubstituted, cyclic or acyclic, branched or unbranched aliphatic; or substituted or unsubstituted, cyclic or acyclic, branched or unbranched heteroaliphatic.


In certain embodiments, A′ is of one of the formulae:




embedded image



In certain embodiments, A is of one of the formulae:




embedded image



In certain embodiments, A is of one of the formulae:




embedded image



In certain embodiments, A is of the formula:




embedded image



In certain embodiments, A is of the formula:




embedded image



In certain embodiments, R1 is a steroid. In certain embodiments, R1 is a cholesterol. In certain embodiments, R1 is a lipophilic vitamin. In certain embodiments, R1 is a vitamin A. In certain embodiments, R1 is a vitamin E.


In certain embodiments, R1 is of the formula:




embedded image



wherein RA is substituted or unsubstituted, cyclic or acyclic, branched or unbranched aliphatic; or substituted or unsubstituted, cyclic or acyclic, branched or unbranched heteroaliphatic.


In certain embodiments, R1 is of the formula:




embedded image



In certain embodiments, R1 is of the formula:




embedded image



In certain embodiments, R1 is of the formula:




embedded image



In certain embodiments, R1 is of the formula:




embedded image



In certain embodiments, R1 is of the formula:




embedded image



In certain embodiments, the nucleic acid molecule is of the formula:




embedded image



wherein


X is N or CH;


A is a bond; substituted or unsubstituted, cyclic or acyclic, branched or unbranched aliphatic; or substituted or unsubstituted, cyclic or acyclic, branched or unbranched heteroaliphatic;


R1 is a hydrophobic moiety;


R2 is hydrogen; an oxygen-protecting group; cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic; cyclic or acyclic, substituted or unsubstituted, branched or unbranched heteroaliphatic; substituted or unsubstituted, branched or unbranched acyl; substituted or unsubstituted, branched or unbranched aryl; substituted or unsubstituted, branched or unbranched heteroaryl; and


R3 is a nucleic acid.


In certain embodiments, the nucleic acid molecule is of the formula:




embedded image



wherein


X is N or CH;


A is a bond; substituted or unsubstituted, cyclic or acyclic, branched or unbranched aliphatic; or substituted or unsubstituted, cyclic or acyclic, branched or unbranched heteroaliphatic;


R1 is a hydrophobic moiety;


R2 is hydrogen; an oxygen-protecting group; cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic; cyclic or acyclic, substituted or unsubstituted, branched or unbranched heteroaliphatic; substituted or unsubstituted, branched or unbranched acyl; substituted or unsubstituted, branched or unbranched aryl; substituted or unsubstituted, branched or unbranched heteroaryl; and


R3 is a nucleic acid.


In certain embodiments, the nucleic acid molecule is of the formula:




embedded image



wherein


X is N or CH;


A is a bond; substituted or unsubstituted, cyclic or acyclic, branched or unbranched aliphatic; or substituted or unsubstituted, cyclic or acyclic, branched or unbranched heteroaliphatic;


R1 is a hydrophobic moiety;


R2 is hydrogen; an oxygen-protecting group; cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic; cyclic or acyclic, substituted or unsubstituted, branched or unbranched heteroaliphatic; substituted or unsubstituted, branched or unbranched acyl; substituted or unsubstituted, branched or unbranched aryl; substituted or unsubstituted, branched or unbranched heteroaryl; and


R3 is a nucleic acid. In certain embodiments, the nucleic acid molecule is of the formula:




embedded image



In certain embodiments, the nucleic acid molecule is of the formula:




embedded image



In certain embodiments, the nucleic acid molecule is of the formula:




embedded image



wherein R3 is a nucleic acid.


In certain embodiments, the nucleic acid molecule is of the formula:




embedded image



wherein R3 is a nucleic acid; and


n is an integer between 1 and 20, inclusive.


In certain embodiments, the nucleic acid molecule is of the formula:




embedded image



In certain embodiments, the nucleic acid molecule is of the formula:




embedded image



In certain embodiments, the nucleic acid molecule is of the formula:




embedded image



In certain embodiments, the nucleic acid molecule is of the formula:




embedded image



In certain embodiments, the nucleic acid molecule is of the formula:




embedded image


As used herein, the term “linkage” includes a naturally occurring, unmodified phosphodiester moiety (—O—(PO2−)—O—) that covalently couples adjacent nucleomonomers. As used herein, the term “substitute linkage” includes any analog or derivative of the native phosphodiester group that covalently couples adjacent nucleomonomers. Substitute linkages include phosphodiester analogs, e.g., phosphorothioate, phosphorodithioate, and P-ethyoxyphosphodiester, P-ethoxyphosphodiester, P-alkyloxyphosphotriester, methylphosphonate, and nonphosphorus containing linkages, e.g., acetals and amides. Such substitute linkages are known in the art (e.g., Bjergarde et al. 1991. Nucleic Acids Res. 19:5843; Caruthers et al. 1991. Nucleosides Nucleotides. 10:47). In certain embodiments, non-hydrolizable linkages are preferred, such as phosphorothioate linkages.


In certain embodiments, oligonucleotides of the invention comprise hydrophobicly modified nucleotides or “hydrophobic modifications.” As used herein “hydrophobic modifications” refers to bases that are modified such that (1) overall hydrophobicity of the base is significantly increased, and/or (2) the base is still capable of forming close to regular Watson-Crick interaction. Several non-limiting examples of base modifications include 5-position uridine and cytidine modifications such as phenyl, 4-pyridyl, 2-pyridyl, indolyl, and isobutyl, phenyl (C6H5OH); tryptophanyl (C8H6N)CH2CH(NH2)CO), Isobutyl, butyl, aminobenzyl; phenyl; and naphthyl.


Another type of conjugates that can be attached to the end (3′ or 5′ end), the loop region, or any other parts of the sd-rxRNA might include a sterol, sterol type molecule, peptide, small molecule, protein, etc. In some embodiments, a sd-rxRNA may contain more than one conjugates (same or different chemical nature). In some embodiments, the conjugate is cholesterol.


Another way to increase target gene specificity, or to reduce off-target silencing effect, is to introduce a 2′-modification (such as the 2′-O methyl modification) at a position corresponding to the second 5′-end nucleotide of the guide sequence. This allows the positioning of this 2′-modification in the Dicer-resistant hairpin structure, thus enabling one to design better RNAi constructs with less or no off-target silencing.


In one embodiment, a hairpin polynucleotide of the invention can comprise one nucleic acid portion which is DNA and one nucleic acid portion which is RNA. Antisense (guide) sequences of the invention can be “chimeric oligonucleotides” which comprise an RNA-like and a DNA-like region.


The language “RNase H activating region” includes a region of an oligonucleotide, e.g., a chimeric oligonucleotide, that is capable of recruiting RNase H to cleave the target RNA strand to which the oligonucleotide binds. Typically, the RNase activating region contains a minimal core (of at least about 3-5, typically between about 3-12, more typically, between about 5-12, and more preferably between about 5-10 contiguous nucleomonomers) of DNA or DNA-like nucleomonomers. (See, e.g., U.S. Pat. No. 5,849,902). Preferably, the RNase H activating region comprises about nine contiguous deoxyribose containing nucleomonomers.


The language “non-activating region” includes a region of an antisense sequence, e.g., a chimeric oligonucleotide, that does not recruit or activate RNase H. Preferably, a non-activating region does not comprise phosphorothioate DNA. The oligonucleotides of the invention comprise at least one non-activating region. In one embodiment, the non-activating region can be stabilized against nucleases or can provide specificity for the target by being complementary to the target and forming hydrogen bonds with the target nucleic acid molecule, which is to be bound by the oligonucleotide.


In one embodiment, at least a portion of the contiguous polynucleotides are linked by a substitute linkage, e.g., a phosphorothioate linkage.


In certain embodiments, most or all of the nucleotides beyond the guide sequence (2′-modified or not) are linked by phosphorothioate linkages. Such constructs tend to have improved pharmacokinetics due to their higher affinity for serum proteins. The phosphorothioate linkages in the non-guide sequence portion of the polynucleotide generally do not interfere with guide strand activity, once the latter is loaded into RISC.


Antisense (guide) sequences of the present invention may include “morpholino oligonucleotides.” Morpholino oligonucleotides are non-ionic and function by an RNase H-independent mechanism. Each of the 4 genetic bases (Adenine, Cytosine, Guanine, and Thymine/Uracil) of the morpholino oligonucleotides is linked to a 6-membered morpholine ring. Morpholino oligonucleotides are made by joining the 4 different subunit types by, e.g., non-ionic phosphorodiamidate inter-subunit linkages. Morpholino oligonucleotides have many advantages including: complete resistance to nucleases (Antisense & Nucl. Acid Drug Dev. 1996. 6:267); predictable targeting (Biochemica Biophysica Acta. 1999. 1489:141); reliable activity in cells (Antisense & Nucl. Acid Drug Dev. 1997. 7:63); excellent sequence specificity (Antisense & Nucl. Acid Drug Dev. 1997. 7:151); minimal non-antisense activity (Biochemica Biophysica Acta. 1999. 1489:141); and simple osmotic or scrape delivery (Antisense & Nucl. Acid Drug Dev. 1997. 7:291). Morpholino oligonucleotides are also preferred because of their non-toxicity at high doses. A discussion of the preparation of morpholino oligonucleotides can be found in Antisense & Nucl. Acid Drug Dev. 1997. 7:187.


The chemical modifications described herein are believed, based on the data described herein, to promote single stranded polynucleotide loading into the RISC. Single stranded polynucleotides have been shown to be active in loading into RISC and inducing gene silencing. However, the level of activity for single stranded polynucleotides appears to be 2 to 4 orders of magnitude lower when compared to a duplex polynucleotide.


The present invention provides a description of the chemical modification patterns, which may (a) significantly increase stability of the single stranded polynucleotide (b) promote efficient loading of the polynucleotide into the RISC complex and (c) improve uptake of the single stranded nucleotide by the cell. FIG. 5 provides some non-limiting examples of the chemical modification patterns which may be beneficial for achieving single stranded polynucleotide efficacy inside the cell. The chemical modification patterns may include combination of ribose, backbone, hydrophobic nucleoside and conjugate type of modifications. In addition, in some of the embodiments, the 5′ end of the single polynucleotide may be chemically phosphorylated.


In yet another embodiment, the present invention provides a description of the chemical modifications patterns, which improve functionality of RISC inhibiting polynucleotides. Single stranded polynucleotides have been shown to inhibit activity of a preloaded RISC complex through the substrate competition mechanism. For these types of molecules, conventionally called antagomers, the activity usually requires high concentration and in vivo delivery is not very effective. The present invention provides a description of the chemical modification patterns, which may (a) significantly increase stability of the single stranded polynucleotide (b) promote efficient recognition of the polynucleotide by the RISC as a substrate and/or (c) improve uptake of the single stranded nucleotide by the cell. FIG. 6 provides some non-limiting examples of the chemical modification patterns that may be beneficial for achieving single stranded polynucleotide efficacy inside the cell. The chemical modification patterns may include combination of ribose, backbone, hydrophobic nucleoside and conjugate type of modifications.


The modifications provided by the present invention are applicable to all polynucleotides. This includes single stranded RISC entering polynucleotides, single stranded RISC inhibiting polynucleotides, conventional duplexed polynucleotides of variable length (15-40 bp), asymmetric duplexed polynucleotides, and the like. Polynucleotides may be modified with wide variety of chemical modification patterns, including 5′ end, ribose, backbone and hydrophobic nucleoside modifications.


Synthesis


Oligonucleotides of the invention can be synthesized by any method known in the art, e.g., using enzymatic synthesis and/or chemical synthesis. The oligonucleotides can be synthesized in vitro (e.g., using enzymatic synthesis and chemical synthesis) or in vivo (using recombinant DNA technology well known in the art).


In a preferred embodiment, chemical synthesis is used for modified polynucleotides. Chemical synthesis of linear oligonucleotides is well known in the art and can be achieved by solution or solid phase techniques. Preferably, synthesis is by solid phase methods. Oligonucleotides can be made by any of several different synthetic procedures including the phosphoramidite, phosphite triester, H-phosphonate, and phosphotriester methods, typically by automated synthesis methods.


Oligonucleotide synthesis protocols are well known in the art and can be found, e.g., in U.S. Pat. No. 5,830,653; WO 98/13526; Stec et al. 1984. J. Am. Chem. Soc. 106:6077; Stec et al. 1985. J. Org. Chem. 50:3908; Stec et al. J. Chromatog. 1985. 326:263; LaPlanche et al. 1986. Nucl. Acid. Res. 1986. 14:9081; Fasman G. D., 1989. Practical Handbook of Biochemistry and Molecular Biology. 1989. CRC Press, Boca Raton, Fla.; Lamone. 1993. Biochem. Soc. Trans. 21:1; U.S. Pat. No. 5,013,830; U.S. Pat. No. 5,214,135; U.S. Pat. No. 5,525,719; Kawasaki et al. 1993. J. Med. Chem. 36:831; WO 92/03568; U.S. Pat. No. 5,276,019; and U.S. Pat. No. 5,264,423.


The synthesis method selected can depend on the length of the desired oligonucleotide and such choice is within the skill of the ordinary artisan. For example, the phosphoramidite and phosphite triester method can produce oligonucleotides having 175 or more nucleotides, while the H-phosphonate method works well for oligonucleotides of less than 100 nucleotides. If modified bases are incorporated into the oligonucleotide, and particularly if modified phosphodiester linkages are used, then the synthetic procedures are altered as needed according to known procedures. In this regard, Uhlmann et al. (1990, Chemical Reviews 90:543-584) provide references and outline procedures for making oligonucleotides with modified bases and modified phosphodiester linkages. Other exemplary methods for making oligonucleotides are taught in Sonveaux. 1994. “Protecting Groups in Oligonucleotide Synthesis”; Agrawal. Methods in Molecular Biology 26:1. Exemplary synthesis methods are also taught in “Oligonucleotide Synthesis—A Practical Approach” (Gait, M. J. IRL Press at Oxford University Press. 1984). Moreover, linear oligonucleotides of defined sequence, including some sequences with modified nucleotides, are readily available from several commercial sources.


The oligonucleotides may be purified by polyacrylamide gel electrophoresis, or by any of a number of chromatographic methods, including gel chromatography and high pressure liquid chromatography. To confirm a nucleotide sequence, especially unmodified nucleotide sequences, oligonucleotides may be subjected to DNA sequencing by any of the known procedures, including Maxam and Gilbert sequencing, Sanger sequencing, capillary electrophoresis sequencing, the wandering spot sequencing procedure or by using selective chemical degradation of oligonucleotides bound to Hybond paper. Sequences of short oligonucleotides can also be analyzed by laser desorption mass spectroscopy or by fast atom bombardment (McNeal, et al., 1982, J. Am. Chem. Soc. 104:976; Viari, et al., 1987, Biomed. Environ. Mass Spectrom. 14:83; Grotjahn et al., 1982, Nuc. Acid Res. 10:4671). Sequencing methods are also available for RNA oligonucleotides.


The quality of oligonucleotides synthesized can be verified by testing the oligonucleotide by capillary electrophoresis and denaturing strong anion HPLC (SAX-HPLC) using, e.g., the method of Bergot and Egan. 1992. J. Chrom. 599:35.


Other exemplary synthesis techniques are well known in the art (see, e.g., Sambrook et al., Molecular Cloning: a Laboratory Manual, Second Edition (1989); DNA Cloning, Volumes I and II (DN Glover Ed. 1985); Oligonucleotide Synthesis (M J Gait Ed, 1984; Nucleic Acid Hybridisation (B D Hames and S J Higgins eds. 1984); A Practical Guide to Molecular Cloning (1984); or the series, Methods in Enzymology (Academic Press, Inc.)).


In certain embodiments, the subject RNAi constructs or at least portions thereof are transcribed from expression vectors encoding the subject constructs. Any art recognized vectors may be use for this purpose. The transcribed RNAi constructs may be isolated and purified, before desired modifications (such as replacing an unmodified sense strand with a modified one, etc.) are carried out.


Delivery/Carrier


Uptake of Oligonucleotides by Cells


Oligonucleotides and oligonucleotide compositions are contacted with (i.e., brought into contact with, also referred to herein as administered or delivered to) and taken up by one or more cells or a cell lysate. The term “cells” includes prokaryotic and eukaryotic cells, preferably vertebrate cells, and, more preferably, mammalian cells. In a preferred embodiment, the oligonucleotide compositions of the invention are contacted with human cells.


Oligonucleotide compositions of the invention can be contacted with cells in vitro, e.g., in a test tube or culture dish, (and may or may not be introduced into a subject) or in vivo, e.g., in a subject such as a mammalian subject. Oligonucleotides are taken up by cells at a slow rate by endocytosis, but endocytosed oligonucleotides are generally sequestered and not available, e.g., for hybridization to a target nucleic acid molecule. In one embodiment, cellular uptake can be facilitated by electroporation or calcium phosphate precipitation. However, these procedures are only useful for in vitro or ex vivo embodiments, are not convenient and, in some cases, are associated with cell toxicity.


In another embodiment, delivery of oligonucleotides into cells can be enhanced by suitable art recognized methods including calcium phosphate, DMSO, glycerol or dextran, electroporation, or by transfection, e.g., using cationic, anionic, or neutral lipid compositions or liposomes using methods known in the art (see e.g., WO 90/14074; WO 91/16024; WO 91/17424; U.S. Pat. No. 4,897,355; Bergan et al. 1993. Nucleic Acids Research. 21:3567). Enhanced delivery of oligonucleotides can also be mediated by the use of vectors (See e.g., Shi, Y. 2003. Trends Genet 2003 Jan. 19:9; Reichhart J Metal. Genesis. 2002. 34(1-2):1604, Yu et al. 2002. Proc. Natl. Acad Sci. USA 99:6047; Sui et al. 2002. Proc. Natl. Acad Sci. USA 99:5515) viruses, polyamine or polycation conjugates using compounds such as polylysine, protamine, or Ni, N12-bis (ethyl) spermine (see, e.g., Bartzatt, R. et al. 1989. Biotechnol. Appl. Biochem. 11:133; Wagner E. et al. 1992. Proc. Natl. Acad. Sci. 88:4255).


In certain embodiments, the sd-rxRNA of the invention may be delivered by using various beta-glucan containing particles, referred to as GeRPs (glucan encapsulated RNA loaded particle), described in, and incorporated by reference from, U.S. Provisional Application No. 61/310,611, filed on Mar. 4, 2010 and entitled “Formulations and Methods for Targeted Delivery to Phagocyte Cells.” Such particles are also described in, and incorporated by reference from US Patent Publications US 2005/0281781 A1, and US 2010/0040656, and in PCT publications WO 2006/007372, and WO 2007/050643. The sd-rxRNA molecule may be hydrophobically modified and optionally may be associated with a lipid and/or amphiphilic peptide. In certain embodiments, the beta-glucan particle is derived from yeast. In certain embodiments, the payload trapping molecule is a polymer, such as those with a molecular weight of at least about 1000 Da, 10,000 Da, 50,000 Da, 100 kDa, 500 kDa, etc. Preferred polymers include (without limitation) cationic polymers, chitosans, or PEI (polyethylenimine), etc.


Glucan particles can be derived from insoluble components of fungal cell walls such as yeast cell walls. In some embodiments, the yeast is Baker's yeast. Yeast-derived glucan molecules can include one or more of β-(1,3)-Glucan, β-(1,6)-Glucan, mannan and chitin. In some embodiments, a glucan particle comprises a hollow yeast cell wall whereby the particle maintains a three dimensional structure resembling a cell, within which it can complex with or encapsulate a molecule such as an RNA molecule. Some of the advantages associated with the use of yeast cell wall particles are availability of the components, their biodegradable nature, and their ability to be targeted to phagocytic cells.


In some embodiments, glucan particles can be prepared by extraction of insoluble components from cell walls, for example by extracting Baker's yeast (Fleischmann's) with 1M NaOH/pH 4.0 H2O, followed by washing and drying. Methods of preparing yeast cell wall particles are discussed in, and incorporated by reference from U.S. Pat. Nos. 4,810,646, 4,992,540, 5,082,936, 5,028,703, 5,032,401, 5,322,841, 5,401,727, 5,504,079, 5,607,677, 5,968,811, 6,242,594, 6,444,448, 6,476,003, US Patent Publications 2003/0216346, 2004/0014715 and 2010/0040656, and PCT published application WO02/12348.


Protocols for preparing glucan particles are also described in, and incorporated by reference from, the following references: Soto and Ostroff (2008), “Characterization of multilayered nanoparticles encapsulated in yeast cell wall particles for DNA delivery.” Bioconjug Chem 19(4):840-8; Soto and Ostroff (2007), “Oral Macrophage Mediated Gene Delivery System,” Nanotech, Volume 2, Chapter 5 (“Drug Delivery”), pages 378-381; and Li et al. (2007), “Yeast glucan particles activate murine resident macrophages to secrete proinflammatory cytokines via MyD88- and Syk kinase-dependent pathways.” Clinical Immunology 124(2):170-181.


Glucan containing particles such as yeast cell wall particles can also be obtained commercially. Several non-limiting examples include: Nutricell MOS 55 from Biorigin (Sao Paolo, Brazil), SAF-Mannan (SAF Agri, Minneapolis, Minn.), Nutrex (Sensient Technologies, Milwaukee, Wis.), alkali-extracted particles such as those produced by Nutricepts (Nutricepts Inc., Burnsville, Minn.) and ASA Biotech, acid-extracted WGP particles from Biopolymer Engineering, and organic solvent-extracted particles such as Adjuvax™ from Alpha-beta Technology, Inc. (Worcester, Mass.) and microparticulate glucan from Novogen (Stamford, Conn.).


Glucan particles such as yeast cell wall particles can have varying levels of purity depending on the method of production and/or extraction. In some instances, particles are alkali-extracted, acid-extracted or organic solvent-extracted to remove intracellular components and/or the outer mannoprotein layer of the cell wall. Such protocols can produce particles that have a glucan (w/w) content in the range of 50%-90%. In some instances, a particle of lower purity, meaning lower glucan w/w content may be preferred, while in other embodiments, a particle of higher purity, meaning higher glucan w/w content may be preferred.


Glucan particles, such as yeast cell wall particles, can have a natural lipid content. For example, the particles can contain 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20% or more than 20% w/w lipid. In the Examples section, the effectiveness of two glucan particle batches are tested: YGP SAF and YGP SAF+L (containing natural lipids). In some instances, the presence of natural lipids may assist in complexation or capture of RNA molecules.


Glucan containing particles typically have a diameter of approximately 2-4 microns, although particles with a diameter of less than 2 microns or greater than 4 microns are also compatible with aspects of the invention.


The RNA molecule(s) to be delivered are complexed or “trapped” within the shell of the glucan particle. The shell or RNA component of the particle can be labeled for visualization, as described in, and incorporated by reference from, Soto and Ostroff (2008) Bioconjug Chem 19:840. Methods of loading GeRPs are discussed further below.


The optimal protocol for uptake of oligonucleotides will depend upon a number of factors, the most crucial being the type of cells that are being used. Other factors that are important in uptake include, but are not limited to, the nature and concentration of the oligonucleotide, the confluence of the cells, the type of culture the cells are in (e.g., a suspension culture or plated) and the type of media in which the cells are grown.


Encapsulating Agents


Encapsulating agents entrap oligonucleotides within vesicles. In another embodiment of the invention, an oligonucleotide may be associated with a carrier or vehicle, e.g., liposomes or micelles, although other carriers could be used, as would be appreciated by one skilled in the art. Liposomes are vesicles made of a lipid bilayer having a structure similar to biological membranes. Such carriers are used to facilitate the cellular uptake or targeting of the oligonucleotide, or improve the oligonucleotides pharmacokinetic or toxicological properties.


For example, the oligonucleotides of the present invention may also be administered encapsulated in liposomes, pharmaceutical compositions wherein the active ingredient is contained either dispersed or variously present in corpuscles consisting of aqueous concentric layers adherent to lipidic layers. The oligonucleotides, depending upon solubility, may be present both in the aqueous layer and in the lipidic layer, or in what is generally termed a liposomic suspension. The hydrophobic layer, generally but not exclusively, comprises phopholipids such as lecithin and sphingomyelin, steroids such as cholesterol, more or less ionic surfactants such as diacetylphosphate, stearylamine, or phosphatidic acid, or other materials of a hydrophobic nature. The diameters of the liposomes generally range from about 15 nm to about 5 microns.


The use of liposomes as drug delivery vehicles offers several advantages. Liposomes increase intracellular stability, increase uptake efficiency and improve biological activity. Liposomes are hollow spherical vesicles composed of lipids arranged in a similar fashion as those lipids which make up the cell membrane. They have an internal aqueous space for entrapping water soluble compounds and range in size from 0.05 to several microns in diameter. Several studies have shown that liposomes can deliver nucleic acids to cells and that the nucleic acids remain biologically active. For example, a lipid delivery vehicle originally designed as a research tool, such as Lipofectin or LIPOFECTAMINE™ 2000, can deliver intact nucleic acid molecules to cells.


Specific advantages of using liposomes include the following: they are non-toxic and biodegradable in composition; they display long circulation half-lives; and recognition molecules can be readily attached to their surface for targeting to tissues. Finally, cost-effective manufacture of liposome-based pharmaceuticals, either in a liquid suspension or lyophilized product, has demonstrated the viability of this technology as an acceptable drug delivery system.


In some aspects, formulations associated with the invention might be selected for a class of naturally occurring or chemically synthesized or modified saturated and unsaturated fatty acid residues. Fatty acids might exist in a form of triglycerides, diglycerides or individual fatty acids. In another embodiment, the use of well-validated mixtures of fatty acids and/or fat emulsions currently used in pharmacology for parenteral nutrition may be utilized.


Liposome based formulations are widely used for oligonucleotide delivery. However, most of commercially available lipid or liposome formulations contain at least one positively charged lipid (cationic lipids). The presence of this positively charged lipid is believed to be essential for obtaining a high degree of oligonucleotide loading and for enhancing liposome fusogenic properties. Several methods have been performed and published to identify optimal positively charged lipid chemistries. However, the commercially available liposome formulations containing cationic lipids are characterized by a high level of toxicity. In vivo limited therapeutic indexes have revealed that liposome formulations containing positive charged lipids are associated with toxicity (i.e. elevation in liver enzymes) at concentrations only slightly higher than concentration required to achieve RNA silencing.


Nucleic acids associated with the invention can be hydrophobically modified and can be encompassed within neutral nanotransporters. Further description of neutral nanotransporters is incorporated by reference from PCT Application PCT/US2009/005251, filed on Sep. 22, 2009, and entitled “Neutral Nanotransporters.” Such particles enable quantitative oligonucleotide incorporation into non-charged lipid mixtures. The lack of toxic levels of cationic lipids in such neutral nanotransporter compositions is an important feature.


As demonstrated in PCT/US2009/005251, oligonucleotides can effectively be incorporated into a lipid mixture that is free of cationic lipids and such a composition can effectively deliver a therapeutic oligonucleotide to a cell in a manner that it is functional. For example, a high level of activity was observed when the fatty mixture was composed of a phosphatidylcholine base fatty acid and a sterol such as a cholesterol. For instance, one preferred formulation of neutral fatty mixture is composed of at least 20% of DOPC or DSPC and at least 20% of sterol such as cholesterol. Even as low as 1:5 lipid to oligonucleotide ratio was shown to be sufficient to get complete encapsulation of the oligonucleotide in a non charged formulation.


The neutral nanotransporters compositions enable efficient loading of oligonucleotide into neutral fat formulation. The composition includes an oligonucleotide that is modified in a manner such that the hydrophobicity of the molecule is increased (for example a hydrophobic molecule is attached (covalently or no-covalently) to a hydrophobic molecule on the oligonucleotide terminus or a non-terminal nucleotide, base, sugar, or backbone), the modified oligonucleotide being mixed with a neutral fat formulation (for example containing at least 25% of cholesterol and 25% of DOPC or analogs thereof). A cargo molecule, such as another lipid can also be included in the composition. This composition, where part of the formulation is build into the oligonucleotide itself, enables efficient encapsulation of oligonucleotide in neutral lipid particles.


In some aspects, stable particles ranging in size from 50 to 140 nm can be formed upon complexing of hydrophobic oligonucleotides with preferred formulations. It is interesting to mention that the formulation by itself typically does not form small particles, but rather, forms agglomerates, which are transformed into stable 50-120 nm particles upon addition of the hydrophobic modified oligonucleotide.


The neutral nanotransporter compositions of the invention include a hydrophobic modified polynucleotide, a neutral fatty mixture, and optionally a cargo molecule. A “hydrophobic modified polynucleotide” as used herein is a polynucleotide of the invention (i.e. sd-rxRNA) that has at least one modification that renders the polynucleotide more hydrophobic than the polynucleotide was prior to modification. The modification may be achieved by attaching (covalently or non-covalently) a hydrophobic molecule to the polynucleotide. In some instances the hydrophobic molecule is or includes a lipophilic group.


The term “lipophilic group” means a group that has a higher affinity for lipids than its affinity for water. Examples of lipophilic groups include, but are not limited to, cholesterol, a cholesteryl or modified cholesteryl residue, adamantine, dihydrotesterone, long chain alkyl, long chain alkenyl, long chain alkynyl, olely-lithocholic, cholenic, oleoyl-cholenic, palmityl, heptadecyl, myrisityl, bile acids, cholic acid or taurocholic acid, deoxycholate, oleyl litocholic acid, oleoyl cholenic acid, glycolipids, phospholipids, sphingolipids, isoprenoids, such as steroids, vitamins, such as vitamin E, fatty acids either saturated or unsaturated, fatty acid esters, such as triglycerides, pyrenes, porphyrines, Texaphyrine, adamantane, acridines, biotin, coumarin, fluorescein, rhodamine, Texas-Red, digoxygenin, dimethoxytrityl, t-butyldimethylsilyl, t-butyldiphenylsilyl, cyanine dyes (e.g. Cy3 or Cy5), Hoechst 33258 dye, psoralen, or ibuprofen. The cholesterol moiety may be reduced (e.g. as in cholestan) or may be substituted (e.g. by halogen). A combination of different lipophilic groups in one molecule is also possible.


The hydrophobic molecule may be attached at various positions of the polynucleotide. As described above, the hydrophobic molecule may be linked to the terminal residue of the polynucleotide such as the 3′ of 5′-end of the polynucleotide. Alternatively, it may be linked to an internal nucleotide or a nucleotide on a branch of the polynucleotide. The hydrophobic molecule may be attached, for instance to a 2′-position of the nucleotide. The hydrophobic molecule may also be linked to the heterocyclic base, the sugar or the backbone of a nucleotide of the polynucleotide.


The hydrophobic molecule may be connected to the polynucleotide by a linker moiety. Optionally the linker moiety is a non-nucleotidic linker moiety. Non-nucleotidic linkers are e.g. abasic residues (dSpacer), oligoethyleneglycol, such as triethyleneglycol (spacer 9) or hexaethylenegylcol (spacer 18), or alkane-diol, such as butanediol. The spacer units are preferably linked by phosphodiester or phosphorothioate bonds. The linker units may appear just once in the molecule or may be incorporated several times, e.g. via phosphodiester, phosphorothioate, methylphosphonate, or amide linkages.


Typical conjugation protocols involve the synthesis of polynucleotides bearing an aminolinker at one or more positions of the sequence, however, a linker is not required. The amino group is then reacted with the molecule being conjugated using appropriate coupling or activating reagents. The conjugation reaction may be performed either with the polynucleotide still bound to a solid support or following cleavage of the polynucleotide in solution phase. Purification of the modified polynucleotide by HPLC typically results in a pure material.


In some embodiments the hydrophobic molecule is a sterol type conjugate, a PhytoSterol conjugate, cholesterol conjugate, sterol type conjugate with altered side chain length, fatty acid conjugate, any other hydrophobic group conjugate, and/or hydrophobic modifications of the internal nucleoside, which provide sufficient hydrophobicity to be incorporated into micelles.


For purposes of the present invention, the term “sterols”, refers or steroid alcohols are a subgroup of steroids with a hydroxyl group at the 3-position of the A-ring. They are amphipathic lipids synthesized from acetyl-coenzyme A via the HMG-CoA reductase pathway. The overall molecule is quite flat. The hydroxyl group on the A ring is polar. The rest of the aliphatic chain is non-polar. Usually sterols are considered to have an 8 carbon chain at position 17.


For purposes of the present invention, the term “sterol type molecules”, refers to steroid alcohols, which are similar in structure to sterols. The main difference is the structure of the ring and number of carbons in a position 21 attached side chain.


For purposes of the present invention, the term “PhytoSterols” (also called plant sterols) are a group of steroid alcohols, phytochemicals naturally occurring in plants. There are more then 200 different known PhytoSterols


For purposes of the present invention, the term “Sterol side chain” refers to a chemical composition of a side chain attached at the position 17 of sterol-type molecule. In a standard definition sterols are limited to a 4 ring structure carrying a 8 carbon chain at position 17. In this invention, the sterol type molecules with side chain longer and shorter than conventional are described. The side chain may branched or contain double back bones.


Thus, sterols useful in the invention, for example, include cholesterols, as well as unique sterols in which position 17 has attached side chain of 2-7 or longer then 9 carbons. In a particular embodiment, the length of the polycarbon tail is varied between 5 and 9 carbons. Such conjugates may have significantly better in vivo efficacy, in particular delivery to liver. These types of molecules are expected to work at concentrations 5 to 9 fold lower then oligonucleotides conjugated to conventional cholesterols.


Alternatively the polynucleotide may be bound to a protein, peptide or positively charged chemical that functions as the hydrophobic molecule. The proteins may be selected from the group consisting of protamine, dsRNA binding domain, and arginine rich peptides. Exemplary positively charged chemicals include spermine, spermidine, cadaverine, and putrescine.


In another embodiment hydrophobic molecule conjugates may demonstrate even higher efficacy when it is combined with optimal chemical modification patterns of the polynucleotide (as described herein in detail), containing but not limited to hydrophobic modifications, phosphorothioate modifications, and 2′ ribo modifications.


In another embodiment the sterol type molecule may be a naturally occurring PhytoSterols. The polycarbon chain may be longer than 9 and may be linear, branched and/or contain double bonds. Some PhytoSterol containing polynucleotide conjugates may be significantly more potent and active in delivery of polynucleotides to various tissues. Some PhytoSterols may demonstrate tissue preference and thus be used as a way to delivery RNAi specifically to particular tissues.


The hydrophobic modified polynucleotide is mixed with a neutral fatty mixture to form a micelle. The neutral fatty acid mixture is a mixture of fats that has a net neutral or slightly net negative charge at or around physiological pH that can form a micelle with the hydrophobic modified polynucleotide. For purposes of the present invention, the term “micelle” refers to a small nanoparticle formed by a mixture of non charged fatty acids and phospholipids. The neutral fatty mixture may include cationic lipids as long as they are present in an amount that does not cause toxicity. In preferred embodiments the neutral fatty mixture is free of cationic lipids. A mixture that is free of cationic lipids is one that has less than 1% and preferably 0% of the total lipid being cationic lipid. The term “cationic lipid” includes lipids and synthetic lipids having a net positive charge at or around physiological pH. The term “anionic lipid” includes lipids and synthetic lipids having a net negative charge at or around physiological pH.


The neutral fats bind to the oligonucleotides of the invention by a strong but non-covalent attraction (e.g., an electrostatic, van der Waals, pi-stacking, etc. interaction).


The neutral fat mixture may include formulations selected from a class of naturally occurring or chemically synthesized or modified saturated and unsaturated fatty acid residues. Fatty acids might exist in a form of triglycerides, diglycerides or individual fatty acids. In another embodiment the use of well-validated mixtures of fatty acids and/or fat emulsions currently used in pharmacology for parenteral nutrition may be utilized.


The neutral fatty mixture is preferably a mixture of a choline based fatty acid and a sterol. Choline based fatty acids include for instance, synthetic phosphocholine derivatives such as DDPC, DLPC, DMPC, DPPC, DSPC, DOPC, POPC, and DEPC. DOPC (chemical registry number 4235-95-4) is dioleoylphosphatidylcholine (also known as dielaidoylphosphatidylcholine, dioleoyl-PC, dioleoylphosphocholine, dioleoyl-sn-glycero-3-phosphocholine, dioleylphosphatidylcholine). DSPC (chemical registry number 816-94-4) is distearoylphosphatidylcholine (also known as 1,2-Distearoyl-sn-Glycero-3-phosphocholine).


The sterol in the neutral fatty mixture may be for instance cholesterol. The neutral fatty mixture may be made up completely of a choline based fatty acid and a sterol or it may optionally include a cargo molecule. For instance, the neutral fatty mixture may have at least 20% or 25% fatty acid and 20% or 25% sterol.


For purposes of the present invention, the term “Fatty acids” relates to conventional description of fatty acid. They may exist as individual entities or in a form of two- and triglycerides. For purposes of the present invention, the term “fat emulsions” refers to safe fat formulations given intravenously to subjects who are unable to get enough fat in their diet. It is an emulsion of soy bean oil (or other naturally occurring oils) and egg phospholipids. Fat emulsions are being used for formulation of some insoluble anesthetics. In this disclosure, fat emulsions might be part of commercially available preparations like Intralipid, Liposyn, Nutrilipid, modified commercial preparations, where they are enriched with particular fatty acids or fully de novo-formulated combinations of fatty acids and phospholipids.


In one embodiment, the cells to be contacted with an oligonucleotide composition of the invention are contacted with a mixture comprising the oligonucleotide and a mixture comprising a lipid, e.g., one of the lipids or lipid compositions described supra for between about 12 hours to about 24 hours. In another embodiment, the cells to be contacted with an oligonucleotide composition are contacted with a mixture comprising the oligonucleotide and a mixture comprising a lipid, e.g., one of the lipids or lipid compositions described supra for between about 1 and about five days. In one embodiment, the cells are contacted with a mixture comprising a lipid and the oligonucleotide for between about three days to as long as about 30 days. In another embodiment, a mixture comprising a lipid is left in contact with the cells for at least about five to about 20 days. In another embodiment, a mixture comprising a lipid is left in contact with the cells for at least about seven to about 15 days.


50%-60% of the formulation can optionally be any other lipid or molecule. Such a lipid or molecule is referred to herein as a cargo lipid or cargo molecule. Cargo molecules include but are not limited to intralipid, small molecules, fusogenic peptides or lipids or other small molecules might be added to alter cellular uptake, endosomal release or tissue distribution properties. The ability to tolerate cargo molecules is important for modulation of properties of these particles, if such properties are desirable. For instance the presence of some tissue specific metabolites might drastically alter tissue distribution profiles. For example use of Intralipid type formulation enriched in shorter or longer fatty chains with various degrees of saturation affects tissue distribution profiles of these type of formulations (and their loads).


An example of a cargo lipid useful according to the invention is a fusogenic lipid. For instance, the zwitterionic lipid DOPE (chemical registry number 4004-5-1, 1,2-Dioleoyl-sn-Glycero-3-phosphoethanolamine) is a preferred cargo lipid.


Intralipid may be comprised of the following composition: 1 000 mL contain: purified soybean oil 90 g, purified egg phospholipids 12 g, glycerol anhydrous 22 g, water for injection q.s. ad 1 000 mL. pH is adjusted with sodium hydroxide to pH approximately 8. Energy content/L: 4.6 MJ (190 kcal). Osmolality (approx.): 300 mOsm/kg water. In another embodiment fat emulsion is Liposyn that contains 5% safflower oil, 5% soybean oil, up to 1.2% egg phosphatides added as an emulsifier and 2.5% glycerin in water for injection. It may also contain sodium hydroxide for pH adjustment. pH 8.0 (6.0-9.0). Liposyn has an osmolarity of 276 m Osmol/liter (actual).


Variation in the identity, amounts and ratios of cargo lipids affects the cellular uptake and tissue distribution characteristics of these compounds. For example, the length of lipid tails and level of saturability will affect differential uptake to liver, lung, fat and cardiomyocytes. Addition of special hydrophobic molecules like vitamins or different forms of sterols can favor distribution to special tissues which are involved in the metabolism of particular compounds. Complexes are formed at different oligonucleotide concentrations, with higher concentrations favoring more efficient complex formation.


In another embodiment, the fat emulsion is based on a mixture of lipids. Such lipids may include natural compounds, chemically synthesized compounds, purified fatty acids or any other lipids. In yet another embodiment the composition of fat emulsion is entirely artificial. In a particular embodiment, the fat emulsion is more then 70% linoleic acid. In yet another particular embodiment the fat emulsion is at least 1% of cardiolipin. Linoleic acid (LA) is an unsaturated omega-6 fatty acid. It is a colorless liquid made of a carboxylic acid with an 18-carbon chain and two cis double bonds.


In yet another embodiment of the present invention, the alteration of the composition of the fat emulsion is used as a way to alter tissue distribution of hydrophobicly modified polynucleotides. This methodology provides for the specific delivery of the polynucleotides to particular tissues (FIG. 12).


In another embodiment the fat emulsions of the cargo molecule contain more then 70% of Linoleic acid (C18H32O2) and/or cardiolipin are used for specifically delivering RNAi to heart muscle.


Fat emulsions, like intralipid have been used before as a delivery formulation for some non-water soluble drugs (such as Propofol, re-formulated as Diprivan). Unique features of the present invention include (a) the concept of combining modified polynucleotides with the hydrophobic compound(s), so it can be incorporated in the fat micelles and (b) mixing it with the fat emulsions to provide a reversible carrier. After injection into a blood stream, micelles usually bind to serum proteins, including albumin, HDL, LDL and other. This binding is reversible and eventually the fat is absorbed by cells. The polynucleotide, incorporated as a part of the micelle will then be delivered closely to the surface of the cells. After that cellular uptake might be happening though variable mechanisms, including but not limited to sterol type delivery.


Complexing Agents


Complexing agents bind to the oligonucleotides of the invention by a strong but non-covalent attraction (e.g., an electrostatic, van der Waals, pi-stacking, etc. interaction). In one embodiment, oligonucleotides of the invention can be complexed with a complexing agent to increase cellular uptake of oligonucleotides. An example of a complexing agent includes cationic lipids. Cationic lipids can be used to deliver oligonucleotides to cells. However, as discussed above, formulations free in cationic lipids are preferred in some embodiments.


The term “cationic lipid” includes lipids and synthetic lipids having both polar and non-polar domains and which are capable of being positively charged at or around physiological pH and which bind to polyanions, such as nucleic acids, and facilitate the delivery of nucleic acids into cells. In general cationic lipids include saturated and unsaturated alkyl and alicyclic ethers and esters of amines, amides, or derivatives thereof. Straight-chain and branched alkyl and alkenyl groups of cationic lipids can contain, e.g., from 1 to about 25 carbon atoms. Preferred straight chain or branched alkyl or alkene groups have six or more carbon atoms. Alicyclic groups include cholesterol and other steroid groups. Cationic lipids can be prepared with a variety of counterions (anions) including, e.g., Cl, Br, I, F, acetate, trifluoroacetate, sulfate, nitrite, and nitrate.


Examples of cationic lipids include polyethylenimine, polyamidoamine (PAMAM) starburst dendrimers, Lipofectin (a combination of DOTMA and DOPE), Lipofectase, LIPOFECTAMINE™ (e.g., LIPOFECTAMINE™ 2000), DOPE, Cytofectin (Gilead Sciences, Foster City, Calif.), and Eufectins (JBL, San Luis Obispo, Calif.). Exemplary cationic liposomes can be made from N-[1-(2,3-dioleoloxy)-propyl]-N,N,N-trimethylammonium chloride (DOTMA), N-[1-(2,3-dioleoloxy)-propyl]-N,N,N-trimethylammonium methylsulfate (DOTAP), 3β-[N—(N′,N′-dimethylaminoethane)carbamoyl]cholesterol (DC-Chol), 2,3,-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminium trifluoroacetate (DOSPA), 1,2-dimyristyloxypropyl-3-dimethyl-hydroxyethyl ammonium bromide; and dimethyldioctadecylammonium bromide (DDAB). The cationic lipid N-(1-(2,3-dioleyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTMA), for example, was found to increase 1000-fold the antisense effect of a phosphorothioate oligonucleotide. (Vlassov et al., 1994, Biochimica et Biophysica Acta 1197:95-108). Oligonucleotides can also be complexed with, e.g., poly (L-lysine) or avidin and lipids may, or may not, be included in this mixture, e.g., steryl-poly (L-lysine).


Cationic lipids have been used in the art to deliver oligonucleotides to cells (see, e.g., U.S. Pat. Nos. 5,855,910; 5,851,548; 5,830,430; 5,780,053; 5,767,099; Lewis et al. 1996. Proc. Natl. Acad. Sci. USA 93:3176; Hope et al. 1998. Molecular Membrane Biology 15:1). Other lipid compositions which can be used to facilitate uptake of the instant oligonucleotides can be used in connection with the claimed methods. In addition to those listed supra, other lipid compositions are also known in the art and include, e.g., those taught in U.S. Pat. No. 4,235,871; U.S. Pat. Nos. 4,501,728; 4,837,028; 4,737,323.


In one embodiment lipid compositions can further comprise agents, e.g., viral proteins to enhance lipid-mediated transfections of oligonucleotides (Kamata, et al., 1994. Nucl. Acids. Res. 22:536). In another embodiment, oligonucleotides are contacted with cells as part of a composition comprising an oligonucleotide, a peptide, and a lipid as taught, e.g., in U.S. Pat. No. 5,736,392. Improved lipids have also been described which are serum resistant (Lewis, et al., 1996. Proc. Natl. Acad. Sci. 93:3176). Cationic lipids and other complexing agents act to increase the number of oligonucleotides carried into the cell through endocytosis.


In another embodiment N-substituted glycine oligonucleotides (peptoids) can be used to optimize uptake of oligonucleotides. Peptoids have been used to create cationic lipid-like compounds for transfection (Murphy, et al., 1998. Proc. Natl. Acad. Sci. 95:1517). Peptoids can be synthesized using standard methods (e.g., Zuckermann, R. N., et al. 1992. J. Am. Chem. Soc. 114:10646; Zuckermann, R. N., et al. 1992. Int. J. Peptide Protein Res. 40:497). Combinations of cationic lipids and peptoids, liptoids, can also be used to optimize uptake of the subject oligonucleotides (Hunag, et al., 1998. Chemistry and Biology. 5:345). Liptoids can be synthesized by elaborating peptoid oligonucleotides and coupling the amino terminal submonomer to a lipid via its amino group (Hunag, et al., 1998. Chemistry and Biology. 5:345).


It is known in the art that positively charged amino acids can be used for creating highly active cationic lipids (Lewis et al. 1996. Proc. Natl. Acad. Sci. U.S.A. 93:3176). In one embodiment, a composition for delivering oligonucleotides of the invention comprises a number of arginine, lysine, histidine or ornithine residues linked to a lipophilic moiety (see e.g., U.S. Pat. No. 5,777,153).


In another embodiment, a composition for delivering oligonucleotides of the invention comprises a peptide having from between about one to about four basic residues. These basic residues can be located, e.g., on the amino terminal, C-terminal, or internal region of the peptide. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine (can also be considered non-polar), asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Apart from the basic amino acids, a majority or all of the other residues of the peptide can be selected from the non-basic amino acids, e.g., amino acids other than lysine, arginine, or histidine. Preferably a preponderance of neutral amino acids with long neutral side chains are used.


In one embodiment, a composition for delivering oligonucleotides of the invention comprises a natural or synthetic polypeptide having one or more gamma carboxyglutamic acid residues, or γ-Gla residues. These gamma carboxyglutamic acid residues may enable the polypeptide to bind to each other and to membrane surfaces. In other words, a polypeptide having a series of γ-Gla may be used as a general delivery modality that helps an RNAi construct to stick to whatever membrane to which it comes in contact. This may at least slow RNAi constructs from being cleared from the blood stream and enhance their chance of homing to the target.


The gamma carboxyglutamic acid residues may exist in natural proteins (for example, prothrombin has 10 γ-Gla residues). Alternatively, they can be introduced into the purified, recombinantly produced, or chemically synthesized polypeptides by carboxylation using, for example, a vitamin K-dependent carboxylase. The gamma carboxyglutamic acid residues may be consecutive or non-consecutive, and the total number and location of such gamma carboxyglutamic acid residues in the polypeptide can be regulated/fine tuned to achieve different levels of “stickiness” of the polypeptide.


In one embodiment, the cells to be contacted with an oligonucleotide composition of the invention are contacted with a mixture comprising the oligonucleotide and a mixture comprising a lipid, e.g., one of the lipids or lipid compositions described supra for between about 12 hours to about 24 hours. In another embodiment, the cells to be contacted with an oligonucleotide composition are contacted with a mixture comprising the oligonucleotide and a mixture comprising a lipid, e.g., one of the lipids or lipid compositions described supra for between about 1 and about five days. In one embodiment, the cells are contacted with a mixture comprising a lipid and the oligonucleotide for between about three days to as long as about 30 days. In another embodiment, a mixture comprising a lipid is left in contact with the cells for at least about five to about 20 days. In another embodiment, a mixture comprising a lipid is left in contact with the cells for at least about seven to about 15 days.


For example, in one embodiment, an oligonucleotide composition can be contacted with cells in the presence of a lipid such as cytofectin CS or GSV (available from Glen Research; Sterling, Va.), GS3815, GS2888 for prolonged incubation periods as described herein.


In one embodiment, the incubation of the cells with the mixture comprising a lipid and an oligonucleotide composition does not reduce the viability of the cells. Preferably, after the transfection period the cells are substantially viable. In one embodiment, after transfection, the cells are between at least about 70% and at least about 100% viable. In another embodiment, the cells are between at least about 80% and at least about 95% viable. In yet another embodiment, the cells are between at least about 85% and at least about 90% viable.


In one embodiment, oligonucleotides are modified by attaching a peptide sequence that transports the oligonucleotide into a cell, referred to herein as a “transporting peptide.” In one embodiment, the composition includes an oligonucleotide which is complementary to a target nucleic acid molecule encoding the protein, and a covalently attached transporting peptide.


The language “transporting peptide” includes an amino acid sequence that facilitates the transport of an oligonucleotide into a cell. Exemplary peptides which facilitate the transport of the moieties to which they are linked into cells are known in the art, and include, e.g., HIV TAT transcription factor, lactoferrin, Herpes VP22 protein, and fibroblast growth factor 2 (Pooga et al. 1998. Nature Biotechnology. 16:857; and Derossi et al. 1998. Trends in Cell Biology. 8:84; Elliott and O'Hare. 1997. Cell 88:223).


Oligonucleotides can be attached to the transporting peptide using known techniques, e.g., (Prochiantz, A. 1996. Curr. Opin. Neurobiol. 6:629; Derossi et al. 1998. Trends Cell Biol. 8:84; Troy et al. 1996. J. Neurosci. 16:253), Vives et al. 1997. J. Biol. Chem. 272:16010). For example, in one embodiment, oligonucleotides bearing an activated thiol group are linked via that thiol group to a cysteine present in a transport peptide (e.g., to the cysteine present in the β turn between the second and the third helix of the antennapedia homeodomain as taught, e.g., in Derossi et al. 1998. Trends Cell Biol. 8:84; Prochiantz. 1996. Current Opinion in Neurobiol. 6:629; Allinquant et al. 1995. J Cell Biol. 128:919). In another embodiment, a Boc-Cys-(Npys)OH group can be coupled to the transport peptide as the last (N-terminal) amino acid and an oligonucleotide bearing an SH group can be coupled to the peptide (Troy et al. 1996. J. Neurosci. 16:253).


In one embodiment, a linking group can be attached to a nucleomonomer and the transporting peptide can be covalently attached to the linker. In one embodiment, a linker can function as both an attachment site for a transporting peptide and can provide stability against nucleases. Examples of suitable linkers include substituted or unsubstituted C1-C20 alkyl chains, C2-C20 alkenyl chains, C2-C20 alkynyl chains, peptides, and heteroatoms (e.g., S, O, NH, etc.). Other exemplary linkers include bifunctional crosslinking agents such as sulfosuccinimidyl-4-(maleimidophenyl)-butyrate (SMPB) (see, e.g., Smith et al. Biochem J 1991.276: 417-2).


In one embodiment, oligonucleotides of the invention are synthesized as molecular conjugates which utilize receptor-mediated endocytotic mechanisms for delivering genes into cells (see, e.g., Bunnell et al. 1992. Somatic Cell and Molecular Genetics. 18:559, and the references cited therein).


Targeting Agents


The delivery of oligonucleotides can also be improved by targeting the oligonucleotides to a cellular receptor. The targeting moieties can be conjugated to the oligonucleotides or attached to a carrier group (i.e., poly(L-lysine) or liposomes) linked to the oligonucleotides. This method is well suited to cells that display specific receptor-mediated endocytosis.


For instance, oligonucleotide conjugates to 6-phosphomannosylated proteins are internalized 20-fold more efficiently by cells expressing mannose 6-phosphate specific receptors than free oligonucleotides. The oligonucleotides may also be coupled to a ligand for a cellular receptor using a biodegradable linker. In another example, the delivery construct is mannosylated streptavidin which forms a tight complex with biotinylated oligonucleotides. Mannosylated streptavidin was found to increase 20-fold the internalization of biotinylated oligonucleotides. (Vlassov et al. 1994. Biochimica et Biophysica Acta 1197:95-108).


In addition specific ligands can be conjugated to the polylysine component of polylysine-based delivery systems. For example, transferrin-polylysine, adenovirus-polylysine, and influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides-polylysine conjugates greatly enhance receptor-mediated DNA delivery in eucaryotic cells. Mannosylated glycoprotein conjugated to poly(L-lysine) in aveolar macrophages has been employed to enhance the cellular uptake of oligonucleotides. Liang et al. 1999. Pharmazie 54:559-566.


Because malignant cells have an increased need for essential nutrients such as folic acid and transferrin, these nutrients can be used to target oligonucleotides to cancerous cells. For example, when folic acid is linked to poly(L-lysine) enhanced oligonucleotide uptake is seen in promyelocytic leukaemia (HL-60) cells and human melanoma (M-14) cells. Ginobbi et al. 1997. Anticancer Res. 17:29. In another example, liposomes coated with maleylated bovine serum albumin, folic acid, or ferric protoporphyrin IX, show enhanced cellular uptake of oligonucleotides in murine macrophages, KB cells, and 2.2.15 human hepatoma cells. Liang et al. 1999. Pharmazie 54:559-566.


Liposomes naturally accumulate in the liver, spleen, and reticuloendothelial system (so-called, passive targeting). By coupling liposomes to various ligands such as antibodies are protein A, they can be actively targeted to specific cell populations. For example, protein A-bearing liposomes may be pretreated with H-2K specific antibodies which are targeted to the mouse major histocompatibility complex-encoded H-2K protein expressed on L cells. (Vlassov et al. 1994. Biochimica et Biophysica Acta 1197:95-108).


Other in vitro and/or in vivo delivery of RNAi reagents are known in the art, and can be used to deliver the subject RNAi constructs. See, for example, U.S. patent application publications 20080152661, 20080112916, 20080107694, 20080038296, 20070231392, 20060240093, 20060178327, 20060008910, 20050265957, 20050064595, 20050042227, 20050037496, 20050026286, 20040162235, 20040072785, 20040063654, 20030157030, WO 2008/036825, WO04/065601, and AU2004206255B2, just to name a few (all incorporated by reference).


Administration


The optimal course of administration or delivery of the oligonucleotides may vary depending upon the desired result and/or on the subject to be treated. As used herein “administration” refers to contacting cells with oligonucleotides and can be performed in vitro or in vivo. The dosage of oligonucleotides may be adjusted to optimally reduce expression of a protein translated from a target nucleic acid molecule, e.g., as measured by a readout of RNA stability or by a therapeutic response, without undue experimentation.


For example, expression of the protein encoded by the nucleic acid target can be measured to determine whether or not the dosage regimen needs to be adjusted accordingly. In addition, an increase or decrease in RNA or protein levels in a cell or produced by a cell can be measured using any art recognized technique. By determining whether transcription has been decreased, the effectiveness of the oligonucleotide in inducing the cleavage of a target RNA can be determined.


Any of the above-described oligonucleotide compositions can be used alone or in conjunction with a pharmaceutically acceptable carrier. As used herein, “pharmaceutically acceptable carrier” includes appropriate solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, it can be used in the therapeutic compositions. Supplementary active ingredients can also be incorporated into the compositions.


Oligonucleotides may be incorporated into liposomes or liposomes modified with polyethylene glycol or admixed with cationic lipids for parenteral administration. Incorporation of additional substances into the liposome, for example, antibodies reactive against membrane proteins found on specific target cells, can help target the oligonucleotides to specific cell types.


With respect to in vivo applications, the formulations of the present invention can be administered to a patient in a variety of forms adapted to the chosen route of administration, e.g., parenterally, orally, or intraperitoneally. Parenteral administration, which is preferred, includes administration by the following routes: intravenous; intramuscular; interstitially; intraarterially; subcutaneous; intra ocular; intrasynovial; trans epithelial, including transdermal; pulmonary via inhalation; ophthalmic; sublingual and buccal; topically, including ophthalmic; dermal; ocular; rectal; and nasal inhalation via insufflation. In preferred embodiments, the sd-rxRNA molecules are administered by intradermal injection or subcutaneously.


Pharmaceutical preparations for parenteral administration include aqueous solutions of the active compounds in water-soluble or water-dispersible form. In addition, suspensions of the active compounds as appropriate oily injection suspensions may be administered. Suitable lipophilic solvents or vehicles include fatty oils, for example, sesame oil, or synthetic fatty acid esters, for example, ethyl oleate or triglycerides. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, sorbitol, or dextran, optionally, the suspension may also contain stabilizers. The oligonucleotides of the invention can be formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringer's solution. In addition, the oligonucleotides may be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms are also included in the invention.


Pharmaceutical preparations for topical administration include transdermal patches, ointments, lotions, creams, gels, drops, sprays, suppositories, liquids and powders. In addition, conventional pharmaceutical carriers, aqueous, powder or oily bases, or thickeners may be used in pharmaceutical preparations for topical administration.


Pharmaceutical preparations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. In addition, thickeners, flavoring agents, diluents, emulsifiers, dispersing aids, or binders may be used in pharmaceutical preparations for oral administration.


For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are known in the art, and include, for example, for transmucosal administration bile salts and fusidic acid derivatives, and detergents. Transmucosal administration may be through nasal sprays or using suppositories. For oral administration, the oligonucleotides are formulated into conventional oral administration forms such as capsules, tablets, and tonics. For topical administration, the oligonucleotides of the invention are formulated into ointments, salves, gels, or creams as known in the art.


Drug delivery vehicles can be chosen e.g., for in vitro, for systemic, or for topical administration. These vehicles can be designed to serve as a slow release reservoir or to deliver their contents directly to the target cell. An advantage of using some direct delivery drug vehicles is that multiple molecules are delivered per uptake. Such vehicles have been shown to increase the circulation half-life of drugs that would otherwise be rapidly cleared from the blood stream. Some examples of such specialized drug delivery vehicles which fall into this category are liposomes, hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres.


The described oligonucleotides may be administered systemically to a subject. Systemic absorption refers to the entry of drugs into the blood stream followed by distribution throughout the entire body. Administration routes which lead to systemic absorption include: intravenous, subcutaneous, intraperitoneal, and intranasal. Each of these administration routes delivers the oligonucleotide to accessible diseased cells. Following subcutaneous administration, the therapeutic agent drains into local lymph nodes and proceeds through the lymphatic network into the circulation. The rate of entry into the circulation has been shown to be a function of molecular weight or size. The use of a liposome or other drug carrier localizes the oligonucleotide at the lymph node. The oligonucleotide can be modified to diffuse into the cell, or the liposome can directly participate in the delivery of either the unmodified or modified oligonucleotide into the cell.


The chosen method of delivery will result in entry into cells. In some embodiments, preferred delivery methods include liposomes (10-400 nm), hydrogels, controlled-release polymers, and other pharmaceutically applicable vehicles, and microinjection or electroporation (for ex vivo treatments).


The pharmaceutical preparations of the present invention may be prepared and formulated as emulsions. Emulsions are usually heterogeneous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 μm in diameter. The emulsions of the present invention may contain excipients such as emulsifiers, stabilizers, dyes, fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives, and anti-oxidants may also be present in emulsions as needed. These excipients may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase.


Examples of naturally occurring emulsifiers that may be used in emulsion formulations of the present invention include lanolin, beeswax, phosphatides, lecithin and acacia. Finely divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. Examples of finely divided solids that may be used as emulsifiers include polar inorganic solids, such as heavy metal hydroxides, nonswelling clays such as bentonite, attapulgite, hectorite, kaolin, montrnorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.


Examples of preservatives that may be included in the emulsion formulations include methyl paraben, propyl paraben, quaternary ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Examples of antioxidants that may be included in the emulsion formulations include free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.


In one embodiment, the compositions of oligonucleotides are formulated as microemulsions. A microemulsion is a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution. Typically microemulsions are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a 4th component, generally an intermediate chain-length alcohol to form a transparent system.


Surfactants that may be used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (S0750), decaglycerol decaoleate (DA0750), alone or in combination with cosurfactants. The cosurfactant, usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules.


Microemulsions may, however, be prepared without the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art. The aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase may include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.


Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid based microemulsions (both oil/water and water/oil) have been proposed to enhance the oral bioavailability of drugs.


Microemulsions offer improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (Constantinides et al., Pharmaceutical Research, 1994, 11:1385; Ho et al., J. Pharm. Sci., 1996, 85:138-143). Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present invention will facilitate the increased systemic absorption of oligonucleotides from the gastrointestinal tract, as well as improve the local cellular uptake of oligonucleotides within the gastrointestinal tract, vagina, buccal cavity and other areas of administration.


In an embodiment, the present invention employs various penetration enhancers to affect the efficient delivery of nucleic acids, particularly oligonucleotides, to the skin of animals. Even non-lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to increasing the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also act to enhance the permeability of lipophilic drugs.


Five categories of penetration enhancers that may be used in the present invention include: surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants. Other agents may be utilized to enhance the penetration of the administered oligonucleotides include: glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-15 pyrrol, azones, and terpenes such as limonene, and menthone.


The oligonucleotides, especially in lipid formulations, can also be administered by coating a medical device, for example, a catheter, such as an angioplasty balloon catheter, with a cationic lipid formulation. Coating may be achieved, for example, by dipping the medical device into a lipid formulation or a mixture of a lipid formulation and a suitable solvent, for example, an aqueous-based buffer, an aqueous solvent, ethanol, methylene chloride, chloroform and the like. An amount of the formulation will naturally adhere to the surface of the device which is subsequently administered to a patient, as appropriate. Alternatively, a lyophilized mixture of a lipid formulation may be specifically bound to the surface of the device. Such binding techniques are described, for example, in K. Ishihara et al., Journal of Biomedical Materials Research, Vol. 27, pp. 1309-1314 (1993), the disclosures of which are incorporated herein by reference in their entirety.


The useful dosage to be administered and the particular mode of administration will vary depending upon such factors as the cell type, or for in vivo use, the age, weight and the particular animal and region thereof to be treated, the particular oligonucleotide and delivery method used, the therapeutic or diagnostic use contemplated, and the form of the formulation, for example, suspension, emulsion, micelle or liposome, as will be readily apparent to those skilled in the art. Typically, dosage is administered at lower levels and increased until the desired effect is achieved. When lipids are used to deliver the oligonucleotides, the amount of lipid compound that is administered can vary and generally depends upon the amount of oligonucleotide agent being administered. For example, the weight ratio of lipid compound to oligonucleotide agent is preferably from about 1:1 to about 15:1, with a weight ratio of about 5:1 to about 10:1 being more preferred. Generally, the amount of cationic lipid compound which is administered will vary from between about 0.1 milligram (mg) to about 1 gram (g). By way of general guidance, typically between about 0.1 mg and about 10 mg of the particular oligonucleotide agent, and about 1 mg to about 100 mg of the lipid compositions, each per kilogram of patient body weight, is administered, although higher and lower amounts can be used.


The agents of the invention are administered to subjects or contacted with cells in a biologically compatible form suitable for pharmaceutical administration. By “biologically compatible form suitable for administration” is meant that the oligonucleotide is administered in a form in which any toxic effects are outweighed by the therapeutic effects of the oligonucleotide. In one embodiment, oligonucleotides can be administered to subjects. Examples of subjects include mammals, e.g., humans and other primates; cows, pigs, horses, and farming (agricultural) animals; dogs, cats, and other domesticated pets; mice, rats, and transgenic non-human animals.


Administration of an active amount of an oligonucleotide of the present invention is defined as an amount effective, at dosages and for periods of time necessary to achieve the desired result. For example, an active amount of an oligonucleotide may vary according to factors such as the type of cell, the oligonucleotide used, and for in vivo uses the disease state, age, sex, and weight of the individual, and the ability of the oligonucleotide to elicit a desired response in the individual. Establishment of therapeutic levels of oligonucleotides within the cell is dependent upon the rates of uptake and efflux or degradation. Decreasing the degree of degradation prolongs the intracellular half-life of the oligonucleotide. Thus, chemically-modified oligonucleotides, e.g., with modification of the phosphate backbone, may require different dosing.


The exact dosage of an oligonucleotide and number of doses administered will depend upon the data generated experimentally and in clinical trials. Several factors such as the desired effect, the delivery vehicle, disease indication, and the route of administration, will affect the dosage. Dosages can be readily determined by one of ordinary skill in the art and formulated into the subject pharmaceutical compositions. Preferably, the duration of treatment will extend at least through the course of the disease symptoms.


Dosage regimens may be adjusted to provide the optimum therapeutic response. For example, the oligonucleotide may be repeatedly administered, e.g., several doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation. One of ordinary skill in the art will readily be able to determine appropriate doses and schedules of administration of the subject oligonucleotides, whether the oligonucleotides are to be administered to cells or to subjects.


Administration of sd-rxRNAs, such as through intradermal injection or subcutaneous delivery, can be optimized through testing of dosing regimens. In some embodiments, a single administration is sufficient. To further prolong the effect of the administered sd-rxRNA, the sd-rxRNA can be administered in a slow-release formulation or device, as would be familiar to one of ordinary skill in the art. The hydrophobic nature of sd-rxRNA compounds can enable use of a wide variety of polymers, some of which are not compatible with conventional oligonucleotide delivery.


In other embodiments, the sd-rxRNA is administered multiple times. In some instances it is administered daily, bi-weekly, weekly, every two weeks, every three weeks, monthly, every two months, every three months, every four months, every five months, every six months or less frequently than every six months. In some instances, it is administered multiple times per day, week, month and/or year. For example, it can be administered approximately every hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours 10 hours, 12 hours or more than twelve hours. It can be administered 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more than 10 times per day.


Aspects of the invention relate to administering sd-rxRNA molecules to a subject. In some instances the subject is a patient and administering the sd-rxRNA molecule involves administering the sd-rxRNA molecule in a doctor's office.


In some embodiments, more than one sd-rxRNA molecule is administered simultaneously. For example a composition may be administered that contains 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more than 10 different sd-rxRNA molecules. In certain embodiments, a composition comprises 2 or 3 different sd-rxRNA molecules. When a composition comprises more than one sd-rxRNA, the sd-rxRNA molecules within the composition can be directed to the same gene or to different genes.



FIG. 1 reveals the expression profile for several genes associated with the invention. As expected, target gene expression is elevated early and returns to normal by day 10. FIG. 2 provides a summary of experimental design. FIGS. 3-6 show in vivo silencing of MAP4K4 and PPIB expression following intradermal injection of sd-rxRNA molecules targeting these genes. FIGS. 7-8 show that the silencing effect of sd-rxRNAs can persist for at least 8 days. Thus, in some embodiments, sd-rxRNA is administered within 8 days prior to an event that compromises or damages the skin such as a surgery. For examples, an sd-rxRNA could be administered 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more than 10 days prior to an event that compromises or damages the skin. FIG. 9 demonstrates examples of dosing regimens.


In some instances, the effective amount of sd-rxRNA that is delivered by subcutaneous administration is at least approximately 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 or more than 100 mg/kg including any intermediate values.


In some instances, the effective amount of sd-rxRNA that is delivered through intradermal injection is at least approximately 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or more than 950 μg including any intermediate values.


sd-rxRNA molecules administered through methods described herein are effectively targeted to all the cell types in the skin.


Physical methods of introducing nucleic acids include injection of a solution containing the nucleic acid, bombardment by particles covered by the nucleic acid, soaking the cell or organism in a solution of the nucleic acid, or electroporation of cell membranes in the presence of the nucleic acid. A viral construct packaged into a viral particle would accomplish both efficient introduction of an expression construct into the cell and transcription of nucleic acid encoded by the expression construct. Other methods known in the art for introducing nucleic acids to cells may be used, such as lipid-mediated carrier transport, chemical-mediated transport, such as calcium phosphate, and the like. Thus the nucleic acid may be introduced along with components that perform one or more of the following activities: enhance nucleic acid uptake by the cell, inhibit annealing of single strands, stabilize the single strands, or other-wise increase inhibition of the target gene.


Nucleic acid may be directly introduced into the cell (i.e., intracellularly); or introduced extracellularly into a cavity, interstitial space, into the circulation of an organism, introduced orally, or may be introduced by bathing a cell or organism in a solution containing the nucleic acid. Vascular or extravascular circulation, the blood or lymph system, and the cerebrospinal fluid are sites where the nucleic acid may be introduced.


The cell with the target gene may be derived from or contained in any organism. The organism may a plant, animal, protozoan, bacterium, virus, or fungus. The plant may be a monocot, dicot or gymnosperm; the animal may be a vertebrate or invertebrate. Preferred microbes are those used in agriculture or by industry, and those that are pathogenic for plants or animals.


Alternatively, vectors, e.g., transgenes encoding a siRNA of the invention can be engineered into a host cell or transgenic animal using art recognized techniques.


A further preferred use for the agents of the present invention (or vectors or transgenes encoding same) is a functional analysis to be carried out in eukaryotic cells, or eukaryotic non-human organisms, preferably mammalian cells or organisms and most preferably human cells, e.g. cell lines such as HeLa or 293 or rodents, e.g. rats and mice. By administering a suitable priming agent/RNAi agent which is sufficiently complementary to a target mRNA sequence to direct target-specific RNA interference, a specific knockout or knockdown phenotype can be obtained in a target cell, e.g. in cell culture or in a target organism.


Thus, a further subject matter of the invention is a eukaryotic cell or a eukaryotic non-human organism exhibiting a target gene-specific knockout or knockdown phenotype comprising a fully or at least partially deficient expression of at least one endogenous target gene wherein said cell or organism is transfected with at least one vector comprising DNA encoding an RNAi agent capable of inhibiting the expression of the target gene. It should be noted that the present invention allows a target-specific knockout or knockdown of several different endogenous genes due to the specificity of the RNAi agent.


Gene-specific knockout or knockdown phenotypes of cells or non-human organisms, particularly of human cells or non-human mammals may be used in analytic to procedures, e.g. in the functional and/or phenotypical analysis of complex physiological processes such as analysis of gene expression profiles and/or proteomes. Preferably the analysis is carried out by high throughput methods using oligonucleotide based chips.


Assays of Oligonucleotide Stability


In some embodiments, the oligonucleotides of the invention are stabilized, i.e., substantially resistant to endonuclease and exonuclease degradation. An oligonucleotide is defined as being substantially resistant to nucleases when it is at least about 3-fold more resistant to attack by an endogenous cellular nuclease, and is highly nuclease resistant when it is at least about 6-fold more resistant than a corresponding oligonucleotide. This can be demonstrated by showing that the oligonucleotides of the invention are substantially resistant to nucleases using techniques which are known in the art.


One way in which substantial stability can be demonstrated is by showing that the oligonucleotides of the invention function when delivered to a cell, e.g., that they reduce transcription or translation of target nucleic acid molecules, e.g., by measuring protein levels or by measuring cleavage of mRNA. Assays which measure the stability of target RNA can be performed at about 24 hours post-transfection (e.g., using Northern blot techniques, RNase Protection Assays, or QC-PCR assays as known in the art). Alternatively, levels of the target protein can be measured. Preferably, in addition to testing the RNA or protein levels of interest, the RNA or protein levels of a control, non-targeted gene will be measured (e.g., actin, or preferably a control with sequence similarity to the target) as a specificity control. RNA or protein measurements can be made using any art-recognized technique. Preferably, measurements will be made beginning at about 16-24 hours post transfection. (M. Y. Chiang, et al. 1991. J Biol Chem. 266:18162-71; T. Fisher, et al. 1993. Nucleic Acids Research. 21 3857).


The ability of an oligonucleotide composition of the invention to inhibit protein synthesis can be measured using techniques which are known in the art, for example, by detecting an inhibition in gene transcription or protein synthesis. For example, Nuclease S1 mapping can be performed. In another example, Northern blot analysis can be used to measure the presence of RNA encoding a particular protein. For example, total RNA can be prepared over a cesium chloride cushion (see, e.g., Ausebel et al., 1987. Current Protocols in Molecular Biology (Greene & Wiley, New York)). Northern blots can then be made using the RNA and probed (see, e.g., Id.). In another example, the level of the specific mRNA produced by the target protein can be measured, e.g., using PCR. In yet another example, Western blots can be used to measure the amount of target protein present. In still another embodiment, a phenotype influenced by the amount of the protein can be detected. Techniques for performing Western blots are well known in the art, see, e.g., Chen et al. J. Biol. Chem. 271:28259.


In another example, the promoter sequence of a target gene can be linked to a reporter gene and reporter gene transcription (e.g., as described in more detail below) can be monitored. Alternatively, oligonucleotide compositions that do not target a promoter can be identified by fusing a portion of the target nucleic acid molecule with a reporter gene so that the reporter gene is transcribed. By monitoring a change in the expression of the reporter gene in the presence of the oligonucleotide composition, it is possible to determine the effectiveness of the oligonucleotide composition in inhibiting the expression of the reporter gene. For example, in one embodiment, an effective oligonucleotide composition will reduce the expression of the reporter gene.


A “reporter gene” is a nucleic acid that expresses a detectable gene product, which may be RNA or protein. Detection of mRNA expression may be accomplished by Northern blotting and detection of protein may be accomplished by staining with antibodies specific to the protein. Preferred reporter genes produce a readily detectable product. A reporter gene may be operably linked with a regulatory DNA sequence such that detection of the reporter gene product provides a measure of the transcriptional activity of the regulatory sequence. In preferred embodiments, the gene product of the reporter gene is detected by an intrinsic activity associated with that product. For instance, the reporter gene may encode a gene product that, by enzymatic activity, gives rise to a detectable signal based on color, fluorescence, or luminescence. Examples of reporter genes include, but are not limited to, those coding for chloramphenicol acetyl transferase (CAT), luciferase, beta-galactosidase, and alkaline phosphatase.


One skilled in the art would readily recognize numerous reporter genes suitable for use in the present invention. These include, but are not limited to, chloramphenicol acetyltransferase (CAT), luciferase, human growth hormone (hGH), and beta-galactosidase. Examples of such reporter genes can be found in F. A. Ausubel et al., Eds., Current Protocols in Molecular Biology, John Wiley & Sons, New York, (1989). Any gene that encodes a detectable product, e.g., any product having detectable enzymatic activity or against which a specific antibody can be raised, can be used as a reporter gene in the present methods.


One reporter gene system is the firefly luciferase reporter system. (Gould, S. J., and Subramani, S. 1988. Anal. Biochem., 7:404-408 incorporated herein by reference). The luciferase assay is fast and sensitive. In this assay, a lysate of the test cell is prepared and combined with ATP and the substrate luciferin. The encoded enzyme luciferase catalyzes a rapid, ATP dependent oxidation of the substrate to generate a light-emitting product. The total light output is measured and is proportional to the amount of luciferase present over a wide range of enzyme concentrations.


CAT is another frequently used reporter gene system; a major advantage of this system is that it has been an extensively validated and is widely accepted as a measure of promoter activity. (Gorman C. M., Moffat, L. F., and Howard, B. H. 1982. Mol. Cell. Biol., 2:1044-1051). In this system, test cells are transfected with CAT expression vectors and incubated with the candidate substance within 2-3 days of the initial transfection. Thereafter, cell extracts are prepared. The extracts are incubated with acetyl CoA and radioactive chloramphenicol. Following the incubation, acetylated chloramphenicol is separated from nonacetylated form by thin layer chromatography. In this assay, the degree of acetylation reflects the CAT gene activity with the particular promoter.


Another suitable reporter gene system is based on immunologic detection of hGH. This system is also quick and easy to use. (Selden, R., Burke-Howie, K. Rowe, M. E., Goodman, H. M., and Moore, D. D. (1986), Mol. Cell, Biol., 6:3173-3179 incorporated herein by reference). The hGH system is advantageous in that the expressed hGH polypeptide is assayed in the media, rather than in a cell extract. Thus, this system does not require the destruction of the test cells. It will be appreciated that the principle of this reporter gene system is not limited to hGH but rather adapted for use with any polypeptide for which an antibody of acceptable specificity is available or can be prepared.


In one embodiment, nuclease stability of a double-stranded oligonucleotide of the invention is measured and compared to a control, e.g., an RNAi molecule typically used in the art (e.g., a duplex oligonucleotide of less than 25 nucleotides in length and comprising 2 nucleotide base overhangs) or an unmodified RNA duplex with blunt ends.


The target RNA cleavage reaction achieved using the siRNAs of the invention is highly sequence specific. Sequence identity may determined by sequence comparison and alignment algorithms known in the art. To determine the percent identity of two nucleic acid sequences (or of two amino acid sequences), the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the first sequence or second sequence for optimal alignment). A preferred, non-limiting example of a local alignment algorithm utilized for the comparison of sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-68, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-77. Such an algorithm is incorporated into the BLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10. Greater than 90% sequence identity, e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or even 100% sequence identity, between the siRNA and the portion of the target gene is preferred. Alternatively, the siRNA may be defined functionally as a nucleotide sequence (or oligonucleotide sequence) that is capable of hybridizing with a portion of the target gene transcript. Examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E. F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F. M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.


Therapeutic Use


By inhibiting the expression of a gene, the oligonucleotide compositions of the present invention can be used to treat any disease involving the expression of a protein. Examples of diseases that can be treated by oligonucleotide compositions, just to illustrate, include: cancer, retinopathies, autoimmune diseases, inflammatory diseases (i.e., ICAM-1 related disorders, Psoriasis, Ulcerative Colitus, Crohn's disease), viral diseases (i.e., HIV, Hepatitis C), miRNA disorders, and cardiovascular diseases.


In one embodiment, in vitro treatment of cells with oligonucleotides can be used for ex vivo therapy of cells removed from a subject (e.g., for treatment of leukemia or viral infection) or for treatment of cells which did not originate in the subject, but are to be administered to the subject (e.g., to eliminate transplantation antigen expression on cells to be transplanted into a subject). In addition, in vitro treatment of cells can be used in non-therapeutic settings, e.g., to evaluate gene function, to study gene regulation and protein synthesis or to evaluate improvements made to oligonucleotides designed to modulate gene expression or protein synthesis. In vivo treatment of cells can be useful in certain clinical settings where it is desirable to inhibit the expression of a protein. There are numerous medical conditions for which antisense therapy is reported to be suitable (see, e.g., U.S. Pat. No. 5,830,653) as well as respiratory syncytial virus infection (WO 95/22,553) influenza virus (WO 94/23,028), and malignancies (WO 94/08,003). Other examples of clinical uses of antisense sequences are reviewed, e.g., in Glaser. 1996. Genetic Engineering News 16:1. Exemplary targets for cleavage by oligonucleotides include, e.g., protein kinase Ca, ICAM-1, c-raf kinase, p53, c-myb, and the bcr/abl fusion gene found in chronic myelogenous leukemia.


The subject nucleic acids can be used in RNAi-based therapy in any animal having RNAi pathway, such as human, non-human primate, non-human mammal, non-human vertebrates, rodents (mice, rats, hamsters, rabbits, etc.), domestic livestock animals, pets (cats, dogs, etc.), Xenopus, fish, insects (Drosophila, etc.), and worms (C. elegans), etc.


The invention provides methods for preventing in a subject, a disease or condition associated with an aberrant or unwanted target gene expression or activity, by administering to the subject a therapeutic agent (e.g., a RNAi agent or vector or transgene encoding same). If appropriate, subjects are first treated with a priming agent so as to be more responsive to the subsequent RNAi therapy. Subjects at risk for a disease which is caused or contributed to by aberrant or unwanted target gene expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the target gene aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending on the type of target gene aberrancy, for example, a target gene, target gene agonist or target gene antagonist agent can be used for treating the subject.


In another aspect, the invention pertains to methods of modulating target gene expression, protein expression or activity for therapeutic purposes. Accordingly, in an exemplary embodiment, the modulatory method of the invention involves contacting a cell capable of expressing target gene with a therapeutic agent of the invention that is specific for the target gene or protein (e.g., is specific for the mRNA encoded by said gene or specifying the amino acid sequence of said protein) such that expression or one or more of the activities of target protein is modulated. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent), in vivo (e.g., by administering the agent to a subject), or ex vivo. Typically, subjects are first treated with a priming agent so as to be more responsive to the subsequent RNAi therapy. As such, the present invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant or unwanted expression or activity of a target gene polypeptide or nucleic acid molecule. Inhibition of target gene activity is desirable in situations in which target gene is abnormally unregulated and/or in which decreased target gene activity is likely to have a beneficial effect.


The therapeutic agents of the invention can be administered to individuals to treat (prophylactically or therapeutically) disorders associated with aberrant or unwanted target gene activity. In conjunction with such treatment, pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, a physician or clinician may consider applying knowledge obtained in relevant pharmacogenomics studies in determining whether to administer a therapeutic agent as well as tailoring the dosage and/or therapeutic regimen of treatment with a therapeutic agent. Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, for example, Eichelbaum, M. et al. (1996) Clin. Exp. Pharmacol. Physiol. 23(10-11): 983-985 and Linder, M. W. et al. (1997) Clin. Chem. 43(2):254-266


RNAi in Skin Indications


Nucleic acid molecules, or compositions comprising nucleic acid molecules, described herein may in some embodiments be administered to pre-treat, treat or prevent compromised skin. As used herein “compromised skin” refers to skin which exhibits characteristics distinct from normal skin. Compromised skin may occur in association with a dermatological condition. Several non-limiting examples of dermatological conditions include rosacea, common acne, seborrheic dermatitis, perioral dermatitis, acneform rashes, transient acantholytic dermatosis, and acne necrotica miliaris. In some instances, compromised skin may comprise a wound and/or scar tissue. In some instances, methods and compositions associated with the invention may be used to promote wound healing, prevention, reduction or inhibition of scarring, and/or promotion of re-epithelialisation of wounds.


A subject can be pre-treated or treated prophylactically with a molecule associated with the invention, prior to the skin of the subject becoming compromised. As used herein “pre-treatment” or “prophylactic treatment” refers to administering a nucleic acid to the skin prior to the skin becoming compromised. For example, a subject could be pre-treated 15 minutes, 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 24 hours, 48 hours, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days or more than 8 days prior to the skin becoming compromised. In other embodiments, a subject can be treated with a molecule associated with the invention immediately before the skin becomes compromised and/or simultaneous to the skin becoming compromised and/or after the skin has been compromised. In some embodiments, the skin is compromised through a medical procedure such as surgery, including elective surgery. In certain embodiments methods and compositions may be applied to areas of the skin that are believed to be at risk of becoming compromised. It should be appreciated that one of ordinary skill in the art would be able to optimize timing of administration using no more than routine experimentation.


In some aspects, methods associated with the invention can be applied to promote healing of compromised skin. Administration can occur at any time up until the compromised skin has healed, even if the compromised skin has already partially healed. The timing of administration can depend on several factors including the nature of the compromised skin, the degree of damage within the compromised skin, and the size of the compromised area. In some embodiments administration may occur immediately after the skin is compromised, or 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 8 hours, 12 hours, 24 hours, 48 hours, or more than 48 hours after the skin has been compromised. Methods and compositions of the invention may be administered one or more times as necessary. For example, in some embodiments, compositions may be administered daily or twice daily. In some instances, compositions may be administered both before and after formation of compromised skin.


Compositions associated with the invention may be administered by any suitable route. In some embodiments, administration occurs locally at an area of compromised skin. For example, compositions may be administered by intradermal injection. Compositions for intradermal injection may include injectable solutions. Intradermal injection may in some embodiments occur around the are of compromised skin or at a site where the skin is likely to become compromised. In some embodiments, compositions may also be administered in a topical form, such as in a cream or ointment. In some embodiments, administration of compositions described herein comprises part of an initial treatment or pre-treatment of compromised skin, while in other embodiments, administration of such compositions comprises follow-up care for an area of compromised skin.


The appropriate amount of a composition or medicament to be applied can depend on many different factors and can be determined by one of ordinary skill in the art through routine experimentation. Several non-limiting factors that might be considered include biological activity and bioavailability of the agent, nature of the agent, mode of administration, half-life, and characteristics of the subject to be treated.


In some aspects, nucleic acid molecules associated with the invention may also be used in treatment and/or prevention of fibrotic disorders, including pulmonary fibrosis, liver cirrhosis, scleroderma and glomerulonephritis, lung fibrosis, liver fibrosis, skin fibrosis, muscle fibrosis, radiation fibrosis, kidney fibrosis, proliferative vitreoretinopathy, restenosis, and uterine fibrosis.


A therapeutically effective amount of a nucleic acid molecule described herein may in some embodiments be an amount sufficient to prevent the formation of compromised skin and/or improve the condition of compromised skin and/or to treat or prevent a fibrotic disorder. In some embodiments, improvement of the condition of compromised skin may correspond to promotion of wound healing and/or inhibition of scarring and/or promotion of epithelial regeneration. The extent of prevention of formation of compromised skin and/or improvement to the condition of compromised skin may in some instances be determined by, for example, a doctor or clinician.


The ability of nucleic acid molecules associated with the invention to prevent the formation of compromised skin and/or improve the condition of compromised skin may in some instances be measured with reference to properties exhibited by the skin. In some instances, these properties may include rate of epithelialisation and/or decreased size of an area of compromised skin compared to control skin at comparable time points.


As used herein, prevention of formation of compromised skin, for example prior to a surgical procedure, and/or improvement of the condition of compromised skin, for example after a surgical procedure, can encompass any increase in the rate of healing in the compromised skin as compared with the rate of healing occurring in a control sample. In some instances, the condition of compromised skin may be assessed with respect to either comparison of the rate of re-epithelialisation achieved in treated and control skin, or comparison of the relative areas of treated and control areas of compromised skin at comparable time points. In some aspects, a molecule that prevents formation of compromised skin or promotes healing of compromised skin may be a molecule that, upon administration, causes the area of compromised skin to exhibit an increased rate of re-epithelialisation and/or a reduction of the size of compromised skin compared to a control at comparable time points. In some embodiments, the healing of compromised skin may give rise to a rate of healing that is 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100% greater than the rate occurring in controls.


In some aspects, subjects to be treated by methods and compositions associated with the invention may be subjects who will undergo, are undergoing or have undergone a medical procedure such as a surgery. In some embodiments, the subject may be prone to defective, delayed or otherwise impaired re-epithelialisation, such as dermal wounds in the aged. Other non-limiting examples of conditions or disorders in which wound healing is associated with delayed or otherwise impaired re-epithelialisation include patients suffering from diabetes, patients with polypharmacy, post-menopausal women, patients susceptible to pressure injuries, patients with venous disease, clinically obese patients, patients receiving chemotherapy, patients receiving radiotherapy, patients receiving steroid treatment, and immuno-compromised patients. In some instances, defective re-epithelialisation response can contributes to infections at the wound site, and to the formation of chronic wounds such as ulcers.


In some embodiments, methods associated with the invention may promote the re-epithelialisation of compromised skin in chronic wounds, such as ulcers, and may also inhibit scarring associated with wound healing. In other embodiments, methods associated with the invention are applied to prevention or treatment of compromised skin in acute wounds in patients predisposed to impaired wound healing developing into chronic wounds. In other aspects, methods associated with the invention are applied to promote accelerated healing of compromised skin while preventing, reducing or inhibiting scarring for use in general clinical contexts. In some aspects, this can involve the treatment of surgical incisions and application of such methods may result in the prevention, reduction or inhibition of scarring that may otherwise occur on such healing. Such treatment may result in the scars being less noticeable and exhibiting regeneration of a more normal skin structure. In other embodiments, the compromised skin that is treated is not compromised skin that is caused by a surgical incision. The compromised skin may be subject to continued care and continued application of medicaments to encourage re-epithelialisation and healing.


In some aspects, methods associated with the invention may also be used in the treatment of compromised skin associated with grafting procedures. This can involve treatment at a graft donor site and/or at a graft recipient site. Grafts can in some embodiments involve skin, artificial skin, or skin substitutes. Methods associated with the invention can also be used for promoting epithelial regeneration. As used herein, promotion of epithelial regeneration encompasses any increase in the rate of epithelial regeneration as compared to the regeneration occurring in a control-treated or untreated epithelium. The rate of epithelial regeneration attained can in some instances be compared with that taking place in control-treated or untreated epithelia using any suitable model of epithelial regeneration known in the art. Promotion of epithelial regeneration may be of use to induce effective re-epithelialisation in contexts in which the re-epithelialisation response is impaired, inhibited, retarded or otherwise defective. Promotion of epithelial regeneration may be also effected to accelerate the rate of defective or normal epithelial regeneration responses in patients suffering from epithelial damage.


Some instances where re-epithelialisation response may be defective include conditions such as pemphigus, Hailey-Hailey disease (familial benign pemphigus), toxic epidermal necrolysis (TEN)/Lyell's syndrome, epidermolysis bullosa, cutaneous leishmaniasis and actinic keratosis. Defective re-epithelialisation of the lungs may be associated with idiopathic pulmonary fibrosis (IPF) or interstitial lung disease. Defective re-epithelialisation of the eye may be associated with conditions such as partial limbal stem cell deficiency or corneal erosions. Defective re-epithelialisation of the gastrointestinal tract or colon may be associated with conditions such as chronic anal fissures (fissure in ano), ulcerative colitis or Crohn's disease, and other inflammatory bowel disorders.


In some aspects, methods associated with the invention are used to prevent, reduce or otherwise inhibit compromised skin associated with scarring. This can be applied to any site within the body and any tissue or organ, including the skin, eye, nerves, tendons, ligaments, muscle, and oral cavity (including the lips and palate), as well as internal organs (such as the liver, heart, brain, abdominal cavity, pelvic cavity, thoracic cavity, guts and reproductive tissue). In the skin, treatment may change the morphology and organization of collagen fibers and may result in making the scars less visible and blend in with the surrounding skin. As used herein, prevention, reduction or inhibition of scarring encompasses any degree of prevention, reduction or inhibition in scarring as compared to the level of scarring occurring in a control-treated or untreated wound.


Prevention, reduction or inhibition of compromised skin, such as compromised skin associated with dermal scarring, can be assessed and/or measured with reference to microscopic and/or macroscopic characteristics. Macroscopic characteristics may include color, height, surface texture and stiffness of the skin. In some instances, prevention, reduction or inhibition of compromised skin may be demonstrated when the color, height, surface texture and stiffness of the skin resembles that of normal skin more closely after treatment than does a control that is untreated. Microscopic assessment of compromised skin may involve examining characteristics such as thickness and/or orientation and/or composition of the extracellular matrix (ECM) fibers, and cellularity of the compromised skin. In some instances, prevention, reduction or inhibition of compromised skin may be demonstrated when the thickness and/or orientation and/or composition of the extracellular matrix (ECM) fibers, and/or cellularity of the compromised skin resembles that of normal skin more closely after treatment than does a control that is untreated.


In some aspects, methods associated with the invention are used for cosmetic purposes, at least in part to contribute to improving the cosmetic appearance of compromised skin. In some embodiments, methods associated with the invention may be used to prevent, reduce or inhibit compromised skin such as scarring of wounds covering joints of the body. In other embodiments, methods associated with the invention may be used to promote accelerated wound healing and/or prevent, reduce or inhibit scarring of wounds at increased risk of forming a contractile scar, and/or of wounds located at sites of high skin tension.


In some embodiments, methods associated with the invention can be applied to promoting healing of compromised skin in instances where there is an increased risk of pathological scar formation, such as hypertrophic scars and keloids, which may have more pronounced deleterious effects than normal scarring. In some embodiments, methods described herein for promoting accelerated healing of compromised skin and/or preventing, reducing or inhibiting scarring are applied to compromised skin produced by surgical revision of pathological scars.


Aspects of the invention can be applied to compromised skin caused by burn injuries. Healing in response to burn injuries can lead to adverse scarring, including the formation of hypertrophic scars. Methods associated with the invention can be applied to treatment of all injuries involving damage to an epithelial layer, such as injuries to the skin in which the epidermis is damaged. Other non-limiting examples of injuries to epithelial tissue include injuries involving the respiratory epithelia, digestive epithelia or epithelia surrounding internal tissues or organs.


RNAi to Treat Liver Fibrosis


In some embodiments, methods associated with the invention are used to treat liver fibrosis. Liver fibrosis is the excessive accumulation of extracellular matrix proteins, including collagen, that occurs in most types of chronic liver diseases. It is the scarring process that represents the liver's response to injury. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and often requires liver transplantation. In the same way as skin and other organs heal wounds through deposition of collagen and other matrix constituents so the liver repairs injury through the deposition of new collagen. Activated hepatic stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines such as TGF-β1, angiotensin II, and leptin. In some embodiments, methods provided herein are aimed at inhibiting the accumulation of fibrogenic cells and/or preventing the deposition of extracellular matrix proteins. In some embodiments, RNAi molecules (including sd-rxRNA and rxRNAori) may be designed to target CTGF, TGF-β1, angiotensin II, and/or leptin. In some embodiments, RNAi molecules (including sd-rxRNA and rxRNAori) may be designed to target those genes listed in Tables 1-25.


Trabeculectomy Failure


Trabeculectomy is a surgical procedure designed to create a channel or bleb though the sclera to allow excess fluid to drain from the anterior of the eye, leading to reduced intracocular pressure (IOP), a risk factor for glaucoma-related vision loss. The most common cause of trabeculectomy failure is blockage of the bleb by scar tissue. In certain embodiments, the sd-rxRNA is used to prevent formation of scar tissue resulting from a trabeculectomy. In some embodiments, the sd-rxRNA targets connexin 43. In other embodiments, the sd-rxRNA targets proyly 4-hydroxylase. In yet other embodiments, the sd-rxRNA targets procollagen C-protease.


Target Genes


It should be appreciated that based on the RNAi molecules designed and disclosed herein, one of ordinary skill in the art would be able to design such RNAi molecules to target a variety of different genes depending on the context and intended use. For purposes of pre-treating, treating, or preventing compromised skin and/or promoting wound healing and/or preventing, reducing or inhibiting scarring, one of ordinary skill in the art would appreciate that a variety of suitable target genes could be identified based at least in part on the known or predicted functions of the genes, and/or the known or predicted expression patterns of the genes. Several non-limiting examples of genes that could be targeted by RNAi molecules for pre-treating, treating, or preventing compromised skin and/or promoting wound healing and/or preventing, reducing or inhibiting scarring include genes that encode for the following proteins: Transforming growth factor β (TGFβ1, TGFβ2, TGFβ3), Osteopontin (SPP1), Connective tissue growth factor (CTGF), Platelet-derived growth factor (PDGF), Hypoxia inducible factor-1α (HIF1α), Collagen I and/or III, Prolyl 4-hydroxylase (P4H), Procollagen C-protease (PCP), Matrix metalloproteinase 2, 9 (MMP2, 9), Integrins, Connexin, Histamine H1 receptor, Tissue transglutaminase, Mammalian target of rapamycin (mTOR), HoxB13, VEGF, IL-6, SMAD proteins, Ribosomal protein S6 kinases (RSP6), Cyclooxygenase-2 (COX-2/PTGS2), Cannabinoid receptors (CB1, CB2), and/or miR29b.


Transforming growth factor β proteins, for which three isoforms exist in mammals (TGFβ1, TGFβ2, TGFβ3), are secreted proteins belonging to a superfamily of growth factors involved in the regulation of many cellular processes including proliferation, migration, apoptosis, adhesion, differentiation, inflammation, immuno-suppression and expression of extracellular proteins. These proteins are produced by a wide range of cell types including epithelial, endothelial, hematopoietic, neuronal, and connective tissue cells. Representative Genbank accession numbers providing DNA and protein sequence information for human TGFβ1, TGFβ2 and TGFβ3 are BT007245, BC096235, and X14149, respectively. Within the TGF family, TGFβ1 and TGFβ2 but not TGFβ3 represent suitable targets. The alteration in the ratio of TGFβ variants will promote better wound healing and will prevent excessive scar formation.


Osteopontin (OPN), also known as Secreted phosphoprotein 1 (SPP1), Bone Sinaloprotein 1 (BSP-1), and early T-lymphocyte activation (ETA-1) is a secreted glycoprotein protein that binds to hydroxyapatite. OPN has been implicated in a variety of biological processes including bone remodeling, immune functions, chemotaxis, cell activation and apoptosis. Osteopontin is produced by a variety of cell types including fibroblasts, preosteoblasts, osteoblasts, osteocytes, odontoblasts, bone marrow cells, hypertrophic chondrocytes, dendritic cells, macrophages, smooth muscle, skeletal muscle myoblasts, endothelial cells, and extraosseous (non-bone) cells in the inner ear, brain, kidney, deciduum, and placenta. Representative Genbank accession number providing DNA and protein sequence information for human Osteopontin are NM_000582.2 and X13694.


Connective tissue growth factor (CTGF), also known as Hypertrophic chondrocyte-specific protein 24, is a secreted heparin-binding protein that has been implicated in wound healing and scleroderma. Connective tissue growth factor is active in many cell types including fibroblasts, myofibroblasts, endothelial and epithelial cells. Representative Genbank accession number providing DNA and protein sequence information for human CTGF are NM_001901.2 and M92934.


The Platelet-derived growth factor (PDGF) family of proteins, including several isoforms, are secreted mitogens. PDGF proteins are implicated in wound healing, at least in part, because they are released from platelets following wounding. Representative Genbank accession numbers providing DNA and protein sequence information for human PDGF genes and proteins include X03795 (PDGFA), X02811 (PDGFB), AF091434 (PDGFC), AB033832 (PDGFD).


Hypoxia inducible factor-1α (HIF1α), is a transcription factor involved in cellular response to hypoxia. HIF1α is implicated in cellular processes such as embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease. A representative Genbank accession number providing DNA and protein sequence information for human HIF1α is U22431.


Collagen proteins are the most abundant mammalian proteins and are found in tissues such as skin, tendon, vascular, ligature, organs, and bone. Collagen I proteins (such as COL1A1 and COL1A2) are detected in scar tissue during wound healing, and are expressed in the skin. Collagen III proteins (including COL3A1) are detected in connective tissue in wounds (granulation tissue), and are also expressed in skin. Representative Genbank accession numbers providing DNA and protein sequence information for human Collagen proteins include: Z74615 (COL1A1), J03464 (COL1A2) and X14420 (COL3A1).


Prolyl 4-hydroxylase (P4H), is involved in production of collagen and in oxygen sensing. A representative Genbank accession number providing DNA and protein sequence information for human P4H is AY198406.


Procollagen C-protease (PCP) is another target.


Matrix metalloproteinase 2, 9 (MMP2, 9) belong to the metzincin metalloproteinase superfamily and are zinc-dependent endopeptidases. These proteins are implicated in a variety of cellular processes including tissue repair. Representative Genbank accession numbers providing DNA and protein sequence information for human MMP proteins are M55593 (MMP2) and J05070 (MMP9).


Integrins are a family of proteins involved in interaction and communication between a cell and the extracellular matrix. Vertebrates contain a variety of integrins including α1β1, α2β1, α4β1, α5β1, α6β1, αLβ2, αMβ2, αIIbβ3, αvβ3, αvβ5, αvβ6, α6β4.


Connexins are a family of vertebrate transmembrane proteins that form gap junctions. Several examples of Connexins, with the accompanying gene name shown in brackets, include Cx23 (GJE1), Cx25 (GJB7), Cx26 (GJB2), Cx29 (GJE1), Cx30 (GJB6), Cx30.2 (GJC3), Cx30.3 (GJB4), Cx31 (GJB3), Cx31.1 (GJB5), Cx31.9 (GJC1/GJD3), Cx32 (GJB1), Cx33 (GJA6), Cx36 (GJD2/GJA9), Cx37 (GJA4), Cx39 (GJD4), Cx40 (GJA5), Cx40.1 (GJD4), Cx43 (GJA1), Cx45 (GJC1/GJA7), Cx46 (GJA3), Cx47 (GJC2/GJA12), Cx50 (GJA8), Cx59 (GJA10), and Cx62 (GJA10).


Histamine H1 receptor (HRH1) is a metabotropic G-protein-coupled receptor involved in the phospholipase C and phosphatidylinositol (PIP2) signaling pathways. A representative Genbank accession number providing DNA and protein sequence information for human HRH1 is Z34897.


Tissue transglutaminase, also called Protein-glutamine gamma-glutamyltransferase 2, is involved in protein crosslinking and is implicated is biological processes such as apoptosis, cellular differentiation and matrix stabilization. A representative Genbank accession number providing DNA and protein sequence information for human Tissue transglutaminase is M55153.


Mammalian target of rapamycin (mTOR), also known as Serine/threonine-protein kinase mTOR and FK506 binding protein 12-rapamycin associated protein 1 (FRAP1), is involved in regulating cell growth and survival, cell motility, transcription and translation. A representative Genbank accession number providing DNA and protein sequence information for human mTOR is L34075.


HoxB13 belongs to the family of Homeobox proteins and has been linked to functions such as cutaneous regeneration and fetal skin development. A representative Genbank accession number providing DNA and protein sequence information for human HoxB13 is U57052.


Vascular endothelial growth factor (VEGF) proteins are growth factors that bind to tyrosine kinase receptors and are implicated in multiple disorders such as cancer, age-related macular degeneration, rheumatoid arthritis and diabetic retinopathy. Members of this protein family include VEGF-A, VEGF-B, VEGF-C and VEGF-D. Representative Genbank accession numbers providing DNA and protein sequence information for human VEGF proteins are M32977 (VEGF-A), U43368 (VEGF-B), X94216 (VEGF-C), and D89630 (VEGF-D).


Interleukin-6 (IL-6) is a cytokine involved in stimulating immune response to tissue damage. A representative Genbank accession number providing DNA and protein sequence information for human IL-6 is X04430.


SMAD proteins (SMAD1-7, 9) are a family of transcription factors involved in regulation of TGFβ signaling. Representative Genbank accession numbers providing DNA and protein sequence information for human SMAD proteins are U59912 (SMAD1), U59911 (SMAD2), U68019 (SMAD3), U44378 (SMAD4), U59913 (SMAD5), U59914 (SMAD6), AF015261 (SMAD7), and BC011559 (SMAD9).


Ribosomal protein S6 kinases (RSK6) represent a family of serine/threonine kinases involved in activation of the transcription factor CREB. A representative Genbank accession number providing DNA and protein sequence information for human Ribosomal protein S6 kinase alpha-6 is AF184965.


Cyclooxygenase-2 (COX-2), also called Prostaglandin G/H synthase 2 (PTGS2), is involved in lipid metabolism and biosynthesis of prostanoids and is implicated in inflammatory disorders such as rheumatoid arthritis. A representative Genbank accession number providing DNA and protein sequence information for human COX-2 is AY462100.


Cannabinoid receptors, of which there are currently two known subtypes, CB1 and CB2, are a class of cell membrane receptors under the G protein-coupled receptor superfamily. The CB1 receptor is expressed mainly in the brain, but is also expressed in the lungs, liver and kidneys, while the CB2 receptor is mainly expressed in the immune system and in hematopoietic cells. A representative Genbank accession number providing DNA and protein sequence information for human CB1 is NM_001160226, NM_001160258, NM_001160259, NM_001160260, NM_016083, and NM_033181.


miR29b (or miR-29b) is a microRNA (miRNA), which is a short (20-24 nt) non-coding RNA involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. A representative miRBase accession number for miR29b is MI0000105 (website: mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000105).


In some embodiments, the sd-rxRNA targets connexin 43 (CX43). This gene is a member of the connexin gene family. The encoded protein is a component of gap junctions, which are composed of arrays of intercellular channels that provide a route for the diffusion of low molecular weight materials from cell to cell. The encoded protein is the major protein of gap junctions in the heart that are thought to have a crucial role in the synchronized contraction of the heart and in embryonic development. A related intronless pseudogene has been mapped to chromosome 5. Mutations in this gene have been associated with oculodentodigital dysplasia and heart malformations. Representative Genbank accession numbers providing DNA and protein sequence information for human CX43 genes and proteins include NM_000165 and NP_000156.


In other embodiments, the sd-rxRNA targets prolyl 4-hydroxylase (P4HTM). The product of this gene belongs to the family of prolyl 4-hydroxylases. This protein is a prolyl hydroxylase that may be involved in the degradation of hypoxia-inducible transcription factors under normoxia. It plays a role in adaptation to hypoxia and may be related to cellular oxygen sensing. Alternatively spliced variants encoding different isoforms have been identified. Representative Genbank accession numbers providing DNA and protein sequence information for human P4HTM genes and proteins include NM_177938, NP_808807, NM_177939, and NP_808808.


In certain embodiments, the sd-rxRNA targets procollagen C-protease.


EXAMPLES
Example 1: In Vivo Gene Silencing in Skin after Local Delivery of Sd-rxRNA

Demonstrated herein is gene silencing in skin following administration of sd-rxRNA molecules. Rat incision models were used which included 6 dorsal incisions per animal. Analysis included monitoring of digital images, detection of target gene expression, scar assessment, and histology. FIG. 1 reveals an expression profile of several genes including MAP4K4, SPP1, CTGF, PTGS2 and TGFB1. As expected, when expression of these genes was monitored post-incision, target gene expression was elevated early and then returned to normal by day 10.



FIG. 2 presents an overview of intradermal injection experiments with sd-rxRNA molecules. 6 intradermal injections were performed at each site. Each injection consisted of approximately 34μ, 300 μg total. Images were taken before injection and 15 minutes after the first injection.



FIG. 3 demonstrates in vivo silencing following intradermal injection of sd-rxRNA in rats. 6 injections were made per dose. 300 μg in PBS was injected on days 1 & 2 (2 doses) or on day 2 (1 dose). 5 incisions sites were made per treatment. Incisions were 1 cm. 3 mm skin biopsies were harvested 48 hours after the last dose and target expression was determined by QPCR.



FIG. 4 demonstrates in vivo silencing of MAP4K4, PPIB and CTGF expression in rats following intradermal injection of sd-rxRNA molecules. A single intradermal injection of PBS (vehicle), or 300 ug of MAP4K4, or 2 different CTGF or PPIB targeting sd-rxRNA were injected at 6 sites. 3 mm skin biopsies harvested 48 hours post injection and processed for RNA. Data was analyzed by QPCR and normalized to B-Actin. PBS was set to 1. Data was graphed as a percent reduction in targeted gene expression relative to non-targeting sd-rxRNA (i.e. targeting other gene). Gene expression from untreated skin samples on treated animals are similar to PBS treated or sham controls.



FIG. 5 demonstrates in vivo silencing in mice following intradermal injection of sd-rxRNA molecules. C57BL/6 mice were used, with n=7 wheal sites active and PBS. The control group consisted of 12. 300 ug was administered in 50 ul/injections. 3 mm biopsies were processed for RNA, and target expression determined by QPCR. Expression was normalized to housekeeping gene cyclophilin B.



FIG. 6 reveals the in vitro potency and in vivo effectiveness of 2 different sd-rxRNAs targeting PPIB. Two PPIB sd-rxRNAs with different EC50s were compared in vivo. Similar in vivo results were obtained with 1 injection of 300 μg



FIGS. 7 and 8 demonstrate the duration of gene silencing achieved through administration of sd-rxRNA. There were 6 injection sites per animal. 3 mm skin biopsies were harvested on days 3, 5, and 8. RNA was isolated and gene expression was analyzed by qPCR and normalized to B-Actin



FIG. 9 compares two different dosage regimens, Days 1 and 3 vs. Days 0 and 2. There were 6 injection sites per animal. 3 mm skin biopsies were harvested on days 3, 5, and 8. RNA was isolated and gene expression was analyzed by qPCR and normalized to B-Actin.


Example 2: Identification of Potent Sd-rxRNAs

Up to 300 rxRNA ori compounds were screened for 5 anti-scarring targets. Optimal sequences in SPP1, CTGF, PTGS2, TGFB1 and TGFB2 for sd-rxRNA development were identified using a sequence selection algorithm. The algorithm selects sequences based on the following criteria: a GC content greater than 32% but less than 47%, homology to specific animal models (e.g., mouse or rat), avoidance of 5 or more U/U stretches and/or 2 or more G/C stretches, an off-target hit score of less than 500, and avoidance of sequences contained within the 5′ UTR.


The sequences were developed initially as 25 nucleotide blunt-ended duplexes with O-methyl modification. Such sequences were screened in various cell lines to identify those were most efficient in reducing gene expression. Several concentrations of the RNA molecules, such as 0.025, 0.1 and 0.25 nM, were tested, and suitable concentrations to screen for bDNA were determined. A bDNA was then run of a full screen at a desired concentration. Dose response curves were generated to determine the most potent sequences. Hyperfunctional hits were those with an EC50 of less than 100 pM in lipid transfection. Potent molecules were selected to be developed into sd-rxRNAs based on the parameters described throughout the application and a secondary screen was conducted using the sd-rxRNAs.



FIGS. 10-12 reveal that CTGF sd-rxRNAs are efficacious in mediating gene silencing. A dose response for CTGF is indicated in FIG. 12.



FIGS. 13-14 reveal that the original sd-rxrNA screen had a low hit rate. FIG. 15 reveals PTGS2 knockdown using sd-rxRNA against PTGS2. FIGS. 16-24 reveal that hTGFB1, TGFB, TGFB2 sd-rxRNAs are capable of mediating gene silencing. FIGS. 25-28 shows the identification of potent hSPP1 sd-rxRNAs.


Example 3: Linker Chemistry


FIG. 36 demonstrates that variation of linker chemistry does not influence silencing activity of sd-rxRNAs in vitro. Two different linker chemistries were evaluated, a hydroxyproline linker and ribo linker, on multiple sd-rxRNAs (targeting Map4k4 or PPIB) in passive uptake assays to determine linkers which favor self delivery. HeLa cells were transfected in the absence of a delivery vehicle (passive transfection) with sd-rxRNAs at 1 uM, 0.1 uM or 0.01 uM for 48 hrs. Use of either linker results in an efficacious delivery of sd-rxRNA.


The ribo linker used in Example 5 had the following structure:




embedded image


Example 4: Optimization of Target Sequences

Chemical optimization was performed for several lead sequences, including CTGF, PTGS2, TGFβ1, and TGFβ2. Multiples versions of sd-rxRNA leads were synthesized. The sense strand was further O-methyl modified, such as by introduction of O-methyl blocks on the ends, introduction of O-methyl phosphorothioate blocks at the ends or introduction of ful O-methyl modification with a phosphorothioate block on the 3′ end.


The guide strand was modified to decrease the number of 2′F, substitute 2′F with O-methyl, vary the number of ribonucleotides, eliminate stretches of ribonucleotides, minimize the presence of ribonucleotides next to the phosphorothioate modifications, and if possible remove ribonucleotides from the single stranded region.


Various versions of compounds were synthesized and their efficacy was tested in vitro using passive uptake. The efficacy and toxicity of the optimized compounds was evaluated in vivo.


All compounds show in vivo efficacy. Initially, activity required high concentration and at high concentrations some compound demonstrated injection site reaction. However, data indicated that efficacy and toxicity in vivo could be dramatically improved by enhancement of stability and reduction of 2′ F content. In some instances, toxicity, at least in part, was related to the presence of cholesterol containing short oligomer metabolites. This type of toxicity is expected to be reduced by stabilization. In general, chemical stabilization was well tolerated. Exact chemical optimization patterns differed for various compound. In some cases, complete stabilization resulted in a slightly negative impact on activity. For most target sites, at least two chemically optimized leads were identified: chemically optimized with in vitro efficacy retained or improved compared to an Early Lead and Fully Modified, where in vitro efficacy is slightly reduced.


In general, a fully O-methyl modified sense strand is acceptable. In some instances, it is preferable if less than all of the nucleotides in the sense strand are O-methyl modified. In some instances, the 3′ end of the passenger strand contained a PS/O-METHYL block (2 O-methyl modifications and two 2 phosphorothioate modifications) to insure maximized stability next to the hydrophobic conjugate.


For all compounds, it was possible to identify functional heavily stabilized leads. In some instances, the number of ribonucleotides per compounds was reduced to 4-6. Multiples versions of sd-rxRNA leads were synthesized. The number of 2′F modified purines was limited where possible to improve manufacturability but some optimized compounds do contain some 2′F modified purines.


Optimized Compounds


A summary of CTGF lead compounds is shown in Table 24. PTGS leads are shown in Table 25. hTGFβ1 leads are shown in Table 26 and hTGFβ2 leads are shown in Table 27. Lead compounds were tested for in vitro efficacy with varying levels of methylation of the sense strand.


For CTGF Lead 1 (L1), the fully O-methyl modified sense strand was efficacious having a slight reduction in in vitro efficacy.


For CTGF L2, the fully O-methyl modified sense strand was efficacious, having a slight reduction in in vitro efficacy.


For CTGF L3, the fully O-methyl modified sense strand was partially efficacious, having a reduction in in vitro efficacy.


For CTGF L4, the fully O-methyl modified sense strand was partially efficacious, having a slight reduction in in vitro efficacy.


For PTGS2 L1 and L2, the fully O-methyl modified sense strand was not efficacious.


For TGFβ1 hL3, the fully O-methyl modified sense strand was efficacious.


For TGFβ2, the fully O-methyl modified sense strand was efficacious.


In Vivo Efficacy of Lead Compounds


The activity of lead compounds was tested in vivo both in cell culture and in animal models. FIGS. 33 and 34 demonstrate the activity of optimized CTGF L1 compounds. FIG. 35 demonstrates the in vitro stability of the CTGF L1 compounds. FIGS. 36 and 37 demonstrate the activity of optimized CTGF L2 compounds. FIG. 38 demonstrates the in vitro stability of the CTGF L2 compounds. FIG. 39 provides a summary of the in vivo activity of CTGF lead compounds. FIG. 40 demonstrates the efficacy of CTGF L1 compounds in skin biopsies from rats. FIG. 41 shows the efficacy of CTGF L2 compounds in achieving gene silencing.



FIG. 42 demonstrates CTGF silencing following intradermal injection of RXi-109. FIG. 43 demonstrates the duration of CTGF silencing in skin after intradermal injection of the sd-rxRNA in SD rats. Eight millimeter skin biopsies were harvested, and mRNA levels were quantified by QPCR and normalized to a housekeeping gene. Shown is percent (%) silencing vs. Non Targeting Control (NTC); PBS at each time point is one experimental group; * p≤0.04; ** p≤0.002.



FIGS. 44-46 show that CTGF L3 and L4 compounds are also active. FIG. 47 demonstrates changes in mRNA expression levels of CTGF, α-SM actin, collagen 1A2, and collagen 3A1 after intradermal injection of CTFG sd-rxRNA in SD rats. mRNA levels were quantified by qPCR. Substantial reduction in CTGF expression is observed.



FIG. 49 demonstrates that administration of sd-rxRNAs decreases wound width over the course of at least 9 days. The graph shows microscopic measurements of wound width in rats on days 3, 6, and 9 post-wounding. Each group represents 5 rats. Two non-serial sections from each wound were measured and the average width of the two was calculated per wound. *p<0.05 vs. PBS an NTC.



FIG. 50 demonstrates that administration of sd-rxRNAs decreases wound area over the course of at least 9 days. The graph shows microscopic measurements of wound width in rats on days 3, 6, and 9 post-wounding. Each group represents 5 rats. Two non-serial sections from each wound were measured and the average width of the two was calculated per wound. *p<0.05 vs. PBS an NTC.



FIG. 51 demonstrates that administration of sd-rxRNAs increase the percentage of wound re-epithelialization over the course of at least 9 days. The graph shows microscopic measurements of wound width in rats on days 3, 6, and 9 post-wounding. Each group represents 5 rats. Two non-serial sections from each wound were measured and the average width of the two was calculated per wound. *p<0.05 vs. PBS an NTC.



FIG. 52 demonstrates that administration of sd-rxRNAs increases the average granulation tissue maturity scores over the course of at least 9 days. The graph shows microscopic measurements of wound width in rats on days 3, 6, and 9 post-wounding (5=mature, 1=immature). Each group represents 5 rats. FIG. 53 demonstrates CD68 labeling in day 9 wounds (0=no labeling, 3=substantial labeling). Each group represents 5 rats.



FIG. 54 demonstrates that CTGF leads have different toxicity levels in vitro. FIG. 55 shows percentage (%) of cell viability after RXi-109 dose escalation (oligos formulated in PBS).



FIG. 56 is a schematic of a non-limiting example of a Phase 1 and 2 clinical trial design for lead compounds. This schematic represents a divided dose, single day ascending dose clinical trial.



FIG. 57 is a schematic of a non-limiting example of a Phase 1 and 2 clinical trial design. This schematic represents a divided dose, multi-day ascending dose clinical trial.


Activity of PTGS2, TGFβ1 and TGFβ2 leads was also tested. FIGS. 59 and 60 demonstrate activity of PTGS2 L1 and L2 compounds. FIGS. 61 and 62 demonstrate the activity of h TGFβ1 compounds and FIGS. 63 and 64 demonstrate the activity of hTGFβ2 compounds.


Gene knock-down in liver was also tested following tail vein injection mice. FIG. 58 demonstrates a percent (%) decrease in PPIB expression in the liver relative to PBS control. Lipoid formulated rxRNAs (10 mg/kg) were delivery systemically to Balb/c mice (n=5) by single tail vein injections. Liver tissue was harvested at 24 hours after injection and expression was analyzed by qPCR (normalized to β-actin). Map4K4 rxRNAori also showed significant silencing (˜83%, p<0.001) although Map4K4 sd-rxRNA did not significantly reduce target gene expression (˜17%, p=0.019). TD.035.2278, Published lipidoid delivery reagent, 98N12-5(1), from Akinc, 2009.


Table 1 provides sequences tested in the Original sd-rxRNA screen.


Table 2 demonstrates inhibition of gene expression with PTGS2 ori sequences.


Table 3 demonstrates non-limiting examples of PTGS2 sd-rxRNA sequences.


Table 4 demonstrates non-limiting examples of TGFB1 sd-rxRNA sequences.


Table 5 demonstrates inhibition of gene expression with hTGFB1 ori sequences.


Table 6 demonstrates inhibition of gene expression with hTGFB2 ori sequences.


Table 7 demonstrates non-limiting examples of hTGFB2 sd-rxRNA sequences.


Table 8 demonstrates non-limiting examples of hSPP1 sd-rxRNA sequences.


Table 9 demonstrates inhibition of gene expression with hSPP1 ori sequences.


Table 10 demonstrates non-limiting examples of hCTGF sd-rxRNA sequences.


Table 11 demonstrates inhibition of gene expression with hCTGF ori sequences.


Table 12 demonstrates inhibition of gene expression with CTGF ori sequences.


Table 13 demonstrates inhibition of gene expression with SPP1 sd-rxRNA sequences.


Table 14 demonstrates inhibition of gene expression with PTGS2 sd-rxRNA sequences.


Table 15 demonstrates inhibition of gene expression with CTGF sd-rxRNA sequences.


Table 16 demonstrates inhibition of gene expression with TGFB2 sd-rxRNA sequences.


Table 17 demonstrates inhibition of gene expression with TGFB1 sd-rxRNA sequences.


Table 18 demonstrates inhibition of gene expression with SPP1 sd-rxRNA sequences.


Table 19 demonstrates inhibition of gene expression with PTGS2 sd-rxRNA sequences.


Table 20 demonstrates inhibition of gene expression with CTGF sd-rxRNA sequences.


Table 21 demonstrates inhibition of gene expression with TGFB2 sd-rxRNA sequences.


Table 22 demonstrates inhibition of gene expression with TGFB1 sd-rxRNA sequences.


Table 23 provides non-limiting examples of CB1 sequences.


Table 24 provides a summary of CTGF Leads.


Table 25 provides a summary of PTGS2 Leads.


Table 26 provides a summary of TGFβ1 Leads.


Table 27 provides a summary of TGFβ1 Leads.









TABLE 1







Original sd-rxRNA screen












Oligo

SEQ ID

SEQ ID



ID#
G1-
NO
Sense-sd-rxRNA GII
NO
AS-sd-rxRNA-GII















14394
TGFB1
1
GmCmUAAmUGGmUGGAA-
2
5′-P-mU(2′-F-U)(2′-F-C)(2′-F-C)A(2′-





chol

F-C)(2′-F-C)A(2′-F-U)(2′-F-







U)AGmC*A*mC*G*mC*G*G





14395
TGFB1
3
mUGAmUmCGmUGmCGmC
4
5′-P-mGAG(2′-F-C)G(2′-F-C)A(2′-F-





mUmC-chol

C)GA(2′-F-







U)mCA*mU*G*mU*mU*G*G





14396
TGFB1
5
mCAAmUmUmCmCmUGGmC
6
5′-P-mU(2′-F-C)G(2′-F-C)(2′-F-





GA-chol

C)AGGAA(2′-F-







U)mUG*mU*mU*G*mC*mU*G





14397
TGFB1
7
AGmUGGAmUmCmCAmCGA-
8
5′-P-mU(2′-F-C)G(2′-F-U)GGA(2′-F-





chol

U)(2′-F-C)(2′-F-







C)AmCmU*mU*mC*mC*A*G*C





14398
TGFB1
9
mUAmCAGmCAAGGmUmCm
10
5′-P-mGGA(2′-F-C)(2′-F-C)(2′-F-





C-chol

U)(2′-F-U)G(2′-F-C)(2′-F-







U)GmUA*mC*mU*G*mC*G*U





14399
TGFB1
11
AAmCAmUGAmUmCGmUGm
12
5′-P-mG(2′-F-C)A(2′-F-C)GA(2′-F-





C-chol

U)(2′-F-C)A(2′-F-







U)GmUmU*G*G*A*mC*A*G





14400
TGFB1
13
AmCAmUGAmUmCGmUGmC
14
5′-P-mCG(2′-F-C)A(2′-F-C)GA(2′-F-





G-chol

U)(2′-F-C)A(2′-F-







U)GmU*mU*G*G*A*mC*A





14401
TGFB1
15
mCAGmCAAGGmUmCmCmU
16
5′-P-mCAGGA(2′-F-C)(2′-F-C)(2′-F-





G-chol

U)(2′-F-U)G(2′-F-







C)mUG*mU*A*mC*mU*G*C





14402
TGFB1
17
mCmCAAmCAmUGAmUmCG
18
5′-P-mA(2′-F-C)GA(2′-F-U)(2′-F-





mU-chol

C)A(2′-F-U)G(2′-F-U)(2′-F-







U)GG*A*mC*A*G*mC*U





14403
TGFB1
19
AGmCGGAAGmCGmCAmU-
20
5′-P-mA(2′-F-U)G(2′-F-C)G(2′-F-





chol

C)(2′-F-U)(2′-F-U)(2′-F-C)(2′-F-







C)GmCmU*mU*mC*A*mC*mC*A





14404
TGFB1
21
GmCAmUmCGAGGmCmCAm
22
5′-P-mA(2′-F-U)GG(2′-F-C)(2′-F-





U-chol

C)(2′-F-U)(2′-F-C)GA(2′-F-







U)GmC*G*mC*mU*mU*mC*C





14405
TGFB1
23
GAmCmUAmUmCGAmCAmU
24
5′-P-mCA(2′-F-U)G(2′-F-U)(2′-F-





G-chol

C)GA(2′-F-







U)AGmUmC*mU*mU*G*mC*A*G





14406
TGFB1
25
AmCmCmUGmCAAGAmCmU
26
5′-P-mUAG(2′-F-U)(2′-F-C)(2′-F-





A-chol

U)(2′-F-U)G(2′-F-







C)AGGmU*G*G*A*mU*A*G





14407
TGFB1
27
GmCmUmCmCAmCGGAGAA-
28
5′-P-mU(2′-F-U)(2′-F-C)(2′-F-U)(2′-F-





chol

C)(2′-F-C)G(2′-F-







U)GGAGmC*mU*G*A*A*G*C





14408
TGFB2
29
GGmCmUmCmUmCmCmUm
30
5′-P-mU(2′-F-





UmCGA-chol

C)GAAGGAGAGmCmC*A*mU*mU*







mC*G*C





14409
TGFB2
31
GAmCAGGAAmCmCmUGG-
32
5′-P-mC(2′-F-C)AGG(2′-F-U)(2′-F-





chol

U)(2′-F-C)(2′-F-C)(2′-F-







U)GmUmC*mU*mU*mU*A*mU*G





14410
TGFB2
33
mCmCAAGGAGGmUmUmUA-
34
5′-P-mUAAA(2′-F-C)(2′-F-C)(2′-F-





chol

U)(2′-F-C)(2′-F-C)(2′-F-U)(2′-F-







U)GG*mC*G*mU*A*G*U





14411
TGFB2
35
AmUmUmUmCmCAmUmCm
36
5′-P-mUG(2′-F-U)AGA(2′-F-





UAmCA-chol

U)GGAAAmU*mC*A*mC*mC*mU*C





14412
TGFB2
37
mUmCmCAmUmCmUAmCAA
38
5′-P-mUG(2′-F-U)(2′-F-U)G(2′-F-





mCA-chol

U)AGA(2′-F-







U)GGA*A*A*mU*mC*A*C





14413
TGFB2
39
mUmUmUmCmCAmUmCmU
40
5′-P-mU(2′-F-U)G(2′-F-U)AGA(2′-F-





AmCAA-chol

U)GGAAA*mU*mC*A*mC*mC*U





14414
TGFB2
41
mCGmCmCAAGGAGGmUmU-
42
5′-P-mAA(2′-F-C)(2′-F-C)(2′-F-U)(2′-





chol

F-C)(2′-F-C)(2′-F-U)(2′-F-







U)GGmCG*mU*A*G*mU*A*C





14415
TGFB2
43
GmUGGmUGAmUmCAGAA-
44
5′-P-mU(2′-F-U)(2′-F-C)(2′-F-





chol

U)GA(2′-F-U)(2′-F-C)A(2′-F-C)(2′-F-







C)AmC*mU*G*G*mU*A*U





14416
TGFB2
45
mCmUmCmCmUGmCmUAA
46
5′-P-mA(2′-F-C)A(2′-F-U)(2′-F-





mUGmU-chol

U)AG(2′-F-







C)AGGAG*A*mU*G*mU*G*G





14417
TGFB2
47
AmCmCmUmCmCAmCAmUA
48
5′-P-mUA(2′-F-U)A(2′-F-U)G(2′-F-





mUA-chol

U)GGAGGmU*G*mC*mC*A*mU*C





14418
TGFB2
49
AAGmUmCmCAmCmUAGGA-
50
5′-P-mU(2′-F-C)(2′-F-C)(2′-F-





chol

U)AG(2′-F-U)GGA(2′-F-







C)mUmU*mU*A*mU*A*G*U





14419
TGFB2
51
mUGGmUGAmUmCAGAAA-
52
5′-P-mU(2′-F-U)(2′-F-U)(2′-F-C)(2′-F-





chol

U)GA(2′-F-U)(2′-F-C)A(2′-F-







C)mCA*mC*mU*G*G*mU*A





14420
TGFB2
53
AGmUmCmCAmCmUAGGAA-
54
5′-P-mU(2′-F-U)(2′-F-C)(2′-F-C)(2′-F-





chol

U)AG(2′-F-







U)GGAmCmU*mU*mU*A*mU*A*G





14421
TGFB2
55
AmCGmCmCAAGGAGGmU-
56
5′-P-mA(2′-F-C)(2′-F-C)(2′-F-U)(2′-F-





chol

C)(2′-F-C)(2′-F-U)(2′-F-U)GG(2′-F-







C)GmU*A*G*mU*A*mC*U





14422
PTGS2
57
mCAmCAmUmUmUGAmUm
58
5′-P-mU(2′-F-C)AA(2′-F-U)(2′-F-





UGA-chol

C)AAA(2′-F-







U)GmUG*A*mU*mC*mU*G*G





14423
PTGS2
59
mCAmCmUGmCmCmUmCAA
60
5′-P-mAA(2′-F-U)(2′-F-U)GAGG(2′-F-





mUmU-chol

C)AGmUG*mU*mU*G*A*mU*G





14424
PTGS2
61
AAAmUAmCmCAGmUmCmU
62
5′-P-mAAGA(2′-F-C)(2′-F-U)GG(2′-F-





mU-chol

U)A(2′-F-







U)mUmU*mC*A*mU*mC*mU*G





14425
PTGS2
63
mCAmUmUmUGAmUmUGA
64
5′-P-mUG(2′-F-U)(2′-F-C)AA(2′-F-





mCA-chol

U)(2′-F-







C)AAAmUG*mU*G*A*mU*mC*U
















TABLE 2







Inhibition of gene expression with PTGS2 ori sequences












Target Gene
Gene

SEQ ID
PTGS2
NM_000963.2


Duplex ID
Region
Ref Pos
No
Sense Sequence
% Expression (0.1 nM)















15147
CDS
176
65
CCUGGCGCUCAGCCAUACAGCAAAA
59%





15148
CDS
177
66
CUGGCGCUCAGCCAUACAGCAAAUA
72%





15149
CDS
178
67
UGGCGCUCAGCCAUACAGCAAAUCA
77%





15150
CDS
180
68
GCGCUCAGCCAUACAGCAAAUCCUA
70%





15151
CDS
182
69
GCUCAGCCAUACAGCAAAUCCUUGA
76%





15152
CDS
183
70
CUCAGCCAUACAGCAAAUCCUUGCA
74%





15153
CDS
184
71
UCAGCCAUACAGCAAAUCCUUGCUA
47%





15154
CDS
186
72
AGCCAUACAGCAAAUCCUUGCUGUA
55%





15155
CDS
187
73
GCCAUACAGCAAAUCCUUGCUGUUA
41%





15156
CDS
188
74
CCAUACAGCAAAUCCUUGCUGUUCA
46%





15157
CDS
212
75
CCACCCAUGUCAAAACCGAGGUGUA
31%





15158
CDS
243
76
AGUGUGGGAUUUGACCAGUAUAA
23%






GA





15159
CDS
244
77
GUGUGGGAUUUGACCAGUAUAAG
24%






UA





15160
CDS
245
78
UGUGGGAUUUGACCAGUAUAAGU
38%






GA





15161
CDS
252
79
UUUGACCAGUAUAAGUGCGAUUG
29%






UA





15162
CDS
285
80
GGAUUCUAUGGAGAAAACUGCUCAA
16%





15163
CDS
337
81
UAUUUCUGAAACCCACUCCAAACAA
32%





15164
CDS
338
82
AUUUCUGAAACCCACUCCAAACACA
21%





15165
CDS
339
83
UUUCUGAAACCCACUCCAAACACAA
21%





15166
CDS
340
84
UUCUGAAACCCACUCCAAACACAGA
45%





15167
CDS
345
85
AAACCCACUCCAAACACAGUGCACA
87%





15168
CDS
347
86
ACCCACUCCAAACACAGUGCACUAA
83%





15169
CDS
349
87
CCACUCCAAACACAGUGCACUACAA
51%





15170
CDS
350
88
CACUCCAAACACAGUGCACUACAUA
31%





15171
CDS
394
89
UUUGGAACGUUGUGAAUAACAUU
43%






CA





15172
CDS
406
90
UGAAUAACAUUCCCUUCCUUCGAAA
21%





15173
CDS
407
91
GAAUAACAUUCCCUUCCUUCGAAAA
32%





15174
CDS
408
92
AAUAACAUUCCCUUCCUUCGAAAUA
27%





15175
CDS
435
93
AUUAUGAGUUAUGUGUUGACAUC
27%






CA





15176
CDS
437
94
UAUGAGUUAUGUGUUGACAUCCA
21%






GA





15177
CDS
439
95
UGAGUUAUGUGUUGACAUCCAGA
30%






UA





15178
CDS
440
96
GAGUUAUGUGUUGACAUCCAGAU
68%






CA





15179
CDS
441
97
AGUUAUGUGUUGACAUCCAGAUCAA
35%





15180
CDS
442
98
GUUAUGUGUUGACAUCCAGAUCACA
36%





15181
CDS
443
99
UUAUGUGUUGACAUCCAGAUCACAA
51%





15182
CDS
444
100
UAUGUGUUGACAUCCAGAUCACAUA
24%





15183
CDS
445
101
AUGUGUUGACAUCCAGAUCACAUUA
37%





15184
CDS
446
102
UGUGUUGACAUCCAGAUCACAUUUA
42%





15185
CDS
448
103
UGUUGACAUCCAGAUCACAUUUGAA
18%





15186
CDS
449
104
GUUGACAUCCAGAUCACAUUUGAUA
24%





15187
CDS
450
105
UUGACAUCCAGAUCACAUUUGAUUA
25%





15188
CDS
452
106
GACAUCCAGAUCACAUUUGAUUGAA
27%





15189
CDS
454
107
CAUCCAGAUCACAUUUGAUUGACAA
27%





15190
CDS
455
108
AUCCAGAUCACAUUUGAUUGACAGA
32%





15191
CDS
456
109
UCCAGAUCACAUUUGAUUGACAGUA
40%





15192
CDS
457
110
CCAGAUCACAUUUGAUUGACAGUCA
52%





15193
CDS
460
111
GAUCACAUUUGAUUGACAGUCCACA
40%





15194
CDS
461
112
AUCACAUUUGAUUGACAGUCCACCA
46%





15195
CDS
462
113
UCACAUUUGAUUGACAGUCCACCAA
34%





15196
CDS
463
114
CACAUUUGAUUGACAGUCCACCAAA
30%





15197
CDS
464
115
ACAUUUGAUUGACAGUCCACCAACA
32%





15198
CDS
465
116
CAUUUGAUUGACAGUCCACCAACUA
44%





15199
CDS
467
117
UUUGAUUGACAGUCCACCAACUUAA
17%





15200
CDS
468
118
UUGAUUGACAGUCCACCAACUUACA
22%





15201
CDS
469
119
UGAUUGACAGUCCACCAACUUACAA
27%





15202
CDS
470
120
GAUUGACAGUCCACCAACUUACAAA
41%





15203
CDS
471
121
AUUGACAGUCCACCAACUUACAAUA
39%





15204
CDS
472
122
UUGACAGUCCACCAACUUACAAUGA
61%





15205
CDS
473
123
UGACAGUCCACCAACUUACAAUGCA
48%





15206
CDS
479
124
UCCACCAACUUACAAUGCUGACUAA
29%





15207
CDS
486
125
ACUUACAAUGCUGACUAUGGCUACA
35%





15208
CDS
488
126
UUACAAUGCUGACUAUGGCUACAAA
32%





15209
CDS
517
127
GGGAAGCCUUCUCUAACCUCUCCUA
39%





15210
CDS
518
128
GGAAGCCUUCUCUAACCUCUCCUAA
48%





15211
CDS
519
129
GAAGCCUUCUCUAACCUCUCCUAUA
19%





15212
CDS
520
130
AAGCCUUCUCUAACCUCUCCUAUUA
17%





15213
CDS
524
131
CUUCUCUAACCUCUCCUAUUAUACA
17%





15214
CDS
525
132
UUCUCUAACCUCUCCUAUUAUACUA
34%





15215
CDS
526
133
UCUCUAACCUCUCCUAUUAUACUAA
49%





15216
CDS
601
134
GUAAAAAGCAGCUUCCUGAUUCAAA
35%





15217
CDS
602
135
UAAAAAGCAGCUUCCUGAUUCAAAA
25%





15218
CDS
606
136
AAGCAGCUUCCUGAUUCAAAUGAGA
27%





15219
CDS
615
137
CCUGAUUCAAAUGAGAUUGUGGAAA
37%





15220
CDS
616
138
CUGAUUCAAAUGAGAUUGUGGAA
27%






AA





15221
CDS
636
139
GAAAAAUUGCUUCUAAGAAGAAAGA
37%





15222
CDS
637
140
AAAAAUUGCUUCUAAGAAGAAAGUA
56%





15223
CDS
638
141
AAAAUUGCUUCUAAGAAGAAAGUUA
25%





15224
CDS
639
142
AAAUUGCUUCUAAGAAGAAAGUUCA
34%





15225
CDS
678
143
GGCUCAAACAUGAUGUUUGCAUUCA
68%





15226
CDS
679
144
GCUCAAACAUGAUGUUUGCAUUCUA
51%





15227
CDS
680
145
CUCAAACAUGAUGUUUGCAUUCUUA
50%





15228
CDS
682
146
CAAACAUGAUGUUUGCAUUCUUU
51%






GA





15229
CDS
683
147
AAACAUGAUGUUUGCAUUCUUUG
63%






CA





15230
CDS
722
148
UCAGUUUUUCAAGACAGAUCAUAAA
45%





15231
CDS
723
149
CAGUUUUUCAAGACAGAUCAUAAGA
59%





15232
CDS
724
150
AGUUUUUCAAGACAGAUCAUAAGCA
80%





15233
CDS
725
151
GUUUUUCAAGACAGAUCAUAAGCGA
55%





15234
CDS
726
152
UUUUUCAAGACAGAUCAUAAGCGAA
53%





15235
CDS
776
153
CCAUGGGGUGGACUUAAAUCAUAUA
56%





15236
CDS
787
154
ACUUAAAUCAUAUUUACGGUGAAAA
63%





15237
CDS
788
155
CUUAAAUCAUAUUUACGGUGAAACA
43%





15238
CDS
789
156
UUAAAUCAUAUUUACGGUGAAACUA
48%





15239
CDS
790
157
UAAAUCAUAUUUACGGUGAAACUCA
56%





15240
CDS
792
158
AAUCAUAUUUACGGUGAAACUCUGA
46%





15241
CDS
793
159
AUCAUAUUUACGGUGAAACUCUGGA
64%





15242
CDS
799
160
UUUACGGUGAAACUCUGGCUAGACA
35%





15243
CDS
819
161
AGACAGCGUAAACUGCGCCUUUUCA
65%





15244
CDS
820
162
GACAGCGUAAACUGCGCCUUUUCAA
51%





15245
CDS
821
163
ACAGCGUAAACUGCGCCUUUUCAAA
48%





15246
CDS
822
164
CAGCGUAAACUGCGCCUUUUCAAGA
61%





15247
CDS
823
165
AGCGUAAACUGCGCCUUUUCAAGGA
48%





15248
CDS
828
166
AAACUGCGCCUUUUCAAGGAUGGAA
42%





15249
CDS
830
167
ACUGCGCCUUUUCAAGGAUGGAAAA
29%





15250
CDS
861
168
UAUCAGAUAAUUGAUGGAGAGAU
32%






GA





15251
CDS
862
169
AUCAGAUAAUUGAUGGAGAGAUG
55%






UA





15252
CDS
863
170
UCAGAUAAUUGAUGGAGAGAUGU
50%






AA





15253
CDS
864
171
CAGAUAAUUGAUGGAGAGAUGUA
50%






UA





15254
CDS
865
172
AGAUAAUUGAUGGAGAGAUGUAU
55%






CA





15255
CDS
866
173
GAUAAUUGAUGGAGAGAUGUAUC
65%






CA





15256
CDS
867
174
AUAAUUGAUGGAGAGAUGUAUCC
54%






UA





15257
CDS
880
175
AGAUGUAUCCUCCCACAGUCAAAGA
78%





15258
CDS
881
176
GAUGUAUCCUCCCACAGUCAAAGAA
79%





15259
CDS
882
177
AUGUAUCCUCCCACAGUCAAAGAUA
49%





15260
CDS
883
178
UGUAUCCUCCCACAGUCAAAGAUAA
28%





15261
CDS
884
179
GUAUCCUCCCACAGUCAAAGAUACA
56%





15262
CDS
885
180
UAUCCUCCCACAGUCAAAGAUACUA
42%





15263
CDS
887
181
UCCUCCCACAGUCAAAGAUACUCAA
45%





15264
CDS
888
182
CCUCCCACAGUCAAAGAUACUCAGA
73%





15265
CDS
889
183
CUCCCACAGUCAAAGAUACUCAGGA
56%





15266
CDS
891
184
CCCACAGUCAAAGAUACUCAGGCAA
80%





15267
CDS
901
185
AAGAUACUCAGGCAGAGAUGAUCUA
59%





15268
CDS
935
186
AGUCCCUGAGCAUCUACGGUUUGCA
83%





15269
CDS
980
187
UCUGGUGCCUGGUCUGAUGAUGU
55%






AA





15270
CDS
981
188
CUGGUGCCUGGUCUGAUGAUGUA
56%






UA





15271
CDS
982
189
UGGUGCCUGGUCUGAUGAUGUAU
43%






GA





15272
CDS
983
190
GGUGCCUGGUCUGAUGAUGUAUG
41%






CA





15273
CDS
984
191
GUGCCUGGUCUGAUGAUGUAUGC
42%






CA





15274
CDS
985
192
UGCCUGGUCUGAUGAUGUAUGCC
37%






AA





15275
CDS
986
193
GCCUGGUCUGAUGAUGUAUGCCACA
61%





15276
CDS
1016
194
GCUGCGGGAACACAACAGAGUAUGA
44%





15277
CDS
1019
195
GCGGGAACACAACAGAGUAUGCGAA
33%





15278
CDS
1038
196
UGCGAUGUGCUUAAACAGGAGCAUA
53%





15279
CDS
1039
197
GCGAUGUGCUUAAACAGGAGCAUCA
109%





15280
CDS
1040
198
CGAUGUGCUUAAACAGGAGCAUCCA
77%





15281
CDS
1042
199
AUGUGCUUAAACAGGAGCAUCCUGA
69%





15282
CDS
1043
200
UGUGCUUAAACAGGAGCAUCCUGAA
76%





15283
CDS
1044
201
GUGCUUAAACAGGAGCAUCCUGAAA
65%





15284
CDS
1045
202
UGCUUAAACAGGAGCAUCCUGAAUA
64%





15285
CDS
1084
203
UGUUCCAGACAAGCAGGCUAAUACA
41%





15286
CDS
1093
204
CAAGCAGGCUAAUACUGAUAGGAGA
24%





15287
CDS
1095
205
AGCAGGCUAAUACUGAUAGGAGAGA
50%





15288
CDS
1096
206
GCAGGCUAAUACUGAUAGGAGAGAA
51%





15289
CDS
1124
207
UAAGAUUGUGAUUGAAGAUUAUG
35%






UA





15290
CDS
1125
208
AAGAUUGUGAUUGAAGAUUAUGU
34%






GA





15291
CDS
1126
209
AGAUUGUGAUUGAAGAUUAUGUG
59%






CA





15292
CDS
1127
210
GAUUGUGAUUGAAGAUUAUGUGC
41%






AA





15293
CDS
1128
211
AUUGUGAUUGAAGAUUAUGUGCA
51%






AA





15294
CDS
1129
212
UUGUGAUUGAAGAUUAUGUGCAA
45%






CA





15295
CDS
1131
213
GUGAUUGAAGAUUAUGUGCAACACA
37%





15296
CDS
1132
214
UGAUUGAAGAUUAUGUGCAACACUA
34%





15297
CDS
1134
215
AUUGAAGAUUAUGUGCAACACUUGA
24%





15298
CDS
1136
216
UGAAGAUUAUGUGCAACACUUGAGA
37%





15299
CDS
1138
217
AAGAUUAUGUGCAACACUUGAGUGA
44%





15300
CDS
1145
218
UGUGCAACACUUGAGUGGCUAUCAA
29%





15301
CDS
1149
219
CAACACUUGAGUGGCUAUCACUUCA
33%





15302
CDS
1179
220
AAAUUUGACCCAGAACUACUUUUCA
35%





15303
CDS
1180
221
AAUUUGACCCAGAACUACUUUUCAA
41%





15304
CDS
1181
222
AUUUGACCCAGAACUACUUUUCAAA
40%





15305
CDS
1200
223
UUCAACAAACAAUUCCAGUACCAAA
49%





15306
CDS
1211
224
AUUCCAGUACCAAAAUCGUAUUGCA
27%





15307
CDS
1217
225
GUACCAAAAUCGUAUUGCUGCUGAA
31%





15308
CDS
1270
226
UUCUGCCUGACACCUUUCAAAUUCA
35%





15309
CDS
1280
227
CACCUUUCAAAUUCAUGACCAGAAA
57%





15310
CDS
1284
228
UUUCAAAUUCAUGACCAGAAAUACA
42%





15311
CDS
1289
229
AAUUCAUGACCAGAAAUACAACUAA
52%





15312
CDS
1327
230
ACAACAACUCUAUAUUGCUGGAACA
58%





15313
CDS
1352
231
UGGAAUUACCCAGUUUGUUGAAU
35%






CA





15314
CDS
1356
232
AUUACCCAGUUUGUUGAAUCAUUCA
41%





15315
CDS
1357
233
UUACCCAGUUUGUUGAAUCAUUCAA
58%





15316
CDS
1359
234
ACCCAGUUUGUUGAAUCAUUCACCA
52%





15317
CDS
1360
235
CCCAGUUUGUUGAAUCAUUCACCAA
66%





15318
CDS
1361
236
CCAGUUUGUUGAAUCAUUCACCAGA
54%





15319
CDS
1365
237
UUUGUUGAAUCAUUCACCAGGCAAA
47%





15320
CDS
1462
238
AGAGCAGGCAGAUGAAAUACCAGUA
65%





15321
CDS
1463
239
GAGCAGGCAGAUGAAAUACCAGUCA
66%





15322
CDS
1465
240
GCAGGCAGAUGAAAUACCAGUCUUA
22%





15323
CDS
1466
241
CAGGCAGAUGAAAUACCAGUCUUUA
43%





15324
CDS
1472
242
GAUGAAAUACCAGUCUUUUAAUGAA
23%





15325
CDS
1473
243
AUGAAAUACCAGUCUUUUAAUGAGA
61%





15326
CDS
1474
244
UGAAAUACCAGUCUUUUAAUGAG
49%






UA





15327
CDS
1475
245
GAAAUACCAGUCUUUUAAUGAGUAA
76%





15328
CDS
1476
246
AAAUACCAGUCUUUUAAUGAGUACA
51%





15329
CDS
1477
247
AAUACCAGUCUUUUAAUGAGUACCA
72%





15330
CDS
1478
248
AUACCAGUCUUUUAAUGAGUACCGA
40%





15331
CDS
1479
249
UACCAGUCUUUUAAUGAGUACCGCA
53%





15332
CDS
1480
250
ACCAGUCUUUUAAUGAGUACCGCAA
39%





15333
CDS
1481
251
CCAGUCUUUUAAUGAGUACCGCAAA
41%





15334
CDS
1483
252
AGUCUUUUAAUGAGUACCGCAAACA
38%





15335
CDS
1485
253
UCUUUUAAUGAGUACCGCAAACGCA
55%





15336
CDS
1486
254
CUUUUAAUGAGUACCGCAAACGCUA
63%





15337
CDS
1487
255
UUUUAAUGAGUACCGCAAACGCUUA
52%





15338
CDS
1495
256
AGUACCGCAAACGCUUUAUGCUGAA
49%





15339
CDS
1524
257
UAUGAAUCAUUUGAAGAACUUACAA
65%





15340
CDS
1525
258
AUGAAUCAUUUGAAGAACUUACAGA
63%





15341
CDS
1527
259
GAAUCAUUUGAAGAACUUACAGGAA
65%





15342
CDS
1529
260
AUCAUUUGAAGAACUUACAGGAGAA
43%





15343
CDS
1531
261
CAUUUGAAGAACUUACAGGAGAAAA
63%





15344
CDS
1532
262
AUUUGAAGAACUUACAGGAGAAAAA
33%





15345
CDS
1574
263
GGAAGCACUCUAUGGUGACAUCGAA
62%





15346
CDS
1609
264
UGUAUCCUGCCCUUCUGGUAGAAAA
36%





15347
CDS
1614
265
CCUGCCCUUCUGGUAGAAAAGCCUA
58%





15348
CDS
1650
266
AUCUUUGGUGAAACCAUGGUAGAAA
60%





15349
CDS
1666
267
UGGUAGAAGUUGGAGCACCAUUCUA
88%





15350
CDS
1669
268
UAGAAGUUGGAGCACCAUUCUCCUA
85%





15351
CDS
1672
269
AAGUUGGAGCACCAUUCUCCUUGAA
83%





15352
CDS
1675
270
UUGGAGCACCAUUCUCCUUGAAAGA
85%





15353
CDS
1676
271
UGGAGCACCAUUCUCCUUGAAAGGA
83%





15354
CDS
1677
272
GGAGCACCAUUCUCCUUGAAAGGAA
74%





15355
CDS
1678
273
GAGCACCAUUCUCCUUGAAAGGACA
81%





15356
CDS
1679
274
AGCACCAUUCUCCUUGAAAGGACUA
86%





15357
CDS
1680
275
GCACCAUUCUCCUUGAAAGGACUUA
98%





15358
CDS
1681
276
CACCAUUCUCCUUGAAAGGACUUAA
78%





15359
CDS
1682
277
ACCAUUCUCCUUGAAAGGACUUAUA
88%





15360
CDS
1683
278
CCAUUCUCCUUGAAAGGACUUAUGA
88%





15361
CDS
1762
279
UGGGUUUUCAAAUCAUCAACACUGA
78%





15362
CDS
1763
280
GGGUUUUCAAAUCAUCAACACUGCA
92%





15363
CDS
1767
281
UUUCAAAUCAUCAACACUGCCUCAA
85%





15364
CDS
1770
282
CAAAUCAUCAACACUGCCUCAAUUA
84%





15365
CDS
1773
283
AUCAUCAACACUGCCUCAAUUCAGA
86%





15366
CDS
1774
284
UCAUCAACACUGCCUCAAUUCAGUA
94%





15367
CDS
1775
285
CAUCAACACUGCCUCAAUUCAGUCA
84%





15368
CDS
1776
286
AUCAACACUGCCUCAAUUCAGUCUA
84%





15369
CDS
1777
287
UCAACACUGCCUCAAUUCAGUCUCA
68%





15370
CDS
1778
288
CAACACUGCCUCAAUUCAGUCUCUA
73%





15371
CDS
1779
289
AACACUGCCUCAAUUCAGUCUCUCA
79%





15372
CDS
1780
290
ACACUGCCUCAAUUCAGUCUCUCAA
78%





15373
CDS
1781
291
CACUGCCUCAAUUCAGUCUCUCAUA
92%





15374
CDS
1782
292
ACUGCCUCAAUUCAGUCUCUCAUCA
89%





15375
CDS
1783
293
CUGCCUCAAUUCAGUCUCUCAUCUA
95%





15376
CDS
1784
294
UGCCUCAAUUCAGUCUCUCAUCUGA
83%





15377
CDS
1785
295
GCCUCAAUUCAGUCUCUCAUCUGCA
46%





15378
CDS
1786
296
CCUCAAUUCAGUCUCUCAUCUGCAA
51%





15379
CDS
1787
297
CUCAAUUCAGUCUCUCAUCUGCAAA
61%





15380
CDS
1790
298
AAUUCAGUCUCUCAUCUGCAAUAAA
30%





15381
CDS
1791
299
AUUCAGUCUCUCAUCUGCAAUAACA
32%





15382
CDS
1792
300
UUCAGUCUCUCAUCUGCAAUAACGA
30%





15383
CDS
1793
301
UCAGUCUCUCAUCUGCAAUAACGUA
38%





15384
CDS
1794
302
CAGUCUCUCAUCUGCAAUAACGUGA
67%





15385
CDS
1795
303
AGUCUCUCAUCUGCAAUAACGUGAA
71%





15386
CDS
1796
304
GUCUCUCAUCUGCAAUAACGUGAAA
81%





15387
CDS
1856
305
AGAGCUCAUUAAAACAGUCACCAUA
33%





15388
CDS
1857
306
GAGCUCAUUAAAACAGUCACCAUCA
55%





15389
CDS
1858
307
AGCUCAUUAAAACAGUCACCAUCAA
31%





15390
CDS
1859
308
GCUCAUUAAAACAGUCACCAUCAAA
46%





15391
CDS
1860
309
CUCAUUAAAACAGUCACCAUCAAUA
43%





15392
CDS
1861
310
UCAUUAAAACAGUCACCAUCAAUGA
58%





15393
CDS
1862
311
CAUUAAAACAGUCACCAUCAAUGCA
78%





15394
CDS
1864
312
UUAAAACAGUCACCAUCAAUGCAAA
41%





15395
CDS
1865
313
UAAAACAGUCACCAUCAAUGCAAGA
80%





15396
CDS
1866
314
AAAACAGUCACCAUCAAUGCAAGUA
79%





15397
CDS
1868
315
AACAGUCACCAUCAAUGCAAGUUCA
34%





15398
CDS
1912
316
AUAUCAAUCCCACAGUACUACUAAA
39%





15399
CDS
1928
317
ACUACUAAAAGAACGUUCGACUGAA
39%





15400
CDS/3UTR
1941
318
CGUUCGACUGAACUGUAGAAGUCUA
30%





15401
CDS/3UTR
1946
319
GACUGAACUGUAGAAGUCUAAUGAA
25%





15402
CDS/3UTR
1949
320
UGAACUGUAGAAGUCUAAUGAUCAA
29%





15403
3UTR
2077
321
UCCUGUUGCGGAGAAAGGAGUCAUA
45%





15404
3UTR
2082
322
UUGCGGAGAAAGGAGUCAUACUU
43%






GA





15405
3UTR
2098
323
CAUACUUGUGAAGACUUUUAUGU
30%






CA





15406
3UTR
2128
324
CUAAAGAUUUUGCUGUUGCUGUU
41%






AA





15407
3UTR
2141
325
UGUUGCUGUUAAGUUUGGAAAAC
29%






AA





15408
3UTR
2188
326
AGAGAGAAAUGAGUUUUGACGUC
26%






UA





15409
3UTR
2235
327
UUAUAAGAACGAAAGUAAAGAUGUA
33%





15410
3UTR
2281
328
AAGAUGGCAAAAUGCUGAAAGUUUA
28%





15411
3UTR
2305
329
UUACACUGUCGAUGUUUCCAAUGCA
46%





15412
3UTR
2446
330
GACAUUACCAGUAAUUUCAUGUCUA
24%





15413
3UTR
2581
331
CAAAAAGAAGCUGUCUUGGAUUUAA
36%





15414
3UTR
2669
332
CUUUUUCACCAAGAGUAUAAACCUA
41%





15415
3UTR
2730
333
AUGCCAAAUUUAUUAAGGUGGUG
61%






GA





15416
3UTR
2750
334
GUGGAGCCACUGCAGUGUUAUCU
39%






UA





15417
3UTR
2752
335
GGAGCCACUGCAGUGUUAUCUUAAA
45%





15418
3UTR
2802
336
CAGAAUUUGUUUAUAUGGCUGGU
49%






AA





15419
3UTR
2810
337
GUUUAUAUGGCUGGUAACAUGUA
34%






AA





15420
3UTR
2963
338
UACUCAGAUUUUGCUAUGAGGUU
42%






AA





15421
3UTR
2967
339
CAGAUUUUGCUAUGAGGUUAAUG
39%






AA





15422
3UTR
2970
340
AUUUUGCUAUGAGGUUAAUGAAG
43%






UA





15423
3UTR
2986
341
AAUGAAGUACCAAGCUGUGCUUGAA
40%





15424
3UTR
3064
342
AUCACAUUGCAAAAGUAGCAAUGAA
59%





15425
3UTR
3072
343
GCAAAAGUAGCAAUGACCUCAUAAA
35%





15426
3UTR
3083
344
AAUGACCUCAUAAAAUACCUCUUCA
40%





15427
3UTR
3134
345
AAUUUUAUCUCAGUCUUGAAGCCAA
55%





15428
3UTR
3147
346
UCUUGAAGCCAAUUCAGUAGGUGCA
52%





15429
3UTR
3157
347
AAUUCAGUAGGUGCAUUGGAAUCAA
71%





15430
3UTR
3212
348
UUUCUUCUUUUAGCCAUUUUGCU
38%






AA





15431
3UTR
3216
349
UUCUUUUAGCCAUUUUGCUAAGA
40%






GA





15432
3UTR
3225
350
CCAUUUUGCUAAGAGACACAGUCUA
36%





15433
3UTR
3278
351
UUACUAGUUUUAAGAUCAGAGUU
70%






CA





15434
3UTR
3313
352
ACUCUGCCUAUAUUUUCUUACCUGA
56%





15435
3UTR
3335
353
UGAACUUUUGCAAGUUUUCAGGU
64%






AA





15436
3UTR
3336
354
GAACUUUUGCAAGUUUUCAGGUA
62%






AA





15437
3UTR
3351
355
UUCAGGUAAACCUCAGCUCAGGACA
62%





15438
3UTR
3360
356
ACCUCAGCUCAGGACUGCUAUUUAA
53%





15439
3UTR
3441
357
CUUAUUUUAAGUGAAAAGCAGAGAA
83%





15440
3UTR
3489
358
UAUCUGUAACCAAGAUGGAUGCAAA
93%





15441
3UTR
3662
359
UUUUCCACAUCUCAUUGUCACUGAA
36%





15442
3UTR
3668
360
ACAUCUCAUUGUCACUGACAUUUAA
40%





15443
3UTR
3735
361
GUCUUAUUAGGACACUAUGGUUA
40%






UA





15444
3UTR
3737
362
CUUAUUAGGACACUAUGGUUAUA
37%






AA





15445
3UTR
3738
363
UUAUUAGGACACUAUGGUUAUAA
38%






AA





15446
3UTR
3752
364
UGGUUAUAAACUGUGUUUAAGCC
28%






UA





15447
3UTR
3919
365
AUAUUUAAGGUUGAAUGUUUGUC
40%






CA





15448
3UTR
3961
366
CUAGCCCACAAAGAAUAUUGUCUCA
47%





15449
3UTR
3981
367
UCUCAUUAGCCUGAAUGUGCCAUAA
56%





15450
3UTR
3994
368
AAUGUGCCAUAAGACUGACCUUUUA
52%
















TABLE 3







PTGS2 sd-rxRNA










Duplex ID
ID
Sequence
SEQ ID NO





17388
17062
G.A.A.A.A.mC.mU.G.mC.mU.mC.A.A.Chl
369



17063
P.mU.fU.G.A.G.fC.A.G.fU.fU.fU.fU.fC*fU*fC*fC*A*fU*A
370





17389
17064
A.mC.mC.mU.mC.mU.mC.mC.mU.A.mU.mU.A.Chl
371



17065
P.mU.A.A.fU.A.G.G.A.G.A.G.G.fU*fU*A*G*A*G*A
372





17390
17066
mU.mC.mC.A.mC.mC.A.A.mC.mU.mU.A.A.Chl
373



17068
P.mU.fU.A.A.G.fU.fU.G.G.fU.G.G.A*fC*fU*G*fU*fC*A
374





17391
17067
G.mU.mC.mC.A.mC.mC.A.A.mC.mU.mU.A.A.Chl
375



17068
P.mU.fU.A.A.G.fU.fU.G.G.fU.G.G.A*fC*fU*G*fU*fC*A
376





17392
17069
mC.mU.mC.mC.mU.A.mU.mU.A.mU.A.mC.A.Chl
377



17070
P.mU.G.fU.A.fU.A.A.fU.A.G.G.A.G*A*G*G*fU*fU*A
378





17393
17071
G.A.mU.mC.A.mC.A.mU.mU.mU.G.A.A.Chl
379



17073
P.mU.fU.fC.A.A.A.fU.G.fU.G.A.fU.fC*fU*G*G*A*fU*G
380





17394
17072
A.G.A.mU.mC.A.mC.A.mU.mU.mU.G.A.A.Chl
381



17073
P.mU.fU.fC.A.A.A.fU.G.fU.G.A.fU.fC*fU*G*G*A*fU*G
382





17395
17074
A.A.mC.mC.mU.mC.mU.mC.mC.mU.A.mU.A.Chl
383



17075
P.mU.A.fU.A.G.G.A.G.A.G.G.fU.fU*A*G*A*G*A*A
384





17396
17076
G.mU.mU.G.A.mC.A.mU.mC.mC.A.G.A.Chl
385



17077
P.mU.fC.fU.G.G.A.fU.G.fU.fC.A.A.fC*A*fC*A*fU*A*A
386





17397
17078
mC.mC.mU.mU.mC.mC.mU.mU.mC.G.A.A.A.Chl
387



17079
P.mU.fU.fU.fC.G.A.A.G.G.A.A.G.G*G*A*A*fU*G*U
388





17398
17080
A.mC.mU.mC.mC.A.A.A.mC.A.mC.A.A.Chl
389



17082
P.mU.fU.G.fU.G.fU.fU.fU.G.G.A.G.fU*G*G*G*fU*fU*U
390





17399
17081
mC.A.mC.mU.mC.mC.A.A.A.mC.A.mC.A.A.Chl
391



17082
P.mU.fU.G.fU.G.fU.fU.fU.G.G.A.G.fU*G*G*G*fU*fU*U
392





17400
17083
mC.A.mC.mU.mC.mC.A.A.A.mC.A.mC.A.Chl
393



17084
P.mUGfUGfUfUfUGGAGfUG*G*G*fU*fU*fU*C
394





17401
17085
mC.mC.A.mC.mC.A.A.mC.mU.mU.A.mCA.Chl
395



17087
P.mUGfUAAGfUfUGGfUGG*A*fC*fU*G*fU*C
396





17402
17086
mU.mC.mC.A.mC.mC.A.A.mC.mU.mU.A.mCA.Chl
397



17087
P.mUGfUAAGfUfUGGfUGG*A*fC*fU*G*fU*C
398





17403
17088
A.A.mU.A.mC.mC.A.G.mU.mC.mU.mU.A.Chl
399



17089
P.mU.A.A.G.A.fC.fU.G.G.fU.A.fU.fU*fU*fC*A*fU*fC*U
400





17404
17090
G.A.mC.mC.A.G.mU.A.mU.A.A.G.A.Chl
401



17091
P.mU.fC.fU.fU.A.fU.A.fC.fU.G.G.fU.fC*A*A*A*fU*fC*C
402





17405
17092
G.mU.mC.mU.mU.mU.mU.A.A.mU.G.A.A.Chl
403



17093
P.mU.fU.fC.A.fU.fU.A.A.A.A.G.A.fC*fU*G*G*fU*A*U
404





17406
17094
A.A.mU.mU.mU.mC.A.mU.G.mU.mC.mU.A.Chl
405



17095
P.mU.A.G.A.fC.A.fU.G.A.A.A.fU.fU*A*fC*fU*G*G*U
406





17407
17096
A.mU.mC.A.mC.A.mU.mU.mU.G.A.mU.A.Chl
407



17098
P.mU.A.fU.fC.A.A.A.fU.G.fU.G.A.fU*fC*fU*G*G*A*U
408





17408
17097
G.A.mU.mC.A.mC.A.mU.mU.mU.G.A.mU.A.Chl
409



17098
P.mU.A.fU.fC.A.A.A.fU.G.fU.G.A.fU*fC*fU*G*G*A*U
410





17409
17099
mU.mC.mC.A.G.A.mU.mC.A.mC.A.mU.A.Chl
411



17100
P.mU.A.fU.G.fU.G.A.fU.fC.fU.G.G.A*fU*G*fU*fC*A*A
412





17410
17101
mU.A.mC.mU.G.A.mU.A.G.G.A.G.A.Chl
413



17102
P.mU.fC.fU.fC.fC.fU.A.fU.fC.A.G.fU.A*fU*fU*A*G*fC*C
414





17411
17103
G.mU.G.mC.A.A.mC.A.mC.mU.fU.G.A.Chl
415



17104
P.mU.fC.A.A.G.fU.G.fU.fU.G.mC.A.fC*A*fU*A*A*fU*C
416





17412
17105
A.mC.mC.A.G.mU.A.mU.A.A.G.mU.A.Chl
417



17106
P.mU.A.fC.fU.fU.A.fU.A.fC.fU.G.G.fU*fC*A*A*A*fU*C
418





17413
17107
G.A.A.G.mU.mC.mU.A.A.mU.G.A.A.Chl
419



17108
P.mU.fU.fC.A.fU.fU.A.G.A.fC.mU.fU.fC*fU*A*fC*A*G*U
420





17414
17109
A.A.G.A.A.G.A.A.A.G.mU.mU.A.Chl
421



17110
P.mU.A.A.fC.fU.fU.fU.fC.fU.fU.fC.fU.fU*A*G*A*A*G*C
422





17415
17111
mU.mC.A.mC.A.mU.mU.mU.G.AmU.mU.A.Chl
423



17113
P.mU.A.A.fU.fC.A.A.A.fU.G.fUG.A*fU*fC*fU*G*G*A
424





17416
17112
A.mU.mC.A.mC.A.mU.mU.mU.G.AmU.mU.A.Chl
425



17113
P.mU.A.A.fU.fC.A.A.A.fU.G.fUG.A*fU*fC*fU*G*G*A
426





17417
17114
A.mC.A.mU.mU.mU.G.A.mU.mUG.A.A.Chl
427



17116
P.mU.fU.fC.A.A.fU.fC.A.A.A.fUG.fU*G*A*fU*fC*fU*G
428





17418
17115
mC.A.mC.A.mU.mU.mU.G.A.mU.mUG.A.A.Chl
429



17116
P.mU.fU.fC.A.A.fU.fC.A.A.A.fUG.fU*G*A*fU*fC*fU*G
430





17419
17117
A.mU.mU.mU.G.A.mU.mU.G.AmC.A.A.Chl
431



17119
P.mU.fU.G.fU.fC.A.A.fU.fC.A.AA.fU*G*fU*G*A*fU*C
432





17420
17118
mC.A.mU.mU.mU.G.A.mU.mU.G.AmC.A.A.Chl
433



17119
P.mU.fU.G.fU.fC.A.A.fU.fC.A.AA.fU*G*fU*G*A*fU*C
434





17421
17120
mC.A.mU.mC.mU.G.mC.A.A.mU.A.A.A.Chl
435



17122
P.mU.fU.fU.A.fU.fU.G.fC.A.G.A.fU.G*A*G*A*G*A*C
436





17422
17121
mU.mC.A.mU.mC.mU.G.mC.A.A.mU.A.A.A.Chl
437



17122
P.mU.fU.fU.A.fU.fU.G.fC.A.G.A.fU.G*A*G*A*G*A*C
438
















TABLE 4







TGFB1 sd-rxRNA










Target Gene
hTGFB1




Duplex ID
Single Strand ID
sd-rxRNA sequence
SEQ ID NO





18454
17491
mC.A.mC.A.G.mC.A.mU.A.mU.A.mU.A.Chl
439



17492
P.mU.A.fU.A.fU.A.fU.G.fC.fU.G.fU.G*fU*G*fU*A*fC*U
440





18455
17493
mC.A.G.mC.A.mU.A.mU.A.mU.A.mU.A.Chl
441



17494
P.mU.A.fU.A.fU.A.fU.A.fU.G.fC.fU.G*fU*G*fU*G*fU*A
442





18456
17495
G.mU.A.mC.A.mU.mU.G.A.mC.mU.mU.A.Chl
443



17497
P.mU.A.A.G.fU.fC.A.A.fU.G.fU.A.fC*A*G*fC*fU*G*C
444





18457
17496
mU.G.mU.A.mC.A.mU.mU.G.A.mC.mU.mU.A.Chl
445



17497
P.mU.A.A.G.fU.fC.A.A.fU.G.fU.A.fC*A*G*fC*fU*G*C
446





18458
17498
A.A.mC.mU.A.mU.mU.G.mC.mU.mU.mC.A.Chl
447



17500
P.mU.G.A.A.G.fC.A.A.fU.A.G.fU.fU*G*G*fU*G*fU*C
448





18459
17499
mC.A.A.mC.mU.A.mU.mU.G.mC.mU.mU.mC.A.Chl
449



17500
P.mU.G.A.A.G.fC.A.A.fU.A.G.fU.fU*G*G*fU*G*fU*C
450





18460
17501
G.mC.A.mU.A.mU.A.mU.A.mU.G.mU.A.Chl
451



17502
P.mU.A.fC.A.fU.A.fU.A.fU.A.fU.G.fC*fU*G*fU*G*fU*G
452





18461
17503
mU.G.mU.A.mC.A.mU.mU.G.A.mC.mU.A.Chl
453



17505
P.mU.A.G.fU.fC.A.A.fU.G.fU.A.fC.A*G*fC*fU*G*fC*C
454





18462
17504
mC.mU.G.mU.A.mC.A.mU.mU.G.A.mC.mU.A.Chl
455



17505
P.mU.A.G.fU.fC.A.A.fU.G.fU.A.fC.A*G*fC*fU*G*fC*C
456





18463
17506
A.G.mC.A.mU.A.mU.A.mU.A.mU.G.A.Chl
457



17507
P.mU.fC.A.fU.A.fU.A.fU.A.fU.G.fC.fU*G*fU*G*fU*G*U
458





18464
17508
mC.A.G.mC.A.A.mC.A.A.mU.mU.mC.A.Chl
459



17509
P.mU.G.A.A.fU.fU.G.fU.fU.G.fC.fU.G*fU*A*fU*fU*fU*C
460





18465
17510
mC.A.mU.A.mU.A.mU.A.mU.G.mU.mU.A.Chl
461



17511
P.mU.A.A.fC.A.fU.A.fU.A.fU.A.fU.G*fC*fU*G*fU*G*U
462





18466
17512
mU.mU.G.mC.mU.mU.mC.A.G.mC.mU.mC.A.Chl
463



17514
P.mU.G.A.G.fC.fU.G.A.A.G.fC.A.A*fU*A*G*fU*fU*G
464





18467
17513
A.mU.mU.G.mC.mU.mU.mC.A.G.mC.mU.mC.A.Chl
465



17514
P.mU.G.A.G.fC.fU.G.A.A.G.fC.A.A*fU*A*G*fU*fU*G
466





18468
17515
A.mC.A.G.mC.A.mU.A.mU.A.mU.A.A.Chl
467



17516
P.mU.fU.A.fU.A.fU.A.fU.G.fC.fU.G.fU*G*fU*G*fU*A*C
468





18469
17517
A.mU.mU.G.mC.mU.mU.mC.A.G.mC.mU.A.Chl
469



17519
P.mU.A.G.fC.fU.G.A.A.G.fC.A.A.fU*A*G*fU*fU*G*G
470





18470
17518
mU.A.mU.mU.G.mC.mU.mU.mC.A.G.mC.mU.A.Chl
471



17519
P.mU.A.G.fC.fU.G.A.A.G.fC.A.A.fU*A*G*fU*fU*G*G
472





18471
17520
mC.A.G.A.G.mU.A.mC.A.mC.A.mC.A.Chl
473



17521
P.mU.G.fU.G.fU.G.fU.A.fC.fU.fC.fU.G*C*fU*fU*G*A*A
474





18472
17522
mU.mC.A.A.G.mC.A.G.A.G.mU.A.A.Chl
475



17523
P.mU.fU.A.fC.fU.fC.fU.G.fC.fU.fU.G.A*A*fC*fU*fU*G*U
476





18473
17524
A.G.mC.A.G.A.G.mU.A.mC.A.mC.A.Chl
477



17525
P.mU.G.fU.G.fU.A.fC.fU.fC.fU.G.fC.fU*fU*G*A*A*fC*U
478





18474
17526
G.A.mC.A.A.G.mU.mU.mC.A.A.G.A.Chl
479



17527
P.mU.fC.fU.fU.G.A.A.fC.fU.fU.G.fU.fC*A*fU*A*G*A*U
480





18475
17528
mC.mU.A.mU.G.A.mC.A.A.G.mU.mU.A.Chl
481



17529
P.mU.A.A.fC.fU.fU.G.fU.fC.A.fU.A.G*A*fU*fU*fU*fC*G
482





18476
17530
G.mC.A.G.A.G.mU.A.mC.A.mC.A.A.Chl
483



17531
P.mU.fU.G.fU.G.fU.A.fC.fU.fC.fU.G.fC*fU*fU*G*A*A*C
484





18477
17532
mU.G.A.mC.A.A.G.mU.mU.mCA.A.A.Chl
485



17533
P.mU.fU.fU.G.A.A.fC.fU.fU.GfU.fC.A*fU*A*G*A*fU*U
486





18478
17534
mU.A.mC.A.mC.A.mC.A.G.mCA.mU.A.Chl
487



17535
P.mU.A.fU.G.fC.fU.G.fU.G.fUG.fU.A*fC*fU*fC*fU*G*C
488





18479
17536
A.A.mC.G.A.A.A.mU.mC.mUA.mU.A.Chl
489



17537
P.mU.A.fU.A.G.A.fU.fU.fU.fCG.fU.fU*G*fU*G*G*G*U
490





18480
17538
mU.mU.G.A.mC.mU.mU.mC.mC.GmC.A.A.Chl
491



17539
P.mU.fU.G.fC.G.G.A.A.G.fUfC.A.A*fU*G*fU*A*fC*A
492





18481
17540
A.mC.A.A.mC.G.A.A.A.mUmC.mU.A.Chl
493



17541
P.mU.A.G.A.fU.fU.fU.fC.G.fUfU.G.fU*G*G*G*fU*fU*U
494





18482
17542
mU.mC.A.A.mC.A.mC.A.mU.mCA.G.A.Chl
495



17543
P.mU.fC.fU.G.A.fU.G.fU.G.fUfU.G.A*A*G*A*A*fC*A
496





18483
17544
A.mC.A.A.G.mU.mU.mC.A.AG.mC.A.Chl
497



17545
P.mU.G.fC.fU.fU.G.A.A.fC.fUfU.G.fU*fC*A*fU*A*G*A
498





18484
17546
A.mU.mC.mU.A.mU.G.A.mC.AA.G.A.Chl
499



17547
P.mU.fC.fU.fU.G.fU.fC.A.fU.AG.A.fU*fU*fU*fC*G*fU*U
500





Rat


Targeting


TGFB1


18715
18691
G.A.A.A.mU.A.mU.A.G.mC.A.A.A-chol
503



18692
P.mU.fU.fU.G.fC.fU.A.fU.A.fU.fU.fU.fC*fU*G*G*fU*A*G
504





18716
18693
G.A.A.mC.mU.mC.mU.A.mC.mC.A.G.A-chol
505



18694
P.mU.fC.fU.G.G.fU.A.G.A.G.fU.fU.fC*fU*A*fC*G*fU*G
506





18717
18695
G.mC.A.A.A.G.A.mU.A.A.mU.G.A-chol
507



18696
P.mU.fC.A.fU.fU.A.fU.fC.fU.fU.fU.G.fC*fU*G*fU*fC*A*C
508





18718
18697
A.A.mC.mU.mC.mU.A.mC.mC.A.G.A.A-chol
509



18698
P.mU.fU.fC.fU.G.G.fU.A.G.A.G.fU.fU*fC*fU*A*fC*G*U
510





18719
18699
A.mC.mU.mC.mU.A.mC.mC.A.G.A.A.A-chol
511



18700
P.mU.fU.fU.fC.fU.G.G.fU.A.G.A.G.fU*fU*fC*fU*A*fC*G
512





18720
18701
A.mC.A.G.mC.A.A.A.G.A.mU.A.A-chol
513



18702
P.mU.fU.A.fU.fC.fU.fU.fU.G.fC.fU.G.fU*fC*A*fC*A*A*G
514





18721
18703
mC.A.A.mU.mC.mU.A.mU.G.A.mC.A.A-chol
515



18704
P.mU.fU.G.fU.fC.A.fU.A.G.A.fU.fU.G*fC*G*fU*fU*G*U
516





18722
18705
A.G.A.mU.mU.mC.A.A.G.mU.mC.A.A-chol
517



18706
P.mU.fU.G.A.fC.fU.fU.G.A.A.fU.fC.fU*fC*fU*G*fC*A*G
518





18723
18707
mC.mU.G.mU.G.G.A.G.mC.A.A.mC.A-chol
519



18708
P.mU.G.fU.fU.G.fC.fU.fC.fC.A.fC.A.G*fU*fU*G*A*fC*U
520





18724
18709
mU.G.A.mC.A.G.mC.A.A.A.G.A.A-chol
521



18710
P.mU.fU.fC.fU.fU.fU.G.fC.fU.G.fU.fC.A*fC*A*A*G*A*G
522





18725
18711
A.mU.G.A.mC.A.A.A.A.mC.mC.A.A-chol
523



18712
P.mU.fU.G.G.fU.fU.fU.fU.G.fU.fC.A.fU*A*G*A*fU*fU*G
524





18726
18713
G.A.G.A.mU.mU.mC.A.A.G.mU.mC.A-chol
525



18714
P.mU.G.A.fC.fU.fU.G.A.A.fU.fC.fU.fC*fU*G*fC*A*G*G
526
















TABLE 5







Inhibition of gene expression with hTGFB1 ori sequences

















% Expression


Target Gene
Gene

SEQ ID
hTGFB1
0.025 nM HeLa


Duplex ID
Region
Ref Pos
NO
Sense Sequence
cells















15732
CDS
954
527
CGCGGGACUAUCCACCUGCAAGACA
57.3%





15733
CDS
956
528
CGGGACUAUCCACCUGCAAGACUAA
38.2%





15734
CDS
957
529
GGGACUAUCCACCUGCAAGACUAUA
49.1%





15735
CDS
961
530
CUAUCCACCUGCAAGACUAUCGACA
34.9%





15736
CDS
962
531
UAUCCACCUGCAAGACUAUCGACAA
39.4%





15737
CDS
964
532
UCCACCUGCAAGACUAUCGACAUGA
44.4%





15738
CDS
965
533
CCACCUGCAAGACUAUCGACAUGGA
53.3%





15739
CDS
966
534
CACCUGCAAGACUAUCGACAUGGAA
52.8%





15740
CDS
967
535
ACCUGCAAGACUAUCGACAUGGAGA
46.2%





15741
CDS
968
536
CCUGCAAGACUAUCGACAUGGAGCA
48.1%





15742
CDS
1209
537
AAUGGUGGAAACCCACAACGAAAUA
36.7%





15743
CDS
1210
538
AUGGUGGAAACCCACAACGAAAUCA
28.8%





15744
CDS
1211
539
UGGUGGAAACCCACAACGAAAUCUA
23.1%





15745
CDS
1212
540
GGUGGAAACCCACAACGAAAUCUAA
13.2%





15746
CDS
1213
541
GUGGAAACCCACAACGAAAUCUAUA
21.1%





15747
CDS
1214
542
UGGAAACCCACAACGAAAUCUAUGA
28.7%





15748
CDS
1215
543
GGAAACCCACAACGAAAUCUAUGAA
32.9%





15749
CDS
1216
544
GAAACCCACAACGAAAUCUAUGACA
41.5%





15750
CDS
1217
545
AAACCCACAACGAAAUCUAUGACAA
29.9%





15751
CDS
1218
546
AACCCACAACGAAAUCUAUGACAAA
16.4%





15752
CDS
1219
547
ACCCACAACGAAAUCUAUGACAAGA
23.3%





15753
CDS
1220
548
CCCACAACGAAAUCUAUGACAAGUA
37.5%





15754
CDS
1221
549
CCACAACGAAAUCUAUGACAAGUUA
19.1%





15755
CDS
1222
550
CACAACGAAAUCUAUGACAAGUUCA
14.4%





15756
CDS
1224
551
CAACGAAAUCUAUGACAAGUUCAAA
20.1%





15757
CDS
1225
552
AACGAAAUCUAUGACAAGUUCAAGA
18.3%





15758
CDS
1226
553
ACGAAAUCUAUGACAAGUUCAAGCA
23.2%





15759
CDS
1227
554
CGAAAUCUAUGACAAGUUCAAGCAA
29.0%





15760
CDS
1228
555
GAAAUCUAUGACAAGUUCAAGCAGA
15.6%





15761
CDS
1229
556
AAAUCUAUGACAAGUUCAAGCAGAA
32.3%





15762
CDS
1230
557
AAUCUAUGACAAGUUCAAGCAGAGA
36.1%





15763
CDS
1231
558
AUCUAUGACAAGUUCAAGCAGAGUA
30.6%





15764
CDS
1232
559
UCUAUGACAAGUUCAAGCAGAGUAA
24.9%





15765
CDS
1233
560
CUAUGACAAGUUCAAGCAGAGUACA
15.9%





15766
CDS
1234
561
UAUGACAAGUUCAAGCAGAGUACAA
31.2%





15767
CDS
1235
562
AUGACAAGUUCAAGCAGAGUACACA
17.2%





15768
CDS
1236
563
UGACAAGUUCAAGCAGAGUACACAA
23.5%





15769
CDS
1237
564
GACAAGUUCAAGCAGAGUACACACA
24.5%





15770
CDS
1238
565
ACAAGUUCAAGCAGAGUACACACAA
38.5%





15771
CDS
1240
566
AAGUUCAAGCAGAGUACACACAGCA
38.7%





15772
CDS
1241
567
AGUUCAAGCAGAGUACACACAGCAA
34.3%





15773
CDS
1242
568
GUUCAAGCAGAGUACACACAGCAUA
20.8%





15774
CDS
1243
569
UUCAAGCAGAGUACACACAGCAUAA
33.4%





15775
CDS
1244
570
UCAAGCAGAGUACACACAGCAUAUA
19.6%





15776
CDS
1245
571
CAAGCAGAGUACACACAGCAUAUAA
25.5%





15777
CDS
1246
572
AAGCAGAGUACACACAGCAUAUAUA
12.8%





15778
CDS
1247
573
AGCAGAGUACACACAGCAUAUAUAA
27.6%





15779
CDS
1248
574
GCAGAGUACACACAGCAUAUAUAUA
15.9%





15780
CDS
1249
575
CAGAGUACACACAGCAUAUAUAUGA
24.1%





15781
CDS
1250
576
AGAGUACACACAGCAUAUAUAUGUA
22.6%





15782
CDS
1251
577
GAGUACACACAGCAUAUAUAUGUUA
26.7%





15783
CDS
1252
578
AGUACACACAGCAUAUAUAUGUUCA
66.6%





15784
CDS
1254
579
UACACACAGCAUAUAUAUGUUCUUA
33.6%





15785
CDS
1262
580
GCAUAUAUAUGUUCUUCAACACAUA
40.4%





15786
CDS
1263
581
CAUAUAUAUGUUCUUCAACACAUCA
42.5%





15787
CDS
1264
582
AUAUAUAUGUUCUUCAACACAUCAA
27.2%





15788
CDS
1265
583
UAUAUAUGUUCUUCAACACAUCAGA
23.2%





15789
CDS
1266
584
AUAUAUGUUCUUCAACACAUCAGAA
35.5%





15790
CDS
1267
585
UAUAUGUUCUUCAACACAUCAGAGA
34.6%





15791
CDS
1268
586
AUAUGUUCUUCAACACAUCAGAGCA
29.7%





15792
CDS
1269
587
UAUGUUCUUCAACACAUCAGAGCUA
35.4%





15793
CDS
1270
588
AUGUUCUUCAACACAUCAGAGCUCA
35.2%





15794
CDS
1335
589
GCUGCGUCUGCUGAGGCUCAAGUUA
28.0%





15795
CDS
1336
590
CUGCGUCUGCUGAGGCUCAAGUUAA
32.1%





15796
CDS
1337
591
UGCGUCUGCUGAGGCUCAAGUUAAA
25.5%





15797
CDS
1338
592
GCGUCUGCUGAGGCUCAAGUUAAAA
59.7%





15798
CDS
1339
593
CGUCUGCUGAGGCUCAAGUUAAAAA
52.8%





15799
CDS
1340
594
GUCUGCUGAGGCUCAAGUUAAAAGA
47.9%





15800
CDS
1341
595
UCUGCUGAGGCUCAAGUUAAAAGUA
49.8%





15801
CDS
1342
596
CUGCUGAGGCUCAAGUUAAAAGUGA
50.7%





15802
CDS
1343
597
UGCUGAGGCUCAAGUUAAAAGUGGA
43.4%





15803
CDS
1344
598
GCUGAGGCUCAAGUUAAAAGUGGAA
52.6%





15804
CDS
1345
599
CUGAGGCUCAAGUUAAAAGUGGAGA
73.3%





15805
CDS
1346
600
UGAGGCUCAAGUUAAAAGUGGAGCA
58.0%





15806
CDS
1347
601
GAGGCUCAAGUUAAAAGUGGAGCAA
64.9%





15807
CDS
1348
602
AGGCUCAAGUUAAAAGUGGAGCAGA
68.1%





15808
CDS
1349
603
GGCUCAAGUUAAAAGUGGAGCAGCA
73.8%





15809
CDS
1350
604
GCUCAAGUUAAAAGUGGAGCAGCAA
78.8%





15810
CDS
1351
605
CUCAAGUUAAAAGUGGAGCAGCACA
76.6%





15811
CDS
1352
606
UCAAGUUAAAAGUGGAGCAGCACGA
72.9%





15812
CDS
1369
607
CAGCACGUGGAGCUGUACCAGAAAA
69.8%





15813
CDS
1370
608
AGCACGUGGAGCUGUACCAGAAAUA
69.7%





15814
CDS
1371
609
GCACGUGGAGCUGUACCAGAAAUAA
73.3%





15815
CDS
1372
610
CACGUGGAGCUGUACCAGAAAUACA
55.0%





15816
CDS
1373
611
ACGUGGAGCUGUACCAGAAAUACAA
63.8%





15817
CDS
1374
612
CGUGGAGCUGUACCAGAAAUACAGA
85.7%





15818
CDS
1375
613
GUGGAGCUGUACCAGAAAUACAGCA
85.0%





15819
CDS
1376
614
UGGAGCUGUACCAGAAAUACAGCAA
82.5%





15820
CDS
1377
615
GGAGCUGUACCAGAAAUACAGCAAA
43.1%





15821
CDS
1378
616
GAGCUGUACCAGAAAUACAGCAACA
58.5%





15822
CDS
1379
617
AGCUGUACCAGAAAUACAGCAACAA
48.1%





15823
CDS
1380
618
GCUGUACCAGAAAUACAGCAACAAA
48.1%





15824
CDS
1381
619
CUGUACCAGAAAUACAGCAACAAUA
35.0%





15825
CDS
1382
620
UGUACCAGAAAUACAGCAACAAUUA
36.4%





15826
CDS
1383
621
GUACCAGAAAUACAGCAACAAUUCA
24.6%





15827
CDS
1384
622
UACCAGAAAUACAGCAACAAUUCCA
33.4%





15828
CDS
1385
623
ACCAGAAAUACAGCAACAAUUCCUA
121.5%





15829
CDS
1386
624
CCAGAAAUACAGCAACAAUUCCUGA
62.1%





15830
CDS
1387
625
CAGAAAUACAGCAACAAUUCCUGGA
98.3%





15831
CDS
1390
626
AAAUACAGCAACAAUUCCUGGCGAA
36.6%





15832
CDS
1391
627
AAUACAGCAACAAUUCCUGGCGAUA
39.5%





15833
CDS
1392
628
AUACAGCAACAAUUCCUGGCGAUAA
40.0%





15834
CDS
1393
629
UACAGCAACAAUUCCUGGCGAUACA
89.4%





15835
CDS
1394
630
ACAGCAACAAUUCCUGGCGAUACCA
62.3%





15836
CDS
1396
631
AGCAACAAUUCCUGGCGAUACCUCA
41.0%





15837
CDS
1441
632
AGCGACUCGCCAGAGUGGUUAUCUA
31.2%





15838
CDS
1442
633
GCGACUCGCCAGAGUGGUUAUCUUA
46.2%





15839
CDS
1443
634
CGACUCGCCAGAGUGGUUAUCUUUA
46.8%





15840
CDS
1444
635
GACUCGCCAGAGUGGUUAUCUUUUA
50.6%





15841
CDS
1445
636
ACUCGCCAGAGUGGUUAUCUUUUGA
50.8%





15842
CDS
1446
637
CUCGCCAGAGUGGUUAUCUUUUGAA
71.8%





15843
CDS
1447
638
UCGCCAGAGUGGUUAUCUUUUGAUA
43.7%





15844
CDS
1448
639
CGCCAGAGUGGUUAUCUUUUGAUGA
42.1%





15845
CDS
1449
640
GCCAGAGUGGUUAUCUUUUGAUGUA
31.0%





15846
CDS
1450
641
CCAGAGUGGUUAUCUUUUGAUGUCA
46.0%





15847
CDS
1451
642
CAGAGUGGUUAUCUUUUGAUGUCAA
40.2%





15848
CDS
1452
643
AGAGUGGUUAUCUUUUGAUGUCACA
38.5%





15849
CDS
1453
644
GAGUGGUUAUCUUUUGAUGUCACCA
67.4%





15850
CDS
1454
645
AGUGGUUAUCUUUUGAUGUCACCGA
57.4%





15851
CDS
1455
646
GUGGUUAUCUUUUGAUGUCACCGGA
40.6%





15852
CDS
1456
647
UGGUUAUCUUUUGAUGUCACCGGAA
70.5%





15853
CDS
1457
648
GGUUAUCUUUUGAUGUCACCGGAGA
82.8%





15854
CDS
1458
649
GUUAUCUUUUGAUGUCACCGGAGUA
74.8%





15855
CDS
1459
650
UUAUCUUUUGAUGUCACCGGAGUUA
86.8%





15856
CDS
1460
651
UAUCUUUUGAUGUCACCGGAGUUGA
76.5%





15857
CDS
1551
652
CAGCAGGGAUAACACACUGCAAGUA
70.5%





15858
CDS
1552
653
AGCAGGGAUAACACACUGCAAGUGA
60.5%





15859
CDS
1553
654
GCAGGGAUAACACACUGCAAGUGGA
43.5%





15860
CDS
1554
655
CAGGGAUAACACACUGCAAGUGGAA
56.3%





15861
CDS
1555
656
AGGGAUAACACACUGCAAGUGGACA
63.9%





15862
CDS
1556
657
GGGAUAACACACUGCAAGUGGACAA
66.9%





15863
CDS
1558
658
GAUAACACACUGCAAGUGGACAUCA
62.2%





15864
CDS
1559
659
AUAACACACUGCAAGUGGACAUCAA
40.5%





15865
CDS
1560
660
UAACACACUGCAAGUGGACAUCAAA
57.9%





15866
CDS
1610
661
ACCUGGCCACCAUUCAUGGCAUGAA
69.4%





15867
CDS
1611
662
CCUGGCCACCAUUCAUGGCAUGAAA
49.1%





15868
CDS
1612
663
CUGGCCACCAUUCAUGGCAUGAACA
31.9%





15869
CDS
1705
664
CGAGCCCUGGACACCAACUAUUGCA
56.4%





15870
CDS
1706
665
GAGCCCUGGACACCAACUAUUGCUA
42.6%





15871
CDS
1707
666
AGCCCUGGACACCAACUAUUGCUUA
29.8%





15872
CDS
1708
667
GCCCUGGACACCAACUAUUGCUUCA
19.8%





15873
CDS
1709
668
CCCUGGACACCAACUAUUGCUUCAA
37.7%





15874
CDS
1710
669
CCUGGACACCAACUAUUGCUUCAGA
44.0%





15875
CDS
1711
670
CUGGACACCAACUAUUGCUUCAGCA
35.8%





15876
CDS
1712
671
UGGACACCAACUAUUGCUUCAGCUA
31.5%





15877
CDS
1713
672
GGACACCAACUAUUGCUUCAGCUCA
27.3%





15878
CDS
1714
673
GACACCAACUAUUGCUUCAGCUCCA
44.7%





15879
CDS
1715
674
ACACCAACUAUUGCUUCAGCUCCAA
44.9%





15880
CDS
1754
675
GCGUGCGGCAGCUGUACAUUGACUA
23.9%





15881
CDS
1755
676
CGUGCGGCAGCUGUACAUUGACUUA
18.3%





15882
CDS
1756
677
GUGCGGCAGCUGUACAUUGACUUCA
41.2%





15883
CDS
1757
678
UGCGGCAGCUGUACAUUGACUUCCA
26.4%





15884
CDS
1759
679
CGGCAGCUGUACAUUGACUUCCGCA
28.0%





15885
CDS
1760
680
GGCAGCUGUACAUUGACUUCCGCAA
22.8%





15886
CDS
1761
681
GCAGCUGUACAUUGACUUCCGCAAA
34.1%





15887
CDS
1762
682
CAGCUGUACAUUGACUUCCGCAAGA
36.3%





15888
CDS
1763
683
AGCUGUACAUUGACUUCCGCAAGGA
84.1%





15889
CDS
1849
684
UGCCCCUACAUUUGGAGCCUGGACA
93.0%





15890
CDS
1889
685
UCCUGGCCCUGUACAACCAGCAUAA
51.7%





15891
CDS
1890
686
CCUGGCCCUGUACAACCAGCAUAAA
71.9%





15892
CDS
1891
687
CUGGCCCUGUACAACCAGCAUAACA
36.1%





15893
CDS
1997
688
AGGUGGAGCAGCUGUCCAACAUGAA
60.9%





15894
3UTR
2115
689
CAUGGGGGCUGUAUUUAAGGACACA
57.2%





15895
3UTR
2155
690
CCUGGGGCCCCAUUAAAGAUGGAGA
86.0%





15896
3UTR
2156
691
CUGGGGCCCCAUUAAAGAUGGAGAA
73.3%





15897
3UTR
2157
692
UGGGGCCCCAUUAAAGAUGGAGAGA
68.8%





15898
3UTR
2158
693
GGGGCCCCAUUAAAGAUGGAGAGAA
65.8%





15899
3UTR
2159
694
GGGCCCCAUUAAAGAUGGAGAGAGA
42.7%





15900
3UTR
2160
695
GGCCCCAUUAAAGAUGGAGAGAGGA
34.4%





15901
3UTR
2161
696
GCCCCAUUAAAGAUGGAGAGAGGAA
56.0%





15902
3UTR
2162
697
CCCCAUUAAAGAUGGAGAGAGGACA
74.9%





15903
3UTR
2163
698
CCCAUUAAAGAUGGAGAGAGGACUA
79.6%





15904
3UTR
2180
699
GAGGACUGCGGAUCUCUGUGUCAUA
98.3%





15905
3UTR
2275
700
CUCCUGCCUGUCUGCACUAUUCCUA
100.2%





15906
3UTR
2276
701
UCCUGCCUGUCUGCACUAUUCCUUA
103.8%





15907
3UTR
2277
702
CCUGCCUGUCUGCACUAUUCCUUUA
110.4%





15908
3UTR
2278
703
CUGCCUGUCUGCACUAUUCCUUUGA
105.2%





15909
3UTR
2279
704
UGCCUGUCUGCACUAUUCCUUUGCA
118.8%





15910
3UTR
2325
705
CAGUGGGGAACACUACUGUAGUUAA
112.2%





15911
3UTR
2326
706
AGUGGGGAACACUACUGUAGUUAGA
107.7%





15912
3UTR
2327
707
GUGGGGAACACUACUGUAGUUAGAA
108.6%





15913
3UTR
2328
708
UGGGGAACACUACUGUAGUUAGAUA
N/A
















TABLE 6







Inhibition of gene expression with hTGFB2 ori sequences












Oligo
Gene

% Expression
25-mer Sense Strand (position



id
Region
Ref Pos
A549 0.1 nM
25 of SS, replaced with A)
SEQ ID NO















15451
5UTR/CDS
651
98%
UUUUAAAAAAUGCACUACUGUGUGC
709





15452
CDS
654
102.2%
UAAAAAAUGCACUACUGUGUGCUGA
710





15453
CDS
730
83.7%
GCAGCACACUCGAUAUGGACCAGUU
711





15454
CDS
732
80.3%
AGCACACUCGAUAUGGACCAGUUCA
712





15455
CDS
733
79.6%
GCACACUCGAUAUGGACCAGUUCAU
713





15456
CDS
734
89.1%
CACACUCGAUAUGGACCAGUUCAUG
714





15457
CDS
735
87.8%
ACACUCGAUAUGGACCAGUUCAUGC
715





15458
CDS
736
95.3%
CACUCGAUAUGGACCAGUUCAUGCG
716





15459
CDS
847
103.8%
UCCCCCCGGAGGUGAUUUCCAUCUA
717





15460
CDS
848
83.6%
CCCCCCGGAGGUGAUUUCCAUCUAC
718





15461
CDS
851
72.2%
CCCGGAGGUGAUUUCCAUCUACAAC
719





15462
CDS
853
85.8%
CGGAGGUGAUUUCCAUCUACAACAG
720





15463
CDS
855
67.1%
GAGGUGAUUUCCAUCUACAACAGCA
721





15464
CDS
952
68.9%
ACUACGCCAAGGAGGUUUACAAAAU
722





15465
CDS
963
81.1%
GAGGUUUACAAAAUAGACAUGCCGC
723





15466
CDS
1107
82.1%
UUCUACAGACCCUACUUCAGAAUUG
724





15467
CDS
1108
99.1%
UCUACAGACCCUACUUCAGAAUUGU
725





15468
CDS
1109
95.1%
CUACAGACCCUACUUCAGAAUUGUU
726





15469
CDS
1129
90.4%
UUGUUCGAUUUGACGUCUCAGCAAU
727





15470
CDS
1130
76.7%
UGUUCGAUUUGACGUCUCAGCAAUG
728





15471
CDS
1131
79.7%
GUUCGAUUUGACGUCUCAGCAAUGG
729





15472
CDS
1132
87.5%
UUCGAUUUGACGUCUCAGCAAUGGA
730





15473
CDS
1144
66.9%
UCUCAGCAAUGGAGAAGAAUGCUUC
731





15474
CDS
1145
76.6%
CUCAGCAAUGGAGAAGAAUGCUUCC
732





15475
CDS
1147
88.9%
CAGCAAUGGAGAAGAAUGCUUCCAA
733





15476
CDS
1162
84.5%
AUGCUUCCAAUUUGGUGAAAGCAGA
734





15477
CDS
1163
89.2%
UGCUUCCAAUUUGGUGAAAGCAGAG
735





15478
CDS
1165
86.6%
CUUCCAAUUUGGUGAAAGCAGAGUU
736





15479
CDS
1177
61.2%
UGAAAGCAGAGUUCAGAGUCUUUCG
737





15480
CDS
1185
92.6%
GAGUUCAGAGUCUUUCGUUUGCAGA
738





15481
CDS
1219
99.6%
CCAGAGUGCCUGAACAACGGAUUGA
739





15482
CDS
1224
94.0%
GUGCCUGAACAACGGAUUGAGCUAU
740





15483
CDS
1225
88.1%
UGCCUGAACAACGGAUUGAGCUAUA
741





15484
CDS
1228
59.3%
CUGAACAACGGAUUGAGCUAUAUCA
742





15485
CDS
1229
77.5%
UGAACAACGGAUUGAGCUAUAUCAG
743





15486
CDS
1230
61.5%
GAACAACGGAUUGAGCUAUAUCAGA
744





15487
CDS
1233
84.5%
CAACGGAUUGAGCUAUAUCAGAUUC
745





15488
CDS
1238
87.7%
GAUUGAGCUAUAUCAGAUUCUCAAG
746





15489
CDS
1239
78.7%
AUUGAGCUAUAUCAGAUUCUCAAGU
747





15490
CDS
1240
94.1%
UUGAGCUAUAUCAGAUUCUCAAGUC
748





15491
CDS
1247
92.6%
AUAUCAGAUUCUCAAGUCCAAAGAU
749





15492
CDS
1256
94.3%
UCUCAAGUCCAAAGAUUUAACAUCU
750





15493
CDS
1259
99.1%
CAAGUCCAAAGAUUUAACAUCUCCA
751





15494
CDS
1286
87.4%
CCAGCGCUACAUCGACAGCAAAGUU
752





15495
CDS
1288
84.5%
AGCGCUACAUCGACAGCAAAGUUGU
753





15496
CDS
1289
60.1%
GCGCUACAUCGACAGCAAAGUUGUG
754





15497
CDS
1292
78.8%
CUACAUCGACAGCAAAGUUGUGAAA
755





15498
CDS
1331
80.1%
CGAAUGGCUCUCCUUCGAUGUAACU
756





15499
CDS
1353
62.4%
ACUGAUGCUGUUCAUGAAUGGCUUC
757





15500
CDS
1361
74.3%
UGUUCAUGAAUGGCUUCACCAUAAA
758





15501
CDS
1362
75.1%
GUUCAUGAAUGGCUUCACCAUAAAG
759





15502
CDS
1363
87.2%
UUCAUGAAUGGCUUCACCAUAAAGA
760





15503
CDS
1364
70.4%
UCAUGAAUGGCUUCACCAUAAAGAC
761





15504
CDS
1365
100.7%
CAUGAAUGGCUUCACCAUAAAGACA
762





15505
CDS
1368
100.1%
GAAUGGCUUCACCAUAAAGACAGGA
763





15506
CDS
1398
92.0%
GGAUUUAAAAUAAGCUUACACUGUC
764





15507
CDS
1399
83.2%
GAUUUAAAAUAAGCUUACACUGUCC
765





15508
CDS
1415
85.6%
ACACUGUCCCUGCUGCACUUUUGUA
766





15509
CDS
1418
97.4%
CUGUCCCUGCUGCACUUUUGUACCA
767





15510
CDS
1420
59.1%
GUCCCUGCUGCACUUUUGUACCAUC
768





15511
CDS
1421
73.7%
UCCCUGCUGCACUUUUGUACCAUCU
769





15512
CDS
1422
79.5%
CCCUGCUGCACUUUUGUACCAUCUA
770





15513
CDS
1451
62.7%
UUACAUCAUCCCAAAUAAAAGUGAA
771





15514
CDS
1452
76.0%
UACAUCAUCCCAAAUAAAAGUGAAG
772





15515
CDS
1470
44.7%
AGUGAAGAACUAGAAGCAAGAUUUG
773





15516
CDS
1472
75.6%
UGAAGAACUAGAAGCAAGAUUUGCA
774





15517
CDS
1474
96.8%
AAGAACUAGAAGCAAGAUUUGCAGG
775





15518
CDS
1475
94.3%
AGAACUAGAAGCAAGAUUUGCAGGU
776





15519
CDS
1476
63.3%
GAACUAGAAGCAAGAUUUGCAGGUA
777





15520
CDS
1480
65.9%
UAGAAGCAAGAUUUGCAGGUAUUGA
778





15521
CDS
1481
59.6%
AGAAGCAAGAUUUGCAGGUAUUGAU
779





15522
CDS
1482
56.0%
GAAGCAAGAUUUGCAGGUAUUGAUG
780





15523
CDS
1483
69.2%
AAGCAAGAUUUGCAGGUAUUGAUGG
781





15524
CDS
1484
64.5%
AGCAAGAUUUGCAGGUAUUGAUGGC
782





15525
CDS
1485
92.0%
GCAAGAUUUGCAGGUAUUGAUGGCA
783





15526
CDS
1486
101.7%
CAAGAUUUGCAGGUAUUGAUGGCAC
784





15527
CDS
1496
103.3%
AGGUAUUGAUGGCACCUCCACAUAU
785





15528
CDS
1503
102.3%
GAUGGCACCUCCACAUAUACCAGUG
786





15529
CDS
1506
86.6%
GGCACCUCCACAUAUACCAGUGGUG
787





15530
CDS
1510
79.9%
CCUCCACAUAUACCAGUGGUGAUCA
788





15531
CDS
1511
44.9%
CUCCACAUAUACCAGUGGUGAUCAG
789





15532
CDS
1512
57.3%
UCCACAUAUACCAGUGGUGAUCAGA
790





15533
CDS
1517
64.9%
AUAUACCAGUGGUGAUCAGAAAACU
791





15534
CDS
1518
90.8%
UAUACCAGUGGUGAUCAGAAAACUA
792





15535
CDS
1520
47.1%
UACCAGUGGUGAUCAGAAAACUAUA
793





15536
CDS
1526
55.7%
UGGUGAUCAGAAAACUAUAAAGUCC
794





15537
CDS
1527
89.6%
GGUGAUCAGAAAACUAUAAAGUCCA
795





15538
CDS
1529
92.4%
UGAUCAGAAAACUAUAAAGUCCACU
796





15539
CDS
1531
87.2%
AUCAGAAAACUAUAAAGUCCACUAG
797





15540
CDS
1532
93.4%
UCAGAAAACUAUAAAGUCCACUAGG
798





15541
CDS
1575
78.4%
ACCCCACAUCUCCUGCUAAUGUUAU
799





15542
CDS
1576
84.6%
CCCCACAUCUCCUGCUAAUGUUAUU
800





15543
CDS
1579
95.9%
CACAUCUCCUGCUAAUGUUAUUGCC
801





15544
CDS
1591
89.6%
UAAUGUUAUUGCCCUCCUACAGACU
802





15545
CDS
1592
85.0%
AAUGUUAUUGCCCUCCUACAGACUU
803





15546
CDS
1598
51.2%
AUUGCCCUCCUACAGACUUGAGUCA
804





15547
CDS
1650
39.4%
GCUUUGGAUGCGGCCUAUUGCUUUA
805





15548
CDS
1652
82.3%
UUUGGAUGCGGCCUAUUGCUUUAGA
806





15549
CDS
1653
86.1%
UUGGAUGCGGCCUAUUGCUUUAGAA
807





15550
CDS
1655
80.0%
GGAUGCGGCCUAUUGCUUUAGAAAU
808





15551
CDS
1657
72.3%
AUGCGGCCUAUUGCUUUAGAAAUGU
809





15552
CDS
1658
72.2%
UGCGGCCUAUUGCUUUAGAAAUGUG
810





15553
CDS
1659
57.8%
GCGGCCUAUUGCUUUAGAAAUGUGC
811





15554
CDS
1660
83.4%
CGGCCUAUUGCUUUAGAAAUGUGCA
812





15555
CDS
1662
79.3%
GCCUAUUGCUUUAGAAAUGUGCAGG
813





15556
CDS
1663
86.3%
CCUAUUGCUUUAGAAAUGUGCAGGA
814





15557
CDS
1664
84.8%
CUAUUGCUUUAGAAAUGUGCAGGAU
815





15558
CDS
1665
71.1%
UAUUGCUUUAGAAAUGUGCAGGAUA
816





15559
CDS
1666
61.8%
AUUGCUUUAGAAAUGUGCAGGAUAA
817





15560
CDS
1667
84.9%
UUGCUUUAGAAAUGUGCAGGAUAAU
818





15561
CDS
1668
82.8%
UGCUUUAGAAAUGUGCAGGAUAAUU
819





15562
CDS
1670
69.8%
CUUUAGAAAUGUGCAGGAUAAUUGC
820





15563
CDS
1671
90.2%
UUUAGAAAUGUGCAGGAUAAUUGCU
821





15564
CDS
1672
68.6%
UUAGAAAUGUGCAGGAUAAUUGCUG
822





15565
CDS
1678
74.2%
AUGUGCAGGAUAAUUGCUGCCUACG
823





15566
CDS
1761
58.6%
GGGUACAAUGCCAACUUCUGUGCUG
824





15567
CDS
1767
86.3%
AAUGCCAACUUCUGUGCUGGAGCAU
825





15568
CDS
1782
83.7%
GCUGGAGCAUGCCCGUAUUUAUGGA
826





15569
CDS
1783
86.9%
CUGGAGCAUGCCCGUAUUUAUGGAG
827





15570
CDS
1786
90.5%
GAGCAUGCCCGUAUUUAUGGAGUUC
828





15571
CDS
1787
91.1%
AGCAUGCCCGUAUUUAUGGAGUUCA
829





15572
CDS
1788
68.0%
GCAUGCCCGUAUUUAUGGAGUUCAG
830





15573
CDS
1789
75.7%
CAUGCCCGUAUUUAUGGAGUUCAGA
831





15574
CDS
1796
88.9%
GUAUUUAUGGAGUUCAGACACUCAG
832





15575
CDS
1800
52.5%
UUAUGGAGUUCAGACACUCAGCACA
833





15576
CDS
1907
90.8%
AACCAUUCUCUACUACAUUGGCAAA
834





15577
CDS
1924
70.2%
UUGGCAAAACACCCAAGAUUGAACA
835





15578
CDS
1925
77.5%
UGGCAAAACACCCAAGAUUGAACAG
836





15579
CDS/3UTR
1973
91.1%
UUGCAAAUGCAGCUAAAAUUCUUGG
837





15580
3UTR
2020
70.1%
CAAUGAUGAUGAUAAUGAUGAUGAC
838





15581
3UTR
2022
43.3%
AUGAUGAUGAUAAUGAUGAUGACGA
839





15582
3UTR
2023
60.3%
UGAUGAUGAUAAUGAUGAUGACGAC
840





15583
3UTR
2025
75.4%
AUGAUGAUAAUGAUGAUGACGACGA
841





15584
3UTR
2026
40.8%
UGAUGAUAAUGAUGAUGACGACGAC
842





15585
3UTR
2028
51.8%
AUGAUAAUGAUGAUGACGACGACAA
843





15586
3UTR
2029
59.1%
UGAUAAUGAUGAUGACGACGACAAC
844





15587
3UTR
2031
51.3%
AUAAUGAUGAUGACGACGACAACGA
845





15588
3UTR
2032
32.7%
UAAUGAUGAUGACGACGACAACGAU
846





15589
3UTR
2034
33.8%
AUGAUGAUGACGACGACAACGAUGA
847





15590
3UTR
2035
57.0%
UGAUGAUGACGACGACAACGAUGAU
848





15591
3UTR
2039
40.5%
GAUGACGACGACAACGAUGAUGCUU
849





15592
3UTR
2045
56.8%
GACGACAACGAUGAUGCUUGUAACA
850





15593
3UTR
2046
28.5%
ACGACAACGAUGAUGCUUGUAACAA
851





15594
3UTR
2065
44.7%
UAACAAGAAAACAUAAGAGAGCCUU
852





15595
3UTR
2066
58.3%
AACAAGAAAACAUAAGAGAGCCUUG
853





15596
3UTR
2067
62.9%
ACAAGAAAACAUAAGAGAGCCUUGG
854





15597
3UTR
2072
38.1%
AAAACAUAAGAGAGCCUUGGUUCAU
855





15598
3UTR
2073
44.6%
AAACAUAAGAGAGCCUUGGUUCAUC
856





15599
3UTR
2079
53.6%
AAGAGAGCCUUGGUUCAUCAGUGUU
857





15600
3UTR
2081
33.2%
GAGAGCCUUGGUUCAUCAGUGUUAA
858





15601
3UTR
2083
28.2%
GAGCCUUGGUUCAUCAGUGUUAAAA
859





15602
3UTR
2110
46.5%
UUUUUGAAAAGGCGGUACUAGUUCA
860





15603
3UTR
2116
56.1%
AAAAGGCGGUACUAGUUCAGACACU
861





15604
3UTR
2117
60.9%
AAAGGCGGUACUAGUUCAGACACUU
862





15605
3UTR
2136
76.8%
ACACUUUGGAAGUUUGUGUUCUGUU
863





15606
3UTR
2137
29.5%
CACUUUGGAAGUUUGUGUUCUGUUU
864





15607
3UTR
2140
62.6%
UUUGGAAGUUUGUGUUCUGUUUGUU
865





15608
3UTR
2145
50.7%
AAGUUUGUGUUCUGUUUGUUAAAAC
866





15609
3UTR
2147
62.9%
GUUUGUGUUCUGUUUGUUAAAACUG
867





15610
3UTR
2148
59.7%
UUUGUGUUCUGUUUGUUAAAACUGG
868





15611
3UTR
2149
50.3%
UUGUGUUCUGUUUGUUAAAACUGGC
869





15612
3UTR
2150
49.8%
UGUGUUCUGUUUGUUAAAACUGGCA
870





15613
3UTR
2152
55.2%
UGUUCUGUUUGUUAAAACUGGCAUC
871





15614
3UTR
2153
82.2%
GUUCUGUUUGUUAAAACUGGCAUCU
872





15615
3UTR
2154
70.0%
UUCUGUUUGUUAAAACUGGCAUCUG
873





15616
3UTR
2155
45.5%
UCUGUUUGUUAAAACUGGCAUCUGA
874





15617
3UTR
2156
54.9%
CUGUUUGUUAAAACUGGCAUCUGAC
875





15618
3UTR
2189
40.4%
AGUUGAAGGCCUUAUUCUACAUUUC
876





15619
3UTR
2190
34.1%
GUUGAAGGCCUUAUUCUACAUUUCA
877





15620
3UTR
2207
91.3%
ACAUUUCACCUACUUUGUAAGUGAG
878





15621
3UTR
2265
60.9%
AAUAAACACUGGAAGAAUUUAUUAG
879





15622
3UTR
2267
36.4%
UAAACACUGGAAGAAUUUAUUAGUG
880





15623
3UTR
2295
40.6%
AUUAUGUGAACAACGACAACAACAA
881





15624
3UTR
2296
33.6%
UUAUGUGAACAACGACAACAACAAC
882





15625
3UTR
2297
32.7%
UAUGUGAACAACGACAACAACAACA
883





15626
3UTR
2298
40.8%
AUGUGAACAACGACAACAACAACAA
884





15627
3UTR
2299
38.5%
UGUGAACAACGACAACAACAACAAC
885





15628
3UTR
2301
84.2%
UGAACAACGACAACAACAACAACAA
886





15629
3UTR
2302
43.2%
GAACAACGACAACAACAACAACAAC
887





15630
3UTR
2304
57.8%
ACAACGACAACAACAACAACAACAA
888





15631
3UTR
2305
44.3%
CAACGACAACAACAACAACAACAAC
889





15632
3UTR
2308
38.7%
CGACAACAACAACAACAACAACAAA
890





15633
3UTR
2309
37.4%
GACAACAACAACAACAACAACAAAC
891





15634
3UTR
2314
73.5%
CAACAACAACAACAACAAACAGGAA
892





15635
3UTR
2315
54.2%
AACAACAACAACAACAAACAGGAAA
893





15636
3UTR
2389
30.7%
CUUGAUUUUUCUGUAUUGCUAUGCA
894





15637
3UTR
2435
16.0%
ACUCUUAGAGUUAACAGUGAGUUAU
895





15638
3UTR
2445
18.4%
UUAACAGUGAGUUAUUUAUUGUGUG
896





15639
3UTR
2471
36.3%
UACUAUAUAAUGAACGUUUCAUUGC
897





15640
3UTR
2472
73.3%
ACUAUAUAAUGAACGUUUCAUUGCC
898





15641
3UTR
2484
63.4%
ACGUUUCAUUGCCCUUGGAAAAUAA
899





15642
3UTR
2488
65.4%
UUCAUUGCCCUUGGAAAAUAAAACA
900





15643
3UTR
2493
39.3%
UGCCCUUGGAAAAUAAAACAGGUGU
901





15644
3UTR
2519
66.7%
UAAAGUGGAGACCAAAUACUUUGCC
902





15645
3UTR
2520
40.1%
AAAGUGGAGACCAAAUACUUUGCCA
903





15646
3UTR
2526
40.9%
GAGACCAAAUACUUUGCCAGAAACU
904





15647
3UTR
2527
41.5%
AGACCAAAUACUUUGCCAGAAACUC
905





15648
3UTR
2528
47.6%
GACCAAAUACUUUGCCAGAAACUCA
906





15649
3UTR
2529
47.6%
ACCAAAUACUUUGCCAGAAACUCAU
907





15650
3UTR
2530
31.9%
CCAAAUACUUUGCCAGAAACUCAUG
908





15651
3UTR
2531
29.0%
CAAAUACUUUGCCAGAAACUCAUGG
909





15652
3UTR
2537
78.0%
CUUUGCCAGAAACUCAUGGAUGGCU
910





15653
3UTR
2538
52.4%
UUUGCCAGAAACUCAUGGAUGGCUU
911





15654
3UTR
2540
59.7%
UGCCAGAAACUCAUGGAUGGCUUAA
912





15655
3UTR
2541
45.1%
GCCAGAAACUCAUGGAUGGCUUAAG
913





15656
3UTR
2542
42.1%
CCAGAAACUCAUGGAUGGCUUAAGG
914





15657
3UTR
2543
76.9%
CAGAAACUCAUGGAUGGCUUAAGGA
915





15658
3UTR
2544
29.0%
AGAAACUCAUGGAUGGCUUAAGGAA
916





15659
3UTR
2547
45.2%
AACUCAUGGAUGGCUUAAGGAACUU
917





15660
3UTR
2560
38.4%
CUUAAGGAACUUGAACUCAAACGAG
918





15661
3UTR
2561
33.3%
UUAAGGAACUUGAACUCAAACGAGC
919





15662
3UTR
2562
31.9%
UAAGGAACUUGAACUCAAACGAGCC
920





15663
3UTR
2563
44.5%
AAGGAACUUGAACUCAAACGAGCCA
921





15664
3UTR
2564
90.1%
AGGAACUUGAACUCAAACGAGCCAG
922





15665
3UTR
2566
64.4%
GAACUUGAACUCAAACGAGCCAGAA
923





15666
3UTR
2623
32.5%
AAGUGAGUUAUUAUAUGACCGAGAA
924





15667
3UTR
2681
34.0%
UGUUAUGUAUCAGCUGCCUAAGGAA
925





15668
3UTR
2791
59.0%
UUUAAUUGUAAAUGGUUCUUUGUCA
926





15669
3UTR
2792
56.3%
UUAAUUGUAAAUGGUUCUUUGUCAG
927





15670
3UTR
2793
46.8%
UAAUUGUAAAUGGUUCUUUGUCAGU
928





15671
3UTR
2795
53.2%
AUUGUAAAUGGUUCUUUGUCAGUUU
929





15672
3UTR
2798
33.1%
GUAAAUGGUUCUUUGUCAGUUUAGU
930





15673
3UTR
2809
32.8%
UUUGUCAGUUUAGUAAACCAGUGAA
931





15674
3UTR
2813
40.9%
UCAGUUUAGUAAACCAGUGAAAUGU
932





15675
3UTR
2816
38.1%
GUUUAGUAAACCAGUGAAAUGUUGA
933





15676
3UTR
2840
59.4%
AAAUGUUUUGACAUGUACUGGUCAA
934





15677
3UTR
2957
77.9%
UGGAUAUAGAAGCCAGCAUAAUUGA
935





15678
3UTR
2958
74.1%
GGAUAUAGAAGCCAGCAUAAUUGAA
936





15679
3UTR
2959
52.4%
GAUAUAGAAGCCAGCAUAAUUGAAA
937





15680
3UTR
2963
49.9%
UAGAAGCCAGCAUAAUUGAAAACAC
938





15681
3UTR
2964
45.3%
AGAAGCCAGCAUAAUUGAAAACACA
939





15682
3UTR
2966
45.5%
AAGCCAGCAUAAUUGAAAACACAUC
940





15683
3UTR
3137
60.5%
ACAAAUGUAUGUUUCUUUUAGCUGG
941





15684
3UTR
3138
63.6%
CAAAUGUAUGUUUCUUUUAGCUGGC
942





15685
3UTR
3142
58.4%
UGUAUGUUUCUUUUAGCUGGCCAGU
943





15686
3UTR
3144
56.3%
UAUGUUUCUUUUAGCUGGCCAGUAC
944





15687
3UTR
3145
52.1%
AUGUUUCUUUUAGCUGGCCAGUACU
945





15688
3UTR
3147
74.6%
GUUUCUUUUAGCUGGCCAGUACUUU
946





15689
3UTR
3150
70.4%
UCUUUUAGCUGGCCAGUACUUUUGA
947





15690
3UTR
3154
61.7%
UUAGCUGGCCAGUACUUUUGAGUAA
948





15691
3UTR
3156
52.3%
AGCUGGCCAGUACUUUUGAGUAAAG
949





15692
3UTR
3157
72.2%
GCUGGCCAGUACUUUUGAGUAAAGC
950





15693
3UTR
3158
62.4%
CUGGCCAGUACUUUUGAGUAAAGCC
951





15694
3UTR
3180
49.0%
GCCCCUAUAGUUUGACUUGCACUAC
952





15695
3UTR
3182
43.9%
CCCUAUAGUUUGACUUGCACUACAA
953





15696
3UTR
3183
35.2%
CCUAUAGUUUGACUUGCACUACAAA
954





15697
3UTR
3184
38.1%
CUAUAGUUUGACUUGCACUACAAAU
955





15698
3UTR
3185
73.3%
UAUAGUUUGACUUGCACUACAAAUG
956





15699
3UTR
3256
86.3%
UUCAUUAUUAUGACAUAAGCUACCU
957





15700
3UTR
3258
61.6%
CAUUAUUAUGACAUAAGCUACCUGG
958





15701
3UTR
3342
66.0%
UUCAUCUUCCAAGCAUCAUUACUAA
959





15702
3UTR
3346
67.3%
UCUUCCAAGCAUCAUUACUAACCAA
960





15703
3UTR
3358
63.6%
CAUUACUAACCAAGUCAGACGUUAA
961





15704
3UTR
3396
71.8%
UAGGAAAAGGAGGAAUGUUAUAGAU
962





15705
3UTR
3550
69.1%
UUGUUAUUACAAAGAGGACACUUCA
963





15706
3UTR
3657
72.3%
GGGGAAAAAAGUCCAGGUCAGCAUA
964





15707
3UTR
3671
79.7%
AGGUCAGCAUAAGUCAUUUUGUGUA
965





15708
3UTR
3779
57.5%
UUUCUUUCCUCUGAGUGAGAGUUAU
966





15709
3UTR
3783
62.6%
UUUCCUCUGAGUGAGAGUUAUCUAU
967





15710
3UTR
3932
61.3%
UAAAAAUUAAUAGGCAAAGCAAUGG
968





15711
3UTR
3934
44.3%
AAAAUUAAUAGGCAAAGCAAUGGAA
969





15712
3UTR
4034
68.7%
UUUUUUGGAAUUUCCUGACCAUUAA
970





15713
3UTR
4058
50.6%
AUUAAAGAAUUGGAUUUGCAAGUUU
971





15714
3UTR
4120
69.8%
UAAACAGCCCUUGUGUUGGAUGUAA
972





15715
3UTR
4147
39.5%
CAAUCCCAGAUUUGAGUGUGUGUUG
973





15716
3UTR
4148
62.2%
AAUCCCAGAUUUGAGUGUGUGUUGA
974





15717
3UTR
4152
34.2%
CCAGAUUUGAGUGUGUGUUGAUUAU
975





15718
3UTR
4273
38.0%
GUCUUUCCUCAUGAAUGCACUGAUA
976





15719
3UTR
4460
48.5%
UAUUUUUGUGUUAAUCAGCAGUACA
977





15720
3UTR
4482
37.1%
ACAAUUUGAUCGUUGGCAUGGUUAA
978





15721
3UTR
4580
60.1%
GUUUUUGUGGUGCUCUAGUGGUAAA
979





15722
3UTR
4583
50.6%
UUUGUGGUGCUCUAGUGGUAAAUAA
980





15723
3UTR
4584
42.1%
UUGUGGUGCUCUAGUGGUAAAUAAA
981





15724
3UTR
4642
91.3%
UCAGUACCAUCAUCGAGUCUAGAAA
982





15725
3UTR
4737
90.4%
UUCUCCCUUAAGGACAGUCACUUCA
983





15726
3UTR
4751
94.6%
CAGUCACUUCAGAAGUCAUGCUUUA
984





15727
3UTR
4753
87.2%
GUCACUUCAGAAGUCAUGCUUUAAA
985





15728
3UTR
4858
70.2%
GUAAUUGUUUGAGAUUUAGUUUCCA
986





15729
3UTR
4963
81.2%
CGCCAGGGCCAAAAGAACUGGUCUA
987





15730
3UTR
5177
81.4%
CCAGACUCCUCAAACGAGUUGCCAA
988
















TABLE 7







hTGFB2 sd-rxRNA










Target Gene
hTGFB2

SEQ ID


Duplex ID
Single Strand ID
sd-rxRNA sequences
NO













18570
17560
mU.A.mU.mU.mU.A.mU.mU.G.mU.G.mU.A.Chl
989



17562
P.mU.A.fC.A.fC.A.A.fU.A.A.A.fU.A*A*fC*fU*fC*A*C
990





18571
17561
mU.mU.A.mU.mU.mU.A.mU.mU.G.mU.G.mU.A.Chl
991



17562
P.mU.A.fC.A.fC.A.A.fU.A.A.A.fU.A*A*fC*fU*fC*A*C
992





18572
17563
A.mU.mC.A.G.mU.G.mU.mU.A.A.A.A.Chl
993



17565
P.mU.fU.fU.fU.A.A.fC.A.fC.fU.G.A.fU*G*A*A*fC*fC*A
994





18573
17564
mC.A.mU.mC.A.G.mU.G.mU.mU.A.A.A.A.Chl
995



17565
P.mU.fU.fU.fU.A.A.fC.A.fC.fU.G.A.fU*G*A*A*fC*fC*A
996





18574
17566
A.mU.G.G.mC.mU.mU.A.A.G.G.A.A.Chl
997



17568
P.mU.fU.fC.fC.fU.fU.A.A.G.fC.fC.A.fU*fC*fC*A*fU*G*A
998





18575
17567
G.A.mU.G.G.mC.mU.mU.A.A.G.G.A.A.Chl
999



17568
P.mU.fU.fC.fC.fU.fU.A.A.G.fC.fC.A.fU*fC*fC*A*fU*G*A
1000





18576
17569
mU.mU.G.mU.G.mU.mU.mC.mU.G.mU.mU.A.Chl
1001



17571
P.mU.A.A.fC.A.G.A.A.fC.A.fC.A.A*A*fC*fU*fU*fC*C
1002





18577
17570
mU.mU.mU.G.mU.G.mU.mU.mC.mU.G.mU.mU.A.Chl
1003



17571
P.mU.A.A.fC.A.G.A.A.fC.A.fC.A.A*A*fC*fU*fU*fC*C
1004





18578
17572
A.A.A.mU.A.mC.mU.mU.mU.G.mC.mC.A.Chl
1005



17574
P.mU.G.G.fC.A.A.A.G.fU.A.fU.fU.fU*G*G*fU*fC*fU*C
1006





18579
17573
mC.A.A.A.mU.A.mC.mU.mU.mU.G.mC.mC.A.Chl
1007



17574
P.mU.G.G.fC.A.A.A.G.fU.A.fU.fU.fU*G*G*fU*fC*fU*C
1008





18580
17575
mC.mU.mU.G.mC.A.mC.mU.A.mC.A.A.A.Chl
1009



17577
P.mU.fU.fU.G.fU.A.G.fU.G.fC.A.A.G*fU*fC*A*A*A*C
1010





18581
17576
A.mC.mU.mU.G.mC.A.mC.mU.A.mC.A.A.A.Chl
1011



17577
P.mU.fU.fU.G.fU.A.G.fU.G.fC.A.A.G*fU*fC*A*A*A*C
1012





18582
17578
G.A.A.mU.mU.mU.A.mU.mU.A.G.mU.A.Chl
1013



17580
P.mU.A.fC.fU.A.A.fU.A.A.A.fU.fU.fC*fU*fU*fC*fC*A*G
1014





18583
17579
A.G.A.A.mU.mU.mU.A.mU.mU.A.G.mU.A.Chl
1015



17580
P.mU.A.fC.fU.A.A.fU.A.A.A.fU.fU.fC*fU*fU*fC*fC*A*G
1016





18584
17581
mU.mU.G.mC.A.mC.mU.A.mC.A.A.A.A.Chl
1017



17583
P.mU.fU.fU.fU.G.fU.A.G.fU.G.fC.A.A*G*fU*fC*A*A*A
1018





18585
17582
mC.mU.mU.G.mC.A.mC.mU.A.mC.A.A.A.A.Chl
1019



17583
P.mU.fU.fU.fU.G.fU.A.G.fU.G.fC.A.A*G*fU*fC*A*A*A
1020





18586
17584
A.mU.A.A.A.A.mC.A.G.G.mU.G.A.Chl
1021



17586
P.mU.fC.A.fC.fC.fU.G.fU.fU.fU.fU.A.fU*fU*fU*fU*fC*fC*A
1022





18587
17585
A.A.mU.A.A.A.A.mC.A.G.G.mU.G.A.Chl
1023



17586
P.mU.fC.A.fC.fC.fU.G.fU.fU.fU.fU.A.fU*fU*fU*fU*fC*fC*A
1024





18588
17587
G.A.mC.A.A.mC.A.A.mC.A.A.mC.A.Chl
1025



17588
P.mU.G.fU.fU.G.fU.fU.G.fU.fU.G.fU.fC*G*fU*fU*G*fU*U
1026





18589
17589
A.mU.G.mC.mU.mU.G.mU.A.A.mC.A.A.Chl
1027



17590
P.mU.fU.G.fU.fU.A.fC.A.A.G.fC.A.fU*fC*A*fU*fC*G*U
1028





18590
17591
mC.A.G.A.A.A.mC.mU.mC.A.mU.G.A.Chl
1029



17592
P.mU.fC.A.fU.G.A.G.fU.fU.fU.fC.fU.G*G*fC*A*A*A*G
1030





18591
17593
G.mU.A.mU.mU.G.mC.mU.A.mU.G.mC.A.Chl
1031



17594
P.mU.G.fC.A.fU.A.G.fC.A.A.fU.A.fC*A*G*A*A*A*A
1032





18592
17595
mC.mC.A.G.A.A.A.mC.mU.mC.A.mU.A.Chl
1033



17596
P.mU.A.fU.G.A.G.fU.fU.fU.fC.fU.G.G*fC*A*A*A*G*U
1034





18593
17597
A.mC.mU.mC.A.A.A.mC.G.A.G.mC.A.Chl
1035



17598
P.mU.G.fC.fU.fC.G.fU.fU.fU.G.A.G.fU*fU*fC*A*A*G*U
1036





18594
17599
A.mU.A.mU.G.A.mC.mC.G.A.G.A.A.Chl
1037



17600
P.mU.fU.fC.fU.fC.G.G.fU.fC.A.fU.A.fU*A*A*fU*A*A*C
1038





18595
17601
mC.G.A.mC.G.A.mC.A.A.mC.G.A.A.Chl
1039



17602
P.mU.fU.fC.G.fU.fU.G.fU.fC.G.fU.fC.G*fU*fC*A*fU*fC*A
1040





18596
17603
G.mU.A.A.A.mC.mC.A.G.mU.G.A.A.Chl
1041



17604
P.mU.fU.fC.A.fC.fU.G.G.fU.fU.fU.A.fC*fU*A*A*A*fC*U
1042





18597
17605
mU.mU.G.mU.mC.A.G.mU.mU.mU.A.G.A.Chl
1043



17606
P.mU.fC.fU.A.A.A.fC.fU.G.A.fC.A.A*A*G*A*A*fC*C
1044





18598
17607
mU.mC.A.mU.mC.A.G.mU.G.mU.mU.A.A.Chl
1045



17608
P.mU.fU.A.A.fC.A.fC.fU.G.A.fU.G.A*A*fC*fC*A*A*G
1046





18599
17609
A.A.mC.mU.mC.A.A.A.mC.G.A.G.A.Chl
1047



17610
P.mU.fC.fU.fC.G.fU.fU.fU.G.A.G.fU.fU*fC*A*A*G*fU*U
1048





18600
17611
mC.G.A.mC.A.A.mC.A.A.mC.A.A.A.Chl
1049



17612
P.mU.fU.fU.G.fU.fU.G.fU.fU.G.fU.fC.G*fU*fU*G*fU*fU*C
1050





18601
17613
A.mC.G.A.mC.A.A.mC.G.A.mU.G.A.Chl
1051



17614
P.mU.fC.A.fU.fC.G.fU.fU.G.fU.fC.G.fU*fC*G*fU*fC*A*U
1052





18602
17615
G.mC.mU.G.mC.mC.mU.A.A.G.G.A.A.Chl
1053



17616
P.mU.fU.fC.fC.fU.fU.A.G.G.fC.A.G.fC*fU*G*A*fU*A*C
1054





18603
17617
A.mU.mU.mC.mU.A.mC.A.mU.mU.mU.mC.A.Chl
1055



17618
P.mU.G.A.A.A.fU.G.fU.A.G.A.A.fU*A*A*G*G*fC*C
1056





18604
17619
G.mU.G.mU.G.mU.mU.G.A.mU.mU.A.A.Chl
1057



17620
P.mU.fU.A.A.fU.fC.A.A.fC.A.fC.A.fC*A*fC*fU*fC*A*A
1058





Rat TGFB2


sd-rxRNA


18678
18604
mC.G.G.mU.G.A.mC.A.A.mU.G.A.A-chol
1061



18605
mU.fU.fC.A.fU.fU.G.fU.fC.A.fC.fC.G*fU*G*A*fU*fU*U
1062





18679
18606
mU.mU.G.mU.mC.mU.mC.G.G.mU.A.mU.A-chol
1063



18607
mU.A.fU.A.fC.fC.G.A.G.A.fC.A.A*A*G*G*G*A*A
1064





18680
18608
G.A.G.mU.mU.G.mU.A.mU.G.mU.A.A-chol
1065



18609
mU.fU.A.fC.A.fU.A.fC.A.A.fC.fU.fC*fC*A*fC*fU*G*A
1066





18681
18610
A.mU.mU.mU.G.mU.mU.A.G.mU.G.mU.A-chol
1067



18611
mU.A.fC.A.fC.fU.A.A.fC.A.A.A.fU*fU*fC*fU*fU*fC*C
1068





18682
18612
G.mC.A.A.G.mU.mC.mU.G.A.G.A.A-chol
1069



18613
mU.fU.fC.fU.fC.A.G.A.fC.fU.fU.G.fC*fU*fC*A*G*fU*U
1070





18683
18614
A.A.A.mU.mC.A.mC.G.G.mU.G.A.A-chol
1071



18615
mU.fU.fC.A.fC.fC.G.fU.G.A.fU.fU.fU*fU*fC*A*fU*fC*C
1072





18684
18616
A.A.A.mU.G.mC.A.G.mC.mU.A.A.A-chol
1073



18617
mU.fU.fU.A.G.fC.fU.G.fC.A.fU.fU.fU*A*fC*A*A*G*A
1074





18685
18618
mC.mU.mU.G.G.A.A.A.A.mU.A.A.A-chol
1075



18619
mU.fU.fU.A.fU.fU.fU.fU.fC.fC.A.A.G*G*G*fC*A*A*U
1076





18686
18620
mC.mC.mU.mU.mU.G.A.A.mU.A.A.A.A-chol
1077



18621
mU.fU.fU.fU.A.fU.fU.fC.A.A.A.G.G*fU*A*fC*fU*G*G
1078





18687
18622
A.A.mC.A.mC.A.mC.mU.G.mC.A.A.A-chol
1079



18623
mU.fU.fU.G.fC.A.G.fU.G.fU.G.fU.fU*fU*fU*fC*A*fU*C
1080





18688
18624
A.A.A.A.mC.A.mC.A.mC.mU.G.mC.A-chol
1081



18625
mU.G.fC.A.G.fU.G.fU.G.fU.fU.fU.fU*fC*A*fU*fC*A*U
1082





18689
18626
G.A.A.G.G.mC.mC.mU.G.mU.mU.A.A-chol
1083



18627
mU.fU.A.A.fC.A.G.G.fC.fC.fU.fU.fC*fU*G*G*A*fC*A
1084





18690
18628
mU.A.mU.mU.G.mC.mU.mC.mU.G.mC.A.A-chol
1085



18629
mU.fU.G.fC.A.G.A.G.fC.A.A.fU.A*fC*A*G*A*G*G
1086
















TABLE 8







hSPP1 sd-rxRNA










Target Gene
hSPP1

SEQ ID


Duplex ID
Single Strand ID
sd-rxRNA sequence
NO





18538
17430
G.A.mU.G.A.A.mU.mC.mU.G.A.mU.A.Chl
1087



17432
P.mU.A.fU.fC.A.G.A.fU.fU.fC.A.fU.fC*A*G*A*A*fU*G
1088





18539
17431
mU.G.A.mU.G.A.A.mU.mC.mU.G.A.mU.A.Chl
1089



17432
P.mU.A.fU.fC.A.G.A.fU.fU.fC.A.fU.fC*A*G*A*A*fU*G
1090





18540
17433
A.mU.mU.mU.G.mC.mU.mU.mU.mU.G.mC.A.Chl
1091



17435
P.mU.G.fC.A.A.A.A.G.fC.A.A.A.fU*fC*A*fC*fU*G*fC
1092





18541
17434
G.A.mU.mU.mU.G.mC.mU.mU.mU.mU.G.mC.A.Chl
1093



17435
P.mU.G.fC.A.A.A.A.G.fC.A.A.A.fU*fC*A*fC*fU*G*fC
1094





18542
17436
G.mU.G.A.mU.mU.mU.G.mC.mU.mU.mU.AChl
1095



17438
P.mU.A.A.A.G.fC.A.A.A.fU.fC.A.fC*fU*G*fC*A*A*fU
1096





18543
17437
A.G.mU.G.A.mU.mU.mU.G.mC.mU.mU.mU.A.Chl
1097



17438
P.mU.A.A.A.G.fC.A.A.A.fU.fC.A.fC*fU*G*fC*A*A*fU
1098





18544
17439
A.A.mU.mU.mU.mC.G.mU.A.mU.mU.mU.A.Chl
1099



17441
P.mU.A.A.A.fU.A.fC.G.A.A.A.fU.fU*fU*fC*A*G*G*fU
1100





18545
17440
A.A.A.mU.mU.mU.mC.G.mU.A.mU.mU.mU.A.Chl
1101



17441
P.mU.A.A.A.fU.A.fC.G.A.A.A.fU.fU*fU*fC*A*G*G*fU
1102





18546
17442
mC.A.mC.A.G.mC.mC.A.mU.G.A.A.A.Chl
1103



17444
P.mU.fU.fU.C.A.fU.G.G.fC.fU.G.fU.G*A*A*A*fU*fU*fC
1104





18547
17443
mU.mC.A.mC.A.G.mC.mC.A.mU.G.A.A.A.Chl
1105



17444
P.mU.fU.fU.C.A.fU.G.G.fC.fU.G.fU.G*A*A*A*fU*fU*fC
1106





18548
17445
G.A.mU.mU.mU.G.mC.mU.mU.mU.mU.G.A.Chl
1107



17447
P.mU.fC.A.A.A.A.G.fC.A.A.A.fU.fC*A*fC*fU*G*fC*A
1108





18549
17446
mU.G.A.mU.mU.mU.G.mC.mU.mU.mU.mU.G.A.Chl
1109



17447
P.mU.fC.A.A.A.A.G.fC.A.A.A.fU.fC*A*fC*fU*G*fC*A
1110





18550
17448
mU.mU.G.mC.mU.mU.mU.mU.G.mC.mC.mU.A.Chl
1111



17450
P.mU.A.G.G.fC.A.A.A.A.G.fC.A.A*A*fU*fC*A*fC*U
1112





18551
17449
mU.mU.mU.G.mC.mU.mU.mU.mU.G.mC.mC.mU.A.Chl
1113



17450
P.mU.A.G.G.fC.A.A.A.A.G.fC.A.A*A*fU*fC*A*fC*U
1114





18552
17451
mU.mU.mU.mC.mU.mC.A.G.mU.mU.mU.A.A.Chl
1115



17452
P.mU.fU.A.A.A.fC.fU.G.A.G.A.A.A*G*A*A*G*fC*A
1116





18553
17453
mU.mU.G.mC.A.mU.mU.mU.A.G.mU.mC.A.Chl
1117



17454
P.mU.G.A.fC.fU.A.A.A.fU.G.fC.A.A*A*G*fU*G*A*G
1118





18554
17455
A.mC.mU.mU.mU.G.mC.A.mU.mU.mU.A.A.Chl
1119



17456
P.mU.fU.A.A.A.fU.G.fC.A.A.A.G.fU*G*A*G*A*A*A
1120





18555
17457
A.mU.mU.mU.A.G.mU.mC.A.A.A.A.A.Chl
1121



17458
P.mU.fU.fU.fU.fU.G.A.fC.fU.A.A.A.fU*G*fC*A*A*A*G
1122





18556
17459
mU.mU.mC.mU.mU.mU.mC.mU.mC.A.G.mU.A.Chl
1123



17460
P.mU.A.fC.fU.G.A.G.A.A.A.G.A.A*G*fC*A*fU*fU*fU
1124





18557
17461
mU.mC.mU.mU.mU.mC.mU.mC.A.G.mU.mU.A.Chl
1125



17462
P.mU.A.A.fC.fU.G.A.G.A.A.A.G.A*A*G*fC*A*fU*fU
1126





18558
17463
G.A.A.A.G.A.G.A.A.mC.A.mU.A.Chl
1127



17464
P.mU.A.fU.G.fU.fU.fC.fU.fC.fU.fU.fU.fC*A*fU*fU*fU*fU*G
1128





18559
17465
mC.mU.mU.mU.G.mC.A.mU.mU.mU.A.G.A.Chl
1129



17466
P.mU.fC.fU.A.A.A.fU.G.fC.A.A.A.G*fU*G*A*G*A*A
1130





18560
17467
mU.mU.mU.G.mC.A.mU.mU.mU.A.G.mU.A.Chl
1131



17468
P.mU.A.fC.fU.A.A.A.fU.G.fC.A.A.A*G*fU*G*A*G*A
1132





18561
17469
mC.mU.mC.A.mC.mU.mU.mU.G.mC.A.mU.A.Chl
1133



17470
P.mU.A.fU.G.fC.A.A.A.G.fU.G.A.G*A*A*A*fU*fU*G
1134





18562
17471
mU.mU.mC.mU.mC.A.mC.mU.mU.mU.G.mC.A.Chl
1135



17472
P.mU.G.fC.A.A.A.G.fU.G.A.G.A.A*A*fU*fU*G*fU*A
1136





18563
17473
mC.A.mC.mU.mC.mC.A.G.mU.mU.G.mU.A.Chl
1137



17474
P.mU.A.fC.A.A.fC.fU.G.G.A.G.fU.G*A*A*A*A*fC*U
1138





18564
17475
A.A.mU.G.A.A.A.G.A.G.A.A.A.Chl
1139



17476
P.mU.fU.fU.fC.fU.fC.fU.fU.fU.fC.A.fU.fU*fU*fU*G*fC*fU*A
1140





18565
17477
mU.G.mC.A.G.mU.G.A.mU.mU.mU.mG.A.Chl
1141



17478
P.mU.fC.A.A.A.fU.fC.A.fC.fU.G.fC.A*A*fU*fU*fC*fU*C
1142





18566
17479
mU.G.A.A.A.G.A.G.A.A.mC.A.A.Chl
1143



17480
P.mU.fU.G.fU.fU.fC.fU.fC.fU.fU.fU.fC.A*fU*fU*fU*fU*G*C
1144





18567
17481
A.mC.mC.mU.G.A.A.A.mU.mU.mU.mC.A.Chl
1145



17482
P.mU.G.A.A.A.fU.fU.fU.fC.A.G.G.fU*G*fU*fU*fU*A*U
1146





18568
17483
G.A.A.mU.mU.G.mC.A.G.mU.G.A.A.Chl
1147



17484
P.mU.fU.fC.A.fC.fU.G.fC.A.A.fU.fU.fC*fU*fC*A*fU*G*G
1148





18569
17485
G.G.mC.mU.G.A.mU.mU.mC.mU.G.G.A.Chl
1149



17486
P.mU.fC.fC.A.G.A.A.fU.fC.A.G.fC.fC*fU*G*fU*fU*fU*A
1150





Rat Targeting


SPP1


18662
18630
G.mU.mU.mC.G.mU.mU.G.mU.mU.mU.mC.A-chol
1151



18631
P.mU.G.A.A.A.fC.A.A.fC.G.A.A.fC*fU*A*A*G*fC*U
1152





18663
18632
G.A.A.A.G.A.A.A.mU.A.G.A.A-chol
1153



18633
P.mU.fU.fC.fU.A.fU.fU.fU.fC.fU.fU.fU.fC*fU*fC*fC*A*fC*A
1154





18664
18634
G.mU.G.G.A.G.A.A.A.G.A.A.A-chol
1155



18635
P.mU.fU.fU.fC.fU.fU.fU.fC.fU.fC.fC.A.fC*A*fU*A*fC*A*U
1156





18665
18636
mC.mU.G.mU.G.mU.mC.A.mC.mU.A.mU.A-chol
1157



18637
P.mU.A.fU.A.G.fU.G.A.fC.A.fC.A.G*A*fC*fU*A*fU*U
1158





18666
18638
G.mU.mU.mU.mC.mU.mC.A.G.mU.mU.mC.A-chol
1159



18639
P.mU.G.A.A.fC.fU.G.A.G.A.A.A.fC*A*A*G*fC*A*G
1160





18667
18640
mU.A.mC.A.G.G.A.A.mC.A.G.mC.A-chol
1161



18641
P.mU.G.fC.fU.G.fU.fU.fC.fC.fU.G.fU.A*A*G*fU*fU*fU*G
1162





18668
18642
G.mC.A.G.G.mC.A.A.A.mC.mU.mU.A-chol
1163



18643
P.mU.A.A.G.fU.fU.fU.G.fC.fC.fU.G.fC*fC*fU*fC*fU*A*C
1164





18669
18644
A.A.mC.mU.mU.A.mC.A.G.G.A.A.A-chol
1165



18645
P.mU.fU.fU.fC.fC.fU.G.fU.A.A.G.fU.fU*fU*G*fC*fC*fU*G
1166





18670
18646
mC.A.mC.mU.G.mC.A.mU.mU.mU.mU.A.A-chol
1167



18647
P.mU.fU.A.A.A.A.fU.G.fC.A.G.fU.G*G*fC*fC*A*fU*U
1168





18671
18648
G.A.mC.A.mC.mC.A.mC.mU.G.mU.A.A-chol
1169



18649
P.mU.fU.A.fC.A.G.fU.G.G.fU.G.fU.fC*fU*G*fC*A*fU*G
1170





18672
18650
A.G.A.G.G.mC.A.G.G.mC.A.A.A-chol
1171



18651
P.mU.fU.fU.G.fC.fC.fU.G.fC.fC.fU.fC.fU*A*fC*A*fU*A*C
1172





18673
18652
mU.A.G.A.G.G.mC.A.G.G.mC.A.A-chol
1173



18653
P.mU.fU.G.fC.fC.fU.G.fC.fC.fU.fC.fU.A*fC*A*fU*A*fC*A
1174





18674
18654
G.A.G.A.G.mU.mU.mC.A.mU.mC.mU.A-chol
1175



18655
P.mU.A.G.A.fU.G.A.A.fC.fU.fC.fU.fC*fU*A*A*fU*fU*C
1176





18675
18656
mU.G.mU.G.A.A.mU.A.A.A.mU.mC.A-chol
1177



18657
P.mU.G.A.fU.fU.fU.A.fU.U.fC.A.fC.A*fC*fC*A*fC*A*A
1178





18676
18658
G.mU.G.A.A.mU.A.A.A.mU.mC.mU.A-chol
1179



18659
P.mU.A.G.A.fU.fU.fU.A.fU.fU.fC.A.fC*A*fC*fC*A*fC*A
1180





18677
18660
mU.G.A.AmU.A.A.A.mU.mC.mU.mU.A-chol
1181



18661
P.mU.A.A.G.A.fU.fU.fU.A.fU.U.fC.A*fC*A*fC*fC*A*C
1182
















TABLE 9







Inhibition of gene expression with hSPP1 ori sequences












Target Gene
Gene

SEQ ID
hSPP1
A549 0.1 nM


Duplex ID
Region
Ref Pos
NO
Sense Strand Sequence
Activity















14840
5UTR/CDS
155
1183
AAGGAAAACUCACUACCAUGAGAAA
 4.4%





14841
5UTR/CDS
161
1184
AACUCACUACCAUGAGAAUUGCAGA
2.46%





14842
5UTR/CDS
163
1185
CUCACUACCAUGAGAAUUGCAGUGA
20.54% 





14843
5UTR/CDS
164
1186
UCACUACCAUGAGAAUUGCAGUGAA
 2.8%





14844
CDS
168
1187
UACCAUGAGAAUUGCAGUGAUUUGA
 3.6%





14845
CDS
169
1188
ACCAUGAGAAUUGCAGUGAUUUGCA
 5.2%





14846
CDS
171
1189
CAUGAGAAUUGCAGUGAUUUGCUUA
 0.8%





14847
CDS
172
1190
AUGAGAAUUGCAGUGAUUUGCUUUA
0.95%





14848
CDS
173
1191
UGAGAAUUGCAGUGAUUUGCUUUUA
 3.2%





14849
CDS
174
1192
GAGAAUUGCAGUGAUUUGCUUUUGA
4.14%





14850
CDS
175
1193
AGAAUUGCAGUGAUUUGCUUUUGCA
 2.9%





14851
CDS
176
1194
GAAUUGCAGUGAUUUGCUUUUGCCA
8.38%





14852
CDS
177
1195
AAUUGCAGUGAUUUGCUUUUGCCUA
 4.6%





14853
CDS
180
1196
UGCAGUGAUUUGCUUUUGCCUCCUA
11.1%





14854
CDS
181
1197
GCAGUGAUUUGCUUUUGCCUCCUAA
10.87% 





14855
CDS
182
1198
CAGUGAUUUGCUUUUGCCUCCUAGA
 5.3%





14856
CDS
206
1199
GCAUCACCUGUGCCAUACCAGUUAA
15.29% 





14857
CDS
208
1200
AUCACCUGUGCCAUACCAGUUAAAA
22.6%





14858
CDS
212
1201
CCUGUGCCAUACCAGUUAAACAGGA
13.3%





14859
CDS
215
1202
GUGCCAUACCAGUUAAACAGGCUGA
21.2%





14860
CDS
216
1203
UGCCAUACCAGUUAAACAGGCUGAA
20.24% 





14861
CDS
220
1204
AUACCAGUUAAACAGGCUGAUUCUA
12.5%





14862
CDS
221
1205
UACCAGUUAAACAGGCUGAUUCUGA
 9.9%





14863
CDS
222
1206
ACCAGUUAAACAGGCUGAUUCUGGA
 3.9%





14864
CDS
225
1207
AGUUAAACAGGCUGAUUCUGGAAGA
20.48% 





14865
CDS
226
1208
GUUAAACAGGCUGAUUCUGGAAGUA
10.7%





14866
CDS
227
1209
UUAAACAGGCUGAUUCUGGAAGUUA
22.75% 





14867
CDS
228
1210
UAAACAGGCUGAUUCUGGAAGUUCA
0.26%





14868
CDS
234
1211
GGCUGAUUCUGGAAGUUCUGAGGAA
0.34%





14869
CDS
236
1212
CUGAUUCUGGAAGUUCUGAGGAAAA
 4.4%





14870
CDS
238
1213
GAUUCUGGAAGUUCUGAGGAAAAGA
 4.5%





14871
CDS
239
1214
AUUCUGGAAGUUCUGAGGAAAAGCA
 7.5%





14872
CDS
240
1215
UUCUGGAAGUUCUGAGGAAAAGCAA
101.3% 





14873
CDS
338
1216
CCCCACAGACCCUUCCAAGUAAGUA
48.3%





14874
CDS
340
1217
CCACAGACCCUUCCAAGUAAGUCCA
33.9%





14875
CDS
342
1218
ACAGACCCUUCCAAGUAAGUCCAAA
16.1%





14876
CDS
343
1219
CAGACCCUUCCAAGUAAGUCCAACA
38.7%





14877
CDS
345
1220
GACCCUUCCAAGUAAGUCCAACGAA
54.2%





14878
CDS
348
1221
CCUUCCAAGUAAGUCCAACGAAAGA
12.54% 





14879
CDS
349
1222
CUUCCAAGUAAGUCCAACGAAAGCA
32.44% 





14880
CDS
351
1223
UCCAAGUAAGUCCAACGAAAGCCAA
17.1%





14881
CDS
353
1224
CAAGUAAGUCCAACGAAAGCCAUGA
32.94% 





14882
CDS
358
1225
AAGUCCAACGAAAGCCAUGACCACA
65.1%





14883
CDS
362
1226
CCAACGAAAGCCAUGACCACAUGGA
76.9%





14884
CDS
363
1227
CAACGAAAGCCAUGACCACAUGGAA
69.8%





14885
CDS
366
1228
CGAAAGCCAUGACCACAUGGAUGAA
78.02% 





14886
CDS
372
1229
CCAUGACCACAUGGAUGAUAUGGAA
19.49% 





14887
CDS
377
1230
ACCACAUGGAUGAUAUGGAUGAUGA
20.43% 





14888
CDS
393
1231
GGAUGAUGAAGAUGAUGAUGACCAA
29.1%





14889
CDS
394
1232
GAUGAUGAAGAUGAUGAUGACCAUA
24.5%





14890
CDS
396
1233
UGAUGAAGAUGAUGAUGACCAUGUA
25.90% 





14891
CDS
398
1234
AUGAAGAUGAUGAUGACCAUGUGGA
20.5%





14892
CDS
399
1235
UGAAGAUGAUGAUGACCAUGUGGAA
 7.9%





14893
CDS
430
1236
GACUCCAUUGACUCGAACGACUCUA
21.6%





14894
CDS
431
1237
ACUCCAUUGACUCGAACGACUCUGA
13.5%





14895
CDS
432
1238
CUCCAUUGACUCGAACGACUCUGAA
12.33% 





14896
CDS
435
1239
CAUUGACUCGAACGACUCUGAUGAA
42.5%





14897
CDS
440
1240
ACUCGAACGACUCUGAUGAUGUAGA
22.54% 





14898
CDS
441
1241
CUCGAACGACUCUGAUGAUGUAGAA
17.4%





14899
CDS
442
1242
UCGAACGACUCUGAUGAUGUAGAUA
11.2%





14900
CDS
443
1243
CGAACGACUCUGAUGAUGUAGAUGA
20.7%





14901
CDS
445
1244
AACGACUCUGAUGAUGUAGAUGACA
27.1%





14902
CDS
449
1245
ACUCUGAUGAUGUAGAUGACACUGA
39.8%





14903
CDS
450
1246
CUCUGAUGAUGUAGAUGACACUGAA
 9.6%





14904
CDS
451
1247
UCUGAUGAUGUAGAUGACACUGAUA
4.44%





14905
CDS
452
1248
CUGAUGAUGUAGAUGACACUGAUGA
 8.7%





14906
CDS
453
1249
UGAUGAUGUAGAUGACACUGAUGAA
16.72% 





14907
CDS
461
1250
UAGAUGACACUGAUGAUUCUCACCA
42.9%





14908
CDS
462
1251
AGAUGACACUGAUGAUUCUCACCAA
30.1%





14909
CDS
469
1252
ACUGAUGAUUCUCACCAGUCUGAUA
 9.1%





14910
CDS
470
1253
CUGAUGAUUCUCACCAGUCUGAUGA
19.0%





14911
CDS
471
1254
UGAUGAUUCUCACCAGUCUGAUGAA
42.1%





14912
CDS
472
1255
GAUGAUUCUCACCAGUCUGAUGAGA
59.1%





14913
CDS
476
1256
AUUCUCACCAGUCUGAUGAGUCUCA
38.2%





14914
CDS
479
1257
CUCACCAGUCUGAUGAGUCUCACCA
34.1%





14915
CDS
480
1258
UCACCAGUCUGAUGAGUCUCACCAA
48.45% 





14916
CDS
483
1259
CCAGUCUGAUGAGUCUCACCAUUCA
 9.5%





14917
CDS
484
1260
CAGUCUGAUGAGUCUCACCAUUCUA
21.5%





14918
CDS
485
1261
AGUCUGAUGAGUCUCACCAUUCUGA
18.6%





14919
CDS
486
1262
GUCUGAUGAGUCUCACCAUUCUGAA
20.2%





14920
CDS
487
1263
UCUGAUGAGUCUCACCAUUCUGAUA
10.9%





14921
CDS
488
1264
CUGAUGAGUCUCACCAUUCUGAUGA
18.9%





14922
CDS
489
1265
UGAUGAGUCUCACCAUUCUGAUGAA
10.7%





14923
CDS
490
1266
GAUGAGUCUCACCAUUCUGAUGAAA
28.15% 





14924
CDS
493
1267
GAGUCUCACCAUUCUGAUGAAUCUA
18.33% 





14925
CDS
495
1268
GUCUCACCAUUCUGAUGAAUCUGAA
7.61%





14926
CDS
496
1269
UCUCACCAUUCUGAUGAAUCUGAUA
2.99%





14927
CDS
497
1270
CUCACCAUUCUGAUGAAUCUGAUGA
7.44%





14928
CDS
498
1271
UCACCAUUCUGAUGAAUCUGAUGAA
 9.7%





14929
CDS
499
1272
CACCAUUCUGAUGAAUCUGAUGAAA
16.96% 





14930
CDS
501
1273
CCAUUCUGAUGAAUCUGAUGAACUA
3.08%





14931
CDS
505
1274
UCUGAUGAAUCUGAUGAACUGGUCA
13.24% 





14932
CDS
510
1275
UGAAUCUGAUGAACUGGUCACUGAA
3.16%





14933
CDS
550
1276
CCAGCAACCGAAGUUUUCACUCCAA
14.02% 





14934
CDS
554
1277
CAACCGAAGUUUUCACUCCAGUUGA
3.10%





14935
CDS
555
1278
AACCGAAGUUUUCACUCCAGUUGUA
5.27%





14936
CDS
572
1279
CAGUUGUCCCCACAGUAGACACAUA
13.2%





14937
CDS
573
1280
AGUUGUCCCCACAGUAGACACAUAA
27.01% 





14938
CDS
574
1281
GUUGUCCCCACAGUAGACACAUAUA
8.76%





14939
CDS
588
1282
AGACACAUAUGAUGGCCGAGGUGAA
14.04% 





14940
CDS
589
1283
GACACAUAUGAUGGCCGAGGUGAUA
18.40% 





14941
CDS
598
1284
GAUGGCCGAGGUGAUAGUGUGGUUA
12.50% 





14942
CDS
601
1285
GGCCGAGGUGAUAGUGUGGUUUAUA
13.76% 





14943
CDS
602
1286
GCCGAGGUGAUAGUGUGGUUUAUGA
5.34%





14944
CDS
603
1287
CCGAGGUGAUAGUGUGGUUUAUGGA
29.69% 





14945
CDS
604
1288
CGAGGUGAUAGUGUGGUUUAUGGAA
33.34% 





14946
CDS
606
1289
AGGUGAUAGUGUGGUUUAUGGACUA
17.50% 





14947
CDS
608
1290
GUGAUAGUGUGGUUUAUGGACUGAA
45.90% 





14948
CDS
609
1291
UGAUAGUGUGGUUUAUGGACUGAGA
22.0%





14949
CDS
610
1292
GAUAGUGUGGUUUAUGGACUGAGGA
19.93% 





14950
CDS
611
1293
AUAGUGUGGUUUAUGGACUGAGGUA
17.34% 





14951
CDS
615
1294
UGUGGUUUAUGGACUGAGGUCAAAA
5.60%





14952
CDS
617
1295
UGGUUUAUGGACUGAGGUCAAAAUA
25.74% 





14953
CDS
618
1296
GGUUUAUGGACUGAGGUCAAAAUCA
17.63% 





14954
CDS
619
1297
GUUUAUGGACUGAGGUCAAAAUCUA
3.45%





14955
CDS
621
1298
UUAUGGACUGAGGUCAAAAUCUAAA
18.03% 





14956
CDS
622
1299
UAUGGACUGAGGUCAAAAUCUAAGA
20.98% 





14957
CDS
623
1300
AUGGACUGAGGUCAAAAUCUAAGAA
20.60% 





14958
CDS
624
1301
UGGACUGAGGUCAAAAUCUAAGAAA
26.73% 





14959
CDS
625
1302
GGACUGAGGUCAAAAUCUAAGAAGA
7.45%





14960
CDS
626
1303
GACUGAGGUCAAAAUCUAAGAAGUA
14.1%





14961
CDS
629
1304
UGAGGUCAAAAUCUAAGAAGUUUCA
8.61%





14962
CDS
630
1305
GAGGUCAAAAUCUAAGAAGUUUCGA
19.07% 





14963
CDS
631
1306
AGGUCAAAAUCUAAGAAGUUUCGCA
6.08%





14964
CDS
632
1307
GGUCAAAAUCUAAGAAGUUUCGCAA
19.82% 





14965
CDS
636
1308
AAAAUCUAAGAAGUUUCGCAGACCA
21.55% 





14966
CDS
637
1309
AAAUCUAAGAAGUUUCGCAGACCUA
30.20% 





14967
CDS
638
1310
AAUCUAAGAAGUUUCGCAGACCUGA
18.23% 





14968
CDS
686
1311
ACGAGGACAUCACCUCACACAUGGA
14.85% 





14969
CDS
687
1312
CGAGGACAUCACCUCACACAUGGAA
28.04% 





14970
CDS
689
1313
AGGACAUCACCUCACACAUGGAAAA
3.80%





14971
CDS
698
1314
CCUCACACAUGGAAAGCGAGGAGUA
7.67%





14972
CDS
703
1315
CACAUGGAAAGCGAGGAGUUGAAUA
 5.8%





14973
CDS
704
1316
ACAUGGAAAGCGAGGAGUUGAAUGA
 5.3%





14974
CDS
705
1317
CAUGGAAAGCGAGGAGUUGAAUGGA
24.47% 





14975
CDS
718
1318
GAGUUGAAUGGUGCAUACAAGGCCA
26.39% 





14976
CDS
785
1319
GCCGUGGGAAGGACAGUUAUGAAAA
7.60%





14977
CDS
786
1320
CCGUGGGAAGGACAGUUAUGAAACA
8.75%





14978
CDS
788
1321
GUGGGAAGGACAGUUAUGAAACGAA
8.34%





14979
CDS
790
1322
GGGAAGGACAGUUAUGAAACGAGUA
5.38%





14980
CDS
792
1323
GAAGGACAGUUAUGAAACGAGUCAA
11.45% 





14981
CDS
794
1324
AGGACAGUUAUGAAACGAGUCAGCA
11.78% 





14982
CDS
795
1325
GGACAGUUAUGAAACGAGUCAGCUA
10.69% 





14983
CDS
797
1326
ACAGUUAUGAAACGAGUCAGCUGGA
54.58% 





14984
CDS
798
1327
CAGUUAUGAAACGAGUCAGCUGGAA
33.9%





14985
CDS
846
1328
CCACAAGCAGUCCAGAUUAUAUAAA
24.1%





14986
CDS
850
1329
AAGCAGUCCAGAUUAUAUAAGCGGA
27.86% 





14987
CDS
854
1330
AGUCCAGAUUAUAUAAGCGGAAAGA
24.29% 





14988
CDS
855
1331
GUCCAGAUUAUAUAAGCGGAAAGCA
54.43% 





14989
CDS
859
1332
AGAUUAUAUAAGCGGAAAGCCAAUA
71.49% 





14990
CDS
860
1333
GAUUAUAUAAGCGGAAAGCCAAUGA
69.64% 





14991
CDS
861
1334
AUUAUAUAAGCGGAAAGCCAAUGAA
38.82% 





14992
CDS
862
1335
UUAUAUAAGCGGAAAGCCAAUGAUA
20.77% 





14993
CDS
865
1336
UAUAAGCGGAAAGCCAAUGAUGAGA
21.79% 





14994
CDS
866
1337
AUAAGCGGAAAGCCAAUGAUGAGAA
50.00% 





14995
CDS
867
1338
UAAGCGGAAAGCCAAUGAUGAGAGA
11.67% 





14996
CDS
870
1339
GCGGAAAGCCAAUGAUGAGAGCAAA
13.5%





14997
CDS
871
1340
CGGAAAGCCAAUGAUGAGAGCAAUA
15.49% 





14998
CDS
872
1341
GGAAAGCCAAUGAUGAGAGCAAUGA
8.55%





14999
CDS
873
1342
GAAAGCCAAUGAUGAGAGCAAUGAA
12.12% 





15000
CDS
875
1343
AAGCCAAUGAUGAGAGCAAUGAGCA
16.14% 





15001
CDS
878
1344
CCAAUGAUGAGAGCAAUGAGCAUUA
31.71% 





15002
CDS
879
1345
CAAUGAUGAGAGCAAUGAGCAUUCA
32.25% 





15003
CDS
881
1346
AUGAUGAGAGCAAUGAGCAUUCCGA
6.97%





15004
CDS
883
1347
GAUGAGAGCAAUGAGCAUUCCGAUA
23.11% 





15005
CDS
885
1348
UGAGAGCAAUGAGCAUUCCGAUGUA
5.53%





15006
CDS
890
1349
GCAAUGAGCAUUCCGAUGUGAUUGA
10.69% 





15007
CDS
893
1350
AUGAGCAUUCCGAUGUGAUUGAUAA
4.12%





15008
CDS
894
1351
UGAGCAUUCCGAUGUGAUUGAUAGA
6.49%





15009
CDS
895
1352
GAGCAUUCCGAUGUGAUUGAUAGUA
29.12% 





15010
CDS
897
1353
GCAUUCCGAUGUGAUUGAUAGUCAA
3.54%





15011
CDS
899
1354
AUUCCGAUGUGAUUGAUAGUCAGGA
6.05%





15012
CDS
901
1355
UCCGAUGUGAUUGAUAGUCAGGAAA
3.31%





15013
CDS
906
1356
UGUGAUUGAUAGUCAGGAACUUUCA
12.71% 





15014
CDS
907
1357
GUGAUUGAUAGUCAGGAACUUUCCA
13.95% 





15015
CDS
909
1358
GAUUGAUAGUCAGGAACUUUCCAAA
4.03%





15016
CDS
912
1359
UGAUAGUCAGGAACUUUCCAAAGUC
11.96% 





15017
CDS
913
1360
GAUAGUCAGGAACUUUCCAAAGUCA
14.01% 





15018
CDS
914
1361
AUAGUCAGGAACUUUCCAAAGUCAA
5.56%





15019
CDS
916
1362
AGUCAGGAACUUUCCAAAGUCAGCA
13.92% 





15020
CDS
917
1363
GUCAGGAACUUUCCAAAGUCAGCCA
19.00% 





15021
CDS
923
1364
AACUUUCCAAAGUCAGCCGUGAAUA
17.56% 





15022
CDS
925
1365
CUUUCCAAAGUCAGCCGUGAAUUCA
19.58% 





15023
CDS
926
1366
UUUCCAAAGUCAGCCGUGAAUUCCA
6.54%





15024
CDS
935
1367
UCAGCCGUGAAUUCCACAGCCAUGA
16.15% 





15025
CDS
936
1368
CAGCCGUGAAUUCCACAGCCAUGAA
20.62% 





15026
CDS
937
1369
AGCCGUGAAUUCCACAGCCAUGAAA
5.21%





15027
CDS
943
1370
GAAUUCCACAGCCAUGAAUUUCACA
31.14% 





15028
CDS
944
1371
AAUUCCACAGCCAUGAAUUUCACAA
35.63% 





15029
CDS
945
1372
AUUCCACAGCCAUGAAUUUCACAGA
23.96% 





15030
CDS
946
1373
UUCCACAGCCAUGAAUUUCACAGCA
15.20% 





15031
CDS
947
1374
UCCACAGCCAUGAAUUUCACAGCCA
19.45% 





15032
CDS
950
1375
ACAGCCAUGAAUUUCACAGCCAUGA
25.74% 





15033
CDS
952
1376
AGCCAUGAAUUUCACAGCCAUGAAA
2.59%





15034
CDS
953
1377
GCCAUGAAUUUCACAGCCAUGAAGA
6.00%





15035
CDS
954
1378
CCAUGAAUUUCACAGCCAUGAAGAA
4.60%





15036
CDS
956
1379
AUGAAUUUCACAGCCAUGAAGAUAA
9.20%





15037
CDS
957
1380
UGAAUUUCACAGCCAUGAAGAUAUA
10.84% 





15038
CDS
958
1381
GAAUUUCACAGCCAUGAAGAUAUGA
40.20% 





15039
CDS
959
1382
AAUUUCACAGCCAUGAAGAUAUGCA
37.25% 





15040
CDS
960
1383
AUUUCACAGCCAUGAAGAUAUGCUA
8.21%





15041
CDS
961
1384
UUUCACAGCCAUGAAGAUAUGCUGA
12.01% 





15042
CDS
964
1385
CACAGCCAUGAAGAUAUGCUGGUUA
12.25% 





15043
CDS
983
1386
UGGUUGUAGACCCCAAAAGUAAGGA
19.65% 





15044
CDS
984
1387
GGUUGUAGACCCCAAAAGUAAGGAA
28.19% 





15045
CDS
985
1388
GUUGUAGACCCCAAAAGUAAGGAAA
17.92% 





15046
CDS
986
1389
UUGUAGACCCCAAAAGUAAGGAAGA
7.94%





15047
CDS
987
1390
UGUAGACCCCAAAAGUAAGGAAGAA
15.09% 





15048
CDS
988
1391
GUAGACCCCAAAAGUAAGGAAGAAA
20.01% 





15049
CDS
989
1392
UAGACCCCAAAAGUAAGGAAGAAGA
7.25%





15050
CDS
990
1393
AGACCCCAAAAGUAAGGAAGAAGAA
12.42% 





15051
CDS
995
1394
CCAAAAGUAAGGAAGAAGAUAAACA
8.96%





15052
CDS
996
1395
CAAAAGUAAGGAAGAAGAUAAACAA
6.85%





15053
CDS
997
1396
AAAAGUAAGGAAGAAGAUAAACACA
14.15% 





15054
CDS
998
1397
AAAGUAAGGAAGAAGAUAAACACCA
12.32% 





15055
CDS
999
1398
AAGUAAGGAAGAAGAUAAACACCUA
8.83%





15056
CDS
1001
1399
GUAAGGAAGAAGAUAAACACCUGAA
15.09% 





15057
CDS
1002
1400
UAAGGAAGAAGAUAAACACCUGAAA
4.91%





15058
CDS
1007
1401
AAGAAGAUAAACACCUGAAAUUUCA
1.43%





15059
CDS
1008
1402
AGAAGAUAAACACCUGAAAUUUCGA
3.51%





15060
CDS
1009
1403
GAAGAUAAACACCUGAAAUUUCGUA
15.12% 





15061
CDS
1010
1404
AAGAUAAACACCUGAAAUUUCGUAA
28.56% 





15062
CDS
1013
1405
AUAAACACCUGAAAUUUCGUAUUUA
5.74%





15063
CDS
1015
1406
AAACACCUGAAAUUUCGUAUUUCUA
13.01% 





15064
CDS
1024
1407
AAAUUUCGUAUUUCUCAUGAAUUAA
15.54% 





15065
CDS
1030
1408
CGUAUUUCUCAUGAAUUAGAUAGUA
9.47%





15066
CDS
1031
1409
GUAUUUCUCAUGAAUUAGAUAGUGA
30.03% 





15067
CDS
1032
1410
UAUUUCUCAUGAAUUAGAUAGUGCA
5.31%





15068
CDS
1036
1411
UCUCAUGAAUUAGAUAGUGCAUCUA
9.74%





15069
CDS
1037
1412
CUCAUGAAUUAGAUAGUGCAUCUUA
10.78% 





15070
CDS
1038
1413
UCAUGAAUUAGAUAGUGCAUCUUCA
91.87% 





15071
CDS
1039
1414
CAUGAAUUAGAUAGUGCAUCUUCUA
93.82% 





15072
CDS
1040
1415
AUGAAUUAGAUAGUGCAUCUUCUGA
96.06% 





15073
CDS
1041
1416
UGAAUUAGAUAGUGCAUCUUCUGAA
94.91% 





15074
CDS
1042
1417
GAAUUAGAUAGUGCAUCUUCUGAGA
97.91% 





15075
CDS
1043
1418
AAUUAGAUAGUGCAUCUUCUGAGGA
93.76% 





15076
CDS
1044
1419
AUUAGAUAGUGCAUCUUCUGAGGUA
103.92%  





15077
CDS
1045
1420
UUAGAUAGUGCAUCUUCUGAGGUCA
95.85% 





15078
CDS/3UTR
1052
1421
GUGCAUCUUCUGAGGUCAAUUAAAA
93.83% 





15079
CDS/3UTR
1053
1422
UGCAUCUUCUGAGGUCAAUUAAAAA
90.69% 





15080
CDS/3UTR
1054
1423
GCAUCUUCUGAGGUCAAUUAAAAGA
101.49%  





15081
CDS/3UTR
1055
1424
CAUCUUCUGAGGUCAAUUAAAAGGA
110.27%  





15082
CDS/3UTR
1056
1425
AUCUUCUGAGGUCAAUUAAAAGGAA
99.36% 





15083
CDS/3UTR
1057
1426
UCUUCUGAGGUCAAUUAAAAGGAGA
95.31% 





15084
CDS/3UTR
1058
1427
CUUCUGAGGUCAAUUAAAAGGAGAA
15.55% 





15085
3UTR
1081
1428
AAAAAAUACAAUUUCUCACUUUGCA
3.59%





15086
3UTR
1083
1429
AAAAUACAAUUUCUCACUUUGCAUU
3.46%





15087
3UTR
1086
1430
AUACAAUUUCUCACUUUGCAUUUAG
2.37%





15088
3UTR
1087
1431
UACAAUUUCUCACUUUGCAUUUAGU
3.54%





15089
3UTR
1088
1432
ACAAUUUCUCACUUUGCAUUUAGUC
2.85%





15090
3UTR
1089
1433
CAAUUUCUCACUUUGCAUUUAGUCA
2.35%





15091
3UTR
1093
1434
UUCUCACUUUGCAUUUAGUCAAAAG
1.38%





15092
3UTR
1125
1435
GCUUUAUAGCAAAAUGAAAGAGAAC
4.11%





15093
3UTR
1127
1436
UUUAUAGCAAAAUGAAAGAGAACAU
3.91%





15094
3UTR
1128
1437
UUAUAGCAAAAUGAAAGAGAACAUG
3.59%





15095
3UTR
1147
1438
AACAUGAAAUGCUUCUUUCUCAGUU
1.80%





15096
3UTR
1148
1439
ACAUGAAAUGCUUCUUUCUCAGUUU
2.17%





15097
3UTR
1150
1440
AUGAAAUGCUUCUUUCUCAGUUUAU
2.93%





15098
3UTR
1153
1441
AAAUGCUUCUUUCUCAGUUUAUUGG
2.18%





15099
3UTR
1154
1442
AAUGCUUCUUUCUCAGUUUAUUGGU
3.92%





15100
3UTR
1156
1443
UGCUUCUUUCUCAGUUUAUUGGUUG
4.08%





15101
3UTR
1157
1444
GCUUCUUUCUCAGUUUAUUGGUUGA
1.74%





15102
3UTR
1158
1445
CUUCUUUCUCAGUUUAUUGGUUGAA
4.74%





15103
3UTR
1159
1446
UUCUUUCUCAGUUUAUUGGUUGAAU
2.65%





15104
3UTR
1168
1447
AGUUUAUUGGUUGAAUGUGUAUCUA
2.57%





15105
3UTR
1178
1448
UUGAAUGUGUAUCUAUUUGAGUCUG
3.76%





15106
3UTR
1179
1449
UGAAUGUGUAUCUAUUUGAGUCUGG
2.91%





15107
3UTR
1183
1450
UGUGUAUCUAUUUGAGUCUGGAAAU
0.62%





15108
3UTR
1184
1451
GUGUAUCUAUUUGAGUCUGGAAAUA
2.45%





15109
3UTR
1186
1452
GUAUCUAUUUGAGUCUGGAAAUAAC
2.18%





15110
3UTR
1191
1453
UAUUUGAGUCUGGAAAUAACUAAUG
2.44%





15111
3UTR
1218
1454
UUUGAUAAUUAGUUUAGUUUGUGGC
19.35% 





15112
3UTR
1219
1455
UUGAUAAUUAGUUUAGUUUGUGGCU
6.19%





15113
3UTR
1222
1456
AUAAUUAGUUUAGUUUGUGGCUUCA
3.25%





15114
3UTR
1224
1457
AAUUAGUUUAGUUUGUGGCUUCAUG
2.47%





15115
3UTR
1225
1458
AUUAGUUUAGUUUGUGGCUUCAUGG
2.28%





15116
3UTR
1226
1459
UUAGUUUAGUUUGUGGCUUCAUGGA
3.40%





15117
3UTR
1227
1460
UAGUUUAGUUUGUGGCUUCAUGGAA
4.12%





15118
3UTR
1244
1461
UCAUGGAAACUCCCUGUAAACUAAA
2.63%





15119
3UTR
1245
1462
CAUGGAAACUCCCUGUAAACUAAAA
2.20%





15120
3UTR
1246
1463
AUGGAAACUCCCUGUAAACUAAAAG
3.56%





15121
3UTR
1247
1464
UGGAAACUCCCUGUAAACUAAAAGC
3.73%





15122
3UTR
1248
1465
GGAAACUCCCUGUAAACUAAAAGCU
2.43%





15123
3UTR
1249
1466
GAAACUCCCUGUAAACUAAAAGCUU
2.28%





15124
3UTR
1251
1467
AACUCCCUGUAAACUAAAAGCUUCA
5.40%





15125
3UTR
1253
1468
CUCCCUGUAAACUAAAAGCUUCAGG
8.21%





15126
3UTR
1286
1469
UAUGUUCAUUCUAUAGAAGAAAUGC
3.17%





15127
3UTR
1294
1470
UUCUAUAGAAGAAAUGCAAACUAUC
2.45%





15128
3UTR
1295
1471
UCUAUAGAAGAAAUGCAAACUAUCA
3.97%





15129
3UTR
1296
1472
CUAUAGAAGAAAUGCAAACUAUCAC
3.86%





15130
3UTR
1297
1473
UAUAGAAGAAAUGCAAACUAUCACU
1.84%





15131
3UTR
1299
1474
UAGAAGAAAUGCAAACUAUCACUGU
2.53%





15132
3UTR
1302
1475
AAGAAAUGCAAACUAUCACUGUAUU
2.25%





15133
3UTR
1303
1476
AGAAAUGCAAACUAUCACUGUAUUU
3.32%





15134
3UTR
1357
1477
AUUUAUGUAGAAGCAAACAAAAUAC
1.86%





15135
3UTR
1465
1478
UAUCUUUUUGUGGUGUGAAUAAAUC
3.40%





15136
3UTR
1466
1479
AUCUUUUUGUGGUGUGAAUAAAUCU
3.49%





15137
3UTR
1467
1480
UCUUUUUGUGGUGUGAAUAAAUCUU
3.03%





15138
3UTR
1468
1481
CUUUUUGUGGUGUGAAUAAAUCUUU
3.62%





15139
3UTR
1496
1482
CUUGAAUGUAAUAAGAAUUUGGUGG
61.48% 





15140
3UTR
1497
1483
UUGAAUGUAAUAAGAAUUUGGUGGU
71.54% 





15141
3UTR
1504
1484
UAAUAAGAAUUUGGUGGUGUCAAUU
58.54% 





15142
3UTR
1511
1485
AAUUUGGUGGUGUCAAUUGCUUAUU
56.93% 





15143
3UTR
1512
1486
AUUUGGUGGUGUCAAUUGCUUAUUU
81.22% 





15144
3UTR
1513
1487
UUUGGUGGUGUCAAUUGCUUAUUUG
59.16% 





15145
3UTR
1514
1488
UUGGUGGUGUCAAUUGCUUAUUUGU
59.46% 





15146
3UTR
1540
1489
UUCCCACGGUUGUCCAGCAAUUAAU
67.40% 
















TABLE 10







hCTGF sd-rxRNA











CTGF




Target Gene
Single Strand

SEQ ID


Duplex ID
ID
sd-rxRNA sequence
NO





17356
17007
A.mC.A.mU.mU.A.A.mC.mU.mC.A.mU.A.Chl
1490



17009
P.mU.A.fU.G.A.G.fU.fU.A.A.fU.G.fU*fC*fU*fC*fU*fC*A
1491





17357
17008
G.A.mC.A.mU.mU.A.A.mC.mU.mC.A.mU.A.Chl
1492



17009
P.mU.A.fU.G.A.G.fU.fU.A.A.fU.G.fU*fC*fU*fC*fU*fC*A
1493





17358
17010
mU.G.A.A.G.A.A.mU.G.mU.mU.A.A.Chl
1494



17012
P.mU.fU.A.A.fC.A.fU.fU.fC.fU.fU.fC.A*A*A*fC*fC*A*G
1495





17359
17011
mU.mU.G.A.A.G.A.A.mU.G.mU.mU.A.A.Chl
1496



17012
P.mU.fU.A.A.fC.A.fU.fU.fC.fU.fU.fC.A*A*A*fC*fC*A*G
1497





17360
17013
G.A.mU.A.G.mC.A.mU.mC.mU.mU.A.A.Chl
1498



17015
P.mU.fU.A.A.G.A.fU.G.fC.fU.A.fU.fC*fU*G*A*fU*G*A
1499





17361
17014
A.G.A.mU.A.G.mC.A.mU.mC.mU.mU.A.A.Chl
1500



17015
P.mU.fU.A.A.G.A.fU.G.fC.fU.A.fU.fC*fU*G*A*fU*G*A
1501





17362
17016
mU.G.A.A.G.mU.G.mU.A.A.mU.mU.A.Chl
1502



17017
P.mU.A.A.fU.fU.A.fC.A.fC.fU.fU.fC.A*A*A*fU*A*G*C
1503





17363
17018
A.A.mU.mU.G.A.G.A.A.G.G.A.A.Chl
1504



17019
P.mU.fU.fC.fC.fU.fU.fC.fU.fC.A.A.fU.fU*A*fC*A*fC*fU*U
1505





17364
17020
mU.mU.G.A.G.A.A.G.G.A.A.A.A.Chl
1506



17021
P.mU.fU.fU.fU.fC.fC.fU.fU.fC.fU.fC.A.A*fU*fU*A*fC*A*C
1507





17365
17022
mC.A.mU.mU.mC.mU.G.A.mU.mU.mC.G.A.Chl
1508



17023
P.mU.fC.G.A.A.fU.fC.A.G.A.A.fU.G*fU*fC*A*G*A*G
1509





17366
17024
mU.mU.mC.mU.G.A.mU.mU.mC.G.A.A.A.Chl
1510



17025
P.mU.fU.fU.fC.G.A.A.fU.fC.A.G.A.A*fU*G*fU*fC*A*G
1511





17367
17026
mC.mU.G.mU.mC.G.A.mU.mU.A.G.A.A.Chl
1512



17027
P.mU.fU.fC.fU.A.A.fU.fC.G.A.fC.A.G*G*A*fU*fU*fC*C
1513





17368
17028
mU.mU.mU.G.mC.mC.mU.G.mU.A.A.mC.A.Chl
1514



17030
P.mU.G.fU.fU.A.fC.A.G.G.fC.A.A.A*fU*fU*fC*A*fC*U
1515





17369
17029
A.mU.mU.mU.G.mC.mC.mU.G.mU.A.A.mC.A.Chl
1516



17030
P.mU.G.fU.fU.A.fC.A.G.G.fC.A.A.A*fU*fU*fC*A*fC*U
1517





17370
17031
A.mC.A.A.G.mC.mC.A.G.A.mU.mU.A.Chl
1518



17033
P.mU.A.A.fU.fC.fU.G.G.fC.fU.fU.G.fU*fU*A*fC*A*G*G
1519





17371
17032
“A.A.mC.A.A.G.mC.mC.A.G.A.mU.mU.A.Chl
1520



17033
P.mU.A.A.fU.fC.fU.G.G.fC.fU.fU.G.fU*fU*A*fC*A*G*G
1521





17372
17034
mC.A.G.mU.mU.mU.A.mU.mU.mU.G.mU.A.Chl
1522



17035
P.mU.A.fC.A.A.A.fU.A.A.A.fC.fU.G*fU*fC*fC*G*A*A
1523





17373
17036
mU.G.mU.mU.G.A.G.A.G.mU.G.mU.A.Chl
1524



17038
P.mU.A.fC.A.fC.fU.fC.fU.fC.A.A.fC.A*A*A*fU*A*A*A
1525





17374
17037
mU.mU.G.mU.mU.G.A.G.A.G.mU.G.mU.A.Chl
1526



17038
P.mU.A.fC.A.fC.fU.fC.fU.fC.A.A.fC.A*A*A*fU*A*A*A
1527





17375
17039
mU.G.mC.A.mC.mC.mU.mU.mU.mC.mU.A.A.Chl
1528



17041
P.mU.fU.A.G.A.A.A.G.G.fU.G.fC.A*A*A*fC*A*fU*G
1529





17376
17040
mU.mU.G.mC.A.mC.mC.mU.mU.mU.mC.mU.A.A.Chl
1530



17041
P.mU.fU.A.G.A.A.A.G.G.fU.G.fC.A*A*A*fC*A*fU*G
1531





17377
17042
mU.mU.G.A.G.mC.mU.mU.mU.mC.mU.G.A.Chl
1532



17043
P.mU.fC.A.G.A.A.A.G.fC.fU.fC.A.A*A*fC*fU*fU*G*A
1533





17378
17044
mU.G.A.G.A.G.mU.G.mU.G.A.mC.A.Chl
1534



17045
P.mU.G.fU.fC.A.fC.A.fC.fU.fC.fU.fC.A*A*fC*A*A*A*U
1535





17379
17046
A.G.mU.G.mU.G.A.mC.mC.A.A.A.A.Chl
1536



17048
P.mU.fU.fU.fU.G.G.fU.fC.A.fC.A.fC.fU*fC*fU*fC*A*A*C
1537





17380
17047
G.A.G.mU.G.mU.G.A.mC.mC.A.A.A.A.Chl
1538



17048
P.mU.fU.fU.fU.G.G.fU.fC.A.fC.A.fC.fU*fC*fU*fC*A*A*C
1539





17381
17049
G.mU.G.mU.G.A.mC.mC.A.A.A.A.A.Chl
1540



17050
P.mU.fU.fU.fU.fU.G.G.fU.fC.A.fC.A.fC*fU*fC*fU*fC*A*A
1541





17382
17051
mU.G.mU.G.A.mC.mC.A.A.A.A.G.A.Chl
1542



17053
P.mU.fC.fU.fU.fU.fU.G.G.fU.fC.A.fC.A*fC*fU*fC*fU*fC*A
1543





17383
17052
G.mU.G.mU.G.A.mC.mC.A.A.A.A.G.A.Chl
1544



17053
P.mU.fC.fU.fU.fU.fU.G.G.fU.fC.A.fC.A*fC*fU*fC*fU*fC*A
1545





17384
17054
G.mU.G.A.mC.mC.A.A.A.A.G.mU.A.Chl
1546



17055
P.mU.A.fC.fU.fU.fU.fU.G.G.fU.fC.A.fC*A*fC*fU*fC*fU*C
1547





17385
17056
G.A.mC.mC.A.A.A.A.G.mU.mU.A.A.Chl
1548



17057
P.mU.fU.A.A.fC.fU.fU.fU.fU.G.G.fU.fC*A*fC*A*fC*fU*C
1549





17386
17058
G.mC.A.mC.mC.mU.mU.mU.mC.mU.A.G.A.Chl
1550



17059
P.mU.fC.fU.A.G.A.A.A.G.G.fU.G.fC*A*A*A*fC*A*U
1551





17387
17060
mC.mC.mU.mU.mU.mC.mU.A.G.mU.mU.G.A.Chl
1552



17061
P.mU.fC.A.A.fC.fU.A.G.A.A.A.G.G*fU*G*fC*A*A*A
1553
















TABLE 11







Inhibition of gene expression with hCTGF ori sequences












Target Gene
Gene
Ref
SEQ ID
CTGF
% Expression


Duplex Name
Region
Pos
NO
Sense sequence
(0.1 nM)















14542
CDS
774
1554
UUUGGCCCAGACCCAACUAUGAUUA
96%





14543
CDS
776
1555
UGGCCCAGACCCAACUAUGAUUAGA
94%





14544
CDS
785
1556
CCCAACUAUGAUUAGAGCCAACUGA
55%





14545
CDS
786
1557
CCAACUAUGAUUAGAGCCAACUGCA
89%





14546
CDS
934
1558
CUUGCGAAGCUGACCUGGAAGAGAA
63%





14547
CDS
938
1559
CGAAGCUGACCUGGAAGAGAACAUA
70%





14548
CDS
940
1560
AAGCUGACCUGGAAGAGAACAUUAA
65%





14549
CDS
941
1561
AGCUGACCUGGAAGAGAACAUUAAA
81%





14550
CDS
943
1562
CUGACCUGGAAGAGAACAUUAAGAA
85%





14551
CDS
944
1563
UGACCUGGAAGAGAACAUUAAGAAA
61%





14552
CDS
945
1564
GACCUGGAAGAGAACAUUAAGAAGA
73%





14553
CDS
983
1565
CCGUACUCCCAAAAUCUCCAAGCCA
86%





14554
CDS
984
1566
CGUACUCCCAAAAUCUCCAAGCCUA
64%





14555
CDS
985
1567
GUACUCCCAAAAUCUCCAAGCCUAA
71%





14556
CDS
986
1568
UACUCCCAAAAUCUCCAAGCCUAUA
71%





14557
CDS
987
1569
ACUCCCAAAAUCUCCAAGCCUAUCA
84%





14558
CDS
988
1570
CUCCCAAAAUCUCCAAGCCUAUCAA
64%





14559
CDS
989
1571
UCCCAAAAUCUCCAAGCCUAUCAAA
64%





14560
CDS
990
1572
CCCAAAAUCUCCAAGCCUAUCAAGA
87%





14561
CDS
1002
1573
AAGCCUAUCAAGUUUGAGCUUUCUA
46%





14562
CDS
1003
1574
AGCCUAUCAAGUUUGAGCUUUCUGA
30%





14563
CDS
1004
1575
GCCUAUCAAGUUUGAGCUUUCUGGA
63%





14564
CDS
1008
1576
AUCAAGUUUGAGCUUUCUGGCUGCA
77%





14565
CDS
1025
1577
UGGCUGCACCAGCAUGAAGACAUAA
96%





14566
CDS
1028
1578
CUGCACCAGCAUGAAGACAUACCGA
79%





14567
CDS
1029
1579
UGCACCAGCAUGAAGACAUACCGAA
58%





14568
CDS
1033
1580
CCAGCAUGAAGACAUACCGAGCUAA
59%





14569
CDS
1035
1581
AGCAUGAAGACAUACCGAGCUAAAA
76%





14570
CDS
1036
1582
GCAUGAAGACAUACCGAGCUAAAUA
71%





14571
CDS
1050
1583
CGAGCUAAAUUCUGUGGAGUAUGUA
73%





14572
CDS
1051
1584
GAGCUAAAUUCUGUGGAGUAUGUAA
72%





14573
CDS
1053
1585
GCUAAAUUCUGUGGAGUAUGUACCA
87%





14574
CDS
1054
1586
CUAAAUUCUGUGGAGUAUGUACCGA
83%





14575
CDS
1135
1587
CUGACGGCGAGGUCAUGAAGAAGAA
77%





14576
CDS
1138
1588
ACGGCGAGGUCAUGAAGAAGAACAA
72%





14577
CDS
1139
1589
CGGCGAGGUCAUGAAGAAGAACAUA
85%





14578
CDS
1143
1590
GAGGUCAUGAAGAAGAACAUGAUGA
83%





14579
CDS
1145
1591
GGUCAUGAAGAAGAACAUGAUGUUA
91%





14580
CDS
1148
1592
CAUGAAGAAGAACAUGAUGUUCAUA
92%





14581
CDS
1157
1593
GAACAUGAUGUUCAUCAAGACCUGA
84%





14582
CDS
1161
1594
AUGAUGUUCAUCAAGACCUGUGCCA
92%





14583
CDS
1203
1595
GGAGACAAUGACAUCUUUGAAUCGA
62%





14584
CDS
1204
1596
GAGACAAUGACAUCUUUGAAUCGCA
56%





14585
CDS
1205
1597
AGACAAUGACAUCUUUGAAUCGCUA
30%





14586
CDS
1206
1598
GACAAUGACAUCUUUGAAUCGCUGA
47%





14587
CDS
1207
1599
ACAAUGACAUCUUUGAAUCGCUGUA
29%





14588
CDS
1208
1600
CAAUGACAUCUUUGAAUCGCUGUAA
50%





14589
CDS
1209
1601
AAUGACAUCUUUGAAUCGCUGUACA
39%





14590
CDS
1210
1602
AUGACAUCUUUGAAUCGCUGUACUA
44%





14591
CDS
1211
1603
UGACAUCUUUGAAUCGCUGUACUAA
39%





14592
CDS
1212
1604
GACAUCUUUGAAUCGCUGUACUACA
55%





14593
CDS
1213
1605
ACAUCUUUGAAUCGCUGUACUACAA
59%





14594
CDS
1216
1606
UCUUUGAAUCGCUGUACUACAGGAA
80%





14595
CDS
1217
1607
CUUUGAAUCGCUGUACUACAGGAAA
80%





14596
CDS
1223
1608
AUCGCUGUACUACAGGAAGAUGUAA
59%





14597
CDS
1224
1609
UCGCUGUACUACAGGAAGAUGUACA
62%





14598
CDS
1239
1610
AAGAUGUACGGAGACAUGGCAUGAA
59%





14599
CDS
1253
1611
CAUGGCAUGAAGCCAGAGAGUGAGA
65%





14600
3UTR
1266
1612
CAGAGAGUGAGAGACAUUAACUCAA
43%





14601
3UTR
1267
1613
AGAGAGUGAGAGACAUUAACUCAUA
25%





14602
3UTR
1268
1614
GAGAGUGAGAGACAUUAACUCAUUA
33%





14603
3UTR
1269
1615
AGAGUGAGAGACAUUAACUCAUUAA
42%





14604
3UTR
1270
1616
GAGUGAGAGACAUUAACUCAUUAGA
28%





14605
3UTR
1271
1617
AGUGAGAGACAUUAACUCAUUAGAA
34%





14606
3UTR
1272
1618
GUGAGAGACAUUAACUCAUUAGACA
30%





14607
3UTR
1273
1619
UGAGAGACAUUAACUCAUUAGACUA
33%





14608
3UTR
1275
1620
AGAGACAUUAACUCAUUAGACUGGA
42%





14609
3UTR
1277
1621
AGACAUUAACUCAUUAGACUGGAAA
25%





14610
3UTR
1278
1622
GACAUUAACUCAUUAGACUGGAACA
31%





14611
3UTR
1279
1623
ACAUUAACUCAUUAGACUGGAACUA
32%





14612
3UTR
1281
1624
AUUAACUCAUUAGACUGGAACUUGA
23%





14613
3UTR
1284
1625
AACUCAUUAGACUGGAACUUGAACA
39%





14614
3UTR
1285
1626
ACUCAUUAGACUGGAACUUGAACUA
30%





14615
3UTR
1286
1627
CUCAUUAGACUGGAACUUGAACUGA
43%





14616
3UTR
1287
1628
UCAUUAGACUGGAACUUGAACUGAA
26%





14617
3UTR
1291
1629
UAGACUGGAACUUGAACUGAUUCAA
33%





14618
3UTR
1293
1630
GACUGGAACUUGAACUGAUUCACAA
43%





14619
3UTR
1294
1631
ACUGGAACUUGAACUGAUUCACAUA
28%





14620
3UTR
1295
1632
CUGGAACUUGAACUGAUUCACAUCA
41%





14621
3UTR
1296
1633
UGGAACUUGAACUGAUUCACAUCUA
34%





14622
3UTR
1298
1634
GAACUUGAACUGAUUCACAUCUCAA
31%





14623
3UTR
1299
1635
AACUUGAACUGAUUCACAUCUCAUA
31%





14624
3UTR
1300
1636
ACUUGAACUGAUUCACAUCUCAUUA
33%





14625
3UTR
1301
1637
CUUGAACUGAUUCACAUCUCAUUUA
28%





14626
3UTR
1326
1638
UCCGUAAAAAUGAUUUCAGUAGCAA
30%





14627
3UTR
1332
1639
AAAAUGAUUUCAGUAGCACAAGUUA
28%





14628
3UTR
1395
1640
CCCAAUUCAAAACAUUGUGCCAUGA
63%





14629
3UTR
1397
1641
CAAUUCAAAACAUUGUGCCAUGUCA
39%





14630
3UTR
1402
1642
CAAAACAUUGUGCCAUGUCAAACAA
34%





14631
3UTR
1408
1643
AUUGUGCCAUGUCAAACAAAUAGUA
33%





14632
3UTR
1409
1644
UUGUGCCAUGUCAAACAAAUAGUCA
33%





14633
3UTR
1412
1645
UGCCAUGUCAAACAAAUAGUCUAUA
36%





14634
3UTR
1416
1646
AUGUCAAACAAAUAGUCUAUCAACA
30%





14635
3UTR
1435
1647
UCAACCCCAGACACUGGUUUGAAGA
39%





14636
3UTR
1436
1648
CAACCCCAGACACUGGUUUGAAGAA
47%





14637
3UTR
1438
1649
ACCCCAGACACUGGUUUGAAGAAUA
45%





14638
3UTR
1439
1650
CCCCAGACACUGGUUUGAAGAAUGA
40%





14639
3UTR
1442
1651
CAGACACUGGUUUGAAGAAUGUUAA
21%





14640
3UTR
1449
1652
UGGUUUGAAGAAUGUUAAGACUUGA
22%





14641
3UTR
1453
1653
UUGAAGAAUGUUAAGACUUGACAGA
24%





14642
3UTR
1454
1654
UGAAGAAUGUUAAGACUUGACAGUA
37%





14643
3UTR
1462
1655
GUUAAGACUUGACAGUGGAACUACA
20%





14644
3UTR
1470
1656
UUGACAGUGGAACUACAUUAGUACA
30%





14645
3UTR
1471
1657
UGACAGUGGAACUACAUUAGUACAA
43%





14646
3UTR
1474
1658
CAGUGGAACUACAUUAGUACACAGA
36%





14647
3UTR
1475
1659
AGUGGAACUACAUUAGUACACAGCA
38%





14648
3UTR
1476
1660
GUGGAACUACAUUAGUACACAGCAA
35%





14649
3UTR
1477
1661
UGGAACUACAUUAGUACACAGCACA
34%





14650
3UTR
1478
1662
GGAACUACAUUAGUACACAGCACCA
33%





14651
3UTR
1479
1663
GAACUACAUUAGUACACAGCACCAA
39%





14652
3UTR
1480
1664
AACUACAUUAGUACACAGCACCAGA
27%





14653
3UTR
1481
1665
ACUACAUUAGUACACAGCACCAGAA
29%





14654
3UTR
1482
1666
CUACAUUAGUACACAGCACCAGAAA
38%





14655
3UTR
1483
1667
UACAUUAGUACACAGCACCAGAAUA
28%





14656
3UTR
1484
1668
ACAUUAGUACACAGCACCAGAAUGA
31%





14657
3UTR
1486
1669
AUUAGUACACAGCACCAGAAUGUAA
26%





14658
3UTR
1487
1670
UUAGUACACAGCACCAGAAUGUAUA
31%





14659
3UTR
1489
1671
AGUACACAGCACCAGAAUGUAUAUA
35%





14660
3UTR
1490
1672
GUACACAGCACCAGAAUGUAUAUUA
34%





14661
3UTR
1497
1673
GCACCAGAAUGUAUAUUAAGGUGUA
32%





14662
3UTR
1503
1674
GAAUGUAUAUUAAGGUGUGGCUUUA
42%





14663
3UTR
1539
1675
AGGGUACCAGCAGAAAGGUUAGUAA
28%





14664
3UTR
1543
1676
UACCAGCAGAAAGGUUAGUAUCAUA
29%





14665
3UTR
1544
1677
ACCAGCAGAAAGGUUAGUAUCAUCA
33%





14666
3UTR
1548
1678
GCAGAAAGGUUAGUAUCAUCAGAUA
34%





14667
3UTR
1557
1679
UUAGUAUCAUCAGAUAGCAUCUUAA
22%





14668
3UTR
1576
1680
UCUUAUACGAGUAAUAUGCCUGCUA
48%





14669
3UTR
1577
1681
CUUAUACGAGUAAUAUGCCUGCUAA
31%





14670
3UTR
1579
1682
UAUACGAGUAAUAUGCCUGCUAUUA
43%





14671
3UTR
1580
1683
AUACGAGUAAUAUGCCUGCUAUUUA
39%





14672
3UTR
1581
1684
UACGAGUAAUAUGCCUGCUAUUUGA
33%





14673
3UTR
1582
1685
ACGAGUAAUAUGCCUGCUAUUUGAA
40%





14674
3UTR
1584
1686
GAGUAAUAUGCCUGCUAUUUGAAGA
38%





14675
3UTR
1585
1687
AGUAAUAUGCCUGCUAUUUGAAGUA
24%





14676
3UTR
1586
1688
GUAAUAUGCCUGCUAUUUGAAGUGA
34%





14677
3UTR
1587
1689
UAAUAUGCCUGCUAUUUGAAGUGUA
26%





14678
3UTR
1589
1690
AUAUGCCUGCUAUUUGAAGUGUAAA
26%





14679
3UTR
1591
1691
AUGCCUGCUAUUUGAAGUGUAAUUA
25%





14680
3UTR
1596
1692
UGCUAUUUGAAGUGUAAUUGAGAAA
36%





14681
3UTR
1599
1693
UAUUUGAAGUGUAAUUGAGAAGGAA
22%





14682
3UTR
1600
1694
AUUUGAAGUGUAAUUGAGAAGGAAA
22%





14683
3UTR
1601
1695
UUUGAAGUGUAAUUGAGAAGGAAAA
19%





14684
3UTR
1609
1696
GUAAUUGAGAAGGAAAAUUUUAGCA
53%





14685
3UTR
1610
1697
UAAUUGAGAAGGAAAAUUUUAGCGA
55%





14686
3UTR
1611
1698
AAUUGAGAAGGAAAAUUUUAGCGUA
20%





14687
3UTR
1612
1699
AUUGAGAAGGAAAAUUUUAGCGUGA
23%





14688
3UTR
1613
1700
UUGAGAAGGAAAAUUUUAGCGUGCA
37%





14689
3UTR
1614
1701
UGAGAAGGAAAAUUUUAGCGUGCUA
31%





14690
3UTR
1619
1702
AGGAAAAUUUUAGCGUGCUCACUGA
46%





14691
3UTR
1657
1703
CCAGUGACAGCUAGGAUGUGCAUUA
42%





14692
3UTR
1661
1704
UGACAGCUAGGAUGUGCAUUCUCCA
39%





14693
3UTR
1682
1705
UCCAGCCAUCAAGAGACUGAGUCAA
53%





14694
3UTR
1685
1706
AGCCAUCAAGAGACUGAGUCAAGUA
71%





14695
3UTR
1686
1707
GCCAUCAAGAGACUGAGUCAAGUUA
54%





14696
3UTR
1687
1708
CCAUCAAGAGACUGAGUCAAGUUGA
71%





14697
3UTR
1688
1709
CAUCAAGAGACUGAGUCAAGUUGUA
74%





14698
3UTR
1689
1710
AUCAAGAGACUGAGUCAAGUUGUUA
61%





14699
3UTR
1690
1711
UCAAGAGACUGAGUCAAGUUGUUCA
59%





14700
3UTR
1691
1712
CAAGAGACUGAGUCAAGUUGUUCCA
73%





14701
3UTR
1692
1713
AAGAGACUGAGUCAAGUUGUUCCUA
78%





14702
3UTR
1693
1714
AGAGACUGAGUCAAGUUGUUCCUUA
60%





14703
3UTR
1695
1715
AGACUGAGUCAAGUUGUUCCUUAAA
63%





14704
3UTR
1696
1716
GACUGAGUCAAGUUGUUCCUUAAGA
92%





14705
3UTR
1697
1717
ACUGAGUCAAGUUGUUCCUUAAGUA
74%





14706
3UTR
1707
1718
GUUGUUCCUUAAGUCAGAACAGCAA
70%





14707
3UTR
1724
1719
AACAGCAGACUCAGCUCUGACAUUA
69%





14708
3UTR
1725
1720
ACAGCAGACUCAGCUCUGACAUUCA
67%





14709
3UTR
1726
1721
CAGCAGACUCAGCUCUGACAUUCUA
71%





14710
3UTR
1727
1722
AGCAGACUCAGCUCUGACAUUCUGA
73%





14711
3UTR
1728
1723
GCAGACUCAGCUCUGACAUUCUGAA
60%





14712
3UTR
1729
1724
CAGACUCAGCUCUGACAUUCUGAUA
72%





14713
3UTR
1732
1725
ACUCAGCUCUGACAUUCUGAUUCGA
24%





14714
3UTR
1733
1726
CUCAGCUCUGACAUUCUGAUUCGAA
32%





14715
3UTR
1734
1727
UCAGCUCUGACAUUCUGAUUCGAAA
23%





14716
3UTR
1735
1728
CAGCUCUGACAUUCUGAUUCGAAUA
27%





14717
3UTR
1736
1729
AGCUCUGACAUUCUGAUUCGAAUGA
38%





14718
3UTR
1739
1730
UCUGACAUUCUGAUUCGAAUGACAA
28%





14719
3UTR
1741
1731
UGACAUUCUGAUUCGAAUGACACUA
29%





14720
3UTR
1742
1732
GACAUUCUGAUUCGAAUGACACUGA
33%





14721
3UTR
1743
1733
ACAUUCUGAUUCGAAUGACACUGUA
28%





14722
3UTR
1747
1734
UCUGAUUCGAAUGACACUGUUCAGA
39%





14723
3UTR
1748
1735
CUGAUUCGAAUGACACUGUUCAGGA
36%





14724
3UTR
1750
1736
GAUUCGAAUGACACUGUUCAGGAAA
33%





14725
3UTR
1751
1737
AUUCGAAUGACACUGUUCAGGAAUA
30%





14726
3UTR
1759
1738
GACACUGUUCAGGAAUCGGAAUCCA
34%





14727
3UTR
1760
1739
ACACUGUUCAGGAAUCGGAAUCCUA
35%





14728
3UTR
1761
1740
CACUGUUCAGGAAUCGGAAUCCUGA
40%





14729
3UTR
1768
1741
CAGGAAUCGGAAUCCUGUCGAUUAA
34%





14730
3UTR
1769
1742
AGGAAUCGGAAUCCUGUCGAUUAGA
31%





14731
3UTR
1770
1743
GGAAUCGGAAUCCUGUCGAUUAGAA
24%





14732
3UTR
1771
1744
GAAUCGGAAUCCUGUCGAUUAGACA
32%





14733
3UTR
1772
1745
AAUCGGAAUCCUGUCGAUUAGACUA
29%





14734
3UTR
1774
1746
UCGGAAUCCUGUCGAUUAGACUGGA
34%





14735
3UTR
1777
1747
GAAUCCUGUCGAUUAGACUGGACAA
51%





14736
3UTR
1782
1748
CUGUCGAUUAGACUGGACAGCUUGA
88%





14737
3UTR
1783
1749
UGUCGAUUAGACUGGACAGCUUGUA
38%





14738
3UTR
1797
1750
GACAGCUUGUGGCAAGUGAAUUUGA
46%





14739
3UTR
1798
1751
ACAGCUUGUGGCAAGUGAAUUUGCA
52%





14740
3UTR
1800
1752
AGCUUGUGGCAAGUGAAUUUGCCUA
43%





14741
3UTR
1801
1753
GCUUGUGGCAAGUGAAUUUGCCUGA
51%





14742
3UTR
1802
1754
CUUGUGGCAAGUGAAUUUGCCUGUA
32%





14743
3UTR
1803
1755
UUGUGGCAAGUGAAUUUGCCUGUAA
31%





14744
3UTR
1804
1756
UGUGGCAAGUGAAUUUGCCUGUAAA
29%





14745
3UTR
1805
1757
GUGGCAAGUGAAUUUGCCUGUAACA
20%





14746
3UTR
1806
1758
UGGCAAGUGAAUUUGCCUGUAACAA
34%





14747
3UTR
1807
1759
GGCAAGUGAAUUUGCCUGUAACAAA
31%





14748
3UTR
1808
1760
GCAAGUGAAUUUGCCUGUAACAAGA
27%





14749
3UTR
1809
1761
CAAGUGAAUUUGCCUGUAACAAGCA
34%





14750
3UTR
1810
1762
AAGUGAAUUUGCCUGUAACAAGCCA
36%





14751
3UTR
1811
1763
AGUGAAUUUGCCUGUAACAAGCCAA
31%





14752
3UTR
1814
1764
GAAUUUGCCUGUAACAAGCCAGAUA
24%





14753
3UTR
1815
1765
AAUUUGCCUGUAACAAGCCAGAUUA
21%





14754
3UTR
1816
1766
AUUUGCCUGUAACAAGCCAGAUUUA
22%





14755
3UTR
1910
1767
AAGUUAAUUUAAAGUUGUUUGUGCA
58%





14756
3UTR
1911
1768
AGUUAAUUUAAAGUUGUUUGUGCCA
73%





14757
3UTR
1912
1769
GUUAAUUUAAAGUUGUUUGUGCCUA
64%





14758
3UTR
1957
1770
UUUGAUAUUUCAAUGUUAGCCUCAA
42%





14759
3UTR
1961
1771
AUAUUUCAAUGUUAGCCUCAAUUUA
30%





14760
3UTR
1971
1772
GUUAGCCUCAAUUUCUGAACACCAA
34%





14761
3UTR
1974
1773
AGCCUCAAUUUCUGAACACCAUAGA
35%





14762
3UTR
1975
1774
GCCUCAAUUUCUGAACACCAUAGGA
33%





14763
3UTR
1976
1775
CCUCAAUUUCUGAACACCAUAGGUA
39%





14764
3UTR
1977
1776
CUCAAUUUCUGAACACCAUAGGUAA
27%





14765
3UTR
1978
1777
UCAAUUUCUGAACACCAUAGGUAGA
31%





14766
3UTR
1979
1778
CAAUUUCUGAACACCAUAGGUAGAA
49%





14767
3UTR
1980
1779
AAUUUCUGAACACCAUAGGUAGAAA
46%





14768
3UTR
1981
1780
AUUUCUGAACACCAUAGGUAGAAUA
40%





14769
3UTR
1982
1781
UUUCUGAACACCAUAGGUAGAAUGA
47%





14770
3UTR
1985
1782
CUGAACACCAUAGGUAGAAUGUAAA
33%





14771
3UTR
1986
1783
UGAACACCAUAGGUAGAAUGUAAAA
35%





14772
3UTR
1987
1784
GAACACCAUAGGUAGAAUGUAAAGA
31%





14773
3UTR
1988
1785
AACACCAUAGGUAGAAUGUAAAGCA
30%





14774
3UTR
1989
1786
ACACCAUAGGUAGAAUGUAAAGCUA
32%





14775
3UTR
1991
1787
ACCAUAGGUAGAAUGUAAAGCUUGA
31%





14776
3UTR
1992
1788
CCAUAGGUAGAAUGUAAAGCUUGUA
34%





14777
3UTR
1993
1789
CAUAGGUAGAAUGUAAAGCUUGUCA
31%





14778
3UTR
1994
1790
AUAGGUAGAAUGUAAAGCUUGUCUA
28%





14779
3UTR
1996
1791
AGGUAGAAUGUAAAGCUUGUCUGAA
32%





14780
3UTR
2002
1792
AAUGUAAAGCUUGUCUGAUCGUUCA
34%





14781
3UTR
2017
1793
UGAUCGUUCAAAGCAUGAAAUGGAA
31%





14782
3UTR
2021
1794
CGUUCAAAGCAUGAAAUGGAUACUA
39%





14783
3UTR
2022
1795
GUUCAAAGCAUGAAAUGGAUACUUA
25%





14784
3UTR
2023
1796
UUCAAAGCAUGAAAUGGAUACUUAA
22%





14785
3UTR
2047
1797
UAUGGAAAUUCUGCUCAGAUAGAAA
39%





14786
3UTR
2048
1798
AUGGAAAUUCUGCUCAGAUAGAAUA
35%





14787
3UTR
2059
1799
GCUCAGAUAGAAUGACAGUCCGUCA
44%





14788
3UTR
2060
1800
CUCAGAUAGAAUGACAGUCCGUCAA
41%





14789
3UTR
2062
1801
CAGAUAGAAUGACAGUCCGUCAAAA
46%





14790
3UTR
2063
1802
AGAUAGAAUGACAGUCCGUCAAAAA
45%





14791
3UTR
2065
1803
AUAGAAUGACAGUCCGUCAAAACAA
41%





14792
3UTR
2067
1804
AGAAUGACAGUCCGUCAAAACAGAA
36%





14793
3UTR
2068
1805
GAAUGACAGUCCGUCAAAACAGAUA
40%





14794
3UTR
2113
1806
AGUGUCCUUGGCAGGCUGAUUUCUA
42%





14795
3UTR
2114
1807
GUGUCCUUGGCAGGCUGAUUUCUAA
42%





14796
3UTR
2118
1808
CCUUGGCAGGCUGAUUUCUAGGUAA
111%





14797
3UTR
2127
1809
GCUGAUUUCUAGGUAGGAAAUGUGA
44%





14798
3UTR
2128
1810
CUGAUUUCUAGGUAGGAAAUGUGGA
44%





14799
3UTR
2130
1811
GAUUUCUAGGUAGGAAAUGUGGUAA
46%





14800
3UTR
2131
1812
AUUUCUAGGUAGGAAAUGUGGUAGA
45%





14801
3UTR
2142
1813
GGAAAUGUGGUAGCCUCACUUUUAA
37%





14802
3UTR
2146
1814
AUGUGGUAGCCUCACUUUUAAUGAA
39%





14803
3UTR
2149
1815
UGGUAGCCUCACUUUUAAUGAACAA
40%





14804
3UTR
2154
1816
GCCUCACUUUUAAUGAACAAAUGGA
35%





14805
3UTR
2155
1817
CCUCACUUUUAAUGAACAAAUGGCA
41%





14806
3UTR
2181
1818
UUAUUAAAAACUGAGUGACUCUAUA
26%





14807
3UTR
2182
1819
UAUUAAAAACUGAGUGACUCUAUAA
29%





14808
3UTR
2183
1820
AUUAAAAACUGAGUGACUCUAUAUA
28%





14809
3UTR
2186
1821
AAAAACUGAGUGACUCUAUAUAGCA
31%





14810
3UTR
2187
1822
AAAACUGAGUGACUCUAUAUAGCUA
28%





14811
3UTR
2188
1823
AAACUGAGUGACUCUAUAUAGCUGA
38%





14812
3UTR
2189
1824
AACUGAGUGACUCUAUAUAGCUGAA
44%





14813
3UTR
2190
1825
ACUGAGUGACUCUAUAUAGCUGAUA
38%





14814
3UTR
2255
1826
ACUGUUUUUCGGACAGUUUAUUUGA
29%





14815
3UTR
2256
1827
CUGUUUUUCGGACAGUUUAUUUGUA
25%





14816
3UTR
2263
1828
UCGGACAGUUUAUUUGUUGAGAGUA
29%





14817
3UTR
2265
1829
GGACAGUUUAUUUGUUGAGAGUGUA
24%





14818
3UTR
2268
1830
CAGUUUAUUUGUUGAGAGUGUGACA
26%





14819
3UTR
2269
1831
AGUUUAUUUGUUGAGAGUGUGACCA
37%





14820
3UTR
2272
1832
UUAUUUGUUGAGAGUGUGACCAAAA
27%





14821
3UTR
2273
1833
UAUUUGUUGAGAGUGUGACCAAAAA
30%





14822
3UTR
2274
1834
AUUUGUUGAGAGUGUGACCAAAAGA
26%





14823
3UTR
2275
1835
UUUGUUGAGAGUGUGACCAAAAGUA
27%





14824
3UTR
2276
1836
UUGUUGAGAGUGUGACCAAAAGUUA
30%





14825
3UTR
2277
1837
UGUUGAGAGUGUGACCAAAAGUUAA
29%





14826
3UTR
2278
1838
GUUGAGAGUGUGACCAAAAGUUACA
33%





14827
3UTR
2279
1839
UUGAGAGUGUGACCAAAAGUUACAA
35%





14828
3UTR
2281
1840
GAGAGUGUGACCAAAAGUUACAUGA
36%





14829
3UTR
2282
1841
AGAGUGUGACCAAAAGUUACAUGUA
36%





14830
3UTR
2283
1842
GAGUGUGACCAAAAGUUACAUGUUA
33%





14831
3UTR
2284
1843
AGUGUGACCAAAAGUUACAUGUUUA
31%





14832
3UTR
2285
1844
GUGUGACCAAAAGUUACAUGUUUGA
22%





14833
3UTR
2286
1845
UGUGACCAAAAGUUACAUGUUUGCA
40%





14834
3UTR
2293
1846
AAAAGUUACAUGUUUGCACCUUUCA
24%





14835
3UTR
2295
1847
AAGUUACAUGUUUGCACCUUUCUAA
23%





14836
3UTR
2296
1848
AGUUACAUGUUUGCACCUUUCUAGA
29%





14837
3UTR
2299
1849
UACAUGUUUGCACCUUUCUAGUUGA
27%





14838
3UTR
2300
1850
ACAUGUUUGCACCUUUCUAGUUGAA
29%





14839
3UTR
2301
1851
CAUGUUUGCACCUUUCUAGUUGAAA
35%






















Key:




















PS
* =
Phosphothioate Backbone Linkage



RNA
G =
Guanine



RNA
U =
Uracil



RNA
C =
Cytosine



RNA
A =
Adenine




m
2′ Omethyl




f
2′-Fluoro



Phosphate
P
5′ Phosphate

















TABLE 12







Inhibition of gene expression with CTGF ori sequences (Accession


Number: NM_001901.2)
















25-mer Sense Strand (position 25







of SS, replaced with A)






25-mer Sense Strand (position 25


Oligo
Gene
Ref
SEQ ID
of SS, original base,
A549 0.1 nM


ID
Region
Pos
NO
not replaced by A)
Activity















13843
CDS
1047
1852
UACCGAGCUAAAUUCUGUGGAGUAU
113%





13844
3UTR
2164
1853
UAAUGAACAAAUGGCCUUUAUUAAA
61%





13845
3UTR
1795
1854
UGGACAGCUUGUGGCAAGUGAAUUU
99%





13846
CDS
1228
1855
UGUACUACAGGAAGAUGUACGGAGA
87%





13847
CDS
1146
1856
GUCAUGAAGAAGAACAUGAUGUUCA
98%





13848
CDS
1150
1857
UGAAGAAGAACAUGAUGUUCAUCAA
105%





13849
CDS
1218
1858
UUUGAAUCGCUGUACUACAGGAAGA
91%





13850
3UTR
2262
1859
UUCGGACAGUUUAUUUGUUGAGAGU
50%





13851
CDS
1147
1860
UCAUGAAGAAGAACAUGAUGUUCAU
104%





13852
3UTR
2163
1861
UUAAUGAACAAAUGGCCUUUAUUAA
54%





13853
3UTR
1414
1862
CCAUGUCAAACAAAUAGUCUAUCAA
35%





13854
CDS
1195
1863
ACUGUCCCGGAGACAAUGACAUCUU
103%





13855
3UTR
1788
1864
AUUAGACUGGACAGCUUGUGGCAAG
103%





13856
3UTR
1793
1865
ACUGGACAGCUUGUGGCAAGUGAAU
81%





13857
3UTR
1891
1866
UAUAUAUGUACAGUUAUCUAAGUUA
73%





13858
3UTR
2270
1867
GUUUAUUUGUUGAGAGUGUGACCAA
76%





13859

482
1868
CAAGAUCGGCGUGUGCACCGCCAAA
95%





13860
CDS
942
1869
GCUGACCUGGAAGAGAACAUUAAGA
93%





13861
CDS
1199
1870
UCCCGGAGACAAUGACAUCUUUGAA
83%





13862
3UTR
2258
1871
GUUUUUCGGACAGUUUAUUUGUUGA
40%





13863
CDS
1201
1872
CCGGAGACAAUGACAUCUUUGAAUC
123%





13864
CDS
543
1873
CGCAGCGGAGAGUCCUUCCAGAGCA
124%





13865
3UTR
1496
1874
AGCACCAGAAUGUAUAUUAAGGUGU
109%





13866
CDS
793
1875
UGAUUAGAGCCAACUGCCUGGUCCA
125%





13867
CDS
1198
1876
GUCCCGGAGACAAUGACAUCUUUGA
64%





13868
3UTR
2160
1877
CUUUUAAUGAACAAAUGGCCUUUAU
68%





13869
CDS
1149
1878
AUGAAGAAGAACAUGAUGUUCAUCA
107%





13870
CDS
1244
1879
GUACGGAGACAUGGCAUGAAGCCAG
107%





13871
3UTR
1495
1880
CAGCACCAGAAUGUAUAUUAAGGUG
77%





13872

475
1881
CCAACCGCAAGAUCGGCGUGUGCAC
113%





13873
CDS
806
1882
CUGCCUGGUCCAGACCACAGAGUGG
113%





13874
CDS
819
1883
ACCACAGAGUGGAGCGCCUGUUCCA
99%





13875
CDS
1221
1884
GAAUCGCUGUACUACAGGAAGAUGU
97%





13876
CDS
1152
1885
AAGAAGAACAUGAUGUUCAUCAAGA
121%





13877
CDS
1163
1886
GAUGUUCAUCAAGACCUGUGCCUGC
125%





13878
3UTR
1494
1887
ACAGCACCAGAAUGUAUAUUAAGGU
94%





13879
3UTR
1890
1888
AUAUAUAUGUACAGUUAUCUAAGUU
94%





13880

473
1889
GGCCAACCGCAAGAUCGGCGUGUGC
122%





13881

544
1890
GCAGCGGAGAGUCCUUCCAGAGCAG
111%





13882
CDS
883
1891
ACAACGCCUCCUGCAGGCUAGAGAA
105%





13883
CDS
1240
1892
AGAUGUACGGAGACAUGGCAUGAAG
99%





13884
CDS
1243
1893
UGUACGGAGACAUGGCAUGAAGCCA
116%





13885
3UTR
2266
1894
GACAGUUUAUUUGUUGAGAGUGUGA
53%





13886
CDS
1011
1895
AAGUUUGAGCUUUCUGGCUGCACCA
118%





13887
CDS
1020
1896
CUUUCUGGCUGCACCAGCAUGAAGA
110%





13888
CDS
1168
1897
UCAUCAAGACCUGUGCCUGCCAUUA
119%





13889

1415
1898
CAUGUCAAACAAAUAGUCUAUCAAC
64%





13890
3UTR
1792
1899
GACUGGACAGCUUGUGGCAAGUGAA
53%





13891
3UTR
2156
1900
CUCACUUUUAAUGAACAAAUGGCCU
119%





13892

379
1901
GCUGCCGCGUCUGCGCCAAGCAGCU
112%





13893
CDS
1229
1902
GUACUACAGGAAGAUGUACGGAGAC
112%





13894
3UTR
1791
1903
AGACUGGACAGCUUGUGGCAAGUGA
65%





13895
3UTR
2158
1904
CACUUUUAAUGAACAAAUGGCCUUU
76%





13896

488
1905
CGGCGUGUGCACCGCCAAAGAUGGU
89%





13897
CDS
1151
1906
GAAGAAGAACAUGAUGUUCAUCAAG
119%





13898
CDS
1156
1907
AGAACAUGAUGUUCAUCAAGACCUG
125%





13899
CDS
1237
1908
GGAAGAUGUACGGAGACAUGGCAUG
114%





13900
CDS
1202
1909
CGGAGACAAUGACAUCUUUGAAUCG
130%





13901
CDS
1236
1910
AGGAAGAUGUACGGAGACAUGGCAU
135%





13902
3UTR
1786
1911
CGAUUAGACUGGACAGCUUGUGGCA
119%





13903
3UTR
1789
1912
UUAGACUGGACAGCUUGUGGCAAGU
108%





13904
3UTR
2290
1913
ACCAAAAGUUACAUGUUUGCACCUU
90%





13905
CDS
1017
1914
GAGCUUUCUGGCUGCACCAGCAUGA
121%





13906
CDS
1197
1915
UGUCCCGGAGACAAUGACAUCUUUG
125%





13907
CDS
1219
1916
UUGAAUCGCUGUACUACAGGAAGAU
98%





13908
3UTR
2159
1917
ACUUUUAAUGAACAAAUGGCCUUUA
52%





13909

486
1918
AUCGGCGUGUGCACCGCCAAAGAUG
119%





13910
CDS
826
1919
AGUGGAGCGCCUGUUCCAAGACCUG
139%





13911
CDS
1022
1920
UUCUGGCUGCACCAGCAUGAAGACA
144%





13912
3UTR
1492
1921
ACACAGCACCAGAAUGUAUAUUAAG
99%





13913
3UTR
1781
1922
CCUGUCGAUUAGACUGGACAGCUUG
89%





13914

485
1923
GAUCGGCGUGUGCACCGCCAAAGAU
131%





13915
CDS
1007
1924
UAUCAAGUUUGAGCUUUCUGGCUGC
92%





13916
CDS
1242
1925
AUGUACGGAGACAUGGCAUGAAGCC
106%





13917
3UTR
1787
1926
GAUUAGACUGGACAGCUUGUGGCAA
104%





13918
3UTR
1889
1927
UAUAUAUAUGUACAGUUAUCUAAGU
78%





13919
3UTR
2294
1928
AAAGUUACAUGUUUGCACCUUUCUA
28%





13920
CDS
821
1929
CACAGAGUGGAGCGCCUGUUCCAAG
108%





13921
CDS
884
1930
CAACGCCUCCUGCAGGCUAGAGAAG
125%





13922
3UTR
2260
1931
UUUUCGGACAGUUUAUUUGUUGAGA
43%





13923
CDS
889
1932
CCUCCUGCAGGCUAGAGAAGCAGAG
95%





13924
CDS
1226
1933
GCUGUACUACAGGAAGAUGUACGGA
122%





13925
3UTR
1493
1934
CACAGCACCAGAAUGUAUAUUAAGG
88%





13926
3UTR
1799
1935
CAGCUUGUGGCAAGUGAAUUUGCCU
89%





13927
CDS
807
1936
UGCCUGGUCCAGACCACAGAGUGGA
101%





13928
CDS
1107
1937
ACCACCCUGCCGGUGGAGUUCAAGU
113%





13929
CDS
1155
1938
AAGAACAUGAUGUUCAUCAAGACCU
109%





13930
CDS
1169
1939
CAUCAAGACCUGUGCCUGCCAUUAC
89%





13931
CDS
1241
1940
GAUGUACGGAGACAUGGCAUGAAGC
96%





13932
3UTR
1794
1941
CUGGACAGCUUGUGGCAAGUGAAUU
73%





13933
3UTR
1888
1942
AUAUAUAUAUGUACAGUUAUCUAAG
98%





13934
3UTR
2289
1943
GACCAAAAGUUACAUGUUUGCACCU
77%





13935

373
1944
GCGGCUGCUGCCGCGUCUGCGCCAA
85%





13936
CDS
799
1945
GAGCCAACUGCCUGGUCCAGACCAC
126%





13937
CDS
802
1946
CCAACUGCCUGGUCCAGACCACAGA
122%





13938
CDS
1166
1947
GUUCAUCAAGACCUGUGCCUGCCAU
106%
















TABLE 13







Inhibition of gene expression with SPP1 sd-rxRNA sequences


(Accession Number: NM_000582.2)



















% remaining


Oligo
Start
SEQ ID

SEQ ID

expression (1


Number
Site
NO
Sense sequence
NO
Antisense sequence
uM A549)
















14084
1025
1948
CUCAUGAAUUAGA
1949
UCUAAUUCAUGAGAA
61%







AUAC





14085
1049
1950
CUGAGGUCAAUUA
1951
UAAUUGACCUCAGAA
50%







GAUG





14086
1051
1952
GAGGUCAAUUAAA
1953
UUUAAUUGACCUCAG
n/a







AAGA





14087
1048
1954
UCUGAGGUCAAUU
1955
AAUUGACCUCAGAAG
69%







AUGC





14088
1050
1956
UGAGGUCAAUUAA
1957
UUAAUUGACCUCAGA
76%







AGAU





14089
1047
1958
UUCUGAGGUCAAU
1959
AUUGACCUCAGAAGA
60%







UGCA





14090
800
1960
GUCAGCUGGAUGA
1961
UCAUCCAGCUGACUC
71%







GUUU





14091
492
1962
UUCUGAUGAAUCU
1963
AGAUUCAUCAGAAUG
n/a







GUGA





14092
612
1964
UGGACUGAGGUCA
1965
UGACCUCAGUCCAUA
n/a







AACC





14093
481
1966
GAGUCUCACCAUU
1967
AAUGGUGAGACUCAU
n/a







CAGA





14094
614
1968
GACUGAGGUCAAA
1969
UUUGACCUCAGUCCA
n/a







UAAA





14095
951
1970
UCACAGCCAUGAA
1971
UUCAUGGCUGUGAAA
89%







UUCA





14096
482
1972
AGUCUCACCAUUC
1973
GAAUGGUGAGACUCA
87%







UCAG





14097
856
1974
AAGCGGAAAGCCA
1975
UGGCUUUCCGCUUAU
88%







AUAA





14098
857
1976
AGCGGAAAGCCAA
1977
UUGGCUUUCCGCUUA
113%







UAUA





14099
365
1978
ACCACAUGGAUGA
1979
UCAUCCAUGUGGUCA
98%







UGGC





14100
359
1980
GCCAUGACCACAU
1981
AUGUGGUCAUGGCU
84%







UUCGU





14101
357
1982
AAGCCAUGACCAC
1983
GUGGUCAUGGCUUU
88%







CGUUG





14102
858
1984
GCGGAAAGCCAAU
1985
AUUGGCUUUCCGCUU
n/a







AUAU





14103
1012
1986
AAAUUUCGUAUUU
1987
AAAUACGAAAUUUCA
93%







GGUG





14104
1014
1988
AUUUCGUAUUUCU
1989
AGAAAUACGAAAUUU
89%







CAGG





14105
356
1990
AAAGCCAUGACCA
1991
UGGUCAUGGCUUUC
85%







GUUGG





14106
368
1992
ACAUGGAUGAUAU
1993
AUAUCAUCCAUGUGG
67%







UCAU





14107
1011
1994
GAAAUUUCGUAUU
1995
AAUACGAAAUUUCAG
87%







GUGU





14108
754
1996
GCGCCUUCUGAUU
1997
AAUCAGAAGGCGCGU
73%







UCAG





14109
1021
1998
AUUUCUCAUGAAU
1999
AUUCAUGAGAAAUAC
128%







GAAA





14110
1330
2000
CUCUCAUGAAUAG
2001
CUAUUCAUGAGAGAA
101%







UAAC





14111
346
2002
AAGUCCAACGAAA
2003
UUUCGUUGGACUUA
59%







CUUGG





14112
869
2004
AUGAUGAGAGCAA
2005
UUGCUCUCAUCAUUG
89%







GCUU





14113
701
2006
GCGAGGAGUUGAA
2007
UUCAACUCCUCGCUU
95%







UCCA





14114
896
2008
UGAUUGAUAGUCA
2009
UGACUAUCAAUCACA
87%







UCGG





14115
1035
2010
AGAUAGUGCAUCU
2011
AGAUGCACUAUCUAA
82%







UUCA





14116
1170
2012
AUGUGUAUCUAUU
2013
AAUAGAUACACAUUC
36%







AACC





14117
1282
2014
UUCUAUAGAAGAA
2015
UUCUUCUAUAGAAU
91%







GAACA





14118
1537
2016
UUGUCCAGCAAUU
2017
AAUUGCUGGACAACC
152%







GUGG





14119
692
2018
ACAUGGAAAGCGA
2019
UCGCUUUCCAUGUGU
n/a







GAGG





14120
840
2020
GCAGUCCAGAUUA
2021
UAAUCUGGACUGCUU
87%







GUGG





14121
1163
2022
UGGUUGAAUGUGU
2023
ACACAUUCAACCAAU
31%







AAAC





14122
789
2024
UUAUGAAACGAGU
2025
ACUCGUUUCAUAACU
96%







GUCC





14123
841
2026
CAGUCCAGAUUAU
2027
AUAAUCUGGACUGCU
110%







UGUG





14124
852
2028
AUAUAAGCGGAAA
2029
UUUCCGCUUAUAUAA
91%







UCUG





14125
209
2030
UACCAGUUAAACA
2031
UGUUUAACUGGUAU
110%







GGCAC





14126
1276
2032
UGUUCAUUCUAUA
2033
UAUAGAAUGAACAUA
n/a







GACA





14127
137
2034
CCGACCAAGGAAA
2035
UUUCCUUGGUCGGC
71%







GUUUG





14128
711
2036
GAAUGGUGCAUAC
2037
GUAUGCACCAUUCAA
115%







CUCC





14129
582
2038
AUAUGAUGGCCGA
2039
UCGGCCAUCAUAUGU
97%







GUCU





14130
839
2040
AGCAGUCCAGAUU
2041
AAUCUGGACUGCUUG
102%







UGGC





14131
1091
2042
GCAUUUAGUCAAA
2043
UUUGACUAAAUGCAA
10%







AGUG





14132
884
2044
AGCAUUCCGAUGU
2045
ACAUCGGAAUGCUCA
93%







UUGC





14133
903
2046
UAGUCAGGAACUU
2047
AAGUUCCUGACUAUC
97%







AAUC





14134
1090
2048
UGCAUUUAGUCAA
2049
UUGACUAAAUGCAAA
39%







GUGA





14135
474
2050
GUCUGAUGAGUCU
2051
AGACUCAUCAGACUG
99%







GUGA





14136
575
2052
UAGACACAUAUGA
2053
UCAUAUGUGUCUACU
108%







GUGG





14137
671
2054
CAGACGAGGACAU
2055
AUGUCCUCGUCUGUA
98%







GCAU





14138
924
2056
CAGCCGUGAAUUC
2057
GAAUUCACGGCUGAC
100%







UUUG





14139
1185
2058
AGUCUGGAAAUAA
2059
UUAUUUCCAGACUCA
47%







AAUA





14140
1221
2060
AGUUUGUGGCUUC
2061
GAAGCCACAAACUAA
100%







ACUA





14141
347
2062
AGUCCAACGAAAG
2063
CUUUCGUUGGACUU
103%







ACUUG





14142
634
2064
AAGUUUCGCAGAC
2065
GUCUGCGAAACUUCU
100%







UAGA





14143
877
2066
AGCAAUGAGCAUU
2067
AAUGCUCAUUGCUCU
104%







CAUC





14144
1033
2068
UUAGAUAGUGCAU
2069
AUGCACUAUCUAAUU
95%







CAUG





14145
714
2070
UGGUGCAUACAAG
2071
CUUGUAUGCACCAUU
101%







CAAC





14146
791
2072
AUGAAACGAGUCA
2073
UGACUCGUUUCAUAA
100%







CUGU





14147
813
2074
CCAGAGUGCUGAA
2075
UUCAGCACUCUGGUC
97%







AUCC





14148
939
2076
CAGCCAUGAAUUU
2077
AAAUUCAUGGCUGUG
109%







GAAU





14149
1161
2078
AUUGGUUGAAUGU
2079
ACAUUCAACCAAUAA
34%







ACUG





14150
1164
2080
GGUUGAAUGUGUA
2081
UACACAUUCAACCAA
n/a







UAAA





14151
1190
2082
GGAAAUAACUAAU
2083
AUUAGUUAUUUCCA
n/a







GACUC





14152
1333
2084
UCAUGAAUAGAAA
2085
UUUCUAUUCAUGAG
31%







AGAAU





14153
537
2086
GCCAGCAACCGAA
2087
UUCGGUUGCUGGCA
n/a







GGUCC





14154
684
2088
CACCUCACACAUG
2089
CAUGUGUGAGGUGA
100%







UGUCC





14155
707
2090
AGUUGAAUGGUGC
2091
GCACCAUUCAACUCC
99%







UCGC





14156
799
2092
AGUCAGCUGGAUG
2093
CAUCCAGCUGACUCG
95%







UUUC





14157
853
2094
UAUAAGCGGAAAG
2095
CUUUCCGCUUAUAUA
106%







AUCU





14158
888
2096
UUCCGAUGUGAUU
2097
AAUCACAUCGGAAUG
88%







CUCA





14159
1194
2098
AUAACUAAUGUGU
2099
ACACAUUAGUUAUUU
95%







CCAG





14160
1279
2100
UCAUUCUAUAGAA
2101
UUCUAUAGAAUGAAC
15%







AUAG





14161
1300
2102
AACUAUCACUGUA
2103
UACAGUGAUAGUUU
86%







GCAUU





14162
1510
2104
GUCAAUUGCUUAU
2105
AUAAGCAAUUGACAC
86%







CACC





14163
1543
2106
AGCAAUUAAUAAA
2107
UUUAUUAAUUGCUG
110%







GACAA





14164
434
2108
ACGACUCUGAUGA
2109
UCAUCAGAGUCGUUC
134%







GAGU





14165
600
2110
UAGUGUGGUUUAU
2111
AUAAACCACACUAUC
102%







ACCU





14166
863
2112
AAGCCAAUGAUGA
2113
UCAUCAUUGGCUUUC
93%







CGCU





14167
902
2114
AUAGUCAGGAACU
2115
AGUUCCUGACUAUCA
101%







AUCA





14168
921
2116
AGUCAGCCGUGAA
2117
UUCACGGCUGACUUU
98%







GGAA





14169
154
2118
ACUACCAUGAGAA
2119
UUCUCAUGGUAGUG
n/a







AGUUU





14170
217
2120
AAACAGGCUGAUU
2121
AAUCAGCCUGUUUAA
66%







CUGG





14171
816
2122
GAGUGCUGAAACC
2123
GGUUUCAGCACUCUG
102%







GUCA





14172
882
2124
UGAGCAUUCCGAU
2125
AUCGGAAUGCUCAUU
103%







GCUC





14173
932
2126
AAUUCCACAGCCA
2127
UGGCUGUGGAAUUC
n/a







ACGGC





14174
1509
2128
UGUCAAUUGCUUA
2129
UAAGCAAUUGACACC
n/a







ACCA





14175
157
2130
ACCAUGAGAAUUG
2131
CAAUUCUCAUGGUAG
109%







UGAG





14176
350
2132
CCAACGAAAGCCA
2133
UGGCUUUCGUUGGA
95%







CUUAC





14177
511
2134
CUGGUCACUGAUU
2135
AAUCAGUGACCAGUU
100%







CAUC





14178
605
2136
UGGUUUAUGGACU
2137
AGUCCAUAAACCACA
99%







CUAU





14179
811
2138
GACCAGAGUGCUG
2139
CAGCACUCUGGUCAU
88%







CCAG





14180
892
2140
GAUGUGAUUGAUA
2141
UAUCAAUCACAUCGG
76%







AAUG





14181
922
2142
GUCAGCCGUGAAU
2143
AUUCACGGCUGACUU
59%







UGGA





14182
1169
2144
AAUGUGUAUCUAU
2145
AUAGAUACACAUUCA
69%







ACCA





14183
1182
2146
UUGAGUCUGGAAA
2147
UUUCCAGACUCAAAU
n/a







AGAU





14184
1539
2148
GUCCAGCAAUUAA
2149
UUAAUUGCUGGACAA
77%







CCGU





14185
1541
2150
CCAGCAAUUAAUA
2151
UAUUAAUUGCUGGA
n/a







CAACC





14186
427
2152
GACUCGAACGACU
2153
AGUCGUUCGAGUCAA
69%







UGGA





14187
533
2154
ACCUGCCAGCAAC
2155
GUUGCUGGCAGGUCC
78%







GUGG





18538
496
2156
GAUGAAUCUGAUA
2157
UAUCAGAUUCAUCAG
74%







AAUG





18539
496
2158
UGAUGAAUCUGA
2159
UAUCAGAUUCAUCAG
72%





UA

AAUG





18540
175
2160
AUUUGCUUUUGCA
2161
UGCAAAAGCAAAUCA
98%







CUGC





18541
175
2162
GAUUUGCUUUUG
2163
UGCAAAAGCAAAUCA
28%





CA

CUGC





18542
172
2164
GUGAUUUGCUUUA
2165
UAAAGCAAAUCACUG
24%







CAAU





18543
172
2166
AGUGAUUUGCUU
2167
UAAAGCAAAUCACUG
14%





UA

CAAU





18544
1013
2168
AAUUUCGUAUUUA
2169
UAAAUACGAAAUUUC
100%







AGGU





18545
1013
2170
AAAUUUCGUAUU
2171
UAAAUACGAAAUUUC
109%





UA

AGGU





18546
952
2172
CACAGCCAUGAAA
2173
UUUCAUGGCUGUGA
32%







AAUUC





18547
952
2174
UCACAGCCAUGAAA
2175
UUUCAUGGCUGUGA
33%







AAUUC





18548
174
2176
GAUUUGCUUUUGA
2177
UCAAAAGCAAAUCAC
57%







UGCA





18549
174
2178
UGAUUUGCUUUU
2179
UCAAAAGCAAAUCAC
53%





GA

UGCA





18550
177
2180
UUGCUUUUGCCUA
2181
UAGGCAAAAGCAAAU
97%







CACU





18551
177
2182
UUUGCUUUUGCC
2183
UAGGCAAAAGCAAAU
103%





UA

CACU





18552
1150
2184
UUUCUCAGUUUAA
2185
UUAAACUGAGAAAGA
96%







AGCA





18553
1089
2186
UUGCAUUUAGUCA
2187
UGACUAAAUGCAAAG
94%







UGAG





18554
1086
2188
ACUUUGCAUUUAA
2189
UUAAAUGCAAAGUGA
n/a







GAAA





18555
1093
2190
AUUUAGUCAAAAA
2191
UUUUUGACUAAAUG
n/a







CAAAG





18556
1147
2192
UUCUUUCUCAGUA
2193
UACUGAGAAAGAAGC
n/a







AUUU





18557
1148
2194
UCUUUCUCAGUUA
2195
UAACUGAGAAAGAAG
66%







CAUU





18558
1128
2196
GAAAGAGAACAUA
2197
UAUGUUCUCUUUCA
16%







UUUUG





18559
1087
2198
CUUUGCAUUUAGA
2199
UCUAAAUGCAAAGUG
28%







AGAA





18560
1088
2200
UUUGCAUUUAGUA
2201
UACUAAAUGCAAAGU
n/a







GAGA





18561
1083
2202
CUCACUUUGCAUA
2203
UAUGCAAAGUGAGAA
53%







AUUG





18562
1081
2204
UUCUCACUUUGCA
2205
UGCAAAGUGAGAAAU
89%







UGUA





18563
555
2206
CACUCCAGUUGUA
2207
UACAACUGGAGUGAA
33%







AACU





18564
1125
2208
AAUGAAAGAGAAA
2209
UUUCUCUUUCAUUU
n/a







UGCUA





18565
168
2210
UGCAGUGAUUUGA
2211
UCAAAUCACUGCAAU
14%







UCUC





18566
1127
2212
UGAAAGAGAACAA
2213
UUGUUCUCUUUCAU
27%







UUUGC





18567
1007
2214
ACCUGAAAUUUCA
2215
UGAAAUUUCAGGUG
129%







UUUAU





18568
164
2216
GAAUUGCAGUGAA
2217
UUCACUGCAAUUCUC
47%







AUGG





18569
222
2218
GGCUGAUUCUGGA
2219
UCCAGAAUCAGCCUG
n/a







UUUA
















TABLE 14







Inhibition of gene expression with PTGS2 sd-rxRNA sequences


(Accession Number: NM_000963.2)












Oligo
Start
SEQ ID

SEQ ID



Number
Site
NO
Sense sequence
NO
Antisense sequence






















% remaining








expression








(1 uM A549)


14422
451
2220
CACAUUUGAUUGA
2221
UCAAUCAAAUGUGAUC
72%







UGG





14423
1769
2222
CACUGCCUCAAUU
2223
AAUUGAGGCAGUGUU
71%







GAUG





14424
1464
2224
AAAUACCAGUCUU
2225
AAGACUGGUAUUUCAU
74%







CUG





14425
453
2226
CAUUUGAUUGACA
2227
UGUCAAUCAAAUGUGA
83%







UCU











% remaining








expression








(1 uM PC-3)


17388
285
2228
GAAAACUGCUCAA
2229
UUGAGCAGUUUUCUCC
88%







AUA





17389
520
2230
ACCUCUCCUAUUA
2231
UAAUAGGAGAGGUUA
25%







GAGA





17390
467
2232
UCCACCAACUUAA
2233
UUAAGUUGGUGGACU
68%







GUCA





17391
467
2234
GUCCACCAACUUAA
2235
UUAAGUUGGUGGACU
101%







GUCA





17392
524
2236
CUCCUAUUAUACA
2237
UGUAUAAUAGGAGAG
49%







GUUA





17393
448
2238
GAUCACAUUUGAA
2239
UUCAAAUGUGAUCUG
29%







GAUG





17394
448
2240
AGAUCACAUUUGAA
2241
UUCAAAUGUGAUCUG
31%







GAUG





17395
519
2242
AACCUCUCCUAUA
2243
UAUAGGAGAGGUUAG
12%







AGAA





17396
437
2244
GUUGACAUCCAGA
2245
UCUGGAUGUCAACACA
86%







UAA





17397
406
2246
CCUUCCUUCGAAA
2247
UUUCGAAGGAAGGGAA
23%







UGU





17398
339
2248
ACUCCAAACACAA
2249
UUGUGUUUGGAGUGG
102%







GUUU





17399
339
2250
CACUCCAAACACAA
2251
UUGUGUUUGGAGUGG
55%







GUUU





17400
338
2252
CACUCCAAACACA
2253
UGUGUUUGGAGUGGG
62%







UUUC





17401
468
2254
CCACCAACUUACA
2255
UGUAAGUUGGUGGAC
61%







UGUC





17402
468
2256
UCCACCAACUUACA
2257
UGUAAGUUGGUGGAC
179%







UGUC





17403
1465
2258
AAUACCAGUCUUA
2259
UAAGACUGGUAUUUCA
30%







UCU





17404
243
2260
GACCAGUAUAAGA
2261
UCUUAUACUGGUCAAA
32%







UCC





17405
1472
2262
GUCUUUUAAUGAA
2263
UUCAUUAAAAGACUGG
15%







UAU





17406
2446
2264
AAUUUCAUGUCUA
2265
UAGACAUGAAAUUACU
142%







GGU





17407
449
2266
AUCACAUUUGAUA
2267
UAUCAAAUGUGAUCUG
54%







GAU





17408
449
2268
GAUCACAUUUGAUA
2269
UAUCAAAUGUGAUCUG
27%







GAU





17409
444
2270
UCCAGAUCACAUA
2271
UAUGUGAUCUGGAUG
49%







UCAA





17410
1093
2272
UACUGAUAGGAGA
2273
UCUCCUAUCAGUAUUA
32%







GCC





17411
1134
2274
GUGCAACACUUGA
2275
UCAAGUGUUGCACAUA
70%







AUC





17412
244
2276
ACCAGUAUAAGUA
2277
UACUUAUACUGGUCAA
63%







AUC





17413
1946
2278
GAAGUCUAAUGAA
2279
UUCAUUAGACUUCUAC
19%







AGU





17414
638
2280
AAGAAGAAAGUUA
2281
UAACUUUCUUCUUAGA
27%







AGC





17415
450
2282
UCACAUUUGAUUA
2283
UAAUCAAAUGUGAUCU
216%







GGA





17416
450
2284
AUCACAUUUGAUUA
2285
UAAUCAAAUGUGAUCU
32%







GGA





17417
452
2286
ACAUUUGAUUGAA
2287
UUCAAUCAAAUGUGAU
99%







CUG





17418
452
2288
CACAUUUGAUUGAA
2289
UUCAAUCAAAUGUGAU
54%







CUG





17419
454
2290
AUUUGAUUGACAA
2291
UUGUCAAUCAAAUGUG
86%







AUC





17420
454
2292
CAUUUGAUUGACAA
2293
UUGUCAAUCAAAUGUG
89%







AUC





17421
1790
2294
CAUCUGCAAUAAA
2295
UUUAUUGCAGAUGAG
55%







AGAC





17422
1790
2296
UCAUCUGCAAUAAA
2297
UUUAUUGCAGAUGAG
62%







AGAC
















TABLE 15







Inhibition of gene expression with CTGF sd-rxRNA sequences


(Accession number: NM_001901.2)



















% remaining








mRNA


Oligo
Start
SEQ ID

SEQ ID

expression (1 uM


Number
Site
NO
Sense sequence
NO
Antisense sequence
sd-rxRNA, A549)
















13980
1222
2298
ACAGGAAGAUG
2299
UACAUCUUCCUGUAG
98%





UA

UACA





13981
813
2300
GAGUGGAGCGC
2301
AGGCGCUCCACUCUG
82%





CU

UGGU





13982
747
2302
CGACUGGAAGA
4206
UGUCUUCCAGUCGGU
116%





CA

AAGC





13983
817
2303
GGAGCGCCUGU
4207
GAACAGGCGCUCCAC
97%





UC

UCUG





13984
1174
2304
GCCAUUACAAC
4208
CAGUUGUAAUGGCAG
102%





UG

GCAC





13985
1005
2305
GAGCUUUCUG
4209
AGCCAGAAAGCUCAA
114%





GCU

ACUU





13986
814
2306
AGUGGAGCGCC
4210
CAGGCGCUCCACUCU
111%





UG

GUGG





13987
816
2307
UGGAGCGCCUG
4211
AACAGGCGCUCCACU
102%





UU

CUGU





13988
1001
2308
GUUUGAGCUU
4212
AGAAAGCUCAAACUU
99%





UCU

GAUA





13989
1173
2309
UGCCAUUACAA
4213
AGUUGUAAUGGCAG
107%





CU

GCACA





13990
749
2310
ACUGGAAGACA
4214
CGUGUCUUCCAGUCG
91%





CG

GUAA





13991
792
2311
AACUGCCUGGU
4215
GGACCAGGCAGUUGG
97%





CC

CUCU





13992
1162
2312
AGACCUGUGCC
4216
CAGGCACAGGUCUUG
107%





UG

AUGA





13993
811
2313
CAGAGUGGAGC
4217
GCGCUCCACUCUGUG
113%





GC

GUCU





13994
797
2314
CCUGGUCCAGA
4218
GGUCUGGACCAGGCA
n/a





CC

GUUG





13995
1175
2315
CCAUUACAACU
4219
ACAGUUGUAAUGGCA
113%





GU

GGCA





13996
1172
2316
CUGCCAUUACA
4220
GUUGUAAUGGCAGG
110%





AC

CACAG





13997
1177
2317
AUUACAACUGU
4221
GGACAGUUGUAAUG
105%





CC

GCAGG





13998
1176
2318
CAUUACAACUG
4222
GACAGUUGUAAUGGC
89%





UC

AGGC





13999
812
2319
AGAGUGGAGCG
4223
GGCGCUCCACUCUGU
99%





CC

GGUC





14000
745
2320
ACCGACUGGAA
4224
UCUUCCAGUCGGUAA
n/a





GA

GCCG





14001
1230
2321
AUGUACGGAGA
4225
UGUCUCCGUACAUCU
106%





CA

UCCU





14002
920
2322
GCCUUGCGAAG
4226
AGCUUCGCAAGGCCU
93%





CU

GACC





14003
679
2323
GCUGCGAGGAG
4227
CACUCCUCGCAGCAU
102%





UG

UUCC





14004
992
2324
GCCUAUCAAGU
4228
AAACUUGAUAGGCUU
100%





UU

GGAG





14005
1045
2325
AAUUCUGUGG
4229
ACUCCACAGAAUUUA
104%





AGU

GCUC





14006
1231
2326
UGUACGGAGAC
4230
AUGUCUCCGUACAUC
87%





AU

UUCC





14007
991
2327
AGCCUAUCAAG
4231
AACUUGAUAGGCUUG
101%





UU

GAGA





14008
998
2328
CAAGUUUGAGC
4232
AAGCUCAAACUUGAU
98%





UU

AGGC





14009
1049
2329
CUGUGGAGUA
4233
ACAUACUCCACAGAA
98%





UGU

UUUA





14010
1044
2330
AAAUUCUGUG
4234
CUCCACAGAAUUUAG
93%





GAG

CUCG





14011
1327
2331
UUUCAGUAGCA
4235
UGUGCUACUGAAAUC
95%





CA

AUUU





14012
1196
2332
CAAUGACAUCU
4236
AAAGAUGUCAUUGUC
101%





UU

UCCG





14013
562
2333
AGUACCAGUGC
4237
GUGCACUGGUACUUG
66%





AC

CAGC





14014
752
2334
GGAAGACACGU
4238
AAACGUGUCUUCCAG
95%





UU

UCGG





14015
994
2335
CUAUCAAGUUU
4239
UCAAACUUGAUAGGC
85%





GA

UUGG





14016
1040
2336
AGCUAAAUUCU
4240
ACAGAAUUUAGCUCG
61%





GU

GUAU





14017
1984
2337
AGGUAGAAUG
4241
UUACAUUCUACCUAU
32%





UAA

GGUG





14018
2195
2338
AGCUGAUCAGU
4242
AAACUGAUCAGCUAU
86%





UU

AUAG





14019
2043
2339
UUCUGCUCAGA
4243
UAUCUGAGCAGAAUU
81%





UA

UCCA





14020
1892
2340
UUAUCUAAGU
4244
UUAACUUAGAUAACU
84%





UAA

GUAC





14021
1567
2341
UAUACGAGUAA
4245
UAUUACUCGUAUAAG
72%





UA

AUGC





14022
1780
2342
GACUGGACAGC
4246
AAGCUGUCCAGUCUA
65%





UU

AUCG





14023
2162
2343
AUGGCCUUUAU
4247
UAAUAAAGGCCAUUU
80%





UA

GUUC





14024
1034
2344
AUACCGAGCUA
4248
UUUAGCUCGGUAUG
91%





AA

UCUUC





14025
2264
2345
UUGUUGAGAG
4249
ACACUCUCAACAAAU
58%





UGU

AAAC





14026
1032
2346
ACAUACCGAGC
4250
UAGCUCGGUAUGUC
106%





UA

UUCAU





14027
1535
2347
AGCAGAAAGGU
4251
UAACCUUUCUGCUGG
67%





UA

UACC





14028
1694
2348
AGUUGUUCCU
4252
UUAAGGAACAACUUG
94%





UAA

ACUC





14029
1588
2349
AUUUGAAGUG
4253
UUACACUUCAAAUAG
97%





UAA

CAGG





14030
928
2350
AAGCUGACCUG
4254
UCCAGGUCAGCUUCG
100%





GA

CAAG





14031
1133
2351
GGUCAUGAAGA
4255
CUUCUUCAUGACCUC
82%





AG

GCCG





14032
912
2352
AUGGUCAGGCC
4256
AAGGCCUGACCAUGC
84%





UU

ACAG





14033
753
2353
GAAGACACGUU
4257
CAAACGUGUCUUCCA
86%





UG

GUCG





14034
918
2354
AGGCCUUGCGA
4258
CUUCGCAAGGCCUGA
88%





AG

CCAU





14035
744
2355
UACCGACUGGA
4259
CUUCCAGUCGGUAAG
95%





AG

CCGC





14036
466
2356
ACCGCAAGAUC
4260
CCGAUCUUGCGGUUG
73%





GG

GCCG





14037
917
2357
CAGGCCUUGCG
4261
UUCGCAAGGCCUGAC
86%





AA

CAUG





14038
1038
2358
CGAGCUAAAUU
4262
AGAAUUUAGCUCGGU
84%





CU

AUGU





14039
1048
2359
UCUGUGGAGU
4263
CAUACUCCACAGAAU
87%





AUG

UUAG





14040
1235
2360
CGGAGACAUGG
4264
UGCCAUGUCUCCGUA
100%





CA

CAUC





14041
868
2361
AUGACAACGCC
4265
GAGGCGUUGUCAUU
104%





UC

GGUAA





14042
1131
2362
GAGGUCAUGAA
4266
UCUUCAUGACCUCGC
85%





GA

CGUC





14043
1043
2363
UAAAUUCUGU
4267
UCCACAGAAUUUAGC
74%





GGA

UCGG





14044
751
2364
UGGAAGACACG
4268
AACGUGUCUUCCAGU
84%





UU

CGGU





14045
1227
2365
AAGAUGUACGG
4269
CUCCGUACAUCUUCC
99%





AG

UGUA





14046
867
2366
AAUGACAACGC
4270
AGGCGUUGUCAUUG
94%





CU

GUAAC





14047
1128
2367
GGCGAGGUCAU
4271
UCAUGACCUCGCCGU
89%





GA

CAGG





14048
756
2368
GACACGUUUGG
4272
GGCCAAACGUGUCUU
93%





CC

CCAG





14049
1234
2369
ACGGAGACAUG
4273
GCCAUGUCUCCGUAC
100%





GC

AUCU





14050
916
2370
UCAGGCCUUGC
4274
UCGCAAGGCCUGACC
96%





GA

AUGC





14051
925
2371
GCGAAGCUGAC
4275
AGGUCAGCUUCGCAA
80%





CU

GGCC





14052
1225
2372
GGAAGAUGUAC
4276
CCGUACAUCUUCCUG
96%





GG

UAGU





14053
445
2373
GUGACUUCGGC
4277
GAGCCGAAGUCACAG
101%





UC

AAGA





14054
446
2374
UGACUUCGGCU
4278
GGAGCCGAAGUCACA
93%





CC

GAAG





14055
913
2375
UGGUCAGGCCU
4279
CAAGGCCUGACCAUG
67%





UG

CACA





14056
997
2376
UCAAGUUUGA
4280
AGCUCAAACUUGAUA
92%





GCU

GGCU





14057
277
2377
GCCAGAACUGC
4281
CUGCAGUUCUGGCCG
84%





AG

ACGG





14058
1052
2378
UGGAGUAUGU
4282
GGUACAUACUCCACA
n/a





ACC

GAAU





14059
887
2379
GCUAGAGAAGC
4283
CUGCUUCUCUAGCCU
80%





AG

GCAG





14060
914
2380
GGUCAGGCCUU
4284
GCAAGGCCUGACCAU
112%





GC

GCAC





14061
1039
2381
GAGCUAAAUUC
4285
CAGAAUUUAGCUCGG
104%





UG

UAUG





14062
754
2382
AAGACACGUUU
4286
CCAAACGUGUCUUCC
109%





GG

AGUC





14063
1130
2383
CGAGGUCAUGA
4287
CUUCAUGACCUCGCC
103%





AG

GUCA





14064
919
2384
GGCCUUGCGAA
4288
GCUUCGCAAGGCCUG
109%





GC

ACCA





14065
922
2385
CUUGCGAAGCU
4289
UCAGCUUCGCAAGGC
106%





GA

CUGA





14066
746
2386
CCGACUGGAAG
4290
GUCUUCCAGUCGGUA
106%





AC

AGCC





14067
993
2387
CCUAUCAAGUU
4291
CAAACUUGAUAGGCU
67%





UG

UGGA





14068
825
2388
UGUUCCAAGAC
4292
AGGUCUUGGAACAGG
93%





CU

CGCU





14069
926
2389
CGAAGCUGACC
4293
CAGGUCAGCUUCGCA
95%





UG

AGGC





14070
923
2390
UUGCGAAGCUG
4294
GUCAGCUUCGCAAGG
95%





AC

CCUG





14071
866
2391
CAAUGACAACG
4295
GGCGUUGUCAUUGG
132%





CC

UAACC





14072
563
2392
GUACCAGUGCA
4296
CGUGCACUGGUACUU
n/a





CG

GCAG





14073
823
2393
CCUGUUCCAAG
4297
GUCUUGGAACAGGCG
98%





AC

CUCC





14074
1233
2394
UACGGAGACAU
4298
CCAUGUCUCCGUACA
109%





GG

UCUU





14075
924
2395
UGCGAAGCUGA
4299
GGUCAGCUUCGCAAG
95%





CC

GCCU





14076
921
2396
CCUUGCGAAGC
4300
CAGCUUCGCAAGGCC
116%





UG

UGAC





14077
443
2397
CUGUGACUUCG
4301
GCCGAAGUCACAGAA
110%





GC

GAGG





14078
1041
2398
GCUAAAUUCUG
4302
CACAGAAUUUAGCUC
99%





UG

GGUA





14079
1042
2399
CUAAAUUCUGU
4303
CCACAGAAUUUAGCU
109%





GG

CGGU





14080
755
2400
AGACACGUUUG
4304
GCCAAACGUGUCUUC
121%





GC

CAGU





14081
467
2401
CCGCAAGAUCG
4305
GCCGAUCUUGCGGUU
132%





GC

GGCC





14082
995
2402
UAUCAAGUUU
4306
CUCAAACUUGAUAGG
105%





GAG

CUUG





14083
927
2403
GAAGCUGACCU
4307
CCAGGUCAGCUUCGC
114%





GG

AAGG





17356
1267
2404
ACAUUAACUCA
4308
UAUGAGUUAAUGUC
120%





UA

UCUCA





17357
1267
2405
GACAUUAACUC
2406
UAUGAGUUAAUGUC
56%





AUA

UCUCA





17358
1442
2407
UGAAGAAUGU
2408
UUAACAUUCUUCAAA
34%





UAA

CCAG





17359
1442
2409
UUGAAGAAUG
2410
UUAACAUUCUUCAAA
31%





UUAA

CCAG





17360
1557
2411
GAUAGCAUCUU
2412
UUAAGAUGCUAUCU
59%





AA

GAUGA





17361
1557
2413
AGAUAGCAUCU
2414
UUAAGAUGCUAUCU
47%





UAA

GAUGA





17362
1591
2415
UGAAGUGUAA
2416
UAAUUACACUUCAAA
120%





UUA

UAGC





17363
1599
2417
AAUUGAGAAGG
2418
UUCCUUCUCAAUUAC
71%





AA

ACUU





17364
1601
2419
UUGAGAAGGAA
2420
UUUUCCUUCUCAAUU
62%





AA

ACAC





17365
1732
2421
CAUUCUGAUUC
2422
UCGAAUCAGAAUGUC
99%





GA

AGAG





17366
1734
2423
UUCUGAUUCGA
2424
UUUCGAAUCAGAAUG
97%





AA

UCAG





17367
1770
2425
CUGUCGAUUAG
2426
UUCUAAUCGACAGGA
45%





AA

UUCC





17368
1805
2427
UUUGCCUGUAA
2428
UGUUACAGGCAAAUU
71%





CA

CACU





17369
1805
2429
AUUUGCCUGUA
2430
UGUUACAGGCAAAUU
67%





ACA

CACU





17370
1815
2431
ACAAGCCAGAU
2432
UAAUCUGGCUUGUU
65%





UA

ACAGG





17371
1815
2433
AACAAGCCAGA
2434
UAAUCUGGCUUGUU
35%





UUA

ACAGG





17372
2256
2435
CAGUUUAUUU
2436
UACAAAUAAACUGUC
113%





GUA

CGAA





17373
2265
2437
UGUUGAGAGU
2438
UACACUCUCAACAAA
35%





GUA

UAAA





17374
2265
2439
UUGUUGAGAG
2440
UACACUCUCAACAAA
31%





UGUA

UAAA





17375
2295
2441
UGCACCUUUCU
2442
UUAGAAAGGUGCAAA
34%





AA

CAUG





17376
2295
2443
UUGCACCUUUC
2444
UUAGAAAGGUGCAAA
28%





UAA

CAUG





17377
1003
2445
UUGAGCUUUC
2446
UCAGAAAGCUCAAAC
67%





UGA

UUGA





17378
2268
2447
UGAGAGUGUG
2448
UGUCACACUCUCAAC
42%





ACA

AAAU





17379
2272
2449
AGUGUGACCAA
2450
UUUUGGUCACACUCU
35%





AA

CAAC





17380
2272
2451
GAGUGUGACCA
2452
UUUUGGUCACACUCU
29%





AAA

CAAC





17381
2273
2453
GUGUGACCAAA
2454
UUUUUGGUCACACUC
42%





AA

UCAA





17382
2274
2455
UGUGACCAAAA
2456
UCUUUUGGUCACACU
42%





GA

CUCA





17383
2274
2457
GUGUGACCAAA
2458
UCUUUUGGUCACACU
37%





AGA

CUCA





17384
2275
2459
GUGACCAAAAG
2460
UACUUUUGGUCACAC
24%





UA

UCUC





17385
2277
2461
GACCAAAAGUU
2462
UUAACUUUUGGUCAC
27%





AA

ACUC





17386
2296
2463
GCACCUUUCUA
2464
UCUAGAAAGGUGCAA
23%





GA

ACAU





17387
2299
2465
CCUUUCUAGUU
2466
UCAACUAGAAAGGUG
46%





GA

CAAA
















TABLE 16







Inhibition of gene expression with TGFB2 sd-rxRNA sequences


(Accession Number: NM_001135599.1)



















% remaining


Oligo
Start
SEQ ID

SEQ ID

expression


Number
Site
NO
Sense sequence
NO
Antisense sequence
(1 uM, A549)
















14408
1324
2467
GGCUCUCCUUCGA
2468
UCGAAGGAGAGCCAU
94%







UCGC





14409
1374
2469
GACAGGAACCUGG
2470
CCAGGUUCCUGUCUU
n/a







UAUG





14410
946
2471
CCAAGGAGGUUUA
2472
UAAACCUCCUUGGCG
90%







UAGU





14411
849
2473
AUUUCCAUCUACA
2474
UGUAGAUGGAAAUCA
72%







CCUC





14412
852
2475
UCCAUCUACAACA
2476
UGUUGUAGAUGGAA
76%







AUCAC





14413
850
2477
UUUCCAUCUACAA
2478
UUGUAGAUGGAAAU
98%







CACCU





14414
944
2479
CGCCAAGGAGGUU
2480
AACCUCCUUGGCGUA
100%







GUAC





14415
1513
2481
GUGGUGAUCAGAA
2482
UUCUGAUCACCACUG
n/a







GUAU





14416
1572
2483
CUCCUGCUAAUGU
2484
ACAUUAGCAGGAGAU
100%







GUGG





14417
1497
2485
ACCUCCACAUAUA
2486
UAUAUGUGGAGGUG
73%







CCAUC





14418
1533
2487
AAGUCCACUAGGA
2488
UCCUAGUGGACUUUA
98%







UAGU





14419
1514
2489
UGGUGAUCAGAAA
2490
UUUCUGAUCACCACU
86%







GGUA





14420
1534
2491
AGUCCACUAGGAA
2492
UUCCUAGUGGACUU
99%







UAUAG





14421
943
2493
ACGCCAAGGAGGU
2494
ACCUCCUUGGCGUAG
41%







UACU





18570
2445
2495
UAUUUAUUGUGUA
2496
UACACAAUAAAUAAC
79%







UCAC





18571
2445
2497
UUAUUUAUUGUG
2498
UACACAAUAAAUAAC
75%





UA

UCAC





18572
2083
2499
AUCAGUGUUAAAA
2500
UUUUAACACUGAUGA
47%







ACCA





18573
2083
2501
CAUCAGUGUUAAAA
2502
UUUUAACACUGAUGA
17%







ACCA





18574
2544
2503
AUGGCUUAAGGAA
2504
UUCCUUAAGCCAUCC
59%







AUGA





18575
2544
2505
GAUGGCUUAAGG
2506
UUCCUUAAGCCAUCC
141%





AA

AUGA





18576
2137
2507
UUGUGUUCUGUUA
2508
UAACAGAACACAAAC
77%







UUCC





18577
2137
2509
UUUGUGUUCUGU
2510
UAACAGAACACAAAC
59%





UA

UUCC





18578
2520
2511
AAAUACUUUGCCA
2512
UGGCAAAGUAUUUG
75%







GUCUC





18579
2520
2513
CAAAUACUUUGCCA
2514
UGGCAAAGUAUUUG
55%







GUCUC





18580
3183
2515
CUUGCACUACAAA
2516
UUUGUAGUGCAAGU
84%







CAAAC





18581
3183
2517
ACUUGCACUACAAA
2518
UUUGUAGUGCAAGU
80%







CAAAC





18582
2267
2519
GAAUUUAUUAGUA
2520
UACUAAUAAAUUCUU
82%







CCAG





18583
2267
2521
AGAAUUUAUUAG
2522
UACUAAUAAAUUCUU
67%





UA

CCAG





18584
3184
2523
UUGCACUACAAAA
2524
UUUUGUAGUGCAAG
77%







UCAAA





18585
3184
2525
CUUGCACUACAAAA
2526
UUUUGUAGUGCAAG
59%







UCAAA





18586
2493
2527
AUAAAACAGGUGA
2528
UCACCUGUUUUAUU
84%







UUCCA





18587
2493
2529
AAUAAAACAGGUGA
2530
UCACCUGUUUUAUU
70%







UUCCA





18588
2297
2531
GACAACAACAACA
2532
UGUUGUUGUUGUCG
40%







UUGUU





18589
2046
2533
AUGCUUGUAACAA
2534
UUGUUACAAGCAUCA
39%







UCGU





18590
2531
2535
CAGAAACUCAUGA
2536
UCAUGAGUUUCUGG
56%







CAAAG





18591
2389
2537
GUAUUGCUAUGCA
2538
UGCAUAGCAAUACAG
64%







AAAA





18592
2530
2539
CCAGAAACUCAUA
2540
UAUGAGUUUCUGGC
44%







AAAGU





18593
2562
2541
ACUCAAACGAGCA
2542
UGCUCGUUUGAGUU
87%







CAAGU





18594
2623
2543
AUAUGACCGAGAA
2544
UUCUCGGUCAUAUAA
69%







UAAC





18595
2032
2545
CGACGACAACGAA
2546
UUCGUUGUCGUCGU
55%







CAUCA





18596
2809
2547
GUAAACCAGUGAA
2548
UUCACUGGUUUACUA
58%







AACU





18597
2798
2549
UUGUCAGUUUAGA
2550
UCUAAACUGACAAAG
38%







AACC





18598
2081
2551
UCAUCAGUGUUAA
2552
UUAACACUGAUGAAC
25%







CAAG





18599
2561
2553
AACUCAAACGAGA
2554
UCUCGUUUGAGUUC
57%







AAGUU





18600
2296
2555
CGACAACAACAAA
2556
UUUGUUGUUGUCGU
69%







UGUUC





18601
2034
2557
ACGACAACGAUGA
2558
UCAUCGUUGUCGUCG
22%







UCAU





18602
2681
2559
GCUGCCUAAGGAA
2560
UUCCUUAGGCAGCUG
43%







AUAC





18603
2190
2561
AUUCUACAUUUCA
2562
UGAAAUGUAGAAUAA
128%







GGCC
















TABLE 17







Inhibition of gene expression with TGFB1 sd-rxRNA sequences


(Accession Number NM_000660.3)



















% remaining


Oligo
Start
SEQ ID

SEQ ID

expression


Number
Site
NO
Sense sequence
NO
Antisense sequence
(1 uM A549)
















14394
1194
2563
GCUAAUGGUGGAA
2564
UUCCACCAUUAGCA
24%







CGCGG





14395
2006
2565
UGAUCGUGCGCUC
2566
GAGCGCACGAUCAU
79%







GUUGG





14396
1389
2567
CAAUUCCUGGCGA
2568
UCGCCAGGAAUUGU
77%







UGCUG





14397
1787
2569
AGUGGAUCCACGA
2570
UCGUGGAUCCACUU
n/a







CCAGC





14398
1867
2571
UACAGCAAGGUCC
2572
GGACCUUGCUGUAC
82%







UGCGU





14399
2002
2573
AACAUGAUCGUGC
2574
GCACGAUCAUGUUG
n/a







GACAG





14400
2003
2575
ACAUGAUCGUGCG
2576
CGCACGAUCAUGUU
n/a







GGACA





14401
1869
2577
CAGCAAGGUCCUG
2578
CAGGACCUUGCUGU
82%







ACUGC





14402
2000
2579
CCAACAUGAUCGU
2580
ACGAUCAUGUUGGA
66%







CAGCU





14403
986
2581
AGCGGAAGCGCAU
2582
AUGCGCUUCCGCUU
78%







CACCA





14404
995
2583
GCAUCGAGGCCAU
2584
AUGGCCUCGAUGCG
79%







CUUCC





14405
963
2585
GACUAUCGACAUG
2586
CAUGUCGAUAGUCU
80%







UGCAG





14406
955
2587
ACCUGCAAGACUA
2588
UAGUCUUGCAGGUG
88%







GAUAG





14407
1721
2589
GCUCCACGGAGAA
2590
UUCUCCGUGGAGCU
n/a







GAAGC





18454
1246
2591
CACAGCAUAUAUA
2592
UAUAUAUGCUGUG
58%







UGUACU





18455
1248
2593
CAGCAUAUAUAUA
2594
UAUAUAUAUGCUGU
87%







GUGUA





18456
1755
2595
GUACAUUGACUUA
2596
UAAGUCAAUGUACA
107%







GCUGC





18457
1755
2597
UGUACAUUGACUUA
2598
UAAGUCAAUGUACA
77%







GCUGC





18458
1708
2599
AACUAUUGCUUCA
2600
UGAAGCAAUAGUUG
75%







GUGUC





18459
1708
2601
CAACUAUUGCUUCA
2602
UGAAGCAAUAGUUG
73%







GUGUC





18460
1250
2603
GCAUAUAUAUGUA
2604
UACAUAUAUAUGCU
n/a







GUGUG





18461
1754
2605
UGUACAUUGACUA
2606
UAGUCAAUGUACAG
91%







CUGCC





18462
1754
2607
CUGUACAUUGACUA
2608
UAGUCAAUGUACAG
92%







CUGCC





18463
1249
2609
AGCAUAUAUAUGA
2610
UCAUAUAUAUGCUG
n/a







UGUGU





18464
1383
2611
CAGCAACAAUUCA
2612
UGAAUUGUUGCUG
77%







UAUUUC





18465
1251
2613
CAUAUAUAUGUUA
2614
UAACAUAUAUAUGC
84%







UGUGU





18466
1713
2615
UUGCUUCAGCUCA
2616
UGAGCUGAAGCAAU
n/a







AGUUG





18467
1713
2617
AUUGCUUCAGCUCA
2618
UGAGCUGAAGCAAU
83%







AGUUG





18468
1247
2619
ACAGCAUAUAUAA
2620
UUAUAUAUGCUGU
96%







GUGUAC





18469
1712
2621
AUUGCUUCAGCUA
2622
UAGCUGAAGCAAUA
90%







GUUGG





18470
1712
2623
UAUUGCUUCAGCUA
2624
UAGCUGAAGCAAUA
98%







GUUGG





18471
1212
2625
CAAGUUCAAGCAA
2626
UUGCUUGAACUUGU
n/a







CAUAG





18472
1222
2627
CAGAGUACACACA
2628
UGUGUGUACUCUGC
45%







UUGAA





18473
1228
2629
ACACACAGCAUAA
2630
UUAUGCUGUGUGU
36%







ACUCUG





18474
1233
2631
CAGCAUAUAUAUA
2632
UAUAUAUAUGCUGU
68%







GUGUA





18475
1218
2633
UCAAGCAGAGUAA
2634
UUACUCUGCUUGAA
64%







CUUGU





18476
1235
2635
AGCAUAUAUAUGA
2636
UCAUAUAUAUGCUG
78%







UGUGU





18477
1225
2637
AGAGUACACACAA
2638
UUGUGUGUACUCU
92%







GCUUGA





18478
1221
2639
AAGCAGAGUACAA
2640
UUGUACUCUGCUUG
103%







AACUU





18479
1244
2641
UUCAACACAUCAA
2642
UUGAUGUGUUGAA
84%







GAACAU





18480
1224
2643
AGCAGAGUACACA
2644
UGUGUACUCUGCUU
37%







GAACU





18481
1242
2645
AUAUAUGUUCUUA
2646
UAAGAACAUAUAUA
62%







UGCUG





18482
1213
2647
GACAAGUUCAAGA
2648
UCUUGAACUUGUCA
47%







UAGAU





18483
1760
2649
UUAAAGAUGGAGA
2650
UCUCCAUCUUUAAU
69%







GGGGC





18484
1211
2651
CUAUGACAAGUUA
2652
UAACUUGUCAUAGA
n/a







UUUCG





19411
1212
2653
CAACGAAAUCUAA
2654
UUAGAUUUCGUUG
52%







UGGGUU





19412
1222
2655
UAUGACAAGUUCA
2656
UGAACUUGUCAUAG
51%







AUUUC





19413
1228
2657
AAGUUCAAGCAGA
2658
UCUGCUUGAACUUG
n/a







UCAUA





19414
1233
2659
CAAGCAGAGUACA
2660
UGUACUCUGCUUGA
41%







ACUUG





19415
1218
2661
AAUCUAUGACAAA
2662
UUUGUCAUAGAUU
104%







UCGUUG





19416
1244
2663
CACACAGCAUAUA
2664
UAUAUGCUGUGUG
31%







UACUCU
















TABLE 18







Inhibition of gene expression with SPP1 sd-rxRNA sequences (Accession


Number NM_000582.2)



















% remaining


Oligo
Start
SEQ ID

SEQ ID

expression


Number
Site
NO
Sense sequence
NO
Antisense sequence
(1 uM A549)
















14084
1025
2665
mC.mU.mC. A.mU.
2666
P.mU.fC.fU. A.
61%





G. A. A.mU.mU. A.

A.fU.fU.fC. A.fU. G. A.





G. A.Chl

G* A* A* A*mU* A* C.





14085
1049
2667
mC.mU. G. A. G.
2668
P.mU. A. A.fU.fU. G.
50%





G.mU.mC. A.

A.fC.fC.fU.mC. A. G* A*





A.mU.mU. A.Chl

A* G* A*mU* G.





14086
1051
2669
G. A. G. G.mU.mC.
2670
P.mU.fU.fU. A. A.fU.fU.
n/a





A. A.mU.mU. A. A.

G. A.fC.mC.mU.mC* A*





A.Chl

G* A* A* G* A.





14087
1048
2671
mU.mC.mU. G. A. G.
2672
P.mA. A.fU.fU. G.
69%





G.mU.mC. A.

A.fC.fC.fU.fC. A. G. A*





A.mU.mU.Chl

A* G* A*mU* G* C.





14088
1050
2673
mU. G. A. G.
2674
P.mU.fU. A. A.fU.fU. G.
76%





G.mU.mC. A.

A.fC.fC.mU.mC. A* G*





A.mU.mU. A. A.Chl

A* A* G* A* U.





14089
1047
2675
mU.mU.mC.mU. G.
2676
P.mA.fU.fU. G.
60%





A. G. G.mU.mC. A.

A.fC.fC.fU.fC. A. G. A.





A.mU.Chl

A* G* A*mU* G*mC*







A.





14090
800
2677
G.mU.mC. A.
2678
P.mU.fC. A.fU.fC.fC. A.
71%





G.mC.mU. G. G.

G.fC.fU. G.





A.mU. G. A.Chl

A.mC*mU*mC*







G*mU*mU* U.





14091
492
2679
mU.mU.mC.mU. G.
2680
P.mA. G. A.fU.fU.fC.
n/a





A.mU. G. A.

A.fU.fC. A. G. A. A*mU*





A.mU.mC.mU.Chl

G* G*mU* G* A.





14092
612
2681
mU. G. G. A.mC.mU.
2682
P.mU. G. A.fC.fC.fU.fC.
n/a





G. A. G. G.mU.mC.

A. G.fU.mC.mC. A*mU*





A.Chl

A* A* A*mC* C.





14093
481
2683
G. A.
2684
P.mA. A.fU. G. G.fU. G.
n/a





G.mU.mC.mU.mC.

A. G. A.mC.mU.mC*





A.mC.mC.

A*mU*mC* A* G* A.





A.mU.mU.Chl





14094
614
2685
G. A.mC.mU. G. A.
2686
P.mU.fU.fU. G.
n/a





G. G.mU.mC. A. A.

A.fC.fC.fU.fC. A.





A.Chl

G.mU.mC*mC* A*mU*







A* A* A.





14095
951
2687
mU.mC. A.mC. A.
2688
P.mU.fU.fC. A.fU. G.
89%





G.mC.mC. A.mU. G.

G.fC.fU. G.mU. G. A* A*





A. A.Chl

A*mU*mU*mC* A.





14096
482
2689
A.
2690
P.mG. A. A.fU. G. G.fU.
87%





G.mU.mC.mU.mC.

G. A. G. A.mC.mU*mC*





A.mC.mC.

A*mU*mC* A* G.





A.mU.mU.mC.Chl





14097
856
2691
A. A. G.mC. G. G. A.
2692
P.mU. G.
88%





A. A. G.mC.mC. A.Chl

G.fC.fU.fU.fU.fC.fC.







G.mC.mU.mU* A*mU*







A*mU* A* A.





14098
857
2693
A. G.mC. G. G. A. A.
2694
P.mU.fU. G.
113%





A. G.mC.mC. A. A.Chl

G.fC.fU.fU.fU.fC.fC.







G.mC.mU*mU* A*mU*







A*mU* A.





14099
365
2695
A.mC.mC. A.mC.
2696
P.mU.fC. A.fU.fC.fC.
98%





A.mU. G. G. A.mU.

A.fU. G.fU. G.





G. A.Chl

G.mU*mC* A*mU* G*







G* C.





14100
359
2697
G.mC.mC. A.mU. G.
2698
P.mA.fU. G.fU. G.
84%





A.mC.mC. A.mC.

G.fU.fC. A.fU. G.





A.mU.Chl

G.mC*mU*mU*mU*mC*







G* U.





14101
357
2699
A. A. G.mC.mC.
2700
P.mG.fU. G. G.fU.fC.
88%





A.mU. G. A.mC.mC.

A.fU. G.





A.mC.Chl

G.mC.mU.mU*mU*mC*







G*mU*mU* G.





14102
858
2701
G.mC. G. G. A. A. A.
2702
P.mA.fU.fU. G.
n/a





G.mC.mC. A.

G.fC.fU.fU.fU.fC.mC.





A.mU.Chl

G.mC*mU*mU*







A*mU* A* U.





14103
1012
2703
A. A.
2704
P.mA. A. A.fU. A.fC. G.
93%





A.mU.mU.mU.mC.

A. A.





G.mU.

A.mU.mU.mU*mC* A*





A.mU.mU.mU.Chl

G* G*mU* G.





14104
1014
2705
A.mU.mU.mU.mC.
2706
P.mA. G. A. A. A.fU.
89%





G.mU.

A.fC. G. A. A.





A.mU.mU.mU.mC.mU.

A.mU*mU*mU*mC*





Chl

A* G* G.





14105
356
2707
A. A. A. G.mC.mC.
2708
P.mU. G. G.fU.fC. A.fU.
85%





A.mU. G. A.mC.mC.

G.





A.Chl

G.fC.mU.mU.mU*mC*







G*mU*mU* G* G.





14106
368
2709
A.mC. A.mU. G. G.
2710
P.mA.fU. A.fU.fC.
67%





A.mU. G. A.mU.

A.fU.fC.fC. A.mU.





A.mU.Chl

G.mU* G* G*mU*mC*







A* U.





14107
1011
2711
G. A. A.
2712
P.mA. A.fU. A.fC. G. A.
87%





A.mU.mU.mU.mC.

A. A.fU.mU.mU.mC* A*





G.mU. A.mU.mU.Chl

G* G*mU* G* U.





14108
754
2713
G.mC.
2714
P.mA. A.fU.fC. A. G. A.
73%





G.mC.mC.mU.mU.mC.

A. G. G.mC. G.mC*





mU. G.

G*mU*mU*mC* A* G.





A.mU.mU.Chl





14109
1021
2715
A.mU.mU.mU.mC.mU.
2716
P.mA.fU.fU.fC. A.fU. G.
128%





mC. A.mU. G. A.

A. G. A. A. A.mU*





A.mU.Chl

A*mC* G* A* A* A.





14110
1330
2717
mC.mU.mC.mU.mC.
2718
P.mC.fU. A.fU.fU.fC.
101%





A.mU. G. A. A.mU. A.

A.fU. G. A. G. A. G* A*





G.Chl

A*mU* A* A* C.





14111
346
2719
A. A. G.mU.mC.mC.
2720
P.mU.fU.fU.fC. G.fU.fU.
59%





A. A.mC. G. A. A.

G. G. A.mC.mU.mU*





A.Chl

A*mC*mU*mU* G* G.





14112
869
2721
A.mU. G. A.mU. G.
2722
P.mU.fU.
89%





A. G. A. G.mC. A.

G.fC.fU.fC.fU.fC.





A.Chl

A.fU.mC. A.mU*mU*







G* G*mC*mU* U.





14113
701
2723
G.mC. G. A. G. G. A.
2724
P.mU.fU.fC. A.
95%





G.mU.mU. G. A.

A.fC.fU.fC.fC.fU.mC.





A.Chl

G.mC*mU*mU*mU*mC*







mC* A.





14114
896
2725
mU. G. A.mU.mU. G.
2726
P.mU. G. A.fC.fU.
87%





A.mU. A. G.mU.mC.

A.fU.fC. A. A.mU.mC.





A.Chl

A*mC* A*mU*mC* G*







G.





14115
1035
2727
A. G. A.mU. A.
2728
P.mA. G. A.fU. G.fC.
82%





G.mU. G.mC.

A.fC.fU. A.mU.mC.mU*





A.mU.mC.mU.Chl

A* A*mU*mU*mC* A.





14116
1170
2729
A.mU. G.mU. G.mU.
2730
P.mA. A.fU. A. G. A.fU.
36%





A.mU.mC.mU.

A.fC. A.mC.





A.mU.mU.Chl

A.mU*mU*mC* A*







A*mC* C.





14117
1282
2731
mU.mU.mC.mU.
2732
P.mU.fU.fC.fU.fU.fC.fU.
91%





A.mU. A. G. A. A. G.

A.fU. A. G. A. A*mU*





A. A.Chl

G* A* A*mC* A.





14118
1537
2733
mU.mU.
2734
P.mA. A.fU.fU. G.fC.fU.
152%





G.mU.mC.mC. A.

G. G. A.mC. A.





G.mC. A.

A*mC*mC* G*mU* G*





A.mU.mU.Chl

G.





14119
692
2735
A.mC. A.mU. G. G.
2736
P.mU.fC.
n/a





A. A. A. G. C.mG.

G.fC.fU.fU.fU.fC.fC.





A.Chl

A.mU. G.mU* G*mU*







G* A* G* G.





14120
840
2737
G.mC. A.
2738
P.mU. A. A.fU.fC.fU. G.
87%





G.mU.mC.mC. A. G.

G. A.fC.mU.





A.mU.mU. A.Chl

G.mC*mU*mU*







G*mU* G* G.





14121
1163
2739
mU. G. G.mU.mU. G.
2740
P.mA.fC. A.fC.
31%





A. A.mU. G.mU.

A.fU.fU.fC. A. A.mC.mC.





G.mU.Chl

A* A*mU* A* A* A* C.





14122
789
2741
mU.mU. A.mU. G. A.
2742
P.mA.fC.fU.fC.
96%





A. A.mC. G. A.

G.fU.fU.fU.fC. A.mU. A.





G.mU.Chl

A*mC*mU*







G*mU*mC* C.





14123
841
2743
mC. A.
2744
P.mA.fU. A. A.fU.fC.fU.
110%





G.mU.mC.mC. A. G.

G. G. A.mC.mU.





A.mU.mU. A.mU.Chl

G*mC*mU*mU*







G*mU* G.





14124
852
2745
A.mU. A.mU. A. A.
2746
P.mU.fU.fU.fC.fC.
91%





G.mC. G. G. A. A.

G.fC.fU.fU. A.mU.





A.Chl

A.mU* A*







A*mU*mC*mU* G.





14125
209
2747
mU. A.mC.mC. A.
2748
P.mU. G.fU.fU.fU. A.
110%





G.mU.mU. A. A.

A.fC.fU. G. G.mU.





A.mC. A.Chl

A*mU* G* G*mC* A*







C.





14126
1276
2749
mU. G.mU.mU.mC.
2750
P.mU. A.fU. A. G. A.
n/a





A.mU.mU.mC.mU.

A.fU. G. A. A.mC.





A.mU. A.Chl

A*mU* A* G* A*mC*







A.





14127
137
2751
mC.mC. G. A.mC.mC.
2752
P.mU.fU.fU.fC.fC.fU.fU.
71%





A. A. G. G. A. A.

G. G.fU.mC. G. G*mC*





A.Chl

G*mU*mU*mU* G.





14128
711
2753
G. A. A.mU. G.
2754
P.mG.fU. A.fU. G.fC.
115%





G.mU. G.mC. A.mU.

A.fC.fC. A.mU.mU.mC*





A.mC.Chl

A* A*mC*mU*mC* C.





14129
582
2755
A.mU. A.mU. G.
2756
P.mU.fC. G. G.fC.fC.
97%





A.mU. G. G.mC.mC.

A.fU.fC. A.mU. A.mU*





G. A.Chl

G*mU* G*mU*mC* U.





14130
839
2757
A. G.mC. A.
2758
P.mA. A.fU.fC.fU. G. G.
102%





G.mU.mC.mC. A. G.

A.fC.fU. G.mC.mU*mU*





A.mU.mU.Chl

G*mU* G* G* C.





14131
1091
2759
G.mC.
2760
P.mU.fU.fU. G. A.fC.fU.
10%





A.mU.mU.mU. A.

A. A. A.mU. G.mC* A*





G.mU.mC. A. A.

A* A* G*mU* G.





A.Chl





14132
884
2761
A. G.mC.
2762
P.mA.fC. A.fU.fC. G. G.
93%





A.mU.mU.mC.mC. G.

A. A.fU. G.mC.mU*mC*





A.mU. G.mU.Chl

A*mU*mU* G* C.





14133
903
2763
mU. A. G.mU.mC. A.
2764
P.mA. A.
97%





G. G. A.

G.fU.fU.fC.fC.fU. G.





A.mC.mU.mU.Chl

A.mC.mU. A*mU*mC*







A* A*mU* C.





14134
1090
2765
mU. G.mC.
2766
P.mU.fU. G. A.fC.fU. A.
39%





A.mU.mU.mU. A.

A. A.fU. G.mC. A* A* A*





G.mU.mC. A. A.Chl

G*mU* G* A.





14135
474
2767
G.mU.mC.mU. G.
2768
P.mA. G. A.fC.fU.fC.
99%





A.mU. G. A.

A.fU.fC. A. G.





G.mU.mC.mU.Chl

A.mC*mU* G* G*mU*







G* A.





14136
575
2769
mU. A. G. A.mC.
2770
P.mU.fC. A.fU. A.fU.
108%





A.mC. A.mU. A.mU.

G.fU. G.fU.mC.mU.





G. A.Chl

A*mC*mU* G*mU* G*







G.





14137
671
2771
mC. A. G. A.mC. G.
2772
P.mA.fU.
98%





A. G. G. A.mC.

G.fU.fC.fC.fU.fC.





A.mU.Chl

G.fU.mC.mU. G*mU*







A* G*mC* A* U.





14138
924
2773
mC. A. G.mC.mC.
2774
P.mG. A. A.fU.fU.fC.
100%





G.mU. G. A.

A.fC. G. G.mC.mU. G*





A.mU.mU.mC.Chl

A*mC*mU*mU*mU*







G.





14139
1185
2775
A. G.mU.mC.mU. G.
2776
P.mU.fU.
47%





G. A. A. A.mU. A.

A.fU.fU.fU.fC.fC. A. G.





A.Chl

A.mC.mU*mC* A* A*







A*mU* A.





14140
1221
2777
A. G.mU.mU.mU.
2778
P.mG. A. A. G.fC.fC.
100%





G.mU. G.

A.fC. A. A. A.mC.mU*





G.mC.mU.mU.mC.Chl

A* A* A*mC*mU* A.





14141
347
2779
A. G.mU.mC.mC. A.
2780
P.mC.fU.fU.fU.fC.
103%





A.mC. G. A. A. A.

G.fU.fU. G. G.





G.Chl

A.mC.mU*mU*







A*mC*mU*mU* G.





14142
634
2781
A. A.
2782
P.mG.fU.fC.fU. G.fC. G.
100%





G.mU.mU.mU.mC.

A. A.





G.mC. A. G.

A.mC.mU.mU*mC*mU*





A.mC.Chl

mU* A* G* A.





14143
877
2783
A. G.mC. A. A.mU.
2784
P.mA. A.fU. G.fC.fU.fC.
104%





G. A. G.mC.

A.fU.fU.





A.mU.mU.Chl

G.mC.mU*mC*mU*mC*







A*mU* C.





14144
1033
2785
mU.mU. A. G. A.mU.
2786
P.mA.fU. G.fC. A.fC.fU.
95%





A. G.mU. G.mC.

A.fU.fC.mU. A.





A.mU.Chl

A*mU*mU*mC*







A*mU* G.





14145
714
2787
mU. G. G.mU. G.mC.
2788
P.mC.fU.fU. G.fU. A.fU.
101%





A.mU. A.mC. A. A.

G.fC. A.mC.mC.





G.Chl

A*mU*mU*mC* A* A*







C.





14146
791
2789
A.mU. G. A. A.
2790
P.mU. G. A.fC.fU.fC.
100%





A.mC. G. A.

G.fU.fU.fU.mC. A.mU*





G.mU.mC. A.Chl

A* A*mC*mU* G* U.





14147
813
2791
mC.mC. A. G. A.
2792
P.mU.fU.fC. A. G.fC.
97%





G.mU. G.mC.mU. G.

A.fC.fU.fC.mU. G.





A. A.Chl

G*mU*mC*







A*mU*mC* C.





14148
939
2793
mC. A. G.mC.mC.
2794
P.mA. A. A.fU.fU.fC.
109%





A.mU. G. A.

A.fU. G. G.mC.mU.





A.mU.mU.mU.Chl

G*mU* G* G* A* A* U.





14149
1161
2795
A.mU.mU. G.
2796
P.mA.fC. A.fU.fU.fC. A.
34%





G.mU.mU. G. A.

A.fC.fC. A. A.mU* A* A*





A.mU. G.mU.Chl

A*mC*mU* G.





14150
1164
2797
G. G.mU.mU. G. A.
2798
P.m U. A.fC. A.fC.
n/a





A.mU. G.mU. G.mU.

A.fU.fU.fC. A.





A.Chl

A.mC.mC* A* A*mU*







A* A* A.





14151
1190
2799
G. G. A. A. A.mU. A.
2800
P.mA.fU.fU. A. G.fU.fU.
n/a





A.mC.mU. A.

A.fU.fU.mU.mC.mC* A*





A.mU.Chl

G* A*mC*mU* C.





14152
1333
2801
mU.mC. A.mU. G. A.
2802
P.mU.fU.fU.fC.fU.
31%





A.mU. A. G. A. A.

A.fU.fU.fC. A.mU. G. A*





A.Chl

G* A* G* A* A* U.





14153
537
2803
G.mC.mC. A. G.mC.
2804
P.mU.fU.fC. G. G.fU.fU.
n/a





A. A.mC.mC. G. A.

G.fC.fU. G. G.mC* A*





A.Chl

G* G*mU*mC* C.





14154
684
2805
mC.
2806
P.mC. A.fU. G.fU. G.fU.
100%





A.mC.mC.mU.mC.

G. A. G. G.mU. G*





A.mC. A.mC. A.mU.

A*mU* G*mU*mC* C.





G.Chl





14155
707
2807
A. G.mU.mU. G. A.
2808
P.mG.fC. A.fC.fC.
99%





A.mU. G. G.mU.

A.fU.fU.fC. A.





G.mC.Chl

A.mC.mU*mC*mC*mU*







mC* G* C.





14156
799
2809
A. G.mU.mC. A.
2810
P.mC. A.fU.fC.fC. A.
95%





G.mC.mU. G. G.

G.fC.fU. G.





A.mU. G.Chl

A.mC.mU*mC*







G*mU*mU*mU* C.





14157
853
2811
mU. A.mU. A. A.
2812
P.mC.fU.fU.fU.fC.fC.
106%





G.mC. G. G. A. A. A.

G.fC.fU.fU. A.mU.





G.Chl

A*mU* A* A*mU*mC*







U.





14158
888
2813
mU.mU.mC.mC. G.
2814
P.mA. A.fU.fC. A.fC.
88%





A.mU. G.mU. G.

A.fU.fC. G. G. A. A*mU*





A.mU.mU.Chl

G*mC*mU*mC* A.





14159
1194
2815
A.mU. A. A.mC.mU.
2816
P.mA.fC. A.fC. A.fU.fU.
95%





A. A.mU. G.mU.

A. G.fU.mU.





G.mU.Chl

A.mU*mU*mU*mC*mC*







A* G.





14160
1279
2817
mU.mC.
2818
P.mU.fU.fC.fU. A.fU. A.
15%





A.mU.mU.mC.mU.

G. A. A.mU. G. A*





A.mU. A. G. A. A.Chl

A*mC* A*mU* A*G.





14161
1300
2819
A. A.mC.mU.
2820
P.mU. A.fC. A. G.fU. G.
86%





A.mU.mC. A.mC.mU.

A.fU. A.





G.mU. A.Chl

G.mU.mU*mU* G*mC*







A*mU* U.





14162
1510
2821
G.mU.mC. A.
2822
P.mA.fU. A. A. G.fC. A.
86%





A.mU.mU.

A.fU.fU. G. A.mC*





G.mC.mU.mU.

A*mC*mC* A*mC* C.





A.mU.Chl





14163
1543
2823
A. G.mC. A.
2824
P.mU.fU.fU. A.fU.fU. A.
110%





A.mU.mU. A. A.mU.

A.fU.fU. G.mC.mU* G*





A. A. A.Chl

G* A*mC* A* A.





14164
434
2825
A.mC. G.
2826
P.mU.fC. A.fU.fC. A. G.
134%





A.mC.mU.mC.mU. G.

A. G.fU.mC.





A.mU. G. A.Chl

G.mU*mU*mC* G* A*







G* U.





14165
600
2827
mU. A. G.mU. G.mU.
2828
P.mA.fU. A. A. A.fC.fC.
102%





G. G.mU.mU.mU.

A.fC. A.mC.mU.





A.mU.Chl

A*mU*mC*







A*mC*mC* U.





14166
863
2829
A. A. G.mC.mC. A.
2830
P.mU.fC. A.fU.fC.
93%





A.mU. G. A.mU. G.

A.fU.fU. G.





A.Chl

G.mC.mU.mU*mU*mC*







mC* G*mC* U.





14167
902
2831
A.mU. A. G.mU.mC.
2832
P.mA. G.fU.fU.fC.fC.fU.
101%





A. G. G. A.

G.A.fC.mU. A.mU*mC*





A.mC.mU.Chl

A* A*mU*mC* A.





14168
921
2833
A. G.mU.mC. A.
2834
P.mU.fU.fC. A.fC. G.
98%





G.mC.mC. G.mU. G.

G.fC.fU. G.





A. A.Chl

A.mC.mU*mU*mU* G*







G* A* A.





14169
154
2835
A.mC.mU.
2836
P.mU.fU.fC.fU.fC. A.fU.
n/a





A.mC.mC. A.mU. G.

G. G.fU. A. G.mU* G*





A. G. A. A.Chl

A* G*mU*mU* U.





14170
217
2837
A. A. A.mC. A. G.
2838
P.mA. A.fU.fC. A.
66%





G.mC.mU. G.

G.fC.fC.fU.





A.mU.mU.Chl

G.mU.mU.mU* A*







A*mC*mU* G* G.





14171
816
2839
G. A. G.mU.
2840
P.mG. G.fU.fU.fU.fC. A.
102%





G.mC.mU. G. A. A.

G.fC.





A.mC.mC.Chl

A.mC.mU.mC*mU* G*







G*mU*mC* A.





14172
882
2841
mU. G. A. G.mC.
2842
P.mA.fU.fC. G. G. A.
103%





A.mU.mU.mC.mC. G.

A.fU. G.fC.mU.mC.





A.mU.Chl

A*mU*mU*







G*mC*mU* C.





14173
932
2843
A.
2844
P.mU. G. G.fC.fU. G.fU.
n/a





A.mU.mU.mC.mC.

G. G. A. A.mU.mU*mC*





A.mC. A. G.mC.mC.

A*mC* G* G* C.





A.Chl





14174
1509
2845
mU. G.mU.mC. A.
2846
P.mU. A. A. G.fC. A.
n/a





A.mU.mU.

A.fU.fU. G. A.mC.





G.mC.mU.mU. A.Chl

A*mC*mC* A*mC*mC*







A.





14175
157
2847
A.mC.mC. A.mU. G.
2848
P.mC. A.
109%





A. G. A. A.mU.mU.

A.fU.fU.fC.fU.fC. A.fU.





G.Chl

G. G.mU* A* G*mU*







G* A* G.





14176
350
2849
mC.mC. A. A.mC. G.
2850
P.mU. G.
95%





A. A. A. G.mC.mC.

G.fC.fU.fU.fU.fC.





A.Chl

G.fU.mU. G. G*







A*mC*mU*mU* A* C.





14177
511
2851
mC.mU. G.
2852
P.mA. A.fU.fC. A. G.fU.
100%





G.mU.mC. A.mC.mU.

G. A.fC.mC. A.





G. A.mU.mU.Chl

G*mU*mU*mC*







A*mU* C.





14178
605
2853
mU. G.
2854
P.mA. G.fU.fC.fC. A.fU.
99%





G.mU.mU.mU.

A. A. A.mC.mC. A*mC*





A.mU. G. G.

A*mC*mU* A* U.





A.mC.mU.Chl





14179
811
2855
G. A.mC.mC. A. G.
2856
P.mC. A. G.fC.
88%





A. G.mU. G.mC.mU.

A.fC.fU.fC.fU. G.





G.Chl

G.mU.mC*







A*mU*mC*mC* A* G.





14180
892
2857
G. A.mU. G.mU. G.
2858
P.mU. A.fU.fC. A.
76%





A.mU.mU. G. A.mU.

A.fU.fC. A.fC.





A.Chl

A.mU.mC* G* G* A*







A*mU* G.





14181
922
2859
G.mU.mC. A.
2860
P.mA.fU.fU.fC. A.fC. G.
59%





G.mC.mC. G.mU. G.

G.fC.fU. G.





A. A.mU.Chl

A.mC*mU*mU*mU*







G* G* A.





14182
1169
2861
A. A.mU. G.mU.
2862
P.mA.fU. A. G. A.fU.
69%





G.mU.

A.fC. A.fC.





A.mU.mC.mU.

A.mU.mU*mC* A*





A.mU.Chl

A*mC*mC* A.





14183
1182
2863
mU.mU. G. A.
2864
P.mU.fU.fU.fC.fC. A. G.
n/a





G.mU.mC.mU. G. G.

A.fC.fU.mC. A. A*





A. A. A.Chl

A*mU* A* G* A* U.





14184
1539
2865
G.mU.mC.mC. A.
2866
P.mU.fU. A. A.fU.fU.
77%





G.mC. A. A.mU.mU.

G.fC.fU. G. G. A.mC* A*





A. A.Chl

A*mC*mC* G* U.





14185
1541
2867
mC.mC. A. G.mC. A.
2868
P.mU. A.fU.fU. A.
n/a





A.mU.mU. A. A.mU.

A.fU.fU. G.fC.mU. G. G*





A.Chl

A*mC* A* A*mC*C.





14186
427
2869
G. A.mC.mU.mC. G.
2870
P.mA. G.fU.fC.
69%





A. A.mC. G.

G.fU.fU.fC. G. A.





A.mC.mU.Chl

G.mU.mC* A* A*mU*







G* G* A.





14187
533
2871
A.mC.mC.mU.
2872
P.mG.fU.fU. G.fC.fU. G.
78%





G.mC.mC. A. G.mC.

G.fC. A. G.





A. A.mC.Chl

G.mU*mC*mC*







G*mU* G* G.





18538
496
2873
G. A.mU. G. A.
2874
P.mU. A.fU.fC. A. G.
74%





A.mU.mC.mU. G.

A.fU.fU.fC. A.fU.fC* A*





A.mU. A.Chl

G* A* A*fU* G.





18539
496
2875
mU. G. A.mU. G. A.
2876
P.mU. A.fU.fC. A. G.
72%





A.mU.mC.mU. G.

A.fU.fU.fC. A.fU.fC* A*





A.mU. A.Chl

G* A* A*fU* G.





18540
175
2877
A.mU.mU.mU.
2878
P.mU. G.fC. A. A. A. A.
98%





G.mC.mU.mU.mU.mU.

G.fC. A. A. A.fU*fC*





G.mC. A.Chl

A*fC*fU*fG* C.





18541
175
2879
G. A.mU.mU.mU.
2880
P.mU. G.fC. A. A. A. A.
28%





G.mC.mU.mU.mU.mU.

G.fC. A. A. A.fU*fC*





G.mC. A.Chl

A*fC*fU*fG* C.





18542
172
2881
G.mU. G.
2882
P.mU. A. A. A. G.fC. A.
24%





A.mU.mU.mU.

A. A.fU.fC. A.fC*fU*





G.mC.mU.mU.mU.

G*fC* A* A* U.





A.Chl





18543
172
2883
A. G.mU. G.
2884
P.mU. A. A. A. G.fC. A.
14%





A.mU.mU.mU.

A. A.fU.fC. A.fC*fU*





G.mC.mU.mU.mU.

G*fC* A* A* U.





A.Chl





18544
1013
2885
A.
2886
P.mU. A. A. A.fU. A.fC.
100%





A.mU.mU.mU.mC.

G. A. A. A.fU.fU*fU*fC*





G.mU.

A* G* G* U.





A.mU.mU.mU. A.Chl





18545
1013
2887
A. A.
2888
P.mU. A. A. A.fU. A.fC.
109%





A.mU.mU.mU.mC.

G. A. A. A.fU.fU*fU*fC*





G.mU.

A* G* G* U.





A.mU.mU.mU. A.Chl





18546
952
2889
mC. A.mC. A.
2890
P.mU.fU.fU. C. A.fU. G.
32%





G.mC.mC. A.mU. G.

G.fC.fU. G.fU. G* A* A*





A. A. A.Chl

A*fU*fU* C.





18547
952
2891
mU.mC. A.mC. A.
2892
P.mU.fU.fU. C. A.fU. G.
33%





G.mC.mC. A.mU. G.

G.fC.fU. G.fU. G* A* A*





A. A. A.Chl

A*fU*fU* C.





18548
174
2893
G. A.mU.mU.mU.
2894
P.mU.fC. A. A. A. A.
57%





G.mC.mU.mU.mU.mU.

G.fC. A. A. A.fU.fC*





G. A.Chl

A*fC*fU* G*fC* A.





18549
174
2895
mU. G.
2896
P.mU.fC. A. A. A. A.
53%





A.mU.mU.mU.

G.fC. A. A. A.fU.fC*





G.mC.mU.mU.mU.mU.

A*fC*fU* G*fC* A.





G. A.Chl





18550
177
2897
mU.mU.
2898
P.mU. A. G. G.fC. A. A.
97%





G.mC.mU.mU.mU.mU.

A. A. G.fC. A. A*





G.mC.mC.mU.

A*fU*fC* A*fC* U.





A.Chl





18551
177
2899
mU.mU.mU.
2900
P.mU. A. G. G.fC. A. A.
103%





G.mC.mU.mU.mU.mU.

A. A. G.fC. A. A*





G.mC.mC.mU.

A*fU*fC* A*fC* U.





A.Chl





18552
1150
2901
mU.mU.mU.mC.mU.
2902
P.mU.fU. A. A. A.fC.fU.
96%





mC. A.

G. A. G. A. A. A* G* A*





G.mU.mU.mU. A.

A* G*fC* A.





A.Chl





18553
1089
2903
mU.mU. G.mC.
2904
P.mU. G. A.fC.fU. A. A.
94%





A.mU.mU.mU. A.

A.fU. G.fC. A. A* A*





G.mU.mC. A.Chl

G*fU* G* A* G.





18554
1086
2905
A.mC.mU.mU.mU.
2906
P.mU.fU. A. A. A.fU.
n/a





G.mC.

G.fC. A. A. A. G.fU* G*





A.mU.mU.mU. A.

A* G* A* A* A.





A.Chl





18555
1093
2907
A.mU.mU.mU. A.
2908
P.mU.fU.fU.fU.fU. G.
n/a





G.mU.mC. A. A. A. A.

A.fC.fU. A. A. A.fU*





A.Chl

G*fC* A* A* A* G.





18556
1147
2909
mU.mU.mC.mU.mU.
2910
P.mU. A.fC.fU. G. A. G.
n/a





mU.mC.mU.mC. A.

A. A. A. G. A. A* G*fC*





G.mU. A.Chl

A*fU*fU* U.





18557
1148
2911
mU.mC.mU.mU.mU.
2912
P.mU. A. A.fC.fU. G. A.
66%





mC.mU.mC. A.

G. A. A. A. G. A* A*





G.mU.mU. A.Chl

G*fC* A*fU* U.





18558
1128
2913
G. A. A. A. G. A. G.
2914
P.mU. A.fU.
16%





A. A.mC. A.mU.

G.fU.fU.fC.fU.fC.fU.fU.fU.





A.Chl

fC* A*fU*fU*fU*fU*







G.





18559
1087
2915
mC.mU.mU.mU.
2916
P.mU.fC.fU. A. A. A.fU.
28%





G.mC.

G.fC. A. A. A. G*fU* G*





A.mU.mU.mU. A. G.

A* G* A* A.





A.Chl





18560
1088
2917
mU.mU.mU. G.mC.
2918
P.mU. A.fC.fU. A. A.
n/a





A.mU.mU.mU. A.

A.fU. G.fC. A. A. A*





G.mU. A.Chl

G*fU* G* A* G* A.





18561
1083
2919
mC.mU.mC.
2920
P.mU. A.fU. G.fC. A. A.
53%





A.mC.mU.mU.mU.

A. G.fU. G. A. G* A* A*





G.mC. A.mU. A.Chl

A*fU*fU* G.





18562
1081
2921
mU.mU.mC.mU.mC.
2922
P.mU. G.fC. A. A. A.
89%





A.mC.mU.mU.mU.

G.fU. G. A. G. A. A*





G.mC. A.Chl

A*fU*fU* G*fU* A.





18563
555
2923
mC.
2924
P.mU. A.fC. A. A.fC.fU.
33%





A.mC.mU.mC.mC. A.

G. G. A. G.fU. G* A* A*





G.mU.mU. G.mU.

A* A*fC*fU.





A.Chl





18564
1125
2925
A. A.mU. G. A. A. A.
2926
P.mU.fU.fU.fC.fU.fC.fU.
n/a





G. A. G. A. A. A. Chl

fU.fU.fC.







A.fU.fU*fU*fU*







G*fC*fU* A.





18565
168
2927
mU. G.mC. A. G.mU.
2928
P.mU.fC. A. A. A.fU.fC.
14%





G.

A.fC.fU. G.fC. A*





A.mU.mU.mU.mG.

A*fU*fU*fC*fU* C.





A.Chl





18566
1127
2929
mU. G. A. A. A. G. A.
2930
P.mU.fU.
27%





G. A. A.mC. A. A.Chl

G.fU.fU.fC.fU.fC.fU.fU.fU.







fC. A*fU*fU*fU*fU*







G* C.





18567
1007
2931
A.mC.mC.mU. G. A.
2932
P.mU. G. A. A.
129%





A.

A.fU.fU.fU.fC. A. G.





A.mU.mU.mU.mC.

G.fU* G*fU*fU*fU* A*





A.Chl

U.





18568
164
2933
G. A. A.mU.mU.
2934
P.mU.fU.fC. A.fC.fU.
47%





G.mC. A. G.mU. G. A.

G.fC. A.





A.Chl

A.fU.fU.fC*fU*fC*







A*fU* G* G.





18569
222
2935
G. G.mC.mU. G.
2936
P.mU.fC.fC. A. G. A.
n/a





A.mU.mU.mC.mU.

A.fU.fC. A. G.fC.fC*fU*





G. G. A.Chl

G*fU*fU*fU* A.





20612
172
2937
A. G.mU. G.
2938
P.mU. A. A. A. G.fC. A.
n/a





A.mU.mU.mU.

A. A.fU.mC. A.mC*mU*





G.mC.mU.mU.mU.

G*mC* A* A* U.





A.Chl





20613
172
2939
A. G.mU. G.
2940
P.mU. A. A. A. G.fC. A.
n/a





A.mU.mU.mU.

A. A.fU.fC. A.mC*fU*





G.mC.mU.mU.mU.

G*mC* A* A* U.





A.Chl





20614
172
2941
A. G.mU. G.
2942
P.mU. A. A. A. G. C. A.
101%





A.mU.mU.mU.

A. A. U.mC. A.mC*mU*





G.mC.mU.mU.mU.

G*mC* A* A* U.





A.Chl





20615
172
2943
A. G.mU. G.
2944
P.mU. A. A. A. G.fC. A.
104%





A.mU.mU.mU.

A. A.fU.mC.





G.mC.mU.mU.mU.

A.mC*mU*mG*mC*mA*





A.Chl

mA* U.
















TABLE 19







Inhibition of gene expression with PTGS2 sd-rxRNA sequences


(Accession Number: NM_000963.2)












Oligo
Start
SEQ ID

SEQ ID


Number
Site
NO
Sense sequence
NO
Antisense sequence






















% remaining








expression








(1 uM A549)


14422
451
2945
mC. A.mC.
2946
P.mU.fC. A. A.fU.fC. A.
72%





A.mU.mU.mU. G.

A. A.fU. G.mU. G*





A.mU.mU. G. A.Chl

A*mU*mC*mU* G* G.





14423
1769
2947
mC. A.mC.mU.
2948
P.mA. A.fU.fU. G.A. G.
71%





G.mC.mC.mU.mC. A.

G.fC. A. G.mU.





A.mU.mU.Chl

G*mU*mU* G* A*mU*







G.





14424
1464
2949
A. A. A.mU.
2950
P.mA. A. G. A.fC.fU. G.
74%





A.mC.mC. A.

G.fU.





G.mU.mC.mU.mU.Chl

A.mU.mU.mU*mC*







A*mU*mC*mU* G.





14425
453
2951
mC. A.mU.mU.mU.
2952
P.mU. G.fU.fC. A.
83%





G. A.mU.mU. G.

A.fU.fC. A. A. A.mU.





A.mC. A.Chl

G*mU* G* A*mU*mC*







U.








% remaining








expression








(1 uM PC-3)


17388
285
2953
G. A. A. A.
2954
P.mU.fU. G. A. G.fC. A.
88%





A.mC.mU.

G.fU.fU.fU.fU.fC*fU*fC*





G.mC.mU.mC. A.

fC* A*fU* A.





A.Chl





17389
520
2955
A.mC.mC.mU.mC.mU.
2956
P.mU. A. A.fU. A. G. G.
25%





mC.mC.mU.

A. G. A. G. G.fU*fU* A*





A.mU.mU. A.Chl

G* A* G* A.





17390
467
2957
mU.mC.mC.
2958
P.mU.fU. A. A. G.fU.fU.
68%





A.mC.mC. A.

G. G.fU. G. G. A*fC*fU*





A.mC.mU.mU. A.

G*fU*fC* A.





A.Chl





17391
467
2959
G.mU.mC.mC.
2960
P.mU.fU. A. A. G.fU.fU.
101%





A.mC.mC. A.

G. G.fU. G. G. A*fC*fU*





A.mC.mU.mU. A.

G*fU*fC* A.





A.Chl





17392
524
2961
mC.mU.mC.mC.mU.
2962
P.mU. G.fU. A.fU. A.
49%





A.mU.mU. A.mU.

A.fU. A. G. G. A. G* A*





A.mC. A.Chl

G*G*fU*fU*A.





17393
448
2963
G. A.mU.mC. A.mC.
2964
P.mU.fU.fC. A. A. A.fU.
29%





A.mU.mU.mU. G. A.

G.fU. G. A.fU.fC*fU* G*





A.Chl

G* A*fU* G.





17394
448
2965
A. G. A.mU.mC.
2966
P.mU.fU.fC. A. A. A.fU.
31%





A.mC.

G.fU. G. A.fU.fC*fU* G*





A.mU.mU.mU. G. A.

G* A*fU* G.





A.Chl





17395
519
2967
A.
2968
P.mU. A.fU. A. G. G. A.
12%





A.mC.mC.mU.mC.mU.

G.A. G. G.fU.fU* A* G*





mC.mC.mU. A.mU.

A* G* A* A.





A.Chl





17396
437
2969
G.mU.mU. G. A.mC.
2970
P.mU.fC.fU. G. G. A.fU.
86%





A.mU.mC.mC. A. G.

G.fU.fC. A. A.fC* A*fC*





A.Chl

A*fU* A* A.





17397
406
2971
mC.mC.mU.mU.mC.
2972
P.mU.fU.fU.fC. G. A. A.
23%





mC.mU.mU.mC. G.

G. G. A. A. G. G* G* A*





A. A. A.Chl

A*fU* G* U.





17398
339
2973
A.mC.mU.mC.mC.
2974
P.mU.fU. G.fU.
102%





A. A. A.mC. A.mC. A.

G.fU.fU.fU. G. G. A.





A.Chl

G.fU* G* G* G*fU*fU*







U.





17399
339
2975
mC.
2976
P.mU.fU. G.fU.
55%





A.mC.mU.mC.mC. A.

G.fU.fU.fU. G. G. A.





A. A.mC. A.mC. A.

G.fU* G* G* G*fU*fU*





A.Chl

U.





17400
338
2977
mC.
2978
P.mU. G.fU. G.fU.fU.fU.
62%





A.mC.mU.mC.mC. A.

G. G. A. G.fU. G* G*





A. A.mC. A.mC. A.Chl

G*fU*fU*fU* C.





17401
468
2979
mC.mC. A.mC.mC. A.
2980
P.mU. G.fU. A. A.
61%





A.mC.mU.mU. A.mC.

G.fU.fU. G. G.fU. G. G*





A.Chl

A*fC*fU* G*fU* C.





17402
468
2981
mU.mC.mC.
2982
P.mU. G.fU. A. A.
179%





A.mC.mC. A.

G.fU.fU. G. G.fU. G. G*





A.mC.mU.mU. A.mC.

A*fC*fU* G*fU* C.





A.Chl





17403
1465
2983
A. A.mU. A.mC.mC.
2984
P.mU. A. A. G. A.fC.fU.
30%





A.

G. G.fU. A.fU.fU*fU*fC*





G.mU.mC.mU.mU.

A*fU*fC* U.





A.Chl





17404
243
2985
G. A.mC.mC. A.
2986
P.mU.fC.fU.fU. A.fU.
32%





G.mU. A.mU. A. A.

A.fC.fU. G. G.fU.fC* A*





G. A.Chl

A* A*fU*fC* C.





17405
1472
2987
G.mU.mC.mU.mU.mU.
2988
P.mU.fU.fC. A.fU.fU. A.
15%





mU. A. A.mU. G.

A. A. A. G. A.fC*fU* G*





A. A.Chl

G*fU* A* U.





17406
2446
2989
A.
2990
P.mU. A. G. A.fC. A.fU.
142%





A.mU.mU.mU.mC.

G.A. A. A.fU.fU*





A.mU.

A*fC*fU* G* G* U.





G.mU.mC.mU. A.Chl





17407
449
2991
A.mU.mC. A.mC.
2992
P.mU. A.fU.fC. A. A.
54%





A.mU.mU.mU. G.

A.fU. G.fU. G.





A.mU. A.Chl

A.fU*fC*fU* G* G* A*







U.





17408
449
2993
G. A.mU.mC. A.mC.
2994
P.mU. A.fU.fC. A. A.
27%





A.mU.mU.mU. G.

A.fU. G.fU. G.





A.mU. A.Chl

A.fU*fC*fU* G* G* A*







U.





17409
444
2995
mU.mC.mC. A. G.
2996
P.mU. A.fU. G.fU. G.
49%





A.mU.mC. A.mC.

A.fU.fC.fU. G. G. A*fU*





A.mU. A.Chl

G*fU*fC* A* A.





17410
1093
2997
mU. A.mC.mU. G.
2998
P.mU.fC.fU.fC.fC.fU.
32%





A.mU. A. G. G.A. G.

A.fU.fC. A. G.fU.





A.Chl

A*fU*fU* A* G*fC* C.





17411
1134
2999
G.mU. G.mC. A.
3000
P.mU.fC. A. A. G.fU.
70%





A.mC. A.mC.mU.fU.

G.fU.fU. G.mC. A.fC*





G. A.Chl

A*fU* A* A*fU* C.





17412
244
3001
A.mC.mC. A. G.mU.
3002
P.mU. A.fC.fU.fU. A.fU.
63%





A.mU. A. A. G.mU.

A.fC.fU. G. G.fU*fC* A*





A.Chl

A* A*fU* C.





17413
1946
3003
G. A. A.
3004
P.mU.fU.fC. A.fU.fU. A.
19%





G.mU.mC.mU. A.

G. A.fC.mU.fU.fC*fU*





A.mU. G. A. A.Chl

A*fC* A* G* U.





17414
638
3005
A. A. G. A. A. G. A.
3006
P.mU. A.
27%





A. A. G.mU.mU.

A.fC.fU.fU.fU.fC.fU.fU.fC.





A.Chl

fU.fU* A* G* A* A*







G* C.





17415
450
3007
mU.mC. A.mC.
3008
P.mU. A. A.fU.fC. A. A.
216%





A.mU.mU.mU. G.

A.fU. G.fU. G.





A.mU.mU. A.Chl

A*fU*fC*fU* G* G* A.





17416
450
3009
A.mU.mC. A.mC.
3010
P.mU. A. A.fU.fC. A. A.
32%





A.mU.mU.mU. G.

A.fU. G.fU. G.





A.mU.mU. A.Chl

A*fU*fC*fU* G* G* A.





17417
452
3011
A.mC.
3012
P.mU.fU.fC. A. A.fU.fC.
99%





A.mU.mU.mU. G.

A. A. A.fU. G.fU* G*





A.mU.mU. G. A.

A*fU*fC*fU* G.





A.Chl





17418
452
3013
mC. A.mC.
3014
P.mU.fU.fC. A. A.fU.fC.
54%





A.mU.mU.mU. G.

A. A. A.fU. G.fU* G*





A.mU.mU. G. A.

A*fU*fC*fU* G.





A.Chl





17419
454
3015
A.mU.mU.mU. G.
3016
P.mU.fU. G.fU.fC. A.
86%





A.mU.mU. G. A.mC.

A.fU.fC. A. A. A.fU*





A. A.Chl

G*fU* G* A*fU* C.





17420
454
3017
mC. A.mU.mU.mU.
3018
P.mU.fU. G.fU.fC. A.
89%





G. A.mU.mU. G.

A.fU.fC. A. A. A.fU*





A.mC. A. A.Chl

G*fU* G* A*fU* C.





17421
1790
3019
mC. A.mU.mC.mU.
3020
P.mU.fU.fU. A.fU.fU.
55%





G.mC. A. A.mU. A. A.

G.fC. A. G. A.fU. G* A*





A.Chl

G* A* G* A* C.





17422
1790
3021
mU.mC.
3022
P.mU.fU.fU. A.fU.fU.
62%





A.mU.mC.mU. G.mC.

G.fC. A. G. A.fU. G* A*





A. A.mU. A. A. A.Chl

G* A* G* A* C.





21180
448
3023
G. A.mU.mC. A.mC.
3024
P.mU.fU.fC. A.mA. A.fU.
76%





A.mU.mU.mU. G. A.

G.fU. G. A.mU.mC*mU*





A.TEG-Chl

G* G* A*mU* G.





21181
448
3025
G. A.mU.mC. A.mC.
3026
P.mU.fU.fC. A.mA. A.fU.
37%





A.mU.mU.mU. G. A.

G.fU. G.





A.TEG-Chl

A.fU.fC*fU*mG*mG*mA*







fU* G.





21182
448
3027
G. A.mU.mC. A.mC.
3028
P.mU.fU.fC. A. A. A.fU.
29%





A.mU.mU.mU.

G.fU. G. A.fU.fC*fU* G*





G*mA*mA.TEG-Chl

G* A*fU* G.





21183
448
3029
mG*mA*mU.mC.
3030
P.mU.fU.fC. A. A. A.fU.
46%





A.mC.

G.fU. G. A.fU.fC*fU* G*





A.mU.mU.mU.

G* A*fU* G.





G*mA*mA.TEG-Chl





21184
448
3031
mG*mA*mU.mC.mA.
3032
P.mU.fU.fC. A. A. A.fU.
60%





mC.mA.mU.mU.mU.

G.fU. G. A.fU.fC*fU* G*





mG*mA*mA.TEG-

G* A*fU* G.





Chl





21185
449
3033
G. A.mU.mC. A.mC.
3034
P.mU. A.fU.fC. A. A.
27%





A.mU.mU.mU. G.

A.fU. G.fU. G.





A.mU. A.TEG-Chl

A.fU.fC*fU* G* G*







A*fU* G.





21186
449
3035
G. A.mU.mC. A.mC.
3036
P.mU. A.fU.fC. A. A.
57%





A.mU.mU.mU. G.

A.fU. G.fU. G.





A.mU. A.TEG-Chl

A.mU.mC*mU* G* G*







A*mU* G.





21187
449
3037
G. A.mU.mC. A.mC.
3038
P.mU. A.fU.fC. A.mA.
54%





A.mU.mU.mU. G.

A.fU. G.fU. G.





A.mU. A.TEG-Chl

A.mU.mC*mU* G* G*







A*mU* G.





21188
449
3039
G. A.mU.mC. A.mC.
3040
P.mU. A.fU.fC. A. A.
66%





A.mU.mU.mU. G.

A.fU. G.fU. G.





A.mU. A.TEG-Chl

A.mU.mC*mU*mG*mG*







mA*mU* G.





21189
449
3041
G. A.mU.mC. A.mC.
3042
P.mU. A.fU.fC. A.mA.
44%





A.mU.mU.mU. G.

A.fU. G.fU. G.





A.mU. A.TEG-Chl

A.mU.mC*mU*mG*mG*







mA*mU* G.





21190
449
3043
G. A.mU.mC. A.mC.
3044
P.mU. A.fU.fC. A. A.
52%





A.mU.mU.mU. G.

A.fU. G.fU. G.





A.mU. A.TEG-Chl

A.fU.fC*fU*mG*mG*mA*







fU* G.





21191
449
3045
G. A.mU.mC. A.mC.
3046
P.mU. A.fU.fC. A.mA.
41%





A.mU.mU.mU. G.

A.fU. G.fU. G.





A.mU. A.TEG-Chl

A.fU.fC*fU*mG*mG*mA*







fU* G.





21192
449
3047
G. A.mU.mC. A.mC.
3048
P.mU. A.fU.fC. A. A.
98%





A.mU.mU.mU. G.

A.fU. G.fU. G.





A.mU. A.TEG-Chl

A.fU.mC*fU*mG*mG*







mA*fU* G.





21193
449
3049
G. A.mU.mC. A.mC.
3050
P.mU. A.fU.fC. A. A.
93%





A.mU.mU.mU. G.

A.fU. G.fU. G.





A*mU*mA.TEG-Chl

A.fU*fC*fU* G* G* A*







U.





21194
449
3051
mG*mA*mU.mC.
3052
P.mU. A.fU.fC. A. A.
119%





A.mC.

A.fU. G.fU. G.





A.mU.mU.mU. G.

A.fU*fC*fU* G* G* A*





A*mU*mA.TEG-Chl

U.





21195
449
3053
mG*mA*mU.mC.mA.
3054
P.mU. A.fU.fC. A. A.
292%





mC.mA.mU.mU.mU.

A.fU. G.fU. G.





mG.mA*mU*mA.TEG-

A.fU*fC*fU* G* G* A*





Chl

U.





20620
449
3055
G. A.mU.mC. A.mC.
3056
P.mU. A.fU.fC. A. A.
24%





A.mU.mU.mU. G.

A.fU. G.fU. G.





A.mU. A.Chl-TEG

A.mU*mC*mU* G* G*







A* U.





20621
449
3057
G. A.mU.mC. A.mC.
3058
P.mU. A.fU.fC. A. A.
5%





A.mU.mU.mU. G.

A.fU. G.fU. G.





A.mU. A.Chl-TEG

A.mU*fC*mU* G* G*







A* U.





20622
449
3059
G. A.mU.mC. A.mC.
3060
P.mU. A. U. C. A. A. A.
25%





A.mU.mU.mU. G.

U. G. U. G.





A.mU. A.Chl-TEG

A.mU*mC*mU* G* G*







A* U.





20623
449
3061
G. A.mU.mC. A.mC.
3062
P.mU. A.fU.fC. A. A.
14%





A.mU.mU.mU. G.

A.fU. G.fU. G.





A.mU. A.Chl-TEG

A.mU*mC*mU*mG*mG*







mA* U.





20588
448
3063
G. A.mU.mC. A.mC.
3064
P.mU.fU.fC. A. A. A.fU.
17%





A.mU.mU.mU. G. A.

G.fU. G. A.mU.mC*mU*





A.Chl-TEG

G* G* A*mU* G.





20589
448
3065
G. A.mU.mC. A.mC.
3066
P.mU.fU.fC. A. A. A.fU.
40%





A.mU.mU.mU. G. A.

G.fU. G. A.mU.fC*mU*





A.Chl-TEG

G* G* A*fU* G.





20590
448
3067
G. A.mU.mC. A.mC.
3068
P.mU. U. C. A. A. A. U.
34%





A.mU.mU.mU. G. A.

G. U. G. A.mU.mC*mU*





A.Chl-TEG

G* G* A*mU* G.





20591
448
3069
G. A.mU.mC. A.mC.
3070
P.mU.fU.fC. A. A. A.fU.
n/a





A.mU.mU.mU. G. A.

G.fU. G.





A.Chl-TEG

A.fU.fC*fU*mG*mG*mA*







fU* G.
















TABLE 20







Inhibition of gene expression with CTGF sd-rxRNA sequences


(Accession Number: NM_001901.2)



















% remaining








mRNA








expression


Oligo
Start
SEQ ID

SEQ ID

(1 uM sd-rxRNA,


Number
Site
NO
Sense sequence
NO
Antisense sequence
A549)
















13980
1222
3071
A.mC. A. G. G. A.
3072
P.mU. A.fC.
98%





A. G. A.mU. G.mU.

A.fU.fC.fU.fU.fC.fC.mU.





A.Chl

G.mU* A* G*mU*







A*mC* A.





13981
813
3073
G. A. G.mU. G. G.
3074
P.mA. G. G.fC.
82%





A. G.mC.

G.fC.fU.fC.fC.





G.mC.mC.mU.Chl

A.mC.mU.mC*mU*







G*mU* G* G* U.





13982
747
3075
mC. G. A.mC.mU.
3076
P.mU.
116%





G. G. A. A. G.

G.fU.fC.fU.fU.fC.fC. A.





A.mC. A.Chl

G.mU.mC. G* G*mU*







A* A* G* C.





13983
817
3077
G. G. A. G.mC.
3078
P.mG. A. A.fC. A. G.
97%





G.mC.mC.mU.

G.fC.





G.mU.mU.mC.Chl

G.fC.mU.mC.mC*







A*mC*mU*mC*mU*







G.





13984
1174
3079
G.mC.mC.
3080
P.mC. A. G.fU.fU.
102%





A.mU.mU. A.mC.

G.fU. A. A.fU. G.





A. A.mC.mU.

G.mC* A* G* G*mC*





G.Chl

A* C.





13985
1005
3081
G. A.
3082
P.mA. G.fC.fC. A. G. A.
114%





G.mC.mU.mU.mU.

A. A. G.mC.mU.mC*





mC.mU. G.

A* A* A*mC*mU* U.





G.mC.mU.Chl





13986
814
3083
A. G.mU. G. G. A.
3084
P.mC. A. G. G.fC.
111%





G.mC.

G.fC.fU.fC.fC.





G.mC.mC.mU.

A.mC.mU*mC*mU*





G.Chl

G*mU* G* G.





13987
816
3085
mU. G. G. A.
3086
P.mA. A.fC. A. G. G.fC.
102%





G.mC.

G.fC.fU.mC.mC.





G.mC.mC.mU.

A*mC*mU*mC*mU*





G.mU.mU.Chl

G* U.





13988
1001
3087
G.mU.mU.mU. G.
3088
P.mA. G. A. A. A.
99%





A.

G.fC.fU.fC. A. A.





G.mC.mU.mU.mU.

A.mC*mU*mU* G*





mC.mU.Chl

A*mU* A.





13989
1173
3089
mU. G.mC.mC.
3090
P.mA. G.fU.fU. G.fU.
107%





A.mU.mU. A.mC.

A. A.fU. G. G.mC. A*





A. A.mC.mU.Chl

G* G*mC* A*mC* A.





13990
749
3091
A.mC.mU. G. G.
3092
P.mC. G.fU.
91%





A. A. G. A.mC.

G.fU.fC.fU.fU.fC.fC. A.





A.mC. G.Chl

G.mU*mC* G*







G*mU* A* A.





13991
792
3093
A. A.mC.mU.
3094
P.mG. G. A.fC.fC. A. G.
97%





G.mC.mC.mU. G.

G.fC. A. G.mU.mU* G*





G.mU.mC.mC.Chl

G*mC*mU*mC* U.





13992
1162
3095
A. G.
3096
P.mC. A. G. G.fC. A.fC.
107%





A.mC.mC.mU.

A. G.





G.mU.

G.mU.mC.mU*mU*





G.mC.mC.mU.

G* A*mU* G* A.





G.Chl





13993
811
3097
mC. A. G. A.
3098
P.mG.fC. G.fC.fU.fC.fC.
113%





G.mU. G. G. A.

A.fC.fU.mC.mU.





G.mC. G.mC.Chl

G*mU* G*







G*mU*mC* U.





13994
797
3099
mC.mC.mU. G.
3100
P.mG. G.fU.fC.fU. G.
n/a





G.mU.mC.mC. A.

G. A.fC.fC. A. G.





G. A.mC.mC.Chl

G*mC* A*







G*mU*mU* G.





13995
1175
3101
mC.mC.
3102
P.mA.fC. A. G.fU.fU.
113%





A.mU.mU. A.mC.

G.fU. A. A.mU. G.





A. A.mC.mU.

G*mC* A* G* G*mC*





G.mU.Chl

A.





13996
1172
3103
mC.mU.
3104
P.mG.fU.fU. G.fU. A.
110%





G.mC.mC.

A.fU. G. G.mC. A. G*





A.mU.mU. A.mC.

G*mC* A*mC* A* G.





A. A.mC.Chl





13997
1177
3105
A.mU.mU. A.mC.
3106
P.mG. G. A.fC. A.
105%





A. A.mC.mU.

G.fU.fU. G.fU. A.





G.mU.mC.mC.Chl

A.mU* G* G*mC* A*







G* G.





13998
1176
3107
mC. A.mU.mU.
3108
P.mG. A.fC. A. G.fU.fU.
89%





A.mC. A.

G.fU. A. A.mU. G*





A.mC.mU.

G*mC* A* G* G* C.





G.mU.mC.Chl





13999
812
3109
A. G. A. G.mU. G.
3110
P.mG. G.fC.
99%





G. A. G.mC.

G.fC.fU.fC.fC.





G.mC.mC.Chl

A.fC.mU.mC.mU*







G*mU* G* G*mU* C.





14000
745
3111
A.mC.mC. G.
3112
P.mU.fC.fU.fU.fC.fC. A.
n/a





A.mC.mU. G. G. A.

G.fU.fC. G. G.mU* A*





A. G. A.Chl

A* G*mC*mC* G.





14001
1230
3113
A.mU. G.mU.
3114
P.mU.
106%





A.mC. G. G. A. G.

G.fU.fC.fU.fC.fC. G.fU.





A.mC. A.Chl

A.mC.







A.mU*mC*mU*mU*







mC*mC* U.





14002
920
3115
G.mC.mC.mU.mU.
3116
P.mA. G.fC.fU.fU.fC.
93%





G.mC. G. A. A.

G.fC. A. A. G.





G.mC.mU.Chl

G.mC*mC*mU* G*







A*mC* C.





14003
679
3117
G.mC.mU. G.mC.
3118
P.mC.
102%





G. A. G. G. A.

A.fC.fU.fC.fC.fU.fC.





G.mU. G.Chl

G.fC. A. G.mC*







A*mU*mU*mU*mC*







C.





14004
992
3119
G.mC.mC.mU.
3120
P.mA. A. A.fC.fU.fU. G.
100%





A.mU.mC. A. A.

A.fU. A. G.





G.mU.mU.mU.Chl

G.mC*mU*mU* G*







G* A* G.





14005
1045
3121
A.
3122
P.mA.fC.fU.fC.fC. A.fC.
104%





A.mU.mU.mC.mU.

A. G. A.





G.mU. G. G. A.

A.mU.mU*mU* A*





G.mU.Chl

G*mC*mU* C.





14006
1231
3123
mU. G.mU. A.mC.
3124
P.mA.fU.
87%





G. G. A. G. A.mC.

G.fU.fC.fU.fC.fC. G.fU.





A.mU.Chl

A.mC.







A*mU*mC*mU*mU*







mC* C.





14007
991
3125
A. G.mC.mC.mU.
3126
P.mA. A.fC.fU.fU. G.
101%





A.mU.mC. A. A.

A.fU. A. G.





G.mU.mU.Chl

G.mC.mU*mU* G* G*







A* G* A.





14008
998
3127
mC. A. A.
3128
P.mA. A. G.fC.fU.fC. A.
98%





G.mU.mU.mU. G.

A. A.fC.mU.mU. G*





A.

A*mU* A* G* G* C.





G.mC.mU.mU.Chl





14009
1049
3129
mC.mU. G.mU. G.
3130
P.mA.fC. A.fU.
98%





G. A. G.mU. A.mU.

A.fC.fU.fC.fC. A.mC. A.





G.mU.Chl

G* A*







A*mU*mU*mU* A.





14010
1044
3131
A. A.
3132
P.mC.fU.fC.fC. A.fC. A.
93%





A.mU.mU.mC.mU.

G. A. A.mU.mU.mU*





G.mU. G. G. A.

A* G*mC*mU*mC* G.





G.Chl





14011
1327
3133
mU.mU.mU.mC.
3134
P.mU. G.fU. G.fC.fU.
95%





A. G.mU. A. G.mC.

A.fC.fU. G. A. A.





A.mC. A.Chl

A*mU*mC*







A*mU*mU* U.





14012
1196
3135
mC. A. A.mU. G.
3136
P.mA. A. A. G. A.fU.
101%





A.mC.

G.fU.fC. A.mU.mU.





A.mU.mC.mU.mU.

G*mU*mC*mU*mC*





mU.Chl

mC* G.





14013
562
3137
A. G.mU.
3138
P.mG.fU. G.fC. A.fC.fU.
66%





A.mC.mC. A.

G. G.fU.





G.mU. G.mC.

A.mC.mU*mU*





A.mC.Chl

G*mC* A* G* C.





14014
752
3139
G. G. A. A. G.
3140
P.mA. A. A.fC. G.fU.
95%





A.mC. A.mC.

G.fU.fC.fU.mU.mC.mC*





G.mU.mU.mU.Chl

A* G*mU*mC* G*







G.





14015
994
3141
mC.mU.
3142
P.mU.fC. A. A.
85%





A.mU.mC. A. A.

A.fC.fU.fU. G. A.mU.





G.mU.mU.mU. G.

A. G*





A.Chl

G*mC*mU*mU* G*







G.





14016
1040
3143
A. G.mC.mU. A.
3144
P.mA.fC. A. G. A.
61%





A.

A.fU.fU.fU. A.





A.mU.mU.mC.mU.

G.mC.mU*mC* G*





G.mU.Chl

G*mU* A* U.





14017
1984
3145
A. G. G.mU. A. G.
3146
P.mU.fU. A.fC.
32%





A. A.mU. G.mU. A.

A.fU.fU.fC.fU.





A.Chl

A.mC.mC.mU* A*mU*







G* G*mU* G.





14018
2195
3147
A. G.mC.mU. G.
3148
P.mA. A. A.fC.fU. G.
86%





A.mU.mC. A.

A.fU.fC. A. G.mC.mU*





G.mU.mU.mU.Chl

A*mU* A*mU* A* G.





14019
2043
3149
mU.mU.mC.mU.
3150
P.mU. A.fU.fC.fU. G. A.
81%





G.mC.mU.mC. A.

G.fC. A. G. A.





G. A.mU. A.Chl

A*mU*mU*mU*mC*







mC* A.





14020
1892
3151
mU.mU.
3152
P.mU.fU. A.
84%





A.mU.mC.mU. A.

A.fC.fU.fU. A. G.





A. G.mU.mU. A.

A.mU. A. A*mC*mU*





A.Chl

G*mU* A* C.





14021
1567
3153
mU. A.mU. A.mC.
3154
P.mU. A.fU.fU.
72%





G. A. G.mU. A.

A.fC.fU.fC. G.fU.





A.mU. A.Chl

A.mU. A* A* G*







A*mU* G* C.





14022
1780
3155
G. A.mC.mU. G.
3156
P.mA. A. G.fC.fU.
65%





G. A.mC. A.

G.fU.fC.fC. A.





G.mC.mU.mU.Chl

G.mU.mC*mU* A*







A*mU*mC* G.





14023
2162
3157
A.mU. G.
3158
P.mU. A. A.fU. A. A. A.
80%





G.mC.mC.mU.mU.

G. G.fC.mC.





mU. A.mU.mU.

A.mU*mU*mU*





A.Chl

G*mU*mU* C.





14024
1034
3159
A.mU. A.mC.mC.
3160
P.mU.fU.fU. A.
91%





G. A. G.mC.mU. A.

G.fC.fU.fC. G. G.mU.





A. A.Chl

A.mU*







G*mU*mC*mU*mU*







C.





14025
2264
3161
mU.mU.
3162
P.mA.fC.
58%





G.mU.mU. G. A.

A.fC.fU.fC.fU.fC. A.





G. A. G.mU.

A.mC. A. A* A*mU*





G.mU.Chl

A* A* A* C.





14026
1032
3163
A.mC. A.mU.
3164
P.mU. A. G.fC.fU.fC. G.
106%





A.mC.mC. G. A.

G.fU. A.mU.





G.mC.mU. A.Chl

G.mU*mC*mU*mU*







mC* A* U.





14027
1535
3165
A. G.mC. A. G. A.
3166
P.mU. A.
67%





A. A. G. G.mU.mU.

A.fC.fC.fU.fU.fU.fC.fU.





A.Chl

G.mC.mU* G* G*mU*







A*mC* C.





14028
1694
3167
A. G.mU.mU.
3168
P.mU.fU. A. A. G. G. A.
94%





G.mU.mU.mC.mC.

A.fC. A.





mU.mU. A. A.Chl

A.mC.mU*mU* G*







A*mC*mU* C.





14029
1588
3169
A.mU.mU.mU. G.
3170
P.mU.fU. A.fC.
97%





A. A. G.mU. G.mU.

A.fC.fU.fU.fC. A. A.





A. A.Chl

A.mU* A* G*mC* A*







G* G.





14030
928
3171
A. A. G.mC.mU.
3172
P.mU.fC.fC. A. G.
100%





G. A.mC.mC.mU.

G.fU.fC. A.





G. G. A.Chl

G.mC.mU.mU*mC*







G*mC* A* A* G.





14031
1133
3173
G. G.mU.mC.
3174
P.mC.fU.fU.fC.fU.fU.fC.
82%





A.mU. G. A. A. G.

A.fU. G.





A. A. G.Chl

A.mC.mC*mU*mC*







G*mC*mC* G.





14032
912
3175
A.mU. G.
3176
P.mA. A. G. G.fC.fC.fU.
84%





G.mU.mC. A. G.

G. A.fC.mC. A.mU*





G.mC.mC.mU.mU.

G*mC* A*mC* A* G.





Chl





14033
753
3177
G. A. A. G. A.mC.
3178
P.mC. A. A. A.fC. G.fU.
86%





A.mC.

G.fU.fC.mU.mU.mC*mC*





G.mU.mU.mU.

A* G*mU*mC* G.





G.Chl





14034
918
3179
A. G.
3180
P.mC.fU.fU.fC. G.fC. A.
88%





G.mC.mC.mU.mU.

A. G. G.mC.mC.mU*





G.mC. G. A. A.

G* A*mC*mC* A* U.





G.Chl





14035
744
3181
mU. A.mC.mC. G.
3182
P.mC.fU.fU.fC.fC. A.
95%





A.mC.mU. G. G. A.

G.fU.fC. G. G.mU. A*





A. G.Chl

A* G*mC*mC* G* C.





14036
466
3183
A.mC.mC. G.mC.
3184
P.mC.fC. G.
73%





A. A. G. A.mU.mC.

A.fU.fC.fU.fU. G.fC. G.





G. G.Chl

G.mU*mU* G*







G*mC*mC* G.





14037
917
3185
mC. A. G.
3186
P.mU.fU.fC. G.fC. A. A.
86%





G.mC.mC.mU.mU.

G. G.fC.mC.mU. G*





G.mC. G. A. A.Chl

A*mC*mC* A*mU* G.





14038
1038
3187
mC. G. A.
3188
P.mA. G. A.
84%





G.mC.mU. A. A.

A.fU.fU.fU. A.





A.mU.mU.mC.mU.

G.fC.mU.mC. G*





Chl

G*mU* A*mU* G* U.





14039
1048
3189
mU.mC.mU.
3190
P.mC. A.fU.
87%





G.mU. G. G. A.

A.fC.fU.fC.fC. A.fC. A.





G.mU. A.mU.

G. A*





G.Chl

A*mU*mU*mU* A*







G.





14040
1235
3191
mC. G. G. A. G.
3192
P.mU. G.fC.fC. A.fU.
100%





A.mC. A.mU. G.

G.fU.fC.fU.mC.mC.





G.mC. A.Chl

G*mU* A*mC*







A*mU* C.





14041
868
3193
A.mU. G. A.mC.
3194
P.mG. A. G. G.fC.
104%





A. A.mC.

G.fU.fU. G.fU.mC.





G.mC.mC.mU.mC.

A.mU*mU* G*





Chl

G*mU* A* A.





14042
1131
3195
G. A. G.
3196
P.mU.fC.fU.fU.fC.
85%





G.mU.mC. A.mU.

A.fU. G.





G. A. A. G. A.Chl

A.fC.mC.mU.mC*







G*mC*mC* G*mU* C.





14043
1043
3197
mU. A. A.
3198
P.mU.fC.fC. A.fC. A. G.
74%





A.mU.mU.mC.mU.

A. A.fU.mU.mU. A*





G.mU. G. G. A.Chl

G*mC*mU*mC* G* G.





14044
751
3199
mU. G. G. A. A. G.
3200
P.mA. A.fC. G.fU.
84%





A.mC. A.mC.

G.fU.fC.fU.fU.mC.mC.





G.mU.mU.Chl

A* G*mU*mC* G* G*







U.





14045
1227
3201
A. A. G. A.mU.
3202
P.mC.fU.fC.fC. G.fU.
99%





G.mU. A.mC. G. G.

A.fC.





A. G.Chl

A.fU.mC.mU.mU*mC*







mC*mU* G*mU* A.





14046
867
3203
A. A.mU. G.
3204
P.mA. G. G.fC. G.fU.fU.
94%





A.mC. A. A.mC.

G.fU.fC. A.mU.mU* G*





G.mC.mC.mU.Chl

G*mU* A* A* C.





14047
1128
3205
G. G.mC. G. A. G.
3206
P.mU.fC. A.fU. G.
89%





G.mU.mC. A.mU.

A.fC.fC.fU.fC.





G. A.Chl

G.mC.mC*







G*mU*mC* A* G* G.





14048
756
3207
G. A.mC. A.mC.
3208
P.mG. G.fC.fC. A. A.
93%





G.mU.mU.mU. G.

A.fC. G.fU.





G.mC.mC.Chl

G.mU.mC*mU*mU*mC*







mC* A* G.





14049
1234
3209
A.mC. G. G. A. G.
3210
P.mG.fC.fC. A.fU.
100%





A.mC. A.mU. G.

G.fU.fC.fU.fC.mC.





G.mC.Chl

G.mU* A*mC*







A*mU*mC* U.





14050
916
3211
mU.mC. A. G.
3212
P.mU.fC. G.fC. A. A. G.
96%





G.mC.mC.mU.mU.

G.fC.fC.mU. G.





G.mC. G. A.Chl

A*mC*mC* A*mU*







G* C.





14051
925
3213
G.mC. G. A. A.
3214
P.mA. G. G.fU.fC. A.
80%





G.mC.mU. G.

G.fC.fU.fU.mC. G.mC*





A.mC.mC.mU.Chl

A* A* G* G*mC* C.





14052
1225
3215
G. G. A. A. G.
3216
P.mC.fC. G.fU. A.fC.
96%





A.mU. G.mU.

A.fU.fC.fU.mU.mC.mC*





A.mC. G. G.Chl

mU* G*mU* A* G*







U.





14053
445
3217
G.mU. G.
3218
P.mG. A. G.fC.fC. G. A.
101%





A.mC.mU.mU.mC.

A. G.fU.mC. A.mC* A*





G.

G* A* A* G* A.





G.mC.mU.mC.Chl





14054
446
3219
mU. G.
3220
P.mG. G. A. G.fC.fC. G.
93%





A.mC.mU.mU.mC.

A. A. G.mU.mC.





G.

A*mC* A* G* A* A*





G.mC.mU.mC.mC.

G.





Chl





14055
913
3221
mU. G. G.mU.mC.
3222
P.mC. A. A. G.
67%





A. G.

G.fC.fC.fU. G.





G.mC.mC.mU.mU.

A.mC.mC. A*mU*





G.Chl

G*mC* A*mC* A.





14056
997
3223
mU.mC. A. A.
3224
P.mA. G.fC.fU.fC. A. A.
92%





G.mU.mU.mU. G.

A.fC.fU.mU. G. A*mU*





A. G.mC.mU.Chl

A* G* G*mC* U.





14057
277
3225
G.mC.mC. A. G.
3226
P.mC.fU. G.fC. A.
84%





A. A.mC.mU.

G.fU.fU.fC.fU. G.





G.mC. A. G.Chl

G.mC*mC* G* A*mC*







G* G.





14058
1052
3227
mU. G. G. A.
3228
P.mG. G.fU. A.fC. A.fU.
n/a





G.mU. A.mU.

A.fC.fU.mC.mC.





G.mU.

A*mC* A* G* A* A*





A.mC.mC.Chl

U.





14059
887
3229
G.mC.mU. A. G.
3230
P.mC.fU.
80%





A. G. A. A. G.mC.

G.fC.fU.fU.fC.fU.fC.fU.





A. G.Chl

A. G.mC*mC*mU*







G*mC* A* G.





14060
914
3231
G. G.mU.mC. A.
3232
P.mG.fC. A. A. G.
112%





G.

G.fC.fC.fU. G.





G.mC.mC.mU.mU.

A.mC.mC* A*mU*





G.mC.Chl

G*mC* A* C.





14061
1039
3233
G. A. G.mC.mU.
3234
P.mC. A. G. A.
104%





A. A.

A.fU.fU.fU. A.





A.mU.mU.mC.mU.

G.mC.mU.mC* G*





G.Chl

G*mU* A*mU* G.





14062
754
3235
A. A. G. A.mC.
3236
P.mC.fC. A. A. A.fC.
109%





A.mC.

G.fU.





G.mU.mU.mU. G.

G.fU.mC.mU.mU*mC*





G.Chl

mC* A* G*mU* C.





14063
1130
3237
mC. G. A. G.
3238
P.mC.fU.fU.fC. A.fU. G.
103%





G.mU.mC. A.mU.

A.fC.fC.mU.mC.





G. A. A. G.Chl

G*mC*mC*







G*mU*mC* A.





14064
919
3239
G.
3240
P.mG.fC.fU.fU.fC.
109%





G.mC.mC.mU.mU.

G.fC. A. A. G.





G.mC. G. A. A.

G.mC.mC*mU* G*





G.mC.Chl

A*mC*mC* A.





14065
922
3241
mC.mU.mU.
3242
P.mU.fC. A.
106%





G.mC. G. A. A.

G.fC.fU.fU.fC. G.fC. A.





G.mC.mU. G.

A. G* G*mC*mC*mU*





A.Chl

G* A.





14066
746
3243
mC.mC. G.
3244
P.mG.fU.fC.fU.fU.fC.fC.
106%





A.mC.mU. G. G. A.

A. G.fU.mC. G.





A. G. A.mC.Chl

G*mU* A* A* G*mC*







C.





14067
993
3245
mC.mC.mU.
3246
P.mC. A. A. A.fC.fU.fU.
67%





A.mU.mC. A. A.

G. A.fU. A. G.





G.mU.mU.mU.

G*mC*mU*mU* G*





G.Chl

G* A.





14068
825
3247
mU.
3248
P.mA. G.
93%





G.mU.mU.mC.mC.

G.fU.fC.fU.fU. G. G. A.





A. A. G.

A.mC. A* G* G*mC*





A.mC.mC.mU.Chl

G*mC* U.





14069
926
3249
mC. G. A. A.
3250
P.mC. A. G. G.fU.fC. A.
95%





G.mC.mU. G.

G.fC.fU.mU.mC.





A.mC.mC.mU.

G*mC* A* A* G* G*





G.Chl

C.





14070
923
3251
mU.mU. G.mC. G.
3252
P.mG.fU.fC. A.
95%





A. A. G.mC.mU. G.

G.fC.fU.fU.fC. G.mC. A.





A.mC.Chl

A* G*







G*mC*mC*mU* G.





14071
866
3253
mC. A. A.mU. G.
3254
P.mG. G.fC. G.fU.fU.
132%





A.mC. A. A.mC.

G.fU.fC. A.mU.mU. G*





G.mC.mC.Chl

G*mU* A* A*mC* C.





14072
563
3255
G.mU. A.mC.mC.
3256
P.mC. G.fU. G.fC.
n/a





A. G.mU. G.mC.

A.fC.fU. G. G.mU.





A.mC. G.Chl

A.mC*mU*mU*







G*mC* A* G.





14073
823
3257
mC.mC.mU.
3258
P.mG.fU.fC.fU.fU. G.
98%





G.mU.mU.mC.mC.

G. A. A.fC. A. G.





A. A. G. A.mC.Chl

G*mC*







G*mC*mU*mC* C.





14074
1233
3259
mU. A.mC. G. G.
3260
P.mC.fC. A.fU.
109%





A. G. A.mC. A.mU.

G.fU.fC.fU.fC.fC.





G. G.Chl

G.mU. A*mC*







A*mU*mC*mU* U.





14075
924
3261
mU. G.mC. G. A.
3262
P.mG. G.fU.fC. A.
95%





A. G.mC.mU. G.

G.fC.fU.fU.fC. G.mC.





A.mC.mC.Chl

A* A* G* G*mC*mC*







U.





14076
921
3263
mC.mC.mU.mU.
3264
P.mC. A. G.fC.fU.fU.fC.
116%





G.mC. G. A. A.

G.fC. A. A. G.





G.mC.mU. G.Chl

G*mC*mC*mU* G*







A* C.





14077
443
3265
mC.mU. G.mU. G.
3266
P.mG.fC.fC. G. A. A.
110%





A.mC.mU.mU.mC.

G.fU.fC. A.mC. A. G*





G. G.mC.Chl

A* A* G* A* G* G.





14078
1041
3267
G.mC.mU. A. A.
3268
P.mC. A.fC. A. G. A.
99%





A.mU.mU.mC.mU.

A.fU.fU.fU. A.





G.mU. G.Chl

G.mC*mU*mC* G*







G*mU* A.





14079
1042
3269
mC.mU. A. A.
3270
P.mC.fC. A.fC. A. G. A.
109%





A.mU.mU.mC.mU.

A.fU.fU.mU. A.





G.mU. G. G.Chl

G*mC*mU*mC* G*







G* U.





14080
755
3271
A. G. A.mC. A.mC.
3272
P.mG.fC.fC. A. A. A.fC.
121%





G.mU.mU.mU. G.

G.fU.





G.mC.Chl

G.mU.mC.mU*mU*mC*







mC* A* G* U.





14081
467
3273
mC.mC. G.mC. A.
3274
P.mG.fC. C.fG. A.
132%





A. G. A.mU.mC. G.

U.fC.fU.fU.fG. C.mG.





G.mC.Chl

G*mU*mU* G*







G*mC* C.





14082
995
3275
mU. A.mU.mC. A.
3276
P.mC.fU.fC. A. A.
105%





A. G.mU.mU.mU.

A.fC.fU.fU. G. A.mU.





G. A. G.Chl

A* G*







G*mC*mU*mU* G.





14083
927
3277
G. A. A.
3278
P.mC.fC. A. G. G.fU.fC.
114%





G.mC.mU. G.

A. G.fC.mU.mU.mC*





A.mC.mC.mU. G.

G*mC* A* A* G* G.





G.Chl





17356
1267
3279
A.mC. A.mU.mU.
3280
P.mU. A.fU. G. A.
120%





A. A.mC.mU.mC.

G.mU.fU. A. A.fU.





A.mU. A.Chl

G.fU*fC*fU*fC*fU*fC*







A.





17357
1267
3281
G. A.mC.
3282
P.mU. A.fU. G. A.
56%





A.mU.mU. A.

G.mU.fU. A. A.fU.





A.mC.mU.mC.

G.fU*fC*fU*fC*fU*fC*





A.mU. A.Chl

A.





17358
1442
3283
mU. G. A. A. G. A.
3284
P.mU.fU. A. A.fC.
34%





A.mU. G.mU.mU.

A.fU.fU.fC.fU.fU.fC. A*





A. A.Chl

A* A*fC*fC* A* G.





17359
1442
3285
mU.mU. G. A. A.
3286
P.mU.fU. A. A.fC.
31%





G. A. A.mU.

A.fU.fU.fC.fU.fU.fC. A*





G.mU.mU. A.

A* A*fC*fC* A* G.





A.Chl





17360
1557
3287
G. A.mU. A.
3288
P.mU.fU. A. A. G. A.fU.
59%





G.mC.

G.fC.fU. A.fU.fC*fU*





A.mU.mC.mU.mU.

G* A*fU* G* A.





A. A.Chl





17361
1557
3289
A. G. A.mU. A.
3290
P.mU.fU. A. A. G. A.fU.
47%





G.mC.

G.fC.fU. A.fU.fC*fU*





A.mU.mC.mU.mU.

G* A*fU* G* A.





A. A.Chl





17362
1591
3291
mU. G. A. A.
3292
P.mU. A. A.fU.fU. A.fC.
120%





G.mU. G.mU. A.

A.fC.fU.fU.fC. A* A*





A.mU.mU. A.Chl

A*fU* A* G* C.





17363
1599
3293
A. A.mU.mU. G.
3294
P.mU.fU.fC.fC.fU.fU.fC.
71%





A. G. A. A. G. G. A.

fU.fC. A. A.fU.fU*





A.Chl

A*fC* A*fC*fU* U.





17364
1601
3295
mU.mU. G. A. G.
3296
P.mU.fU.fU.fU.fC.fC.fU.
62%





A. A. G. G. A. A. A.

fU.fC.fU.fC. A.





A.Chl

A*fU*fU* A*fC* A* C.





17365
1732
3297
mC.
3298
P.mU.fC. G. A. A.fU.fC.
99%





A.mU.mU.mC.mU.

A. G. A. A.fU.





G. A.mU.mU.mC.

G*fU*fC* A* G* A* G.





G. A.Chl





17366
1734
3299
mU.mU.mC.mU.
3300
P.mU.fU.fU.fC. G. A.
97%





G. A.mU.mU.mC.

A.fU.fC. A. G. A. A*fU*





G. A. A. A.Chl

G*fU*fC* A* G.





17367
1770
3301
mC.mU.
3302
P.mU.fU.fC.fU. A.
45%





G.mU.mC. G.

A.fU.fC. G. A.fC. A. G*





A.mU.mU. A. G. A.

G* A*fU*fU*fC* C.





A.Chl





17368
1805
3303
mU.mU.mU.
3304
P.mU. G.fU.fU. A.fC. A.
71%





G.mC.mC.mU.

G. G.fC. A. A.





G.mU. A. A.mC.

A*fU*fU*fC* A*fC* U.





A.Chl





17369
1805
3305
A.mU.mU.mU.
3306
P.mU. G.fU.fU. A.fC. A.
67%





G.mC.mC.mU.

G. G.fC. A. A.





G.mU. A. A.mC.

A*fU*fU*fC* A*fC* U.





A.Chl





17370
1815
3307
A.mC. A. A.
3308
P.mU. A. A.fU.fC.fU. G.
65%





G.mC.mC. A. G.

G.fC.fU.fU. G.fU*fU*





A.mU.mU. A.Chl

A*fC* A* G* G.





17371
1815
3309
A. A.mC. A. A.
3310
P.mU. A. A.fU.fC.fU. G.
35%





G.mC.mC. A. G.

G.fC.fU.fU. G.fU*fU*





A.mU.mU. A.Chl

A*fC* A* G* G.





17372
2256
3311
mC. A.
3312
P.mU. A.fC. A. A. A.fU.
113%





G.mU.mU.mU.

A. A. A.fC.fU.





A.mU.mU.mU.

G*fU*fC*fC* G* A* A.





G.mU. A.Chl





17373
2265
3313
mU. G.mU.mU. G.
3314
P.mU. A.fC.
35%





A. G. A. G.mU.

A.fC.fU.fC.fU.fC. A.





G.mU. A.Chl

A.fC. A* A* A*fU* A*







A* A.





17374
2265
3315
mU.mU.
3316
P.mU. A.fC.
31%





G.mU.mU. G. A.

A.fC.fU.fC.fU.fC. A.





G. A. G.mU.

A.fC. A* A* A*fU* A*





G.mU. A.Chl

A* A.





17375
2295
3317
mU. G.mC.
3318
P.mU.fU. A. G. A. A. A.
34%





A.mC.mC.mU.mU.

G. G.fU. G.fC. A* A*





mU.mC.mU. A.

A*fC* A*fU* G.





A.Chl





17376
2295
3319
mU.mU. G.mC.
3320
P.mU.fU. A. G. A. A. A.
28%





A.mC.mC.mU.mU.

G. G.fU. G.fC. A* A*





mU.mC.mU. A.

A*fC* A*fU* G.





A.Chl





17377
1003
3321
mU.mU. G. A.
3322
P.mU.fC. A. G. A. A. A.
67%





G.mC.mU.mU.mU.

G.fC.fU.fC. A. A*





mC.mU. G. A.Chl

A*fC*fU*fU* G* A.





17378
2268
3323
mU. G. A. G. A.
3324
P.mU. G.fU.fC. A.fC.
42%





G.mU. G.mU. G.

A.fC.fU.fC.fU.fC. A*





A.mC. A.Chl

A*fC* A* A* A* U.





17379
2272
3325
A. G.mU. G.mU.
3326
P.mU.fU.fU.fU. G.
35%





G. A.mC.mC. A. A.

G.fU.fC. A.fC.





A. A.Chl

A.fC.fU*fC*fU*fC* A*







A* C.





17380
2272
3327
G. A. G.mU.
3328
P.mU.fU.fU.fU. G.
29%





G.mU. G.

G.fU.fC. A.fC.





A.mC.mC. A. A. A.

A.fC.fU*fC*fU*fC* A*





A.Chl

A* C.





17381
2273
3329
G.mU. G.mU. G.
3330
P.mU.fU.fU.fU.fU. G.
42%





A.mC.mC. A. A. A.

G.fU.fC. A.fC.





A. A.Chl

A.fC*fU*fC*fU*fC* A*







A.





17382
2274
3331
mU. G.mU. G.
3332
P.mU.fC.fU.fU.fU.fU.
42%





A.mC.mC. A. A. A.

G. G.fU.fC. A.fC.





A. G. A.Chl

A*fC*fU*fC*fU*fC* A.





17383
2274
3333
G.mU. G.mU. G.
3334
P.mU.fC.fU.fU.fU.fU.
37%





A.mC.mC. A. A. A.

G. G.fU.fC. A.fC.





A. G. A.Chl

A*fC*fU*fC*fU*fC* A.





17384
2275
3335
G.mU. G.
3336
P.mU.
24%





A.mC.mC. A. A. A.

A.fC.fU.fU.fU.fU. G.





A. G.mU. A.Chl

G.fU.fC. A.fC*







A*fC*fU*fC*fU* C.





17385
2277
3337
G. A.mC.mC. A. A.
3338
P.mU.fU. A.
27%





A. A. G.mU.mU. A.

A.fC.fU.fU.fU.fU. G.





A.Chl

G.fU.fC* A*fC*







A*fC*fU* C.





17386
2296
3339
G.mC.
3340
P.mU.fC.fU. A. G. A. A.
23%





A.mC.mC.mU.mU.

A. G. G.fU. G.fC* A*





mU.mC.mU. A. G.

A* A*fC* A* U.





A.Chl





17387
2299
3341
mC.mC.mU.mU.mU.
3342
P.mU.fC. A. A.fC.fU. A.
46%





mC.mU. A.

G. A. A. A. G. G*fU*





G.mU.mU. G.

G*fC* A* A* A.





A.Chl





21138
2296
3343
G.mC.
3344
P.mU.fC.fU. A. G.
42%





A.mC.mC.mU.mU.

A.mA. A. G. G.fU.





mU.mC.mU. A. G.

G.mC* A* A* A*mC*





A.TEG-Chl

A* U.





21139
2296
3345
G.mC.
3346
P.mU.fC.fU. A. G.mA.
32%





A.mC.mC.mU.mU.

A.mA. G. G.fU. G.mC*





mU.mC.mU. A. G.

A* A* A*mC* A* U.





A.TEG-Chl





21140
2296
3347
G.mC.
3348
P.mU.fC.fU. A. G. A. A.
41%





A.mC.mC.mU.mU.

A. G. G.fU. G.mC*





mU.mC.mU. A. G.

A*mA* A*mC* A* U.





A.TEG-Chl





21141
2296
3349
G.mC.
3350
P.mU.fC.fU. A. G.
51%





A.mC.mC.mU.mU.

A.mA. A. G. G.fU.





mU.mC.mU. A. G.

G.mC* A*mA* A*mC*





A.TEG-Chl

A* U.





21142
2296
3351
G.mC.
3352
P.mU.fC.fU. A. G.mA.
25%





A.mC.mC.mU.mU.

A.mA. G. G.fU. G.mC*





mU.mC.mU. A. G.

A*mA* A*mC* A* U.





A.TEG-Chl





21143
2296
3353
G.mC.
3354
P.mU.fC.fU. A. G. A. A.
61%





A.mC.mC.mU.mU.

A. G. G.fU.





mU.mC.mU. A. G.

G.fC*mA*mA*mA*fC*





A.TEG-Chl

mA* U.





21144
2296
3355
G.mC.
3356
P.mU.fC.fU. A. G.
49%





A.mC.mC.mU.mU.

A.mA. A. G. G.fU.





mU.mC.mU. A. G.

G.fC*mA*mA*mA*fC*





A.TEG-Chl

mA* U.





21145
2296
3357
G.mC.
3358
P.mU.fC.fU. A. G.mA.
46%





A.mC.mC.mU.mU.

A.mA. G. G.fU.





mU.mC.mU. A. G.

G.fC*mA*mA*mA*fC*





A.TEG-Chl

mA* U.





21146
2296
3359
G.mC.
3360
P.mU.fC.fU. A. G. A. A.
37%





A.mC.mC.mU.mU.

A. G. G.fU. G.fC* A*





mU.mC.mU.

A* A*fC* A* U.





A*mG*mA.TEG-





Chl





21147
2296
3361
mG*mC*
3362
P.mU.fC.fU. A. G. A. A.
43%





A.mC.mC.mU.mU.

A. G. G.fU. G.fC* A*





mU.mC.mU.

A* A*fC* A* U.





A*mG*mA.TEG-





Chl





21148
2296
3363
mG*mC*mA.mC.
3364
P.mU.fC.fU. A. G. A. A.
29%





mC.mU.mU.mU.mC.

A. G. G.fU. G.fC* A*





mU.mA*mG*mA.

A* A*fC* A* U.





TEG-Chl





21149
2275
3365
G.mU. G.
3366
P.mU.
138%





A.mC.mC. A. A. A.

A.fC.fU.fU.fU.fU. G.





A.

G.fU.fC. A.fC*





G*mU*mA.TEG-

A*fC*fU*fC*fU* C.





Chl





21150
2275
3367
mG*mU* G.
3368
P.mU.
116%





A.mC.mC. A.

A.fC.fU.fU.fU.fU. G.





A.mA. A.

G.fU.fC. A.fC*





G*mU*mA.TEG-

A*fC*fU*fC*fU* C.





Chl





21151
2275
3369
mG*mU*mG.mA.
3370
P.mU.
105%





mC.mC.mA.mA.mA.

A.fC.fU.fU.fU.fU. G.





mA.mG*mU*mA.

G.fU.fC. A.fC*





TEG-Chl

A*fC*fU*fC*fU* C.





21152
2295
3371
mU.mU. G.mC.
3372
P.mU.fU. A. G. A.mA.
46%





A.mC.mC.mU.mU.

A. G. G.fU. G.fC. A. A*





mU.mC.mU. A.

A*fC* A*fA* G* G.





A.TEG-Chl





21153
2295
3373
mU.mU. G.mC.
3374
P.mU.fU. A. G.mA.
28%





A.mC.mC.mU.mU.

A.mA. G. G.fU. G.fC. A.





mU.mC.mU. A.

A* A*fC* A*fA* G* G.





A.TEG-Chl





21154
2295
3375
mU.mU. G.mC.
3376
P.mU.fU.mA. G.mA.
28%





A.mC.mC.mU.mU.

A.mA. G.mG.fU. G.fC.





mU.mC.mU. A.

A. A* A*fC* A*fA* G*





A.TEG-Chl

G.





21155
2295
3377
mU.mU. G.mC.
3378
P.mU.fU. A. G. A.mA.
60%





A.mC.mC.mU.mU.

A. G. G.fU. G.mC. A.





mU.mC.mU. A.

A* A*mC* A*mA* G*





A.TEG-Chl

G.





21156
2295
3379
mU.mU. G.mC.
3380
P.mU.fU. A. G. A.mA.
54%





A.mC.mC.mU.mU.

A. G. G.fU. G.fC.





mU.mC.mU. A.

A.mA*mA*fC*mA*fA*





A.TEG-Chl

mG* G.





21157
2295
3381
mU.mU. G.mC.
3382
P.mU.fU. A. G. A.mA.
40%





A.mC.mC.mU.mU.

A. G. G.fU.





mU.mC.mU. A.

G.fC.mA.mA*mA*fC*





A.TEG-Chl

mA*fA*mG* G.





21158
2295
3383
mU.mU. G.mC.
3384
P.mU.fU. A. G. A.mA.
n/a





A.mC.mC.mU.mU.

A. G. G.fU. G.fC.





mU.mC.mU. A.

A.mA*mA*fC*mA*mA*





A.TEG-Chl

mG* G.





21159
2295
3385
mU.mU. G.mC.
3386
P.mU.fU. A. G. A.mA.
41%





A.mC.mC.mU.mU.

A. G. G.fU. G.fC.





mU.mC.mU. A.

A.mA*mA*mC*mA*mA*





A.TEG-Chl

mG* G.





21160
2295
3387
mU.mU. G.mC.
3388
P.mU.fU. A. G. A.mA.
65%





A.mC.mC.mU.mU.

A. G. G.fU. G.fC.mA.





mU.mC.mU. A.

A*mA*mC*mA*mA*





A.Chl-TEG

mG*mG.





21161
2295
3389
mU.mU. G.mC.
3390
P.mU.fU. A. G. A.mA.
43%





A.mC.mC.mU.mU.

A. G. G.fU. G.fC. A. A*





mU.mC.mU. A.

A*fC* A*mA*mG* G.





A.TEG-Chl





21162
2295
3391
mU.mU. G.mC.
3392
P.mU.fU. A. G. A.mA.
41%





A.mC.mC.mU.mU.

A. G. G.fU. G.fC.mA.





mU.mC.mU. A.

A*mA*fC*





A.TEG-Chl

A*mA*mG* G.





21163
2295
3393
mU.mU. G.mC.
3394
P.mU.fU. A. G. A. A. A.
32%





A.mC.mC.mU.mU.

G. G.fU. G.fC. A. A*





mU.mC.mU. A*

A*fC* A* A* G* G.





A*TEG-Chl





21164
2295
3395
mU.mU. G.mC.
3396
P.mU.fU. A. G. A. A. A.
39%





A.mC.mC.mU.mU.

G. G.fU. G.fC. A. A*





mU.mC.mU.mA*

A*fC* A* A* G* G.





mA*TEG-Chl





21165
2295
3397
mU*mU* G.mC.
3398
P.mU.fU. A. G. A. A. A.
28%





A.mC.mC.mU.mU.

G. G.fU. G.fC. A. A*





mU.mC.mU.mA*

A*fC* A* A* G* G.





mA*TEG-Chl





21166
2295
3399
mU.mU.mG.mC.mA.
3400
P.mU.fU. A. G. A. A. A.
27%





mC.mC.mU.mU.

G. G.fU. G.fC. A. A*





mU.mC.mU.mA*

A*fC* A* A* G* G.





mA*TEG-Chl





21167
2299
3401
mC.mC.mU.mU.mU.
3402
P.mU.fC. A. A.fC.fU. A.
49%





mC.mU. A.

G. A.mA. A. G. G*fU*





G.mU.mU. G.

G*fC* A* A* A.





A.TEG-Chl





21168
2299
3403
mC.mC.mU.mU.mU.
3404
P.mU.fC. A. A.fC.fU. A.
53%





mC.mU. A.

G. A.mA. A. G. G*mU*





G.mU.mU. G.

G*mC* A* A* A.





A.TEG-Chl





21169
2299
3405
mC.mC.mU.mU.mU.
3406
P.mU.fC. A. A.fC.fU. A.
47%





mC.mU. A.

G.mA. A. A.mG. G*fU*





G.mU.mU. G.

G*fC* A* A* A.





A.TEG-Chl





21170
2299
3407
mC.mC.mU.mU.mU.
3408
P.mU.fC. A. A.fC.fU. A.
70%





mC.mU. A.

G.mA. A. A.mG.





G.mU.mU. G.

G*mU* G*mC* A* A*





A.TEG-Chl

A.





21171
2299
3409
mC.mC.mU.mU.mU.
3410
P.mU.fC. A. A.fC.fU. A.
65%





mC.mU. A.

G. A.mA. A. G. G*mU*





G.mU.mU. G.

G*mC* A*mA* A.





A.TEG-Chl





21172
2299
3411
mC.mC.mU.mU.mU.
3412
P.mU.fC. A. A.fC.fU. A.
43%





mC.mU. A.

G. A.mA. A. G. G*mU*





G.mU.mU. G.

G*mC*mA*mA* A.





A.TEG-Chl





21173
2299
3413
mC.mC.mU.mU.mU.
3414
P.mU.fC. A. A.fC.fU. A.
52%





mC.mU. A.

G. A.mA. A.





G.mU.mU. G.

G.mG*mU*mG*mC*





A.TEG-Chl

mA*mA* A.





21174
2299
3415
mC.mC.mU.mU.mU.
3416
P.mU.fC. A. A.fC.fU. A.
47%





mC.mU. A.

G. A.mA. A. G.





G.mU.mU. G.

G*mU*mG*mC*mA*





A.TEG-Chl

mA* A.





21175
2299
3417
mC.mC.mU.mU.mU.
3418
P.mU.fC. A. A.fC.fU. A.
35%





mC.mU. A.

G. A.mA. A. G.





G.mU.mU. G.

G*fU*mG*fC*mA*mA*





A.TEG-Chl

A.





21176
2299
3419
mC.mC.mU.mU.mU.
3420
P.mU.fC. A. A.fC.fU. A.
50%





mC.mU. A.

G.mA. A. A.mG.





G.mU.mU. G.

G*fU*mG*fC*mA*mA*





A.TEG-Chl

A.





21177
2299
3421
mC.mC.mU.mU.mU.
3422
P.mU.fC. A. A.fC.fU. A.
37%





mC.mU. A.

G. A. A. A. G. G*fU*





G.mU.mU*mG*mA.

G*fC* A* A* A.





TEG-Chl





21178
2299
3423
mC*mC*mU.mU.
3424
P.mU.fC. A. A.fC.fU. A.
36%





mU.mC.mU. A.

G. A. A. A. G. G*fU*





G.mU.mU*mG*mA.

G*fC* A* A* A.





TEG-Chl





21179
2299
3425
mC*mC*mU.mU.
3426
P.mU.fC. A. A.fC.fU. A.
35%





mU.mC.mU.mA.mG.

G. A. A. A. G. G*fU*





mU.mU*mG*mA.

G*fC* A* A* A.





TEG-Chl





21203
2296
3427
G.mC.
3428
P.mU.fC.fU. A. G.
40%





A.mC.mC.mU.mU.

A.mA. A. G. G.fU.





mU.mC.mU.

G.mC* A* A* A*mC*





A*mG*mA.TEG-

A* U.





Chl





21204
2296
3429
G.mC.
3430
P.mU.fC.fU. A. G.mA.
28%





A.mC.mC.mU.mU.

A.mA. G. G.fU. G.mC*





mU.mC.mU.

A* A* A*mC* A* U.





A*mG*mA.TEG-





Chl





21205
2296
3431
G.mC.
3432
P.mU.fC.fU. A. G.mA.
51%





A.mC.mC.mU.mU.

A.mA. G. G.fU. G.mC*





mU.mC.mU.

A*mA* A*mC* A* U.





A*mG*mA.TEG-





Chl





21206
2296
3433
mG*mC*
3434
P.mU.fC.fU. A. G.
46%





A.mC.mC.mU.mU.

A.mA. A. G. G.fU.





mU.mC.mU.

G.mC* A* A* A*mC*





A*mG*mA.TEG-

A* U.





Chl





21207
2296
3435
mG*mC*
3436
P.mU.fC.fU. A. G.mA.
29%





A.mC.mC.mU.mU.

A.mA. G. G.fU. G.mC*





mU.mC.mU.

A* A* A*mC* A* U.





A*mG*mA.TEG-





Chl





21208
2296
3437
mG*mC*
3438
P.mU.fC.fU. A. G.mA.
72%





A.mC.mC.mU.mU.

A.mA. G. G.fU. G.mC*





mU.mC.mU.

A*mA* A*mC* A* U.





A*mG*mA.TEG-





Chl





21209
2296
3439
mG*mC*mA.mC.
3440
P.mU.fC.fU. A. G.
89%





mC.mU.mU.mU.mC.

A.mA. A. G. G.fU.





mU.mA*mG*mA.

G.mC* A* A* A*mC*





TEG-Chl

A* U.





21210
2296
3441
mG*mC*mA.mC.
3442
P.mU.fC.fU. A. G.mA.
65%





mC.mU.mU.mU.mC.

A.mA. G. G.fU. G.mC*





mU.mA*mG*mA.

A* A* A*mC* A* U.





TEG-Chl





21211
2296
3443
mG*mC*mA.mC.
3444
P.mU.fC.fU. A. G.mA.
90%





mC.mU.mU.mU.mC.

A.mA. G. G.fU. G.mC*





mU.mA*mG*mA.

A*mA* A*mC* A* U.





TEG-Chl





21212
2295
3445
mU.mU. G.mC.
3446
P.mU.fU. A. G. A.mA.
60%





A.mC.mC.mU.mU.

A. G. G.fU.





mU.mC.mU*mA*

G.fC.mA.mA*mA*fC*





mA.TEG-Chl

mA*mA*mG* G.





21213
2295
3447
mU.mU. G.mC.
3448
P.mU.fU. A. G. A.mA.
63%





A.mC.mC.mU.mU.

A. G. G.fU. G.fC.





mU.mC.mU*mA*

A.mA*mA*mC*mA*mA*





mA.TEG-Chl

mG* G.





21214
2295
3449
mU.mU. G.mC.
3450
P.mU.fU. A. G. A.mA.
52%





A.mC.mC.mU.mU.

A. G. G.fU. G.fC. A. A*





mU.mC.mU*mA*

A*fC* A*mA*mG* G.





mA.TEG-Chl





21215
2295
3451
mU.mU. G.mC.
3452
P.mU.fU. A. G. A.mA.
45%





A.mC.mC.mU.mU.

A. G. G.fU. G.fC.mA.





mU.mC.mU*mA*

A*mA*fC*





mA.TEG-Chl

A*mA*mG* G.





21216
2295
3453
mU*mU* G.mC.
3454
P.mU.fU. A. G. A.mA.
65%





A.mC.mC.mU.mU.

A. G. G.fU.





mU.mC.mU*mA*

G.fC.mA.mA*mA*fC*





mA.TEG-Chl

mA*mA*mG* G.





21217
2295
3455
mU*mU* G.mC.
3456
P.mU.fU. A. G. A.mA.
69%





A.mC.mC.mU.mU.

A. G. G.fU. G.fC.





mU.mC.mU*mA*

A.mA*mA*mC*mA*mA*





mA.TEG-Chl

mG* G.





21218
2295
3457
mU*mU* G.mC.
3458
P.mU.fU. A. G. A.mA.
62%





A.mC.mC.mU.mU.

A. G. G.fU. G.fC. A. A*





mU.mC.mU*mA*

A*fC* A*mA*mG* G.





mA.TEG-Chl





21219
2295
3459
mU*mU* G.mC.
3460
P.mU.fU. A. G. A.mA.
54%





A.mC.mC.mU.mU.

A. G. G.fU. G.fC.mA.





mU.mC.mU*mA*

A*mA*fC*





mA.TEG-Chl

A*mA*mG* G.





21220
2295
3461
mU.mU.mG.mC.mA.
3462
P.mU.fU. A. G. A.mA.
52%





mC.mC.mU.mU.

A. G. G.fU.





mU.mC.mU*mA*

G.fC.mA.mA*mA*fC*





mA.TEG-Chl

mA*mA*mG* G.





21221
2295
3463
mU.mU.mG.mC.mA.
3464
P.mU.fU. A. G. A.mA.
53%





mC.mC.mU.mU.

A. G. G.fU. G.fC.





mU.mC.mU*mA*

A.mA*mA*mC*mA*mA*





mA.TEG-Chl

mG* G.





21222
2295
3465
mU.mU.mG.mC.mA.
3466
P.mU.fU. A. G. A.mA.
43%





mC.mC.mU.mU.

A. G. G.fU. G.fC. A. A*





mU.mC.mU*mA*

A*fC* A*mA*mG* G.





mA.TEG-Chl





21223
2295
3467
mU.mU.mG.mC.mA.
3468
P.mU.fU. A. G. A.mA.
43%





mC.mC.mU.mU.

A. G. G.fU. G.fC.mA.





mU.mC.mU*mA*

A*mA*fC*





mA.TEG-Chl

A*mA*mG* G.





21224
2299
3469
mC.mC.mU.mU.mU.
3470
P.mU.fC. A. A.fC.fU. A.
60%





mC.mU. A.

G. A.mA. A. G.





G.mU.mU*mG*mA.

G*fU*mG*fC*mA*mA*





TEG-Chl

A.





21225
2299
3471
mC*mC*mU.mU.
3472
P.mU.fC. A. A.fC.fU. A.
67%





mU.mC.mU. A.

G. A.mA. A. G.





G.mU.mU*mG*mA.

G*fU*mG*fC*mA*mA*





TEG-Chl

A.





21226
2299
3473
mC*mC*mU.mU.
3474
P.mU.fC. A. A.fC.fU. A.
66%





mU.mC.mU.mA.mG.

G. A.mA. A. G.





mU.mU*mG*mA.

G*fU*mG*fC*mA*mA*





TEG-Chl

A.





21227
2296
3475
G.mC.
3476
P.mU.fC.fU. A. G.mA.
49%





A.mC.mC.mU.mU.

A.mA. G. G.fU.





mU.mC.mU.

G.fC*mA*mA*mA*fC*





A*mG*mA.TEG-

mA* U.





Chl





20584
2296
3477
G.mC.
3478
P.mU.fC.fU. A. G. A. A.
70%





A.mC.mC.mU.mU.

A. G. G.mU. G.mC* A*





mU.mC.mU. A. G.

A* A*mC* A* U.





A.Chl-TEG





20585
2296
3479
G.mC.
3480
P.mU.fC.fU. A. G. A. A.
15%





A.mC.mC.mU.mU.

A. G. G.fU. G.mC* A*





mU.mC.mU. A. G.

A* A*mC* A* U.





A.Chl-TEG





20586
2296
3481
G.mC.
3482
P.mU. C. U. A. G. A. A.
30%





A.mC.mC.mU.mU.

A. G. G.mU. G.mC* A*





mU.mC.mU. A. G.

A* A*mC* A* U.





A.Chl-TEG





20587
2296
3483
G.mC.
3484
P.mU.fC.fU. A. G. A. A.
32%





A.mC.mC.mU.mU.

A. G. G.fU.





mU.mC.mU. A. G.

G.fC*mA*mA*mA*fC*





A.Chl-TEG

mA* U.





20616
2275
3485
G.mU. G.
3486
P.mU.
22%





A.mC.mC. A. A. A.

A.fC.fU.fU.fU.fU. G.





A. G.mU. A.Chl-

G.fU.mC. A.mC*





TEG

A*mC*mU*mC*mU*







C.





20617
2275
3487
G.mU. G.
3488
P.mU.
18%





A.mC.mC. A. A. A.

A.fC.fU.fU.fU.fU. G.





A. G.mU. A.Chl-

G.fU.fC. A.mC*





TEG

A*fC*mU*fC*mU* C.





20618
2275
3489
G.mU. G.
3490
P.mU. A. C. U. U. U. U.
36%





A.mC.mC. A. A. A.

G. G. U.mC. A.mC*





A. G.mU. A.Chl-

A*mC*mU*mC*mU*





TEG

C.





20619
2275
3491
G.mU. G.
3492
P.mU.
28%





A.mC.mC. A. A. A.

A.fC.fU.fU.fU.fU. G.





A. G.mU. A.Chl-

G.fU.fC.





TEG

A.mC*mA*mC*mU*mC*







mU* C.





21381
2275
3493
G.mU. G.
3494
P.mU.
28%





A.mC.mC. A. A. A.

A.fC.fU.fU.fU.fU. G.





A.

G.fU.mC. A.mC*





G*mU*mA.TEG-

A*mC*mU*mC*mU*





Chl

C.





21382
2275
3495
G.mU. G.
3496
P.mU.
28%





A.mC.mC. A. A. A.

A.fC.fU.fU.fU.fU. G.





A.

G.fU.fC. A.mC*





G*mU*mA.TEG-

A*fC*mU*fC*mU* C.





Chl





21383
2275
3497
mG*mU*mG.mA.
3498
P.mU.
43%





mC.mC.mA.mA.mA.

A.fC.fU.fU.fU.fU. G.





mA.mG*mU*mA.

G.fU.mC. A.mC*





TEG-Chl

A*mC*mU*mC*mU*







C.





21384
2275
3499
mG*mU*mG.mA.
3500
P.mU.
50%





mC.mC.mA.mA.mA.

A.fC.fU.fU.fU.fU. G.





mA.mG*mU*mA.

G.fU.fC. A.mC*





TEG-Chl

A*fC*mU*fC*mU* C.





20392
2275
3501
G.mU. G.
3502
P.mU.
28%





A.mC.mC. A. A. A.

A.fC.fU.fU.fU.fU. G.





A. G.mU. A.TEG-

G.fU.fC. A.fC*





Chl

A*fC*fU*fC*fU* C.





20393
2296
3503
G.mC.
3504
P.mU.fC.fU. A. G. A. A.
35%





A.mC.mC.mU.mU.

A. G. G.fU. G.fC* A*





mU.mC.mU. A. G.

A* A*fC* A* U.





A.TEG-Chl





21429
2275
3505
G.mU. G.
3506
P.mU.
36%





A.mC.mC. A. A. A.

A.fC.fU.fU.fU.fU. G.





A.

G.fU.fC. A.mC*





G*mU*mA.Teg-

A*fC*mU*fC*mU* C.





Chl





21430
2275
3507
G.mU. G.
3508
P.mU.
31%





A.mC.mC. A.

A.fC.fU.fU.fU.fU. G.





A.mA. A.

G.fU.mC. A.mC*





G*mU*mA.Teg-

A*mC*mU*mC*mU*





Chl

C.
















TABLE 21







Inhibition of gene expression with TGFB2 sd-rxRNA sequences


(Accession Number: NM_001135599.1)



















% remaining


Oligo
Start
SEQ

SEQ ID

expression (1


Number
Site
ID NO
Sense sequence
NO
Antisense sequence
uM, A549)
















14408
1324
3509
G.
3510
P.mU.fC. G. A. A. G. G.
94%





G.mC.mU.mC.mU.

A. G. A. G.mC.mC*





mC.mC.mU.mU.mC.

A*mU*mU*mC* G* C.





G. A.Chl





14409
1374
3511
G. A.mC. A. G. G. A.
3512
P.mC.fC. A. G.
n/a





A.mC.mC.mU. G.

G.fU.fU.fC.fC.fU.





G.Chl

G.mU.mC*mU*mU*mU*







A*mU* G.





14410
946
3513
mC.mC. A. A. G. G.
3514
P.mU. A. A.
90%





A. G.

A.fC.fC.fU.fC.fC.fU.mU.





G.mU.mU.mU.

G. G*mC* G*mU* A*





A.Chl

G* U.





14411
849
3515
A.mU.mU.mU.mC.
3516
P.mU. G.fU. A. G. A.fU.
72%





mC. A.mU.mC.mU.

G. G. A. A. A.mU*mC*





A.mC. A.Chl

A*mC*mC*mU* C.





14412
852
3517
mU.mC.mC.
3518
P.mU. G.fU.fU. G.fU.
76%





A.mU.mC.mU.

A. G. A.fU. G. G. A* A*





A.mC. A. A.mC.

A*mU*mC* A* C.





A.Chl





14413
850
3519
mU.mU.mU.mC.mC.
3520
P.mU.fU. G.fU. A. G.
98%





A.mU.mC.mU.

A.fU. G. G. A. A.





A.mC. A. A.Chl

A*mU*mC*







A*mC*mC* U.





14414
944
3521
mC. G.mC.mC. A. A.
3522
P.mA.
100%





G. G. A. G.

A.fC.fC.fU.fC.fC.fU.fU.





G.mU.mU.Chl

G. G.mC. G*mU* A*







G*mU* A* C.





14415
1513
3523
G.mU. G. G.mU. G.
3524
P.mU.fU.fC.fU. G.
n/a





A.mU.mC. A. G. A.

A.fU.fC. A.fC.mC.





A.Chl

A.mC*mU* G*







G*mU* A* U.





14416
1572
3525
mC.mU.mC.mC.mU.
3526
P.mA.fC. A.fU.fU. A.
100%





G.mC.mU. A.

G.fC. A. G. G. A. G*





A.mU. G.mU.Chl

A*mU* G*mU* G* G.





14417
1497
3527
A.mC.mC.mU.mC.mC.
3528
P.mU. A.fU. A.fU.
73%





A.mC. A.mU.

G.fU. G. G. A. G.





A.mU. A.Chl

G.mU* G*mC*mC*







A*mU* C.





14418
1533
3529
A. A. G.mU.mC.mC.
3530
P.mU.fC.fC.fU. A. G.fU.
98%





A.mC.mU. A. G. G.

G. G.





A.Chl

A.mC.mU.mU*mU*







A*mU* A* G* U.





14419
1514
3531
mU. G. G.mU. G.
3532
P.mU.fU.fU.fC.fU. G.
86%





A.mU.mC. A. G. A.

A.fU.fC. A.mC.mC.





A. A.Chl

A*mC*mU* G*







G*mU* A.





14420
1534
3533
A. G.mU.mC.mC.
3534
P.mU.fU.fC.fC.fU. A.
99%





A.mC.mU. A. G. G.

G.fU. G. G.





A. A.Chl

A.mC.mU*mU*mU*







A*mU* A* G.





14421
943
3535
A.mC. G.mC.mC. A.
3536
P.mA.fC.fC.fU.fC.fC.fU.
41%





A. G. G. A. G.

fU. G. G.mC. G.mU*





G.mU.Chl

A* G*mU* A*mC* U.





18570
2445
3537
mU. A.mU.mU.mU.
3538
P.mU. A.fC. A.fC. A.
79%





A.mU.mU. G.mU.

A.fU. A. A. A.fU. A*





G.mU. A.Chl

A*fC*fU*fC* A* C.





18571
2445
3539
mU.mU.
3540
P.mU. A.fC. A.fC. A.
75%





A.mU.mU.mU.

A.fU. A. A. A.fU. A*





A.mU.mU. G.mU.

A*fC*fU*fC* A* C.





G.mU. A.Chl





18572
2083
3541
A.mU. C. A. G.mU.
3542
P.mU.fU.fU.fU. A.
47%





G.mU.mU. A. A. A.

A.fC. A.fC.fU. G. A.fU*





A.Chl

G* A* A*fC*fC* A.





18573
2083
3543
mC. A.mU.mC. A.
3544
P.mU.fU.fU.fU. A.
17%





G.mU. G.mU.mU.

A.fC. A.fC.fU. G. A.fU*





A. A. A. A.Chl

G* A* A*fC*fC* A.





18574
2544
3545
A.mU. G.
3546
P.mU.fU.fC.fC.fU.fU.
59%





G.mC.mU.mU. A. A.

A. A. G.fC.fC. A.





G. G. A. A.Chl

U*fC*fC* A*fU* G* A.





18575
2544
3547
G. A.mU. G.
3548
P.mU.fU.fC.fC.fU.fU.
141%





G.mC.mU.mU. A. A.

A. A. G.fC.fC. A.





G. G. A. A.Chl

U*fC*fC* A*fU* G* A.





18576
2137
3549
mU.mU. G.mU.
3550
P.mU. A. A.fC. A. G. A.
77%





G.mU.mU.mC.mU.

A.fC. A.fC. A. A*





G.mU.mU. A.Chl

A*fC*fU*fU*fC* C.





18577
2137
3551
mU.mU.mU. G.mU.
3552
P.mU. A. A.fC. A. G. A.
59%





G.mU.mU.mC.mU.

A.fC. A.fC. A. A*





G.mU.mU. A.Chl

A*fC*fU*fU*fC* C.





18578
2520
3553
A. A. A.mU.
3554
P.mU. G. G.fC. A. A. A.
75%





A.mC.mU.mU.mU.

G.fU. A.fU.fU.fU* G*





G.mC.mC. A.Chl

G*fU*fC*fU* C.





18579
2520
3555
mC. A. A. A.mU.
3556
P.mU. G. G.fC. A. A. A.
55%





A.mC.mU.mU.mU.

G.fU. A.fU.fU.fU* G*





G.mC.mC. A.Chl

G*fU*fC*fU* C.





18580
3183
3557
mC.mU.mU. G.mC.
3558
P.mU.fU.fU. G.fU. A.
84%





A.mC.mU. A.mC. A.

G.fU. G.fC. A. A.





A. A.Chl

G*fU*fC* A* A* A* C.





18581
3183
3559
A.mC.mU.mU.
3560
P.mU.fU.fU. G.fU. A.
80%





G.mC. A.mC.mU.

G.fU. G.fC. A. A.





A.mC. A. A. A.Chl

G*fU*fC* A* A* A* C.





18582
2267
3561
G. A.
3562
P.mU. A.fC.fU. A. A.fU.
82%





A.mU.mU.mU.

A. A.





A.mU.mU. A. G.mU.

A.fU.fU.fC*fU*fU*fC*fC*





A.Chl

A* G.





18583
2267
3563
A. G. A.
3564
P.mU. A.fC.fU. A. A.fU.
67%





A.mU.mU.mU.

A. A.





A.mU.mU. A. G.mU.

A.fU.fU.fC*fU*fU*fC*fC*





A.Chl

A* G.





18584
3184
3565
mU.mU. G.mC.
3566
P.mU.fU.fU.fU. G.fU.
77%





A.mC.mU. A.mC. A.

A. G.fU. G.fC. A. A*





A. A. A.Chl

G*fU*fC* A* A* A.





18585
3184
3567
mC.mU.mU. G.mC.
3568
P.mU.fU.fU.fU. G.fU.
59%





A.mC.mU. A.mC. A.

A. G.fU. G.fC. A. A*





A. A. A.Chl

G*fU*fC* A* A* A.





18586
2493
3569
A.mU. A. A. A.
3570
P.mU.fC. A.fC.fC.fU.
84%





A.mC. A. G. G.mU.

G.fU.fU.fU.fU.





G. A.Chl

A.fU*fU*fU*fU*fC*fC*







A.





18587
2493
3571
A. A.mU. A. A. A.
3572
P.mU.fC. A.fC.fC.fU.
70%





A.mC. A. G. G.mU.

G.fU.fU.fU.fU.





G. A.Chl

A.fU*fU*fU*fU*fC*fC*







A.





18588
2297
3573
G. A.mC. A. A.mC.
3574
P.mU. G.fU.fU.
40%





A. A.mC. A. A.mC.

G.fU.fU. G.fU.fU.





A.Chl

G.fU.fC* G*fU*fU*







G*fU* U.





18589
2046
3575
A.mU. G.
3576
P.mU.fU. G.fU.fU.
39%





C.mU.mU. G.mU. A.

A.fC. A. A. G.fC.





A.mC. A. A.Chl

A.fU*fC* A*fU*fC* G*







U.





18590
2531
3577
mC. A. G. A. A.
3578
P.mU.fC. A.fU. G. A.
56%





A.mC.mU.mC.

G.fU.fU.fU.fC.fU. G*





A.mU. G. A.Chl

G*fC* A* A* A* G.





18591
2389
3579
G.mU. A.mU.mU.
3580
P.mU. G.fC. A.fU. A.
64%





G.mC.mU. A.mU.

G.fC. A. A.fU. A.fC* A*





G.mC. A.Chl

G* A* A* A* A.





18592
2530
3581
mC.mC. A. G. A. A.
3582
P.mU. A.fU. G. A.
44%





A.mC.mU.mC.

G.fU.fU.fU.fC.fU. G.





A.mU. A.Chl

G*fC* A* A* A* G* U.





18593
2562
3583
A.mC.mU.mC. A. A.
3584
P.mU. G.fC.fU.fC.
87%





A.mC. G. A. G.mC.

G.fU.fU.fU. G. A.





A.Chl

G.fU*fU*fC* A* A* G*







U.





18594
2623
3585
A.mU. A.mU. G.
3586
P.mU.fU.fC.fU.fC. G.
69%





A.mC.mC. G. A. G.

G.fU.fC. A.fU. A.fU*





A. A.Chl

A* A*fU* A* A* C.





18595
2032
3587
mC. G. A.mC. G.
3588
P.mU.fU.fC. G.fU.fU.
55%





A.mC. A. A.mC. G.

G.fU.fC. G.fU.fC.





A. A.Chl

G*fU*fC* A*fU*fC* A.





18596
2809
3589
G.mU. A. A.
3590
P.mU.fU.fC. A.fC.fU. G.
58%





A.mC.mC. A. G.mU.

G.fU.fU.fU. A.fC*fU*





G. A. A.Chl

A* A* A*fC* U.





18597
2798
3591
mU.mU. G.mU.mC.
3592
P.mU.fC.fU. A. A.
38%





A. G.mU.mU.mU. A.

A.fC.fU. G. A.fC. A. A*





G. A.Chl

A* G* A* A*fC* C.





18598
2081
3593
mU.mC. A.mU.mC.
3594
P.mU.fU. A. A.fC.
25%





A. G.mU.

A.fC.fU. G. A.fU. G. A*





G.mU.mU. A. A.Chl

A*fC*fC* A* A* G.





18599
2561
3595
A. A.mC.mU.mC. A.
3596
P.mU.fC.fU.fC.
57%





A. A.mC. G. A. G.

G.fU.fU.fU. G. A.





A.Chl

G.fU.fU*fC* A* A*







G*fU* U.





18600
2296
3597
mC. G. A.mC. A.
3598
P.mU.fU.fU. G.fU.fU.
69%





A.mC. A. A.mC. A.

G.fU.fU. G.fU.fC.





A. A.Chl

G*fU*fU* G*fU*fU*







C.





18601
2034
3599
A.mC. G. A.mC. A.
3600
P.mU.fC. A.fU.fC.
22%





A.mC. G. A.mU. G.

G.fU.fU. G.fU.fC.





A.Chl

G.fU*fC* G*fU*fC*







A*fU.





18602
2681
3601
G.mC.mU.
3602
P.mU.fU.fC.fC.fU.fU.
43%





G.mC.mC.mU. A. A.

A. G. G.fC. A. G.fC*fU*





G. G. A. A.Chl

G* A*fU* A* C.





18603
2190
3603
A.mU.mU.mC.mU.
3604
P.mU. G. A. A. A.fU.
128%





A.mC.

G.fU. A. G. A. A.fU* A*





A.mU.mU.mU.mC.

A* G* G*fC* C.





A.Chl





20604
2083
3605
mC. A.mU.mC. A.
3606
P.mU.fU.fU.fU. A.
19%





G.mU. G.mU.mU.

A.fC. A.fC.fU. G.





A. A. A. A.Chl

A.mU* G* A*







A*mC*mC* A.





20605
2083
3607
mC. A.mU.mC. A.
3608
P.mU.fU.fU.fU. A.
20%





G.mU. G.mU.mU.

A.fC. A.fC.fU. G.





A. A. A. A.Chl

A.mU* G* A*







A*fC*mC* A.





20606
2083
3609
mC. A.mU.mC. A.
3610
P.mU. U. U. U. A. A. C.
82%





G.mU. G.mU.mU.

A. C. U. G. A.mU* G*





A. A. A. A.Chl

A* A*mC*mC* A.





20607
2083
3611
mC. A.mU.mC. A.
3612
P.mU.fU.fU.fU. A.
59%





G.mU. G.mU.mU.

A.fC. A.fC.fU. G.





A. A. A. A.Chl

A.fU*mG*mA*mA*fC*







fC* A.





21722
2081
3613
mU.mC. A.mU.mC.
3614
P.mU.fU. A. A.fC.
34%





A. G.mU.

A.fC.fU. G. A.fU. G. A*





G.mU.mU. A. A.Chl

A*mC*mC* A* A* G.





21723
2081
3615
mU.mC. A.mU.mC.
3616
P.mU.fU. A. A.fC.
53%





A. G.mU.

A.fC.fU. G. A.fU.





G.mU.mU. A. A.Chl

G.mA*mA*mC*mC*mA*







mA* G.





21724
2081
3617
mU.mC. A.mU.mC.
3618
P.mU.fU. A. A.fC.
48%





A. G.mU.

A.fC.fU. G. A.mU.





G.mU.mU. A. A.Chl

G.mA*mA*mC*mC*mA*







mA* G.





21725
2081
3619
mU.mC. A.mU.mC.
3620
P.mU.fU. A. A.fC.
45%





A. G.mU.

A.fC.fU. G. A.fU. G. A*





G.mU.mU. A. A.Chl

A*fC*fC*mA*mA* G.





21726
2081
3621
mU.mC. A.mU.mC.
3622
P.mU.fU. A. A.fC.
54%





A. G.mU.

A.fC.fU. G. A.fU.





G.mU.mU. A. A.Chl

G.mA*mA*fC*fC*mA*







mA* G.





21727
2081
3623
mU.mC. A.mU.mC.
3624
P.mU.fU.A. A.fC.
29%





A. G.mU.

A.fC.fU. G. A.fU. G. A*





G.mU.mU*mA*mA.

A*fC*fC* A* A* G.





TEG-Chl





21728
2081
3625
mU*mC* A.mU.mC.
3626
P.mU.fU. A. A.fC.
27%





A. G.mU.

A.fC.fU. G. A.fU. G. A*





G.mU.mU*mA*mA.

A*fC*fC* A* A* G.





TEG-Chl





21729
2081
3627
mU*mC*mA.mU.mC.
3628
P.mU.fU. A. A.fC.
30%





mA.mG.mU.mG.

A.fC.fU. G. A.fU. G. A*





mU.mU*mA*mA.TEG-

A*fC*fC* A* A* G.





Chl





21375
2081
3629
mU.mC. A.mU.mC.
3630
P.mU.fU. A. A.fC.
29%





A. G.mU.

A.fC.fU. G. A.fU. G. A*





G.mU.mU*mA*mA.

A*mC*mC* A* A* G.





TEG-Chl





21376
2081
3631
mU.mC. A.mU.mC.
3632
P.mU.fU. A. A.fC.
30%





A. G.mU.

A.fC.fU. G. A.fU. G. A*





G.mU.mU*mA*mA.

A*fC*fC*mA*mA* G.





TEG-Chl





21377
2081
3633
mU.mC. A.mU.mC.
3634
P.mU.fU. A. A.fC.
37%





A. G.mU.

A.fC.fU. G. A.fU.





G.mU.mU*mA*mA.

G.mA*mA*fC*fC*mA*





TEG-Chl

mA* G.





21378
2081
3635
mU*mC*mA.mU.mC.
3636
P.mU.fU. A. A.fC.
32%





mA.mG.mU.mG.

A.fC.fU. G. A.fU. G. A*





mU.mU*mA*mA.TEG-

A*mC*mC* A* A* G.





Chl





21379
2081
3637
mU*mC*mA.mU.mC.
3638
P.mU.fU. A. A.fC.
31%





mA.mG.mU.mG.

A.fC.fU. G. A.fU. G. A*





mU.mU*mA*mA.TEG-

A*fC*fC*mA*mA* G.





Chl





21380
2081
3639
mU*mC*mA.mU.mC.
3640
P.mU.fU. A. A.fC.
39%





mA.mG.mU.mG.

A.fC.fU. G. A.fU.





mU.mU*mA*mA.TEG-

G.mA*mA*fC*fC*mA*





Chl

mA* G.
















TABLE 22







Inhibition of gene expression with TGFB1 sd-rxRNA sequences


(Accession Number: NM_000660.3)



















% remaining


Oligo
Start
SEQ ID

SEQ ID

expression


Number
Site
NO
Sense sequence
NO
Antisense sequence
(1 uM A549)
















14394
1194
3641
G.mC.mU. A. A.mU.
3642
P.mU.fU.fC.fC. A.fC.fC.
24%





G. G.mU. G. G. A.

A.fU.fU. A. G.mC*





A.Chl

A*mC* G*mC* G* G.





14395
2006
3643
mU. G. A.mU.mC.
3644
P.mG. A. G.fC. G.fC.
79%





G.mU. G.mC.

A.fC. G. A.mU.mC.





G.mC.mU.mC.Chl

A*mU* G*mU*mU* G*







G.





14396
1389
3645
mC. A.
3646
P.mU.fC. G.fC.fC. A. G.
77%





A.mU.mU.mC.mC.mU.

G. A. A.mU.mU.





G. G.mC. G. A.Chl

G*mU*mU*







G*mC*mU* G.





14397
1787
3647
A. G.mU. G. G.
3648
P.mU.fC. G.fU. G. G.
n/a





A.mU.mC.mC. A.mC.

A.fU.fC.fC.





G. A.Chl

A.mC.mU*mU*mC*mC*







A* G* C.





14398
1867
3649
mU. A.mC. A. G.mC.
3650
P.mG. G. A.fC.fC.fU.fU.
82%





A. A. G.

G.fC.fU. G.mU.





G.mU.mC.mC.Chl

A*mC*mU* G*mC* G*







U.





14399
2002
3651
A. A.mC. A.mU. G.
3652
P.mG.fC. A.fC. G.
n/a





A.mU.mC. G.mU.

A.fU.fC. A.fU.





G.mC.Chl

G.mU.mU* G* G*







A*mC* A* G.





14400
2003
3653
A.mC. A.mU. G.
3654
P.mC. G.fC. A.fC. G.
n/a





A.mU.mC. G.mU.

A.fU.fC. A.mU.





G.mC. G.Chl

G.mU*mU* G* G*







A*mC* A.





14401
1869
3655
mC. A. G.mC. A. A. G.
3656
P.mC. A. G. G.
82%





G.mU.mC.mC.mU.

A.fC.fC.fU.fU.





G.Chl

G.mC.mU. G*mU*







A*mC*mU* G* C.





14402
2000
3657
mC.mC. A. A.mC.
3658
P.mA.fC. G. A.fU.fC.
66%





A.mU. G. A.mU.mC.

A.fU. G.fU.mU. G. G*





G.mU.Chl

A*mC* A* G*mC* U.





14403
986
3659
A. G.mC. G. G. A. A.
3660
P.mA.fU. G.fC.
78%





G.mC. G.mC.

G.fC.fU.fU.fC.fC.





A.mU.Chl

G.mC.mU*mU*mC*







A*mC*mC* A.





14404
995
3661
G.mC. A.mU.mC. G.
3662
P.mA.fU. G.
79%





A. G. G.mC.mC.

G.fC.fC.fU.fC. G. A.mU.





A.mU.Chl

G.mC*







G*mC*mU*mU*mC* C.





14405
963
3663
G. A.mC.mU.
3664
P.mC. A.fU. G.fU.fC. G.
80%





A.mU.mC. G. A.mC.

A.fU. A.





A.mU. G.Chl

G.mU.mC*mU*mU*







G*mC* A* G.





14406
955
3665
A.mC.mC.mU. G.mC.
3666
P.mU. A. G.fU.fC.fU.fU.
88%





A. A. G. A.mC.mU.

G.fC. A. G. G.mU* G*





A.Chl

G* A*mU* A* G.





14407
1721
3667
G.mC.mU.mC.mC.
3668
P.mU.fU.fC.fU.fC.fC.
n/a





A.mC. G. G. A. G. A.

G.fU. G. G. A.





A.Chl

G.mC*mU* G* A* A*







G* C.





18454
1246
3669
mC. A.mC. A. G.mC.
3670
P.mU. A.fU. A.fU. A.fU.
58%





A.mU. A.mU. A.mU.

G.fC.fU. G.fU. G*fU*





A.Chl

G*fU* A*fC* U.





18455
1248
3671
mC. A. G.mC. A.mU.
3672
P.mU. A.fU. A.fU. A.fU.
87%





A.mU. A.mU. A.mU.

A.fU. G.fC.fU. G*fU*





A.Chl

G*fU* G*fU* A.





18456
1755
3673
G.mU. A.mC.
3674
P.mU. A. A. G.fU.fC. A.
107% 





A.mU.mU. G.

A.fU. G.fU. A.fC* A*





A.mC.mU.mU. A.Chl

G*fC*fU* G* C.





18457
1755
3675
mU. G.mU. A.mC.
3676
P.mU. A. A. G.fU.fC. A.
77%





A.mU.mU. G.

A.fU. G.fU. A.fC* A*





A.mC.mU.mU. A.Chl

G*fC*fU* G* C.





18458
1708
3677
A. A.mC.mU.
3678
P.mU. G. A. A. G.fC. A.
75%





A.mU.mU.

A.fU. A. G.fU.fU* G*





G.mC.mU.mU.mC.

G*fU* G*fU* C.





A.Chl





18459
1708
3679
mC. A. A.mC.mU.
3680
P.mU. G. A. A. G.fC. A.
73%





A.mU.mU.

A.fU. A. G.fU.fU* G*





G.mC.mU.mU.mC.

G*fU* G*fU* C.





A.Chl





18460
1250
3681
G.mC. A.mU. A.mU.
3682
P.mU. A.fC. A.fU. A.fU.
n/a





A.mU. A.mU. G.mU.

A.fU. A.fU. G.fC*fU*





A.Chl

G*fU* G*fU* G.





18461
1754
3683
mU. G.mU. A.mC.
3684
P.mU. A. G.fU.fC. A.
91%





A.mU.mU. G.

A.fU. G.fU. A.fC. A*





A.mC.mU. A.Chl

G*fC*fU* G*fC* C.





18462
1754
3685
mC.mU. G.mU.
3686
P.mU. A. G.fU.fC. A.
92%





A.mC. A.mU.mU. G.

A.fU. G.fU. A.fC. A*





A.mC.mU. A.Chl

G*fC*fU* G*fC* C.





18463
1249
3687
A. G.mC. A.mU.
3688
P.mU.fC. A.fU. A.fU.
n/a





A.mU. A.mU. A.mU.

A.fU. A.fU. G.fC.fU*





G. A.Chl

G*fU* G*fU* G* U.





18464
1383
3689
mC. A. G.mC. A.
3690
P.mU. G. A. A.fU.fU.
77%





A.mC. A.

G.fU.fU. G.fC.fU. G*fU*





A.mU.mU.mC. A.Chl

A*fU*fU*fU* C.





18465
1251
3691
mC. A.mU. A.mU.
3692
P.mU. A. A.fC. A.fU.
84%





A.mU. A.mU.

A.fU. A.fU. A.fU.





G.mU.mU. A.Chl

G*fC*fU* G*fU* G* U.





18466
1713
3693
mU.mU.
3694
P.mU. G. A. G.fC.fU. G.
n/a





G.mC.mU.mU.mC. A.

A. A. G.fC. A. A*fU* A*





G.mC.mU.mC. A.Chl

G*fU*fU* G.





18467
1713
3695
A.mU.mU.
3696
P.mU. G. A. G.fC.fU. G.
83%





G.mC.mU.mU.mC. A.

A. A. G.fC. A. A*fU* A*





G.mC.mU.mC. A.Chl

G*fU*fU* G.





18468
1247
3697
A.mC. A. G.mC.
3698
P.mU.fU. A.fU. A.fU.
96%





A.mU. A.mU. A.mU.

A.fU. G.fC.fU. G.fU*





A. A.Chl

G*fU* G*fU* A* C.





18469
1712
3699
A.mU.mU.
3700
P.mU. A. G.fC.fU. G. A.
90%





G.mC.mU.mU.mC. A.

A. G.fC. A. A.fU* A*





G.mC.mU. A.Chl

G*fU*fU* G* G.





18470
1712
3701
mU. A.mU.mU.
3702
P.mU. A. G.fC.fU. G. A.
98%





G.mC.mU.mU.mC. A.

A. G.fC. A. A.fU* A*





G.mC.mU. A.Chl

G*fU*fU* G* G.





18471
1212
3703
mC. A. A.
3704
P.mU.fU. G.fC.fU.fU. G.
n/a





G.mU.mU.mC. A. A.

A. A.fC.fU.fU. G*fU*fC*





G.mC. A. A.Chl

A*fU* A* G.





18472
1222
3705
mC. A. G. A. G.mU.
3706
P.mU. G.fU. G.fU. G.fU.
45%





A.mC. A.mC. A.mC.

A.fC.fU.fC.fU. G*





A.Chl

C*fU*fU* G* A* A.





18473
1228
3707
A.mC. A.mC. A.mC.
3708
P.mU.fU. A.fU. G.fC.fU.
36%





A. G.mC. A.mU. A.

G.fU. G.fU. G.fU*





A.Chl

A*fC*fU*fC*fU* G.





18474
1233
3709
mC. A. G.mC. A.mU.
3710
P.mU. A.fU. A.fU. A.fU.
68%





A.mU. A.mU. A.mU.

A.fU. G.fC.fU. G*fU*





A.Chl

G*fU* G*fU* A.





18475
1218
3711
mU.mC. A. A. G.mC.
3712
P.mU.fU. A.fC.fU.fC.fU.
64%





A. G. A. G.mU. A.

G.fC.fU.fU. G. A*





A.Chl

A*fC*fU*fU* G* U.





18476
1235
3713
A. G.mC. A.mU.
3714
P.mU.fC. A.fU. A.fU.
78%





A.mU. A.mU. A.mU.

A.fU. A.fU. G.fC.fU*





G. A.Chl

G*fU* G*fU* G* U.





18477
1225
3715
A. G. A. G.mU. A.mC.
3716
P.mU.fU. G.fU. G.fU.
92%





A.mC. A.mC. A. A.Chl

G.fU. A.fC.fU.fC.fU*







G*fC*fU*fU* G* A.





18478
1221
3717
A. A. G.mC. A. G. A.
3718
P.mU.fU. G.fU.
103% 





G.mU. A.mC. A. A.Chl

A.fC.fU.fC.fU.







G.fC.fU.fU* G* A*







A*fC*fU* U.





18479
1244
3719
mU.mU.mC. A. A.mC.
3720
P.mU.fU. G. A.fU. G.fU.
84%





A.mC. A.mU.mC. A.

G.fU.fU. G. A. A* G* A*





A.Chl

A*fC* A* U.





18480
1224
3721
A. G.mC. A. G. A.
3722
P.mU. G.fU. G.fU.
37%





G.mU. A.mC. A.mC.

A.fC.fU.fC.fU.





A.Chl

G.fC.fU*fU* G* A*







A*fC* U.





18481
1242
3723
A.mU. A.mU. A.mU.
3724
P.mU. A. A. G. A. A.fC.
62%





G.mU.mU.mC.mU.mU.

A.fU. A.fU. A.fU* A*fU*





A.Chl

G*fC*fU* G.





18482
1213
3725
G. A.mC. A. A.
3726
P.mU.fC.fU.fU. G. A.
47%





G.mU.mU.mC. A. A.

A.fC.fU.fU. G.fU.fC*





G. A.Chl

A*fU* A* G* A* U.





18483
1760
3727
mU.mU. A. A. A. G.
3728
P.mU.fC.fU.fC.fC.
69%





A.mU. G. G. A. G.

A.fU.fC.fU.fU.fU. A.





A.Chl

A*fU* G* G* G* G* C.





18484
1211
3729
mC.mU. A.mU. G.
3730
P.mU. A. A.fC.fU.fU.
n/a





A.mC. A. A.

G.fU.fC. A.fU. A. G*





G.mU.mU. A.Chl

A*fU*fU*fU*fC* G.





19411
1212
3731
mC. A. A.mC. G. A. A.
3732
P.mU.fU. A. G.
52%





A.mU.mC.mU. A.

A.fU.fU.fU.fC. G.fU.fU.





A.Chl

G*fU* G* G* G*fU*fU.





19412
1222
3733
mU. A.mU. G. A.mC.
3734
P.mU. G. A. A.fC.fU.fU.
51%





A. A. G.mU.mU.mC.

G.fU.fC. A.fU. A* G*





A.Chl

A*fU*fU*fU*fC.





19413
1228
3735
A. A. G.mU.mU.mC.
3736
P.mU.fC.fU. G.fC.fU.fU.
n/a





A. A. G.mC. A. G.

G. A. A.fC.fU.fU*





A.Chl

G*fU*fC* A*fU* A.





19414
1233
3737
mC. A. A. G.mC. A. G.
3738
P.mU. G.fU.
41%





A. G.mU. A.mC. A.Chl

A.fC.fU.fC.fU.







G.fC.fU.fU. G* A*







A*fC*fU*fU* G.





19415
1218
3739
A. A.mU.mC.mU.
3740
P.mU.fU.fU. G.fU.fC.
104% 





A.mU. G. A.mC. A. A.

A.fU. A. G.





A.Chl

A.fU.fU*fU*fC*







G*fU*fU* G.





19416
1244
3741
mC. A.mC. A.mC. A.
3742
P.mU. A.fU. A.fU.
31%





G.mC. A.mU. A.mU.

G.fC.fU. G.fU. G.fU.





A.Chl

G*fU* A*fC*fU*fC*fU.





19417
655
3743
G. A. A. A.mU.
3744
P.mU.fU.fU. G.fC.fU.
n/a





A.mU. A. G.mC. A. A.

A.fU. A.fU.fU.fU.fC*fU*





A.Chl

G* G*fU* A* G.





19418
644
3745
G. A.
3746
P.mU.fC.fU. G. G.fU. A.
n/a





A.mC.mU.mC.mU.

G. A. G.fU.fU.fC*fU*





A.mC.mC. A. G. A.Chl

A*fC* G*fU* G.





19419
819
3747
G.mC. A. A. A. G.
3748
P.mU.fC. A.fU.fU.
n/a





A.mU. A. A.mU. G.

A.fU.fC.fU.fU.fU.





A.Chl

G.fC*fU* G*fU*fC* A*







C.





19420
645
3749
A. A.mC.mU.mC.mU.
3750
P.mU.fU.fC.fU. G. G.fU.
n/a





A.mC.mC. A. G. A.

A. G. A. G.fU.fU*fC*fU*





A.Chl

A*fC* G* U.





19421
646
3751
A.mC.mU.mC.mU.
3752
P.mU.fU.fU.fC.fU. G.
n/a





A.mC.mC. A. G. A. A.

G.fU. A. G. A.





A.Chl

G.fU*fU*fC*fU* A*fC*







G.





19422
816
3753
A.mC. A. G.mC. A. A.
3754
P.mU.fU.
n/a





A. G. A.mU. A. A.Chl

A.fU.fC.fU.fU.fU.







G.fC.fU. G.fU*fC* A*fC*







A* A* G.





19423
495
3755
mC. A. A.mU.mC.mU.
3756
P.mU.fU. G.fU.fC. A.fU.
n/a





A.mU. G. A.mC. A.

A. G. A.fU.fU. G*fC*





A.Chl

G*fU*fU* G* U.





19424
614
3757
A. G. A.mU.mU.mC.
3758
P.mU.fU. G. A.fC.fU.fU.
n/a





A. A. G.mU.mC. A.

G. A. A.fU.fC.fU*fC*fU*





A.Chl

G*fC* A* G.





19425
627
3759
mC.mU. G.mU. G. G.
3760
P.mU. G.fU.fU.
n/a





A. G.mC. A. A.mC.

G.fC.fU.fC.fC. A.fC. A.





A.Chl

G*fU*fU* G* A*fC* U.





19426
814
3761
mU. G. A.mC. A.
3762
P.mU.fU.fC.fU.fU.fU.
n/a





G.mC. A. A. A. G. A.

G.fC.fU. G.fU.fC. A*fC*





A.Chl

A* A* G* A* G.





19427
501
3763
A.mU. G. A.mC. A. A.
3764
P.mU.fU. G.
n/a





A. A.mC.mC. A. A.Chl

G.fU.fU.fU.fU. G.fU.fC.







A.fU* A* G* A*fU*fU*







G.





19428
613
3765
G. A. G.
3766
P.mU. G. A.fC.fU.fU. G.
n/a





A.mU.mU.mC. A. A.

A. A.fU.fC.fU.fC*fU*





G.mU.mC. A.Chl

G*fC* A* G* G.





21240
1244
3767
mC. A.mC. A.mC. A.
3768
P.mU. A.fU. A.fU.
0.875





G.mC. A.mU. A.mU.

G.fC.fU. G.fU. G.fU.





A.Chl

G*mU*







A*mC*mU*mC* U.





21241
1244
3769
mC. A.mC. A.mC. A.
3770
P.mU. A.fU. A.fU.
0.88





G.mC. A.mU. A.mU.

G.fC.fU. G.fU. G.fU.





A.Chl

G*mU*mA*mC*mU*mC*







U.





21242
1244
3771
mC. A.mC. A.mC. A.
3772
P.mU. A.fU. A.fU.
0.635





G.mC. A.mU. A.mU.

G.fC.fU. G.fU.





A.Chl

G.fU.mG*mU*mA*mC*







mU*mC* U.





21243
1244
3773
mC. A.mC. A.mC. A.
3774
P.mU. A.fU. A.fU.
0.32





G.mC. A.mU. A.mU.

G.fC.fU. G.fU.





A.Chl

G.fU.mG*fU*mA*fC*mU*







fC* U.





21244
1244
3775
mC. A.mC. A.mC. A.
3776
P.mU. A.fU. A.fU.
0.36





G.mC. A.mU. A.mU.

G.fC.fU. G.fU. G.fU.





A.Chl

G*fU* A*fC*mU*mC*







U.





21245
1244
3777
mC. A.mC. A.mC. A.
3778
P.mU. A.fU. A.fU.
0.265





G.mC. A.mU.

G.fC.fU. G.fU. G.fU.





A*mU*mA.TEG-Chl

G*fU* A*fC*fU*fC*fU.





21246
1244
3779
mC*mA*mC. A.mC.
3780
P.mU. A.fU. A.fU.
0.334





A. G.mC. A.mU.

G.fC.fU. G.fU. G.fU.





A*mU*mA.TEG-Chl

G*fU* A*fC*fU*fC*fU.





21247
1244
3781
mC*mA*mC.mA.mC.
3782
P.mU. A.fU. A.fU.
0.29





mA.mG.mC.mA.mU.

G.fC.fU. G.fU. G.fU.





mA*mU*mA.TEG-Chl

G*fU* A*fC*fU*fC*fU.





21248
614
3783
mA. G.
3784
P.mU.fU. G. A.fC.fU.fU.
n/a





A.mU.mU.mC. A. A.

G. A. A.fU.fC.fU*fC*fU*





G.mU.mC*mA*mA.TEG-

G*fC*fU* U.





Chl





20608
1244
3785
mC. A.mC. A.mC. A.
3786
P.mU. A.fU. A.fU.
79%





G.mC. A.mU. A.mU.

G.fC.fU. G.fU. G.mU.





A.Chl

G*mU*







A*mC*mU*mC* U.





20609
1244
3787
mC. A.mC. A.mC. A.
3788
P.mU. A.fU. A.fU.
60%





G.mC. A.mU. A.mU.

G.fC.fU. G.fU. G.mU.





A.Chl

G*fU* A*mC*fU*mC*







U.





20610
1244
3789
mC. A.mC. A.mC. A.
3790
P.mU. A. U. A. U. G. C.
93%





G.mC. A.mU. A.mU.

U. G. U. G.mU. G*mU*





A.Chl

A*mC*mU*mC* U.





20611
1244
3791
mC. A.mC. A.mC. A.
3792
P.mU. A.fU. A.fU.
n/a





G.mC. A.mU. A.mU.

G.fC.fU. G.fU.





A.Chl

G.mU.mG*mU*mA*mC*







mU*mC* U.





21374
614
3793
mC*mA*mC.mA.mC.
3794
P.mU. A.fU. A.fU.
24%





mA.mG.mC.mA.mU.

G.fC.fU. G.fU.





mA*mU*mA.TEG-Chl

G.fU.mG*fU*mA*fC*mU*







fC* U.
















TABLE 23







CB1 sequences











Ref


SEQ ID



Pos
SEQ ID NO
19-mer Sense Seq
NO
25-mer Sense Seq w/A @ 25














1690
3795
AUGUCUGUGUCCACAGACA
3796
GUAACCAUGUCUGUGUCCACAGACA





1686
3797
AACCAUGUCUGUGUCCACA
3798
CAAGGUAACCAUGUCUGUGUCCACA





1685
3799
UAACCAUGUCUGUGUCCAC
3800
CCAAGGUAACCAUGUCUGUGUCCAA





1684
3801
GUAACCAUGUCUGUGUCCA
3802
GCCAAGGUAACCAUGUCUGUGUCCA





1649
3803
AAAGCUGCAUCAAGAGCAC
3804
CCGCAGAAAGCUGCAUCAAGAGCAA





1648
3805
GAAAGCUGCAUCAAGAGCA
3806
GCCGCAGAAAGCUGCAUCAAGAGCA





1494
3807
CAUCUAUGCUCUGAGGAGU
3808
CCCCAUCAUCUAUGCUCUGAGGAGA





1493
3809
UCAUCUAUGCUCUGAGGAG
3810
ACCCCAUCAUCUAUGCUCUGAGGAA





1492
3811
AUCAUCUAUGCUCUGAGGA
3812
AACCCCAUCAUCUAUGCUCUGAGGA





1491
3813
CAUCAUCUAUGCUCUGAGG
3814
GAACCCCAUCAUCUAUGCUCUGAGA





1490
3815
CCAUCAUCUAUGCUCUGAG
3816
UGAACCCCAUCAUCUAUGCUCUGAA





1489
3817
CCCAUCAUCUAUGCUCUGA
3818
GUGAACCCCAUCAUCUAUGCUCUGA





1487
3819
ACCCCAUCAUCUAUGCUCU
3820
CCGUGAACCCCAUCAUCUAUGCUCA





1486
3821
AACCCCAUCAUCUAUGCUC
3822
ACCGUGAACCCCAUCAUCUAUGCUA





1358
3823
UGGUGUUGAUCAUCUGCUG
3824
UCCUGGUGGUGUUGAUCAUCUGCUA





1357
3825
GUGGUGUUGAUCAUCUGCU
3826
AUCCUGGUGGUGUUGAUCAUCUGCA





1355
3827
UGGUGGUGUUGAUCAUCUG
3828
UGAUCCUGGUGGUGUUGAUCAUCUA





1354
3829
CUGGUGGUGUUGAUCAUCU
3830
CUGAUCCUGGUGGUGUUGAUCAUCA





1351
3831
AUCCUGGUGGUGUUGAUCA
3832
GUCCUGAUCCUGGUGGUGUUGAUCA





1198
3833
AUUCUCUGGAAGGCUCACA
3834
AUGUAUAUUCUCUGGAAGGCUCACA





1197
3835
UAUUCUCUGGAAGGCUCAC
3836
CAUGUAUAUUCUCUGGAAGGCUCAA





1196
3837
AUAUUCUCUGGAAGGCUCA
3838
ACAUGUAUAUUCUCUGGAAGGCUCA





1195
3839
UAUAUUCUCUGGAAGGCUC
3840
UACAUGUAUAUUCUCUGGAAGGCUA





1131
3841
CUACCUGAUGUUCUGGAUC
3842
UGAAACCUACCUGAUGUUCUGGAUA





1129
3843
ACCUACCUGAUGUUCUGGA
3844
GAUGAAACCUACCUGAUGUUCUGGA





1127
3845
AAACCUACCUGAUGUUCUG
3846
UUGAUGAAACCUACCUGAUGUUCUA





1126
3847
GAAACCUACCUGAUGUUCU
3848
AUUGAUGAAACCUACCUGAUGUUCA





1086
3849
ACUGCAAUCUGUUUGCUCA
3850
CGAGAAACUGCAAUCUGUUUGCUCA





1084
3851
AAACUGCAAUCUGUUUGCU
3852
UGCGAGAAACUGCAAUCUGUUUGCA





972
3853
CCUGGCCUAUAAGAGGAUU
3854
CAGGCCCCUGGCCUAUAAGAGGAUA





951
3855
GUACAUAUCCAUUCACAGG
3856
CGACAGGUACAUAUCCAUUCACAGA





950
3857
GGUACAUAUCCAUUCACAG
3858
UCGACAGGUACAUAUCCAUUCACAA





948
3859
CAGGUACAUAUCCAUUCAC
3860
CAUCGACAGGUACAUAUCCAUUCAA





947
3861
ACAGGUACAUAUCCAUUCA
3862
CCAUCGACAGGUACAUAUCCAUUCA





946
3863
GACAGGUACAUAUCCAUUC
3864
GCCAUCGACAGGUACAUAUCCAUUA





943
3865
AUCGACAGGUACAUAUCCA
3866
ACAGCCAUCGACAGGUACAUAUCCA





941
3867
CCAUCGACAGGUACAUAUC
3868
UCACAGCCAUCGACAGGUACAUAUA





940
3869
GCCAUCGACAGGUACAUAU
3870
CUCACAGCCAUCGACAGGUACAUAA





869
3871
ACGUGUUUCUGUUCAAACU
3872
GCCGCAACGUGUUUCUGUUCAAACA





868
3873
AACGUGUUUCUGUUCAAAC
3874
AGCCGCAACGUGUUUCUGUUCAAAA





1647
3875
AGAAAGCUGCAUCAAGAGC
3876
GGCCGCAGAAAGCUGCAUCAAGAGA





1645
3877
GCAGAAAGCUGCAUCAAGA
3878
AGGGCCGCAGAAAGCUGCAUCAAGA





1394
3879
UCAUGGUGUAUGAUGUCUU
3880
UUGCAAUCAUGGUGUAUGAUGUCUA





1393
3881
AUCAUGGUGUAUGAUGUCU
3882
CUUGCAAUCAUGGUGUAUGAUGUCA





1391
3883
CAAUCAUGGUGUAUGAUGU
3884
UGCUUGCAAUCAUGGUGUAUGAUGA





1125
3885
UGAAACCUACCUGAUGUUC
3886
CAUUGAUGAAACCUACCUGAUGUUA





1090
3887
CAAUCUGUUUGCUCAGACA
3888
AAACUGCAAUCUGUUUGCUCAGACA





1089
3889
GCAAUCUGUUUGCUCAGAC
3890
GAAACUGCAAUCUGUUUGCUCAGAA





1088
3891
UGCAAUCUGUUUGCUCAGA
3892
AGAAACUGCAAUCUGUUUGCUCAGA





1087
3893
CUGCAAUCUGUUUGCUCAG
3894
GAGAAACUGCAAUCUGUUUGCUCAA





1397
3895
UGGUGUAUGAUGUCUUUGG
3896
CAAUCAUGGUGUAUGAUGUCUUUGA





1396
3897
AUGGUGUAUGAUGUCUUUG
3898
GCAAUCAUGGUGUAUGAUGUCUUUA





1120
3899
AUUGAUGAAACCUACCUGA
3900
CCACACAUUGAUGAAACCUACCUGA





1118
3901
ACAUUGAUGAAACCUACCU
3902
UCCCACACAUUGAUGAAACCUACCA





1117
3903
CACAUUGAUGAAACCUACC
3904
UUCCCACACAUUGAUGAAACCUACA





1116
3905
ACACAUUGAUGAAACCUAC
3906
UUUCCCACACAUUGAUGAAACCUAA





1132
3907
UACCUGAUGUUCUGGAUCG
3908
GAAACCUACCUGAUGUUCUGGAUCA





845
3909
UGUUCCACCGCAAAGAUAG
3910
UCCACGUGUUCCACCGCAAAGAUAA





844
3911
GUGUUCCACCGCAAAGAUA
3912
UUCCACGUGUUCCACCGCAAAGAUA





573
3913
CUUCAAGGAGAAUGAGGAG
3914
CUCGUCCUUCAAGGAGAAUGAGGAA





572
3915
CCUUCAAGGAGAAUGAGGA
3916
UCUCGUCCUUCAAGGAGAAUGAGGA





571
3917
UCCUUCAAGGAGAAUGAGG
3918
CUCUCGUCCUUCAAGGAGAAUGAGA





1449
3919
AUUCUGCAGUAUGCUCUGC
3920
GUUUGCAUUCUGCAGUAUGCUCUGA





1448
3921
CAUUCUGCAGUAUGCUCUG
3922
UGUUUGCAUUCUGCAGUAUGCUCUA





1447
3923
GCAUUCUGCAGUAUGCUCU
3924
GUGUUUGCAUUCUGCAGUAUGCUCA





1253
3925
AGAGCAUCAUCAUCCACAC
3926
CCCAGAAGAGCAUCAUCAUCCACAA





1252
3927
AAGAGCAUCAUCAUCCACA
3928
ACCCAGAAGAGCAUCAUCAUCCACA





1247
3929
CCCAGAAGAGCAUCAUCAU
3930
GUGGCACCCAGAAGAGCAUCAUCAA





1246
3931
ACCCAGAAGAGCAUCAUCA
3932
CGUGGCACCCAGAAGAGCAUCAUCA





311
3933
UGAAGUCGAUCCUAGAUGG
3934
AGGUUAUGAAGUCGAUCCUAGAUGA





310
3935
AUGAAGUCGAUCCUAGAUG
3936
GAGGUUAUGAAGUCGAUCCUAGAUA





1249
3937
CAGAAGAGCAUCAUCAUCC
3938
GGCACCCAGAAGAGCAUCAUCAUCA





585
3939
UGAGGAGAACAUCCAGUGU
3940
GGAGAAUGAGGAGAACAUCCAGUGA





583
3941
AAUGAGGAGAACAUCCAGU
3942
AAGGAGAAUGAGGAGAACAUCCAGA





581
3943
AGAAUGAGGAGAACAUCCA
3944
UCAAGGAGAAUGAGGAGAACAUCCA





580
3945
GAGAAUGAGGAGAACAUCC
3946
UUCAAGGAGAAUGAGGAGAACAUCA





579
3947
GGAGAAUGAGGAGAACAUC
3948
CUUCAAGGAGAAUGAGGAGAACAUA





578
3949
AGGAGAAUGAGGAGAACAU
3950
CCUUCAAGGAGAAUGAGGAGAACAA





577
3951
AAGGAGAAUGAGGAGAACA
3952
UCCUUCAAGGAGAAUGAGGAGAACA





574
3953
UUCAAGGAGAAUGAGGAGA
3954
UCGUCCUUCAAGGAGAAUGAGGAGA





1257
3955
CAUCAUCAUCCACACGUCU
3956
GAAGAGCAUCAUCAUCCACACGUCA





1255
3957
AGCAUCAUCAUCCACACGU
3958
CAGAAGAGCAUCAUCAUCCACACGA





1682
3959
AGGUAACCAUGUCUGUGUC
3960
UUGCCAAGGUAACCAUGUCUGUGUA





1681
3961
AAGGUAACCAUGUCUGUGU
3962
AUUGCCAAGGUAACCAUGUCUGUGA





1680
3963
CAAGGUAACCAUGUCUGUG
3964
GAUUGCCAAGGUAACCAUGUCUGUA





1499
3965
AUGCUCUGAGGAGUAAGGA
3966
UCAUCUAUGCUCUGAGGAGUAAGGA





1498
3967
UAUGCUCUGAGGAGUAAGG
3968
AUCAUCUAUGCUCUGAGGAGUAAGA





1497
3969
CUAUGCUCUGAGGAGUAAG
3970
CAUCAUCUAUGCUCUGAGGAGUAAA





1496
3971
UCUAUGCUCUGAGGAGUAA
3972
CCAUCAUCUAUGCUCUGAGGAGUAA





1388
3973
UUGCAAUCAUGGUGUAUGA
3974
CUCUGCUUGCAAUCAUGGUGUAUGA





1387
3975
CUUGCAAUCAUGGUGUAUG
3976
CCUCUGCUUGCAAUCAUGGUGUAUA





1386
3977
GCUUGCAAUCAUGGUGUAU
3978
CCCUCUGCUUGCAAUCAUGGUGUAA





1385
3979
UGCUUGCAAUCAUGGUGUA
3980
GCCCUCUGCUUGCAAUCAUGGUGUA





1384
3981
CUGCUUGCAAUCAUGGUGU
3982
GGCCCUCUGCUUGCAAUCAUGGUGA





1383
3983
UCUGCUUGCAAUCAUGGUG
3984
GGGCCCUCUGCUUGCAAUCAUGGUA





1382
3985
CUCUGCUUGCAAUCAUGGU
3986
GGGGCCCUCUGCUUGCAAUCAUGGA





1314
3987
CCGCAUGGACAUUAGGUUA
3988
CCAAGCCCGCAUGGACAUUAGGUUA





1094
3989
CUGUUUGCUCAGACAUUUU
3990
UGCAAUCUGUUUGCUCAGACAUUUA





1093
3991
UCUGUUUGCUCAGACAUUU
3992
CUGCAAUCUGUUUGCUCAGACAUUA





1083
3993
GAAACUGCAAUCUGUUUGC
3994
CUGCGAGAAACUGCAAUCUGUUUGA





1082
3995
AGAAACUGCAAUCUGUUUG
3996
ACUGCGAGAAACUGCAAUCUGUUUA





1080
3997
CGAGAAACUGCAAUCUGUU
3998
GAACUGCGAGAAACUGCAAUCUGUA





323
3999
UAGAUGGCCUUGCAGAUAC
4000
CGAUCCUAGAUGGCCUUGCAGAUAA





322
4001
CUAGAUGGCCUUGCAGAUA
4002
UCGAUCCUAGAUGGCCUUGCAGAUA





1179
4003
CGUGUAUGCGUACAUGUAU
4004
GUUCAUCGUGUAUGCGUACAUGUAA





1178
4005
UCGUGUAUGCGUACAUGUA
4006
UGUUCAUCGUGUAUGCGUACAUGUA





1177
4007
AUCGUGUAUGCGUACAUGU
4008
CUGUUCAUCGUGUAUGCGUACAUGA





1320
4009
GGACAUUAGGUUAGCCAAG
4010
CCGCAUGGACAUUAGGUUAGCCAAA





1319
4011
UGGACAUUAGGUUAGCCAA
4012
CCCGCAUGGACAUUAGGUUAGCCAA





1318
4013
AUGGACAUUAGGUUAGCCA
4014
GCCCGCAUGGACAUUAGGUUAGCCA





1317
4015
CAUGGACAUUAGGUUAGCC
4016
AGCCCGCAUGGACAUUAGGUUAGCA





1316
4017
GCAUGGACAUUAGGUUAGC
4018
AAGCCCGCAUGGACAUUAGGUUAGA





1315
4019
CGCAUGGACAUUAGGUUAG
4020
CAAGCCCGCAUGGACAUUAGGUUAA





1415
4021
GGAAGAUGAACAAGCUCAU
4022
UCUUUGGGAAGAUGAACAAGCUCAA





552
4023
UUACAACAAGUCUCUCUCG
4024
AGAAUUUUACAACAAGUCUCUCUCA





551
4025
UUUACAACAAGUCUCUCUC
4026
CAGAAUUUUACAACAAGUCUCUCUA





550
4027
UUUUACAACAAGUCUCUCU
4028
ACAGAAUUUUACAACAAGUCUCUCA





476
4029
GUCCCUUCCAAGAGAAGAU
4030
GGGGAAGUCCCUUCCAAGAGAAGAA





474
4031
AAGUCCCUUCCAAGAGAAG
4032
UAGGGGAAGUCCCUUCCAAGAGAAA





473
4033
GAAGUCCCUUCCAAGAGAA
4034
UUAGGGGAAGUCCCUUCCAAGAGAA





1020
4035
UUGCCUGAUGUGGACCAUA
4036
GGCGUUUUGCCUGAUGUGGACCAUA





1019
4037
UUUGCCUGAUGUGGACCAU
4038
UGGCGUUUUGCCUGAUGUGGACCAA





1018
4039
UUUUGCCUGAUGUGGACCA
4040
GUGGCGUUUUGCCUGAUGUGGACCA





606
4041
GGAGAACUUCAUGGACAUA
4042
GUGUGGGGAGAACUUCAUGGACAUA





1568
4043
AGCCUCUGGAUAACAGCAU
4044
CUGCGCAGCCUCUGGAUAACAGCAA





1170
4045
UCUGUUCAUCGUGUAUGCG
4046
ACUGCUUCUGUUCAUCGUGUAUGCA





1169
4047
UUCUGUUCAUCGUGUAUGC
4048
UACUGCUUCUGUUCAUCGUGUAUGA





1168
4049
CUUCUGUUCAUCGUGUAUG
4050
GUACUGCUUCUGUUCAUCGUGUAUA





1421
4051
UGAACAAGCUCAUUAAGAC
4052
GGAAGAUGAACAAGCUCAUUAAGAA





1420
4053
AUGAACAAGCUCAUUAAGA
4054
GGGAAGAUGAACAAGCUCAUUAAGA





1419
4055
GAUGAACAAGCUCAUUAAG
4056
UGGGAAGAUGAACAAGCUCAUUAAA





1418
4057
AGAUGAACAAGCUCAUUAA
4058
UUGGGAAGAUGAACAAGCUCAUUAA





1417
4059
AAGAUGAACAAGCUCAUUA
4060
UUUGGGAAGAUGAACAAGCUCAUUA





1172
4061
UGUUCAUCGUGUAUGCGUA
4062
UGCUUCUGUUCAUCGUGUAUGCGUA





1078
4063
UGCGAGAAACUGCAAUCUG
4064
UGGAACUGCGAGAAACUGCAAUCUA





825
4065
CAGCUUCAUUGACUUCCAC
4066
UGUCUACAGCUUCAUUGACUUCCAA





824
4067
ACAGCUUCAUUGACUUCCA
4068
UUGUCUACAGCUUCAUUGACUUCCA





823
4069
UACAGCUUCAUUGACUUCC
4070
UUUGUCUACAGCUUCAUUGACUUCA





821
4071
UCUACAGCUUCAUUGACUU
4072
UUUUUGUCUACAGCUUCAUUGACUA





820
4073
GUCUACAGCUUCAUUGACU
4074
AUUUUUGUCUACAGCUUCAUUGACA





612
4075
CUUCAUGGACAUAGAGUGU
4076
GGAGAACUUCAUGGACAUAGAGUGA





611
4077
ACUUCAUGGACAUAGAGUG
4078
GGGAGAACUUCAUGGACAUAGAGUA





610
4079
AACUUCAUGGACAUAGAGU
4080
GGGGAGAACUUCAUGGACAUAGAGA





549
4081
AUUUUACAACAAGUCUCUC
4082
UACAGAAUUUUACAACAAGUCUCUA





547
4083
GAAUUUUACAACAAGUCUC
4084
AUUACAGAAUUUUACAACAAGUCUA





1176
4085
CAUCGUGUAUGCGUACAUG
4086
UCUGUUCAUCGUGUAUGCGUACAUA





1175
4087
UCAUCGUGUAUGCGUACAU
4088
UUCUGUUCAUCGUGUAUGCGUACAA





1174
4089
UUCAUCGUGUAUGCGUACA
4090
CUUCUGUUCAUCGUGUAUGCGUACA





1173
4091
GUUCAUCGUGUAUGCGUAC
4092
GCUUCUGUUCAUCGUGUAUGCGUAA





1171
4093
CUGUUCAUCGUGUAUGCGU
4094
CUGCUUCUGUUCAUCGUGUAUGCGA





609
4095
GAACUUCAUGGACAUAGAG
4096
UGGGGAGAACUUCAUGGACAUAGAA





608
4097
AGAACUUCAUGGACAUAGA
4098
GUGGGGAGAACUUCAUGGACAUAGA





607
4099
GAGAACUUCAUGGACAUAG
4100
UGUGGGGAGAACUUCAUGGACAUAA





1322
4101
ACAUUAGGUUAGCCAAGAC
4102
GCAUGGACAUUAGGUUAGCCAAGAA





1321
4103
GACAUUAGGUUAGCCAAGA
4104
CGCAUGGACAUUAGGUUAGCCAAGA





1027
4105
AUGUGGACCAUAGCCAUUG
4106
UGCCUGAUGUGGACCAUAGCCAUUA





545
4107
CAGAAUUUUACAACAAGUC
4108
ACAUUACAGAAUUUUACAACAAGUA





532
4109
CAGGUGAACAUUACAGAAU
4110
GCAGACCAGGUGAACAUUACAGAAA





813
4111
CAUUUUUGUCUACAGCUUC
4112
GAGUGUCAUUUUUGUCUACAGCUUA





812
4113
UCAUUUUUGUCUACAGCUU
4114
GGAGUGUCAUUUUUGUCUACAGCUA





811
4115
GUCAUUUUUGUCUACAGCU
4116
GGGAGUGUCAUUUUUGUCUACAGCA





809
4117
GUGUCAUUUUUGUCUACAG
4118
UGGGGAGUGUCAUUUUUGUCUACAA





808
4119
AGUGUCAUUUUUGUCUACA
4120
CUGGGGAGUGUCAUUUUUGUCUACA





569
4121
CGUCCUUCAAGGAGAAUGA
4122
CUCUCUCGUCCUUCAAGGAGAAUGA





568
4123
UCGUCCUUCAAGGAGAAUG
4124
UCUCUCUCGUCCUUCAAGGAGAAUA





1444
4125
UUUGCAUUCUGCAGUAUGC
4126
ACGGUGUUUGCAUUCUGCAGUAUGA





1443
4127
GUUUGCAUUCUGCAGUAUG
4128
GACGGUGUUUGCAUUCUGCAGUAUA





1446
4129
UGCAUUCUGCAGUAUGCUC
4130
GGUGUUUGCAUUCUGCAGUAUGCUA





1445
4131
UUGCAUUCUGCAGUAUGCU
4132
CGGUGUUUGCAUUCUGCAGUAUGCA





1442
4133
UGUUUGCAUUCUGCAGUAU
4134
AGACGGUGUUUGCAUUCUGCAGUAA





1677
4135
UGCCAAGGUAACCAUGUCU
4136
CAAGAUUGCCAAGGUAACCAUGUCA





1676
4137
UUGCCAAGGUAACCAUGUC
4138
UCAAGAUUGCCAAGGUAACCAUGUA





1675
4139
AUUGCCAAGGUAACCAUGU
4140
GUCAAGAUUGCCAAGGUAACCAUGA





1603
4141
CUGCACAAACACGCAAACA
4142
GACUGCCUGCACAAACACGCAAACA





1110
4143
UUUCCCACACAUUGAUGAA
4144
AGACAUUUUCCCACACAUUGAUGAA





1109
4145
UUUUCCCACACAUUGAUGA
4146
CAGACAUUUUCCCACACAUUGAUGA





1108
4147
AUUUUCCCACACAUUGAUG
4148
UCAGACAUUUUCCCACACAUUGAUA





1605
4149
GCACAAACACGCAAACAAU
4150
CUGCCUGCACAAACACGCAAACAAA





1604
4151
UGCACAAACACG CAAACAA
4152
ACUGCCUGCACAAACACGCAAACAA





1671
4153
CAAGAUUGCCAAGGUAACC
4154
CACGGUCAAGAUUGCCAAGGUAACA





1670
4155
UCAAGAUUGCCAAGGUAAC
4156
GCACGGUCAAGAUUGCCAAGGUAAA





1669
4157
GUCAAGAUUGCCAAGGUAA
4158
AGCACGGUCAAGAUUGCCAAGGUAA





628
4159
UGUUUCAUGGUCCUGAACC
4160
AUAGAGUGUUUCAUGGUCCUGAACA





1115
4161
CACACAUUGAUGAAACCUA
4162
UUUUCCCACACAUUGAUGAAACCUA





1114
4163
CCACACAUUGAUGAAACCU
4164
AUUUUCCCACACAUUGAUGAAACCA





1113
4165
CCCACACAUUGAUGAAACC
4166
CAUUUUCCCACACAUUGAUGAAACA





1112
4167
UCCCACACAUUGAUGAAAC
4168
ACAUUUUCCCACACAUUGAUGAAAA





1111
4169
UUCCCACACAUUGAUGAAA
4170
GACAUUUUCCCACACAUUGAUGAAA





814
4171
AUUUUUGUCUACAGCUUCA
4172
AGUGUCAUUUUUGUCUACAGCUUCA





1659
4173
CAAGAGCACGGUCAAGAUU
4174
CUGCAUCAAGAGCACGGUCAAGAUA





1657
4175
AUCAAGAGCACGGUCAAGA
4176
AGCUGCAUCAAGAGCACGGUCAAGA





1167
4177
GCUUCUGUUCAUCGUGUAU
4178
CGUACUGCUUCUGUUCAUCGUGUAA





1166
4179
UGCUUCUGUUCAUCGUGUA
4180
GCGUACUGCUUCUGUUCAUCGUGUA





1668
4181
GGUCAAGAUUGCCAAGGUA
4182
GAGCACGGUCAAGAUUGCCAAGGUA





819
4183
UGUCUACAGCUUCAUUGAC
4184
CAUUUUUGUCUACAGCUUCAUUGAA





818
4185
UUGUCUACAGCUUCAUUGA
4186
UCAUUUUUGUCUACAGCUUCAUUGA





817
4187
UUUGUCUACAGCUUCAUUG
4188
GUCAUUUUUGUCUACAGCUUCAUUA





816
4189
UUUUGUCUACAGCUUCAUU
4190
UGUCAUUUUUGUCUACAGCUUCAUA





1543
4191
UUUCCCUCUUGUGAAGGCA
4192
AGCAUGUUUCCCUCUUGUGAAGGCA





166
4193
AAGAGCACGGUCAAGAUUG
4194
UGCAUCAAGAGCACGGUCAAGAUUA





1030
4195
UGGACCAUAGCCAUUGUGA
4196
CUGAUGUGGACCAUAGCCAUUGUGA





531
4197
CCAGGUGAACAUUACAGAA
4198
AGCAGACCAGGUGAACAUUACAGAA





1259
4199
UCAUCAUCCACACGUCUGA
4200
AGAGCAUCAUCAUCCACACGUCUGA





1258
4201
AUCAUCAUCCACACGUCUG
4202
AAGAGCAUCAUCAUCCACACGUCUA



















Chemical Modification Key


















Chl
cholesterol with hydroxyprolinol linker



TEG-Chl
cholesterol with TEG linker



m
2′Ome



f
2′fluoro



*
phosphorothioate linkage



.
phosphodiester linkage

















TABLE 24







Summary of CTGF Leads



















Opt.









Tar-
lead

Opt.
Opt.


Generic


geting
se-

lead
lead
Pri-


Name
TEG ID
2′F
site
quence
Optimized lead sequence
2′F
2′OH
ority


















CTGF L1
21045
4
2295
21212
mU.mU. G.mC. A.mC.mC.mU.mU.mU.mC.mU*mA*mA-chol
4
 7(2)
1







P.mU.fU. A. G. A. mA. A. G. G.fU. G.fC. mA. mA* mA*fC*







mA*mA* mG* G






21214
mU.mU. G.mC. A.mC.mC.mU.mU.mU.mC.mU*mA*mA-chol
4
12(2)
3







P.mU.fU. A. G. A. mA. A. G.fU. G.fC. A. A* A*fC*







A*mA*mG*G






21215
mU.mU. G.mC. A. mC.mC.mU.mU.mU.mC.mU*mA*mA-chol
4
10(2)
2







P.mU.fU. A. G. A. mA. A. G. G.fU. G.fC. mA. A* mA*fC*







A*mA*mG* G





CTGFL2
20393
5
2296
21204
G.mC. A.mC.mC.mU.mU.mU.mC.mU. A*mG*mA-TEG-Chl
3
11(3)
1







P.mU.fC.fU.A.G.mA.A.mA.G.G.fU.G.mC*A*A*A*mC*A*U






21205
G.mC. A.mC.mC.mU.mU.mU.mC.mU. A*mG*mA-TEG-Chl
3
10(3)
3







P.mU.fC.fC.A.G.mA.A.mA.G.G.fU.G.mC*A*mA*A*mC*A*U






21227
G.mC. A.mC.mC.mU.mU.mU.mC.mU. A*mG*mA-TEG-Chl
5
 7(3)
2







P.mU.fC.fU.A.G.mA.A.mA.G.G.fU.G.fC*mA*mA*mA*fC*mA*U





CTGF L3
20392
13
2275
21381
G.mU. G. A. mC.mC. A. A. A. A. G*mU*mA-TEG-Chl
6
 6(9)
1







P.mU.A.fC.fU.fU.fU.fU.G.G.fU.mC.A.mC*A*mC*mU*mC*mU*C






21383
mG*mU*mG.mA.mC.mC.mA.mA.mA.mA.mG*mU*mA-TEG-Chl
6
 6(0)
2







P.mU.A.fC.fU.fU.fU.fU.G.G.fU.mC.A.mC*A*mC*mU*mC*mU*C





CTGF L4
17387
5
2299
21224
mC.mC.mU.mU.mU.mC.mU. A. G.mU.mU* mG*mA-TEG-Chl
5
 9(2)
1







P.mU.fC. A. A.fC.fU. A. G. A. mA. A. G.







G*fU*mG*fC*mA*mA* A





Table 24: Lead 21212 corresponds to SEQ ID NOs 3445 and 3446; lead 21214 corresponds to SEQ ID NOs 3449 and 3450 (an unmodified form of SEQ ID NO: 3450 corresponds to SEQ ID NO: 4205: UCAACUAGAAAGGUGCAAA); lead 21215 corresponds to SEQ ID NOs 3451 and 3452 (an unmodified form of SEQ ID NO: 3452 corresponds to SEQ ID NO: 4204: UUAGAAAGGUGCAAACAAGG); lead 21204 corresponds to SEQ ID NOs 3429 and 3430; lead 21205 corresponds to SEQ ID NOs 3431 and 3432; lead 21227 corresponds to SEQ ID NOs 3475 and 3476; lead 21381 corresponds to SEQ ID NOs 3493 and 3494; lead 21383 corresponds to SEQ ID NOs 3497 and 3498; and lead 21224 corresponds to SEQ ID NOs 3469 and 3470.













TABLE 25







Summary of PTGS2 Leads



















Opti-










mized





Tar-
lead

Opt.
Opt.


Generic


geting
se-

lead
lead
Pri-


Name
TEG ID
2′F
site
quence
Optimized lead sequence
2′F
2′OH
ority


















PTGS2 L1
20394
8
448
21228
G. A.mU.mC. A.mC. A.mU.mU.mU. G*mA*mA-TEG-Chl
8
 6(5)
1







P.mU.fU.fC.A.mA.A.fU.G.fU.G.A.fU.fC*fU*mG*mG*mA*fU* G






21229
G. A.mU.mC. A.mC. A.mU.mU.mU. G*mA*mA-TEG-Chl
4
10(5)
3







P.mU.fU.fC.A.A.A.fU.G.fU.G.A.mU.mC*mU*G*G*A*mU*G






21230
G. A.mU.mC. A.mC. A.mU.mU.mU. G*mA*mA-TEG-Chl
8
 7(5)
2







P.mU.fC.fC.A.A.A.fU.G.fU.G.A.fU.fC*fU*mG*mG*mA*fU* G





PTGS2 L2
20395
8
449
21293
G. A.mU.mC. A.mC. A.mU.mU.mU. G. A*mU*mA-TEG-Chl
5
 8(6)
4







P.mU. A.fU.fC. A. A. A.fU. G.fU. G.







A.mU.mC*mU*mG*mG*mA*fU* G






21394
G. A.mU.mC. A.mC. A.mU.mU.mU. G. A*mU*mA-TEG-Chl
6
11(6)
3







P.mU. A.fU.fC. A. A. A.fU. G.fU. G. A.mU.fC*mU*







G* G* A *fU* G






21233
G. A.mU.mC. A.mC. A. mU.mU.mU. G. A*mU*mA-TEG-Chl
8
11(6)
1







P.mU.A.fU.fC.A.A.A.fU.G.fU.G.A.fU.fC*fU*G*G*A*fU*G






21234
G. A.mU.mC. A.mC. A.mU.mU.mU. G. A*mU*mA-TEG-Chl
7
 8(6)
2







P.mU.A.fU.fC.A.A.A.fU.G.fU.G.A.fU.fC*fU*mG*mG*mA*fU*G





Table 25: Lead 21228 corresponds to SEQ ID NOs 4309 and 4310; lead 21229 corresponds to SEQ ID NOs 4311 and 4312; lead 21230 corresponds to SEQ ID NOs 4313 and 4314; lead 21293 corresponds to SEQ ID NOs 4315 and 4316; lead 21394 corresponds to SEQ ID NOs 4317 and 4318; lead 21233 corresponds to SEQ ID NOs 4319 and 501; and lead 21234 corresponds to SEQ ID NOs 502 and 1059.













TABLE 26







Summary of hTGFB1 Leads















Optimized


Opt. lead



Generic Name
Targeting site
lead sequence
Optimized lead sequence
Opt. lead 2′F
2′OH
Priority





TGFb1 hL3
1244
21374
mC*mA*mC.mA.mC.mA.mG.mC.
9
6(0)
1





mA.mU.mA*mU*mA-TEG-Chl





P.mU.A.fU.A.fU.G.fC.fU.G.fU.G.





fU.mG*fU*mA*fC*mU*fC*U





Table 26: lead 21374 corresponds to SEQ ID NOs 3793 and 3794.













TABLE 27







Summary of hTGFB2 Leads













Generic
Targeting
Optimized

Opt. lead
Opt. lead



Name
site
lead sequence
Optimized lead sequence
2′F
2′OH
Priority





TGFb2 hL3
2081
21379
mU*mC*mA.mU.mC.mA.mG.mU.mG.
7
9(0)
1





mU.mU*mA-TEG-Chl P.mU.fU.








A. A.fC. A.fC.fU. G. A.fU. G.








A* A*fC*fC*mA*mA* G











mU*mC*mA.mU.mC.mA.mG.mU.mG.
7
7(0)
2





mU.mU*mA*mA-TEG-Chl P.mU.fU.








A. A.fC. A.fC.fU. G. A.fU. G.








mA*mA*fC*fC*mA*mA* G





Table 27: lead 21379 corresponds to SEQ ID NOs 3637, 3638, 3639 and 3640.






Having thus described several aspects of at least one embodiment of this invention, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description and drawings are by way of example only.


EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.


All references, including patent documents, disclosed herein are incorporated by reference in their entirety. This application incorporates by reference the entire contents, including all the drawings and all parts of the specification (including sequence listing or amino acid/polynucleotide sequences) of PCT Publication No. WO2010/033247 (Application No. PCT/US2009/005247), filed on Sep. 22, 2009, and entitled “REDUCED SIZE SELF-DELIVERING RNAI COMPOUNDS” and PCT Publication No. WO2009/102427 (Application No. PCT/US2009/000852), filed on Feb. 11, 2009, and entitled, “MODIFIED RNAI POLYNUCLEOTIDES AND USES THEREOF.”

Claims
  • 1. A method for treating or preventing a fibrotic disorder, the method comprising administering to a subject in need thereof a therapeutically effective amount of a double-stranded ribonucleic acid (dsRNA) directed against CTGF comprising a sense strand and an antisense strand, wherein the sense strand comprises at least 12 contiguous nucleotides of a sequence selected from the group consisting of
  • 2. The method of claim 1, wherein the dsRNA is administered via intradermal injection.
  • 3. The method of claim 1, wherein the dsRNA is administered locally to the skin.
  • 4. The method of claim 1, wherein two or more dsRNAs are administered simultaneously or sequentially.
  • 5. The method of claim 1, wherein the dsRNA is hydrophobically modified.
  • 6. The method of claim 1, wherein the dsRNA is linked to a hydrophobic conjugate.
  • 7. The method of claim 1, wherein the sense strand comprises
  • 8. The method of claim 7, wherein the sense strand comprises
  • 9. The method of claim 1, wherein the sense strand comprises
  • 10. The method of claim 9, wherein the sense strand comprises
  • 11. The method of claim 1, wherein the sense strand comprises
  • 12. The method of claim 11, wherein the sense strand comprises
  • 13. The method of claim 1, wherein the fibrotic disorder is selected from the group consisting of pulmonary fibrosis, liver cirrhosis, scleroderma and glomerulonephritis, lung fibrosis, liver fibrosis, skin fibrosis, muscle fibrosis, radiation fibrosis, kidney fibrosis, proliferative vitreoretinopathy, restenosis and uterine fibrosis, and trabeculectomy failure due to scarring.
  • 14. The method of claim 1 wherein the dsRNA is formulated for delivery to the skin, for topical delivery, for intradermal injection and/or wherein the dsRNA is in a neutral formulation.
  • 15. A method for treating or preventing a fibrotic disorder, the method comprising administering to a subject in need thereof a therapeutically effective amount of a double-stranded ribonucleic acid (dsRNA) directed against CTGF comprising a sense strand and an antisense strand, wherein the sense strand comprises at least 12 contiguous nucleotides of a sequence selected from the group consisting of
  • 16. The method of claim 15, wherein the sense strand comprises
  • 17. The method of claim 14, wherein the dsRNA is administered via intradermal injection.
  • 18. The method of claim 14, wherein the dsRNA is administered locally to the skin.
  • 19. The method of claim 14, wherein dsRNA is hydrophobically modified.
  • 20. The method of claim 14, wherein the dsRNA is linked to a hydrophobic conjugate.
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/636,755, entitled “RNA INTERFERENCE IN DERMAL AND FIBROTIC INDICATIONS”, filed Apr. 4, 2013, which is a National Stage Application of PCT/US2011/029867, entitled “RNA INTERFERENCE IN DERMAL AND FIBROTIC INDICATIONS,” filed on Mar. 24, 2011, which was published under PCT Article 21(2) in English and which claims the benefit under 35 U.S.C. § 119(e) of U.S. 61/317,252, entitled “RNA INTERFERENCE IN SKIN INDICATIONS,” filed on Mar. 24, 2010, and U.S. Provisional Application Ser. No. U.S. 61/317,633, entitled “RNA INTERFERENCE IN SKIN INDICATIONS,” filed on Mar. 25, 2010, each of which is herein incorporated by reference in its entirety.

US Referenced Citations (330)
Number Name Date Kind
3687808 Merigan et al. Aug 1972 A
4201860 Naito et al. May 1980 A
4235871 Papahadjopoulos et al. Nov 1980 A
4415732 Caruthers et al. Nov 1983 A
4426330 Sears Jan 1984 A
4501728 Geho et al. Feb 1985 A
4737323 Martin et al. Apr 1988 A
4837028 Allen Jun 1989 A
4853386 Friebe et al. Aug 1989 A
4897355 Eppstein et al. Jan 1990 A
4904582 Tullis Feb 1990 A
4958013 Letsinger Sep 1990 A
5023243 Tullis Jun 1991 A
5112963 Pieles et al. May 1992 A
5151510 Stec et al. Sep 1992 A
5188897 Suhadolnik et al. Feb 1993 A
5264423 Cohen et al. Nov 1993 A
5264562 Matteucci Nov 1993 A
5405939 Suhadolnik et al. Apr 1995 A
5414077 Lin et al. May 1995 A
5416203 Letsinger May 1995 A
5417978 Tari et al. May 1995 A
5419966 Reed et al. May 1995 A
5432272 Benner Jul 1995 A
5453496 Caruthers et al. Sep 1995 A
5459255 Cook et al. Oct 1995 A
5466786 Buhr et al. Nov 1995 A
5470967 Huie et al. Nov 1995 A
5486603 Buhr Jan 1996 A
5489677 Sanghvi et al. Feb 1996 A
5495009 Matteucci et al. Feb 1996 A
5512667 Reed et al. Apr 1996 A
5514786 Cook et al. May 1996 A
5532130 Alul Jul 1996 A
5534259 Zalipsky et al. Jul 1996 A
5556948 Tagawa et al. Sep 1996 A
5561225 Maddry et al. Oct 1996 A
5578718 Cook et al. Nov 1996 A
5580731 Chang et al. Dec 1996 A
5580972 Tu et al. Dec 1996 A
5587469 Cook et al. Dec 1996 A
5591721 Agrawal et al. Jan 1997 A
5591722 Montgomery et al. Jan 1997 A
5591843 Eaton Jan 1997 A
5594121 Froehler et al. Jan 1997 A
5596086 Matteucci et al. Jan 1997 A
5596091 Switzer Jan 1997 A
5599797 Cook et al. Feb 1997 A
5602240 De Mesmaeker et al. Feb 1997 A
5607923 Cook et al. Mar 1997 A
5614617 Cook et al. Mar 1997 A
5614621 Ravikumar et al. Mar 1997 A
5623070 Cook et al. Apr 1997 A
5625050 Beaton et al. Apr 1997 A
5633360 Bischofberger et al. May 1997 A
5643889 Suhadolnik et al. Jul 1997 A
5646126 Cheng et al. Jul 1997 A
5646265 McGee Jul 1997 A
5652359 Meyer, Jr. et al. Jul 1997 A
5658731 Sproat et al. Aug 1997 A
5661134 Cook et al. Aug 1997 A
5663312 Chaturvedula Sep 1997 A
5670633 Cook et al. Sep 1997 A
5681940 Wang et al. Oct 1997 A
5681941 Cook et al. Oct 1997 A
5684143 Gryaznov et al. Nov 1997 A
5700920 Altmann et al. Dec 1997 A
5736392 Hawley-Nelson et al. Apr 1998 A
5750666 Caruthers et al. May 1998 A
5767099 Harris et al. Jun 1998 A
5770209 Grotendorst et al. Jun 1998 A
5770713 Imbach et al. Jun 1998 A
5777153 Lin et al. Jul 1998 A
5780053 Ashley et al. Jul 1998 A
5789416 Lum et al. Aug 1998 A
5792847 Buhr et al. Aug 1998 A
5808023 Sanghvi et al. Sep 1998 A
5817781 Swaminathan et al. Oct 1998 A
5830430 Unger et al. Nov 1998 A
5830653 Froehler et al. Nov 1998 A
5851548 Dattagupta et al. Dec 1998 A
5855910 Ashley et al. Jan 1999 A
5856455 Cook Jan 1999 A
5914396 Cook et al. Jun 1999 A
5945521 Just et al. Aug 1999 A
5948767 Scheule et al. Sep 1999 A
5969116 Martin Oct 1999 A
5976567 Wheeler et al. Nov 1999 A
5981501 Wheeler et al. Nov 1999 A
5986083 Dwyer et al. Nov 1999 A
6001841 Cook et al. Dec 1999 A
6005096 Matteucci et al. Dec 1999 A
6015886 Dale et al. Jan 2000 A
6020475 Capaldi et al. Feb 2000 A
6020483 Beckvermit et al. Feb 2000 A
6028183 Lin et al. Feb 2000 A
6043352 Manoharan et al. Mar 2000 A
6051699 Ravikumar Apr 2000 A
6107094 Crooke Aug 2000 A
6111085 Cook et al. Aug 2000 A
6121437 Guzaev et al. Sep 2000 A
6153737 Manoharan et al. Nov 2000 A
6207819 Manoharan et al. Mar 2001 B1
6221911 Lavin et al. Apr 2001 B1
6232064 Grotendorst et al. May 2001 B1
6271358 Manoharan et al. Aug 2001 B1
6326358 Manoharan Dec 2001 B1
6331617 Weeks et al. Dec 2001 B1
6333152 Vogelstein et al. Dec 2001 B1
6335434 Guzaev et al. Jan 2002 B1
6355787 Beckvermit et al. Mar 2002 B1
6358931 Cook et al. Mar 2002 B1
6395492 Manoharan et al. May 2002 B1
6399754 Cook Jun 2002 B1
6410702 Swaminathan et al. Jun 2002 B1
6420549 Cook et al. Jul 2002 B1
6432963 Hisamichi et al. Aug 2002 B1
6440943 Cook et al. Aug 2002 B1
6444806 Veerapanani et al. Sep 2002 B1
6455586 Kaplan et al. Sep 2002 B1
6465628 Ravikumar et al. Oct 2002 B1
6475490 Srivastava et al. Nov 2002 B1
6476205 Buhr et al. Nov 2002 B1
6492129 Grotendorst Dec 2002 B1
6506559 Fire et al. Jan 2003 B1
6528631 Cook et al. Mar 2003 B1
6531584 Cook et al. Mar 2003 B1
6534639 Manoharan et al. Mar 2003 B1
6562618 Tamatani et al. May 2003 B1
6673611 Thompson et al. Jan 2004 B2
6683167 Metelev et al. Jan 2004 B2
6706491 Chang et al. Mar 2004 B1
6753321 Kovesdi Jun 2004 B2
6794137 Blumenberg Sep 2004 B2
6815432 Wheeler et al. Nov 2004 B2
6818759 Beigelman et al. Nov 2004 B2
6849726 Usman et al. Feb 2005 B2
6858225 Semple et al. Feb 2005 B2
6923833 Wasielewski Aug 2005 B2
6965025 Gaarde et al. Nov 2005 B2
7041824 Bordon-Pallier et al. May 2006 B2
7044945 Sand May 2006 B2
7056704 Tuschl et al. Jun 2006 B2
7078196 Tuschl et al. Jul 2006 B2
7108721 Huckle et al. Sep 2006 B2
7115390 Grotendorst et al. Oct 2006 B1
7205297 Beauchamp et al. Apr 2007 B2
7309361 Wasielewski Dec 2007 B2
7348155 Kostenis et al. Mar 2008 B2
7358351 St Croix et al. Apr 2008 B2
7384634 Grotendorst et al. Jun 2008 B2
7393932 Carson-Walter et al. Jul 2008 B2
7402660 St Croix et al. Jul 2008 B2
7405274 Lin et al. Jul 2008 B2
7432250 Crooke Oct 2008 B2
7462602 Schultz et al. Dec 2008 B2
7504493 Velculescu et al. Mar 2009 B2
7538095 Fire et al. May 2009 B2
7560438 Fire et al. Jul 2009 B2
7579186 Sakamoto et al. Aug 2009 B1
7595387 Leake et al. Sep 2009 B2
7622633 Fire et al. Nov 2009 B2
7629321 Crooke Dec 2009 B2
7655785 Bentwich Feb 2010 B1
7687616 Bentwich et al. Mar 2010 B1
7695902 Crooke Apr 2010 B2
7709630 Gaarde et al. May 2010 B2
7745608 Manoharan et al. Jun 2010 B2
7750144 Zamore et al. Jul 2010 B2
7777022 Bentwich et al. Aug 2010 B2
7786290 Woppmann et al. Aug 2010 B2
7829693 Kreutzer et al. Nov 2010 B2
7833989 Khvorova et al. Nov 2010 B2
7838507 Shepard et al. Nov 2010 B2
8110674 Manoharan et al. Feb 2012 B2
8258105 Siwkowski et al. Sep 2012 B2
8263569 Baulcombe et al. Sep 2012 B2
8329671 Gu et al. Dec 2012 B2
8664189 Khvorova et al. Mar 2014 B2
8796443 Khvorova et al. Aug 2014 B2
8815818 Samarsky et al. Aug 2014 B2
9074211 Woolf et al. Jul 2015 B2
9080171 Khvorova et al. Jul 2015 B2
9095504 Libertine et al. Aug 2015 B2
9175289 Khvorova et al. Nov 2015 B2
9222092 Giese et al. Dec 2015 B2
9303259 Khvorova et al. Apr 2016 B2
9340786 Khvorova et al. May 2016 B2
9493774 Kamens Nov 2016 B2
9745574 Woolf et al. Aug 2017 B2
20020086013 King Jul 2002 A1
20020132788 Lewis et al. Sep 2002 A1
20020147332 Kaneko et al. Oct 2002 A1
20020160393 Symonds et al. Oct 2002 A1
20020162126 Beach et al. Oct 2002 A1
20030004325 Cook et al. Jan 2003 A1
20030077829 MacLachlan Apr 2003 A1
20030108923 Tuschl et al. Jun 2003 A1
20030113816 Weitz et al. Jun 2003 A1
20030139585 Uhlmann et al. Jul 2003 A1
20030144223 Gaarde et al. Jul 2003 A1
20030153524 Hinton et al. Aug 2003 A1
20030157030 Davis et al. Aug 2003 A1
20030158403 Manoharan et al. Aug 2003 A1
20030166282 Brown et al. Sep 2003 A1
20030180300 Grotendorst Sep 2003 A1
20040005319 Grotendorst et al. Jan 2004 A1
20040009938 Manoharan et al. Jan 2004 A1
20040014956 Woolf et al. Jan 2004 A1
20040014957 Eldrup et al. Jan 2004 A1
20040018999 Beach et al. Jan 2004 A1
20040054155 Woolf et al. Mar 2004 A1
20040063654 Davis et al. Apr 2004 A1
20040072785 Wolff et al. Apr 2004 A1
20040092450 Grotendorst et al. May 2004 A1
20040137471 Vickers et al. Jul 2004 A1
20040162235 Trubetskoy et al. Aug 2004 A1
20040167090 Monahan et al. Aug 2004 A1
20040171033 Baker et al. Sep 2004 A1
20040180351 Giese et al. Sep 2004 A1
20040192629 Xu et al. Sep 2004 A1
20040204377 Rana Oct 2004 A1
20040229266 Tuschl et al. Nov 2004 A1
20040235031 Schultz et al. Nov 2004 A1
20040241845 Desgroseillers et al. Dec 2004 A1
20040248839 Kowalik Dec 2004 A1
20040259247 Tuschl et al. Dec 2004 A1
20050020521 Rana Jan 2005 A1
20050026286 Chi et al. Feb 2005 A1
20050032733 McSwiggen et al. Feb 2005 A1
20050037496 Rozema et al. Feb 2005 A1
20050042227 Zankel et al. Feb 2005 A1
20050059629 Gaarde et al. Mar 2005 A1
20050064595 MacLachlan et al. Mar 2005 A1
20050080246 Allerson et al. Apr 2005 A1
20050107325 Manoharan et al. May 2005 A1
20050118625 Mounts Jun 2005 A1
20050119202 Kreutzer et al. Jun 2005 A1
20050142535 Damha et al. Jun 2005 A1
20050181382 Zamore et al. Aug 2005 A1
20050222071 Duranton et al. Oct 2005 A1
20050245474 Baker et al. Nov 2005 A1
20050246794 Khvorova et al. Nov 2005 A1
20050255487 Khvorova et al. Nov 2005 A1
20050265957 Monahan et al. Dec 2005 A1
20050281781 Ostroff Dec 2005 A1
20060008910 MacLachlan et al. Jan 2006 A1
20060009409 Woolf Jan 2006 A1
20060025363 Breitenbach et al. Feb 2006 A1
20060035344 Pachuk et al. Feb 2006 A1
20060069050 Rana Mar 2006 A1
20060127891 McSwiggen et al. Jun 2006 A1
20060142228 Ford et al. Jun 2006 A1
20060178324 Hadwiger et al. Aug 2006 A1
20060178327 Yeung Aug 2006 A1
20060211642 McSwiggen et al. Sep 2006 A1
20060211766 Kaplan et al. Sep 2006 A1
20060240093 MacLachlan et al. Oct 2006 A1
20070020623 Petersohn et al. Jan 2007 A1
20070032441 McSwiggen et al. Feb 2007 A1
20070042381 Bentwich et al. Feb 2007 A1
20070054271 Polyak et al. Mar 2007 A1
20070128294 Bucalo et al. Jun 2007 A1
20070166734 Bhat et al. Jul 2007 A1
20070173476 Leake et al. Jul 2007 A1
20070231392 Wagner et al. Oct 2007 A1
20070254850 Lieberman et al. Nov 2007 A1
20070269889 Leake et al. Nov 2007 A1
20080015114 Khvorova et al. Jan 2008 A1
20080038296 Brahmbhatt et al. Feb 2008 A1
20080070856 Kreutzer et al. Mar 2008 A1
20080071068 Oba et al. Mar 2008 A1
20080085869 Yamada et al. Apr 2008 A1
20080107694 Trogden et al. May 2008 A1
20080108583 Feinstein May 2008 A1
20080112916 Wagner et al. May 2008 A1
20080152661 Rozema et al. Jun 2008 A1
20080193443 Beskrovnaya et al. Aug 2008 A1
20080254487 Klaus et al. Oct 2008 A1
20080300147 Chegini et al. Dec 2008 A1
20080311040 Berry et al. Dec 2008 A1
20090023216 Woolf Jan 2009 A1
20090069623 Oh Mar 2009 A1
20090131360 Woolf et al. May 2009 A1
20090156524 Feinstein et al. Jun 2009 A1
20090186802 Alluis et al. Jul 2009 A1
20090202520 Lupher, Jr. et al. Aug 2009 A1
20090208564 Li et al. Aug 2009 A1
20090239934 Schmitt-Milas et al. Sep 2009 A1
20090247608 Manoharan et al. Oct 2009 A1
20090298916 Kauppinen et al. Dec 2009 A1
20090306005 Bhanot et al. Dec 2009 A1
20100035964 Gaarde et al. Feb 2010 A1
20100040656 Franklin et al. Feb 2010 A1
20100069620 Zon Mar 2010 A1
20100130595 Dean et al. May 2010 A1
20100136695 Woolf Jun 2010 A1
20100158907 Grotendorst et al. Jun 2010 A1
20100190838 Grotendorst Jul 2010 A1
20100286234 Elmen et al. Nov 2010 A1
20110039914 Pavco et al. Feb 2011 A1
20110054004 Mustoe et al. Mar 2011 A1
20110237522 Khvorova et al. Sep 2011 A1
20110237648 Khvorova et al. Sep 2011 A1
20110251258 Samarsky et al. Oct 2011 A1
20110263680 Khvorova et al. Oct 2011 A1
20110268761 Levis et al. Nov 2011 A1
20120016005 Samarsky et al. Jan 2012 A1
20120040459 Khvorova et al. Feb 2012 A1
20120059046 Woolf et al. Mar 2012 A1
20120065243 Woolf et al. Mar 2012 A1
20130131141 Khvorova et al. May 2013 A1
20130131142 Libertine et al. May 2013 A1
20130197055 Kamens et al. Aug 2013 A1
20140315974 Khvorova et al. Oct 2014 A1
20150057362 Levis et al. Feb 2015 A1
20160115482 Libertine et al. Apr 2016 A1
20160115484 Woolf et al. Apr 2016 A1
20160130578 Khvorova et al. May 2016 A1
20160244765 Khvorova et al. Aug 2016 A1
20160304873 Wolfson et al. Oct 2016 A1
20160304875 Cauwenbergh et al. Oct 2016 A1
20160319278 Khvorova et al. Nov 2016 A1
20160355808 Khvorova et al. Dec 2016 A1
20160355826 Khvorova et al. Dec 2016 A1
20170009239 Khvorova et al. Jan 2017 A1
20170051288 Byrne et al. Feb 2017 A1
20170051290 Byrne et al. Feb 2017 A1
20170067056 Khvorova et al. Mar 2017 A1
20170137823 Kamens et al. May 2017 A1
Foreign Referenced Citations (74)
Number Date Country
2004206255 Aug 2004 AU
1568373 Jan 2005 CN
0552766 Jul 1993 EP
0928290 Jul 1999 EP
1144623 Oct 2001 EP
1214945 Jun 2002 EP
1352061 Oct 2003 EP
1407044 Apr 2004 EP
1605978 Dec 2005 EP
2003-516716 May 2003 JP
2004-500846 Jan 2004 JP
2004-527210 Sep 2004 JP
2004-533825 Nov 2004 JP
2005-512976 May 2005 JP
4095895 Apr 2008 JP
2009-519033 May 2009 JP
WO 9014074 Nov 1990 WO
WO 9116024 Oct 1991 WO
WO 9117424 Nov 1991 WO
WO 9203464 Mar 1992 WO
WO 9408003 Apr 1994 WO
WO 9423028 Oct 1994 WO
WO 9511910 May 1995 WO
WO 9522553 Aug 1995 WO
WO 9523162 Aug 1995 WO
WO 9640964 Dec 1996 WO
WO 9913915 Mar 1999 WO
WO 0185941 Nov 2001 WO
WO 0210217 Feb 2002 WO
WO 02053773 Jul 2002 WO
WO 02053774 Jul 2002 WO
WO 03012052 Feb 2003 WO
WO 03053340 Jul 2003 WO
WO 2004065600 Aug 2004 WO
WO 2004065601 Aug 2004 WO
WO 2004090105 Oct 2004 WO
WO 2005019430 Mar 2005 WO
WO 2005019453 Mar 2005 WO
WO 2005079533 Sep 2005 WO
WO 2005097992 Oct 2005 WO
WO 2006007372 Jan 2006 WO
WO 2006019430 Feb 2006 WO
WO 2006039656 Apr 2006 WO
WO 2006065601 Jun 2006 WO
WO 2006128141 Nov 2006 WO
WO 2007030167 Mar 2007 WO
WO 2007050643 May 2007 WO
WO 2007069068 Jun 2007 WO
WO 2007089607 Aug 2007 WO
WO 2008021157 Feb 2008 WO
WO 2008036825 Mar 2008 WO
WO 2008109353 Sep 2008 WO
WO 2009005813 Jan 2009 WO
WO 2009020344 Feb 2009 WO
WO 2009021157 Feb 2009 WO
WO 2009029688 Mar 2009 WO
WO 2009029690 Mar 2009 WO
WO 2009043392 Apr 2009 WO
WO 2009044392 Apr 2009 WO
WO 2009078685 Jun 2009 WO
WO 2009102427 Aug 2009 WO
WO 2009126933 Oct 2009 WO
WO 2009134487 Nov 2009 WO
WO 2010006237 Jan 2010 WO
WO 2010011346 Jan 2010 WO
WO 2010027830 Mar 2010 WO
WO 2010027831 Mar 2010 WO
WO 2010027832 Mar 2010 WO
WO 2010033246 Mar 2010 WO
WO 2010033247 Mar 2010 WO
WO 2010033248 Mar 2010 WO
WO 2010042281 Apr 2010 WO
WO 2011109698 Sep 2011 WO
WO 2012106508 Aug 2012 WO
Non-Patent Literature Citations (103)
Entry
International Search Report and Written Opinion dated May 23, 2011 in connection with PCT/US2011/0298670.
International Preliminary Report on Patentability dated May 14, 2012 in connection with PCT/US2011/029867.
Extended European Search Report dated Oct. 2, 2013 in connection with EP 11760261.5.
[No Author Listed] RedChip Small-Cap Investor Conference. RXI Pharmaceuticals (Nasdaq RXII). Jun. 16, 2009 Presentation. 5 pages.
[No Author Listed] RedChip Small-Cap Investor Conference. RXI Pharmaceuticals (Nasdaq RXII). Jun. 16, 2009 Presentation. 22 pages.
[No Author Listed], RXi Pharmaceuticals Presents Self-Delivering RNAi Data at Scar Club Meeting in France. Drugs.com. Mar. 26, 2010. http://www.drugs.com/clinical_trials/rxi-pharmaceuticals-presents-self-delivering-rnai-data-scar-club-meeting-france-9093.html [last accessed Aug. 19, 2014].
Alahari et al., Inhibition of expression of the multidrug resistance-associated P-glycoprotein of by phosphorothioate and 5′ cholesterol-conjugated phosphorothioate antisense oligonucleotides. Mol Pharmacol.Oct. 1996;50(4):808-19.
Aleckovic et al., RNAi at Oxford. J RNAi Gene Silencing. May 27, 2008;4(1):266-8.
Baigude et al., Design and creation of new nanomaterials for therapeutic RNAi. ACS Chem Biol. Apr. 24, 2007;2(4):237-41.
Boutorin et al., Synthesis of alkylating oligonucleotide derivatives containing cholesterol or phenazinium residues at their 3′-terminus and their interaction with DNA within mammalian cells. FEBS Lett. Aug. 28, 1989;254(1-2):129-32.
Braasch et al., RNA interference in mammalian cells by chemically-modified RNA. Biochemistry. Jul. 8, 2003;42(26):7967-75.
Brown et al., RNAi off-targeting: Light at the end of the tunnel. J RNAi Gene Silencing. Jul. 28, 2006;2(2):175 -7.
Cardia et al., Novel self-delivering RNAi compounds with enhanced cellular updatake and distribution properties. Keystone RNAi Silencing Conference. Jan. 14-19, 2010. Poster. 1 Page.
Cheng et al., Connective tissue growth factor is a biomarker and mediator of kidney allograft fibrosis. Am J Transplant. Oct. 2009;6(10):2292-306. Epub Aug. 4, 2006.
Choi et al., Control of scarring in adult wounds using antisense transforming growth factor-beta 1 oligodeoxynucleotides. Immunol Cell Biol. Apr. 1996;74(2):144-50.
Choung et al., Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun.Apr. 14, 2006;342(3):919-27.
Chu et al., Potent RNAi by short RNA triggers. RNA. 2008;14:1714-9.
Cicha et al., Connective tissue growth factor is overexpressed in complicated atherosclerotic plaques and induces mononuclear cell chemotaxis in vitro. Arterioscler Thromb Vasc Biol. May 2005;25(5):1008-13. Epub Mar. 10, 2005.
Cordiero et al., Novel antisense oligonucleotides targeting TGF-beta inhibit in vivo scarring and improve surgical outcome. Gene Ther. Jan. 2003;10(1):59-71.
Czauderna et al., ., Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. Jun. 1, 2003;31(11):2705-16.
Daniels et al, Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest. Nov. 2004;114(9):1308-16.
De Smidt et al., Association of antisense oligonucleotides with lipoproteins prolongs the plasma half-life and modifies the tissue distribution. Nucleic Acids Res. Sep. 11, 1991;19(17):4695-700.
Debart et al., Chemical modifications to improve the cellular uptake of oligonucleotides. Curr Top Med Chem. 2007;7(7):727-37.
Distler et al , Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum. Jan. 2007;56(1):311-22.
Dranoff et al., Prevention of liver fibrosis by the purinoceptor antagonist pyridoxal-phosphate-6-2′,4′-disulfonate (PPADS). In Vivo. 2007;21:957-66.
Dykxhoorn et al., The silent treatment: siRNAs as small molecule drugs. Gene Ther. Mar. 2006;13(6):541-52. Review.
Dziadzio et al., N-terminal connective tissue growth factor is a marker of the fibrotic phenotype in scleroderma. QJM. Jul. 2005;98(7):485-92. Epub Jun. 13, 2005.
Elbashir et al., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. May 24, 2001;411(6836):494-8.
Elbashir et al., Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. Dec. 3, 2001;20(23):6877-88.
Fedorov et al., Off-target effects by siRNA can induce toxic phenotype. RNA. Jul. 2006;12(7):1188-96. Epub May 8, 2006.
Ferentz et al., Disulfide-crosslinked oligonucleotides. Journal of the American Chemical Society. 1991;113 (10): 4000-4002.
Ferguson et al., Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci. May 29, 2004;359(1445):839-50.
Gressner et al., Connective tissue growth factor in serum as a new candidate test for assessment of hepatic fibrosis. Clin Chem. Sep. 2006;52(9):1815-7. Epub Jul. 20, 2006.
Gressner et al., Connective tissue growth factor: a fibrogenic master switch in fibrotic liver diseases. Liver Int. Sep. 2008;28(8):1065-79. doi:10.1111/j.1478-3231.2008.01826.x.
Hinton et al., Novel growth factors involved in the pathogenesis of proliferative vitreoretinopathy. Eye (Lond). Jul. 2002;16(4):422-8.
Holmes et al., Syntheses and oligonucleotide incorporation of nucleoside analogues containing pendant imidazolyl or amino functionalities—the search for sequence-specific artificial ribonucleases. Eur J Org Chem. Apr. 13, 2005;5171-83. DOI; 10.1002/ejoc.20050413.
Ito et al., Expression of connective tissue growth factor in human renal fibrosis. Kidney Int. Apr. 1998;53(4):853-61.
Ito et al., Kinetics of connective tissue growth factor expression experimental proliferative glomerulonephritis. J Am Soc Nephrol. Mar. 2001;12(3):472-84.
Jackson et al., Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA. Jul. 2006;12(7):1197-1205. Epub May 8, 2006.
Kamens et al., Novel, chemically modified RNAi compounds with improved potency, stability and specificity. Keystone RNAi Silencing: Mechanism, Biology and Application Conference. Jan. 14-19, 2010. Poster. 1 Page.
Kim et al., Synthetic dsRNA Dicer ; substrates enhance RNAi potency and efficacy. Nat Biotechnol. 2005; Feb.;23(2):222-6. Epub Dec. 26, 2004.
Kim et al., Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol Ther. Jun. 2007;15(6):1145-52. Epub Apr. 17, 2007.
Koitabashi et al., Plasma connective tissue growth factor is a novel potential biomarker of cardiac dysfunction in patients with chronic heart failure. Eur J Heart Fail. Apr. 2008;10(4):373-9. doi: 10.1016/j.ejheart.2008.02.011.
Kraynack et al., Small interfering RNAs containing full 2′-O-methylribonucleotide-modified sense strands display Argonaute2/eIF2C2-dependent activity. RNA. Jan. 2006;12(1):163-76. Epub Nov. 21, 2005.
Kubo et al., Modified 27-nt dsRNAs with dramatically enhanced stability in serum and longterm RNAi activity. Oligonucleotides. 2007 Winter;17(4):445-64.
Layzer et al., In vivo activity of nuclease-resistant siRNAs. RNA. May 2004;10(5):766-71.
Leask et al., Connective tissue growth factor (CTGF, CCN2) gene regulation: a potent clinical bio-marker of fibroproliferative disease? J Cell Commun Signal. Jun. 2009;3(2):89-94. Epub 2009 Jan. 21, 2009.
Leask et al., Insights into the molecular mechanism of chronic fibrosis: the role of connective tissue growth factor in scleroderma. J Invest Dermatol. Jan. 2004;122(1):1-6.
Lee et al., Contributions of 3′-overhang to the dissociation of small interfering RNAs from the PAZ domain: molecular dynamics simulation study. J Mol Graph Model. Mar. 2007;25(6):784-93. Epub Jul. 11, 2006.
Letsinger et al., Cholesteryl-conjugated oligonucleotides: synthesis, properties, and activity as inhibitors of replication of human immunodeficiency virus in cell culture. Proc Natl Acad Sci U S A. Sep. 1989;86(17):6553-6.
Leuschner et al., Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Reports 2006;7(3):314-20.
Li et al., Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats. J Gene Med. Jul. 2006;8(7):889-900.
Li et al., Surface-modified LPD nanoparticles for tumor targeting. Ann N Y Acad Sci. Oct. 2006;1082:1-8.
Liu et al., Role of connective tissue growth factor in experimental radiation nephropathy in rats. Chin Med J (Engl). Oct. 5, 2008;121(19):1925-31.
Luo et al , Inhibition of connective tissue growth factor by small interfering RNA prevents renal fibrosis in rats undergoing chronic allograft nephropathy. Transplant Proc. Sep. 2008;40(7):2365-9. doi:10.1016/j.transproceed.2008.07.100.
Lynch et al., Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc Natl Acad Sci U S A. Nov. 1987;84(21):7696-700.
Macrae et al., Structure of Dicer and mechanistic implications for RNAi. Cold Spring Harb Symp Quant Biol. 2006;71:73-80.
Manoharan et al., Chemical modifications to improve uptake and bioavailability of antisense oligonucleotides. Ann N Y Acad Sci. Oct. 1992 28;660:306-9.
Manoharan, Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action. Antisense Nucleic Acid Drug Dev. Apr. 2002;12(2):103-28.
Martins et al., Sterol side chain length and structure affect the clearance of chylomicron-like lipid emulsions in rats and mice. J Lipid Res. Feb. 1998;39(2):302-12.
Mathews et al., Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A. May 11, 2004;101(19):7287-92. Epub May 3, 2004.
Mescalchin et al., Cellular uptake and intracellular release are major obstacles to the therapeutic application of siRNA: novel options by phosphorothioate-stimulated delivery. Expert Opin Biol Ther. Oct. 2007;7(10):1531-8. Review.
Mori et al., Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring. J Exp Med. Jan. 21, 2008;205(1):43-51. doi: 10.1084/jem.20071412. Epub Jan. 7, 2008.
Murchison et al., Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A. Aug. 23, 2005;102(34):12135-40. Epub Aug. 12, 2005.
Niessen et al., Keratinocyte-derived growth factors play a role in the formation of hypertrophic scars. J Pathol. Jun. 2001;194(2):207-16.
Oberhauser et al., Effective incorporation of 2′-O-methyl-oligoribonucleotides into liposomes and enhanced cell association; through modification with thiocholesterol. Nucleic Acids Res. Feb. 11, 1992;20(3):533-8.
Overhoff et al., Phosphorothioate-stimulated uptake of short interfering RNA by human cells. EMBO Rep. Dec. 2005;6(12):1176-81.
Paradis et al., Expression of connective tissue growth factor in experimental rat and human liver fibrosis. Hepatology. Oct. 1999;30(4):968-76.
Parrish et al., Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell. Nov. 2000;6(5):1077-87.
Pavco et al., Robust Intradermal efficacy with novel chemically modified self-delivering RNAi compounds. Keystone RNAi Silencing Conference: Mechanism, Biology and Application Conference. Jan. 14-19, 2010. Poster. 1 Page.
Pollio et al., Severe secondary postpartum hemorrhage 3 weeks after cesarean section: alternative etiologies of uterine scar non-union. J Obstet Gynaecol Res. Jun. 2007;33(3):360-2.
Rajeev et al., 2′-modified-2-thiothymidine; oligonucleotides. Org Lett. Aug. 21, 2003;5(17):3005-8.
Rump et al., Preparation of conjugates of oligodeoxynucleotides and lipid structures and their interaction with low-density lipoprotein. Bioconjug Chem. May-Jun. 1998;9(3):341-9.
Salomon et al., Modified dsRNAs that are not processed by Dicer maintain potency and are incorporated into the RISC. Nucleic Acids Res. Jun. 2010;38(11):3771-9. doi: 10.1093/nar/gkq055. Epub Feb. 18, 2010.
Sato et al., Serum levels of connective tissue growth factor are elevated in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis. J Rheumatol. Jan. 2000;27(1):149-54.
Sato et al., Tumor targeting and imaging of intraperitoneal tumors by use of antisense oligo-DNA complexed with dendrimers and/or avidin in mice. Clin Cancer Res. Nov. 2001;7(11):3606-12.
Seela et al., Oligodeoxyribonucleotides containing 1,3-propanediol as nucleoside substitute. Nucleic Acids Res. Apr. 10, 1987;15(7):3113-29.
Shah et al., Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci. Mar. 1995;108 ( Pt 3):985-1002.
Shi, Mammalian RNAi for the masses. Trends Genet. Jan. 2003;19(1):9-12.
Shi-Wen et al., Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. Apr. 2008;19(2):133-44. doi: 10.1016/j.cytogfr.2008.01.002.
Sisco et al., Antisense inhibition of connective tissue growth factor (CTGF/CCN2) mRNA limits hypertrophic scarring without affecting wound healing in ; vivo. Wound Repair Regen. Sep.-Oct. 2008;16(5):661-73. doi:; 10.1111/j.1524-475X.2008.00416.x.
Soutschek et al., Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. Nov. 2004; 11;432(7014):173-8.
Sui et al., A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A. Apr. 16, 2002;99(8):5515-20.
Sun et al., Asymmetric RNA duplexes mediate RNA interference in mammalian cells. Nat Biotechnol. Dec. 2008;26(12):1379-82. doi: 10.1038/nbt.1512. Epub Nov. 23, 2008. 4 Pages.
U.S. Appl. No. 15/041,738, filed Feb. 11, 2016, Khvorova et al.
Uhlmann et al., Antisense oligonucleotides: a new therapeutic principle. Chem Rev. 1990;90(4):543-84.
Vaught et al., Expanding the chemistry of DNA for in vitro selection. J Am Chem Soc. Mar. 31, 2010;132(12):4141-51. doi: 10.1021/ja908035g.
Williams et al., Increased expression of connective tissue growth factor in fibrotic human liver and in activated hepatic stellate cells. J Hepatol. May 2000;32(5):754-61.
Wolfrum et al., Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol. Oct. 2007;25(10):1149-57. Epub Sep. 16, 2007.
Xiao et al., Effect of small interfering RNA on the expression of connective tissue growth factor and type I and III collagen in skin fibroblasts of patients with systemic sclerosis. Br J Dermatol. Dec. 2006;155(6):1145-53.
Yamada et al., Synthesis and properties of oligonucleotides having a chemically stable 2-(trimethylsilyl)benzoyl group. Nucleic Acids Symp Ser (Oxf). 2008;(52):301-2. doi: 10.1093/nass/nrn152.
Yu et al., RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A. Apr. 30, 2002;99(9):6047-52. Epub Apr. 23, 2002.
Zhang et al., Mechanisms of hypoxic regulation of plasminogen activator inhibitor-1 gene expression in keloid fibroblasts. J Invest Dermatol. Nov. 2003;121(5):1005-12.
U.S. Appl. No. 15/286,948, filed Oct. 6, 2016, Kamens et al.
U.S. Appl. No. 15/307,512, filed Oct. 28, 2016, Byrne et al.
U.S. Appl. No. 15/307,529, filed Oct. 28, 2016, Byrne et al.
PCT/US2011/029867, May 23, 2011, International Search Report and Written Opinion.
PCT/US2011/029867, May 14, 2012, International Preliminary Report on Patentability.
EP 11760261.5, Oct. 2, 2013, Extended European Search Report.
U.S. Appl. No. 15/532,804, filed Jun. 2, 2017, Cauwenbergh et al.
U.S. Appl. No. 15/638,586, filed Jun. 30, 2017, Woolf et al.
Fisher et al., Intracellular disposition and metabolism of fluorescently-labeled unmodified and mammalian oligonucleotides microinjected into mammalian cells. Nucleic Acids Res. Aug. 11, 1993;21(16):3857-65.
Rozners et al., Expanding functionality of RNA: synthesis and properties of RNA containing imidazole modified tandem G-U wobble base pairs. Chem Commun (Camb). Dec. 14, 2005;(46):5778-80.
Related Publications (1)
Number Date Country
20170067056 A1 Mar 2017 US
Provisional Applications (2)
Number Date Country
61317633 Mar 2010 US
61317252 Mar 2010 US
Continuations (1)
Number Date Country
Parent 13636755 US
Child 15099481 US