RNAI CONSTRUCTS FOR INHIBITING PNPLA3 EXPRESSION AND METHODS OF USE THEREOF

Information

  • Patent Application
  • 20220017906
  • Publication Number
    20220017906
  • Date Filed
    December 10, 2019
    4 years ago
  • Date Published
    January 20, 2022
    2 years ago
Abstract
The present invention relates to RNAi constructs for reducing expression of the PNPLA3 gene. Methods of using such RNAi constructs to treat or prevent liver disease, nonalcoholic fatty liver disease (NAFLD) are also described.
Description
FIELD OF THE INVENTION

The present invention relates to compositions and methods for modulating liver expression of patatin-like phospholipase domain-containing 3 (PNPLA3), In particular, the present invention relates to nucleic acid-based therapeutics for reducing PNPLA3 expression via RNA interference and methods of using such nucleic acid-based therapeutics to treat or prevent liver disease, such as nonalcoholic fatty liver disease (NAFLD).


BACKGROUND OF THE INVENTION

Comprising a spectrum of hepatic pathologies, nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, the prevalence of which doubled in the last 20 years and now is estimated to affect approximately 20% of the world population (Sattar et al. (2014) BMJ 349:g4596; Loomba and Sanyal (2013) Nature Reviews Gastroenterology & hepatology 10(11):686-690; Kim and Kim (2017) Clin Gastroenterol Hepatol 15(4):474-485; Petta et al. (2016) Dig Liver Dis 48(3):333-342). NAFLD begins with the accumulation of triglyceride in the liver and is defined by the presence of cytoplasmic lipid droplets in more than 5% of hepatocytes in an individual 1) without a history of significant alcohol consumption and 2) in which the diagnosis of other types of liver disease have been excluded (Zhu et al (2016) World J Gastroenterol 22(36):8226-33; Rinella (2015) JAMA 313(22):2263-73; Yki-Jarvinen (2016) Diabetologia 59(6):1104-11). In some individuals the accumulation of ectopic fat in the liver, called steatosis, triggers inflammation and hepatocellular injury leading to a more advanced stage of disease called, nonalcoholic steatohepatitis (NASH) (Rinella, supra). As of 2015, 75-100 million Americans are predicted to have NAFLD; NASH accounting for approximately 10-30% of NAFLD diagnoses (Rinella, supra; Younossi et al (2016) Hepatology 64(5): 1577-1586).


Patatin-like phospholipase domain-containing 3 (PNPLA3), formerly known as adiponutrin (ADPN) and calcium-independent phospholipase A2-epsilon (iPLA(2)ε), is a type II transmembrane protein (Wilson et al (2006) J Lipid Res 47(9):1940-9; Jenkins et al (2004) J Biol Chem 279(47):48968-75). Initially identified in adipose cells as a membrane-associated, adipose-enriched protein induced during adipogenesis in mice, it is now well characterized to be expressed in other tissues, including the liver (Wilson et al, supra; Baulande et al (2001) J Biol Chem 276(36):33336-44; Moldes et al. (2006) Eur J Endocrinol 155(3):461-8; Faraj et al. (2006) J Endocrinol 191(2):427-35; Liu et al (2004) J Clin Endocrinol Metab 89(6):2684-9; Lake et al (2005) J Lipid Res 46(11) :2477-87). In cell-free biochemical systems, recombinant PNPLA3 protein can exhibit either triacylglycerol lipase or transacylation activity (Jenkins et al., supra; Kumari et al (2012) Cell Metab 15(5):691-702; He et al (2010) J Biol Chem 285(9):6706-15). In hepatocytes, PNPLA3 is expressed on the endoplasmic reticulum and lipid membranes and predominantly exhibits triacylglycerol hydrolase activity (He et al., supra; Huang et al (2010) Proc Natl Acad Sci USA 107(17):7892-7; Ruhanen et al (2014) J Lipid Res 55(4):739-46; Pingitore et al. (2014) Biochim Biophys Acta 1841(4):574-80). Although lacking a secretory signal, data indicates PNPLA3 is secreted and can be found in human plasma as disulfide-bond dependent multimers (Winberg et al. (2014) Biochem Biophys Res Commun 446(4):1114-9). Accordingly, novel therapeutics targeting PNPLA3 function represents a novel approach to reducing PNPLA3 levels and treating hepatologic diseases, such as nonalcoholic fatty liver disease.


SUMMARY OF THE INVENTION

The present invention is based, in part, on the design and generation of RNAi constructs that target the PNPLA3 gene and reduce expression of PNPLA3 in liver cells. The sequence specific inhibition of PNPLA3 expression is useful for treating or preventing conditions associated with PNPLA3 expression, such as liver-related diseases, such as, for example, simple fatty liver (steatosis), nonalcoholic steatohepatitis (NASH), cirrhosis (irreversible, advanced scarring of the liver), or PNPLA3 related obesity. Accordingly, in one embodiment, the present invention provides an RNAi construct comprising a sense strand and an antisense strand, wherein the antisense strand comprises a region having a sequence that is complementary to a PNPLA3 mRNA sequence. In certain embodiments, the antisense strand comprises a region having at least 15 contiguous nucleotides from an antisense sequence listed in Table 1 or Table 2. In some embodiments, the RNAi of the present invention selectively inhibits PNPLA3-rs738409, PNPLA3-rs738408, and/or PNPLA3-rs738409-rs738408 minor alleles over the reference allele which does not contain these changes.


In some embodiments, the sense strand of the RNAi constructs described herein comprises a sequence that is sufficiently complementary to the sequence of the antisense strand to form a duplex region of about 15 to about 30 base pairs in length. In these and other embodiments, the sense and antisense strands each are about 15 to about 30 nucleotides in length. In some embodiments, the RNAi constructs comprise at least one blunt end. In other embodiments, the RNAi constructs comprise at least one nucleotide overhang. Such nucleotide overhangs may comprise at least 1 to 6 unpaired nucleotides and can be located at the 3′ end of the sense strand, the 3′ end of the antisense strand, or the 3′ end of both the sense and antisense strand. In certain embodiments, the RNAi constructs comprise an overhang of two unpaired nucleotides at the 3′ end of the sense strand and the 3′ end of the antisense strand. In other embodiments, the RNAi constructs comprise an overhang of two unpaired nucleotides at the 3′ end of the antisense strand and a blunt end of the 3′ end of the sense strand/5′ end of the antisense strand.


The RNAi constructs of the invention may comprise one or more modified nucleotides, including nucleotides having modifications to the ribose ring, nucleobase, or phosphodiester backbone. In some embodiments, the RNAi constructs comprise one or more 2′-modified nucleotides. Such 2′-modified nucleotides can include 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, 2′-O-methoxyethyl modified nucleotides, 2′-O-allyl modified nucleotides, bicyclic nucleic acids (BNA), glycol nucleic acids (GNAs), inverted bases (e.g. inverted adenosine) or combinations thereof In one particular embodiment, the RNAi constructs comprise one or more 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, or combinations thereof. In some embodiments, all of the nucleotides in the sense and antisense strand of the RNAi construct are modified nucleotides.


In some embodiments, the RNAi constructs comprise at least one backbone modification, such as a modified internucleotide or internucleoside linkage. In certain embodiments, the RNAi constructs described herein comprise at least one phosphorothioate internucleotide linkage. In particular embodiments, the phosphorothioate internucleotide linkages may be positioned at the3′ or 5′ ends of the sense and/or antisense strands.


In some embodiments, the antisense strand and/or the sense strand of the RNAi constructs of the invention may comprise or consist of a sequence from the antisense and sense sequences listed in Tables 1 or 2. In certain embodiments, the RNAi construct may be any one of the duplex compounds listed in any one of Tables 1 to 2.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A-D show screening of five siRNA molecules for both dose-dependent mRNA knockdown and functional durability in vivo.



FIG. 2A-G shows effect of PNPLA3 siRNA molecules in vivo in mice, liver weight, confirmation of human PNPLA3 expression, hepatic triglyceride content, serum TIMP1 levels, and histological indication of steatosis or inflammation.



FIG. 3A-G shows effect of PNPLA3 siRNA molecules in vivo, liver weight, confirmation of human PNPLA3 expression, hepatic triglyceride content, serum TIMP1 levels, and histological indication of steatosis or inflammation.



FIG. 4A-D shows the ability of a PNPLA3rs738409-rs738408-specific siRNA molecule to rescue disease-associated phenotypes due to overexpression of PNPLArs738409-rs738408, hepatic triglyceride content, serum TIMP1 levels, and histological indication of steatosis or inflammation.



FIG. 5A-L shows the ability of a PNPLA3rs738409-rs738408-specific siRNA molecule to prevent the development of early fibrosis.



FIGS. 6a and 6b shows the full sequence of the AAV plasmid containing the PNPLA3 minor allele target sequences. The portion containing the murine CMV promoter, Firefly luciferase reporter and target sequences is underlined.



FIGS. 7a and 7b shows the full sequence of the AAV plasmid containing the PNPLA3 reference allele target sequences. The portion containing the murine CMV promoter, Firefly luciferase reporter and target sequences is underlined.



FIG. 8 shows example images of a mouse injected with AAV expressing human PNPLA3 minor allele target sequences (top row), versus a mouse injected with AAV expressing human PNPLA3 reference allele target sequences (bottom row). After acquiring baseline images (first column), the same siRNA molecule was injected into both mice (D-2878 at 3mpk). Columns 2 through 5 are images captured at weeks 1, 2, 3, and 4, respectively. Images have been converted to greyscale using Living Image® software. Lighter regions are areas of low total flux [p/s], versus darker regions of high flux [p/s]. The relative percent knockdown of siRNA-treated mice at each weekly time point, normalized to vehicle-treated mice, is displayed in the inset (rows 2 and 4).



FIG. 9 shows an example of siRNA molecule, D-2419, demonstrating both dose-dependent and allele-selective mRNA knockdown and functional efficacy in vivo. (A) siRNA molecule, D-2419, was injected at 3.0 and 10.0 milligrams per kilogram of body weight subcutaneously into the abdomen of the mouse. (B) The data represents the average relative percent mRNA knockdown, and standard error of the mean, of the human PNPLA3rs738409-rs738408 allele verses PNPLA3WT set to the vehicle-treated control group. (C) Livers from the two-week treatment group were processed for triglyceride content to evaluate functional efficacy. (D) To control for efficient GalNAc-mediated delivery of siRNA, D-2787, a siRNA cross-reactive for human and mouse HPRT and Hprt, respectively, was delivered at 10 milligrams per kilogram and the livers harvested after two weeks. The data represents the copies of HPRT mRNA and Hprt mRNA in D-2787-treated (N=4) versus vehicle-treated (N=5) mice. (E) The data represents the average relative percent mRNA knockdown, and standard error of the mean, of human HPRT and mouse Hprt mRNA, respectively, set to the vehicle-treated control group; all normalized to human TBP. (F) To confirm expression of GalNAc receptor on the hepatocytes of PXB mice®, mouse Asgr1 mRNA and human ASGR1 mRNA levels were evaluated in the absence and presence of D-2419.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to compositions and methods for regulating the expression of the Patatin-Like Phospholipase Domain Containing 3 (PNPLA3) gene. In some embodiments, the gene may be within a cell or subject, such as a mammal (e.g. a human). In some embodiments, compositions of the invention comprise RNAi constructs that target a PNPLA3 mRNA and reduce PNPLA3 expression in a cell or mammal. Such RNAi constructs are useful for treating or preventing various forms of liver-related diseases, such as, for example, simple fatty liver (steatosis), nonalcoholic steatohepatitis (NASH), cirrhosis (irreversible, advanced scarring of the liver), or PNPLA3 related obesity.


In 2008, a genome wide association study (GWAS) exploring nonsynomonous sequence variations, or single nucleotide polymorphisms (SNPs), associated with NAFLD identified a variant in PNPLA3, (rs738409[G], encoding I148M; which can be referred to as PNPLA3-rs738409, PNPLA3-ma or PNPLA3-minor allele), as significantly associated with hepatic fat content. Since this initial report, subsequent GWAS confirm PNPLA3 rs738409 as the major genetic determinant of NAFLD, significantly associated with 1) increased levels of the serum biomarker for liver damage, alanine transaminase (ALT), 2) NAFLD incidence, progression and severity, 3) both obese and lean individuals, and 4) the only known SNP shown to be significantly associated with all stages of NAFLD: steatosis, NASH, cirrhosis and hepatic cell carcinoma. The consensus among numerous GWAS indicate the association of PNPLA3 rs738409 with NAFLD is independent of age, gender, ethnicity, metabolic syndrome, body mass index, insulin resistance, and serum lipids. Furthermore, statistical analyses from multiple sources estimate approximately 50% of NAFLD patients carry the PNPLA3 rs738409 mutation. Patients can be homozygous or heterozygous for the PNPLA3 rs738409 mutation. Additionally, it has been discovered that patients having the PNPLA3 rs738409 mutation often also carry an rs738408 mutation 3 base pairs away (Tian et al (2010) Nature Genetics 42:21-23). Thus, a patient can have a PNPLA3-rs738409 minor allele, PNPLA3-rs738408 minor allele or PNPLA3-rs738409-rs738408 double minor allele mutation (PNPLA3-dma).


Investigators have developed mouse models for exploring PNPLA3 function in vivo. To date, no detectable metabolic phenotype has been identified as the result of Pnpla3-deficiency or Pnpla3 over-expression. In contrast, expression of Pnpla3I148M in both transgenic mice and knock-in mice, led to increased hepatic triglyceride levels akin to NAFLD Thus, combined, the in vivo mouse model data points to expression of the mutant PnplaI148M protein, and not over-expression of the wild type protein, as the driver of the disease phenotype. These findings, in addition to the high frequency of the minor allele in NAFLD-affected individuals and prevailing association with the disease, underline PNPLA3 rs738409 as a prime therapeutic target for NAFLD.


RNA interference (RNAi) is the process of introducing exogeneous RNA into a cell leading to specific degradation of the mRNA encoding the targeted protein with a resultant decrease in protein expression. Advances in both the RNAi technology and hepatic delivery and growing positive outcomes with other RNAi-based therapies, suggest RNAi as a compelling means to therapeutically treat NAFLD by directly targeting PNPLA3I148M. Numerous GWAS indicate a dose-dependent effect of PNPLA3 rs738409 on NAFLD incidence, progression and severity (GWAS); the odds ratio tending to be double, if not more, for homozygote carriers versus heterozygote carriers, yet still at least two-fold more for heterozygotes versus wild type individuals. Thus, silencing PNPLA3 employing allelic discrimination specificity could be both a potential means to reduce hepatic triglyceride in PNPLA3I148M carriers, but also present a scenario in which heterozygotes may gain benefit without silencing of the wild type allele. Along these lines, we identified SNP-specific short interfering RNAs (siRNA) to PNPLA3I148M and demonstrate proof of concept in vitro. Using both hepatoma cell lines, Hep3B (homozygous for the reference allele, PNPLA3I148I) and HEPG2 (homozygous for the minor allele, PNPLA3I148M), we identified siRNA sequences capable of inhibiting specifically PNPLA3I148M gene expression. The inhibitory effect of these sequences were confirmed by screening on Chinese hamster ovary (CHO) cells over-expressing either PNPLA31148I or PNPLA3I148M. Using adeno-associated virus (AAV) to overexpress human PNPLA3I148M in vivo, we then demonstrated treatment with minor allele-specific SNPs not only specifically reduced human PNPLA3I148M expression in mice, but also significantly reversed hepatic triglyceride accumulation induced by over-expression of human PNPLA3I148M.


As used herein, the term “RNAi construct” refers to an agent comprising a RNA molecule that is capable of downregulating expression of a target gene (e.g. PNPLA3) via a RNA interference mechanism when introduced into a cell. RNA interference is the process by which a nucleic acid molecule induces the cleavage and degradation of a target RNA molecule (e.g. messenger RNA or mRNA molecule) in a sequence-specific manner, e.g. through a RNA induced silencing complex (RISC) pathway. In some embodiments, the RNAi construct comprises a double-stranded RNA molecule comprising two antiparallel strands of contiguous nucleotides that are sufficiently complementary to each other to hybridize to form a duplex region. “Hybridize” or “hybridization” refers to the pairing of complementary polynucleotides, typically via hydrogen bonding (e.g. Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding) between complementary bases in the two polynucleotides. The strand comprising a region having a sequence that is substantially complementary to a target sequence (e.g. target mRNA) is referred to as the “antisense strand.” The “sense strand” refers to the strand that includes a region that is substantially complementary to a region of the antisense strand. In some embodiments, the sense strand may comprise a region that has a sequence that is substantially identical to the target sequence.


In some embodiments, the invention is an RNAi directed to PNPLA3. In some embodiments, the invention is an RNAi that binds at the PNPLA3 rs738409 site. In some embodiments, the invention is an RNAi that binds at the PNPLA3 rs738408 site. In some embodiments, the invention is an RNAi that binds at both the PNPLA3 rs738409 rs738408 sites. In some embodiments, the invention is an RNAi that preferentially binds PNPLA3 rs738409 over the native PNPLA3 sequence (PNPLA3-ref). In some embodiments, the invention is an RNAi that preferentially binds PNPLA3 rs738408 over the PNPLA3-ref sequence. In some embodiments, the invention is an RNAi that preferentially binds PNPLA3-dma over PNPLA3-ma. In some embodiments, the invention in an RNAi molecule that contains any of the sequences found in Table 1 or 2.


A double-stranded RNA molecule may include chemical modifications to ribonucleotides, including modifications to the ribose sugar, base, or backbone components of the ribonucleotides, such as those described herein or known in the art. Any such modifications, as used in a double-stranded RNA molecule (e.g. siRNA, shRNA, or the like), are encompassed by the term “double-stranded RNA” for the purposes of this disclosure.


As used herein, a first sequence is “complementary” to a second sequence if a polynucleotide comprising the first sequence can hybridize to a polynucleotide comprising the second sequence to form a duplex region under certain conditions, such as physiological conditions. Other such conditions can include moderate or stringent hybridization conditions, which are known to those of skill in the art. A first sequence is considered to be fully complementary (100% complementary) to a second sequence if a polynucleotide comprising the first sequence base pairs with a polynucleotide comprising the second sequence over the entire length of one or both nucleotide sequences without any mismatches. A sequence is “substantially complementary” to a target sequence if the sequence is at least about 80%, 85%, 90%, 95%,96%, 97%, 98%, 99% or 100% complementary to a target sequence. Percent complementarity can be calculated by dividing the number of bases in a first sequence that are complementary to bases at corresponding positions in a second or target sequence by the total length of the first sequence. A sequence may also be said to be substantially complementary to another sequence if there are no more than 5, 4, 3, 2, or 1 mismatches over a 30 base pair duplex region when the two sequences are hybridized. Generally, if any nucleotide overhangs, as defined herein, are present, the sequence of such overhangs is not considered in determining the degree of complementarity between two sequences. By way of example, a sense strand of 21 nucleotides in length and an antisense strand of 21 nucleotides in length that hybridize to form a 19 base pair duplex region with a 2 nucleotide overhang at the 3′ end of each strand would be considered to be fully complementary as the term is used herein.


In some embodiments, a region of the antisense strand comprises a sequence that is fully complementary to a region of the target RNA sequence (e.g. PNPLA3 mRNA). In such embodiments, the sense strand may comprise a sequence that is fully complementary to the sequence of the antisense strand. In other such embodiments, the sense strand may comprise a sequence that is substantially complementary to the sequence of the antisense strand, e.g. having 1, 2, 3, 4, or 5 mismatches in the duplex region formed by the sense and antisense strands. In certain embodiments, it is preferred that any mismatches occur within the terminal regions (e.g. within 6, 5, 4, 3, 2, or 1 nucleotides of the 5′ and/or 3′ ends of the strands). In one embodiment, any mismatches in the duplex region formed from the sense and antisense strands occur within 6, 5, 4, 3, 2, or 1 nucleotides of the 5′ end of the antisense strand.


In certain embodiments, the sense strand and antisense strand of the double-stranded RNA may be two separate molecules that hybridize to form a duplex region, but are otherwise unconnected. Such double-stranded RNA molecules formed from two separate strands are referred to as “small interfering RNAs” or “short interfering RNAs” (siRNAs). Thus, in some embodiments, the RNAi constructs of the invention comprise a siRNA.


Where the two substantially complementary strands of a dsRNA are comprised by separate RNA molecules, those molecules need not, but can be covalently connected. Where the two strands are connected covalently by means other than an uninterrupted chain of nucleotides between the 3 ‘-end of one strand and the 5’-end of the respective other strand forming the duplex structure, the connecting structure is referred to as a “linker.” The RNA strands may have the same or a different number of nucleotides. The maximum number of base pairs in the duplex is the number of nucleotides in the shortest strand of the dsRNA minus any overhangs that are present in the duplex. In addition to the duplex structure, an RNAi may comprise one or more nucleotide overhangs.


In other embodiments, the sense strand and the antisense strand that hybridize to form a duplex region may be part of a single RNA molecule, i.e. the sense and antisense strands are part of a self-complementary region of a single RNA molecule. In such cases, a single RNA molecule comprises a duplex region (also referred to as a stem region) and a loop region. The 3′ end of the sense strand is connected to the 5′ end of the antisense strand by a contiguous sequence of unpaired nucleotides, which will form the loop region. The loop region is typically of a sufficient length to allow the RNA molecule to fold back on itself such that the antisense strand can base pair with the sense strand to form the duplex or stem region. The loop region can comprise from about 3 to about 25, from about 5 to about 15, or from about 8 to about 12 unpaired nucleotides. Such RNA molecules with at least partially self-complementary regions are referred to as “short hairpin RNAs” (shRNAs). In some embodiments, the loop region can comprise at least 1, 2, 3, 4, 5, 10, 20, or 25 unpaired nucleotides. In some embodiments, the loop region can have 10, 9, 8, 7, 6, 5, 4, 3, 2, or fewer unpaired nucleotides. In certain embodiments, the RNAi constructs of the invention comprise a shRNA. The length of a single, at least partially self-complementary RNA molecule can be from about 35 nucleotides to about 100 nucleotides, from about 45nucleotides to about 85 nucleotides, or from about 50 to about 60 nucleotides and comprise a duplex region and loop region each having the lengths recited herein.


In some embodiments, the RNAi constructs of the invention comprise a sense strand and an antisense strand, wherein the antisense strand comprises a region having a sequence that is substantially or fully complementary to a PNPLA3 messenger RNA (mRNA) sequence. As used herein, a “PNPLA3 mRNA sequence” refers to any messenger RNA sequence, including splice variants, encoding a PNPLA3 protein, including PNPLA3 protein variants or isoforms from any species (e.g. mouse, rat, non-human primate, human). PNPLA3 protein is also known as adiponutrin (ADPN) and calcium-independent phospholipase A2-epsilon (iPLA(2)□)).


A PNPLA3 mRNA sequence also includes the transcript sequence expressed as its complementary DNA (cDNA) sequence. A cDNA sequence refers to the sequence of an mRNA transcript expressed as DNA bases (e.g. guanine, adenine, thymine, and cytosine) rather than RNA bases (e.g. guanine, adenine, uracil, and cytosine). Thus, the antisense strand of the RNAi constructs of the invention may comprise a region having a sequence that is substantially or fully complementary to a target PNPLA3 mRNA sequence or PNPLA3 cDNA sequence. A PNPLA3 mRNA or cDNA sequence can include, but is not limited to, any PNPLA3 mRNA or cDNA sequence such as can be derived from the NCBI Reference sequence NM_025225.2.


A region of the antisense strand can be substantially complementary or fully complementary to at least 15 consecutive nucleotides of the PNPLA3 mRNA sequence. In some embodiments, the target region of the PNPLA3 mRNA sequence to which the antisense strand comprises a region of complementarity can range from about 15 to about 30 consecutive nucleotides, from about 16 to about 28 consecutive nucleotides, from about 18 to about 26 consecutive nucleotides, from about 17 to about 24 consecutive nucleotides, from about 19 to about 25 consecutive nucleotides, from about 19 to about 23 consecutive nucleotides, or from about 19 to about 21 consecutive nucleotides. In certain embodiments, the region of the antisense strand comprising a sequence that is substantially or fully complementary to a PNPLA3 mRNA sequence may, in some embodiments, comprise at least 15 contiguous nucleotides from an antisense sequence listed in Table 1 or Table 2. In other embodiments, the antisense sequence comprises at least 16, at least 17, at least 18, or at least 19 contiguous nucleotides from an antisense sequence listed in Table 1 or Table 2. In some embodiments, the sense and/or antisense sequence comprises at least 15 nucleotides from a sequence listed in Table 1 or 2 with no more than 1, 2, or 3 nucleotide mismatches.


The sense strand of the RNAi construct typically comprises a sequence that is sufficiently complementary to the sequence of the antisense strand such that the two strands hybridize under physiological conditions to form a duplex region. A “duplex region” refers to the region in two complementary or substantially complementary polynucleotides that form base pairs with one another, either by Watson-Crick base pairing or other hydrogen bonding interaction, to create a duplex between the two polynucleotides. The duplex region of the RNAi construct should be of sufficient length to allow the RNAi construct to enter the RNA interference pathway, e.g. by engaging the Dicer enzyme and/or the RISC complex. For instance, in some embodiments, the duplex region is about 15 to about 30 base pairs in length. Other lengths for the duplex region within this range are also suitable, such as about 15 to about 28 base pairs, about 15 to about 26 base pairs, about 15 to about 24 base pairs, about 15 to about 22 base pairs, about 17 to about 28 base pairs, about 17 to about 26 base pairs, about 17 to about 24 base pairs, about 17 to about 23 base pairs, about 17 to about 21 base pairs, about 19 to about 25 base pairs, about 19 to about 23 base pairs, or about 19 to about 21 base pairs. In one embodiment, the duplex region is about 17 to about 24 base pairs in length. In another embodiment, the duplex region is about 19 to about 21 base pairs in length.


In some embodiments, an RNAi agent of the invention contains a duplex region of about 24 to about 30 nucleotides that interacts with a target RNA sequence, e.g., an PNPLA3 target mRNA sequence, to direct the cleavage of the target RNA. Without wishing to be bound by theory, long double stranded RNA introduced into cells can be broken down into siRNA by a Type III endonuclease known as Dicer (Sharp et al. (2001) Genes Dev. 15:485). Dicer, a ribonuclease-III-like enzyme, 15 processes the dsRNA into 19-23 base pair short interfering RNAs with characteristic two base 3′ overhangs (Bernstein, et al., (2001) Nature 409:363). The siRNAs are then incorporated into an RNA-induced silencing complex (RISC) where one or more helicases unwind the siRNA duplex, enabling the complementary antisense strand to guide target recognition (Nykanen, et al., (2001) Cell 107:309). Upon binding to the appropriate target 20 mRNA, one or more endonucleases within the RISC cleave the target to induce silencing (Elbashir, et al., (2001) Genes Dev. 15: 188).


For embodiments in which the sense strand and antisense strand are two separate molecules (e.g. RNAi construct comprises a siRNA), the sense strand and antisense strand need not be the same length as the length of the duplex region. For instance, one or both strands maybe longer than the duplex region and have one or more unpaired nucleotides or mismatches flanking the duplex region. Thus, in some embodiments, the RNAi construct comprises at least one nucleotide overhang. As used herein, a “nucleotide overhang” refers to the unpaired nucleotide or nucleotides that extend beyond the duplex region at the terminal ends of the strands. Nucleotide overhangs are typically created when the 3′ end of one strand extends beyond the 5′ end of the other strand or when the 5′ end of one strand extends beyond the 3′ end of the other strand. The length of a nucleotide overhang is generally between 1 and 6 nucleotides, land 5 nucleotides, 1 and 4 nucleotides, 1 and 3 nucleotides, 2 and 6 nucleotides, 2 and 5 nucleotides, or 2 and 4 nucleotides. In some embodiments, the nucleotide overhang comprises 1, 2, 3, 4, 5, or 6 nucleotides. In one particular embodiment, the nucleotide overhang comprises 1 to 4 nucleotides. In certain embodiments, the nucleotide overhang comprises 2 nucleotides. The nucleotides in the overhang can be ribonucleotides, deoxyribonucleotides, or modified nucleotides as described herein. In some embodiments, the overhang comprises a 5′-uridineuridine-3′ (5′-UU-3′) dinucleotide. In such embodiments, the UU dinucleotide may comprise ribonucleotides or modified nucleotides, e.g. 2′-modified nucleotides. In other embodiments, the overhang comprises a 5′-deoxythymidine-deoxythymidine-3′ (5′-dTdT-3′) dinucleotide.


The nucleotide overhang can be at the 5′ end or 3′ end of one or both strands. For example, in one embodiment, the RNAi construct comprises a nucleotide overhang at the 5′ end and the 3′ end of the antisense strand. In another embodiment, the RNAi construct comprises a nucleotide overhang at the 5′ end and the 3′ end of the sense strand. In some embodiments, the RNAi construct comprises a nucleotide overhang at the 5′ end of the sense strand and the 5′ end of the antisense strand. In other embodiments, the RNAi construct comprises a nucleotide overhang at the 3′ end of the sense strand and the 3′ end of the antisense strand.


The RNAi constructs may comprise a single nucleotide overhang at one end of the double-stranded RNA molecule and a blunt end at the other. A “blunt end” means that the sense strand and antisense strand are fully base-paired at the end of the molecule and there are no unpaired nucleotides that extend beyond the duplex region. In some embodiments, the RNAi construct comprises a nucleotide overhang at the 3′ end of the sense strand and a blunt end at the 5′ end of the sense strand and 3′ end of the antisense strand. In other embodiments, the RNAi construct comprises a nucleotide overhang at the 3′ end of the antisense strand and a blunt end at the 5′ end of the antisense strand and the 3′ end of the sense strand. In certain embodiments, the RNAi construct comprises a blunt end at both ends of the double-stranded RNA molecule. In such embodiments, the sense strand and antisense strand have the same length and the duplex region is the same length as the sense and antisense strands (i.e. the molecule is double-stranded over its entire length).


The sense strand and antisense strand can each independently be about 15 to about 30 nucleotides in length, about 18 to about 28 nucleotides in length, about 19 to about 27 nucleotides in length, about 19 to about 25 nucleotides in length, about 19 to about 23 nucleotides in length, about 21 to about 25 nucleotides in length, or about 21 to about 23 nucleotides in length. In certain embodiments, the sense strand and antisense strand are each about 18, about 19, about 20, about 21, about 22, about 23, about 24, or about 25 nucleotides in length. In some embodiments, the sense strand and antisense strand have the same length but form a duplex region that is shorter than the strands such that the RNAi construct has two nucleotide overhangs. For instance, in one embodiment, the RNAi construct comprises (i) a sense strand and an antisense strand that are each 21 nucleotides in length, (ii) a duplex region that is 19 base pairs in length, and (iii) nucleotide overhangs of 2 unpaired nucleotides at both the 3′ end of the sense strand and the 3′ end of the antisense strand. In another embodiment, the RNAi construct comprises (i) a sense strand and an antisense strand that are each 23 nucleotides in length, (ii) a duplex region that is 21 base pairs in length, and (iii) nucleotide overhangs of 2 unpaired nucleotides at both the 3′ end of the sense strand and the 3′ end of the antisense strand. In other embodiments, the sense strand and antisense strand have the same length and form a duplex region over their entire length such that there are no nucleotide overhangs on either end of the double-stranded molecule. In one such embodiment, the RNAi construct is blunt ended and comprises (i) a sense strand and an antisense strand, each of which is 21 nucleotides in length, and (ii) a duplex region that is 21 base pairs in length. In another such embodiment, the RNAi construct is blunt ended and comprises (i) a sense strand and an antisense strand, each of which is 23 nucleotides in length, and (ii) a duplex region that is 23 base pairs in length.


In other embodiments, the sense strand or the antisense strand is longer than the other strand and the two strands form a duplex region having a length equal to that of the shorter strand such that the RNAi construct comprises at least one nucleotide overhang. For example, in one embodiment, the RNAi construct comprises (i) a sense strand that is 19 nucleotides in length, (ii)an antisense strand that is 21 nucleotides in length, (iii) a duplex region of 19 base pairs in length, and (iv) a single nucleotide overhang of 2 unpaired nucleotides at the 3′ end of the antisense strand. In another embodiment, the RNAi construct comprises (i) a sense strand that is 21 nucleotides in length, (ii) an antisense strand that is 23 nucleotides in length, (iii) a duplex region of 21 base pairs in length, and (iv) a single nucleotide overhang of 2 unpaired nucleotides at the 3′ end of the antisense strand.


The antisense strand of the RNAi constructs of the invention can comprise the sequence of any one of the antisense sequences listed in Table 1 or Table 2 or the sequence of nucleotides 1-19 of any of these antisense sequences. Each of the antisense sequences listed in Tables 1 and 6 comprises a sequence of 19 consecutive nucleotides (first 19 nucleotides counting from the 5′ end) that is complementary to a PNPLA3 mRNA sequence plus a two nucleotide overhang sequence. Thus, in some embodiments, the antisense strand comprises a sequence of nucleotides 1-19 of any one of SEQ ID NOs: 1-166 or 167-332.


Modified Nucleotides

The RNAi constructs of the invention may comprise one or more modified nucleotides. A “modified nucleotide” refers to a nucleotide that has one or more chemical modifications to the nucleoside, nucleobase, pentose ring, or phosphate group. As used herein, modified nucleotides do not encompass ribonucleotides containing adenosine monophosphate, guanosine monophosphate, uridine monophosphate, and cytidine monophosphate, and deoxyribonucleotides containing deoxyadenosine monophosphate, deoxyguanosine monophosphate, deoxythymidine monophosphate, and deoxycytidine monophosphate. However, the RNAi constructs may comprise combinations of modified nucleotides, ribonucleotides, and deoxyribonucleotides. Incorporation of modified nucleotides into one or both strands of double-stranded RNA molecules can improve the in vivo stability of the RNA molecules, e.g., by reducing the molecules' susceptibility to nucleases and other degradation processes. The potency of RNAi constructs for reducing expression of the target gene can also be enhanced by incorporation of modified nucleotides.


In certain embodiments, the modified nucleotides have a modification of the ribose sugar. These sugar modifications can include modifications at the 2′ and/or 5′ position of the pentose ring as well as bicyclic sugar modifications. A 2′-modified nucleotide refers to a nucleotide having a pentose ring with a substituent at the 2′ position other than H or OH. Such 2′ modifications include, but are not limited to, 2′-O-alkyl (e.g. O—C1-C10 or O—C1-C10 substituted alkyl), 2′-O-allyl (O—CH2CH═CH2), 2′-C-allyl, 2′-fluoro, 2′-O-methyl (OCH3), 2′-O-methoxyethyl (O—(CH2)2OCH3), 2′-OCF3, 2′-O(CH2)2SCH3, 2′-O-aminoalkyl, 2′-amino (e.g.NH2), 2′-O-ethylamine, and 2′-azido. Modifications at the 5′ position of the pentose ring include, but are not limited to, 5′-methyl (R or S); 5′-vinyl, and 5′-methoxy.


A “bicyclic sugar modification” refers to a modification of the pentose ring where a bridge connects two atoms of the ring to form a second ring resulting in a bicyclic sugar structure. In some embodiments the bicyclic sugar modification comprises a bridge between the 4′ and 2′ carbons of the pentose ring. Nucleotides comprising a sugar moiety with a bicyclic sugar modification are referred to herein as bicyclic nucleic acids or BNAs. Exemplary bicyclic sugar modifications include, but are not limited to, □-L-Methyleneoxy (4′-CH2-O-2′) bicyclicnucleic acid (BNA); □-D-Methyleneoxy (4′-CH2-O-2′) BNA (also referred to as a locked nucleic acid or LNA); Ethyleneoxy (4′-(CH2)2-O-2′) BNA; Aminooxy (4′-CH2-O—N(R)-2′)BNA; Oxyamino (4′-CH2-N(R)—O-2′) BNA; Methyl(methyleneoxy) (4′-CH(CH3)-O-2′) BNA (also referred to as constrained ethyl or cEt); methylene-thio (4′-CH2-S-2′) BNA; methylene-amino (4′-CH2-N(R)-2′) BNA; methyl carbocyclic (4′-CH2-CH(CH3)-2′) BNA; propylene carbocyclic (4′-(CH2)3-2′) BNA; and Methoxy(ethyleneoxy) (4′-CH(CH2OMe)-O-2′)BNA (also referred to as constrained MOE or cMOE). These and other sugar-modified nucleotides that can be incorporated into the RNAi constructs of the invention are described in U.S. Pat. No. 9,181,551, U.S. Patent Publication No. 2016/0122761, and Deleavey and Damha, Chemistry and Biology, Vol. 19: 937-954, 2012, all of which are hereby incorporated by reference in their entireties.


In some embodiments, the RNAi constructs comprise one or more 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, 2′-O-methoxyethyl modified nucleotides, 2′-O-allyl modified nucleotides, bicyclic nucleic acids (BNAs), or combinations thereof. In certain embodiments, the RNAi constructs comprise one or more 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, 2′-O-methoxyethyl modified nucleotides, or combinations thereof. In one particular embodiment, the RNAi constructs comprise one or more 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides or combinations thereof.


Both the sense and antisense strands of the RNAi constructs can comprise one or multiple modified nucleotides. For instance, in some embodiments, the sense strand comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more modified nucleotides. In certain embodiments, all nucleotides in the sense strand are modified nucleotides. In some embodiments, the antisense strand comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more modified nucleotides. In other embodiments, all nucleotides in the antisense strand are modified nucleotides. In certain other embodiments, all nucleotides in the sense strand and all nucleotides in the antisense strand are modified nucleotides. In these and other embodiments, the modified nucleotides can be 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, or combinations thereof.


In some embodiments, all pyrimidine nucleotides preceding an adenosine nucleotide in the sense strand, antisense strand, or both strands are modified nucleotides. For example, where the sequence 5′-CA-3′ or 5′-UA-3′ appears in either strand, the cytidine and uridine nucleotides are modified nucleotides, preferably 2′-O-methyl modified nucleotides. In certain embodiments, all pyrimidine nucleotides in the sense strand are modified nucleotides (e.g. 2′-O-methyl modified nucleotides), and the 5′ nucleotide in all occurrences of the sequence 5′-CA-3′ or 5′-UA-3′ in the antisense strand are modified nucleotides (e.g. 2′-O-methyl modified nucleotides). In other embodiments, all nucleotides in the duplex region are modified nucleotides. In such embodiments, the modified nucleotides are preferably 2′-O-methyl modified nucleotides, 2′-fluoro modified nucleotides or combinations thereof.


In embodiments in which the RNAi construct comprises a nucleotide overhang, the nucleotides in the overhang can be ribonucleotides, deoxyribonucleotides, or modified nucleotides. In one embodiment, the nucleotides in the overhang are deoxyribonucleotides, e.g., deoxythymidine. In another embodiment, the nucleotides in the overhang are modified nucleotides. For instance, in some embodiments, the nucleotides in the overhang are 2′-O-methyl modified nucleotides, 2′-fluoro modified nucleotides, 2′-methoxyethyl modified nucleotides, or combinations thereof.


The RNAi constructs of the invention may also comprise one or more modified internucleotide linkages. As used herein, the term “modified internucleotide linkage” refers to an internucleotide linkage other than the natural 3′ to 5′ phosphodiester linkage. In some embodiments, the modified internucleotide linkage is a phosphorous-containing internucleotide linkage, such as a phosphotriester, aminoalkyl phosphotriester, an alkylphosphonate (e.g.methylphosphonate, 3′-alkylene phosphonate), a phosphinate, a phosphoramidate (e.g. 3′-aminophosphoramidate and aminoalkylphosphoramidate), a phosphorothioate (P═S), a chiralphosphorothioate, a phosphorodithioate, a thionophosphoramidate, a thionoalkylphosphonate, athionoalkylphosphotriester, and a boranophosphate. In one embodiment, a modified internucleotide linkage is a 2′ to 5′ phosphodiester linkage. In other embodiments, the modified internucleotide linkage is a non-phosphorous-containing internucleotide linkage and thus can be referred to as a modified internucleoside linkage. Such non-phosphorous-containing linkages include, but are not limited to, morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane linkages (—O—Si(H)2-O—); sulfide, sulfoxide and sulfone linkages; formacetyl and thioformacetyl linkages; alkene containing backbones; sulfamate backbones; methylenemethylimino (—CH2-N(CH3)-O—CH2-) and methylenehydrazino linkages; sulfonate and sulfonamide linkages; amide linkages; and others having mixed N, O, S and CH2 component parts. In one embodiment, the modified internucleoside linkage is a peptide-based linkage (e.g. aminoethylglycine) to create a peptide nucleic acid or PNA, such as those described in U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262. Other suitable modified internucleotide and internucleoside linkages that may be employed in the RNAi constructs of the invention are described in U.S. Pat. Nos. 6,693,187, 9,181,551, U.S. Patent Publication No. 2016/0122761, and Deleavey and Damha, Chemistry and Biology, Vol. 19: 937-954, 2012, all of which are hereby incorporated by reference in their entireties.


In certain embodiments, the RNAi constructs comprise one or more phosphorothioate internucleotide linkages. The phosphorothioate internucleotide linkages may be present in the sense strand, antisense strand, or both strands of the RNAi constructs. For instance, in some embodiments, the sense strand comprises 1, 2, 3, 4, 5, 6, 7, 8, or more phosphorothioate internucleotide linkages. In other embodiments, the antisense strand comprises 1, 2, 3, 4, 5, 6, 7, 8, or more phosphorothioate internucleotide linkages. In still other embodiments, both strands comprise 1, 2, 3, 4, 5, 6, 7, 8, or more phosphorothioate internucleotide linkages. The RNAi constructs can comprise one or more phosphorothioate internucleotide linkages at the 3′-end, the 5′-end, or both the 3′- and 5′-ends of the sense strand, the antisense strand, or both strands. For instance, in certain embodiments, the RNAi construct comprises about 1 to about 6 or more (e.g., about 1, 2, 3, 4, 5, 6 or more) consecutive phosphorothioate internucleotide linkages at the 3′-end of the sense strand, the antisense strand, or both strands. In other embodiments, the RNAi construct comprises about 1 to about 6 or more (e.g., about 1, 2, 3, 4, 5, 6 or more) consecutive phosphorothioate internucleotide linkages at the 5′-end of the sense strand, the antisense strand, or both strands. In one embodiment, the RNAi construct comprises a single phosphorothioate internucleotide linkage at the 3′ end of the sense strand and a single phosphorothioate internucleotide linkage at the 3′ end of the antisense strand. In another embodiment, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages at the 3′ end of the antisense strand (i.e. a phosphorothioate internucleotide linkage at the first and second internucleotide linkages at the 3′ end of the antisense strand). In another embodiment, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages at both the 3′ and 5′ ends of the antisense strand. In yet another embodiment, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages at both the 3′ and 5′ ends of the antisense strand and two consecutive phosphorothioate internucleotide linkages at the 5′ end of the sense strand. In still another embodiment, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages at both the 3′ and 5′ ends of the antisense strand and two consecutive phosphorothioate internucleotide linkages at both the 3′ and 5′ ends of the sense strand (i.e. a phosphorothioate internucleotide linkage at the first and second internucleotide linkages at both the 5′ and 3′ ends of the antisense strand and a phosphorothioate internucleotide linkage at the first and second internucleotide linkages at both the 5′ and 3′ ends of the sense strand). In any of the embodiments in which one or both strands comprises one or more phosphorothioate internucleotide linkages, the remaining internucleotide linkages within the strands can be the natural 3′ to 5′ phosphodiester linkages. For instance, in some embodiments, each internucleotide linkage of the sense and antisense strands is selected from phosphodiester and phosphorothioate, wherein at least one internucleotide linkage is a phosphorothioate.


In embodiments in which the RNAi construct comprises a nucleotide overhang, two or more of the unpaired nucleotides in the overhang can be connected by a phosphorothioate internucleotide linkage. In certain embodiments, all the unpaired nucleotides in a nucleotide overhang at the 3′ end of the antisense strand and/or the sense strand are connected by phosphorothioate internucleotide linkages. In other embodiments, all the unpaired nucleotides in a nucleotide overhang at the 5′ end of the antisense strand and/or the sense strand are connected by phosphorothioate internucleotide linkages. In still other embodiments, all the unpaired nucleotides in any nucleotide overhang are connected by phosphorothioate internucleotide linkages.


In certain embodiments, the modified nucleotides incorporated into one or both of the strands of the RNAi constructs of the invention have a modification of the nucleobase (also referred to herein as “base”). A “modified nucleobase” or “modified base” refers to a base other than the naturally occurring purine bases adenine (A) and guanine (G) and pyrimidine bases thymine (T), cytosine (C), and uracil (U). Modified nucleobases can be synthetic or naturally occurring modifications and include, but are not limited to, universal bases, 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine (X), hypoxanthine (I), 2-aminoadenine, 6-methyladenine, 6-methylguanine, and other alkyl derivatives of adenine and guanine, 2-propyland other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo, particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-daazaadenine and 3-deazaguanine and 3-deazaadenine.


In some embodiments, the modified base is a universal base. A “universal base” refers to a base analog that indiscriminately forms base pairs with all of the natural bases in RNA and DNA without altering the double helical structure of the resulting duplex region. Universal bases are known to those of skill in the art and include, but are not limited to, inosine, C-phenyl, C-naphthyl and other aromatic derivatives, azole carboxamides, and nitroazole derivatives, such as 3-nitropyrrole, 4-nitroindole, 5-nitroindole, and 6-nitroindole.


Other suitable modified bases that can be incorporated into the RNAi constructs of the invention include those described in Herdewijn, Antisense Nucleic Acid Drug Dev., Vol. 10:297-310, 2000 and Peacock et al., J. Org. Chern., Vol. 76: 7295-7300, 2011, both of which are hereby incorporated by reference in their entireties. The skilled person is well aware that guanine, cytosine, adenine, thymine, and uracil may be replaced by other nucleobases, such as the modified nucleobases described above, without substantially altering the base pairing properties of a polynucleotide comprising a nucleotide bearing such replacement nucleobase.


In some embodiments of the RNAi constructs of the invention, the 5′ end of the sense strand, antisense strand, or both the antisense and sense strands comprises a phosphate moiety. As used herein, the term “phosphate moiety” refers to a terminal phosphate group that includes unmodified phosphates (—O—P═O)(OH)OH) as well as modified phosphates. Modified phosphates include phosphates in which one or more of the 0 and OH groups is replaced with H, O, S, N(R) or alkyl where R is H, an amino protecting group or unsubstituted or substituted alkyl. Exemplary phosphate moieties include, but are not limited to, 5′-monophosphate; 5′diphosphate; 5′-triphosphate; 5′-guanosine cap (7-methylated or non-methylated); 5′-adenosinecap or any other modified or unmodified nucleotide cap structure; 5′-monothiophosphate (phosphorothioate); 5′-monodithiophosphate (phosphorodithioate); 5′-alpha-thiotriphosphate; 5′-gamma-thiotriphosphate, 5′-phosphoramidates; 5′-vinylphosphates; 5′-alkylphosphonates (e.g.,alkyl=methyl, ethyl, isopropyl, propyl, etc.); and 5′-alkyletherphosphonates (e.g., alkylether=methoxymethyl, ethoxymethyl, etc.).


The modified nucleotides that can be incorporated into the RNAi constructs of the invention may have more than one chemical modification described herein. For instance, the modified nucleotide may have a modification to the ribose sugar as well as a modification to the nucleobase. By way of example, a modified nucleotide may comprise a 2′ sugar modification(e.g. 2′-fluoro or 2′-methyl) and comprise a modified base (e.g. 5-methyl cytosine or pseudouracil). In other embodiments, the modified nucleotide may comprise a sugar modification in combination with a modification to the 5′ phosphate that would create a modified internucleotide or internucleoside linkage when the modified nucleotide was incorporated into a polynucleotide. For instance, in some embodiments, the modified nucleotide may comprise a sugar modification, such as a 2′-fluoro modification, a 2′-O-methyl modification, or a bicyclic sugar modification, as well as a 5′ phosphorothioate group. Accordingly, in some embodiments, one or both strands of the RNAi constructs of the invention comprise a combination of 2′ modified nucleotides or BNAs and phosphorothioate internucleotide linkages. In certain embodiments, both the sense and antisense strands of the RNAi constructs of the invention comprise a combination of 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, and phosphorothioate internucleotide linkages. Exemplary RNAi constructs comprising modified nucleotides and internucleotide linkages are shown in Table 2.


Function of RNAi Constructs

Preferably, the RNAi constructs of the invention reduce or inhibit the expression of PNPLA3 in cells, particularly liver cells. Accordingly, in one embodiment, the present invention provides a method of reducing PNPLA3 expression in a cell by contacting the cell with any RNAi construct described herein. The cell may be in vitro or in vivo. PNPLA3 expression can be assessed by measuring the amount or level of PNPLA3 mRNA, PNPLA3 protein, or another biomarker linked to PNPLA3 expression. The reduction of PNPLA3 expression in cells or animals treated with an RNAi construct of the invention can be determined relative to the PNPLA3 expression in cells or animals not treated with the RNAi construct or treated with a control RNAi construct. For instance, in some embodiments, reduction of PNPLA3 expression is assessed by (a) measuring the amount or level of PNPLA3 mRNA in liver cells treated with a RNAi construct of the invention, (b) measuring the amount or level of PNPLA3 mRNA in liver cells treated with a control RNAi construct (e.g., RNAi agent directed to a RNA molecule not expressed in liver cells or a RNAi construct having a nonsense or scrambled sequence) or no construct, and (c) comparing the measured PNPLA3 mRNA levels from treated cells in (a) to the measured PNPLA3 mRNA levels from control cells in (b). The PNPLA3 mRNA levels in the treated cells and controls cells can be normalized to RNA levels for a control gene (e.g. 18S ribosomal RNA) prior to comparison. PNPLA3 mRNA levels can be measured by a variety of methods, including Northern blot analysis, nuclease protection assays, fluorescence in situ hybridization (FISH), reverse-transcriptase (RT)-PCR, real-time RT-PCR, quantitative PCR, and the like.


In other embodiments, reduction of PNPLA3 expression is assessed by (a) measuring the amount or level of PNPLA3 protein in liver cells treated with a RNAi construct of the invention, (b) measuring the amount or level of PNPLA3 protein in liver cells treated with a control RNAi construct (e.g. RNAi agent directed to a RNA molecule not expressed in liver cells or a RNAi construct having a nonsense or scrambled sequence) or no construct, and (c) comparing the measured PNPLA3 protein levels from treated cells in (a) to the measured PNPLA3 protein levels from control cells in (b). Methods of measuring PNPLA3 protein levels are known to those of skill in the art, and include Western Blots, immunoassays (e.g. ELISA), and flow cytometry. An exemplary immunoassay-based method for assessing PNPLA3 protein expression is described in Example 2. Example 3 describes an exemplary method for measuring PNPLA3 mRNA using RNA FISH. Any method capable of measuring PNPLA3 mRNA or protein can be used to assess the efficacy of the RNAi constructs of the invention.


In some embodiments, the methods to assess PNPLA3 expression levels are performed in vitro in cells that natively express PNPLA3 (e.g. liver cells) or cells that have been engineered to express PNPLA3. In certain embodiments, the methods are performed in vitro in liver cells. Suitable liver cells include, but are not limited to, primary hepatocytes (e.g. human, non-human primate, or rodent hepatocytes), HepAD38 cells, HuH-6 cells, HuH-7 cells, HuH-5-2 cells,BNLCL2 cells, Hep3B cells, or HepG2 cells. In one embodiment, the liver cells are Hep3B cells. In another embodiment, the liver cells are HepG2 cells.


In other embodiments, the methods to assess PNPLA3 expression levels are performed in vivo. The RNAi constructs and any control RNAi constructs can be administered to an animal (e.g. rodent or non-human primate) and PNPLA3 mRNA or protein levels assessed in liver tissue harvested from the animal following treatment. Alternatively or additionally, a biomarker or functional phenotype associated with PNPLA3 expression can be assessed in the treated animals.


In certain embodiments, expression of PNPLA3 is reduced in liver cells by at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, or at least 50% by an RNAi construct of the invention. In some embodiments, expression of PNPLA3 is reduced in liver cells by at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, or at least 85% by an RNAi construct of the invention. In other embodiments, the expression of PNPLA3 is reduced in liver cells by about 90% or more, e.g., 91%, 92%, 93%, 94%, 95%, 96%,97%, 98%, 99%, or more by an RNAi construct of the invention. The percent reduction of PNPLA3 expression can be measured by any of the methods described herein as well as others known in the art. For instance, in certain embodiments, the RNAi constructs of the invention inhibit at least 45% of PNPLA3 expression at 5 nM in Hep3B cells (contains wild type PNPLA3) in vitro. In related embodiments, the RNAi constructs of the invention inhibit at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, or at least 75% of PNPLA3 expression at 5 nM in Hep3B cells in vitro. In other embodiments, the RNAi constructs of the invention inhibit at least 80%, at least85%, at least 90%, at least 92%, at least 94%, at least 96%, or at least 98% of PNPLA3 expression at 5 nM in Hep3B cells in vitro. In certain embodiments, the RNAi constructs of the invention inhibit at least 45% of PNPLA3 expression at 5 nM in HepG2 cells (contains the PNPLA3-rs738409-rs738408 double minor allele) in vitro. In related embodiments, the RNAi constructs of the invention inhibit at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, or at least 75% of PNPLA3 expression at 5 nM in HepG2 cells in vitro. In other embodiments, the RNAi constructs of the invention inhibit at least 80%, at least85%, at least 90%, at least 92%, at least 94%, at least 96%, or at least 98% of PNPLA3 expression at 5 nM in HepG2 cells in vitro. In certain embodiments, the RNAi constructs of the invention inhibit at least 45% of PNPLA3 expression at 5 nM in CHO transfectedcells expressing human PNPLA3 I1481 or I148M cells in vitro. In related embodiments, the RNAi constructs of the invention inhibit at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, or at least 75% of PNPLA3 expression at 5 nM in CHO transfectedcells expressing human PNPLA3 I1481 or I148M in vitro. In other embodiments, the RNAi constructs of the invention inhibit at least 80%, at least85%, at least 90%, at least 92%, at least 94%, at least 96%, or at least 98% of PNPLA3 expression at 5 nM in CHO transfectedcells expressing human PNPLA3 I1481 or I148M in vitro. Reduction of PNPLA3 can be measured using a variety of techniques including RNA FISH or droplet digital PCR, as described in Examples 2 and 3.


In some embodiments, an IC50 value is calculated to assess the potency of an RNAi construct of the invention for inhibiting PNPLA3 expression in liver cells. An “IC50 value” is the dose/concentration required to achieve 50% inhibition of a biological or biochemical function. The IC50 value of any particular substance or antagonist can be determined by constructing a dose-response curve and examining the effect of different concentrations of the substance or antagonist on expression levels or functional activity in any assay. IC50 values can be calculated for a given antagonist or substance by determining the concentration needed to inhibit half of the maximum biological response or native expression levels. Thus, the IC50 value for any RNAi construct can be calculated by determining the concentration of the RNAi construct needed to inhibit half of the native PNPLA3 expression level in liver cells (e.g. PNPLA3 expression level in control liver cells) in any assay, such as the immunoassay or RNA FISH assay or droplet digital PCR assays described in the Examples. The RNAi constructs of the invention may inhibit PNPLA3 expression in liver cells (e.g. Hep3B cells) with an IC50 of less than about 20 nM. For example, the RNAi constructs inhibit PNPLA3 expression in liver cells with an IC50 of about 0.001 nM to about 20 nM, about 0.001 nM to about 10 nM, about 0.001 nM to about 5 nM, about 0.001 nM to about 1 nM, about 0.1 nM to about 10 nM, about 0.1 nM to about 5 nM, or about 0.1 nM to about 1 nM. In certain embodiments, the RNAi construct inhibits PNPLA3 expression in liver cells (e.g. Hep3B cells) with an IC50 of about 1 nM to about 10 nM. The RNAi constructs of the invention may inhibit PNPLA3 expression in liver cells (e.g. HepG2 cells) with an IC50 of less than about 20 nM. For example, the RNAi constructs inhibit PNPLA3 expression in liver cells with an IC50 of about 0.001 nM to about 20 nM, about 0.001 nM to about 10 nM, about 0.001 nM to about 5 nM, about 0.001 nM to about 1 nM, about 0.1 nM to about 10 nM, about 0.1 nM to about 5 nM, or about 0.1 nM to about 1 nM. In certain embodiments, the RNAi construct inhibits PNPLA3 expression in liver cells (e.g. HepG2 cells) with an IC50 of about 1 nM to about 10 nM. The RNAi constructs of the invention may inhibit PNPLA3 expression in liver cells (e.g. CHO transfected cells expressing human PNPLA3 I1481 or I148M) with an IC50 of less than about 20 nM. For example, the RNAi constructs inhibit PNPLA3 expression in liver cells with an IC50 of about 0.001 nM to about 20 nM, about 0.001 nM to about 10 nM, about 0.001 nM to about 5 nM, about 0.001 nM to about 1 nM, about 0.1 nM to about 10 nM, about 0.1 nM to about 5 nM, or about 0.1 nM to about 1 nM. In certain embodiments, the RNAi construct inhibits PNPLA3 expression in liver cells (e.g. CHO transfected cells expressing human PNPLA3 I1481 or I148M) with an IC50 of about 1 nM to about 10 nM.


The RNAi constructs of the invention can readily be made using techniques known in the art, for example, using conventional nucleic acid solid phase synthesis. The polynucleotides of the RNAi constructs can be assembled on a suitable nucleic acid synthesizer utilizing standard nucleotide or nucleoside precursors (e.g. phosphoramidites). Automated nucleic acid synthesizers are sold commercially by several vendors, including DNA/RNA synthesizers from Applied Biosystems (Foster City, Calif.), MerMade synthesizers from BioAutomation (Irving, Tex.), and OligoPilot synthesizers from GE Healthcare Life Sciences (Pittsburgh, Pa.).


The 2′ silyl protecting group can be used in conjunction with acid labile dimethoxytrityl (DMT) at the 5′ position of ribonucleosides to synthesize oligonucleotides via phosphoramidite chemistry. Final deprotection conditions are known not to significantly degrade RNA products. All syntheses can be conducted in any automated or manual synthesizer on large, medium, or small scale. The syntheses may also be carried out in multiple well plates, columns, or glass slides.


The 2′-O-silyl group can be removed via exposure to fluoride ions, which can include any source of fluoride ion, e.g., those salts containing fluoride ion paired with inorganic counterions, e.g., cesium fluoride and potassium fluoride or those salts containing fluoride ion paired with an organic counterion, e.g., a tetraalkylammonium fluoride. A crown ether catalyst can be utilized in combination with the inorganic fluoride in the deprotection reaction. Preferred fluoride ion source are tetrabutylammonium fluoride or aminohydrofluorides (e.g., combining aqueous HF with triethylamine in a dipolar aprotic solvent, e.g., dimethylformamide).


The choice of protecting groups for use on the phosphite triesters and phosphotriesters can alter the stability of the triesters towards fluoride. Methyl protection of the phosphotriester or phosphitetriester can stabilize the linkage against fluoride ions and improve process yields.


Since ribonucleosides have a reactive 2′ hydroxyl substituent, it can be desirable to protect the reactive 2′ position in RNA with a protecting group that is orthogonal to a 5′-O-dimethoxytrityl protecting group, e.g., one stable to treatment with acid. Silyl protecting groups meet this criterion and can be readily removed in a final fluoride deprotection step that can result in minimal RNA degradation.


Tetrazole catalysts can be used in the standard phosphoramidite coupling reaction. Preferred catalysts include, e.g., tetrazole, S-ethyl-tetrazole, benzylthiotetrazole, pnitrophenyltetrazole.


As can be appreciated by the skilled artisan, further methods of synthesizing the RNAi constructs described herein will be evident to those of ordinary skill in the art. Additionally, the various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. Other synthetic chemistry transformations, protecting groups (e.g., for hydroxyl, amino, etc. present on the bases) and protecting group methodologies (protection and deprotection) useful in synthesizing the RNAi constructs described herein are known in the art and include, for example, those such as described in R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2d. Ed., John Wiley and Sons (1991); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995), and subsequent editions thereof Custom synthesis of RNAi agents is also available from several commercial vendors, including Dharmacon, Inc. (Lafayette, Colo.), AxoLabs GmbH (Kulmbach, Germany),and Ambion, Inc. (Foster City, Calif.).


The RNAi constructs of the invention may comprise a ligand. As used herein, a “ligand” refers to any compound or molecule that is capable of interacting with another compound or molecule, directly or indirectly. The interaction of a ligand with another compound or molecule may elicit a biological response (e.g. initiate a signal transduction cascade, induce receptor mediated endocytosis) or may just be a physical association. The ligand can modify one or more properties of the double-stranded RNA molecule to which is attached, such as the pharmacodynamic, pharmacokinetic, binding, absorption, cellular distribution, cellular uptake, charge and/or clearance properties of the RNA molecule.


The ligand may comprise a serum protein (e.g., human serum albumin, low-density lipoprotein, globulin), a cholesterol moiety, a vitamin (biotin, vitamin E, vitamin B12), a folate moiety, a steroid, a bile acid (e.g. cholic acid), a fatty acid (e.g., palmitic acid, myristic acid), a carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid), a glycoside, a phospholipid, or antibody or binding fragment thereof (e.g. antibody or binding fragment that targets the RNAi construct to a specific cell type, such as liver). Other examples of ligands include dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons(e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), lipophilic molecules, e. g, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-BisO(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, 03-(oleoyl)lithocholic acid, 03-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine), peptides (e.g., antennapedia peptide, Tat peptide, RGDpeptides), alkylating agents, polymers, such as polyethylene glycol (PEG)(e.g., PEG-40K),poly amino acids, and polyamines (e.g. spermine, spermidine).


In certain embodiments, the ligands have endosomolytic properties. The endosomolytic ligands promote the lysis of the endosome and/or transport of the RNAi construct of the invention, or its components, from the endosome to the cytoplasm of the cell. The endosomolytic ligand may be a polycationic peptide or peptidomimetic which shows pH dependent membrane activity and fusogenicity. In one embodiment, the endosomolytic ligand assumes its active conformation at endosomal pH. The “active” conformation is that conformation in which the endosomolytic ligand promotes lysis of the endosome and/or transport of the RNAi construct of the invention, or its components, from the endosome to the cytoplasm of the cell. Exemplary endosomolytic ligands include the GALA peptide (Subbarao et al., Biochemistry, Vol. 26: 2964-2972, 1987), the EALA peptide (Vogel et al., J. Am. Chern. Soc.,Vol. 118: 1581-1586, 1996), and their derivatives (Turk et al., Biochem. Biophys. Acta, Vol.1559: 56-68, 2002). In one embodiment, the endosomolytic component may contain a chemical group (e.g., an amino acid) which will undergo a change in charge or protonation in response to a change in pH. The endosomolytic component may be linear or branched.


In some embodiments, the ligand comprises a lipid or other hydrophobic molecule. In one embodiment, the ligand comprises a cholesterol moiety or other steroid. Cholesterol conjugated oligonucleotides have been reported to be more active than their unconjugated counterparts (Manoharan, Antisense Nucleic Acid Drug Development, Vol. 12: 103-228, 2002). Ligands comprising cholesterol moieties and other lipids for conjugation to nucleic acid molecules have also been described in U.S. Pat. Nos. 7,851,615; 7,745,608; and 7,833,992, all of which are hereby incorporated by reference in their entireties. In another embodiment, the ligand comprises a folate moiety. Polynucleotides conjugated to folate moieties can be taken up by cells via a receptor-mediated endocytosis pathway. Such folate-polynucleotide conjugates are described in U.S. Pat. No. 8,188,247, which is hereby incorporated by reference in its entirety.


Given that PNPLA3 is expressed in liver cells (e.g. hepatocytes), in certain embodiments, it is desirable to specifically deliver the RNAi construct to those liver cells. In some embodiments, RNAi constructs can be specifically targeted to the liver by employing ligands that bind to or interact with proteins expressed on the surface of liver cells. For example, in certain embodiments, the ligands may comprise antigen binding proteins (e.g. antibodies or binding fragments thereof (e.g. Fab, scFv)) that specifically bind to a receptor expressed on hepatocytes.


In certain embodiments, the ligand comprises a carbohydrate. A “carbohydrate” refers to a compound made up of one or more monosaccharide units having at least 6 carbon atoms (which can be linear, branched or cyclic) with an oxygen, nitrogen or sulfur atom bonded to each carbon atom. Carbohydrates include, but are not limited to, the sugars (e.g., monosaccharides, disaccharides, trisaccharides, tetrasaccharides, and oligosaccharides containing from about 4, 5, 6, 7, 8, or 9 monosaccharide units), and polysaccharides, such as starches, glycogen, cellulose and polysaccharide gums. In some embodiments, the carbohydrate incorporated into the ligand is a monosaccharide selected from a pentose, hexose, or heptose and di- and tri-saccharides including such monosaccharide units. In other embodiments, the carbohydrate incorporated into the ligand is an amino sugar, such as galactosamine, glucosamine, N-acetylgalactosamine, and N-acetylglucosamine.


In some embodiments, the ligand comprises a hexose or hexosamine. The hexose may be selected from glucose, galactose, mannose, fucose, or fructose. The hexosamine may be selected from fructosamine, galactosamine, glucosamine, or mannosamine. In certain embodiments, the ligand comprises glucose, galactose, galactosamine, or glucosamine. In one embodiment, the ligand comprises glucose, glucosamine, or N-acetylglucosamine. In another embodiment, the ligand comprises galactose, galactosamine, or N-acetyl-galactosamine. In particular embodiments, the ligand comprises N-acetyl-galactosamine. Ligands comprising glucose, galactose, and N-acetyl-galactosamine (GalNAc) are particularly effective in targeting compounds to liver cells. See, e.g., D'Souza and Devarajan, J. Control Release, Vol. 203: 126-139, 2015. Examples of GalNAc- or galactose-containing ligands that can be incorporated into the RNAi constructs of the invention are described in U.S. Pat. Nos. 7,491,805; 8,106,022; and 8,877,917; U.S. Patent Publication No. 20030130186; and WIPO Publication No. WO2013166155, all of which are hereby incorporated by reference in their entireties.


In certain embodiments, the ligand comprises a multivalent carbohydrate moiety. As used herein, a “multivalent carbohydrate moiety” refers to a moiety comprising two or more carbohydrate units capable of independently binding or interacting with other molecules. For example, a multivalent carbohydrate moiety comprises two or more binding domains comprised of carbohydrates that can bind to two or more different molecules or two or more different sites on the same molecule. The valency of the carbohydrate moiety denotes the number of individual binding domains within the carbohydrate moiety. For instance, the terms “monovalent,” “bivalent,” “trivalent,” and “tetravalent” with reference to the carbohydrate moiety refer to carbohydrate moieties with one, two, three, and four binding domains, respectively. The multivalent carbohydrate moiety may comprise a multivalent lactose moiety, a multivalent galactose moiety, a multivalent glucose moiety, a multivalent N-acetyl-galactosamine moiety, a multivalent N-acetyl-glucosamine moiety, a multivalent mannose moiety, or a multivalent fucose moiety. In some embodiments, the ligand comprises a multivalent galactose moiety. In other embodiments, the ligand comprises a multivalent N-acetyl-galactosamine moiety. In these and other embodiments, the multivalent carbohydrate moiety is bivalent, trivalent, or tetravalent. In such embodiments, the multivalent carbohydrate moiety can be bi-antennary or tri-antennary. In one particular embodiment, the multivalent N-acetyl-galactosamine moiety is trivalent or tetravalent. In another particular embodiment, the multivalent galactose moiety is trivalent or tetravalent. Exemplary trivalent and tetravalent GalNAc-containing ligands for incorporation into the RNAi constructs of the invention are described in detail below.


The ligand can be attached or conjugated to the RNA molecule of the RNAi construct directly or indirectly. For instance, in some embodiments, the ligand is covalently attached directly to the sense or antisense strand of the RNAi construct. In other embodiments, the ligand is covalently attached via a linker to the sense or antisense strand of the RNAi construct. The ligand can be attached to nucleobases, sugar moieties, or internucleotide linkages of polynucleotides (e.g. sense strand or antisense strand) of the RNAi constructs of the invention. Conjugation or attachment to purine nucleobases or derivatives thereof can occur at any position including, endocyclic and exocyclic atoms. In certain embodiments, the 2-, 6-, 7-, or 8-positions of a purine nucleobase are attached to a ligand. Conjugation or attachment to pyrimidine nucleobases or derivatives thereof can also occur at any position. In some embodiments, the 2-,5-, and 6-positions of a pyrimidine nucleobase can be attached to a ligand. Conjugation or attachment to sugar moieties of nucleotides can occur at any carbon atom. Example carbon atoms of a sugar moiety that can be attached to a ligand include the 2′, 3′, and 5′ carbon atoms. The 1′ position can also be attached to a ligand, such as in an a basic residue. Internucleotide linkages can also support ligand attachments. For phosphorus-containing linkages (e.g., phosphodiester, phosphorothioate, phosphorodithiotate, phosphoroamidate, and the like), the ligand can be attached directly to the phosphorus atom or to an O, N, or S atom bound to the phosphorus atom. For amine- or amide-containing internucleoside linkages (e.g., PNA), the ligand can be attached to the nitrogen atom of the amine or amide or to an adjacent carbon atom.


In certain embodiments, the ligand may be attached to the 3′ or 5′ end of either the sense or antisense strand. In certain embodiments, the ligand is covalently attached to the 5′ end of the sense strand. In other embodiments, the ligand is covalently attached to the 3′ end of the sense strand. For example, in some embodiments, the ligand is attached to the 3′-terminal nucleotide of the sense strand. In certain such embodiments, the ligand is attached at the 3′-position of the 3′-terminal nucleotide of the sense strand. In alternative embodiments, the ligand is attached near the 3′ end of the sense strand, but before one or more terminal nucleotides (i.e. before 1, 2, 3, or 4 terminal nucleotides). In some embodiments, the ligand is attached at the 2′-position of the sugar of the 3′-terminal nucleotide of the sense strand.


In certain embodiments, the ligand is attached to the sense or antisense strand via a linker. A “linker” is an atom or group of atoms that covalently joins a ligand to a polynucleotide component of the RNAi construct. The linker may be from about 1 to about 30 atoms in length, from about 2 to about 28 atoms in length, from about 3 to about 26 atoms in length, from about 4to about 24 atoms in length, from about 6 to about 20 atoms in length, from about 7 to about 20atoms in length, from about 8 to about 20 atoms in length, from about 8 to about 18 atoms in length, from about 10 to about 18 atoms in length, and from about 12 to about 18 atoms in length. In some embodiments, the linker may comprise a bifunctional linking moiety, which generally comprises an alkyl moiety with two functional groups. One of the functional groups is selected to bind to the compound of interest (e.g. sense or antisense strand of the RNAi construct) and the other is selected to bind essentially any selected group, such as a ligand as described herein. In certain embodiments, the linker comprises a chain structure or an oligomer of repeating units, such as ethylene glycol or amino acid units. Examples of functional groups that are typically employed in a bifunctional linking moiety include, but are not limited to, electrophiles for reacting with nucleophilic groups and nucleophiles for reacting with electrophilic groups. In some embodiments, bifunctional linking moieties include amino, hydroxyl, carboxylic acid, thiol, unsaturations (e.g., double or triple bonds), and the like.


Linkers that may be used to attach a ligand to the sense or antisense strand in the RNAi constructs of the invention include, but are not limited to, pyrrolidine, 8-amino-3,6-di oxaoctanoic acid, succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate, 6-aminohexanoic acid, substituted C1-C10 alkyl, substituted or unsubstituted C2-C10 alkenyl or substituted or unsubstituted C2-C10 alkynyl. Preferred substituent groups for such linkers include, but are not limited to, hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl and alkynyl.


In certain embodiments, the linkers are cleavable. A cleavable linker is one which is sufficiently stable outside the cell, but which upon entry into a target cell is cleaved to release the two parts the linker is holding together. In some embodiments, the cleavable linker is cleaved at least 10 times, 20 times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times, or more, or at least 100 times faster in the target cell or under a first reference condition (which can, e.g., be selected to mimic or represent intracellular conditions) than in the blood of a subject, or under a second reference condition (which can, e.g., be selected to mimic or represent conditions found in the blood or serum).


Cleavable linkers are susceptible to cleavage agents, e.g., pH, redox potential or the presence of degradative molecules. Generally, cleavage agents are more prevalent or found at higher levels or activities inside cells than in serum or blood. Examples of such degradative agents include: redox agents which are selected for particular substrates or which have no substrate specificity, including, e.g., oxidative or reductive enzymes or reductive agents such as mercaptans, present in cells, that can degrade a redox cleavable linker by reduction; esterases; endosomes or agents that can create an acidic environment, e.g., those that result in a pH of five or lower; enzymes that can hydrolyze or degrade an acid cleavable linker by acting as a general acid, peptidases (which can be substrate specific), and phosphatases.


A cleavable linker may comprise a moiety that is susceptible to pH. The pH of human serum is 7.4, while the average intracellular pH is slightly lower, ranging from about 7.1-7.3. Endosomes have a more acidic pH, in the range of 5.5-6.0, and lysosomes have an even more acidic pH at around 5.0. Some linkers will have a cleavable group that is cleaved at a preferred pH, thereby releasing the RNA molecule from the ligand inside the cell, or into the desired compartment of the cell.


A linker can include a cleavable group that is cleavable by a particular enzyme. The type of cleavable group incorporated into a linker can depend on the cell to be targeted. For example, liver-targeting ligands can be linked to RNA molecules through a linker that includes an ester group. Liver cells are rich in esterases, and therefore the linker will be cleaved more efficiently in liver cells than in cell types that are not esterase-rich. Other types of cells rich in esterases include cells of the lung, renal cortex, and testis. Linkers that contain peptide bonds can be used when targeting cells rich in peptidases, such as liver cells and synoviocytes.


In general, the suitability of a candidate cleavable linker can be evaluated by testing the ability of a degradative agent (or condition) to cleave the candidate linker. It will also be desirable to also test the candidate cleavable linker for the ability to resist cleavage in the blood or when in contact with other non-target tissue. Thus, one can determine the relative susceptibility to cleavage between a first and a second condition, where the first is selected to be indicative of cleavage in a target cell and the second is selected to be indicative of cleavage in other tissues or biological fluids, e.g., blood or serum. The evaluations can be carried out in cell free systems, in cells, in cell culture, in organ or tissue culture, or in whole animals. It may be useful to make initial evaluations in cell-free or culture conditions and to confirm by further evaluations in whole animals. In some embodiments, useful candidate linkers are cleaved at least 2, 4, 10, 20, 50, 70, or 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood or serum (or under in vitro conditions selected to mimic extracellular conditions).


In other embodiments, redox cleavable linkers are utilized. Redox cleavable linkers are cleaved upon reduction or oxidation. An example of reductively cleavable group is a disulfide linking group (—S—S—). To determine if a candidate cleavable linker is a suitable “reductively cleavable linker,” or for example is suitable for use with a particular RNAi construct and particular ligand, one can use one or more methods described herein. For example, a candidate linker can be evaluated by incubation with dithiothreitol (DTT), or other reducing agent known in the art, which mimics the rate of cleavage that would be observed in a cell, e.g., a target cell. The candidate linkers can also be evaluated under conditions which are selected to mimic blood or serum conditions. In a specific embodiment, candidate linkers are cleaved by at most 10% in the blood. In other embodiments, useful candidate linkers are degraded at least 2, 4, 10, 20, 50,70, or 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood (or under in vitro conditions selected to mimic extracellular conditions).


In yet other embodiments, phosphate-based cleavable linkers are cleaved by agents that degrade or hydrolyze the phosphate group. An example of an agent that hydrolyzes phosphate groups in cells are enzymes, such as phosphatases in cells. Examples of phosphate-based cleavable groups are —O—P(O)(ORk)-O—, —O—P(S)(ORk)-O—, —O—P(S)(SRk)-O—, —S—P(O)(ORk)-O—, —O—P(O)(ORk)-S—, —S—P(O)(ORk)-S—, —O—P(S)(ORk)-S—, —S—P(S)(ORk)-O—, —O—P(O)(Rk)-O—, —O—P(S)(Rk)-O—, —S—P(O)(Rk)-O—, —S—P(S)(Rk)-O—, —S—P(O)(Rk)-S—, —O—P(S)(Rk)-S—. Specific embodiments include —O—P(O)(OH)—O—, —O—P(S)(OH)—O—, —O—P(S)(SH)—O—, —S—P(O)(OH)—O—, —O—P(O)(OH)—S—, —S—P(O)(OH)—S—, —O—P(S)(OH)—S—, —SP(S)(OH)—O—, —O—P(O)(H)—O—, —O—P(S)(H)—O—, —S—P(O)(H)—O—, —S—P(S)(H)—O—, —S—P(O)(H)—S—, —O—P(S)(H)—S—. Another specific embodiment is —O—P(O)(OH)—O—. These candidate linkers can be evaluated using methods analogous to those described above.


In other embodiments, the linkers may comprise acid cleavable groups, which are groups that are cleaved under acidic conditions. In some embodiments, acid cleavable groups are cleaved in an acidic environment with a pH of about 6.5 or lower (e.g., about 6.0, 5.5, 5.0, or lower), or by agents, such as enzymes that can act as a general acid. In a cell, specific low pH organelles, such as endosomes and lysosomes, can provide a cleaving environment for acid cleavable groups. Examples of acid cleavable linking groups include, but are not limited to, hydrazones, esters, and esters of amino acids. Acid cleavable groups can have the general formula —C═NN—, C(O)O, or —OC(O). A specific embodiment is when the carbon attached to the oxygen of the ester (the alkoxy group) is an aryl group, substituted alkyl group, or tertiaryalkyl group such as dimethyl, pentyl or t-butyl. These candidates can be evaluated using methods analogous to those described above.


In other embodiments, the linkers may comprise ester-based cleavable groups, which are cleaved by enzymes, such as esterases and amidases in cells. Examples of ester-based cleavable groups include, but are not limited to, esters of alkylene, alkenylene and alkynylene groups. Ester cleavable groups have the general formula —C(O)O—, or —OC(O)—. These candidate linkers can be evaluated using methods analogous to those described above.


In further embodiments, the linkers may comprise peptide-based cleavable groups, which are cleaved by enzymes, such as peptidases and proteases in cells. Peptide-based cleavable groups are peptide bonds formed between amino acids to yield oligopeptides (e.g., dipeptides, tripeptides etc.) and polypeptides. Peptide-based cleavable groups do not include the amide group (—C(O)NH—). The amide group can be formed between any alkylene, alkenylene or alkynelene. A peptide bond is a special type of amide bond formed between amino acids to yield peptides and proteins. The peptide based cleavage group is generally limited to the peptide bond(i.e., the amide bond) formed between amino acids yielding peptides and proteins and does not include the entire amide functional group. Peptide-based cleavable linking groups have the general formula —NHCHRAC(O)NHCHRBC(O)—, where RA and RB are the R groups of the two adjacent amino acids. These candidates can be evaluated using methods analogous to those described above.


Other types of linkers suitable for attaching ligands to the sense or antisense strands in the RNAi constructs of the invention are known in the art and can include the linkers described in U.S. Pat. Nos. 7,723,509; 8,017,762; 8,828,956; 8,877,917; and 9,181,551, all of which are hereby incorporated by reference in their entireties.


In certain embodiments, the ligand covalently attached to the sense or antisense strand of the RNAi constructs of the invention comprises a GalNAc moiety, e.g, a multivalent GalNAc moiety. In some embodiments, the multivalent GalNAc moiety is a trivalent GalNAc moiety and is attached to the 3′ end of the sense strand. In other embodiments, the multivalent GalNAc moiety is a trivalent GalNAc moiety and is attached to the 5′ end of the sense strand. In yet other embodiments, the multivalent GalNAc moiety is a tetravalent GalNAc moiety and is attached to the 3′ end of the sense strand. In still other embodiments, the multivalent GalNAc moiety is a tetravalent GalNAc moiety and is attached to the 5′ end of the sense strand.


In some embodiments, the RNAi constructs of the invention may be delivered to a cell or tissue of interest by administering a vector that encodes and controls the intracellular expression of the RNAi construct. A “vector” (also referred to herein as an “expression vector) is a composition of matter which can be used to deliver a nucleic acid of interest to the interior of a cell. Numerous vectors are known in the art including, but not limited to, linear polynucleotides, polynucleotides associated with ionic or amphiphilic compounds, plasmids, and viruses. Thus, the term “vector” includes an autonomously replicating plasmid or a virus. Examples of viral vectors include, but are not limited to, adenoviral vectors, adeno-associated viral vectors, retroviral vectors, and the like. A vector can be replicated in a living cell, or it can be made synthetically.


Generally, a vector for expressing an RNAi construct of the invention will comprise one or more promoters operably linked to sequences encoding the RNAi construct. The phrase “operably linked” or “under transcriptional control” as used herein means that the promoter is in the correct location and orientation in relation to a polynucleotide sequence to control the initiation of transcription by RNA polymerase and expression of the polynucleotide sequence. A “promoter” refers to a sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a gene sequence. Suitable promoters include, but are not limited to, RNA pol I, pol II, HI or U6 RNA pol III, and viral promoters (e.g. human cytomegalovirus (CMV) immediate early gene promoter, the SV40 early promoter, and the Rous sarcoma virus long terminal repeat). In some embodiments, a HI or U6RNA pol III promoter is preferred. The promoter can be a tissue-specific or inducible promoter. Of particular interest are liver-specific promoters, such as promoter sequences from human alpha!-antitrypsin gene, albumin gene, hemopexin gene, and hepatic lipase gene. Inducible promoters include promoters regulated by ecdysone, estrogen, progesterone, tetracycline, and isopropyl-PD1-thiogalactopyranoside (IPTG).


In some embodiments in which the RNAi construct comprises a siRNA, the two separate strands (sense and antisense strand) can be expressed from a single vector or two separate vectors. For example, in one embodiment, the sequence encoding the sense strand is operably linked to a promoter on a first vector and the sequence encoding the antisense strand is operably linked to a promoter on a second vector. In such an embodiment, the first and second vectors are co-introduced, e.g., by infection or transfection, into a target cell, such that the sense and antisense strands, once transcribed, will hybridize intracellularly to form the siRNA molecule. In another embodiment, the sense and antisense strands are transcribed from two separate promoters located in a single vector. In some such embodiments, the sequence encoding the sense strand is operably linked to a first promoter and the sequence encoding the antisense strand is operably linked to a second promoter, wherein the first and second promoters are located in a single vector. In one embodiment, the vector comprises a first promoter operably linked to a sequence encoding the siRNA molecule, and a second promoter operably linked to the same sequence in the opposite direction, such that transcription of the sequence from the first promoter results in the synthesis of the sense strand of the siRNA molecule and transcription of the sequence from the second promoter results in synthesis of the antisense strand of the siRNA molecule.


In other embodiments in which the RNAi construct comprises a shRNA, a sequence encoding the single, at least partially self-complementary RNA molecule is operably linked to a promoter to produce a single transcript. In some embodiments, the sequence encoding the shRNA comprises an inverted repeat joined by a linker polynucleotide sequence to produce the stem and loop structure of the shRNA following transcription.


In some embodiments, the vector encoding an RNAi construct of the invention is a viral vector. Various viral vector systems that are suitable to express the RNAi constructs described herein include, but are not limited to, adenoviral vectors, retroviral vectors (e.g., lentiviral vectors, maloney murine leukemia virus), adeno-associated viral vectors; herpes simplex viral vectors; SV 40 vectors; polyoma viral vectors; papilloma viral vectors; picornaviral vectors; and pox viral vectors (e.g. vaccinia virus). In certain embodiments, the viral vector is a retroviral vector (e.g. lentiviral vector).


Various vectors suitable for use in the invention, methods for inserting nucleic acid sequences encoding siRNA or shRNA molecules into vectors, and methods of delivering the vectors to the cells of interest are within the skill of those in the art. See, e.g., Dornburg , Gene Therap., Vol. 2: 301-310, 1995; Eglitis, Biotechniques, Vol. 6: 608-614, 1988; Miller, HumGene Therap., Vol. 1: 5-14, 1990; Anderson, Nature, Vol. 392: 25-30, 1998; Rubinson D A et al., Nat. Genet., Vol. 33: 401-406, 2003; Brummelkamp et al., Science, Vol. 296: 550-553, 2002; Brummelkamp et al., Cancer Cell, Vol. 2: 243-247, 2002; Lee et al., Nat Biotechnol, Vol. 20:500-505, 2002; Miyagishi et al., Nat Biotechnol, Vol. 20: 497-500, 2002; Paddison et al., GenesDev, Vol. 16: 948-958, 2002; Paul et al., Nat Biotechnol, Vol. 20: 505-508, 2002; Sui et al., ProcNatl Acad Sci USA, Vol. 99: 5515-5520, 2002; and Yu et al., Proc Natl Acad Sci USA, Vol. 99:6047-6052, 2002, all of which are hereby incorporated by reference in their entireties.


The present invention also includes pharmaceutical compositions and formulations comprising the RNAi constructs described herein and pharmaceutically acceptable carriers, excipients, or diluents. Such compositions and formulations are useful for reducing expression ofPNPLA3 in a subject in need thereof Where clinical applications are contemplated, pharmaceutical compositions and formulations will be prepared in a form appropriate for the intended application. Generally, this will entail preparing compositions that are essentially free of pyrogens, as well as other impurities that could be harmful to humans or animals.


The phrases “pharmaceutically acceptable” or “pharmacologically acceptable” refer to molecular entities and compositions that do not produce adverse, allergic, or other untoward reactions when administered to an animal or a human. As used herein, “pharmaceutically acceptable carrier, excipient, or diluent” includes solvents, buffers, solutions, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like acceptable for use in formulating pharmaceuticals, such as pharmaceuticals suitable for administration to humans. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the RNAi constructs of the present invention, its use in therapeutic compositions is contemplated. Supplementary active ingredients also can be incorporated into the compositions, provided they do not inactivate the vectors or RNAi constructs of the compositions.


Compositions and methods for the formulation of pharmaceutical compositions depend on a number of criteria, including, but not limited to, route of administration, type and extent of disease or disorder to be treated, or dose to be administered. In some embodiments, the pharmaceutical compositions are formulated based on the intended route of delivery. For instance, in certain embodiments, the pharmaceutical compositions are formulated for parenteral delivery. Parenteral forms of delivery include intravenous, intraarterial, subcutaneous, intrathecal, intraperitoneal or intramuscular injection or infusion. In one embodiment, the pharmaceutical composition is formulated for intravenous delivery. In such an embodiment, the pharmaceutical composition may include a lipid-based delivery vehicle. In another embodiment, the pharmaceutical composition is formulated for subcutaneous delivery. In such an embodiment, the pharmaceutical composition may include a targeting ligand (e.g. GalNAc containing ligands described herein).


In some embodiments, the pharmaceutical compositions comprise an effective amount of an RNAi construct described herein. An “effective amount” is an amount sufficient to produce a beneficial or desired clinical result. In some embodiments, an effective amount is an amount sufficient to reduce PNPLA3 expression in hepatocytes of a subject. In some embodiments, an effective amount may be an amount sufficient to only partially reduce PNPLA3 expression, for example, to a level comparable to expression of the wild-type PNPLA3 allele in human heterozygotes. Human heterozygous carriers of loss of function PNPLA3 variant alleles were reported to have lower serum levels of non-HDL cholesterol and a lower risk of coronary artery disease and myocardial infarction as compared to non-carriers (Nioi et al., New England Journal of Medicine, Vol. 374(22):2131-2141, 2016). Thus, without being bound by theory, it is believed that partial reduction of PNPLA3 expression may be sufficient to achieve the beneficial reduction of serum non-HDL cholesterol and reduction of risk of coronary artery disease and myocardial infarction.


An effective amount of an RNAi construct of the invention may be from about 0.01mg/kg body weight to about 100 mg/kg body weight, about 0.05 mg/kg body weight to about 75mg/kg body weight, about 0.1 mg/kg body weight to about 50 mg/kg body weight, about 1mg/kg to about 30 mg/kg body weight, about 2.5 mg/kg of body weight to about 20 mg/kg bodyweight, or about 5 mg/kg body weight to about 15 mg/kg body weight. In certain embodiments, a single effective dose of an RNAi construct of the invention may be about 0.1 mg/kg, about 0.5mg/kg, about 1 mg/kg, about 2 mg/kg, about 3 mg/kg, about 4 mg/kg, about 5 mg/kg, about 6mg/kg, about 7 mg/kg, about 8 mg/kg, about 9 mg/kg, or about 10 mg/kg. The pharmaceutical composition comprising an effective amount of RNAi construct can be administered weekly, biweekly, monthly, quarterly, or biannually. The precise determination of what would be considered an effective amount and frequency of administration may be based on several factors, including a patient's size, age, and general condition, type of disorder to be treated (e.g. myocardial infarction, heart failure, coronary artery disease, hypercholesterolemia), particular RNAi construct employed, and route of administration. Estimates of effective dosages and in vivo half-lives for any particular RNAi construct of the invention can be ascertained using conventional methods and/or testing in appropriate animal models.


Administration of the pharmaceutical compositions of the present invention may be via any common route so long as the target tissue is available via that route. Such routes include, but are not limited to, parenteral (e.g., subcutaneous, intramuscular, intraperitoneal or intravenous),oral, nasal, buccal, intradermal, transdermal, and sublingual routes, or by direct injection into liver tissue or delivery through the hepatic portal vein. In some embodiments, the pharmaceutical composition is administered parenterally. For instance, in certain embodiments, the pharmaceutical composition is administered intravenously. In other embodiments, the pharmaceutical composition is administered subcutaneously.


Colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems, including oil-in-water emulsions, micelles, mixed micelles, and liposomes, may be used as delivery vehicles for the RNAi constructs of the invention or vectors encoding such constructs. Commercially available fat emulsions that are suitable for delivering the nucleic acids of the invention include Intralipid®, Liposyn®, Liposyn®II, Liposyn®III, Nutrilipid, and other similar lipid emulsions. A preferred colloidal system for use as a delivery vehicle in vivo is a liposome (i.e., an artificial membrane vesicle).The RNAi constructs of the invention may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, RNAi constructs of the invention may be complexed to lipids, in particular to cationic lipids. Suitable lipids and liposomes include neutral (e.g., dioleoylphosphatidyl ethanolamine (DOPE), dimyristoylphosphatidyl choline (DMPC), and dipalmitoyl phosphatidylcholine (DPPC)), di stearolyphosphatidyl choline), negative (e.g., dimyristoylphosphatidyl glycerol (DMPG)), andcationic (e.g., dioleoyltetramethylaminopropyl (DOTAP) and dioleoylphosphatidyl ethanolamine (DOTMA)). The preparation and use of such colloidal dispersion systems is well known in the art. Exemplary formulations are also disclosed in U.S. Pat. Nos. 5,981,505; 6,217,900; 6,383,512; 5,783,565; 7,202,227; 6,379,965; 6,127,170; 5,837,533; 6,747,014; and WO03/093449.


In some embodiments, the RNAi constructs of the invention are fully encapsulated in a lipid formulation, e.g., to form a SPLP, pSPLP, SNALP, or other nucleic acid-lipid particle. As used herein, the term “SNALP” refers to a stable nucleic acid-lipid particle, including SPLP. As used herein, the term “SPLP” refers to a nucleic acid-lipid particle comprising plasmid DNA encapsulated within a lipid vesicle. SNALPs and SPLPs typically contain a cationic lipid, a noncationic lipid, and a lipid that prevents aggregation of the particle (e.g., a PEG-lipid conjugate). SNALPs and SPLPs are exceptionally useful for systemic applications, as they exhibit extended circulation lifetimes following intravenous injection and accumulate at distal sites (e.g., sites physically separated from the administration site). SPLPs include “pSPLP,” which include an encapsulated condensing agent-nucleic acid complex as set forth in PCT Publication No. WO00/03683. The nucleic acid-lipid particles typically have a mean diameter of about 50 nm to about 150 nm, about 60 nm to about 130 nm, about 70 nm to about 110 nm, or about 70 nm to about 90 nm, and are substantially nontoxic. In addition, the nucleic acids when present in the nucleic acid-lipid particles are resistant in aqueous solution to degradation with a nuclease. Nucleic acid-lipid particles and their method of preparation are disclosed in, e.g., U.S. Pat. Nos. 5,976,567; 5,981,501; 6,534,484; 6,586,410; 6,815,432; and PCT Publication No. WO96/40964.


The pharmaceutical compositions suitable for injectable use include, for example, sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. Generally, these preparations are sterile and fluid to the extent that easy injectability exists. Preparations should be stable under the conditions of manufacture and storage and should be preserved against the contaminating action of microorganisms, such as bacteria and fungi. Appropriate solvents or dispersion media may contain, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial an antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.


Sterile injectable solutions may be prepared by incorporating the active compounds in an appropriate amount into a solvent along with any other ingredients (for example as enumerated above) as desired, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the desired other ingredients, e.g., as enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation include vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient(s) plus any additional desired ingredient from a previously sterile-filtered solution thereof


The compositions of the present invention generally may be formulated in a neutral or salt form. Pharmaceutically-acceptable salts include, for example, acid addition salts (formed with free amino groups) derived from inorganic acids (e.g., hydrochloric or phosphoric acids), or from organic acids (e.g., acetic, oxalic, tartaric, mandelic, and the like). Salts formed with the free carboxyl groups can also be derived from inorganic bases (e.g., sodium, potassium, ammonium, calcium, or ferric hydroxides) or from organic bases (e.g., isopropylamine, trimethylamine, histidine, procaine and the like).


For parenteral administration in an aqueous solution, for example, the solution generally is suitably buffered and the liquid diluent first rendered isotonic for example with sufficient saline or glucose. Such aqueous solutions may be used, for example, for intravenous, intramuscular, subcutaneous and intraperitoneal administration. Preferably, sterile aqueous media are employed as is known to those of skill in the art, particularly in light of the present disclosure. By way of illustration, a single dose may be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, “Remington's Pharmaceutical Sciences” 15th Edition, pages 1035-1038 and 1570-1580). For human administration, preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA standards. In certain embodiments, a pharmaceutical composition of the invention comprises or consists of a sterile saline solution and an RNAi construct described herein. In other embodiments, a pharmaceutical composition of the invention comprises or consists of an RNAi construct described herein and sterile water (e.g. water for injection, WFI). In still other embodiments, a pharmaceutical composition of the invention comprises or consists of an RNAi construct described herein and phosphate-buffered saline (PBS).


In some embodiments, the pharmaceutical compositions of the invention are packaged with or stored within a device for administration. Devices for injectable formulations include, but are not limited to, injection ports, pre-filled syringes, auto injectors, injection pumps, on-body injectors, and injection pens. Devices for aerosolized or powder formulations include, but are not limited to, inhalers, insufflators, aspirators, and the like. Thus, the present invention includes administration devices comprising a pharmaceutical composition of the invention for treating or preventing one or more of the disorders described herein.


Methods for Inhibiting PNPLA3 Expression

The present invention also provides methods of inhibiting expression of a PNPLA3 gene in a cell. The methods include contacting a cell with an RNAi agent, e.g., double stranded RNAi agent, in an amount effective to inhibit expression of PNPLA3 in the cell, thereby inhibiting expression of PNPLA3 in the cell. Contacting of a cell with an RNAi agent, e.g., a double stranded RNAi agent, may be done in vitro or in vivo. Contacting a cell in vivo with the RNAi agent includes contacting a cell or group of cells within a subject, e.g., a human subject, with the RNAi agent. Combinations of in vitro and in vivo methods of contacting a cell are also possible.


The present invention provides methods for reducing or inhibiting expression of PNPLA3 in a subject in need thereof as well as methods of treating or preventing conditions, diseases, or disorders associated with PNPLA3 expression or activity. A “condition, disease, or disorder associated with PNPLA3 expression” refers to conditions, diseases, or disorders in which PNPLA3 expression levels are altered or where elevated expression levels of PNPLA3 are associated with an increased risk of developing the condition, disease or disorder.


Contacting a cell may be direct or indirect, as discussed above. Furthermore, contacting a cell may be accomplished via a targeting ligand, including any ligand described herein or known in the art. In preferred embodiments, the targeting ligand is a carbohydrate moiety, e.g., a GalNAc3 ligand, or any other ligand that directs the RNAi agent to a site of interest.


In one embodiment, contacting a cell with an RNAi includes “introducing” or “delivering the RNAi into the cell” by facilitating or effecting uptake or absorption into the cell. Absorption or uptake of an RNAi can occur through unaided diffusive or active cellular processes, or by auxiliary agents or devices. Introducing an RNAi into a cell may be in vitro and/or in vivo. For example, for in vivo introduction, RNAi can be injected into a tissue site or administered systemically. In vitro introduction into a cell includes methods known in the art such as electroporation and lipofection. Further approaches are described herein below and/or are known in the art.


The term “inhibiting,” as used herein, is used interchangeably with “reducing,” “silencing,” “downregulating”, “suppressing”, and other similar terms, and includes any level of inhibition.


The phrase “inhibiting expression of a PNPLA3” is intended to refer to inhibition of expression of any PNPLA3 gene (such as, e.g., a mouse PNPLA3 gene, a rat PNPLA3 gene, a monkey PNPLA3 gene, or a human PNPLA3 gene) as well as variants or mutants of a PNPLA3 gene. Thus, the PNPLA3 gene may be a wild-type PNPLA3 gene, a mutant PNPLA3 gene (such as a mutant PNPLA3 gene giving rise to amyloid deposition), or a transgenic PNPLA3 gene in the context of a genetically manipulated cell, group of cells, or organism.


“Inhibiting expression of a PNPLA3 gene” includes any level of inhibition of a PNPLA3 gene, e.g., at least partial suppression of the expression of a PNPLA3 gene. The expression of the PNPLA3 gene may be assessed based on the level, or the change in the level, of any variable associated with PNPLA3 gene expression, e.g., PNPLA3 mRNA level, PNPLA3 protein level, or the number or extent of amyloid deposits. This level may be assessed in an individual cell or in a group of cells, including, for example, a sample derived from a subject.


Inhibition may be assessed by a decrease in an absolute or relative level of one or more variables that are associated with PNPLA3 expression compared with a control level. The control level may be any type of control level that is utilized in the art, e.g., a pre-dose baseline level, or a level determined from a similar subject, cell, or sample that is untreated or treated with a control (such as, e.g., buffer only control or inactive agent control). In some embodiments of the methods of the invention, expression of a PNPLA3 gene is inhibited by at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%,at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%. at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%.


Inhibition of the expression of a PNPLA3 gene may be manifested by a reduction of the amount of mRNA expressed by a first cell or group of cells (such cells may be present, for example, in a sample derived from a subject) in which a PNPLA3 gene is transcribed and which has or have been treated (e.g., by contacting the cell or cells with an RNAi agent of the invention, or by administering an RNAi agent of the invention to a subject in which the cells are or were present) such that the expression of a PNPLA3 gene is inhibited, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has not or have not been so treated (control cell(s)). In preferred embodiments, the inhibition is assessed by expressing the level of mRNA in treated cells as a percentage of the level of mRNA in control cells, using the following formula:










(

mRNA





in





control





cells

)

-

(

mRNA





in





treated





cells

)



(

mRNA





in





control





cells

)


·
100


%




Alternatively, inhibition of the expression of a PNPLA3 gene may be assessed in terms of a reduction of a parameter that is functionally linked to PNPLA3 gene expression, e.g., PNPLA3 protein expression or Hedgehog pathway protein activities. PNPLA3 gene silencing may be determined in any cell expressing PNPLA3, either constitutively or by genomic engineering, and by any assay known in the art.


Inhibition of the expression of a PNPLA3 protein may be manifested by a reduction in the level of the PNPLA3 protein that is expressed by a cell or group of cells (e.g., the level of protein expressed in a sample derived from a subject). As explained above, for the assessment of mRNA suppression, the inhibiton of protein expression levels in a treated cell or group of cells may similarly be expressed as a percentage of the level of protein in a control cell or group of cells.


A control cell or group of cells that may be used to assess the inhibition of the expression of a PNPLA3 gene includes a cell or group of cells that has not yet been contacted with an RNAi agent of the invention. For example, the control cell or group of cells may be derived from an individual subject (e.g., a human or animal subject) prior to treatment of the subject with an RNAi agent.


The level of PNPLA3 mRNA that is expressed by a cell or group of cells, or the level of circulating PNPLA3 mRNA, may be determined using any method known in the art for assessing mRNA expression. In one embodiment, the level of expression of PNPLA3 in a sample is determined by detecting a transcribed polynucleotide, or portion thereof, e.g., mRNA of the PNPLA3 gene. RNA may be extracted from cells using RNA extraction techniques including, for example, using acid phenol/guanidine isothiocyanate extraction (RNAzol B; Biogenesis), RNeasy RNA preparation kits (Qiagen) or PAXgene (PreAnalytix, Switzerland). Typical assay formats utilizing ribonucleic acid hybridization include nuclear run-on assays, RT-PCR, RNase protection assays (Melton et al., Nuc. Acids Res. 12:7035), Northern blotting, in situ hybridization, and microarray analysis. Circulating PNPLA3 mRNA may be detected using methods the described in PCT/US2012/043584, the entire contents of which are hereby incorporated herein by reference.


In one embodiment, the level of expression of PNPLA3 is determined using a nucleic acid probe. The term “probe”, as used herein, refers to any molecule that is capable of selectively binding to a specific PNPLA3. Probes can be synthesized by one of skill in the art, or derived from appropriate biological preparations. Probes may be specifically designed to be labeled. Examples of molecules that can be utilized as probes include, but are not limited to, RNA, DNA, proteins, antibodies, and organic molecules.


Isolated mRNA can be used in hybridization or amplification assays that include, but are not limited to, Southern or Northern analyses, polymerase chain reaction (PCR) analyses and probe arrays. One method for the determination of mRNA levels involves contacting the isolated mRNA with a nucleic acid molecule (probe) that can hybridize to PNPLA3 mRNA. In one embodiment, the mRNA is immobilized on a solid surface and contacted with a probe, for example by running the isolated mRNA on an agarose gel and transferring the mRNA from the gel to a membrane, such as nitrocellulose. In an alternative embodiment, the probe(s) are immobilized on a solid surface and the mRNA is contacted with the probe(s), for example, in an Affymetrix gene chip array. A skilled artisan can readily adapt known mRNA detection methods for use in determining the level of PNPLA3 mRNA.


An alternative method for determining the level of expression of PNPLA3 in a sample involves the process of nucleic acid amplification and/or reverse transcriptase (to prepare cDNA) of for example mRNA in the sample, e.g., by RT-PCR (the experimental embodiment set forth in Mullis, 1987, U.S. Pat. No. 4,683,202), ligase chain reaction (Barany (1991) Proc. Natl. Acad. Sci. USA 88: 189-193), self sustained sequence replication (Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87: 1874-1878), transcriptional amplification system (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86: 1173-1177), Q-Beta Replicase (Lizardi et al. (1988) Bio/Technology 6: 1197), rolling circle replication (Lizardi et al., U.S. Pat. No. 5,854,033) or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers. In particular aspects of the invention, the level of expression of PNPLA3 is determined by quantitative fluorogenic RT-PCR {i.e., the TaqMan™ System). The expression levels of PNPLA3 mRNA may be monitored using a membrane blot (such as used in hybridization analysis such as Northern, Southern, dot, and the like), or microwells, sample tubes, gels, beads or fibers (or any solid support comprising bound nucleic acids). See U.S. Pat. Nos. 5,770,722, 5,874,219, 5,744,305, 5,677,195 and 5,445,934, which are incorporated herein by reference. The determination of PNPLA3 expression level may also comprise using nucleic acid probes in solution.


In preferred embodiments, the level of mRNA expression is assessed using branched DNA (bDNA) assays or real time PCR (qPCR). The use of these methods is described and exemplified in the Examples presented herein.


The level of PNPLA3 protein expression may be determined using any method known in the art for the measurement of protein levels. Such methods include, for example, electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, fluid or gel precipitin reactions, absorption spectroscopy, a colorimetric assays, spectrophotometric assays, flow cytometry, immunodiffusion (single or double), Immunoelectrophoresis, Western blotting, radioimmunoassay (MA), enzyme-linked immunosorbent assays (ELISAs), immunofluorescent assays, electrochemiluminescence assays, and the like.


In some embodiments, the efficacy of the methods of the invention can be monitored by detecting or monitoring a reduction in a symptom of a PNPLA3 disease, such as reduction in edema swelling of the extremities, face, larynx, upper respiratory tract, abdomen, trunk, and genitals, prodrome; laryngeal swelling; nonpruritic rash; nausea; vomiting; or abdominal pain. These symptoms may be assessed in vitro or in vivo using any method known in the art.


In some embodiments of the methods of the invention, the RNAi agent is administered to a subject such that the RNAi agent is delivered to a specific site within the subject. The inhibition of expression of PNPLA3 may be assessed using measurements of the level or change in the level of PNPLA3 mRNA or PNPLA3 protein in a sample derived from fluid or tissue from the specific site within the subject. In preferred embodiments, the site is selected from the group consisting of liver, choroid plexus, retina, and pancreas. The site may also be a subsection or subgroup of cells from any one of the aforementioned sites. The site may also include cells that express a particular type of receptor.


Methods of Treating or Preventing PNPLA3-Associated Diseases

The present invention provides therapeutic and prophylactic methods which include administering to a subject with a PNPLA3 -associated disease, disorder, and/or condition, or prone to developing, a PNPLA3-associated disease, disorder, and/or condition, compositions comprising an RNAi agent, or pharmaceutical compositions comprising an RNAi agent, or vectors comprising an RNAi of the invention. Non-limiting examples of PNPLA3-associated diseases include, for example, fatty liver (steatosis), nonalcoholic steatohepatitis (NASH), cirrhosis of the liver, accumulation of fat in the liver, inflammation of the liver, hepatocellular necrosis, liver fibrosis, obesity, or nonalcoholic fatty liver disease (NAFLD). In one embodiment, the PNPLA3-associated disease is NAFLD. In another embodiment, the PNPLA3 -associated disease is NASH. In another embodiment, the PNPLA3 -associated disease is fatty liver (steatosis). In another embodiment, the PNPLA3-associated disease is insulin resistance. In another embodiment, the PNPLA3-associated disease is not insulin resistance.


In certain embodiments, the present invention provides a method for reducing the expression of PNPLA3 in a patient in need thereof comprising administering to the patient any of the RNAi constructs described herein. The term “patient,” as used herein, refers to a mammal, including humans, and can be used interchangeably with the term “subject.” Preferably, the expression level of PNPLA3 in hepatocytes in the patient is reduced following administration of the RNAi construct as compared to the PNPLA3 expression level in a patient not receiving the RNAi construct.


The methods of the invention are useful for treating a subject having a PNPLA3-associated disease, e.g., a subject that would benefit from reduction in PNPLA3 gene expression and/or PNPLA3 protein production. In one aspect, the present invention provides methods of reducing the level of Patatin-Like Phospholipase Domain Containing 3 (PNPLA3) gene expression in a subject having nonalcoholic fatty liver disease (NAFLD). In another aspect, the present invention provides methods of reducing the level of PNPLA3 protein in a subject with NAFLD. The present invention also provides methods of reducing the level of activity of the hedgehog pathway in a subject with NAFLD.


In another aspect, the present invention provides methods of treating a subject having an NAFLD. In one aspect, the present invention provides methods of treating a subject having an PNPLA3-associated disease, e.g., fatty liver (steatosis), nonalcoholic steatohepatitis (NASH), cirrhosis of the liver, accumulation of fat in the liver, inflammation of the liver, hepatocellular necrosis, liver fibrosis, obesity, or nonalcoholic fatty liver disease (NAFLD). The treatment methods (and uses) of the invention include administering to the subject, e.g., a human, a therapeutically effective amount of an RNAi agent of the invention targeting a PNPLA3 gene or a pharmaceutical composition comprising an RNAi agent of the invention targeting a PNPLA3 gene or a vector of the invention comprising an RNAi agent targeting an PNPLA3 gene.


In one aspect, the invention provides methods of preventing at least one symptom in a subject having NAFLD, e.g., the presence of elevated hedgehog signaling pathways, fatigue, weakness, weight loss, loss of apetite, nausea, abdominal pain, spider-like blood vessels, yellowing of the skin and eyes (jaundice), itching, fluid build up and swelling of the legs (edema), abdomen swelling (ascites), and mental confusion. The methods include administering to the subject a therapeutically effective amount of the RNAi agent, e.g. dsRNA, pharmaceutical compositions, or vectors of the invention, thereby preventing at least one symptom in the subject having a disorder that would benefit from reduction in PNPLA3 gene expression.


In another aspect, the present invention provides uses of a therapeutically effective amount of an RNAi agent of the invention for treating a subject, e.g., a subject that would benefit from a reduction and/or inhibition of PNPLA3 gene expression. In a further aspect, the present invention provides uses of an RNAi agent, e.g., a dsRNA, of the invention targeting an PNPLA3 gene or pharmaceutical composition comprising an RNAi agent targeting an PNPLA3 gene in the manufacture of a medicament for treating a subject, e.g., a subject that would benefit from a reduction and/or inhibition of PNPLA3 gene expression and/or PNPLA3 protein production, such as a subject having a disorder that would benefit from reduction in PNPLA3 gene expression, e.g., a PNPLA3-associated disease.


In another aspect, the invention provides uses of an RNAi, e.g., a dsRNA, of the invention for preventing at least one symptom in a subject suffering from a disorder that would benefit from a reduction and/or inhibition of PNPLA3 gene expression and/or PNPLA3 protein production.


In a further aspect, the present invention provides uses of an RNAi agent of the invention in the manufacture of a medicament for preventing at least one symptom in a subject suffering from a disorder that would benefit from a reduction and/or inhibition of PNPLA3 gene expression and/or PNPLA3 protein production, such as a PNPLA3-associated disease.


In one embodiment, an RNAi agent targeting PNPLA3 is administered to a subject having a PNPLA3-associated disease, e.g., nonalcoholic fatty liver disease (NAFLD), such that the expression of a PNPLA3 gene, e.g., in a cell, tissue, blood or other tissue or fluid of the subject are reduced by at least about 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 62%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least about 99% or more when the dsRNA agent is administered to the subject.


The methods and uses of the invention include administering a composition described herein such that expression of the target PNPLA3 gene is decreased, such as for about 1, 2, 3, 4 5, 6, 7, 8, 12, 16, 18, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, or about 80 hours. In one embodiment, expression of the target PNPLA3 gene is decreased for an extended duration, e.g., at least about two, three, four, five, six, seven days or more, e.g., about one week, two weeks, three weeks, or about four weeks or longer.


Administration of the dsRNA according to the methods and uses of the invention may result in a reduction of the severity, signs, symptoms, and/or markers of such diseases or disorders in a patient with a PNPLA3-associated disease, e.g., nonalcoholic fatty liver disease (NAFLD). By “reduction” in this context is meant a statistically significant decrease in such level. The reduction can be, for example, at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or about 100%. Efficacy of treatment or prevention of disease can be assessed, for example by measuring disease progression, disease remission, symptom severity, reduction in pain, quality of life, dose of a medication required to sustain a treatment effect, level of a disease marker or any other measurable parameter appropriate for a given disease being treated or targeted for prevention. It is well within the ability of one skilled in the art to monitor efficacy of treatment or prevention by measuring any one of such parameters, or any combination of parameters. For example, efficacy of treatment of NAFLD may be assessed, for example, by periodic monitoring of NAFLD symptoms, liver fat levels, or expression of downstream genes. Comparison of the later readings with the initial readings provide a physician an indication of whether the treatment is effective. It is well within the ability of one skilled in the art to monitor efficacy of treatment or prevention by measuring any one of such parameters, or any combination of parameters. In connection with the administration of an RNAi targeting PNPLA3 or pharmaceutical composition thereof, “effective against” an PNPLA3-associated disease indicates that administration in a clinically appropriate manner results in a beneficial effect for at least a statistically significant fraction of patients, such as improvement of symptoms, a cure, a reduction in disease, extension of life, improvement in quality of life, or other effect generally recognized as positive by medical doctors familiar with treating NAFLD and/or an PNPLA3-associated disease and the related causes.


A treatment or preventive effect is evident when there is a statistically significant improvement in one or more parameters of disease status, or by a failure to worsen or to develop symptoms where they would otherwise be anticipated. As an example, a favorable change of at least 10% in a measurable parameter of disease, and preferably at least 20%, 30%, 40%, 50% or more can be indicative of effective treatment. Efficacy for a given RNAi drug or formulation of that drug can also be judged using an experimental animal model for the given disease as known in the art. When using an experimental animal model, efficacy of treatment is evidenced when a statistically significant reduction in a marker or symptom is observed.


Subjects can be administered a therapeutic amount of RNAi, such as about 0.01 mg/kg, 0.02 mg/kg, 0.03 mg/kg, 0.04 mg/kg, 0.05 mg/kg, 0.1 mg/kg, 0.15 mg/kg, 0.2 mg/kg, 0.25 mg/kg, 0.3 mg/kg, 0.35 mg/kg, 0.4 mg/kg, 0.45 mg/kg, 0.5 mg/kg, 0.55 mg/kg, 0.6 mg/kg, 0.65 mg/kg, 0.7 mg/kg, 0.75 mg/kg, 0.8 mg/kg, 0.85 mg/kg, 0.9 mg/kg, 0.95 mg/kg, 1.0 mg/kg, 1.1 mg/kg, 1.2 mg/kg, 1.3 mg/kg, 1.4 mg/kg, 1.5 mg/kg, 1.6 mg/kg, 1.7 mg/kg, 1.8 mg/kg, 1.9 mg/kg, 2.0 mg/kg, 2.1 mg/kg, 2.2 mg/kg, 2.3 mg/kg, 2.4 mg/kg, 2.5 mg/kg dsRNA, 2.6 mg/kg dsRNA, 2.7 mg/kg dsRNA, 2.8 mg/kg dsRNA, 2.9 mg/kg dsRNA, 3.0 mg/kg dsRNA, 3.1 mg/kg dsRNA, 3.2 mg/kg dsRNA, 3.3 mg/kg dsRNA, 3.4 mg/kg dsRNA, 3.5 mg/kg dsRNA, 3.6 mg/kg dsRNA, 3.7 mg/kg dsRNA, 3.8 mg/kg dsRNA, 3.9 mg/kg dsRNA, 4.0 mg/kg dsRNA, 4.1 mg/kg dsRNA, 4.2 mg/kg dsRNA, 4.3 mg/kg dsRNA, 4.4 mg/kg dsRNA, 4.5 mg/kg dsRNA, 4.6 mg/kg dsRNA, 4.7 mg/kg dsRNA, 4.8 mg/kg dsRNA, 4.9 mg/kg dsRNA, 5.0 mg/kg dsRNA, 5.1 mg/kg dsRNA, 5.2 mg/kg dsRNA, 5.3 mg/kg dsRNA, 5.4 mg/kg dsRNA, 5.5 mg/kg dsRNA, 5.6 mg/kg dsRNA, 5.7 mg/kg dsRNA, 5.8 mg/kg dsRNA, 5.9 mg/kg dsRNA, 6.0 mg/kg dsRNA, 6.1 mg/kg dsRNA, 6.2 mg/kg dsRNA, 6.3 mg/kg dsRNA, 6.4 mg/kg dsRNA, 6.5 mg/kg dsRNA, 6.6 mg/kg dsRNA, 6.7 mg/kg dsRNA, 6.8 mg/kg dsRNA, 6.9 mg/kg dsRNA, 7.0 mg/kg dsRNA, 7.1 mg/kg dsRNA, 7.2 mg/kg dsRNA, 7.3 mg/kg dsRNA, 7.4 mg/kg dsRNA, 7.5 mg/kg dsRNA, 7.6 mg/kg dsRNA, 7.7 mg/kg dsRNA, 7.8 mg/kg dsRNA, 7.9 mg/kg dsRNA, 8.0 mg/kg dsRNA, 8.1 mg/kg dsRNA, 8.2 mg/kg dsRNA, 8.3 mg/kg dsRNA, 8.4 mg/kg dsRNA, 8.5 mg/kg dsRNA, 8.6 mg/kg dsRNA, 8.7 mg/kg dsRNA, 8.8 mg/kg dsRNA, 8.9 mg/kg dsRNA, 9.0 mg/kg dsRNA, 9.1 mg/kg dsRNA, 9.2 mg/kg dsRNA, 9.3 mg/kg dsRNA, 9.4 mg/kg dsRNA, 9.5 mg/kg dsRNA, 9.6 mg/kg dsRNA, 9.7 mg/kg dsRNA, 9.8 mg/kg dsRNA, 9.9 mg/kg dsRNA, 9.0 mg/kg dsRNA, 10 mg/kg dsRNA, 15 mg/kg dsRNA, 20 mg/kg dsRNA, 25 mg/kg dsRNA, 30 mg/kg dsRNA, 35 mg/kg dsRNA, 40 mg/kg dsRNA, 45 mg/kg dsRNA, or about 50 mg/kg dsRNA. In one embodiment, subjects can be administered 0.5 mg/kg of the dsRNA. Values and ranges intermediate to the recited values are also intended to be part of this invention.


Administration of the RNAi can reduce the presence of PNPLA3 protein levels, e.g., in a cell, tissue, blood, urine or other compartment of the patient by at least about 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least about 99% or more.


Before administration of a full dose of the RNAi, patients can be administered a smaller dose, such as a 5% infusion, and monitored for adverse effects, such as an allergic reaction. In another example, the patient can be monitored for unwanted immunostimulatory effects, such as increased cytokine (e.g., TNF-alpha or INF-alpha) levels.


Owing to the inhibitory effects on PNPLA3 expression, a composition according to the invention or a pharmaceutical composition prepared therefrom can enhance the quality of life.


An RNAi of the invention may be administered in “naked” form, where the modified or unmodified RNAi agent is directly suspended in aqueous or suitable buffer solvent, as a “free RNAi.” A free RNAi is administered in the absence of a pharmaceutical composition. The free RNAi may be in a suitable buffer solution. The buffer solution may comprise acetate, citrate, prolamine, carbonate, or phosphate, or any combination thereof. In one embodiment, the buffer solution is phosphate buffered saline (PBS). The pH and osmolality of the buffer solution containing the RNAi can be adjusted such that it is suitable for administering to a subject.


Alternatively, an RNAi of the invention may be administered as a pharmaceutical composition, such as a dsRNA liposomal formulation.


Subjects that would benefit from a reduction and/or inhibition of PNPLA3 gene expression are those having nonalcoholic fatty liver disease (NAFLD) and/or an PNPLA3-associated disease or disorder as described herein.


Treatment of a subject that would benefit from a reduction and/or inhibition of PNPLA3 gene expression includes therapeutic and prophylactic treatment.


The invention further provides methods and uses of an RNAi agent or a pharmaceutical composition thereof for treating a subject that would benefit from reduction and/or inhibition of PNPLA3 gene expression, e.g., a subject having a PNPLA3-associated disease, in combination with other pharmaceuticals and/or other therapeutic methods, e.g., with known pharmaceuticals and/or known therapeutic methods, such as, for example, those which are currently employed for treating these disorders.


For example, in certain embodiments, an RNAi targeting a PNPLA3 gene is administered in combination with, e.g., an agent useful in treating an PNPLA3-associated disease as described elsewhere herein. For example, additional therapeutics and therapeutic methods suitable for treating a subject that would benefit from reduction in PNPLA3 expression, e.g., a subject having a PNPLA3-associated disease, include an RNAi agent targeting a different portion of the PNPLA3 gene, a therapeutic agent, and/or procedures for treating a PNPLA3 -associated disease or a combination of any of the foregoing.


In certain embodiments, a first RNAi agent targeting a PNPLA3 gene is administered in combination with a second RNAi agent targeting a different portion of the PNPLA3 gene. For example, the first RNAi agent comprises a first sense strand and a first antisense strand forming a double stranded region, wherein substantially all of the nucleotides of said first sense strand and substantially all of the nucleotides of the first antisense strand are modified nucleotides, wherein said first sense strand is conjugated to a ligand attached at the 3′-terminus, and wherein the ligand is one or more GalNAc derivatives attached through a bivalent or trivalent branched linker; and the second RNAi agent comprises a second sense strand and a second antisense strand forming a double stranded region, wherein substantially all of the nucleotides of the second sense strand and substantially all of the nucleotides of the second antisense strand are modified nucleotides, wherein the second sense strand is conjugated to a ligand attached at the 3′-terminus, and wherein the ligand is one or more GalNAc derivatives attached through a bivalent or trivalent branched linker.


In one embodiment, all of the nucleotides of the first and second sense strand and/or all of the nucleotides of the first and second antisense strand comprise a modification.


In one embodiment, the at least one of the modified nucleotides is selected from the group consisting of a 3′-terminal deoxy-thymine (dT) nucleotide, a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an unlocked nucleotide, a conformationally restricted nucleotide, a constrained ethyl nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-O-allyl-modified nucleotide, 2′-C-alkyl-modified nucleotide, 2′-hydroxly-modified nucleotide, a 2′-methoxyethyl modified nucleotide, a 2′-O-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, a non-natural base comprising nucleotide, a tetrahydropyran modified nucleotide, a 1,5-anhydrohexitol modified nucleotide, a cyclohexenyl modified nucleotide, a nucleotide comprising a phosphorothioate group, a nucleotide comprising a methylphosphonate group, a nucleotide comprising a 5′-phosphate, and a nucleotide comprising a 5′-phosphate mimic.


In certain embodiments, a first RNAi agent targeting a PNPLA3 gene is administered in combination with a second RNAi agent targeting a gene that is different from the PNPLA3 gene. For example, the RNAi agent targeting the PNPLA3 gene may be administered in combination with an RNAi agent targeting the SCAP gene. The first RNAi agent targeting a PNPLA3 gene and the second RNAi agent targeting a gene different from the PNPLA3 gene, e.g., the SCAP gene, may be administered as parts of the same pharmaceutical composition. Alternatively, the first RNAi agent targeting a PNPLA3 gene and the second RNAi agent targeting a gene different from the PNPLA3 gene, e.g., the SCAP gene, may be administered as parts of different pharmaceutical compositions.


The RNAi agent and an additional therapeutic agent and/or treatment may be administered at the same time and/or in the same combination, e.g., parenterally, or the additional therapeutic agent can be administered as part of a separate composition or at separate times and/or by another method known in the art or described herein.


The present invention also provides methods of using an RNAi agent of the invention and/or a composition containing an RNAi agent of the invention to reduce and/or inhibit PNPLA3 expression in a cell. In other aspects, the present invention provides an RNAi of the invention and/or a composition comprising an RNAi of the invention for use in reducing and/or inhibiting PNPLA3 gene expression in a cell. In yet other aspects, use of an RNAi of the invention and/or a composition comprising an RNAi of the invention for the manufacture of a medicament for reducing and/or inhibiting PNPLA3 gene expression in a cell are provided. In still other aspects, the the present invention provides an RNAi of the invention and/or a composition comprising an RNAi of the invention for use in reducing and/or inhibiting PNPLA3 protein production in a cell. In yet other aspects, use of an RNAi of the invention and/or a composition comprising an RNAi of the invention for the manufacture of a medicament for reducing and/or inhibiting PNPLA3 protein production in a cell are provided. The methods and uses include contacting the cell with an RNAi, e.g., a dsRNA, of the invention and maintaining the cell for a time sufficient to obtain degradation of the mRNA transcript of an PNPLA3 gene, thereby inhibiting expression of the PNPLA3 gene or inhibiting PNPLA3 protein production in the cell.


Reduction in gene expression can be assessed by any methods known in the art. For example, a reduction in the expression of PNPLA3 may be determined by determining the mRNA expression level of PNPLA3 using methods routine to one of ordinary skill in the art, e.g., Northern blotting, qRT-PCR, by determining the protein level of PNPLA3 using methods routine to one of ordinary skill in the art, such as Western blotting, immunological techniques, flow cytometry methods, ELISA, and/or by determining a biological activity of PNPLA3.


In the methods and uses of the invention the cell may be contacted in vitro or in vivo, i.e., the cell may be within a subject.


A cell suitable for treatment using the methods of the invention may be any cell that expresses an PNPLA3 gene, e.g., a cell from a subject having NAFLD or a cell comprising an expression vector comprising a PNPLA3 gene or portion of a PNPLA3 gene. A cell suitable for use in the methods and uses of the invention may be a mammalian cell, e.g., a primate cell (such as a human cell or a non-human primate cell, e.g., a monkey cell or a chimpanzee cell), a non-primate cell (such as a cow cell, a pig cell, a camel cell, a llama cell, a horse cell, a goat cell, a rabbit cell, a sheep cell, a hamster, a guinea pig cell, a cat cell, a dog cell, a rat cell, a mouse cell, a lion cell, a tiger cell, a bear cell, or a buffalo cell), a bird cell (e.g., a duck cell or a goose cell), or a whale cell. In one embodiment, the cell is a human cell.


PNPLA3 gene expression may be inhibited in the cell by at least about 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or about 100%.


PNPLA3 protein production may be inhibited in the cell by at least about 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or about 100%.


The in vivo methods and uses of the invention may include administering to a subject a composition containing an RNAi, where the RNAi includes a nucleotide sequence that is complementary to at least a part of an RNA transcript of the PNPLA3 gene of the mammal to be treated. When the organism to be treated is a human, the composition can be administered by any means known in the art including, but not limited to subcutaneous, intravenous, oral, intraperitoneal, or parenteral routes, including intracranial (e.g., intraventricular, intraparenchymal and intrathecal), intramuscular, transdermal, airway (aerosol), nasal, rectal, and topical (including buccal and sublingual) administration. In certain embodiments, the compositions are administered by subcutaneous or intravenous infusion or injection. In one embodiment, the compositions are administered by subcutaneous injection.


In some embodiments, the administration is via a depot injection. A depot injection may release the RNAi in a consistent way over a prolonged time period. Thus, a depot injection may reduce the frequency of dosing needed to obtain a desired effect, e.g., a desired inhibition of PNPLA3, or a therapeutic or prophylactic effect. A depot injection may also provide more consistent serum concentrations. Depot injections may include subcutaneous injections or intramuscular injections. In preferred embodiments, the depot injection is a subcutaneous injection.


In some embodiments, the administration is via a pump. The pump may be an external pump or a surgically implanted pump. In certain embodiments, the pump is a subcutaneously implanted osmotic pump. In other embodiments, the pump is an infusion pump. An infusion pump may be used for intravenous, subcutaneous, arterial, or epidural infusions. In preferred embodiments, the infusion pump is a subcutaneous infusion pump. In other embodiments, the pump is a surgically implanted pump that delivers the RNAi to the subject.


The mode of administration may be chosen based upon whether local or systemic treatment is desired and based upon the area to be treated. The route and site of administration may be chosen to enhance targeting.


In one aspect, the present invention also provides methods for inhibiting the expression of an PNPLA3 gene in a mammal, e.g., a human. The present invention also provides a composition comprising an RNAi, e.g., a dsRNA, that targets an PNPLA3 gene in a cell of a mammal for use in inhibiting expression of the PNPLA3 gene in the mammal. In another aspect, the present invention provides use of an RNAi, e.g., a dsRNA, that targets an PNPLA3 gene in a cell of a mammal in the manufacture of a medicament for inhibiting expression of the PNPLA3 gene in the mammal.


The methods and uses include administering to the mammal, e.g., a human, a composition comprising an RNAi, e.g., a dsRNA, that targets an PNPLA3 gene in a cell of the mammal and maintaining the mammal for a time sufficient to obtain degradation of the mRNA transcript of the PNPLA3 gene, thereby inhibiting expression of the PNPLA3 gene in the mammal.


Reduction in gene expression can be assessed in peripheral blood sample of the RNAi-administered subject by any methods known it the art, e.g. qRT-PCR, described herein. Reduction in protein production can be assessed by any methods known it the art and by methods, e.g., ELISA or Western blotting, described herein. In one embodiment, a tissue sample serves as the tissue material for monitoring the reduction in PNPLA3 gene and/or protein expression. In another embodiment, a blood sample serves as the tissue material for monitoring the reduction in PNPLA3 gene and/or protein expression.


In one embodiment, verification of RISC medicated cleavage of target in vivo following administration of RNAi agent is done by performing 5′-RACE or modifications of the protocol as known in the art (Lasham A et al., (2010) Nucleic Acid Res., 38 (3) p-e19) (Zimmermann et al. (2006) Nature 441: 111-4).


It is understood that all ribonucleic acid sequences disclosed herein can be converted to deoxyribonucleic acid sequences by substituting a thymine base for a uracil base in the sequence. Likewise, all deoxyribonucleic acid sequences disclosed herein can be converted to ribonucleic acid sequences by substituting a uracil base for a thymine base in the sequence. Deoxyribonucleic acid sequences, ribonucleic acid sequences, and sequences containing mixtures of deoxyribonucleotides and ribonucleotides of all sequences disclosed herein are included in the invention.


Additionally, any nucleic acid sequences disclosed herein may be modified with any combination of chemical modifications. One of skill in the art will readily appreciate that such designation as “RNA” or “DNA” to describe modified polynucleotides is, in certain instances, arbitrary. For example, a polynucleotide comprising a nucleotide having a 2′-OH substituent on the ribose sugar and a thymine base could be described as a DNA molecule having a modified sugar (2′-OH for the natural 2′-H of DNA) or as an RNA molecule having a modified base (thymine (methylated uracil) for natural uracil of RNA).


Accordingly, nucleic acid sequences provided herein, including, but not limited to those in the sequence listing, are intended to encompass nucleic acids containing any combination of natural or modified RNA and/or DNA, including, but not limited to such nucleic acids having modified nucleobases. By way of a further example and without limitation, a polynucleotide having the sequence “ATCGATCG” encompasses any polynucleotides having such a sequence, whether modified or unmodified, including, but not limited to, such compounds comprising RNA bases, such as those having sequence “AUCGAUCG” and those having some DNA bases and some RNA bases such as “AUCGATCG” and polynucleotides having other modified bases, such as “ATmeCGAUCG,” wherein meC indicates a cytosine base comprising a methyl group at the 5-position.


The following examples, including the experiments conducted and the results achieved, are provided for illustrative purposes only and are not to be construed as limiting the scope of the appended claims.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. However, the citation of a reference herein should not be construed as an acknowledgement that such reference is prior art to the present invention. To the extent that any of the definitions or terms provided in the references incorporated by reference differ from the terms and discussion provided herein, the present terms and definitions control.


EQUIVALENTS

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The foregoing description and examples detail certain preferred embodiments of the invention and describe the best mode contemplated by the inventors. It will be appreciated, however, that no matter how detailed the foregoing may appear in text, the invention may be practiced in many ways and the invention should be construed in accordance with the appended claims and any equivalents thereof


The following examples, including the experiments conducted and results achieved, are provided for illustrative purposes only and are not to be construed as limiting the present invention.


All animal experiments described herein were approved by the Institutional Animal Care and Use Committee (IACUC) of Amgen and cared for in accordance to the Guide for the Care and Use of Laboratory Animals, 8th Edition (National Research Council (U.S.). Committee for the Update of the Guide for the Care and Use of Laboratory Animals., Institute for Laboratory Animal Research (U.S.), and National Academies Press (U.S.) (2011) Guide for the care and use of laboratory animals. 8th Ed., National Academies Press, Washington, D.C. Mice were single-housed in an air-conditioned room at 22±2° C. with a twelve-hour light; twelve-hour darkness cycle (0600-1800 hours). Animals had ad libitum access to a regular chow diet (Envigo, 2920X, or a diet as stated otherwise) and to water (reverse osmosis-purified) via automatic watering system, unless otherwise indicated. At termination, blood was collected by cardiac puncture under deep anesthesia, and then, following Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) guidelines, euthanized by a secondary physical method.


EXAMPLE 1
Selection, Design and Synthesis of Modified PNPLA3 siRNA Molecules

The identification and selection of optimal sequences for therapeutic siRNA molecules targeting patatin-like phospholipase domain-containing 3 (PNPLA3) were identified using bioinformatics analysis of a human PNPLA3 transcript (NM_025225.2). Table 1 shows sequences identified as having therapeutic properties. Throughout the various sequences, {INVAB} is an inverted A basic, {INVDA} is an inverted deoxythymidine, GNA is a glycol nucleic acid, dT is deoxythymidine and dC is deoxycytosine.









TABLE 1







siRNA sequences directed to PNPLA3













SEQ

SEQ ID


DUPLEX

ID NO:

NO:


NO.
SENSE SEQUENCE (5′-3′)
(SENSE)
ANTISENSE SEQUENCE (5′-3′)
(ANTISENSE)














D-1000
GGGCAAUAAAGUACCUGCUUU
1
AGCAGGUACUUUAUUGCCCUU
2





D-1001
CGGCCAAUGUCCACCAGCUUU
3
AGCUGGUGGACAUUGGCCGUU
4





D-1002
GGUCCAGCCUGAACUUCUUUU
5
AAGAAGUUCAGGCUGGACCUU
6





D-1003
GCUUCAUCCCCUUCUACAGUU
7
CUGUAGAAGGGGAUGAAGCUU
8





D-1004
GCGGCUUCCUGGGCUUCUAUU
9
UAGAAGCCCAGGAAGCCGCUU
10





D-1005
GCCUCUGAGCUGAGUUGGUUU
11
ACCAACUCAGCUCAGAGGCUU
12





D-1006
GUGACAACGUACCCUUCAUUU
13
AUGAAGGGUACGUUGUCACUU
14





D-1007
CCCGCCUCCAGGUCCCAAAUU
15
UUUGGGACCUGGAGGCGGGUU
16





D-1008
CUUCAUCCCCUUCUACAGUUU
17
ACUGUAGAAGGGGAUGAAGUU
18





D-1009
GGUAUGUUCCUGCUUCAUGUU
19
CAUGAAGCAGGAACAUACCUU
20





D-1010
GUAUGUUCCUGCUUCAUGCUU
21
GCAUGAAGCAGGAACAUACUU
22





D-1011
UAUGUUCCUGCUUCAUGCCUU
23
GGCAUGAAGCAGGAACAUAUU
24





D-1012
AUGUUCCUGCUUCAUGCCCUU
25
GGGCAUGAAGCAGGAACAUUU
26





D-1013
UGUUCCUGCUUCAUGCCCUUU
27
AGGGCAUGAAGCAGGAACAUU
28





D-1014
GUUCCUGCUUCAUGCCCUUUU
29
AAGGGCAUGAAGCAGGAACUU
30





D-1015
UUCCUGCUUCAUGCCCUUCUU
31
GAAGGGCAUGAAGCAGGAAUU
32





D-1016
UCCUGCUUCAUGCCCUUCUUU
33
AGAAGGGCAUGAAGCAGGAUU
34





D-1017
CCUGCUUCAUGCCCUUCUAUU
35
UAGAAGGGCAUGAAGCAGGUU
36





D-1018
CUGCUUCAUGCCCUUCUACUU
37
GUAGAAGGGCAUGAAGCAGUU
38





D-1019
UGCUUCAUGCCCUUCUACAUU
39
UGUAGAAGGGCAUGAAGCAUU
40





D-1020
GCUUCAUGCCCUUCUACAGUU
41
CUGUAGAAGGGCAUGAAGCUU
42





D-1021
CUUCAUGCCCUUCUACAGUUU
43
ACUGUAGAAGGGCAUGAAGUU
44





D-1022
UUCAUGCCCUUCUACAGUGUU
45
CACUGUAGAAGGGCAUGAAUU
46





D-1023
UCAUGCCCUUCUACAGUGGUU
47
CCACUGUAGAAGGGCAUGAUU
48





D-1024
CAUGCCCUUCUACAGUGGCUU
49
GCCACUGUAGAAGGGCAUGUU
50





D-1025
AUGCCCUUCUACAGUGGCCUU
51
GGCCACUGUAGAAGGGCAUUU
52





D-1026
UGCCCUUCUACAGUGGCCUUU
53
AGGCCACUGUAGAAGGGCAUU
54





D-1027
GCCCUUCUACAGUGGCCUUUU
55
AAGGCCACUGUAGAAGGGCUU
56





D-1028
GGUAUGUUCCUGCUUCAUCUU
57
GAUGAAGCAGGAACAUACCUU
58





D-1029
GUAUGUUCCUGCUUCAUCCUU
59
GGAUGAAGCAGGAACAUACUU
60





D-1030
UAUGUUCCUGCUUCAUCCCUU
61
GGGAUGAAGCAGGAACAUAUU
62





D-1031
AUGUUCCUGCUUCAUCCCCUU
63
GGGGAUGAAGCAGGAACAUUU
64





D-1032
UGUUCCUGCUUCAUCCCCUUU
65
AGGGGAUGAAGCAGGAACAUU
66





D-1033
GUUCCUGCUUCAUCCCCUUUU
67
AAGGGGAUGAAGCAGGAACUU
68





D-1034
UUCCUGCUUCAUCCCCUUCUU
69
GAAGGGGAUGAAGCAGGAAUU
70





D-1035
UCCUGCUUCAUCCCCUUCUUU
71
AGAAGGGGAUGAAGCAGGAUU
72





D-1036
CCUGCUUCAUCCCCUUCUAUU
73
UAGAAGGGGAUGAAGCAGGUU
74





D-1037
CUGCUUCAUCCCCUUCUACUU
75
GUAGAAGGGGAUGAAGCAGUU
76





D-1038
UGCUUCAUCCCCUUCUACAUU
77
UGUAGAAGGGGAUGAAGCAUU
78





D-1039
UUCAUCCCCUUCUACAGUGUU
79
CACUGUAGAAGGGGAUGAAUU
80





D-1040
UCAUCCCCUUCUACAGUGGUU
81
CCACUGUAGAAGGGGAUGAUU
82





D-1041
CAUCCCCUUCUACAGUGGCUU
83
GCCACUGUAGAAGGGGAUGUU
84





D-1042
UCCCCUUCUACAGUGGCCUUU
85
AGGCCACUGUAGAAGGGGAUU
86





D-1043
GAUCAGGACCCGAGCCGAUUU
87
AUCGGCUCGGGUCCUGAUCUU
88





D-1044
UGGGCUUCUACCACGUCGUUU
89
ACGACGUGGUAGAAGCCCAUU
90





D-1045
GAGCGAGCACGCCCCGCAUUU
91
AUGCGGGGCGUGCUCGCUCUU
92





D-1046
UGCACUGCGUCGGCGUCCUUU
93
AGGACGCCGACGCAGUGCAUU
94





D-1047
UGGAGCAGACUCUGCAGGUUU
95
ACCUGCAGAGUCUGCUCCAUU
96





D-1048
UGCAGGUCCUCUCAGAUCUUU
97
AGAUCUGAGAGGACCUGCAUU
98





D-1049
CCCGGCCAAUGUCCACCAUUU
99
AUGGUGGACAUUGGCCGGGUU
100





D-1050
UUCUACAGUGGCCUUAUCUUU
101
AGAUAAGGCCACUGUAGAAUU
102





D-1051
UCUACAGUGGCCUUAUCCUUU
103
AGGAUAAGGCCACUGUAGAUU
104





D-1052
CUUCCUUCAGAGGCGUGCUUU
105
AGCACGCCUCUGAAGGAAGUU
106





D-1053
UUCCUUCAGAGGCGUGCGAUU
107
UCGCACGCCUCUGAAGGAAUU
108





D-1054
GCGUGCGAUAUGUGGAUGUUU
109
ACAUCCACAUAUCGCACGCUU
110





D-1055
CGUGCGAUAUGUGGAUGGAUU
111
UCCAUCCACAUAUCGCACGUU
112





D-1056
UGGAUGGAGGAGUGAGUGAUU
113
UCACUCACUCCUCCAUCCAUU
114





D-1057
ACGUACCCUUCAUUGAUGUUU
115
ACAUCAAUGAAGGGUACGUUU
116





D-1058
UGGACAUCACCAAGCUCAUUU
117
AUGAGCUUGGUGAUGUCCAUU
118





D-1059
CACCUGCGUCUCAGCAUCUUU
119
AGAUGCUGAGACGCAGGUGUU
120





D-1060
ACCUGCGUCUCAGCAUCCUUU
121
AGGAUGCUGAGACGCAGGUUU
122





D-1061
CCAGAGACUGGUGACAUGUUU
123
ACAUGUCACCAGUCUCUGGUU
124





D-1062
AUGGCUUCCAGAUAUGCCUUU
125
AGGCAUAUCUGGAAGCCAUUU
126





D-1063
CCGCCUCCAGGUCCCAAAUUU
127
AUUUGGGACCUGGAGGCGGUU
128





D-1064
UACCUGCUGGUGCUGAGGUUU
129
ACCUCAGCACCAGCAGGUAUU
130





D-1065
ACCUGCUGGUGCUGAGGGUUU
131
ACCCUCAGCACCAGCAGGUUU
132





D-1066
CUCUCCACCUUUCCCAGUUUU
133
AACUGGGAAAGGUGGAGAGUU
134





D-1067
UUUUUCACCUAACUAAAAUUU
135
AUUUUAGUUAGGUGAAAAAUU
136





D-1068
CGGCCAAUGUCCACCAGCUUU
137
AGCUGGUGGACAUUGGCCGUU
138





D-1069
GGUCCAGCCUGAACUUCUUUU
139
AAGAAGUUCAGGCUGGACCUU
140





D-1070
GCGGCUUCCUGGGCUUCUAUU
141
UAGAAGCCCAGGAAGCCGCUU
142





D-1071
GUGACAACGUACCCUUCAUUU
143
AUGAAGGGUACGUUGUCACUU
144





D-1072
GGUAUGUUCCUGCUUCAUGUU
145
CAUGAAGCAGGAACAUACCUU
146





D-1073
GUAUGUUCCUGCUUCAUGCUU
147
GCAUGAAGCAGGAACAUACUU
148





D-1074
UGUUCCUGCUUCAUGCCCUUU
149
AGGGCAUGAAGCAGGAACAUU
150





D-1075
GUUCCUGCUUCAUGCCCUUUU
151
AAGGGCAUGAAGCAGGAACUU
152





D-1076
CCUGCUUCAUGCCCUUCUAUU
153
UAGAAGGGCAUGAAGCAGGUU
154





D-1077
GCUUCAUGCCCUUCUACAGUU
155
CUGUAGAAGGGCAUGAAGCUU
156





D-1078
CUUCAUGCCCUUCUACAGUUU
157
ACUGUAGAAGGGCAUGAAGUU
158





D-1079
UUCAUGCCCUUCUACAGUGUU
159
CACUGUAGAAGGGCAUGAAUU
160





D-1080
AUGGCUUCCAGAUAUGCCUUU
161
AGGCAUAUCUGGAAGCCAUUU
162





D-1081
AUGCCCUUCUACAGUGGCCUU
163
GGCCACUGUAGAAGGGCAUUU
164





D-1082
GCUUCAUGCCCUUCUACAUUU
165
AUGUAGAAGGGCAUGAAGCUU
166





D-1083
GGAAAGACUGUUCCAAAAAUU
333
UUUUUGGAACAGUCUUUCCUU
334





D-1084
GGUAUGUUCCUGCUUCAUGUU
335
CAUGAAGCAGGAACAUACCUU
336





D-1085
GUAUGUUCCUGCUUCAUGCUU
337
GCAUGAAGCAGGAACAUACUU
338





D-1086
UGUUCCUGCUUCAUGCCCUUU
339
AGGGCAUGAAGCAGGAACAUU
340





D-1087
GCUUCAUGCCCUUCUACAGUU
341
CUGUAGAAGGGCAUGAAGCUU
342





D-1088
CUUCAUGCCCUUCUACAGUUU
343
ACUGUAGAAGGGCAUGAAGUU
344





D-1089
GCGGCUUCCUGGGCUUCUAUU
345
UAGAAGCCCAGGAAGCCGCUU
346





D-1090
GUUCCUGCUUCAUGCCCUUUU
347
AAGGGCAUGAAGCAGGAACUU
348





D-1091
AUGGCUUCCAGAUAUGCCUUU
349
AGGCAUAUCUGGAAGCCAUUU
350





D-1092
CCUGCUUCAUGCCCUUCUAUU
351
UAGAAGGGCAUGAAGCAGGUU
352





D-1093
UUCAUGCCCUUCUACAGUUUU
353
AACUGUAGAAGGGCAUGAAUU
354





D-1094
UUCAUGCCCUUCUACAGUGUU
355
CACUGUAGAAGGGCAUGAAUU
356





D-1095
GCUUCAUGCCCUUCUACAUUU
357
AUGUAGAAGGGCAUGAAGCUU
358





D-1096
GGUCCAGCCUGAACUUCUUUU
359
AAGAAGUUCAGGCUGGACCUU
360





D-1097
GCGGCUUCCUGGGCUUCUAUU
361
UAGAAGCCCAGGAAGCCGCUU
362





D-1098
GCGGCUUCCUGGGCUUCUAUU
363
UAGAAGCCCAGGAAGCCGCUU
364





D-1099
GUUCCUGCUUCAUGCCCUUUU
365
AAGGGCAUGAAGCAGGAACUU
366





D-1100
GUUCCUGCUUCAUGCCCUUUU
367
AAGGGCAUGAAGCAGGAACUU
368





D-1101
CCUGCUUCAUGCCCUUCUAUU
369
UAGAAGGGCAUGAAGCAGGUU
370





D-1102
CCUGCUUCAUGCCCUUCUAUU
371
UAGAAGGGCAUGAAGCAGGUU
372





D-1103
AUGCCCUUCUACAGUGGCCUU
373
GGCCACUGUAGAAGGGCAUUU
374





D-1104
AUGGCUUCCAGAUAUGCCUUU
375
AGGCAUAUCUGGAAGCCAUUU
376





D-1105
GUGACAACGUACCCUUCAUUU
377
AUGAAGGGUACGUUGUCACUU
378





D-1106
GUAUGUUCCUGCUUCAUGCUU
379
GCAUGAAGCAGGAACAUACUU
380





D-1107
GUAUGUUCCUGCUUCAUGCUU
381
GCAUGAAGCAGGAACAUACUU
382





D-1108
GUAUGUUCCUGCUUCAUGCUU
383
GCAUGAAGCAGGAACAUACUU
384





D-1109
GUAUGUUCCUGCUUCAUGCCU
385
AGGCAUGAAGCAGGAACAUACUU
386





D-1110
UGGUAUGUUCCUGCUUCAUGU
387
GCAUGAAGCAGGAACAUACCAUU
388





D-1111
GUAUGUUCCUGCUUCAUGU
389
GCAUGAAGCAGGAACAUACUU
390





D-1112
GUAUGUUCCUGCUUCAUGC{INVAB}
391
GCAUGAAGCAGGAACAUACUU
392





D-1113
GCUUCAUGCCCUUCUACAUUU
393
AUGUAGAAGGGCAUGAAGCUU
394





D-1114
GCUUCAUGCCCUUCUACAUUU
395
AUGUAGAAGGGCAUGAAGCUU
396





D-1115
GCUUCAUGCCCUUCUACAUUU
397
AUGUAGAAGGGCAUGAAGCUU
398





D-1116
GCUUCAUGCCCUUCUACAUUU
399
AUGUAGAAGGGCAUGAAGCUU
400





D-1117
GCUUCAUGCCCUUCUACAUUU
401
AUGUAGAAGGGCAUGAAGCUU
402





D-1118
GCUUCAUGCCCUUCUACAUUU
403
AUGUAGAAGGGCAUGAAGCUU
404





D-1119
GCUUCAUGCCCUUCUACAUUU
405
AUGUAGAAGGGCAUGAAGCUU
406





D-1120
GCUUCAUGCCCUUCUACAUUU
407
AUGUAGAAGGGCAUGAAGCUU
408





D-1121
GCUUCAUGCCCUUCUACAUUU
409
AUGUAGAAGGGCAUGAAGCUU
410





D-1122
GCUUCAUGCCCUUCUACAUUU
411
AUGUAGAAGGGCAUGAAGCUU
412





D-1123
GCUUCAUGCCCUUCUACAUUU
413
AUGUAGAAGGGCAUGAAGCUU
414





D-1124
GCUUCAUGCCCUUCUACAUUU
415
AUGUAGAAGGGCAUGAAGCUU
416





D-1125
GCUUCAUGCCCUUCUACAUUU
417
AUGUAGAAGGGCAUGAAGCUU
418





D-1126
GCUUCAUGCCCUUCUACAUUU
419
AUGUAGAAGGGCAUGAAGCUU
420





D-1127
GCUUCAUGCCCUUCUACAUUU
421
AUGUAGAAGGGCAUGAAGCUU
422





D-1128
GCUUCAUGCCCUUCUACAUUU
423
AUGUAGAAGGGCAUGAAGCUU
424





D-1129
GCUUCAUG[DC]CCUUCUACAUUU
425
AUGUAGAAGGGCAUGAAGCUU
426





D-1130
GCUUCAUGCC[DC]UUCUACAUUU
427
AUGUAGAAGGGCAUGAAGCUU
428





D-1131
GCUUCAUGC[DC]CUUCUACAUUU
429
AUGUAGAAGGGCAUGAAGCUU
430





D-1132
GCUUCAUGCCCUUCUACAUUU
431
AUGUAGAAGGGCAUGAAGCUU
432





D-1133
GCUUCAUGCCCUUCUACAUUU
433
AUGUAGAAGGGCAUGAAGCUU
434





D-1134
GCUUCAUGCCCUUCUACAUUU
435
AUGUAGAAGGGCAUGAAGCUU
436





D-1135
GCUUCAUGCCCUUCUACAUUU
437
AUGUAGAAGGGCAUGAAGCUU
438





D-1136
GCUUCAUGCCCUUCUACAUUU
439
AUGUAGAAGGGCAUGAAGCUU
440





D-1137
GCUUCAUGCCCUUCUACAGUU
441
AACUGUAGAAGGGCAUGAAGCUU
442





D-1138
CUGCUUCAUGCCCUUCUACAU
443
AUGUAGAAGGGCAUGAAGCAGUU
444





D-1139
GCUUCAUGCCCUUCUACAU
445
AUGUAGAAGGGCAUGAAGCUU
446





D-1140
GCUUCAUGCCCUUCUACAU{INVAB}
447
AUGUAGAAGGGCAUGAAGCUU
448





D-1141
GCUUCAUGCCCUUCUACAUUU{INVAB}
449
AUGUAGAAGGGCAUGAAGCUU
450





D-1142
GCUUCAUGCCCUUCUACAUUU
451
AUGUAGAAGGGCAUGAAGCUU
452





D-1143
GCUUCAUGCCCUUCUACAUUU
453
AUGUAGAAGGGCAUGAAGCUU
454





D-1144
GCUUCAUGCCCUUCUACAUUU
455
AUGUAGAAGGGCAUGAAGCUU
456





D-1145
GCUUCAUGCCCUUCUACAUUU
457
AUGUAGAAGGGCAUGAAGCUU
458





D-1146
GCUUCAUGCCCUUCUACAUUU
459
AUGUAGAAGGGCAUGAAGCUU
460





D-1147
GCUUCAUGCCCUUCUACAUUU
461
AUGUAGAAGGGCAUGAAGCUU
462





D-1148
GCUUCAUGCCCUUCUACAUUU
463
AUGUAGAAGGGCAUGAAGCUU
464





D-1149
GCUUCAUGCCCUUCUACAUUU
465
AUGUAGAAGGGCAUGAAGCUU
466





D-1150
GCUUCAUGCCCUUCUACAUUU
467
AUGUAGAAGGGCAUGAAGCUU
468





D-1151
GUAUGUUCCUGCUUCAUGCUU{INVAB}
469
GCAUGAAGCAGGAACAUACUU
470





D-1152
GGUAUGUUCCUGCUUCAUUUU
471
AAUGAAGCAGGAACAUACCUU
472





D-1153
GUAUGUUCCUGCUUCAUGUUU
473
ACAUGAAGCAGGAACAUACUU
474





D-1154
CGGCCAAUGUCCACCAGCUUU
475
AGCUGGUGGACAUUGGCCGUU
476





D-1155
UGGAGCAGACUCUGCAGGUUU
477
ACCUGCAGAGUCUGCUCCAUU
478





D-1156
ACGUACCCUUCAUUGAUGUUU
479
ACAUCAAUGAAGGGUACGUUU
480





D-1157
CCAGAGACUGGUGACAUGUUU
481
ACAUGUCACCAGUCUCUGGUU
482





D-1158
[INVAB]GCUUCAUGCCUUUCUACAUUU
483
AUGUAGAAAGGCAUGAAGCUU
484





D-1159
[INVAB]GCUUCAUGCCUUUCUACAUUU
485
AAAUGUAGAAAGGCAUGAAGCUU
486





D-1160
[INVAB]GCUUCAUGCCUUUCUACAUUU
487
AAAUGUAGAAAGGCAUGAAGCUU
488





D-1161
UGCUUCAUGCCUUUCUACAUU
489
UGUAGAAAGGCAUGAAGCAUU
490





D-1162
UAUGUUCCUGCUUCAUGCUUU
491
AGCAUGAAGCAGGAACAUAUU
492





D-1163
UUCCUGCUUCAUGCCUUUUUU
493
AAAAGGCAUGAAGCAGGAAUU
494





D-1164
UCAUGCCUUUCUACAGUGUUU
495
ACACUGUAGAAAGGCAUGAUU
496





D-1165
CAUGCCUUUCUACAGUGGUUU
497
ACCACUGUAGAAAGGCAUGUU
498





D-1166
AUGCCUUUCUACAGUGGCUUU
499
AGCCACUGUAGAAAGGCAUUU
500





D-1167
GGUAUGUUCCUGCUUCAUAUU
501
UAUGAAGCAGGAACAUACCUU
502





D-1168
GUAUGUUCCUGCUUCAUGAUU
503
UCAUGAAGCAGGAACAUACUU
504





D-1169
UAUGUUCCUGCUUCAUGCAUU
505
UGCAUGAAGCAGGAACAUAUU
506





D-1170
UUCCUGCUUCAUGCCUUUAUU
507
UAAAGGCAUGAAGCAGGAAUU
508





D-1171
CUGCUUCAUGCCUUUCUAAUU
509
UUAGAAAGGCAUGAAGCAGUU
510





D-1172
GCUUCAUGCCUUUCUACAAUU
511
UUGUAGAAAGGCAUGAAGCUU
512





D-1173
UUCAUGCCUUUCUACAGUAUU
513
UACUGUAGAAAGGCAUGAAUU
514





D-1174
UCAUGCCUUUCUACAGUGAUU
515
UCACUGUAGAAAGGCAUGAUU
516





D-1175
CAUGCCUUUCUACAGUGGAUU
517
UCCACUGUAGAAAGGCAUGUU
518





D-1176
AUGCCUUUCUACAGUGGCAUU
519
UGCCACUGUAGAAAGGCAUUU
520





D-1177
ACGUACCCUUCAUUGAUGAUU
521
UCAUCAAUGAAGGGUACGUUU
522





D-1178
CCAGAGACUGGUGACAUGAUU
523
UCAUGUCACCAGUCUCUGGUU
524





D-1179
AUGGCUUCCAGAUAUGCCAUU
525
UGGCAUAUCUGGAAGCCAUUU
526





D-1180
GUUCCUGCUUCAUGCCUUUUU
527
AAAGGCAUGAAGCAGGAACUU
528





D-1181
CCUGCUUCAUGCCUUUCUAUU
529
UAGAAAGGCAUGAAGCAGGUU
530





D-1182
GCUUCAUGCCUUUCUACAUUU
531
AUGUAGAAAGGCAUGAAGCUU
532





D-1183
CUUCAUGCCUUUCUACAGUUU
533
ACUGUAGAAAGGCAUGAAGUU
534





D-1184
UUCAUGCCUUUCUACAGUUUU
535
AACUGUAGAAAGGCAUGAAUU
536





D-1185
GCUUCAUCCCUUUCUACAUUU
537
AUGUAGAAAGGGAUGAAGCUU
538





D-1186
[INVAB]GCUUCAUGCCCUUCUACAUUU
539
AUGUAGAAGGGCAUGAAGCUU
540





D-1187
[INVAB]GCUUCAUGCCCUUCUACAUUU
541
AAAUGUAGAAGGGCAUGAAGCUU
542





D-1188
[INVAB]GCUUCAUGCCCUUCUACAUUU
543
AAAUGUAGAAGGGCAUGAAGCUU
544





D-1189
[INVAB]GCGGCUUCCUGGGCUUCUAUU
545
UAGAAGCCCAGGAAGCCGCUU
546





D-1190
[INVAB]CUGCGGCUUCCUGGGCUUCUA
547
UAGAAGCCCAGGAAGCCGCAGUU
548





D-1191
CUGCGGCUUCCUGGGCUUCU{INVAB}
549
UAGAAGCCCAGGAAGCCGCAGUU
550





D-1192
[INVAB]CUGCGGCUUCCUGGGCUUCUA
551
UAGAAGCCCAGGAAGCCGCAGUU
552





D-1193
[INVAB]GCGGCUUCCUGGGCUUCUAUU
553
UAGAAGCCCAGGAAGCCGCUU
554





D-1194
CUGCGGCUUCCUGGGCUUCU{INVAB}
555
UAGAAGCCCAGGAAGCCGCAGUU
556





D-1195
[INVAB]CUGCGGCUUCCUGGGCUUCUA
557
UAGAAGCCCAGGAAGCCGCAGUU
558





D-1196
[INVAB]GCGGCUUCCUGGGCUUCUAUU
559
UAGAAGCCCAGGAAGCCGCUU
560





D-1197
CUGCGGCUUCCUGGGCUUCU{INVAB}
561
UAGAAGCCCAGGAAGCCGCAGUU
562





D-1198
[INVAB]CUGCGGCUUCCUGGGCUUCUA
563
UAGAAGCCCAGGAAGCCGCAGUU
564





D-1199
[INVAB]GCGGCUUCCUGGGCUUCUAUU
565
UAGAAGCCCAGGAAGCCGCUU
566





D-1200
[INVAB]CUGCGGCUUCCUGGGCUUCUA
567
UAGAAGCCCAGGAAGCCGCAGUU
568





D-1201
[INVAB]CUGCGGCUUCCUGGGCUUCUA
569
UAGAAGCCCAGGAAGCCGCAGUU
570





D-1202
[INVAB]CUGCGGCUUCCUGGGCUUCUA
571
UAGAAGCCCAGGAAGCCGCAGUU
572





D-1203
[INVAB]AUGGCUUCCAGAUAUGCCUUU
573
AGGCAUAUCUGGAAGCCAUUU
574





D-1204
[INVAB]ACAUGGCUUCCAGAUAUGCCU
575
AGGCAUAUCUGGAAGCCAUGUUU
576





D-1205
ACAUGGCUUCCAGAUAUGCC{INVAB}
577
AGGCAUAUCUGGAAGCCAUGUUU
578





D-1206
[INVAB]ACAUGGCUUCCAGAUAUGCCU
579
AGGCAUAUCUGGAAGCCAUGUUU
580





D-1207
[INVAB]AUGGCUUCCAGAUAUGCCUUU
581
AGGCAUAUCUGGAAGCCAUUU
582





D-1208
ACAUGGCUUCCAGAUAUGCC{INVAB}
583
AGGCAUAUCUGGAAGCCAUGUUU
584





D-1209
[INVAB]ACAUGGCUUCCAGAUAUGCCU
585
AGGCAUAUCUGGAAGCCAUGUUU
586





D-1210
[INVAB]AUGGCUUCCAGAUAUGCCUUU
587
AGGCAUAUCUGGAAGCCAUUU
588





D-1211
ACAUGGCUUCCAGAUAUGCC{INVAB}
589
AGGCAUAUCUGGAAGCCAUGUUU
590





D-1212
[INVAB]ACAUGGCUUCCAGAUAUGCCU
591
AGGCAUAUCUGGAAGCCAUGUUU
592





D-1213
[INVAB]AUGGCUUCCAGAUAUGCCUUU
593
AGGCAUAUCUGGAAGCCAUUU
594





D-1214
ACAUGGCUUCCAGAUAUGCC{INVAB}
595
AGGCAUAUCUGGAAGCCAUGUUU
596





D-1215
[INVAB]ACAUGGCUUCCAGAUAUGCCU
597
AGGCAUAUCUGGAAGCCAUGUUU
598





D-1216
[INVAB]ACAUGGCUUCCAGAUAUGCCU
599
AGGCAUAUCUGGAAGCCAUGUUU
600





D-1217
[INVAB]ACAUGGCUUCCAGAUAUGCCU
601
AGGCAUAUCUGGAAGCCAUGUUU
602





D-1218
[INVAB]ACAUGGCUUCCAGAUAUGCCU
603
AGGCAUAUCUGGAAGCCAUGUUU
604





D-1219
[INVAB]ACGUACCCUUCAUUGAUGUUU
605
ACAUCAAUGAAGGGUACGUUU
606





D-1220
[INVAB]CAACGUACCCUUCAUUGAUGU
607
ACAUCAAUGAAGGGUACGUUGUU
608





D-1221
[INVAB]CAACGUACCCUUCAUUGAUGU
609
ACAUCAAUGAAGGGUACGUUGUU
610





D-1222
[INVAB]ACGUACCCUUCAUUGAUGUUU
611
ACAUCAAUGAAGGGUACGUUU
612





D-1223
CAACGUACCCUUCAUUGAUG{INVAB}
613
ACAUCAAUGAAGGGUACGUUGUU
614





D-1224
[INVAB]ACGUACCCUUCAUUGAUGUUU
615
ACAUCAAUGAAGGGUACGUUU
616





D-1225
CAACGUACCCUUCAUUGAUG{INVAB}
617
ACAUCAAUGAAGGGUACGUUGUU
618





D-1226
[INVAB]CAACGUACCCUUCAUUGAUGU
619
ACAUCAAUGAAGGGUACGUUGUU
620





D-1227
[INVAB]ACGUACCCUUCAUUGAUGUUU
621
ACAUCAAUGAAGGGUACGUUU
622





D-1228
CAACGUACCCUUCAUUGAUG{INVAB}
623
ACAUCAAUGAAGGGUACGUUGUU
624





D-1229
[INVAB]CAACGUACCCUUCAUUGAUGU
625
ACAUCAAUGAAGGGUACGUUGUU
626





D-1230
[INVAB]CAACGUACCCUUCAUUGAUGU
627
ACAUCAAUGAAGGGUACGUUGUU
628





D-1231
[INVAB]CAACGUACCCUUCAUUGAUGU
629
ACAUCAAUGAAGGGUACGUUGUU
630





D-1232
[INVAB]CAACGUACCCUUCAUUGAUGU
631
ACAUCAAUGAAGGGUACGUUGUU
632





D-1233
CUGCUUCAUGCCUUUCUACAU
633
AUGUAGAAAGGCAUGAAGCAGUU
634





D-1234
CUGCUUCAUGCCUUUCUACAU
635
AUGUAGAAAGGCAUGAAGCAGUU
636





D-1235
[INVAB]GCUUCAUGCCUUUCUACAUUU
637
AUGUAGAAAGGCAUGAAGCUU
638





D-1236
[INVAB]GCUUCAUGCCUUUCUACAUUU
639
AUGUAGAAAGGCAUGAAGCUU
640





D-1237
CUGCUUCAUGCCUUUCUACAU
641
AUGUAGAAAGGCAUGAAGCAGUU
642





D-1238
CUGCUUCAUGCCUUUCUACAU
643
AUGUAGAAAGGCAUGAAGCAGUU
644





D-1239
[INVAB]CUGCUUCAUGCCUUUCUACAU
645
AUGUAGAAAGGCAUGAAGCAGUU
646





D-1240
CUGCUUCAUGCCUUUCUACA{INVAB}
647
AUGUAGAAAGGCAUGAAGCAGUU
648





D-1241
[INVAB]CUGCUUCAUGCCUUUCUACAU
649
AUGUAGAAAGGCAUGAAGCAGUU
650





D-1242
[INVAB]CUGCUUCAUGC[DC]UUUCUACAU
651
AUGUAGAAAGGCAUGAAGCAGUU
652





D-1243
CUGCUUCAUGCCUUUCUACAU
653
AUGUAGAAAGGCAUGAAGCAGUU
654





D-1244
[INVAB]CUGCUUCAUGCCUUUCUACAU
655
AUGUAGAAAGGCAUGAAGCAGUU
656





D-1245
CUGCUUCAUGCCUUUCUACAU
657
AUGUAGAAAGGCAUGAAGCAGUU
658





D-1246
CUGCUUCAUGCCUUUCUACA{INVAB}
659
AUGUAGAAAGGCAUGAAGCAGUU
660





D-1247
[INVAB]CUGCUUCAUGCCUUUCUACAU
661
AUGUAGAAAGGCAUGAAGCAGUU
662





D-1248
CUGCUUCAUGCCUUUCUACAU
663
AUGUAGAAAGGCAUGAAGCAGUU
664





D-1249
CUGCUUCAUGCCUUUCUACA{INVAB}
665
AUGUAGAAAGGCAUGAAGCAGUU
666





D-1250
[INVAB]CUGCUUCAUGCCUUUCUACAU
667
AUGUAGAAAGGCAUGAAGCAGUU
668





D-1251
CUGCUUCAUGCCUUUCUACA{INVAB}
669
AUGUAGAAAGGCAUGAAGCAGUU
670





D-1252
[INVAB]CUGCUUCAUGCCUUUCUACAU
671
AUGUAGAAAGGCAUGAAGCAGUU
672





D-1253
[INVAB]GCUUCAUGCCUUUCUACAUUU
673
AUGUAGAAAGGCAUGAAGCUU
674





D-1254
[INVAB]GCUUCAUGCCUUUCUACAUUU
675
AUGUAGAAAGGCAUGAAGCUU
676





D-1255
[INVAB]GCUUCAUGCCUUUCUACAUUU
677
AUGUAGAAAGGCAUGAAGCUU
678





D-1256
[INVAB]GCUUCAUGCCUUUCUACAUUU
679
AUGUAGAAAGGCAUGAAGCUU
680





D-1257
[INVAB]GCUUCAUGCCUUUCUACAUUU
681
AUGUAGAAAGGCAUGAAGCUU
682





D-1258
CUGCUUCAUGCCCUUCUACAU
683
AUGUAGAAGGGCAUGAAGCAGUU
684





D-1259
[INVAB]GCUUCAUGCCCUUCUACAUUU
685
AUGUAGAAGGGCAUGAAGCUU
686





D-1260
[INVAB]GCUUCAUGCCCUUCUACAUUU
687
AUGUAGAAGGGCAUGAAGCUU
688





D-1261
[INVAB]GCUUCAUGCCCUUCUACAUUU
689
AUGUAGAAGGGCAUGAAGCUU
690





D-1262
CUGCUUCAUGCCCUUCUACA{INVAB}
691
AUGUAGAAGGGCAUGAAGCAGUU
692





D-1263
[INVAB]CUGCUUCAUGCCCUUCUACAU
693
AUGUAGAAGGGCAUGAAGCAGUU
694





D-1264
[INVAB]GCUUCAUGCCCUUCUACAUUU
695
AUGUAGAAGGGCAUGAAGCUU
696





D-1265
AUGUUCCUGCUUCAUGCCUUU
697
AGGCAUGAAGCAGGAACAUUU
698





D-1266
UGUUCCUGCUUCAUGCCUUUU
699
AAGGCAUGAAGCAGGAACAUU
700





D-1267
UGCCUUUCUACAGUGGCCUUU
701
AGGCCACUGUAGAAAGGCAUU
702





D-1268
CGUACUUCGUCCUUGUAUGUU
703
CAUACAAGGACGAAGUACGUU
704





D-1269
[INVAB]GCUUCAUGC[DC]CUUCUACAUUU
705
AUGUAGAAGGGCAUGAAGCUU
706





D-1270
[INVAB]GCUUCAUGCCCUUCUACAUUU
707
AUGUAGAAGGGCAUGAAGCUU
708





D-1271
[INVAB]GCUUCAUGCCCUUCUACAUUU
709
AUGUAGAAGGGCAUGAAGCUU
710





D-1272
[INVAB]GCUUCAUGCCCUUCUACAUUU
711
AUGUAGAAGGGCAUGAAGCUU
712





D-1273
[INVAB]GCUUCAUGCCCUUCUACAUUU
713
AUGUAGAAGGGCAUGAAGCUU
714





D-1274
[INVAB]GCUUCAUGCCCUUCUACAUUU
715
AUGUAGAAGGGCAUGAAGCUU
716





D-1275
[INVAB]CCUGCUUCAUGCCUUUCUAUU
717
UAGAAAGGCAUGAAGCAGGUU
718





D-1276
[INVAB]CCUGCUUCAUGCCUUUCUAUU
719
UAGAAAGGCAUGAAGCAGGUU
720





D-1277
UUCCUGCUUCAUGCCUUUCU{INVAB}
721
UAGAAAGGCAUGAAGCAGGAAUU
722





D-1278
[INVAB]CCUGCUUCAUGCCUUUCUAUU
723
UAGAAAGGCAUGAAGCAGGUU
724





D-1279
UUCCUGCUUCAUGCCUUUCU{INVAB}
725
UAGAAAGGCAUGAAGCAGGAAUU
726





D-1280
[INVAB]AUGCCUUUCUACAGUGGCUUU
727
AGCCACUGUAGAAAGGCAUUU
728





D-1281
[INVAB]AUGCCUUUCUACAGUGGCUUU
729
AGCCACUGUAGAAAGGCAUUU
730





D-1282
[INVAB]AUGCCUUUCUACAGUGGCUUU
731
AGCCACUGUAGAAAGGCAUUU
732





D-1283
UCAUGCCUUUCUACAGUGGC{INVAB}
733
AGCCACUGUAGAAAGGCAUGAUU
734





D-1284
[INVAB]AUGCCUUUCUACAGUGGCUUU
735
AGCCACUGUAGAAAGGCAUUU
736





D-1285
[INVAB]UCAUGCCUUUCUACAGUGGCU
737
AGCCACUGUAGAAAGGCAUGAUU
738





D-1286
[INVAB]UGCUUCAUGCCUUUCUACAGU
739
ACUGUAGAAAGGCAUGAAGCAUU
740





D-1287
[INVAB]CUUCAUGCCUUUCUACAGUUU
741
ACUGUAGAAAGGCAUGAAGUU
742





D-1289
UGCUUCAUGCCUUUCUACAG{INVAB}
743
ACUGUAGAAAGGCAUGAAGCAUU
744





D-1290
[INVAB]CUUCAUGCCUUUCUACAGUUU
745
ACUGUAGAAAGGCAUGAAGUU
746





D-1291
UGCUUCAUGCCUUUCUACAG{INVAB}
747
ACUGUAGAAAGGCAUGAAGCAUU
748





D-1292
[INVAB]UGCUUCAUGCCUUUCUACAGU
749
ACUGUAGAAAGGCAUGAAGCAUU
750





D-1293
[INVAB]UGCUUCAUGCCUUUCUACAGU
751
ACUGUAGAAAGGCAUGAAGCAUU
752





D-1294
[INVAB]UGCUUCAUGCCUUUCUACAGU
753
ACUGUAGAAAGGCAUGAAGCAUU
754





D-1295
[INVAB]UGCUUCAUGCCUUUCUACAGU
755
ACUGUAGAAAGGCAUGAAGCAUU
756





D-1296
[INVAB]GUUCCUGCUUCAUGCCUUUUU
757
AAAGGCAUGAAGCAGGAACUU
758





D-1297
[INVAB]CCUGCUUCAUGCCUUUCUAUU
759
UAGAAAGGCAUGAAGCAGGUU
760





D-1298
[INVAB]CUUCAUGCCUUUCUACAGUUU
761
ACUGUAGAAAGGCAUGAAGUU
762





D-1299
[INVAB]UUCCUGCUUCAUGCCUUUCUA
763
UAGAAAGGCAUGAAGCAGGAAUU
764





D-1300
UUCCUGCUUCAUGCCUUUCU{INVAB}
765
UAGAAAGGCAUGAAGCAGGAAUU
766





D-1301
[INVAB]UUCCUGCUUCAUGCCUUUCUA
767
UAGAAAGGCAUGAAGCAGGAAUU
768





D-1302
UUCCUGCUUCAUGCCUUUCU{INVAB}
769
UAGAAAGGCAUGAAGCAGGAAUU
770





D-1303
[INVAB]UUCCUGCUUCAUGCCUUUCUA
771
UAGAAAGGCAUGAAGCAGGAAUU
772





D-1304
[INVAB]UUCCUGCUUCAUGCCUUUCUA
773
UAGAAAGGCAUGAAGCAGGAAUU
774





D-1305
[INVAB]UUCCUGCUUCAUGCCUUUCUA
775
UAGAAAGGCAUGAAGCAGGAAUU
776





D-1306
[INVAB]UUCCUGCUUCAUGCCUUUCUA
777
UAGAAAGGCAUGAAGCAGGAAUU
778





D-1307
[INVAB]UUCCUGCUUCAUGCCUUUCUA
779
UAGAAAGGCAUGAAGCAGGAAUU
780





D-1308
[INVAB]UUCCUGCUUCAUGCCUUUCUA
781
UAGAAAGGCAUGAAGCAGGAAUU
782





D-1309
[INVAB]UCAUGCCUUUCUACAGUGGCU
783
AGCCACUGUAGAAAGGCAUGAUU
784





D-1310
UCAUGCCUUUCUACAGUGGC{INVAB}
785
AGCCACUGUAGAAAGGCAUGAUU
786





D-1311
[INVAB]UCAUGCCUUUCUACAGUGGCU
787
AGCCACUGUAGAAAGGCAUGAUU
788





D-1312
UCAUGCCUUUCUACAGUGGC{INVAB}
789
AGCCACUGUAGAAAGGCAUGAUU
790





D-1313
[INVAB]UCAUGCCUUUCUACAGUGGCU
791
AGCCACUGUAGAAAGGCAUGAUU
792





D-1314
[INVAB]UCAUGCCUUUCUACAGUGGCU
793
AGCCACUGUAGAAAGGCAUGAUU
794





D-1315
UCAUGCCUUUCUACAGUGGC{INVAB}
795
AGCCACUGUAGAAAGGCAUGAUU
796





D-1316
[INVAB]UCAUGCCUUUCUACAGUGGCU
797
AGCCACUGUAGAAAGGCAUGAUU
798





D-1317
[INVAB]UCAUGCCUUUCUACAGUGGCU
799
AGCCACUGUAGAAAGGCAUGAUU
800





D-1318
[INVAB]UCAUGCCUUUCUACAGUGGCU
801
AGCCACUGUAGAAAGGCAUGAUU
802





D-1319
[INVAB]UGCUUCAUGCCUUUCUACAGU
803
ACUGUAGAAAGGCAUGAAGCAUU
804





D-1320
UGCUUCAUGCCUUUCUACAG{INVAB}
805
ACUGUAGAAAGGCAUGAAGCAUU
806





D-1321
UGCUUCAUGCCUUUCUACAG{INVAB}
807
ACUGUAGAAAGGCAUGAAGCAUU
808





D-1322
[INVAB]UGCUUCAUGCCUUUCUACAGU
809
ACUGUAGAAAGGCAUGAAGCAUU
810





D-1323
[INVAB]CUUCAUGCCUUUCUACAGUUU
811
ACUGUAGAAAGGCAUGAAGUU
812





D-1324
[INVAB]UGCUUCAUGCCUUUCUACAGU
813
ACUGUAGAAAGGCAUGAAGCAUU
814





D-1325
[INVAB]GCUUCAUGCCUUUCUACAUUU
815
AUGUAGAAAGGCAUGAAGCUU
816





D-1326
[INVAB]CAUGCCUUUCUACAGUGGUUU
817
ACCACUGUAGAAAGGCAUGUU
818





D-1327
[INVAB]CUGCUUCAUGCCUUUCUAAUU
819
UUAGAAAGGCAUGAAGCAGUU
820





D-1328
[INVAB]GCUUCAUGCCUUUCUACAAUU
821
UUGUAGAAAGGCAUGAAGCUU
822





D-1329
[INVAB]UUCAUGCCUUUCUACAGUAUU
823
UACUGUAGAAAGGCAUGAAUU
824





D-1330
[INVAB]GUUCCUGCUUCAUGCCUUUUU
825
AAAGGCAUGAAGCAGGAACUU
826





D-1331
AUGUUCCUGCUUCAUGCCUU{INVAB}
827
AAAGGCAUGAAGCAGGAACAUUU
828





D-1332
[INVAB]AUGUUCCUGCUUCAUGCCUUU
829
AAAGGCAUGAAGCAGGAACAUUU
830





D-1333
[INVAB]GUUCCUGCUUCAUGCCUUUUU
831
AAAGGCAUGAAGCAGGAACUU
832





D-1334
AUGUUCCUGCUUCAUGCCUU{INVAB}
833
AAAGGCAUGAAGCAGGAACAUUU
834





D-1335
[INVAB]AUGUUCCUGCUUCAUGCCUUU
835
AAAGGCAUGAAGCAGGAACAUUU
836





D-1336
[INVAB]GUUCCUGCUUCAUGCCUUUUU
837
AAAGGCAUGAAGCAGGAACUU
838





D-1337
AUGUUCCUGCUUCAUGCCUU{INVAB}
839
AAAGGCAUGAAGCAGGAACAUUU
840





D-1338
[INVAB]AUGUUCCUGCUUCAUGCCUUU
841
AAAGGCAUGAAGCAGGAACAUUU
842





D-1339
[INVAB]AUGUUCCUGCUUCAUGCCUUU
843
AAAGGCAUGAAGCAGGAACAUUU
844





D-1340
[INVAB]AUGUUCCUGCUUCAUGCCUUU
845
AAAGGCAUGAAGCAGGAACAUUU
846





D-1341
[INVAB]GCUUCAUGCCUUUCUACAGUA
847
UACUGUAGAAAGGCAUGAAGCUU
848





D-1342
[INVAB]GCUUCAUGCCUUUCUACAGUA
849
UACUGUAGAAAGGCAUGAAGCUU
850





D-1343
[INVAB]UUCAUGCCUUUCUACAGUAUU
851
UACUGUAGAAAGGCAUGAAUU
852





D-1344
[INVAB]GCUUCAUGCCUUUCUACAGUA
853
UACUGUAGAAAGGCAUGAAGCUU
854





D-1345
GCUUCAUGCCUUUCUACAGU{INVAB}
855
UACUGUAGAAAGGCAUGAAGCUU
856





D-1346
[INVAB]GCGGCUUCCUGGGCUUCUAUU
857
UAGAAGCCCAGGAAGCCGCUU
858





D-1347
[INVAB]AUGGCUUCCAGAUAUGCCUUU
859
AGGCAUAUCUGGAAGCCAUUU
860





D-1348
[INVAB]ACAUGGCUUCCAGAUAUGCCU
861
AGGCAUAUCUGGAAGCCAUGUUU
862





D-1349
[INVAB]ACAUGGCUUCCAGAUAUGCCU
863
AGGCAUAUCUGGAAGCCAUGUUU
864





D-1350
[INVAB]CAACGUACCCUUCAUUGAUGU
865
ACAUCAAUGAAGGGUACGUUGUU
866





D-1351
[INVAB]CAACGUACCCUUCAUUGAUGU
867
ACAUCAAUGAAGGGUACGUUGUU
868





D-1352
[INVAB]ACGUACCCUUCAUUGAUGUUU
869
ACAUCAAUGAAGGGUACGUUU
870





D-1353
CUGCUUCAUGCCUUUCUACA{INVAB}
871
AUGUAGAAAGGCAUGAAGCAGUU
872





D-1354
[INVAB]CUGCUUCAUGCCUUUCUACAU
873
AUGUAGAAAGGCAUGAAGCAGUU
874





D-1355
[INVAB]GCUUCAUGCCUUUCUACAUUU
875
AUGUAGAAAGGCAUGAAGCUU
876





D-1356
CUGCUUCAUGCCUUUCUACA{INVAB}
877
AUGUAGAAAGGCAUGAAGCAGUU
878





D-1357
[INVAB]CUGCUUCAUGCCUUUCUACAU
879
AUGUAGAAAGGCAUGAAGCAGUU
880





D-1358
CUGCUUCAUGCCUUUCUACA{INVAB}
881
AUGUAGAAAGGCAUGAAGCAGUU
882





D-1359
[INVAB]CUGCUUCAUGCCUUUCUACA
883
AUGUAGAAAGGCAUGAAGCAGUU
884



{INVAB}








D-1360
[INVAB]GCUUCAUGCCUUUCUACAUUU
885
AUGUAGAAAGGCAUGAAGCUU
886





D-1361
[INVAB]CUUCAUGCCUUUCUACAGUUU
887
ACUGUAGAAAGGCAUGAAGUU
888





D-1362
UGCUUCAUGCCUUUCUACAG{INVAB}
889
ACUGUAGAAAGGCAUGAAGCAUU
890





D-1363
[INVAB]CUGCUUCAUGCCUUUCUACAU
891
AUGUAGAAAGGCAUGAAGCAGUU
892





D-1364
CUGCUUCAUGCCUUUCUACA{INVAB}
893
AUGUAGAAAGGCAUGAAGCAGUU
894





D-1365
CUGCUUCAUGCCUUUCUACA{INVAB}
895
AUGUAGAAAGGCAUGAAGCAGUU
896





D-1366
[INVAB]CUUCAUCCCUUUCUACAGUUU
897
ACUGUAGAAAGGGAUGAAGUU
898





D-1367
[INVAB]GCUUCAUCCCUUUCUACAUUU
899
AUGUAGAAAGGGAUGAAGCUU
900





D-1368
UGCUUCAUCCCUUUCUACAG{INVAB}
901
ACUGUAGAAAGGGAUGAAGCAUU
902





D-1369
CUGCUUCAUCCCUUUCUACA{INVAB}
903
AUGUAGAAAGGGAUGAAGCAGUU
904





D-1370
[INVAB]ACAUUGCUCUUUCACCUGAUU
905
UCAGGUGAAAGAGCAAUGUUU
906





D-1371
CUGCUUCAUGCCUUUCUACA{INVAB}
907
AUGUAGAAAGGCAUGAAGCAGUU
908





D-1372
CUGCUUCAUGCCUUUCUACA{INVAB}
909
AUGUAGAAAGGCAUGAAGCAGUU
910





D-1373
CUGCUUCAUGCCUUUCUACA{INVAB}
911
AUGUAGAAAGGCAUGAAGCAGUU
912





D-1374
CUGCUUCAUGCCUUUCUACA{INVAB}
913
AUGUAGAAAGGCAUGAAGCAGUU
914





D-1375
CUGCUUCAUGCCUUUCUACA{INVAB}
915
AUGUAGAAAGGCAUGAAGCAGUU
916





D-1376
CUGCUUCAUGCCUUUCUACA{INVAB}
917
AUGUAGAAAGGCAUGAAGCAGUU
918





D-1377
CUGCUUCAUGCCUUUCUACA{INVAB}
919
AUGUAGAAAGGCAUGAAGCAGUU
920





D-1378
CUGCUUCAUGCCUUUCUACA{INVAB}
921
AUGUAGAAAGGCAUGAAGCAGUU
922





D-1379
CUGCUUCAUGCCUUUCUACA{INVAB}
923
AUGUAGAAAGGCAUGAAGCAGUU
924





D-1380
CUGCUUCAUGCCUUUCUACA{INVAB}
925
AUGUAGAAAGGCAUGAAGCAGUU
926





D-1381
CUGCUUCAUGCCUUUCUACA{INVAB}
927
AUGUAGAAAGGCAUGAAGCAGUU
928





D-1381
[INVAB]CUUCAUGCC[DT]UUCUACAGUUU
929
ACUGUAGAAAGGCAUGAAGUU
930





D-1382
[INVAB]CUUCAUGCCUUUCUACAGUUU
931
ACUGUAGAAAGGCAUGAAGUU
932





D-1383
[INVAB]CUUCAUGCCUUUCUACAGUUU
933
ACUGUAGAAAGGCAUGAAGUU
934





D-1384
[INVAB]CUUCAUGCCUUUCUACAGUUU
935
ACUGUAGAAAGGCAUGAAGUU
936





D-1385
[INVAB]CUUCAUGCCUUUCUACAGUUU
937
ACUGUAGAAAGGCAUGAAGUU
938





D-1386
[INVAB]CUUCAUGC[DC]UUUCUACAGUUU
939
ACUGUAGAAAGGCAUGAAGUU
940





D-1387
[INVAB]CUUCAUGCCU[DT]UCUACAGUUU
941
ACUGUAGAAAGGCAUGAAGUU
942





D-1388
[INVAB]GCUUCAUGGGAUUCUACAUUU
943
AUGUAGAAUCCCAUGAAGCUU
944





D-1389
[INVAB]CUUCAUGCGAAUCUACAGUUU
945
ACUGUAGAUUCGCAUGAAGUU
946





D-1390
CUGCUUCAUGCCUUUCUACA{INVAB}
947
UUGUAGAAAGGCAUGAAGCAGUU
948





D-1391
[INVAB]CUGCUUCAUGCCUUUCUACAA
949
UUGUAGAAAGGCAUGAAGCAGUU
950





D-1392
CUGCUUCAUGCCUUUCUACA{INVDA}
951
UUGUAGAAAGGCAUGAAGCAGUU
952





D-1393
CUGCUUCAUGGGAUUCUACA{INVAB}
953
AUGUAGAAUCCCAUGAAGCAGUU
954





D-1394
[INVAB]CUGCUUCAUGGGAUUCUACAU
955
AUGUAGAAUCCCAUGAAGCAGUU
956





D-1395
[INVAB]CUUCAUGCCUUUCUACAGUUU
957
ACUGUAGAAAGGCAUGAAGUU
958





D-1396
[INVAB]CUUCAUGCCUUUCUACAGUUU
959
ACUGUAGAAAGGCAUGAAGUU
960





D-1397
[INVAB]GCUUCAUGCCUUUCUACAUUU
961
AUGUAGAAAGGCAUGAAGCUU
962





D-1398
[INVAB]UGCUUCAUGCCUUUCUACAG
963
ACUGUAGAAAGGCAUGAAGCAUU
964



{INVAB}








D-1399
[INVAB]CUUCAUGCCUUUCUACAGUUU
965
ACUGUAGAAAGGCAUGAAGUU
966





D-1400
UGCUUCAUGCCUUUCUACAG{INVAB}
967
ACUGUAGAAAGGCAUGAAGCAUU
968





D-1401
UGCUUCAUGCCUUUCUACAG{INVAB}
969
ACUGUAGAAAGGCAUGAAGCAUU
970





D-1402
UGCUUCAUGCCUUUCUACAG{INVAB}
971
ACUGUAGAAAGGCAUGAAGCAUU
972





D-1403
[INVAB]CUUCAUGCCUUUCUACAGUUU
973
ACUGUAGAAAGGCAUGAAGUU
974





D-1404
UGCUUCAUGCCUUUCUACAG{INVAB}
975
ACUGUAGAAAGGCAUGAAGCAUU
976





D-1405
AUGCCUUUCUACAGUGGCUU{INVAB}
977
AGCCACUGUAGAAAGGCAUGAUU
978





D-1406
UCAUGCCUUUCUACAGUGGC{INVAB}
979
AGCCACUGUAGAAAGGCAUGAUU
980





D-1407
[INVAB]AUGCCUUUCUACAGUGGCUUU
981
AGCCACUGUAGAAAGGCAUUU
982





D-1408
[INVAB]AUGCCUUUCUACAGUGGCUUU
983
AGCCACUGUAGAAAGGCAUUU
984





D-1409
[INVAB]UCAUGCCUUUCUACAGUGGCU
985
AGCCACUGUAGAAAGGCAUGAUU
986





D-1410
UCAUGCCUUUCUACAGUGGC{INVAB}
987
AGCCACUGUAGAAAGGCAUGAUU
988





D-1411
[INVAB]AUGCCUUUCUACAGUGGCUUU
989
AGCCACUGUAGAAAGGCAUUU
990





D-1412
UCAUGCCUUUCUACAGUGGC{INVAB}
991
AGCCACUGUAGAAAGGCAUGAUU
992





D-1413
UCAUGCCUUUCUACAGUGGC{INVAB}
993
AGCCACUGUAGAAAGGCAUGAUU
994





D-1414
[INVAB]UCAUGCCUUUCUACAGUGGC
995
AGCCACUGUAGAAAGGCAUGAUU
996



{INVAB}








D-1415
[INVAB]AUGCCUUUCUACAGUGGCAUU
997
UGCCACUGUAGAAAGGCAUUU
998





D-1416
UCAUGCCUUUCUACAGUGGC{INVAB}
999
UGCCACUGUAGAAAGGCAUGAUU
1000





D-1417
[INVAB]UCAUGCCUUUCUACAGUGGCA
1001
UGCCACUGUAGAAAGGCAUGAUU
1002





D-1418
UCAUGCCUUUCUACAGUGGC{INVDA}
1003
UGCCACUGUAGAAAGGCAUGAUU
1004





D-1419
CUGCUUCAUGCCUUUCUACA{INVAB}
1005
AUGUAGAAAGGCAUGAAGCAGUU
1006





D-1420
CUGCUUCAUGCCUUUCUACA{INVAB}
1007
UUGUAGAAAGGCAUGAAGCAGUU
1008





D-1421
CUGCUUCAUGCCUUUCUACA{INVDA}
1009
UUGUAGAAAGGCAUGAAGCAGUU
1010





D-1422
UCAUGCCUUUCUACAGUGGC{INVAB}
1011
UGCCACUGUAGAAAGGCAUGAUU
1012





D-1423
UCAUGCCUUUCUACAGUGGC{INVDA}
1013
UGCCACUGUAGAAAGGCAUGAUU
1014





D-1424
[INVAB]CUUCAUGCCUUUCUACAGUUU
1015
ACUGUAGAAAGGCAUGAAGUU
1016





D-1425
CUGCUUCAUGCCUUUCUACA{INVAB}
1017
AUGUA[AB]AAAGGCAUGAAGCAGUU
1018





D-1426
CUGCUUCAUGCCUUUCUACA{INVAB}
1019
AUGUA[AB]AAAGGCAUGAAGCAGUU
1020





D-1427
UGCUUCAUGCCUUUCUACAG{INVAB}
1021
ACUGU[AB]GAAAGGCAUGAAGCAUU
1022





D-1428
UGCUUCAUGCCUUUCUACAG{INVAB}
1023
ACUGU[AB]GAAAGGCAUGAAGCAUU
1024





D-1429
UCAUGCCUUUCUACAGUGGC{INVAB}
1025
AGCCA[AB]UGUAGAAAGGCAUGAUU
1026





D-1430
UCAUGCCUUUCUACAGUGGC{INVAB}
1027
AGCCA[AB]UGUAGAAAGGCAUGAUU
1028





D-1431
CUGCUUCAUGCCUUUCUACA{INVAB}
1029
AU[GNA-G]UAGAAAGGCAUGAAGCAGUU
1030





D-1432
CUGCUUCAUGCCUUUCUACA{INVAB}
1031
AUG[GNA-U]AGAAAGGCAUGAAGCAGUU
1032





D-1433
CUGCUUCAUGCCUUUCUACA{INVAB}
1033
AUGU[GNA-A]GAAAGGCAUGAAGCAGUU
1034





D-1434
CUGCUUCAUGCCUUUCUACA{INVAB}
1035
AUGUA[GNA-G]AAAGGCAUGAAGCAGUU
1036





D-1435
CUGCUUCAUGCCUUUCUACA{INVAB}
1037
AUGUAG[GNA-A]AAGGCAUGAAGCAGUU
1038





D-1436
CUGCUUCAUGCCUUUCUACA{INVAB}
1039
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1040





D-1437
CUGCUUCAUGCCUUUCUACA{INVAB}
1041
AUGUAGAAAGGCAUGAAGCAGUU
1042





D-1438
[INVAB]CUGCUUCAUGCCUUUCUACAU
1043
AUGUAGAAAGGCAUGAAGCAGUU
1044





D-1439
[INVAB]CUGCUUCAUGCCUUUCUACA
1045
AUGUAGAAAGGCAUGAAGCAGUU
1046



{INVAB}








D-1440
CUGCUUCAUGCCUUUCUACA{INVAB}
1047
AUGUAGAAAGGCAUGAAGCAGUU
1048





D-1441
CUGCUUCAUGCCUUUCUACA{INVAB}
1049
AUGUAGAAAGGCAUGAAGCAGUU
1050





D-1442
[INVAB]CUGCUUCAUGCCUUUCUACAU
1051
AUGUAGAAAGGCAUGAAGCAGUU
1052





D-1443
CUGCUUCAUGCCUUUCUACA{INVAB}
1053
AUGUAGAAAGGCAUGAAGCAGUU
1054





D-1444
CUGCUUCAUGCCUUUCUACA{INVAB}
1055
AUGUAGAAAGGCAUGAAGCAGUU
1056





D-1445
[INVAB]CUGCUUCAUGCCUUUCUACAU
1057
AUGUAGAAAGGCAUGAAGCAGUU
1058





D-1446
[INVAB]CUGCUUCAUGCCUUUCUACA
1059
AUGUAGAAAGGCAUGAAGCAGUU
1060



{INVAB}








D-1447
CUGCUUCAUGCCUUUCUACA{INVAB}
1061
A[AB]GUAGAAAGGCAUGAAGCAGUU
1062





D-1448
CUGCUUCAUGCCUUUCUACA{INVAB}
1063
AU[AB]UAGAAAGGCAUGAAGCAGUU
1064





D-1449
CUGCUUCAUGCCUUUCUACA{INVAB}
1065
AUG[AB]AGAAAGGCAUGAAGCAGUU
1066





D-1450
CUGCUUCAUGCCUUUCUACA{INVAB}
1067
AUGU[AB]GAAAGGCAUGAAGCAGUU
1068





D-1451
CUGCUUCAUGCCUUUCUACA{INVAB}
1069
AUGUAG[AB]AAGGCAUGAAGCAGUU
1070





D-1452
CUGCUUCAUGCCUUUCUACA{INVAB}
1071
AUGUAGA[AB]AGGCAUGAAGCAGUU
1072





D-1453
CAACGUACCCUUCAUUGAUG{INVAB}
1073
ACAUCAAUGAAGGGUACGUUGUU
1074





D-1454
CAACGUACCCUUCAUUGAUG{INVAB}
1075
ACAUCAAUGAAGGGUACGUUGUU
1076





D-1455
ACAUGGCUUCCAGAUAUGCC{INVAB}
1077
AGGCAUAUCUGGAAGCCAUGUUU
1078





D-1456
ACAUGGCUUCCAGAUAUGCC{INVAB}
1079
AGGCAUAUCUGGAAGCCAUGUUU
1080





D-1457
CUGCUUCAUGCCUUUCUACA{INVAB}
1081
AUGUAGAAAGGCAUGAAGCAGUU
1082





D-1458
CUGCUUCAUGCCUUUCUACA{INVAB}
1083
AUGUAGAAAGGCAUGAAGCAGUU
1084





D-1459
CUGCUUCAUGCCUUUCUACA{INVAB}
1085
AUGUAGAAAGGCAUGAAGCAGUU
1086





D-1460
CUGCGGCUUCCUGGGCUUCU{INVAB}
1087
UAGAAGCCCAGGAAGCCGCAGUU
1088





D-1461
CUGCGGCUUCCUGGGCUUCU{INVAB}
1089
UAGAAGCCCAGGAAGCCGCAGUU
1090





D-1462
UGCUUCAUGCCUUUCUACAG{INVAB}
1091
ACUGUAGAAAGGCAUGAAGCAUU
1092





D-1463
[INVAB]UGCUUCAUGCCUUUCUACAGU
1093
ACUGUAGAAAGGCAUGAAGCAUU
1094





D-1464
[INVAB]UGCUUCAUGCCUUUCUACAG
1095
ACUGUAGAAAGGCAUGAAGCAUU
1096



{INVAB}








D-1465
UGCUUCAUGCCUUUCUACAG{INVAB}
1097
ACUGUAGAAAGGCAUGAAGCAUU
1098





D-1466
UGCUUCAUGCCUUUCUACAG{INVAB}
1099
ACUGUAGAAAGGCAUGAAGCAUU
1100





D-1467
UGCUUCAUGCCUUUCUACAG{INVAB}
1101
ACUGUAGAAAGGCAUGAAGCAUU
1102





D-1468
CUGCUUCAUGCCUUUCUACAU
1103
AUGUAGAAAGGCAUGAAGCAGUU
1104





D-1469
CUGCUUCAUGCCUUUCUACAU
1105
AUGUAGAAAGGCAUGAAGCAGUU
1106





D-1470
CUGCUUCAUGCCUUUCUACAU
1107
AUGUAGAAAGGCAUGAAGCAGUU
1108





D-1471
UGCUUCAUGCCUUUCUACAG{INVAB}
1109
UCUGUAGAAAGGCAUGAAGCAUU
1110





D-1472
UGCUUCAUGCCUUUCUACAG{INVDA}
1111
UCUGUAGAAAGGCAUGAAGCAUU
1112





D-1473
CUGCUUCAUGCCUUUCUACA{INVDT}
1113
AUGUAGAAAGGCAUGAAGCAGUU
1114





D-1474
CUGCUUCAUGCCUUUCUACA{INVAB}
1115
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1116





D-1475
CUGCUUCAUGCCUUUCUACA{INVAB}
1117
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1118





D-1476
CUGCUUCAUGCCUUUCUACA{INVAB}
1119
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1120





D-1477
CUGCUUCAUGCCUUUCUACA{INVAB}
1121
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1122





D-1478
CUGCUUCAUGCCUUUCUACA{INVAB}
1123
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1124





D-1479
CUGCUUCAUGCCUUUCUACA{INVAB}
1125
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1126





D-1480
CUGCUUCAUGCCUUUCUACA{INVAB}
1127
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1128





D-1481
CUGCUUCAUGCCUUUCUACA{INVAB}
1129
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1130





D-1482
CUGCUUCAUGCCUUUCUACA{INVAB}
1131
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1132





D-1483
CUGCUUCAUGCCUUUCUACA{INVAB}
1133
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1134





D-1484
CUGCUUCAUGCCUUUCUACA{INVAB}
1135
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1136





D-1485
CUGCUUCAUGCCUUUCUACA{INVAB}
1137
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1138





D-1486
CUGCUUCAUGCCUUUCUACA{INVAB}
1139
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1140





D-1487
CUGCUUCAUGCCUUUCUACA{INVAB}
1141
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1142





D-1488
CUGCUUCAUGCCUUUCUACA{INVAB}
1143
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1144





D-1489
CUGCUUCAUGCCUUUCUACA{INVAB}
1145
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1146





D-1490
CUGCUUCAUGCCUUUCUACA{INVAB}
1147
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1148





D-1491
CUGCUUCAUGCCUUUCUACA{INVAB}
1149
AUGUAGA[GNA-A]A[DG]GCAUGAAGCAGUU
1150





D-1492
CUGCUUCAUGCCUUUCUACA{INVAB}
1151
AUGUAGA[GNA-A][DA]GGCAUGAAGCAGUU
1152





D-1493
CUGCUUCAUGCCUUUCUACA{INVAB}
1153
AUGUAGA[GNA-A]AG[DG]CAUGAAGCAGUU
1154





D-1494
CUGCUUCAUGCCUUUCUACA{INVAB}
1155
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1156





D-1495
CUGCUUCAUGCCUUUCUACA{INVAB}
1157
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1158





D-1496
CUGCUUCAUGCCUUUCUACA{INVAB}
1159
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1160





D-1497
CUGCUUCAUGCCUUUCUACA{INVAB}
1161
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1162





D-1498
CUGCUUCAUGCCUUUCUACA{INVAB}
1163
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1164





D-1499
CUGCUUCAUGCCUUUCUACA{INVAB}
1165
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1166





D-1500
CUGCUUCAUGCCUUUCUACA{INVAB}
1167
AUGUAGAAAGGCAUGAAGCAGUU
1168





D-1501
UGCUUCAUGCCUUUCUACAG{INVDA}
1169
U[GNA-C]UGUAGAAAGGCAUGAAGCAUU
1170





D-1502
UGCUUCAUGCCUUUCUACAG{INVDA}
1171
UC[GNA-U]GUAGAAAGGCAUGAAGCAUU
1172





D-1503
UGCUUCAUGCCUUUCUACAG{INVDA}
1173
UCUG[GNA-U]AGAAAGGCAUGAAGCAUU
1174





D-1504
UGCUUCAUGCCUUUCUACAG{INVDA}
1175
UCUGU[GNA-A]GAAAGGCAUGAAGCAUU
1176





D-1505
UGCUUCAUGCCUUUCUACAG{INVDA}
1177
UCUGUAG[GNA-A]AAGGCAUGAAGCAUU
1178





D-1506
UGCUUCAUGCCUUUCUACAG{INVDA}
1179
U[AB]UGUAGAAAGGCAUGAAGCAUU
1180





D-1507
UGCUUCAUGCCUUUCUACAG{INVDA}
1181
UC[AB]GUAGAAAGGCAUGAAGCAUU
1182





D-1508
UGCUUCAUGCCUUUCUACAG{INVDA}
1183
UCU[AB]UAGAAAGGCAUGAAGCAUU
1184





D-1509
UGCUUCAUGCCUUUCUACAG{INVDA}
1185
UCUG[AB]AGAAAGGCAUGAAGCAUU
1186





D-1510
UGCUUCAUGCCUUUCUACAG{INVDA}
1187
UCUGU[AB]GAAAGGCAUGAAGCAUU
1188





D-1511
UGCUUCAUGCCUUUCUACAG{INVDA}
1189
UCUGUA[AB]AAAGGCAUGAAGCAUU
1190





D-1512
UGCUUCAUGCCUUUCUACAG{INVDA}
1191
UCUGUAG[AB]AAGGCAUGAAGCAUU
1192





D-1513
UCAUGCCUUUCUACAGUGGC{INVDT}
1193
AGCCACUGUAGAAAGGCAUGAUU
1194





D-1514
UCAUGCCUUUCUACAGUGGC{INVAB}
1195
UGCCACUGUAGAAAGGCAUGAUU
1196





D-1515
UCAUGCCUUUCUACAGUGGC{INVDA}
1197
UGCCACUGUAGAAAGGCAUGAUU
1198





D-1516
UCCUGCUUCAUGCCUUUCUA{INVDT}
1199
AUAGAAAGGCAUGAAGCAGGAUU
1200





D-1517
UCCUGCUUCAUGCCUUUCUA{INVAB}
1201
UUAGAAAGGCAUGAAGCAGGAUU
1202





D-1518
UCCUGCUUCAUGCCUUUCUA{INVDA}
1203
UUAGAAAGGCAUGAAGCAGGAUU
1204





D-1519
UAUGUUCCUGCUUCAUGCCU{INVDT}
1205
AAGGCAUGAAGCAGGAACAUAUU
1206





D-1520
UAUGUUCCUGCUUCAUGCCU{INVAB}
1207
UAGGCAUGAAGCAGGAACAUAUU
1208





D-1521
UAUGUUCCUGCUUCAUGCCU{INVDA}
1209
UAGGCAUGAAGCAGGAACAUAUU
1210





D-1522
UCCUGCUUCAUGCCUUUCUA{INVAB}
1211
AUAGAAAGGCAUGAAGCAGGAUU
1212





D-1523
UAUGUUCCUGCUUCAUGCCU{INVAB}
1213
AAGGCAUGAAGCAGGAACAUAUU
1214





D-1524
UCAUGCCUUUCUACAGUGGC{INVDT}
1215
AGCCACUGUAGAAAGGCAUGAUU
1216





D-1525
UCCUGCUUCAUGCCUUUCUA{INVDT}
1217
AUAGAAAGGCAUGAAGCAGGAUU
1218





D-1526
UCCUGCUUCAUGCCUUUCUA{INVDA}
1219
UUAGAAAGGCAUGAAGCAGGAUU
1220





D-1527
UAUGUUCCUGCUUCAUGCCU{INVDA}
1221
UAGGCAUGAAGCAGGAACAUAUU
1222





D-1528
UGCUUCAUGCCUUUCUACAG{INVDA}
1223
UCUGUA[GNA-G]AAAGGCAUGAAGCAUU
1224





D-1529
CUGCUUCAUGCCUUUCUACA{INVAB}
1225
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1226





D-1530
CUGCUUCAUGCCUUUCUACA{INVAB}
1227
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1228





D-1531
CUGCUUCAUGCCUUUCUACA{INVAB}
1229
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1230





D-1532
CUGCUUCAUGCCUUUCUACA{INVAB}
1231
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1232





D-1533
CUGCUUCAUGCCUUUCUACA{INVAB}
1233
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1234





D-1534
CUGCUUCAUGCCUUUCUACA{INVAB}
1235
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1236





D-1535
CUGCUUCAUGCCUUUCUACA{INVAB}
1237
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1238





D-1536
CUGCUUCAUGCCUUUCUACA{INVAB}
1239
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1240





D-1537
CUGCUUCAUGCCUUUCUACA{INVAB}
1241
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1242





D-1538
CUGCUUCAUGCCU[LNA-
1243
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1244



T]UCUACA{INVAB}








D-1539
CUGCUUCAUGCC[LNA-
1245
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1246



T]UUCUACA{INVAB}








D-1540
CUGCUUCAUGCCUU[LNA-
1247
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1248



T]CUACA{INVAB}








D-1541
CUGCUUCAUGCCUUUC[LNA-
1249
AUGU[GNA-A]GAAAGGCAUGAAGCAGUU
1250



T]ACA{INVAB}








D-1542
CUGCUUCAUGCCUUUCU[LNA-
1251
AUG[GNA-U]AGAAAGGCAUGAAGCAGUU
1252



A]CA{INVAB}








D-1543
CUGCUUCAUGCCUUUCUAC[LNA-
1253
A[GNA-U]GUAGAAAGGCAUGAAGCAGUU
1254



A]{INVAB}








D-1544
CUGCUUCAUGCCUU[LNA-
1255
AUGUAG[AB]AAGGCAUGAAGCAGUU
1256



T]CUACA{INVAB}








D-1545
CUGCUUCAUGCCUUUC[LNA-
1257
AUGU[AB]GAAAGGCAUGAAGCAGUU
1258



T]ACA{INVAB}








D-1546
CUGCUUCAUGCCUUUCU[LNA-
1259
AUG[AB]AGAAAGGCAUGAAGCAGUU
1260



A]CA{INVAB}








D-1547
CUGCUUCAUGCCUUUCUACA{INVAB}
1261
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1262





D-1548
CUGCUUCAUGCCUUUCUACA{INVAB}
1263
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1264





D-1549
CUGCUUCAUGCCU[LNA-
1265
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1266



T]UCUACA{INVAB}








D-1550
CUGCUUCAUGCCU[LNA-
1267
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1268



T]UCUACA{INVAB}








D-1551
CUGCUUCAUGCCU[LNA-
1269
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1270



T]UCUACA{INVAB}








D-1552
CUGCUUCAUGCCU[LNA-
1271
AUGUAGA[GNA-A]AGGCAUGAAGCAGUU
1272



T]UCUACA{INVAB}








D-1553
UGCUUCAUGCCUUUCU[LNA-
1273
UCUG[AB]AGAAAGGCAUGAAGCAUU
1274



A]CAG{INVDA}








D-1554
UGCUUCAUGCCUUUC[LNA-
1275
UCUGU[AB]GAAAGGCAUGAAGCAUU
1276



T]ACAG{INVDA}








D-1555
UGCUUCAUGCCUU[LNA-
1277
UCUGUAG[AB]AAGGCAUGAAGCAUU
1278



T]CUACAG{INVDA}








D-1556
UGCUUCAUGCCUUUCUAC[LNA-
1279
UC[GNA-U]GUAGAAAGGCAUGAAGCAUU
1280



A]G{INVDA}








D-1557
UGCUUCAUGCCUUUCU[LNA-
1281
UCUG[GNA-U]AGAAAGGCAUGAAGCAUU
1282



A]CAG{INVDA}








D-1558
UGCUUCAUGCCUUUC[LNA-
1283
UCUGU[GNA-A]GAAAGGCAUGAAGCAUU
1284



T]ACAG{INVDA}








D-1559
UGCUUCAUGCCUUUCUACA[LNA-
1285
U[AB]UGUAGAAAGGCAUGAAGCAUU
1286



G]{INVDA}








D-1560
UGCUUCAUGCCUUUCUAC[LNA-
1287
UC[AB]GUAGAAAGGCAUGAAGCAUU
1288



A]G{INVDA}








D-1561
UCAUGCCUUUCUACA[LNA-
1289
AGCCA[AB]UGUAGAAAGGCAUGAUU
1290



G]UGGC{INVAB}








D-1562
UCAUGCCUUUCUACAG[LNA-
1291
AGCCA[AB]UGUAGAAAGGCAUGAUU
1292



T]GGC{INVAB}








D-1563
UCAUGCCUUUCUACAGUGGC{INVAB}
1293
AGCCA[AB]UGUAGAAAGGCAUGAUU
1294





D-1564
GGUAUGUUCCUGCUUCAUUUU
2257
AAUGAAGCAGGAACAUACCUU
2258





D-1565
GGUAUGUUCCUGCUUCAUAUU
2259
UAUGAAGCAGGAACAUACCUU
2260





D-1566
GUAUGUUCCUGCUUCAUGUUU
2261
ACAUGAAGCAGGAACAUACUU
2262





D-1567
UAUGUUCCUGCUUCAUGCAUU
2263
UGCAUGAAGCAGGAACAUAUU
2264





D-1568
AUGUUCCUGCUUCAUGCCUUU
2265
AGGCAUGAAGCAGGAACAUUU
2266





D-1569
UGUUCCUGCUUCAUGCCUUUU
2267
AAGGCAUGAAGCAGGAACAUU
2268





D-1570
GUUCCUGCUUCAUGCCUUUUU
2269
AAAGGCAUGAAGCAGGAACUU
2270





D-1571
UUCCUGCUUCAUGCCUUUUUU
2271
AAAAGGCAUGAAGCAGGAAUU
2272





D-1572
UUCCUGCUUCAUGCCUUUAUU
2273
UAAAGGCAUGAAGCAGGAAUU
2274





D-1573
UCCUGCUUCAUGCCUUUCUUU
2275
AGAAAGGCAUGAAGCAGGAUU
2276





D-1574
CCUGCUUCAUGCCUUUCUAUU
2277
UAGAAAGGCAUGAAGCAGGUU
2278





D-1575
CUGCUUCAUGCCUUUCUAUUU
2279
AUAGAAAGGCAUGAAGCAGUU
2280





D-1576
CUGCUUCAUGCCUUUCUAAUU
2281
UUAGAAAGGCAUGAAGCAGUU
2282





D-1577
UGCUUCAUGCCUUUCUACAUU
2283
UGUAGAAAGGCAUGAAGCAUU
2284





D-1578
GCUUCAUGCCUUUCUACAUUU
2285
AUGUAGAAAGGCAUGAAGCUU
2286





D-1579
GCUUCAUGCCUUUCUACAAUU
2287
UUGUAGAAAGGCAUGAAGCUU
2288





D-1580
CUUCAUGCCUUUCUACAGUUU
2289
ACUGUAGAAAGGCAUGAAGUU
2290





D-1581
UUCAUGCCUUUCUACAGUUUU
2291
AACUGUAGAAAGGCAUGAAUU
2292





D-1582
UUCAUGCCUUUCUACAGUAUU
2293
UACUGUAGAAAGGCAUGAAUU
2294





D-1583
UCAUGCCUUUCUACAGUGUUU
2295
ACACUGUAGAAAGGCAUGAUU
2296





D-1584
UCAUGCCUUUCUACAGUGAUU
2297
UCACUGUAGAAAGGCAUGAUU
2298





D-1585
CAUGCCUUUCUACAGUGGUUU
2299
ACCACUGUAGAAAGGCAUGUU
2300





D-1586
CAUGCCUUUCUACAGUGGAUU
2301
UCCACUGUAGAAAGGCAUGUU
2302





D-1587
AUGCCUUUCUACAGUGGCUUU
2303
AGCCACUGUAGAAAGGCAUUU
2304





D-1588
AUGCCUUUCUACAGUGGCAUU
2305
UGCCACUGUAGAAAGGCAUUU
2306





D-1589
UGCCUUUCUACAGUGGCCUUU
2307
AGGCCACUGUAGAAAGGCAUU
2308





D-1590
GCCUUUCUACAGUGGCCUUUU
2309
AAGGCCACUGUAGAAAGGCUU
2310





D-1591
GGUAUGUUCCUGCUUCAUCUU
2311
GAUGAAGCAGGAACAUACCUU
2312





D-1592
GUAUGUUCCUGCUUCAUCCUU
2313
GGAUGAAGCAGGAACAUACUU
2314





D-1593
UAUGUUCCUGCUUCAUCCCUU
2315
GGGAUGAAGCAGGAACAUAUU
2316





D-1594
AUGUUCCUGCUUCAUCCCCUU
2317
GGGGAUGAAGCAGGAACAUUU
2318





D-1595
UGUUCCUGCUUCAUCCCCUUU
2319
AGGGGAUGAAGCAGGAACAUU
2320





D-1596
GUUCCUGCUUCAUCCCCUUUU
2321
AAGGGGAUGAAGCAGGAACUU
2322





D-1597
UUCCUGCUUCAUCCCCUUCUU
2323
GAAGGGGAUGAAGCAGGAAUU
2324





D-1598
UCCUGCUUCAUCCCCUUCUUU
2325
AGAAGGGGAUGAAGCAGGAUU
2326





D-1599
CCUGCUUCAUCCCCUUCUAUU
2327
UAGAAGGGGAUGAAGCAGGUU
2328





D-1600
CUGCUUCAUCCCCUUCUACUU
2329
GUAGAAGGGGAUGAAGCAGUU
2330





D-1601
UGCUUCAUCCCCUUCUACAUU
2331
UGUAGAAGGGGAUGAAGCAUU
2332





D-1602
GCUUCAUCCCCUUCUACAGUU
2333
CUGUAGAAGGGGAUGAAGCUU
2334





D-1603
CUUCAUCCCCUUCUACAGUUU
2335
ACUGUAGAAGGGGAUGAAGUU
2336





D-1604
UUCAUCCCCUUCUACAGUGUU
2337
CACUGUAGAAGGGGAUGAAUU
2338





D-1605
UCAUCCCCUUCUACAGUGGUU
2339
CCACUGUAGAAGGGGAUGAUU
2340





D-1606
CAUCCCCUUCUACAGUGGCUU
2341
GCCACUGUAGAAGGGGAUGUU
2342





D-1607
AUCCCCUUCUACAGUGGCCUU
2343
GGCCACUGUAGAAGGGGAUUU
2344





D-1608
UCCCCUUCUACAGUGGCCUUU
2345
AGGCCACUGUAGAAGGGGAUU
2346





D-1609
CCCCUUCUACAGUGGCCUUUU
2347
AAGGCCACUGUAGAAGGGGUU
2348





D-1610
CUGCUUCAUGCCUUUCUACAA
2441
AUGUAGAAAGGCAUGAAGCAGUU
2442





D-1611
CUGCUUCAUGCCUUUCUACAA
2443
AUGUAGAAAGGCAUGAAGCAGUU
2444





D-1612
CUGCUUCAUGCCUUUCUACAA
2445
AUGUAGAAAGGCAUGAAGCAGUU
2446





D-1613
CUGCUUCAUGCCUUUCUACAA
2447
AUGUAGAAAGGCAUGAAGCAGUU
2448





D-1614
CUGCUUCAUGCCUUUCUACAA
2449
AUGUAGAAAGGCAUGAAGCAGUU
2450





D-1615
CUGCUUCAUGCCUUUCUACAA
2451
AUGUAGAAAGGCAUGAAGCAGUU
2452





D-1616
CUGCUUCAUGCCUUUCUACAA
2453
AUGUAGAAAGGCAUGAAGCAGUU
2454





D-1617
CUGCUUCAUGCCUUUCUACAA
2455
AUGUAGAAAGGCAUGAAGCAGUU
2456





D-1618
CUGCUUCAUGCCUUUCUACAA
2457
AUGUAGAAAGGCAUGAAGCAGUU
2458





D-1619
CUGCUUCAUGCCUUUCUACAA
2459
AUGUAGAAAGGCAUGAAGCAGUU
2460





D-1620
CUGCUUCAUGCCUUUCUACAA
2461
AUGUAGAAAGGCAUGAAGCAGUU
2462





D-1621
CUGCUUCAUGCCUUUCUACAA
2463
AUGUAGAAAGGCAUGAAGCAGUU
2464





D-1622
CUGCUUCAUGCCUUUCUACAA
2465
AUGUAGAAAGGCAUGAAGCAGUU
2466





D-1623
CUGCUUCAUGCCUUUCUACAA
2467
AUGUAGAAAGGCAUGAAGCAGUU
2468





D-1624
CUGCUUCAUGCCUUUCUACAA
2469
AUGUAGAAAGGCAUGAAGCAGUU
2470





D-1625
CUGCUUCAUGCCUUUCUACAA
2471
AUGUAGAAAGGCAUGAAGCAGUU
2472





D-1626
CUGCUUCAUGCCUUUCUACAA
2473
AUGUAGAAAGGCAUGAAGCAGUU
2474





D-1627
CUGCUUCAUGCCUUUCUACAA
2475
AUGUAGAAAGGCAUGAAGCAGUU
2476





D-1628
CUGCUUCAUGCCUUUCUACAA
2477
AUGUAGAAAGGCAUGAAGCAGUU
2478





D-1629
CUGCUUCAUGCCUUUCUACAA
2479
AUGUAGAAAGGCAUGAAGCAGUU
2480





D-1630
CUGCUUCAUGCCUUUCUACAA
2481
AUGUAGAAAGGCAUGAAGCAGUU
2482





D-1631
CUGCUUCAUGCCUUUCUACAA
2483
AUGUAGAAAGGCAUGAAGCAGUU
2484





D-1632
CUGCUUCAUGCCUUUCUACAA
2485
AUGUAGAAAGGCAUGAAGCAGUU
2486





D-1633
CUGCUUCAUGCCUUUCUACAA
2487
AUGUAGAAAGGCAUGAAGCAGUU
2488





D-1634
CUGCUUCAUGCCUUUCUACAA
2489
AUGUAGAAAGGCAUGAAGCAGUU
2490





D-1635
CUGCUUCAUGCCUUUCUACAA
2491
AUGUAGAAAGGCAUGAAGCAGUU
2492





D-1636
CUGCUUCAUGCCUUUCUACAA
2493
AUGUAGAAAGGCAUGAAGCAGUU
2494





D-1637
UGCUUCAUGCCUUUCUACAGA
2495
UCUGUAGAAAGGCAUGAAGCAUU
2496





D-1638
UGCUUCAUGCCUUUCUACAGA
2497
UCUGUAGAAAGGCAUGAAGCAUU
2498





D-1639
UGCUUCAUGCCUUUCUACAGA
2499
UCUGUAGAAAGGCAUGAAGCAUU
2500





D-1640
UGCUUCAUGCCUUUCUACAGA
2501
UCUGUAGAAAGGCAUGAAGCAUU
2502





D-1641
UGCUUCAUGCCUUUCUACAGA
2503
UCUGUAGAAAGGCAUGAAGCAUU
2504





D-1642
UGCUUCAUGCCUUUCUACAGA
2505
UAUGUAGAAAGGCAUGAAGCAUU
2506





D-1643
UGCUUCAUGCCUUUCUACAGA
2507
UCAGUAGAAAGGCAUGAAGCAUU
2508





D-1644
UGCUUCAUGCCUUUCUACAGA
2509
UCUAUAGAAAGGCAUGAAGCAUU
2510





D-1645
UGCUUCAUGCCUUUCUACAGA
2511
UCUGAAGAAAGGCAUGAAGCAUU
2512





D-1646
UGCUUCAUGCCUUUCUACAGA
2513
UCUGUAGAAAGGCAUGAAGCAUU
2514





D-1647
UGCUUCAUGCCUUUCUACAGA
2515
UCUGUAAAAAGGCAUGAAGCAUU
2516





D-1648
UGCUUCAUGCCUUUCUACAGA
2517
UCUGUAGAAAGGCAUGAAGCAUU
2518





D-1649
UCAUGCCUUUCUACAGUGGCT
2519
AGCCACUGUAGAAAGGCAUGAUU
2520





D-1650
UCAUGCCUUUCUACAGUGGCA
2521
UGCCACUGUAGAAAGGCAUGAUU
2522





D-1651
UCAUGCCUUUCUACAGUGGCA
2523
UGCCACUGUAGAAAGGCAUGAUU
2524





D-1652
UCCUGCUUCAUGCCUUUCUAT
2525
AUAGAAAGGCAUGAAGCAGGAUU
2526





D-1653
UCCUGCUUCAUGCCUUUCUAA
2527
UUAGAAAGGCAUGAAGCAGGAUU
2528





D-1654
UCCUGCUUCAUGCCUUUCUAA
2529
UUAGAAAGGCAUGAAGCAGGAUU
2530





D-1655
UAUGUUCCUGCUUCAUGCCUT
2531
AAGGCAUGAAGCAGGAACAUAUU
2532





D-1656
UAUGUUCCUGCUUCAUGCCUA
2533
UAGGCAUGAAGCAGGAACAUAUU
2534





D-1657
UAUGUUCCUGCUUCAUGCCUA
2535
UAGGCAUGAAGCAGGAACAUAUU
2536





D-1658
UCCUGCUUCAUGCCUUUCUAA
2537
AUAGAAAGGCAUGAAGCAGGAUU
2538





D-1659
UAUGUUCCUGCUUCAUGCCUA
2539
AAGGCAUGAAGCAGGAACAUAUU
2540





D-1660
UAUGUUCCUGCUUCAUGCCUA
2541
AAGGCAUGAAGCAGGAACAUAUU
2542





D-1661
UCAUGCCUUUCUACAGUGGCT
2543
AGCCACUGUAGAAAGGCAUGAUU
2544





D-1662
UCCUGCUUCAUGCCUUUCUAT
2545
AUAGAAAGGCAUGAAGCAGGAUU
2546





D-1663
UCCUGCUUCAUGCCUUUCUAA
2547
UUAGAAAGGCAUGAAGCAGGAUU
2548





D-1664
UAUGUUCCUGCUUCAUGCCUA
2549
UAGGCAUGAAGCAGGAACAUAUU
2550





D-1665
UGCUUCAUGCCUUUCUACAGA
2551
UCUGUAGAAAGGCAUGAAGCAUU
2552





D-1666
CUGCUUCAUGCCUUUCUACAA
2553
AUGUAGAAAGGCAUGAAGCAGUU
2554





D-1667
CUGCUUCAUGCCUUUCUACAA
2555
AUGUAGAAAGGCAUGAAGCAGUU
2556





D-1668
CUGCUUCAUGCCUUUCUACAA
2557
AUGUAGAAAGGCAUGAAGCAGUU
2558





D-1669
CUGCUUCAUGCCUUUCUACAA
2559
AUGUAGAAAGGCAUGAAGCAGUU
2560





D-1670
CUGCUUCAUGCCUUUCUACAA
2561
AUGUAGAAAGGCAUGAAGCAGUU
2562





D-1671
CUGCUUCAUGCCUUUCUACAA
2563
AUGUAGAAAGGCAUGAAGCAGUU
2564





D-1672
CUGCUUCAUGCCUUUCUACAA
2565
AUGUAGAAAGGCAUGAAGCAGUU
2566





D-1673
CUGCUUCAUGCCUUUCUACAA
2567
AUGUAGAAAGGCAUGAAGCAGUU
2568





D-1674
CUGCUUCAUGCCUUUCUACAA
2569
AUGUAGAAAGGCAUGAAGCAGUU
2570





D-1675
CUGCUUCAUGCCUTUCUACAA
2571
AUGUAGAAAGGCAUGAAGCAGUU
2572





D-1676
CUGCUUCAUGCCTUUCUACAA
2573
AUGUAGAAAGGCAUGAAGCAGUU
2574





D-1677
CUGCUUCAUGCCUUTCUACAA
2575
AUGUAGAAAGGCAUGAAGCAGUU
2576





D-1678
CUGCUUCAUGCCUUUCTACAA
2577
AUGUAGAAAGGCAUGAAGCAGUU
2578





D-1679
CUGCUUCAUGCCUUUCUACAA
2579
AUGUAGAAAGGCAUGAAGCAGUU
2580





D-1680
CUGCUUCAUGCCUUUCUACAA
2581
AUGUAGAAAGGCAUGAAGCAGUU
2582





D-1681
CUGCUUCAUGCCUUTCUACAA
2583
AUGUAGAAAGGCAUGAAGCAGUU
2584





D-1682
CUGCUUCAUGCCUUUCTACAA
2585
AUGUAGAAAGGCAUGAAGCAGUU
2586





D-1683
CUGCUUCAUGCCUUUCUACAA
2587
AUGAAGAAAGGCAUGAAGCAGUU
2588





D-1684
CUGCUUCAUGCCUUUCUACAA
2589
AUGUAGAAAGGCAUGAAGCAGUU
2590





D-1685
CUGCUUCAUGCCUUUCUACAA
2591
AUGUAGAAAGGCAUGAAGCAGUU
2592





D-1686
CUGCUUCAUGCCUTUCUACAA
2593
AUGUAGAAAGGCAUGAAGCAGUU
2594





D-1687
CUGCUUCAUGCCUTUCUACAA
2595
AUGUAGAAAGGCAUGAAGCAGUU
2596





D-1688
CUGCUUCAUGCCUTUCUACAA
2597
AUGUAGAAAGGCAUGAAGCAGUU
2598





D-1689
CUGCUUCAUGCCUTUCUACAA
2599
AUGUAGAAAGGCAUGAAGCAGUU
2600





D-1690
UGCUUCAUGCCUUUCUACAGA
2601
UCUGAAGAAAGGCAUGAAGCAUU
2602





D-1691
UGCUUCAUGCCUUUCTACAGA
2603
UCUGUAGAAAGGCAUGAAGCAUU
2604





D-1692
UGCUUCAUGCCUUTCUACAGA
2605
UCUGUAGAAAGGCAUGAAGCAUU
2606





D-1693
UGCUUCAUGCCUUUCUACAGA
2607
UCUGUAGAAAGGCAUGAAGCAUU
2608





D-1694
UGCUUCAUGCCUUUCUACAGA
2609
UCUGUAGAAAGGCAUGAAGCAUU
2610





D-1695
UGCUUCAUGCCUUUCTACAGA
2611
UCUGUAGAAAGGCAUGAAGCAUU
2612





D-1696
UGCUUCAUGCCUUUCUACAGA
2613
UAUGUAGAAAGGCAUGAAGCAUU
2614





D-1697
UGCUUCAUGCCUUUCUACAGA
2615
UCAGUAGAAAGGCAUGAAGCAUU
2616





D-1698
UCAUGCCUUUCUACAGUGGCA
2617
AGCCAAUGUAGAAAGGCAUGAUU
2618





D-1699
UCAUGCCUUUCUACAGTGGCA
2619
AGCCAAUGUAGAAAGGCAUGAUU
2620





D-1700
UCAUGCCUUUCUACAGUGGCA
2621
AGCCAAUGUAGAAAGGCAUGAUU
2622





D-1701
CUGCUUCAUGCCUUUCUACAA
2623
AUGUAGAAAGGCAUGAAGCAGUU
2624





D-1702
CUGCUUCAUGCCUUUCUACAA
2625
AUAUAGAAAGGCAUGAAGCAGUU
2626





D-1703
UGCUUCAUGCCUUUCUACAGA
2627
UCUAUAGAAAGGCAUGAAGCAUU
2628





D-1704
UGCUUCAUGCCUUUCUACAGA
2629
UCUGUAGAAAGGCAUGAAGCAUU
2630





D-1705
UCAUGCCUUUCUACAGUGGCA
2631
AGCCAAUGUAGAAAGGCAUGAUU
2632





D-1706
UCAUGCCUUUCUACAGUGGCA
2633
AGCCAAUGUAGAAAGGCAUGAUU
2634





D-1707
UCAUGCCUUUCUACAGUGGCA
2635
AGCCAAUGUAGAAAGGCAUGAUU
2636





D-1708
UCAUGCCUUUCUACAGUGGCA
2637
AGCCAAUGUAGAAAGGCAUGAUU
2638





D-1709
CUGCUUCAUGCCUUUCUACAA
2639
A[MEO-I]GUAGAAAGGCAUGAAGCAGUU
2640





D-1710
CUGCUUCAUGCCUUUCUACAA
2641
AUG[MEO-I]AGAAAGGCAUGAAGCAGUU
2642





D-1711
CUGCUUCAUGCCUUUCUACAA
2643
AUGU[MEO-I]GAAAGGCAUGAAGCAGUU
2644





D-1712
CUGCUUCAUGCCUUUCUACAA
2645
AUGUA[MEO-I]AAAGGCAUGAAGCAGUU
2646





D-1713
CUGCUUCAUGCCUUUCUACAA
2647
AUGUAGA[MEO-I]AGGCAUGAAGCAGUU
2648





D-1714
CUGCUUCAUGCCUUUCUACCA
2649
A[MEO-I]GUAGAAAGGCAUGAAGCAGUU
2650





D-1715
CUGCUUCAUGCCUUUCUCCAA
2651
AUG[MEO-I]AGAAAGGCAUGAAGCAGUU
2652





D-1716
CUGCUUCAUGCCUUCCUACAA
2653
AUGUAG[MEO-I]AAGGCAUGAAGCAGUU
2654





D-1717
CUGCUUCAUGCCUCUCUACAA
2655
AUGUAGA[MEO-I]AGGCAUGAAGCAGUU
2656





D-1718
CUGCUUCAUGCCUUUCUACUA
2657
AAGUAGAAAGGCAUGAAGCAGUU
2658





D-1719
CUGCUUCAUGCCUUUCUUCAA
2659
AUGAAGAAAGGCAUGAAGCAGUU
2660





D-1720
CUGCUUCAUGCCUUUCAACAA
2661
AUGUUGAAAGGCAUGAAGCAGUU
2662





D-1721
CUGCUUCAUGCCUAUCUACAA
2663
AUGUAGAUAGGCAUGAAGCAGUU
2664





D-1722
UGCUUCAUGCCUUUCUACACA
2665
A[MEO-I]UGUAGAAAGGCAUGAAGCAUU
2666





D-1723
UGCUUCAUGCCUUUCUACAGA
2667
AC[MEO-I]GUAGAAAGGCAUGAAGCAUU
2668





D-1724
UGCUUCAUGCCUUUCUACAGA
2669
ACUG[MEO-I]AGAAAGGCAUGAAGCAUU
2670





D-1725
UGCUUCAUGCCUUUCUACAGA
2671
ACUGU[MEO-I]GAAAGGCAUGAAGCAUU
2672





D-1726
UGCUUCAUGCCUUUCUACAGA
2673
ACUGUA[MEO-I]AAAGGCAUGAAGCAUU
2674





D-1727
UGCUUCAUGCCUUUCUACCGA
2675
AC[MEO-I]GUAGAAAGGCAUGAAGCAUU
2676





D-1728
UGCUUCAUGCCUUUCUCCAGA
2677
ACUG[MEO-I]AGAAAGGCAUGAAGCAUU
2678





D-1729
UGCUUCAUGCCUUUCCACAGA
2679
ACUGU[MEO-I]GAAAGGCAUGAAGCAUU
2680





D-1730
CUGCUUCAUGCCUUUCUAAAA
2681
AUUUAGAAAGGCAUGAAGCAGUU
2682





D-1731
CUGCUUCAUGCCUUUAUACAA
2683
AUGUAUAAAGGCAUGAAGCAGUU
2684





D-1732
CUGCUUCAUGCCUUUCUACAA
2685
AUGUAGAAAGGCAUGAAGCAGUU
2686





D-1733
CUGCUUCAUGCCUTUCUACAA
2687
AUGUAGAAAGGCAUGAAGCAGUU
2688





D-1734
UGCUUCAUGCCUUUCUACAGA
2689
UCUGUAGAAAGGCAUGAAGCAUU
2690





D-1735
UGCUUCAUGCCUUTCUACAGA
2691
UCUGUAGAAAGGCAUGAAGCAUU
2692





D-1736
UCAUGCCUUUCUACAGUGGCA
2693
AGCCAAUGUAGAAAGGCAUGAUU
2694





D-1737
CUGCUUCAUGCCUUUCUACAA
2695
AUGUAAAAAGGCAUGAAGCAGUU
2696





D-1738
UCAUGCCUUUCUACAGUGGCA
2697
AGCCAAUGUAGAAAGGCAUGAUU
2698





D-1739
CUGCUUCAUGCCUUUCUACAA
2699
AU[MEO-I]UAGAAAGGCAUGAAGCAGUU
2700





D-1740
CUGCUUCAUGCCUUUCUAGAA
2701
AUCUAGAAAGGCAUGAAGCAGUU
2702





D-1741
CUGCUUCAUGCCUUACUACAA
2703
AUGUAGUAAGGCAUGAAGCAGUU
2704





D-1742
UGCUUCAUGCCUUUCUACAGA
2705
ACU[MEO-I]UAGAAAGGCAUGAAGCAUU
2706





D-1743
UGCUUCAUGCCUUUCUACAGA
2707
ACUGUAG[MEO-I]AAGGCAUGAAGCAUU
2708





D-1744
UGCUUCAUGCCUUCCUACAGA
2709
ACUGUAG[MEO-I]AAGGCAUGAAGCAUU
2710





D-1745
CUGCUUCAUGCCUUUCUAUAA
2711
AUAUAGAAAGGCAUGAAGCAGUU
2712





D-1746
CUGCUUCAUGCCUUUUUACAA
2713
AUGUAAAAAGGCAUGAAGCAGUU
2714





D-1747
CUGCUUCAUGCCUUUCUACAA
2715
AUGUAGAAAGGCAUGAAGCAGUU
2716





D-1748
CUGCUUCAUGCCUUUCUACAA
2717
AUGUAGAAAGGCAUGAAGCAGUU
2718





D-1749
CUGCUUCAUGCCUUTCUACAA
2719
AUGUAGAAAGGCAUGAAGCAGUU
2720





D-1750
CUGCUUCAUGCCUTUCUACAA
2721
AUGUAGAAAGGCAUGAAGCAGUU
2722





D-1751
CUGCUUCAUGCCUUUCUACAA
2723
AAGUAGAAAGGCAUGAAGCAGUU
2724





D-1752
CUGCUUCAUGCCUUUCUACAA
2725
AUGUAGAAAGGCAUGAAGCAGUU
2726





D-1753
UGCUUCAUGCCUUUCUACAGA
2727
UCUGUAAAAAGGCAUGAAGCAUU
2728





D-1754
CUGCUUCAUGCCUUUCUACAA
2729
AUGUAG[MEO-I]AAGGCAUGAAGCAGUU
2730





D-1755
CUGCUUCAUGCCUUUCUACAA
2731
AUGUAGAAAGGCAUGAAGCAGUU
2732





D-1756
CUGCUUCAUGCCUTUCUACAA
2733
AUGUAGAAAGGCAUGAAGCAGUU
2734





D-1757
CUGCUUCAUGCCUUUCUACAA
2735
AUGUAGAAAGGCAUGAAGCAGUU
2736





D-1758
CUGCUUCAUGCCUUUCUACAA
2737
AUGUAGAAAGGCAUGAAGCAGUU
2738





D-1759
CUGCUUCAUGCCUUUCUACAA
2739
AUGUAGAAAGGCAUGAAGCAGUU
2740





D-1760
CUGCUUCAUGCCUUUCUACAA
2741
AUGUAGAAAGGCAUGAAGCAGUU
2742





D-1761
CUGCUUCAUGCCUUUCUACAA
2743
AUGUAGAAAGGCAUGAAGCAGUU
2744





D-1762
CUGCUUCAUGCCUUUCUACAA
2745
AUGUAGAAAGGCAUGAAGCAGUU
2746





D-1763
CUGCUUCAUGCCUTUCUACAA
2747
AUGUAGAAAGGCAUGAAGCAGUU
2748





D-1764
CUGCUUCAUGCCUUUCUACAA
2749
AUGUAGAAAGGCAUGAAGCAGUU
2750





D-1765
UCAUGCCUUUCUACAGUGGCA
2751
AGCCAAUGUAGAAAGGCAUGAUU
2752





D-1766
UCAUGCCUUUCUACAGUGGCA
2753
AGCCAAUGUAGAAAGGCAUGAUU
2754





D-1767
CUGCUUCAUGGGAUUCUACAA
2755
AUGUAGAAUCCCAUGAAGCAGUU
2756





D-1768
CUGCUUCAUGCCUUUCUACAA
2757
AUGUAGAAAGGCAUGAAGCAGUU
2758





D-1769
GUAUGUUCCUGCUUCAUGCCA
2759
AGGCAUGAAGCAGGAACAUACUU
2760





D-1770
UGUCCUGCUUCAUGCCUUUCA
2761
AGAAAGGCAUGAAGCAGGACAUU
2762





D-1771
GCUUCAUGCCUUUCUACAGUA
2763
AACUGUAGAAAGGCAUGAAGCUU
2764





D-1772
CUUCAUGCCUUUCUACAGUGA
2765
ACACUGUAGAAAGGCAUGAAGUU
2766





D-1773
UUCAUGCCUUUCUACAGUGGA
2767
ACCACUGUAGAAAGGCAUGAAUU
2768





D-1774
CUGCUUCAUGCCUUUCAACAA
2769
AUGUUGAAAGGCAUGAAGCAGUU
2770





D-1775
CUGCUUCAUGCCUUUCUCCAA
2771
AUG[MEO-I]AGAAAGGCAUGAAGCAGUU
2772





D-1776
UGCUUCAUGCCUUUCUCCAGA
2773
ACUG[MEO-I]AGAAAGGCAUGAAGCAUU
2774





D-1777
CUGCUUCAUGCCUUUCUACAA
2775
AUGU[MEO-I]GAAAGGCAUGAAGCAGUU
2776





D-1778
UGCUUCAUGCCUUUCUACAGA
2777
ACUGU[MEO-I]GAAAGGCAUGAAGCAUU
2778





D-1779
CUGCUUCAUGCCUUUCUACAA
2779
AUGUA[MEO-I]AAAGGCAUGAAGCAGUU
2780





D-1780
UGCUUCAUGCCUUUCUACAGA
2781
ACUGUA[MEO-I]AAAGGCAUGAAGCAUU
2782





D-1781
CUGCUUCAUGCCUUCCUACAA
2783
AUGUAG[MEO-I]AAGGCAUGAAGCAGUU
2784





D-1782
CUGCUUCAUGCCUCUCUACAA
2785
AUGUAGA[MEO-I]AGGCAUGAAGCAGUU
2786





D-1783
UGCUUCAUGCCUUUCUACAGA
2787
UCUGAAGAAAGGCAUGAAGCAUU
2788





D-1784
UGCUUCAUGCCUUUCUACAGA
2789
UCUGUAGAAAGGCAUGAAGCAUU
2790





D-1785
UCAUGCCUUUCUACAGUGGCA
2791
AGCCAAUGUAGAAAGGCAUGAUU
2792





D-1786
CUGCUUCAUGCCUUUCTACAA
2793
AUGUAGAAAGGCAUGAAGCAGUU
2794





D-1787
CUGCUUCAUGCCUUUCTACAA
2795
AUGUAGAAAGGCAUGAAGCAGUU
2796





D-1788
UGCUUCAUGCCUUUCTACAGA
2797
UCUGUAGAAAGGCAUGAAGCAUU
2798





D-1789
UGCUUCAUGCCUUUCUACAGA
2799
UCUGUAGAAAGGCAUGAAGCAUU
2800





D-1790
UCAUGCCUUUCUACAGUGGCA
2801
AGCCAAUGUAGAAAGGCAUGAUU
2802





D-1791
CUGCUUCAUGCCUUUCUACAA
2803
AU[MEO-I]UAGAAAGGCAUGAAGCAGUU
2804





D-1792
CUGCUUCAUGCCUUUCUACAA
2805
AUGUAG[MEO-I]AAGGCAUGAAGCAGUU
2806





D-1793
CUGCUUCAUGCCUUACUACAA
2807
AUGUAGUAAGGCAUGAAGCAGUU
2808





D-1794
UGCUUCAUGCCUUUCUACAGA
2809
ACUGUAG[MEO-I]AAGGCAUGAAGCAUU
2810





D-1795
UGCUUCAUGCCUUCCUACAGA
2811
ACUGUAG[MEO-I]AAGGCAUGAAGCAUU
2812





D-1796
UGCUUCAUGCCUUUCUACAGA
2813
ACU[MEO-I]UAGAAAGGCAUGAAGCAUU
2814





D-1797
CUGCUUCAUGCCUUUCUACAA
2815
AUGU[MEO-I]GAAAGGCAUGAAGCAGUU
2816





D-1798
CUGCUUCAUGCCUUUCUACAA
2817
AUGU[MEO-I]GAAAGGCAUGAAGCAGUU
2818





D-1799
CUGCUUCAUGCCUUUCUACAA
2819
AUGU[MEO-I]GAAAGGCAUGAAGCAGUU
2820





D-1800
CUGCUUCAUGCCUUUCUACAA
2821
AUGUAG[MEO-I]AAGGCAUGAAGCAGUU
2822





D-1801
UCAUGCCUUUCUACAGUGGCA
2823
AGCCAAUGUAGAAAGGCAUGAUU
2824





D-1802
UCAUGCCUUUCUACAGUGGCA
2825
AGCCAAUGUAGAAAGGCAUGAUU
2826





D-1803
CUGCUUCAUGGGAUUGUACAA
2827
AUGUACAAUCCCAUGAAGCAGUU
2828





D-1804
CUGCUUCAUGCCUUUCTACAA
2829
AUGU[MEO-I]GAAAGGCAUGAAGCAGUU
2830





D-1805
UGCUUCAUGCCUUUCUACAGA
2831
ACUGUA[MEO-I]AAAGGCAUGAAGCAUU
2832





D-1806
CUGCUUCAUGCCUTUCUACAA
2833
AUGUAGAAAGGCAUGAAGCAGUU
2834





D-1807
CUGCUUCAUGCCUTUCUACAA
2835
AUGUAGAAAGGCAUGAAGCAGUU
2836





D-1808
CUGCUUCAUGCCUUTCUACAA
2837
AUGUAG[MEO-I]AAGGCAUGAAGCAGUU
2838





D-1809
UCAUGCCUUUCUACAGUGGCA
2839
AGCCACUGUAGAAAGGCAUGAUU
2840





D-1810
UAUGUUCCUGCUUCAUGCCUA
2841
AAGGCAUGAAGCAGGAACAUAUU
2842





D-1811
UGCUUCAUGCCUUUCUACAGA
2843
ACUGUAGAAAGGCAUGAAGCAUU
2844





D-1812
UGUUCCUGCUUCAUGCCUUUA
2845
AAGGCAUGAAGCAGGAACAUU
2846





D-1813
CUGCUUCAUGCCUUUCUACAA
2847
AUGUAGAAAGGCAUGAAGCAGUU
2848





D-1814
UAUGUUCCUGCUUCAUGCCUA
2849
AAGGCAUGAAGCAGGAACAUAUU
2850





D-1815
UGUUCCUGCUUCAUGCCUA
2851
AAGGCAUGAAGCAGGAACAUU
2852





D-1816
UAUGUUCCUGCUUCAUGCCUUA
2853
AAGGCAUGAAGCAGGAACAUAUU
2854





D-1817
UAUGUUCCUGCUUCAUGCCUA
2855
AAGGCAUGAAGCAGGAACAUACC
2856





D-1818
UAUGUUCCUGCUUCAUGCCUUA
2857
AAGGCAUGAAGCAGGAACAUACC
2858





D-1819
UAUGUUCCUGCUUCAUGCCUA
2859
AAGGCAUGAAGCAGGAACAUAUU
2860





D-1820
UAUGUUCCUGCUUCAUGCGUA
2861
AACGCAUGAAGCAGGAACAUAUU
2862





D-1821
UAUGUUCCUGCUUCAUGGCUA
2863
AAGCCAUGAAGCAGGAACAUAUU
2864





D-1822
UAUGUUCCUGCUUCAAGCCUA
2865
AAGGCUUGAAGCAGGAACAUAUU
2866





D-1823
UAUGUUCCUGCUUCUUGCCUA
2867
AAGGCAAGAAGCAGGAACAUAUU
2868





D-1824
UAUGUUCCUGCUUGAUGCCUA
2869
AAGGCAUCAAGCAGGAACAUAUU
2870





D-1825
UAUGUUCCUGCUACAUGCCUA
2871
AAGGCAUGUAGCAGGAACAUAUU
2872





D-1826
UAUGUUCCUGCAUCAUGCCUA
2873
AAGGCAUGAUGCAGGAACAUAUU
2874





D-1827
UAUGUUCCUGGUUCAUGCCUA
2875
AAGGCAUGAACCAGGAACAUAUU
2876





D-1828
UAUGUUCCUCCUUCAUGCCUA
2877
AAGGCAUGAAGGAGGAACAUAUU
2878





D-1829
UAUGUUCCAGCUUCAUGCCUA
2879
AAGGCAUGAAGCUGGAACAUAUU
2880





D-1830
UAUGUUCGUGCUUCAUGCCUA
2881
AAGGCAUGAAGCACGAACAUAUU
2882





D-1831
UAUGUUGCUGCUUCAUGCCUA
2883
AAGGCAUGAAGCAGCAACAUAUU
2884





D-1832
UAUGUACCUGCUUCAUGCCUA
2885
AAGGCAUGAAGCAGGUACAUAUU
2886





D-1833
UAUGAUCCUGCUUCAUGCCUA
2887
AAGGCAUGAAGCAGGAUCAUAUU
2888





D-1834
UAUCUUCCUGCUUCAUGCCUA
2889
AAGGCAUGAAGCAGGAAGAUAUU
2890





D-1835
UAAGUUCCUGCUUCAUGCCUA
2891
AAGGCAUGAAGCAGGAACUUAUU
2892





D-1836
UUUGUUCCUGCUUCAUGCCUA
2893
AAGGCAUGAAGCAGGAACAAAUU
2894





D-1837
AAUGUUCCUGCUUCAUGCCUA
2895
AAGGCAUGAAGCAGGAACAUUUU
2896





D-1838
UCAUGCCUUUCUACAGUGGCA
2897
AGCCACUGUAGAAAGGCAUGAUU
2898





D-1839
UCAUGCCUUUCUACAGUGGGA
2899
ACCCACUGUAGAAAGGCAUGAUU
2900





D-1840
UCAUGCCUUUCUACAGUGCCA
2901
AGGCACUGUAGAAAGGCAUGAUU
2902





D-1841
UCAUGCCUUUCUACAGUCGCA
2903
AGCGACUGUAGAAAGGCAUGAUU
2904





D-1842
UCAUGCCUUUCUACAGAGGCA
2905
AGCCUCUGUAGAAAGGCAUGAUU
2906





D-1843
UCAUGCCUUUCUACACUGGCA
2907
AGCCAGUGUAGAAAGGCAUGAUU
2908





D-1844
UCAUGCCUUUCUACUGUGGCA
2909
AGCCACAGUAGAAAGGCAUGAUU
2910





D-1845
UCAUGCCUUUCUAGAGUGGCA
2911
AGCCACUCUAGAAAGGCAUGAUU
2912





D-1846
UCAUGCCUUUCUUCAGUGGCA
2913
AGCCACUGAAGAAAGGCAUGAUU
2914





D-1847
UCAUGCCUUUCAACAGUGGCA
2915
AGCCACUGUUGAAAGGCAUGAUU
2916





D-1848
UCAUGCCUUUGUACAGUGGCA
2917
AGCCACUGUACAAAGGCAUGAUU
2918





D-1849
UCAUGCCUAUCUACAGUGGCA
2919
AGCCACUGUAGAUAGGCAUGAUU
2920





D-1850
UCAUGCGUUUCUACAGUGGCA
2921
AGCCACUGUAGAAACGCAUGAUU
2922





D-1851
UCAUGGCUUUCUACAGUGGCA
2923
AGCCACUGUAGAAAGCCAUGAUU
2924





D-1852
UCAAGCCUUUCUACAGUGGCA
2925
AGCCACUGUAGAAAGGCUUGAUU
2926





D-1853
UCUUGCCUUUCUACAGUGGCA
2927
AGCCACUGUAGAAAGGCAAGAUU
2928





D-1854
UGAUGCCUUUCUACAGUGGCA
2929
AGCCACUGUAGAAAGGCAUCAUU
2930





D-1855
ACAUGCCUUUCUACAGUGGCA
2931
AGCCACUGUAGAAAGGCAUGUUU
2932





D-1856
UCAUGCCUUACUACAGUGGCA
2933
AGCCACUGUAGUAAGGCAUGAUU
2934





D-1857
AUGCCUUUCUACAGUGGCUUA
2935
AGCCACUGUAGAAAGGCAUUU
2936





D-1858
AUGCCUUUCUACAGUGGCA
2937
AGCCACUGUAGAAAGGCAUUU
2938





D-1859
UCAUGCCUUUCUACAGUGGCA
2939
AGCCACUGUAGAAAGGCAUGAUU
2940





D-1860
AAUGCCUUUCUACAGUGGCU
2941
AGCCACUGUAGAAAGGCAUUU
2942





D-1861
UCAUGCCUUUCUACAGUGGCUA
2943
AGCCACUGUAGAAAGGCAUGAUU
2944





D-1862
UCAUGCCUUUCUACAGUGGCA
2945
AGCCACUGUAGAAAGGCAUGAAG
2946





D-1863
UCAUGCCUUUCUACAGUGGCUA
2947
AGCCACUGUAGAAAGGCAUGAAG
2948





D-1864
UCAUGCCUUUCUACAGUGGCUA
2949
AGCCACUGUAGAAAGGCAUGAUU
2950





D-1865
UCAUGCCUUUCUACAGUGGCA
2951
AGCCACUGUAGAAAGGCAUGAAG
2952





D-1866
UCAUGCCUUUCUACAGUGGCUA
2953
AGCCACUGUAGAAAGGCAUGAAG
2954





D-1867
CUGCUUCAUGCCUUUCUACAA
2955
AUGUA[MEO-I]AAAGGCAUGAAGCAGUU
2956





D-1868
GCGGCUUCGACGGCUUCUAUU
2957
UAGAAGCCGUCGAAGCCGCUU
2958





D-1869
GCGGCUUCGACGGGUUCUAUU
2959
UAGAACCCGUCGAAGCCGCUU
2960





D-1870
GCGGCUUCGACGCCUUCUAUU
2961
UAGAAGGCGUCGAAGCCGCUU
2962





D-1871
GCGGCUUCGACCGCUUCUAUU
2963
UAGAAGCGGUCGAAGCCGCUU
2964





D-1872
GCGGCUUCCUGGGCUUCUAUU
2965
AUAGAAGCCCAGGAAGCCGCUU
2966





D-1873
AGCUUCAUGGGAUUGUACAUUU
2967
AUGUACAAUCCCAUGAAGCUU
2968





D-1874
UCAUGCCUUUGAUCACUGGCA
2969
AGCCAGUGAUCAAAGGCAUGAUU
2970





D-1875
GCGGCUUCCUGGGCUUCUAUU
2971
UAGAAGCCCAGGAAGCCGCUU
2972





D-1876
UGCUUCAUGCCUUUCUACAGA
2973
ACUGUAGAAAGGCAUGAAGCAUU
2974





D-1877
UCAUGCCUUUCUACAGUGGCA
2975
AGCCACUGUAGAAAGGCAUGAUU
2976





D-1878
CUGCUUCAUGCCUUUCUACAA
2977
AUGUAGAAAGGCAUGAAGCAGUU
2978





D-1879
CUGCUUCAUGCCUUUCUACAA
2979
AUGUAGAAAGGCAUGAAGCAGUU
2980





D-1880
CUGCUUCAUGCCUUUCUACAA
2981
AUGUAGAAAGGCAUGAAGCAGUU
2982





D-1881
UCAUGCCUUUCUACAGUGGCA
2983
UGCCACUGUAGAAAGGCAUGAUU
2984





D-1882
CUGCUUCAUGCCUUUCUACAA
2985
AUGUAGAAAGGCAUGAAGCAGUU
2986





D-1883
UGCUUCAUGCCUUUCUACAGA
2987
UCUGUAGAAAGGCAUGAAGCAUU
2988





D-1884
CUGCUUCAUGCCUUUCUACAT
2989
AUGUAGAAAGGCAUGAAGCAGUU
2990









To improve the potency and in vivo stability of PNPLA3 siRNA sequences, chemical modifications were incorporated into PNPLA3 siRNA molecules. Specifically, 2′-O-methyl and 2′-fluoro modifications of the ribose sugar were incorporated at specific positions within the PNPLA3 siRNAs. Phosphorothioate internucleotide linkages were also incorporated at the terminal ends of the antisense and/or sense sequences. Table 2 below depicts the modifications in the sense and antisense sequences for each of the modified PNPLA3 siRNAs. The nucleotide sequences in Table 2 and other parts of the application are listed according to the following notations: A, U, G, and C=corresponding ribonucleotide; dT=deoxythymidine; dA=deoxyadenosine; dC=deoxycytidine; dG=deoxyguanosine; invDT=inverted deoxythymidine; invDA=inverted deoxyadenosine; invDC=inverted deoxycytidine; invDG=inverted deoxyguanosin; a, u, g, and c=corresponding 2′-O-methyl ribonucleotide; Af, Uf, Gf, and Cf=corresponding 2′-deoxy-2′-fluoro (“2′-fluoro”) ribonucleotide; Ab=Abasic; MeO-I=2′ methoxy inosine; GNA=glycol nucleic acid; sGNA=glycol nucleic acid with 3′ phosphorothioate; LNA=locked nucleic acid. Insertion of an “s” in the sequence indicates that the two adjacent nucleotides are connected by a phosphorothiodiester group (e.g. a phosphorothioate internucleotide linkage). Unless indicated otherwise, all other nucleotides are connected by 3′-5′ phosphodiester groups. Each of the siRNA compounds in Table 2 comprises a 19 base pair duplex region with either a 2 nucleotide overhang at the 3′ end of both strands or bluntmer at one or both ends. The GalNAc3K2AhxC6 is:




embedded image









TABLE 2







siRNA sequences directed to PNPLA3 with modifications













SEQ ID

SEQ ID


Duplex

NO:

NO:


No.
Sense sequence (5′-3′)
(sense)
Antisense sequence (5′-3′)
(antisense)














D-2000
GfsgsGfcAfaUfaAfAfGfuAfcCfuGfcUfsusUf
167
asGfscAfgGfuAfcuuUfaUfuGfcCfcsUfsu
168





D-2001
CfsgsGfcCfaAfuGfUfCfcAfcCfaGfcUfsusUf
169
asGfscUfgGfuGfgacAfuUfgGfcCfgsUfsu
170





D-2002
GfsgsUfcCfaGfcCfUfGfaAfcUfuCfuUfsusUf
171
asAfsgAfaGfuUfcagGfcUfgGfaCfcsUfsu
172





D-2003
GfscsUfuCfaUfcCfCfCfuUfcUfaCfaGfsusUf
173
csUfsgUfaGfaAfgggGfaUfgAfaGfcsUfsu
174





D-2004
GfscsGfgCfuUfcCfUfGfgGfcUfuCfuAfsusUf
175
usAfsgAfaGfcCfcagGfaAfgCfcGfcsUfsu
176





D-2005
GfscsCfuCfuGfaGfCfUfgAfgUfuGfgUfsusUf
177
asCfscAfaCfuCfagcUfcAfgAfgGfcsUfsu
178





D-2006
GfsusGfaCfaAfcGfUfAfcCfcUfuCfaUfsusUf
179
asUfsgAfaGfgGfuacGfuUfgUfcAfcsUfsu
180





D-2007
CfscsCfgCfcUfcCfAfGfgUfcCfcAfaAfsusUf
181
usUfsuGfgGfaCfcugGfaGfgCfgGfgsUfsu
182





D-2008
CfsusUfcAfuCfcCfCfUfuCfuAfcAfgUfsusUf
183
asCfsuGfuAfgAfaggGfgAfuGfaAfgsUfsu
184





D-2009
GfsgsUfaUfgUfuCfCfUfgCfuUfcAfuGfsusUf
185
csAfsuGfaAfgCfaggAfaCfaUfaCfcsUfsu
186





D-2010
GfsusAfuGfuUfcCfUfGfcUfuCfaUfgCfsusUf
187
gsCfsaUfgAfaGfcagGfaAfcAfuAfcsUfsu
188





D-2011
UfsasUfgUfuCfcUfGfCfuUfcAfuGfcCfsusUf
189
gsGfscAfuGfaAfgcaGfgAfaCfaUfasUfsu
190





D-2012
AfsusGfuUfcCfuGfCfUfuCfaUfgCfcCfsusUf
191
gsGfsgCfaUfgAfagcAfgGfaAfcAfusUfsu
192





D-2013
UfsgsUfuCfcUfgCfUfUfcAfuGfcCfcUfsusUf
193
asGfsgGfcAfuGfaagCfaGfgAfaCfasUfsu
194





D-2014
GfsusUfcCfuGfcUfUfCfaUfgCfcCfuUfsusUf
195
asAfsgGfgCfaUfgaaGfcAfgGfaAfcsUfsu
196





D-2015
UfsusCfcUfgCfuUfCfAfuGfcCfcUfuCfsusUf
197
gsAfsaGfgGfcAfugaAfgCfaGfgAfasUfsu
198





D-2016
UfscsCfuGfcUfuCfAfUfgCfcCfuUfcUfsusUf
199
asGfsaAfgGfgCfaugAfaGfcAfgGfasUfsu
200





D-2017
CfscsUfgCfuUfcAfUfGfcCfcUfuCfuAfsusUf
201
usAfsgAfaGfgGfcauGfaAfgCfaGfgsUfsu
202





D-2018
CfsusGfcUfuCfaUfGfCfcCfuUfcUfaCfsusUf
203
gsUfsaGfaAfgGfgcaUfgAfaGfcAfgsUfsu
204





D-2019
UfsgsCfuUfcAfuGfCfCfcUfuCfuAfcAfsusUf
205
usGfsuAfgAfaGfggcAfuGfaAfgCfasUfsu
206





D-2020
GfscsUfuCfaUfgCfCfCfuUfcUfaCfaGfsusUf
207
csUfsgUfaGfaAfgggCfaUfgAfaGfcsUfsu
208





D-2021
CfsusUfcAfuGfcCfCfUfuCfuAfcAfgUfsusUf
209
asCfsuGfuAfgAfaggGfcAfuGfaAfgsUfsu
210





D-2022
UfsusCfaUfgCfcCfUfUfcUfaCfaGfuGfsusUf
211
csAfscUfgUfaGfaagGfgCfaUfgAfasUfsu
212





D-2023
UfscsAfuGfcCfcUfUfCfuAfcAfgUfgGfsusUf
213
csCfsaCfuGfuAfgaaGfgGfcAfuGfasUfsu
214





D-2024
CfsasUfgCfcCfuUfCfUfaCfaGfuGfgCfsusUf
215
gsCfscAfcUfgUfagaAfgGfgCfaUfgsUfsu
216





D-2025
AfsusGfcCfcUfuCfUfAfcAfgUfgGfcCfsusUf
217
gsGfscCfaCfuGfuagAfaGfgGfcAfusUfsu
218





D-2026
UfsgsCfcCfuUfcUfAfCfaGfuGfgCfcUfsusUf
219
asGfsgCfcAfcUfguaGfaAfgGfgCfasUfsu
220





D-2027
GfscsCfcUfuCfuAfCfAfgUfgGfcCfuUfsusUf
221
asAfsgGfcCfaCfuguAfgAfaGfgGfcsUfsu
222





D-2028
GfsgsUfaUfgUfuCfCfUfgCfuUfcAfuCfsusUf
223
gsAfsuGfaAfgCfaggAfaCfaUfaCfcsUfsu
224





D-2029
GfsusAfuGfuUfcCfUfGfcUfuCfaUfcCfsusUf
225
gsGfsaUfgAfaGfcagGfaAfcAfuAfcsUfsu
226





D-2030
UfsasUfgUfuCfcUfGfCfuUfcAfuCfcCfsusUf
227
gsGfsgAfuGfaAfgcaGfgAfaCfaUfasUfsu
228





D-2031
AfsusGfuUfcCfuGfCfUfuCfaUfcCfcCfsusUf
229
gsGfsgGfaUfgAfagcAfgGfaAfcAfusUfsu
230





D-2032
UfsgsUfuCfcUfgCfUfUfcAfuCfcCfcUfsusUf
231
asGfsgGfgAfuGfaagCfaGfgAfaCfasUfsu
232





D-2033
GfsusUfcCfuGfcUfUfCfaUfcCfcCfuUfsusUf
233
asAfsgGfgGfaUfgaaGfcAfgGfaAfcsUfsu
234





D-2034
UfsusCfcUfgCfuUfCfAfuCfcCfcUfuCfsusUf
235
gsAfsaGfgGfgAfugaAfgCfaGfgAfasUfsu
236





D-2035
UfscsCfuGfcUfuCfAfUfcCfcCfuUfcUfsusUf
237
asGfsaAfgGfgGfaugAfaGfcAfgGfasUfsu
238





D-2036
CfscsUfgCfuUfcAfUfCfcCfcUfuCfuAfsusUf
239
usAfsgAfaGfgGfgauGfaAfgCfaGfgsUfsu
240





D-2037
CfsusGfcUfuCfaUfCfCfcCfuUfcUfaCfsusUf
241
gsUfsaGfaAfgGfggaUfgAfaGfcAfgsUfsu
242





D-2038
UfsgsCfuUfcAfuCfCfCfcUfuCfuAfcAfsusUf
243
usGfsuAfgAfaGfgggAfuGfaAfgCfasUfsu
244





D-2039
UfsusCfaUfcCfcCfUfUfcUfaCfaGfuGfsusUf
245
csAfscUfgUfaGfaagGfgGfaUfgAfasUfsu
246





D-2040
UfscsAfuCfcCfcUfUfCfuAfcAfgUfgGfsusUf
247
csCfsaCfuGfuAfgaaGfgGfgAfuGfasUfsu
248





D-2041
CfsasUfcCfcCfuUfCfUfaCfaGfuGfgCfsusUf
249
gsCfscAfcUfgUfagaAfgGfgGfaUfgsUfsu
250





D-2042
UfscsCfcCfuUfcUfAfCfaGfuGfgCfcUfsusUf
251
asGfsgCfcAfcUfguaGfaAfgGfgGfasUfsu
252





D-2043
GfsasUfcAfgGfaCfCfCfgAfgCfcGfaUfsusUf
253
asUfscGfgCfuCfgggUfcCfuGfaUfcsUfsu
254





D-2044
UfsgsGfgCfuUfcUfAfCfcAfcGfuCfgUfsusUf
255
asCfsgAfcGfuGfguaGfaAfgCfcCfasUfsu
256





D-2045
GfsasGfcGfaGfcAfCfGfcCfcCfgCfaUfsusUf
257
asUfsgCfgGfgGfcguGfcUfcGfcUfcsUfsu
258





D-2046
UfsgsCfaCfuGfcGfUfCfgGfcGfuCfcUfsusUf
259
asGfsgAfcGfcCfgacGfcAfgUfgCfasUfsu
260





D-2047
UfsgsGfaGfcAfgAfCfUfcUfgCfaGfgUfsusUf
261
asCfscUfgCfaGfaguCfuGfcUfcCfasUfsu
262





D-2048
UfsgsCfaGfgUfcCfUfCfuCfaGfaUfcUfsusUf
263
asGfsaUfcUfgAfgagGfaCfcUfgCfasUfsu
264





D-2049
CfscsCfgGfcCfaAfUfGfuCfcAfcCfaUfsusUf
265
asUfsgGfuGfgAfcauUfgGfcCfgGfgsUfsu
266





D-2050
UfsusCfuAfcAfgUfGfGfcCfuUfaUfcUfsusUf
267
asGfsaUfaAfgGfccaCfuGfuAfgAfasUfsu
268





D-2051
UfscsUfaCfaGfuGfGfCfcUfuAfuCfcUfsusUf
269
asGfsgAfuAfaGfgccAfcUfgUfaGfasUfsu
270





D-2052
CfsusUfcCfuUfcAfGfAfgGfcGfuGfcUfsusUf
271
asGfscAfcGfcCfucuGfaAfgGfaAfgsUfsu
272





D-2053
UfsusCfcUfuCfaGfAfGfgCfgUfgCfgAfsusUf
273
usCfsgCfaCfgCfcucUfgAfaGfgAfasUfsu
274





D-2054
GfscsGfuGfcGfaUfAfUfgUfgGfaUfgUfsusUf
275
asCfsaUfcCfaCfauaUfcGfcAfcGfcsUfsu
276





D-2055
CfsgsUfgCfgAfuAfUfGfuGfgAfuGfgAfsusUf
277
usCfscAfuCfcAfcauAfuCfgCfaCfgsUfsu
278





D-2056
UfsgsGfaUfgGfaGfGfAfgUfgAfgUfgAfsusUf
279
usCfsaCfuCfaCfuccUfcCfaUfcCfasUfsu
280





D-2057
AfscsGfuAfcCfcUfUfCfaUfuGfaUfgUfsusUf
281
asCfsaUfcAfaUfgaaGfgGfuAfcGfusUfsu
282





D-2058
UfsgsGfaCfaUfcAfCfCfaAfgCfuCfaUfsusUf
283
asUfsgAfgCfuUfgguGfaUfgUfcCfasUfsu
284





D-2059
CfsasCfcUfgCfgUfCfUfcAfgCfaUfcUfsusUf
285
asGfsaUfgCfuGfagaCfgCfaGfgUfgsUfsu
286





D-2060
AfscsCfuGfcGfuCfUfCfaGfcAfuCfcUfsusUf
287
asGfsgAfuGfcUfgagAfcGfcAfgGfusUfsu
288





D-2061
CfscsAfgAfgAfcUfGfGfuGfaCfaUfgUfsusUf
289
asCfsaUfgUfcAfccaGfuCfuCfuGfgsUfsu
290





D-2062
AfsusGfgCfuUfcCfAfGfaUfaUfgCfcUfsusUf
291
asGfsgCfaUfaUfcugGfaAfgCfcAfusUfsu
292





D-2063
CfscsGfcCfuCfcAfGfGfuCfcCfaAfaUfsusUf
293
asUfsuUfgGfgAfccuGfgAfgGfcGfgsUfsu
294





D-2064
UfsasCfcUfgCfuGfGfUfgCfuGfaGfgUfsusUf
295
asCfscUfcAfgCfaccAfgCfaGfgUfasUfsu
296





D-2065
AfscsCfuGfcUfgGfUfGfcUfgAfgGfgUfsusUf
297
asCfscCfuCfaGfcacCfaGfcAfgGfusUfsu
298





D-2066
CfsusCfuCfcAfcCfUfUfuCfcCfaGfuUfsusUf
299
asAfscUfgGfgAfaagGfuGfgAfgAfgsUfsu
300





D-2067
UfsusUfuUfcAfcCfUfAfaCfuAfaAfaUfsusUf
301
asUfsuUfuAfgUfuagGfuGfaAfaAfasUfsu
302





D-2068
CfgGfcCfaAfuGfUfCfcAfcCfaGfcUfsusUf
303
asGfscUfgGfuGfgacAfuUfgGfcCfgsUfsu
304





D-2069
GfgUfcCfaGfcCfUfGfaAfcUfuCfuUfsusUf
305
asAfsgAfaGfuUfcagGfcUfgGfaCfcsUfsu
306





D-2070
GfcGfgCfuUfcCfUfGfgGfcUfuCfuAfsusUf
307
usAfsgAfaGfcCfcagGfaAfgCfcGfcsUfsu
308





D-2071
GfuGfaCfaAfcGfUfAfcCfcUfuCfaUfsusUf
309
asUfsgAfaGfgGfuacGfuUfgUfcAfcsUfsu
310





D-2072
GfgUfaUfgUfuCfCfUfgCfuUfcAfuGfsusUf
311
csAfsuGfaAfgCfaggAfaCfaUfaCfcsUfsu
312





D-2073
GfuAfuGfuUfcCfUfGfcUfuCfaUfgCfsusUf
313
gsCfsaUfgAfaGfcagGfaAfcAfuAfcsUfsu
314





D-2074
UfgUfuCfcUfgCfUfUfcAfuGfcCfcUfsusUf
315
asGfsgGfcAfuGfaagCfaGfgAfaCfasUfsu
316





D-2075
GfuUfcCfuGfcUfUfCfaUfgCfcCfuUfsusUf
317
asAfsgGfgCfaUfgaaGfcAfgGfaAfcsUfsu
318





D-2076
CfcUfgCfuUfcAfUfGfcCfcUfuCfuAfsusUf
319
usAfsgAfaGfgGfcauGfaAfgCfaGfgsUfsu
320





D-2077
GfcUfuCfaUfgCfCfCfuUfcUfaCfaGfsusUf
321
csUfsgUfaGfaAfgggCfaUfgAfaGfcsUfsu
322





D-2078
CfuUfcAfuGfcCfCfUfuCfuAfcAfgUfsusUf
323
asCfsuGfuAfgAfaggGfcAfuGfaAfgsUfsu
324





D-2079
UfuCfaUfgCfcCfUfUfcUfaCfaGfuGfsusUf
325
csAfscUfgUfaGfaagGfgCfaUfgAfasUfsu
326





D-2080
AfuGfgCfuUfcCfAfGfaUfaUfgCfcUfsusUf
327
asGfsgCfaUfaUfcugGfaAfgCfcAfusUfsu
328





D-2081
AfuGfcCfcUfuCfUfAfcAfgUfgGfcCfsusUf
329
gsGfscCfaCfuGfuagAfaGfgGfcAfusUfsu
330





D-2082
GfcUfuCfaUfgCfCfCfuUfcUfaCfaUfsusUf
331
asUfsgUfaGfaAfgggCfaUfgAfaGfcsUfsu
332





D-2083
{Phosphate}GfsgsAfaAfgAfcUfGfUfuCfcAfaAfaAf
1295
{Phosphate}usUfsuUfuGfgAfacaGfuCfuUfuCfcsUf
1296



susUf

su






D-2084
{GalNAc3K2AhxC6}ggsuaugUfuCfCfUfGfcuucau
1297
{Phosphate}csAfsuGfaAfGfcaggAfaCfauaccsusu
1298



gsusu








D-2085
{GalNAc3K2AhxC6}guauguUfcCfUfGfCfuucaugcs
1299
{Phosphate}gsCfsaUfgAfAfgcagGfaAfcauacsusu
1300



usu








D-2086
{GalNAc3K2AhxC6}uguuccUfgCfUfUfCfaugcccus
1301
{Phosphate}asGfsgGfcAfUfgaagCfaGfgaacasusu
1302



usu








D-2087
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucuacags
1303
{Phosphate}csUfsgUfaGfAfagggCfaUfgaagcsusu
1304



usu








D-2088
{GalNAc3K2AhxC6}cuucauGfcCfCfUfUfcuacagus
1305
{Phosphate}asCfsuGfuAfGfaaggGfcAfugaagsusu
1306



usu








D-2089
{GalNAc3K2AhxC6}gcggcuUfcCfUfGfGfgcuucuas
1307
{Phosphate}usAfsgAfaGfCfccagGfaAfgccgcsusu
1308



usu








D-2090
{GalNAc3K2AhxC6}guuccuGfcUfUfCfAfugcccuus
1309
{Phosphate}asAfsgGfgCfAfugaaGfcAfggaacsusu
1310



usu








D-2091
{GalNAc3K2AhxC6}AfuGfgCfuUfcCfAfGfaUfaUfg
1311
{Phosphate}asGfsgCfaUfaUfcugGfaAfgCfcAfusUfs
1312



CfcUfsusUf

u






D-2092
{GalNAc3K2AhxC6}ccugcuUfcAfUfGfCfccuucuas
1313
{Phosphate}usAfsgAfaGfGfgcauGfaAfgcaggsusu
1314



usu








D-2093
{GalNAc3K2AhxC6}uucaugCfcCfUfUfCfuacaguus
1315
{Phosphate}asAfscUfgUfAfgaagGfgCfaugaasusu
1316



usu








D-2094
{GalNAc3K2AhxC6}uucaugCfcCfUfUfCfuacagugs
1317
{Phosphate}csAfscUfgUfAfgaagGfgCfaugaasusu
1318



usu








D-2095
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucuacaus
1319
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1320



usu








D-2096
{GalNAc3K2AhxC6}gguccaGfcCfUfGfAfacuucuus
1321
{Phosphate}asAfsgAfaGfUfucagGfcUfggaccsusu
1322



usu








D-2097
{GalNAc3K2AhxC6}GfcGfgCfuUfcCfUfGfGfgcUfu
1323
{Phosphate}usAfsgAfaGfCfccagGfaAfgCfcGfcsUfs
1324



CfuAfsusUf

u






D-2098
{GalNAc3K2AhxC6}GfcGfgCfuUfcCfuGfGfgcUfuC
1325
{Phosphate}usAfsgAfaGfCfccAfgGfaAfgCfcGfcsUf
1326



fuAfsusUf

su






D-2099
{GalNAc3K2AhxC6}GfuUfcCfuGfcUfUfCfAfugCfc
1327
{Phosphate}asAfsgGfgCfAfugaaGfcAfgGfaAfcsUfs
1328



CfuUfsusUf

u






D-2100
{GalNAc3K2AhxC6}GfuUfcCfuGfcUfuCfAfugCfcC
1329
{Phosphate}asAfsgGfgCfAfugAfaGfcAfgGfaAfcsUf
1330



fuUfsusUf

su






D-2101
{GalNAc3K2AhxC6}CfcUfgCfuUfcAfUfGfCfccUfu
1331
{Phosphate}usAfsgAfaGfGfgcauGfaAfgCfaGfgsUfs
1332



CfuAfsusUf

u






D-2102
{GalNAc3K2AhxC6}CfcUfgCfuUfcAfuGfCfccUfuC
1333
{Phosphate}usAfsgAfaGfGfgcAfuGfaAfgCfaGfgsUf
1334



fuAfsusUf

su






D-2103
{GalNAc3K2AhxC6}augcccUfuCfUfAfCfaguggccs
1335
{Phosphate}gsGfscCfaCfUfguagAfaGfggcaususu
1336



usu








D-2104
{GalNAc3K2AhxC6}auggcuUfcCfAfGfAfuaugccus
1337
{Phosphate}asGfsgCfaUfAfucugGfaAfgccaususu
1338



usu








D-2105
{GalNAc3K2AhxC6}gugacaAfcGfUfAfCfccuucaus
1339
{Phosphate}asUfsgAfaGfGfguacGfuUfgucacsusu
1340



usu








D-2106
{GalNAc3K2AhxC6}guauguUfcCfUfGfCfuucaugcs
1341
{Phosphate}gsCfsaUfgAfAfgcAfgGfaAfcauacsusu
1342



usu








D-2107
{GalNAc3K2AhxC6}guauguUfcCfuGfCfuucaugcs
1343
{Phosphate}gsCfsaUfgAfAfgcagGfaAfcauacsusu
1344



usu








D-2108
{GalNAc3K2AhxC6}guauguUfcCfuGfCfuucaugcs
1345
{Phosphate}gsCfsaUfgAfAfgcAfgGfaAfcauacsusu
1346



usu








D-2109
{GalNAc3K2AhxC6}guauguUfcCfUfGfCfuucaugcs
1347
{Phosphate}asGfsgCfaUfgAfAfgcagGfaAfcauacsus
1348



csu

u






D-2110
{GalNAc3K2AhxC6}ugguauGfuUfCfCfUfgcuucau
1349
{Phosphate}gsCfsaUfgAfaGfCfaggaAfcAfuaccasus
1350



sgsu

u






D-2111
{GalNAc3K2AhxC6}guauguUfcCfUfGfCfuucausgs
1351
{Phosphate}gsCfsaUfgAfAfgcagGfaAfcauacsusu
1352



u








D-2112
{GalNAc3K2AhxC6}guauguUfcCfUfGfCfuucaugcs
1353
{Phosphate}gsCfsaUfgAfAfgcagGfaAfcauacsusu
1354



{invAb}








D-2113
{GalNAc3K2AhxC6}GfcUfuCfaUfgCfCfCfUfucUfa
1355
{Phosphate}asUfsgUfaGfAfagggCfaUfgAfaGfcsUfs
1356



CfaUfsusUf

u






D-2114
{GalNAc3K2AhxC6}GfcUfuCfaUfgCfcCfUfucUfaC
1357
{Phosphate}asUfsgUfaGfAfagGfgCfaUfgAfaGfcsU
1358



faUfsusUf

fsu






D-2115
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucuacaus
1359
{Phosphate}asusguaGfAfagggCfaUfgaagcsusu
1360



usu








D-2116
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucUfaCfa
1361
{Phosphate}asusguaGfAfagggCfaUfgaagcsusu
1362



UfsusUf








D-2117
{GalNAc3K2AhxC6}GfcUfuCfaUfgCfCfCfUfucuac
1363
{Phosphate}asusguaGfAfagggCfaUfgaagcsusu
1364



aususu








D-2118
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucuacaus
1365
{Phosphate}asusguaGfAfagggCfaUfgAfaGfcsUfsu
1366



usu








D-2119
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucuacaus
1367
{Phosphate}asUfsgUfaGfAfagggCfaUfgAfaGfcsUfs
1368



usu

u






D-2120
{GalNAc3K2AhxC6}GfcUfuCfaUfgCfCfCfUfucUfa
1369
{Phosphate}asusguaGfAfagggCfaUfgaagcsusu
1370



CfaUfsusUf








D-2121
{GalNAc3K2AhxC6}GfcUfuCfaUfgCfCfCfUfucuac
1371
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1372



aususu








D-2122
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucUfaCfa
1373
{Phosphate}asusguaGfAfagggCfaUfgAfaGfcsUfsu
1374



UfsusUf








D-2123
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucUfaCfa
1375
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1376



UfsusUf








D-2124
{GalNAc3K2AhxC6}GfcUfuCfaUfgCfCfCfUfucuac
1377
{Phosphate}asusguaGfAfagggCfaUfgAfaGfcsUfsu
1378



aususu








D-2125
{GalNAc3K2AhxC6}GfcUfuCfaUfgCfCfCfUfucuac
1379
{Phosphate}asUfsgUfaGfAfagggCfaUfgAfaGfcsUfs
1380



aususu

u






D-2126
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucUfaCfa
1381
{Phosphate}asUfsgUfaGfAfagggCfaUfgAfaGfcsUfs
1382



UfsusUf

u






D-2127
{GalNAc3K2AhxC6}GfcUfuCfaUfgCfCfCfUfucUfa
1383
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1384



CfaUfsusUf








D-2128
{GalNAc3K2AhxC6}GfcUfuCfaUfgCfCfCfUfucUfa
1385
{Phosphate}asusguaGfAfagggCfaUfgAfaGfcsUfsu
1386



CfaUfsusUf








D-2129
{GalNAc3K2AhxC6}gcuucaUfg[dC]CfCfuucuacau
1387
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1388



susu








D-2130
{GalNAc3K2AhxC6}gcuucaUfgCfCf[dC]Ufucuaca
1389
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1390



ususu








D-2131
{GalNAc3K2AhxC6}gcuucaUfgCf[dC]CfUfucuaca
1391
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1392



ususu








D-2132
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucuacaus
1393
{Phosphate}asUfsgUfaGfAfagGfgCfaUfgaagcsusu
1394



usu








D-2133
{GalNAc3K2AhxC6}gcuucaUfgCfcCfUfucuacausu
1395
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1396



su








D-2134
{GalNAc3K2AhxC6}gcuucaUfgCfcCfUfucuacausu
1397
{Phosphate}asUfsgUfaGfAfagGfgCfaUfgaagcsusu
1398



su








D-2135
{GalNAc3K2AhxC6}GfscsUfuCfaUfgCfcCfUfucUf
1399
{Phosphate}asUfsgUfaGfAfagggCfaUfgAfaGfcsUfs
1400



aCfaUfsusUf

u






D-2136
{GalNAc3K2AhxC6}GfscsUfuCfaUfgCfCfCfUfucUf
1401
{Phosphate}asUfsgUfaGfAfagGfgCfaUfgAfaGfcsU
1402



aCfaUfsusUf

fsu






D-2137
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucuacags
1403
{Phosphate}asAfscUfgUfaGfAfagggCfaUfgaagcsus
1404



usu

u






D-2138
{GalNAc3K2AhxC6}cugcuuCfaUfGfCfCfcuucuacs
1405
{Phosphate}asUfsgUfaGfaAfGfggcaUfgAfagcagsu
1406



asu

su






D-2139
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucuacsas
1407
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1408



u








D-2140
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucuacaus
1409
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1410



{invAb}








D-2141
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucuacauu
1411
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1412



us{invAb}








D-2142
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucuacaus
1413
{Phosphate}AfsusGfuAfgAfagggCfaUfgaagcsusu
1414



usu








D-2143
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfuCfuacau
1415
{Phosphate}AfsusGfuAfgAfagggCfaUfgaagcsusu
1416



susu








D-2144
{GalNAc3K2AhxC6}gcuucaugCfCfCfUfucuacausu
1417
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1418



su








D-2145
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucuacaus
1419
{Phosphate}asUfsgUfaGfAfagggCfaugaagcsusu
1420



usu








D-2146
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucuacaus
1421
{Phosphate}asusgUfaGfAfagggCfaUfgaagcsusu
1422



usu








D-2147
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucuacaus
1423
{Phosphate}asUfsgUfagAfagggCfaUfgaagcsusu
1424



usu








D-2148
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucuacaus
1425
{Phosphate}asusgUfagAfagggCfaUfgaagcsusu
1426



usu








D-2149
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucuacaus
1427
{Phosphate}asUfsguagAfagggCfaUfgaagcsusu
1428



usu








D-2150
{GalNAc3K2AhxC6}gcuucaUfgCfCfCfUfucuacaus
1429
{Phosphate}asusguagAfagggCfaUfgaagcsusu
1430



usu








D-2151
{GalNAc3K2AhxC6}guauguUfcCfUfGfCfuucaugc
1431
{Phosphate}gsCfsaUfgAfAfgcagGfaAfcauacsusu
1432



uus{invAb}








D-2152
{GalNAc3K2AhxC6}gguaugUfuCfCfUfGfcuucauu
1433
{Phosphate}aAfsuGfaAfGfcaggAfaCfauaccsusu
1434



susu








D-2153
{GalNAc3K2AhxC6}guauguUfcCfUfGfCfuucaugu
1435
{Phosphate}asCfsaUfgAfAfgcagGfaAfcauacsusu
1436



susu








D-2154
{GalNAc3K2AhxC6}cggccaAfuGfUfCfCfaccagcus
1437
{Phosphate}asGfscUfgGfUfggacAfuUfggccgsusu
1438



usu








D-2155
{GalNAc3K2AhxC6}uggagcAfgAfCfUfCfugcaggus
1439
{Phosphate}asCfscUfgCfAfgaguCfuGfcuccasusu
1440



usu








D-2156
{GalNAc3K2AhxC6}acguacCfcUfUfCfAfuugaugus
1441
{Phosphate}aCfsaUfcAfAfugaaGfgGfuacgususu
1442



usu








D-2157
{GalNAc3K2AhxC6}ccagagAfcUfGfGfUfgacaugus
1443
{Phosphate}asCfsaUfgUfCfaccaGfuCfucuggsusu
1444



usu








D-2158
{GalNAc3K2AhxC6}[invAb]gcuucaUfgCfCfUfUfu
1445
{Phosphate}asUfsgUfaGfAfaaggCfaUfgaagcsusu
1446



cuacaususu








D-2159
{GalNAc3K2AhxC6}[invAb]gcuucaUfgCfCfUfUfu
1447
{Phosphate}asAfsaUfgUfaGfAfaaggCfaUfgaagcsu
1448



cuacaususu

su






D-2160
{GalNAc3K2AhxC6}[invAb]gcuucaUfgCfcUfUfUf
1449
{Phosphate}asAfsaUfgUfAfgaaaGfgCfaUfgaagcsu
1450



Cfuacaususu

su






D-2161
{GalNAc3K2AhxC6}ugcuucAfuGfCfCfUfuucuacas
1451
{Phosphate}usGfsuAfgAfAfaggcAfuGfaagcasusu
1452



usu








D-2162
{GalNAc3K2AhxC6}uauguuCfcUfGfCfUfucaugcu
1453
{Phosphate}asGfscAfuGfAfagcaGfgAfacauasusu
1454



susu








D-2163
{GalNAc3K2AhxC6}uuccugCfuUfCfAfUfgccuuuus
1455
{Phosphate}asAfsaAfgGfCfaugaAfgCfaggaasusu
1456



usu








D-2164
{GalNAc3K2AhxC6}ucaugcCfuUfUfCfUfacagugus
1457
{Phosphate}asCfsaCfuGfUfagaaAfgGfcaugasusu
1458



usu








D-2165
{GalNAc3K2AhxC6}caugccUfuUfCfUfAfcaguggus
1459
{Phosphate}asCfscAfcUfGfuagaAfaGfgcaugsusu
1460



usu








D-2166
{GalNAc3K2AhxC6}augccuUfuCfUfAfCfaguggcus
1461
{Phosphate}asGfscCfaCfUfguagAfaAfggcaususu
1462



usu








D-2167
{GalNAc3K2AhxC6}gguaugUfuCfCfUfGfcuucaua
1463
{Phosphate}usAfsuGfaAfGfcaggAfaCfauaccsusu
1464



susu








D-2168
{GalNAc3K2AhxC6}guauguUfcCfUfGfCfuucauga
1465
{Phosphate}usCfsaUfgAfAfgcagGfaAfcauacsusu
1466



susu








D-2169
{GalNAc3K2AhxC6}uauguuCfcUfGfCfUfucaugcas
1467
{Phosphate}usGfscAfuGfAfagcaGfgAfacauasusu
1468



usu








D-2170
{GalNAc3K2AhxC6}uuccugCfuUfCfAfUfgccuuuas
1469
{Phosphate}usAfsaAfgGfCfaugaAfgCfaggaasusu
1470



usu








D-2171
{GalNAc3K2AhxC6}cugcuuCfaUfGfCfCfuuucuaas
1471
{Phosphate}usUfsaGfaAfAfggcaUfgAfagcagsusu
1472



usu








D-2172
{GalNAc3K2AhxC6}gcuucaUfgCfCfUfUfucuacaas
1473
{Phosphate}usUfsgUfaGfAfaaggCfaUfgaagcsusu
1474



usu








D-2173
{GalNAc3K2AhxC6}uucaugCfcUfUfUfCfuacaguas
1475
{Phosphate}usAfscUfgUfAfgaaaGfgCfaugaasusu
1476



usu








D-2174
{GalNAc3K2AhxC6}ucaugcCfuUfUfCfUfacagugas
1477
{Phosphate}usCfsaCfuGfUfagaaAfgGfcaugasusu
1478



usu








D-2175
{GalNAc3K2AhxC6}caugccUfuUfCfUfAfcaguggas
1479
{Phosphate}usCfscAfcUfGfuagaAfaGfgcaugsusu
1480



usu








D-2176
{GalNAc3K2AhxC6}augccuUfuCfUfAfCfaguggcas
1481
{Phosphate}usGfscCfaCfUfguagAfaAfggcaususu
1482



usu








D-2177
{GalNAc3K2AhxC6}acguacCfcUfUfCfAfuugaugas
1483
{Phosphate}usCfsaUfcAfAfugaaGfgGfuacgususu
1484



usu








D-2178
{GalNAc3K2AhxC6}ccagagAfcUfGfGfUfgacaugas
1485
{Phosphate}usCfsaUfgUfCfaccaGfuCfucuggsusu
1486



usu








D-2179
{GalNAc3K2AhxC6}auggcuUfcCfAfGfAfuaugccas
1487
{Phosphate}usGfsgCfaUfAfucugGfaAfgccaususu
1488



usu








D-2180
{GalNAc3K2AhxC6}guuccuGfcUfUfCfAfugccuuus
1489
{Phosphate}asAfsaGfgCfAfugaaGfcAfggaacsusu
1490



usu








D-2181
{GalNAc3K2AhxC6}ccugcuUfcAfUfGfCfcuuucuas
1491
{Phosphate}usAfsgAfaAfGfgcauGfaAfgcaggsusu
1492



usu








D-2182
{GalNAc3K2AhxC6}gcuucaUfgCfCfUfUfucuacaus
1493
{Phosphate}asUfsgUfaGfAfaaggCfaUfgaagcsusu
1494



usu








D-2183
{GalNAc3K2AhxC6}cuucauGfcCfUfUfUfcuacagus
1495
{Phosphate}asCfsuGfuAfGfaaagGfcAfugaagsusu
1496



usu








D-2184
{GalNAc3K2AhxC6}uucaugCfcUfUfUfCfuacaguu
1497
{Phosphate}asAfscUfgUfAfgaaaGfgCfaugaasusu
1498



susu








D-2185
{GalNAc3K2AhxC6}gcuucaUfcCfCfUfUfucuacaus
1499
{Phosphate}asUfsgUfaGfAfaaggGfaUfgaagcsusu
1500



usu








D-2186
{GalNAc3K2AhxC6}[invAb]gcuucaUfgCfCfCfUfuc
1501
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1502



uacaususu








D-2187
{GalNAc3K2AhxC6}[invAb]gcuucaUfgCfCfCfUfuc
1503
{Phosphate}asAfsaUfgUfaGfAfagggCfaUfgaagcsus
1504



uacaususu

u






D-2188
{GalNAc3K2AhxC6}[invAb]gcuucaUfgCfcCfUfUf
1505
{Phosphate}asAfsaUfgUfAfgaagGfgCfaUfgaagcsus
1506



Cfuacaususu

u






D-2189
{GalNAc3K2AhxC6}[invAb]gcggcuUfcCfUfGfGfgc
1507
{Phosphate}usAfsgAfaGfCfccagGfaAfgccgcsusu
1508



uucuasusu








D-2190
{GalNAc3K2AhxC6}[invAb]CfuGfcGfgCfuUfcCfu
1509
{Phosphate}usAfsgAfaGfCfccAfgGfaAfgCfcGfcAfg
1510



GfGfgcUfuCfsusAf

sUfsu






D-2191
{GalNAc3K2AhxC6}cugcggCfuUfCfCfUfgggcuucu
1511
{Phosphate}usAfsgAfaGfcCfCfaggaAfgCfcgcagsus
1512



s{invAb}

u






D-2192
{GalNAc3K2AhxC6}[invAb]cugcggCfuUfCfCfUfgg
1513
{Phosphate}usAfsgAfaGfcCfCfaggaAfgCfcgcagsus
1514



gcuucsusa

u






D-2193
{GalNAc3K2AhxC6}[invAb]gcggcuUfcCfUfGfGfgc
1515
{Phosphate}usAfsgAfaGfCfccagGfaAfgccgcsusu
1516



UfuCfuAfsusUf








D-2194
{GalNAc3K2AhxC6}cugcggCfuUfCfCfUfggGfcUfu
1517
{Phosphate}usAfsgAfaGfcCfCfaggaAfgCfcgcagsus
1518



Cfus{invAb}

u






D-2195
{GalNAc3K2AhxC6}[invAb]cugcggCfuUfCfCfUfgg
1519
{Phosphate}usAfsgAfaGfcCfCfaggaAfgCfcgcagsus
1520



GfcUfuCfsusAf

u






D-2196
{GalNAc3K2AhxC6}[invAb]GfcGfgCfuUfcCfuGfGf
1521
{Phosphate}usAfsgAfaGfCfccAfgGfaAfgCfcGfcsUf
1522



gcUfuCfuAfsusUf

su






D-2197
{GalNAc3K2AhxC6}CfuGfcGfgCfuUfcCfUfggGfcU
1523
{Phosphate}usAfsgAfaGfcCfCfagGfaAfgCfcGfcAfg
1524



fuCfus{invAb}

sUfsu






D-2198
{GalNAc3K2AhxC6}[invAb]CfuGfcGfgCfuUfcCfUf
1525
{Phosphate}usAfsgAfaGfcCfCfagGfaAfgCfcGfcAfg
1526



ggGfcUfuCfsusAf

sUfsu






D-2199
{GalNAc3K2AhxC6}[invAb]GfcGfgCfuUfcCfUfGf
1527
{Phosphate}usAfsgAfaGfCfccagGfaAfgCfcGfcsUfs
1528



Gfgcuucuasusu

u






D-2200
{GalNAc3K2AhxC6}[invAb]CfuGfcGfgCfuUfCfCfU
1529
{Phosphate}usAfsgAfaGfcCfCfaggaAfgCfcGfcAfgs
1530



fgggcuucsusa

Ufsu






D-2201
{GalNAc3K2AhxC6}[invAb]cugcggcuUfcCfUfGfGf
1531
{Phosphate}usAfsgAfaGfCfccagGfaAfgccgcagsusu
1532



gcUfuCfusAf








D-2202
{GalNAc3K2AhxC6}[invAb]CfuGfcGfgCfuUfcCfUf
1533
{Phosphate}usAfsgAfaGfCfccagGfaAfgCfcGfcAfgs
1534



GfGfgcuucsusa

Ufsu






D-2203
{GalNAc3K2AhxC6}[invAb]auggcuUfcCfAfGfAfu
1535
{Phosphate}asGfsgCfaUfAfucugGfaAfgccaususu
1536



augccususu








D-2204
{GalNAc3K2AhxC6}[invAb]AfcAfuGfgCfuUfcCfa
1537
{Phosphate}asGfsgCfaUfAfucUfgGfaAfgCfcAfuGf
1538



GfAfuaUfgCfscsUf

usUfsu






D-2205
{GalNAc3K2AhxC6}acauggCfuUfCfCfAfgauaugcc
1539
{Phosphate}asGfsgCfaUfaUfCfuggaAfgCfcaugusus
1540



s{invAb}

u






D-2206
{GalNAc3K2AhxC6}[invAb]acauggCfuUfCfCfAfga
1541
{Phosphate}asGfsgCfaUfaUfCfuggaAfgCfcaugusus
1542



uaugcscsu

u






D-2207
{GalNAc3K2AhxC6}[invAb]auggcuUfcCfAfGfAfu
1543
{Phosphate}asGfsgCfaUfAfucugGfaAfgccaususu
1544



aUfgCfcUfsusUf








D-2208
{GalNAc3K2AhxC6}acauggCfuUfCfCfAfgaUfaUfg
1545
{Phosphate}asGfsgCfaUfaUfCfuggaAfgCfcaugusus
1546



Cfcs{invAb}

u






D-2209
{GalNAc3K2AhxC6}[invAb]acauggCfuUfCfCfAfga
1547
{Phosphate}asGfsgCfaUfaUfCfuggaAfgCfcaugusus
1548



UfaUfgCfscsUf

u






D-2210
{GalNAc3K2AhxC6}[invAb]AfuGfgCfuUfcCfaGfAf
1549
{Phosphate}asGfsgCfaUfAfucUfgGfaAfgCfcAfusUf
1550



uaUfgCfcUfsusUf

su






D-2211
{GalNAc3K2AhxC6}AfcAfuGfgCfuUfcCfAfgaUfaU
1551
{Phosphate}asGfsgCfaUfaUfCfugGfaAfgCfcAfuGf
1552



fgCfcs{invAb}

usUfsu






D-2212
{GalNAc3K2AhxC6}[invAb]AfcAfuGfgCfuUfcCfAf
1553
{Phosphate}asGfsgCfaUfaUfCfugGfaAfgCfcAfuGf
1554



gaUfaUfgCfscsUf

usUfsu






D-2213
{GalNAc3K2AhxC6}[invAb]AfuGfgCfuUfcCfAfGf
1555
{Phosphate}asGfsgCfaUfAfucugGfaAfgCfcAfusUfs
1556



Afuaugccususu

u






D-2214
{GalNAc3K2AhxC6}AfcAfuGfgCfuUfCfCfAfgauau
1557
{Phosphate}asGfsgCfaUfaUfCfuggaAfgCfcAfuGfus
1558



gccs{invAb}

Ufsu






D-2215
{GalNAc3K2AhxC6}[invAb]AfcAfuGfgCfuUfCfCfA
1559
{Phosphate}asGfsgCfaUfaUfCfuggaAfgCfcAfuGfus
1560



fgauaugcscsu

Ufsu






D-2216
{GalNAc3K2AhxC6}[invAb]acauggcuUfcCfAfGfAf
1561
{Phosphate}asGfsgCfaUfAfucugGfaAfgccaugusus
1562



uaugcscsu

u






D-2217
{GalNAc3K2AhxC6}[invAb]acauggcuUfcCfAfGfAf
1563
{Phosphate}asGfsgCfaUfAfucugGfaAfgccaugusus
1564



uaUfgCfcsUf

u






D-2218
{GalNAc3K2AhxC6}[invAb]AfcAfuGfgCfuUfcCfAf
1565
{Phosphate}asGfsgCfaUfAfucugGfaAfgCfcAfuGfus
1566



GfAfuaugcscsu

Ufsu






D-2219
{GalNAc3K2AhxC6}[invAb]acguacCfcUfUfCfAfuu
1567
{Phosphate}asCfsaUfcAfAfugaaGfgGfuacgususu
1568



gaugususu








D-2220
{GalNAc3K2AhxC6}[invAb]CfaAfcGfuAfcCfcUfuC
1569
{Phosphate}asCfsaUfcAfAfugAfaGfgGfuAfcGfuUf
1570



fAfuuGfaUfsgsUf

gsUfsu






D-2221
{GalNAc3K2AhxC6}[invAb]caacguAfcCfCfUfUfca
1571
{Phosphate}asCfsaUfcAfaUfGfaaggGfuAfcguugsu
1572



uugausgsu

su






D-2222
{GalNAc3K2AhxC6}[invAb]acguacCfcUfUfCfAfuu
1573
{Phosphate}asCfsaUfcAfAfugaaGfgGfuacgususu
1574



GfaUfgUfsusUf








D-2223
{GalNAc3K2AhxC6}caacguAfcCfCfUfUfcaUfuGfa
1575
{Phosphate}asCfsaUfcAfaUfGfaaggGfuAfcguugsu
1576



Ufgs{invAb}

su






D-2224
{GalNAc3K2AhxC6}[invAb]AfcGfuAfcCfcUfuCfAf
1577
{Phosphate}asCfsaUfcAfAfugAfaGfgGfuAfcGfusUf
1578



uuGfaUfgUfsusUf

su






D-2225
{GalNAc3K2AhxC6}CfaAfcGfuAfcCfcUfUfcaUfuG
1579
{Phosphate}asCfsaUfcAfaUfGfaaGfgGfuAfcGfuUf
1580



faUfgs{invAb}

gsUfsu






D-2226
{GalNAc3K2AhxC6}[invAb]CfaAfcGfuAfcCfcUfUf
1581
{Phosphate}asCfsaUfcAfaUfGfaaGfgGfuAfcGfuUf
1582



caUfuGfaUfsgsUf

gsUfsu






D-2227
{GalNAc3K2AhxC6}[invAb]AfcGfuAfcCfcUfUfCfA
1583
{Phosphate}asCfsaUfcAfAfugaaGfgGfuAfcGfusUfs
1584



fuugaugususu

u






D-2228
{GalNAc3K2AhxC6}CfaAfcGfuAfcCfCfUfUfcauug
1585
{Phosphate}asCfsaUfcAfaUfGfaaggGfuAfcGfuUfg
1586



augs{invAb}

sUfsu






D-2229
{GalNAc3K2AhxC6}[invAb]CfaAfcGfuAfcCfCfUfU
1587
{Phosphate}asCfsaUfcAfaUfGfaaggGfuAfcGfuUfg
1588



fcauugausgsu

sUfsu






D-2230
{GalNAc3K2AhxC6}[invAb]caacguacCfcUfUfCfAf
1589
{Phosphate}asCfsaUfcAfAfugaaGfgGfuacguugsus
1590



uugausgsu

u






D-2231
{GalNAc3K2AhxC6}[invAb]caacguacCfcUfUfCfAf
1591
{Phosphate}asCfsaUfcAfAfugaaGfgGfuacguugsus
1592



uuGfaUfgsUf

u






D-2232
{GalNAc3K2AhxC6}[invAb]CfaAfcGfuAfcCfcUfUf
1593
{Phosphate}asCfsaUfcAfAfugaaGfgGfuAfcGfuUfg
1594



CfAfuugausgsu

sUfsu






D-2233
{GalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuacs
1595
{Phosphate}asUfsgUfaGfAfaaggCfaUfgaagcagsus
1596



asu

u






D-2234
{GalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucUfaC
1597
{Phosphate}asUfsgUfaGfAfaaggCfaUfgaagcagsus
1598



fsasUf

u






D-2235
{GalNAc3K2AhxC6}[invAb]GfcUfuCfaUfgCfcUfUf
1599
{Phosphate}asUfsgUfaGfAfaaGfgCfaUfgAfaGfcsU
1600



ucUfaCfaUfsusUf

fsu






D-2236
{GalNAc3K2AhxC6}[invAb]GfcUfuCfaUfgCfCfUf
1601
{Phosphate}asUfsgUfaGfAfaaggCfaUfgAfaGfcsUfs
1602



Ufucuacaususu

u






D-2237
{GalNAc3K2AhxC6}CfuGfcUfuCfaUfgCfcUfUfucU
1603
{Phosphate}asUfsgUfaGfAfaaGfgCfaUfgAfaGfcAf
1604



faCfsasUf

gsUfsu






D-2238
{GalNAc3K2AhxC6}CfuGfcUfuCfaUfgCfCfUfUfuc
1605
{Phosphate}asUfsgUfaGfAfaaggCfaUfgAfaGfcAfgs
1606



uacsasu

Ufsu






D-2239
{GalNAc3K2AhxC6}[invAb]CfuGfcUfuCfaUfgCfCf
1607
{Phosphate}asUfsgUfaGfAfaaggCfaUfgAfaGfcAfgs
1608



UfUfucuacsasu

Ufsu






D-2240
{GalNAc3K2AhxC6}CfuGfcUfuCfaUfgCfCfUfUfuc
1609
{Phosphate}asUfsgUfaGfAfaaggCfaUfgaagcagsus
1610



uacas{invAb}

u






D-2241
{GalNAc3K2AhxC6}[invAb]CfuGfcUfuCfaUfgCfCf
1611
{Phosphate}asUfsgUfaGfAfaaggCfaUfgaagcagsus
1612



UfUfucuacsasu

u






D-2242
{GalNAc3K2AhxC6}[invAb]cugcuucaUfgCf[dC]Uf
1613
{Phosphate}asUfsgUfaGfAfaaggCfaUfgaagcagsus
1614



Ufucuacsasu

u






D-2243
{GalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuacs
1615
{Phosphate}asUfsgUfaGfAfaaGfgCfaUfgaagcagsu
1616



asu

su






D-2244
{GalNAc3K2AhxC6}[invAb]cugcuucaUfgCfCfUfU
1617
{Phosphate}asUfsgUfaGfAfaaGfgCfaUfgaagcagsu
1618



fucuacsasu

su






D-2245
{GalNAc3K2AhxC6}cugcuucaUfgCfcUfUfucuacsa
1619
{Phosphate}asUfsgUfaGfAfaaggCfaUfgaagcagsus
1620



su

u






D-2246
{GalNAc3K2AhxC6}cugcuucaUfgCfcUfUfucuacas
1621
{Phosphate}asUfsgUfaGfAfaaggCfaUfgaagcagsus
1622



{invAb}

u






D-2247
{GalNAc3K2AhxC6}[invAb]cugcuucaUfgCfcUfUf
1623
{Phosphate}asUfsgUfaGfAfaaggCfaUfgaagcagsus
1624



ucuacsasu

u






D-2248
{GalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuacs
1625
{Phosphate}asUfsgUfagAfaaggCfaUfgaagcagsusu
1626



asu








D-2249
{GalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuaca
1627
{Phosphate}asUfsgUfagAfaaggCfaUfgaagcagsusu
1628



s{invAb}








D-2250
{GalNAc3K2AhxC6}[invAb]cugcuucaUfgCfCfUfU
1629
{Phosphate}asUfsgUfagAfaaggCfaUfgaagcagsusu
1630



fucuacsasu








D-2251
{GalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuaca
1631
{Phosphate}asUfsguagAfaaggCfaUfgaagcagsusu
1632



s{invAb}








D-2252
{GalNAc3K2AhxC6}[invAb]cugcuucaUfgCfCfUfU
1633
{Phosphate}asUfsguagAfaaggCfaUfgaagcagsusu
1634



fucuacsasu








D-2253
{GalNAc3K2AhxC6}[invAb]GfcUfuCfaUfgCfcUfUf
1635
{Phosphate}asUfsgUfagAfaaGfgCfaUfgAfaGfcsUfs
1636



ucUfaCfaUfsusUf

u






D-2254
{GalNAc3K2AhxC6}[invAb]GfcUfuCfaUfgCfCfUf
1637
{Phosphate}asUfsgUfagAfaaggCfaUfgAfaGfcsUfsu
1638



Ufucuacaususu








D-2255
{GalNAc3K2AhxC6}[invAb]GfcUfuCfaUfgCfCfUf
1639
{Phosphate}asUfsgUfagAfaaggCfaUfgaagcsusu
1640



Ufucuacaususu








D-2256
{GalNAc3K2AhxC6}[invAb]gcuucaUfgCfCfUfUfu
1641
{Phosphate}asUfsgUfagAfaaGfgCfaUfgaagcsusu
1642



cuacaususu








D-2257
{GalNAc3K2AhxC6}[invAb]gcuucaUfgCfcUfUfuc
1643
{Phosphate}asUfsgUfagAfaaGfgCfaUfgaagcsusu
1644



uacaususu








D-2258
{GalNAc3K2AhxC6}cugcuucaUfgCfCfCfUfucuacs
1645
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcagsus
1646



asu

u






D-2259
{GalNAc3K2AhxC6}[invAb]gcuucaUfgCfCfCfUfuc
1647
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1648



UfaCfaUfsusUf








D-2260
{GalNAc3K2AhxC6}[invAb]GfcUfuCfaUfgCfcCfUf
1649
{Phosphate}asUfsgUfaGfAfagGfgCfaUfgAfaGfcsU
1650



ucUfaCfaUfsusUf

fsu






D-2261
{GalNAc3K2AhxC6}[invAb]GfcUfuCfaUfgCfCfCfU
1651
{Phosphate}asUfsgUfaGfAfagggCfaUfgAfaGfcsUfs
1652



fucuacaususu

u






D-2262
{GalNAc3K2AhxC6}cugcuucaUfgCfCfCfUfucuaca
1653
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcagsus
1654



s{invAb}

u






D-2263
{GalNAc3K2AhxC6}[invAb]cugcuucaUfgCfCfCfUf
1655
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcagsus
1656



ucuacsasu

u






D-2264
{GalNAc3K2AhxC6}[invAb]GfcUfuCfaUfgCfCfCfU
1657
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1658



fucuacaususu








D-2265
{GalNAc3K2AhxC6}auguucCfuGfCfUfUfcaugccus
1659
{Phosphate}asGfsgCfaUfGfaagcAfgGfaacaususu
1660



usu








D-2266
{GalNAc3K2AhxC6}uguuccUfgCfUfUfCfaugccuus
1661
{Phosphate}asAfsgGfcAfUfgaagCfaGfgaacasusu
1662



usu








D-2267
{GalNAc3K2AhxC6}ugccuuUfcUfAfCfAfguggccus
1663
{Phosphate}asGfsgCfcAfCfuguaGfaAfaggcasusu
1664



usu








D-2268
{Biotin-C6}cguacuUfcGfUfCfCfuuguaugsusu
1665
{Phosphate}csAfsuAfcAfAfggacGfaAfguacgsusu
1666





D-2269
{GalNAc3K2AhxC6}[invAb]gcuucaUfgCf[dC]CfUf
1667
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1668



ucuacaususu








D-2270
{GalNAc3K2AhxC6}[invAb]gcuucaUfgCfCfCfUfuc
1669
{Phosphate}asUfsgUfaGfAfagGfgCfaUfgaagcsusu
1670



uacaususu








D-2271
{GalNAc3K2AhxC6}[invAb]gcuucaUfgCfcCfUfuc
1671
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1672



uacaususu








D-2272
{GalNAc3K2AhxC6}[invAb]gcuucaUfgCfCfCfUfuc
1673
{Phosphate}asUfsgUfagAfagggCfaUfgaagcsusu
1674



uacaususu








D-2273
{GalNAc3K2AhxC6}[invAb]gcuucaUfgCfCfCfUfuc
1675
{Phosphate}asUfsguagAfagggCfaUfgaagcsusu
1676



uacaususu








D-2274
{GalNAc3K2AhxC6}[invAb]GfcUfuCfaUfgCfcCfUf
1677
{Phosphate}asUfsgUfaGfAfagggCfaUfgaagcsusu
1678



ucuacaususu








D-2275
{sGalNAc3K2AhxC6}[invAb]ccugcuUfcAfUfGfCfc
1679
{Phosphate}usAfsgAfaAfGfgcauGfaAfgcaggsusu
1680



uUfuCfuAfsusUf








D-2276
{sGalNAc3K2AhxC6}[invAb]CfcUfgCfuUfcAfuGfC
1681
{Phosphate}usAfsgAfaAfGfgcAfuGfaAfgCfaGfgsUf
1682



fcuUfuCfuAfsusUf

su






D-2277
{sGalNAc3K2AhxC6}UfuCfcUfgCfuUfcAfUfgcCfu
1683
{Phosphate}usAfsgAfaAfgGfCfauGfaAfgCfaGfgAfa
1684



UfuCfus{invAb}

sUfsu






D-2278
{sGalNAc3K2AhxC6}[invAb]CfcUfgCfuUfcAfUfGf
1685
{Phosphate}usAfsgAfaAfGfgcauGfaAfgCfaGfgsUfs
1686



Cfcuuucuasusu

u






D-2279
{sGalNAc3K2AhxC6}UfuCfcUfgCfuUfCfAfUfgccu
1687
{Phosphate}usAfsgAfaAfgGfCfaugaAfgCfaGfgAfas
1688



uucus{invAb}

Ufsu






D-2280
{sGalNAc3K2AhxC6}[invAb]augccuUfuCfUfAfCfa
1689
{Phosphate}asGfscCfaCfUfguagAfaAfggcaususu
1690



guggcususu








D-2281
{sGalNAc3K2AhxC6}[invAb]augccuUfuCfUfAfCfa
1691
{Phosphate}asGfscCfaCfUfguagAfaAfggcaususu
1692



gUfgGfcUfsusUf








D-2282
{sGalNAc3K2AhxC6}[invAb]AfuGfcCfuUfuCfuAfC
1693
{Phosphate}asGfscCfaCfUfguAfgAfaAfgGfcAfusUf
1694



fagUfgGfcUfsusUf

su






D-2283
{sGalNAc3K2AhxC6}UfcAfuGfcCfuUfuCfUfacAfg
1695
{Phosphate}asGfscCfaCfuGfUfagAfaAfgGfcAfuGfa
1696



UfgGfcs{invAb}

sUfsu






D-2284
{sGalNAc3K2AhxC6}[invAb]AfuGfcCfuUfuCfUfAf
1697
{Phosphate}asGfscCfaCfUfguagAfaAfgGfcAfusUfs
1698



Cfaguggcususu

u






D-2285
{sGalNAc3K2AhxC6}[invAb]UfcAfuGfcCfuUfUfCf
1699
{Phosphate}asGfscCfaCfuGfUfagaaAfgGfcAfuGfas
1700



Ufacaguggscsu

Ufsu






D-2286
{sGalNAc3K2AhxC6}[invAb]ugcuucAfuGfCfCfUfu
1701
{Phosphate}asCfsuGfuAfgAfAfaggcAfuGfaagcasus
1702



ucuacasgsu

u






D-2287
{sGalNAc3K2AhxC6}[invAb]cuucauGfcCfUfUfUfc
1703
{Phosphate}asCfsuGfuAfGfaaagGfcAfugaagsusu
1704



uAfcAfgUfsusUf








D-2288
{sGalNAc3K2AhxC6}UfgCfuUfcAfuGfcCfUfuuCfu
1705
{Phosphate}asCfsuGfuAfgAfAfagGfcAfuGfaAfgCfa
1706



AfcAfgs{invAb}

sUfsu






D-2289
{sGalNAc3K2AhxC6}[invAb]CfuUfcAfuGfcCfUfUf
1707
{Phosphate}asCfsuGfuAfGfaaagGfcAfuGfaAfgsUf
1708



Ufcuacagususu

su






D-2290
{sGalNAc3K2AhxC6}UfgCfuUfcAfuGfCfCfUfuucu
1709
{Phosphate}asCfsuGfuAfgAfAfaggcAfuGfaAfgCfas
1710



acags{invAb}

Ufsu






D-2291
{sGalNAc3K2AhxC6}[invAb]UfgCfuUfcAfuGfCfCf
1711
{Phosphate}asCfsuGfuAfgAfAfaggcAfuGfaAfgCfas
1712



Ufuucuacasgsu

Ufsu






D-2292
{sGalNAc3K2AhxC6}[invAb]ugcuucauGfcCfUfUf
1713
{Phosphate}asCfsuGfuAfGfaaagGfcAfugaagcasus
1714



Ufcuacasgsu

u






D-2293
{sGalNAc3K2AhxC6}[invAb]ugcuucauGfcCfUfUf
1715
{Phosphate}asCfsuGfuAfGfaaagGfcAfugaagcasus
1716



UfcuAfcAfgsUf

u






D-2294
{sGalNAc3K2AhxC6}[invAb]UfgCfuUfcAfuGfcCf
1717
{Phosphate}asCfsuGfuAfGfaaagGfcAfuGfaAfgCfas
1718



UfUfUfcuacasgsu

Ufsu






D-2295
{sGalNAc3K2AhxC6}[invAb]guuccuGfcUfUfCfAf
1719
{Phosphate}asAfsaGfgCfAfugaaGfcAfggaacsusu
1720



ugccuuususu








D-2296
{sGalNAc3K2AhxC6}[invAb]ccugcuUfcAfUfGfCfc
1721
{Phosphate}usAfsgAfaAfGfgcauGfaAfgcaggsusu
1722



uuucuasusu








D-2297
{sGalNAc3K2AhxC6}[invAb]cuucauGfcCfUfUfUfc
1723
{Phosphate}asCfsuGfuAfGfaaagGfcAfugaagsusu
1724



uacagususu








D-2298
{sGalNAc3K2AhxC6}[invAb]UfuCfcUfgCfuUfcAfu
1725
{Phosphate}usAfsgAfaAfGfgcAfuGfaAfgCfaGfgAfa
1726



GfCfcuUfuCfsusAf

sUfsu






D-2299
{sGalNAc3K2AhxC6}uuccugCfuUfCfAfUfgccuuuc
1727
{Phosphate}usAfsgAfaAfgGfCfaugaAfgCfaggaasus
1728



us{invAb}

u






D-2300
{sGalNAc3K2AhxC6}[invAb]uuccugCfuUfCfAfUfg
1729
{Phosphate}usAfsgAfaAfgGfCfaugaAfgCfaggaasus
1730



ccuuucsusa

u






D-2301
{sGalNAc3K2AhxC6}uuccugCfuUfCfAfUfgcCfuUf
1731
{Phosphate}usAfsgAfaAfgGfCfaugaAfgCfaggaasus
1732



uCfus{invAb}

u






D-2302
{sGalNAc3K2AhxC6}[invAb]uuccugCfuUfCfAfUfg
1733
{Phosphate}usAfsgAfaAfgGfCfaugaAfgCfaggaasus
1734



cCfuUfuCfsusAf

u






D-2303
{sGalNAc3K2AhxC6}[invAb]UfuCfcUfgCfuUfcAf
1735
{Phosphate}usAfsgAfaAfgGfCfauGfaAfgCfaGfgAfa
1736



UfgcCfuUfuCfsusAf

sUfsu






D-2304
{sGalNAc3K2AhxC6}[invAb]UfuCfcUfgCfuUfCfAf
1737
{Phosphate}usAfsgAfaAfgGfCfaugaAfgCfaGfgAfas
1738



Ufgccuuucsusa

Ufsu






D-2305
{sGalNAc3K2AhxC6}[invAb]uuccugcuUfcAfUfGf
1739
{Phosphate}usAfsgAfaAfGfgcauGfaAfgcaggaasus
1740



Cfcuuucsusa

u






D-2306
{sGalNAc3K2AhxC6}[invAb]uuccugcuUfcAfUfGf
1741
{Phosphate}usAfsgAfaAfGfgcauGfaAfgcaggaasus
1742



CfcuUfuCfusAf

u






D-2307
{sGalNAc3K2AhxC6}[invAb]UfuCfcUfgCfuUfcAf
1743
{Phosphate}usAfsgAfaAfGfgcauGfaAfgCfaGfgAfas
1744



UfGfCfcuuucsusa

Ufsu






D-2308
{sGalNAc3K2AhxC6}[invAb]UfcAfuGfcCfuUfuCfu
1745
{Phosphate}asGfscCfaCfUfguAfgAfaAfgGfcAfuGfa
1746



AfCfagUfgGfscsUf

sUfsu






D-2309
{sGalNAc3K2AhxC6}ucaugcCfuUfUfCfUfacagugg
1747
{Phosphate}asGfscCfaCfuGfUfagaaAfgGfcaugasus
1748



cs{invAb}

u






D-2310
{sGalNAc3K2AhxC6}[invAb]ucaugcCfuUfUfCfUfa
1749
{Phosphate}asGfscCfaCfuGfUfagaaAfgGfcaugasus
1750



caguggscsu

u






D-2311
{sGalNAc3K2AhxC6}ucaugcCfuUfUfCfUfacAfgUf
1751
{Phosphate}asGfscCfaCfuGfUfagaaAfgGfcaugasus
1752



gGfcs{invAb}

u






D-2312
{sGalNAc3K2AhxC6}[invAb]ucaugcCfuUfUfCfUfa
1753
{Phosphate}asGfscCfaCfuGfUfagaaAfgGfcaugasus
1754



cAfgUfgGfscsUf

u






D-2313
{sGalNAc3K2AhxC6}[invAb]UfcAfuGfcCfuUfuCf
1755
{Phosphate}asGfscCfaCfuGfUfagAfaAfgGfcAfuGfa
1756



UfacAfgUfgGfscsUf

sUfsu






D-2314
{sGalNAc3K2AhxC6}UfcAfuGfcCfuUfUfCfUfacag
1757
{Phosphate}asGfscCfaCfuGfUfagaaAfgGfcAfuGfas
1758



uggcs{invAb}

Ufsu






D-2315
{sGalNAc3K2AhxC6}[invAb]ucaugccuUfuCfUfAf
1759
{Phosphate}asGfscCfaCfUfguagAfaAfggcaugasusu
1760



Cfaguggscsu








D-2316
{sGalNAc3K2AhxC6}[invAb]ucaugccuUfuCfUfAf
1761
{Phosphate}asGfscCfaCfUfguagAfaAfggcaugasusu
1762



CfagUfgGfcsUf








D-2317
{sGalNAc3K2AhxC6}[invAb]UfcAfuGfcCfuUfuCf
1763
{Phosphate}asGfscCfaCfUfguagAfaAfgGfcAfuGfas
1764



UfAfCfaguggscsu

Ufsu






D-2318
{sGalNAc3K2AhxC6}[invAb]UfgCfuUfcAfuGfcCfu
1765
{Phosphate}asCfsuGfuAfGfaaAfgGfcAfuGfaAfgCf
1766



UfUfcuAfcAfsgsUf

asUfsu






D-2319
{sGalNAc3K2AhxC6}ugcuucAfuGfCfCfUfuucuaca
1767
{Phosphate}asCfsuGfuAfgAfAfaggcAfuGfaagcasus
1768



gs{invAb}

u






D-2320
{sGalNAc3K2AhxC6}ugcuucAfuGfCfCfUfuuCfuAf
1769
{Phosphate}asCfsuGfuAfgAfAfaggcAfuGfaagcasus
1770



cAfgs{invAb}

u






D-2321
{sGalNAc3K2AhxC6}[invAb]ugcuucAfuGfCfCfUfu
1771
{Phosphate}asCfsuGfuAfgAfAfaggcAfuGfaagcasus
1772



uCfuAfcAfsgsUf

u






D-2322
{sGalNAc3K2AhxC6}[invAb]CfuUfcAfuGfcCfuUf
1773
{Phosphate}asCfsuGfuAfGfaaAfgGfcAfuGfaAfgsU
1774



UfcuAfcAfgUfsusUf

fsu






D-2323
{sGalNAc3K2AhxC6}[invAb]UfgCfuUfcAfuGfcCf
1775
{Phosphate}asCfsuGfuAfgAfAfagGfcAfuGfaAfgCfa
1776



UfuuCfuAfcAfsgsUf

sUfsu






D-2324
{sGalNAc3K2AhxC6}[invAb]gcuucaUfgCfCfUfUfu
1777
{Phosphate}asUfsgUfaGfAfaaggCfaUfgaagcsusu
1778



cuacaususu








D-2325
{sGalNAc3K2AhxC6}[invAb]caugccUfuUfCfUfAfc
1779
{Phosphate}asCfscAfcUfGfuagaAfaGfgcaugsusu
1780



aguggususu








D-2326
{sGalNAc3K2AhxC6}[invAb]cugcuuCfaUfGfCfCfu
1781
{Phosphate}usUfsaGfaAfAfggcaUfgAfagcagsusu
1782



uucuaasusu








D-2327
{sGalNAc3K2AhxC6}[invAb]gcuucaUfgCfCfUfUfu
1783
{Phosphate}usUfsgUfaGfAfaaggCfaUfgaagcsusu
1784



cuacaasusu








D-2328
{sGalNAc3K2AhxC6}[invAb]uucaugCfcUfUfUfCf
1785
{Phosphate}usAfscUfgUfAfgaaaGfgCfaugaasusu
1786



uacaguasusu








D-2329
{sGalNAc3K2AhxC6}[invAb]guuccuGfcUfUfCfAf
1787
{Phosphate}asAfsaGfgCfAfugaaGfcAfggaacsusu
1788



ugCfcUfuUfsusUf








D-2330
{sGalNAc3K2AhxC6}auguucCfuGfCfUfUfcaUfgCf
1789
{Phosphate}asAfsaGfgCfaUfGfaagcAfgGfaacausus
1790



cUfus{invAb}

u






D-2331
{sGalNAc3K2AhxC6}[invAb]auguucCfuGfCfUfUf
1791
{Phosphate}asAfsaGfgCfaUfGfaagcAfgGfaacausus
1792



caUfgCfcUfsusUf

u






D-2332
{sGalNAc3K2AhxC6}[invAb]GfuUfcCfuGfcUfuCf
1793
{Phosphate}asAfsaGfgCfAfugAfaGfcAfgGfaAfcsUf
1794



AfugCfcUfuUfsusUf

su






D-2333
{sGalNAc3K2AhxC6}AfuGfuUfcCfuGfcUfUfcaUfg
1795
{Phosphate}asAfsaGfgCfaUfGfaaGfcAfgGfaAfcAfu
1796



CfcUfus{invAb}

sUfsu






D-2334
{sGalNAc3K2AhxC6}[invAb]AfuGfuUfcCfuGfcUf
1797
{Phosphate}asAfsaGfgCfaUfGfaaGfcAfgGfaAfcAfu
1798



UfcaUfgCfcUfsusUf

sUfsu






D-2335
{sGalNAc3K2AhxC6}[invAb]GfuUfcCfuGfcUfUfCf
1799
{Phosphate}asAfsaGfgCfAfugaaGfcAfgGfaAfcsUfs
1800



Afugccuuususu

u






D-2336
{sGalNAc3K2AhxC6}AfuGfuUfcCfuGfCfUfUfcaug
1801
{Phosphate}asAfsaGfgCfaUfGfaagcAfgGfaAfcAfus
1802



ccuus{invAb}

Ufsu






D-2337
{sGalNAc3K2AhxC6}[invAb]AfuGfuUfcCfuGfCfUf
1803
{Phosphate}asAfsaGfgCfaUfGfaagcAfgGfaAfcAfus
1804



Ufcaugccususu

Ufsu






D-2338
{sGalNAc3K2AhxC6}[invAb]auguuccuGfcUfUfCf
1805
{Phosphate}asAfsaGfgCfAfugaaGfcAfggaacausus
1806



Afugccususu

u






D-2339
{sGalNAc3K2AhxC6}[invAb]auguuccuGfcUfUfCf
1807
{Phosphate}asAfsaGfgCfAfugaaGfcAfggaacausus
1808



AfugCfcUfusUf

u






D-2340
{sGalNAc3K2AhxC6}[invAb]GfcUfuCfaUfgCfcUfu
1809
{Phosphate}usAfscUfgUfAfgaAfaGfgCfaUfgAfaGfc
1810



UfCfuaCfaGfsusAf

sUfsu






D-2341
{sGalNAc3K2AhxC6}[invAb]gcuucaUfgCfCfUfUfu
1811
{Phosphate}usAfscUfgUfaGfAfaaggCfaUfgaagcsus
1812



cuacagsusa

u






D-2342
{sGalNAc3K2AhxC6}[invAb]uucaugCfcUfUfUfCf
1813
{Phosphate}usAfscUfgUfAfgaaaGfgCfaugaasusu
1814



uaCfaGfuAfsusUf








D-2343
{sGalNAc3K2AhxC6}[invAb]gcuucaUfgCfCfUfUfu
1815
{Phosphate}usAfscUfgUfaGfAfaaggCfaUfgaagcsus
1816



cUfaCfaGfsusAf

u






D-2344
{sGalNAc3K2AhxC6}GfcUfuCfaUfgCfCfUfUfucua
1817
{Phosphate}usAfscUfgUfaGfAfaaggCfaUfgAfaGfcs
1818



cagus{invAb}

Ufsu






D-2345
{sGalNAc3K2AhxC6}[invAb]GfcGfgCfuUfcCfUfGf
1819
{Phosphate}usAfsgAfaGfCfccagGfaAfgCfcGfcsUfs
1820



Gfgcuucuasusu

u






D-2346
{sGalNAc3K2AhxC6}[invAb]auggcuUfcCfAfGfAfu
1821
{Phosphate}asGfsgCfaUfAfucugGfaAfgccaususu
1822



augccususu








D-2347
{sGalNAc3K2AhxC6}[invAb]acauggCfuUfCfCfAfg
1823
{Phosphate}asGfsgCfaUfaUfCfuggaAfgCfcaugusus
1824



aUfaUfgCfscsUf

u






D-2348
{sGalNAc3K2AhxC6}[invAb]AfcAfuGfgCfuUfcCfA
1825
{Phosphate}asGfsgCfaUfAfucugGfaAfgCfcAfuGfus
1826



fGfAfuaugcscsu

Ufsu






D-2349
{sGalNAc3K2AhxC6}[invAb]caacguAfcCfCfUfUfc
1827
{Phosphate}asCfsaUfcAfaUfGfaaggGfuAfcguugsu
1828



auugausgsu

su






D-2350
{sGalNAc3K2AhxC6}[invAb]caacguacCfcUfUfCfA
1829
{Phosphate}asCfsaUfcAfAfugaaGfgGfuacguugsus
1830



fuuGfaUfgsUf

u






D-2351
{sGalNAc3K2AhxC6}[invAb]acguacCfcUfUfCfAfu
1831
{Phosphate}asCfsaUfcAfAfugaaGfgGfuacgususu
1832



ugaugususu








D-2352
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1833
{Phosphate}asUfsgUfaGfAfaaggCfaUfgaagcagsus
1834



as{invAb}

u






D-2353
{sGalNAc3K2AhxC6}[invAb]cugcuucaUfgCfCfUf
1835
{Phosphate}asUfsgUfaGfAfaaggCfaUfgaagcagsus
1836



Ufucuacsasu

u






D-2354
{sGalNAc3K2AhxC6}[invAb]gcuucaUfgCfCfUfUfu
1837
{Phosphate}asUfsgUfaGfAfaaggCfaUfgaagcsusu
1838



cUfaCfaUfsusUf








D-2355
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucUfa
1839
{Phosphate}asUfsgUfaGfAfaaggCfaUfgaagcagsus
1840



Cfas{invAb}

u






D-2356
{sGalNAc3K2AhxC6}[invAb]cugcuucaUfgCfCfUf
1841
{Phosphate}asUfsgUfaGfAfaaggCfaUfgaagcagsus
1842



UfucUfaCfasUf

u






D-2357
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1843
{Phosphate}asUfsguagAfaaggCfaUfgaagcagsusu
1844



as{invAb}








D-2358
{sGalNAc3K2AhxC6}[invAb]cugcuucaUfgCfCfUf
1845
{Phosphate}asUfsgUfaGfAfaaggCfaUfgaagcagsus
1846



Ufucuacas{invAb}

u






D-2359
{sGalNAc3K2AhxC6}[invAb]gcuucaUfgCfCfUfUfu
1847
{Phosphate}asUfsgUfaGfAfaaGfgCfaUfgaagcsusu
1848



cuacaususu








D-2360
{sGalNAc3K2AhxC6}[invAb]CfuUfcAfuGfcCfUfUf
1849
{Phosphate}asCfsuGfuAfGfaaagGfcAfugaagsusu
1850



Ufcuacagususu








D-2361
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcuaca
1851
{Phosphate}asCfsuGfuAfGfaaagGfcAfugaagcasus
1852



gs{invAb}

u






D-2362
{sGalNAc3K2AhxC6}[invAb]cugcuucaUfgCfCfUf
1853
{Phosphate}asUfsgUfaGfAfaaGfgCfaUfgaagcagsu
1854



Ufucuacsasu

su






D-2363
{sGalNAc3K2AhxC6}cugcuucaUfgCfcUfUfucuaca
1855
{Phosphate}asUfsgUfaGfAfaaggcaUfgaagcagsusu
1856



s{invAb}








D-2364
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1857
{Phosphate}asUfsgUfaGfAfaaGfgCfaUfgaagcagsu
1858



as{invAb}

su






D-2365
{sGalNAc3K2AhxC6}[invAb]cuucauCfcCfUfUfUfc
1859
{Phosphate}asCfsuGfuAfGfaaagGfgAfugaagsusu
1860



uacagususu








D-2366
{sGalNAc3K2AhxC6}[invAb]gcuucaUfcCfCfUfUfu
1861
{Phosphate}asUfsgUfaGfAfaaggGfaUfgaagcsusu
1862



cuacaususu








D-2367
{sGalNAc3K2AhxC6}ugcuucauCfcCfUfUfUfcuaca
1863
{Phosphate}asCfsuGfuAfGfaaagGfgAfugaagcasus
1864



gs{invAb}

u






D-2368
{sGalNAc3K2AhxC6}cugcuucaUfcCfCfUfUfucuac
1865
{Phosphate}asUfsgUfaGfAfaaggGfaUfgaagcagsus
1866



as{invAb}

u






D-2369
{sGalNAc3K2AhxC6}[invAb]acauugCfuCfUfUfUfc
1867
{Phosphate}usCfsaGfgUfGfaaagAfgCfaaugususu
1868



accugasusu








D-2370
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1869
asUfsgUfaGfAfaaggCfaUfgaagcagsusu
1870



as{invAb}








D-2371
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1871
asUfsgUfaGfAfaaggCfaUfgaagcasgsusu
1872



as{invAb}








D-2372
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1873
asUfsgsUfaGfAfaaggCfaUfgaagcagsusu
1874



as{invAb}








D-2373
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1875
asUfsgUfaGfAfaaggCfaUfgaagcagusu
1876



as{invAb}








D-2374
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1877
asUfsgsUfaGfAfaaggCfaUfgaagcagusu
1878



as{invAb}








D-2375
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1879
asUfgUfaGfAfaaggCfaUfgaagcagsusu
1880



as{invAb}








D-2376
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1881
asUfgUfaGfAfaaggCfaUfgaagcasgsusu
1882



as{invAb}








D-2377
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1883
asUfsgUfaGfAfaaggCfaUfgaagcagsusu
1884



sas{invAb}








D-2378
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuas
1885
asUfsgUfaGfAfaaggCfaUfgaagcagsusu
1886



csas{invAb}








D-2379
{sGalNAc3K2AhxC6}csugcuucaUfgCfCfUfUfucua
1887
asUfsgUfaGfAfaaggCfaUfgaagcagsusu
1888



cas{invAb}








D-2380
{sGalNAc3K2AhxC6}csusgcuucaUfgCfCfUfUfucu
1889
asUfsgUfaGfAfaaggCfaUfgaagcagsusu
1890



acas{invAb}








D-2381
{sGalNAc3K2AhxC6}[invAb]cuucauGfcCf[dT]UfU
1891
{Phosphate}asCfsuGfuAfGfaaagGfcAfugaagsusu
1892



fcuacagususu








D-2382
{sGalNAc3K2AhxC6}[invAb]cuucauGfcCfUfUfUfc
1893
{Phosphate}asCfsuGfuAfGfaaAfgGfcAfugaagsusu
1894



uacagususu








D-2383
{sGalNAc3K2AhxC6}[invAb]cuucauGfcCfuUfUfc
1895
{Phosphate}asCfsuGfuAfGfaaagGfcAfugaagsusu
1896



uacagususu








D-2384
{sGalNAc3K2AhxC6}[invAb]cuucauGfcCfUfUfUfc
1897
{Phosphate}asCfsuGfuaGfaaagGfcAfugaagsusu
1898



uacagususu








D-2385
{sGalNAc3K2AhxC6}[invAb]cuucauGfcCfUfUfUfc
1899
{Phosphate}asCfsuguaGfaaagGfcAfugaagsusu
1900



uacagususu








D-2386
{sGalNAc3K2AhxC6}[invAb]cuucauGfc[dqUfUf
1901
{Phosphate}asCfsuGfuAfGfaaagGfcAfugaagsusu
1902



Ufcuacagususu








D-2387
{sGalNAc3K2AhxC6}[invAb]cuucauGfcCfUf[dT]U
1903
{Phosphate}asCfsuGfuAfGfaaagGfcAfugaagsusu
1904



fcuacagususu








D-2388
{sGalNAc3K2AhxC6}[invAb]gcuucaUfgGfGfAfUf
1905
{Phosphate}asUfsgUfaGfAfauccCfaUfgaagcsusu
1906



ucuacaususu








D-2389
{sGalNAc3K2AhxC6}[invAb]cuucauGfcGfAfAfUfc
1907
{Phosphate}asCfsuGfuAfGfauucGfcAfugaagsusu
1908



uacagususu








D-2390
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1909
{Phosphate}usUfsgUfaGfAfaaggCfaUfgaagcagsus
1910



as{invAb}

u






D-2391
{sGalNAc3K2AhxC6}[invAb]cugcuucaUfgCfCfUf
1911
{Phosphate}usUfsgUfaGfAfaaggCfaUfgaagcagsus
1912



Ufucuacsasa

u






D-2392
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1913
{Phosphate}usUfsgUfaGfAfaaggCfaUfgaagcagsus
1914



as{invDA}

u






D-2393
{sGalNAc3K2AhxC6}cugcuucaUfgGfGfAfUfucuac
1915
{Phosphate}asUfsgUfaGfAfauccCfaUfgaagcagsus
1916



as{invAb}

u






D-2394
{sGalNAc3K2AhxC6}[invAb]cugcuucaUfgGfGfAf
1917
{Phosphate}asUfsgUfaGfAfauccCfaUfgaagcagsus
1918



Ufucuacsasu

u






D-2395
{sGalNAc3K2AhxC6}[invAb]CfuUfcAfuGfcCfUfUf
1919
{Phosphate}asCfsuGfuAfGfaaagGfcAfugaagsusu
1920



UfcuAfcAfgUfsusUf








D-2396
{sGalNAc3K2AhxC6}[invAb]cuucauGfcCfUfUfUfc
1921
{Phosphate}asCfsuGfuAfGfaaagGfcAfuGfaAfgsUf
1922



uAfcAfgUfsusUf

su






D-2397
{sGalNAc3K2AhxC6}[invAb]gcuucaUfgCfCfUfUfu
1923
asUfsgUfaGfAfaaggCfaUfgaagcsusu
1924



cuacaususu








D-2398
{sGalNAc3K2AhxC6}[invAb]ugcuucauGfcCfUfUf
1925
asCfsuGfuAfGfaaagGfcAfugaagcasusu
1926



Ufcuacags{invAb}








D-2399
{sGalNAc3K2AhxC6}[invAb]cuucauGfcCfUfUfUfc
1927
{Phosphate}asCfsuGfuAfGfaaagGfcAfuGfaAfgsUf
1928



uacagususu

su






D-2400
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcuAfc
1929
asCfsuGfuAfGfaaagGfcAfugaagcasusu
1930



Afgs{invAb}








D-2401
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcuaca
1931
asCfsuGfuAfGfaaAfgGfcAfugaagcasusu
1932



gs{invAb}








D-2402
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcuaca
1933
asCfsuguaGfaaagGfcAfugaagcasusu
1934



gs{invAb}








D-2403
{sGalNAc3K2AhxC6}[invAb]cuucauGfcCfUfUfUfc
1935
asCfsuGfuAfGfaaagGfcAfugaagsusu
1936



uacagususu








D-2404
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcuaca
1937
asCfsuGfuAfGfaaagGfcAfugaagcasusu
1938



gs{invAb}








D-2405
{GalNAc3K2AhxC6}augccuuuCfuAfCfAfGfuggcus
1939
{Phosphate}asGfscCfaCfUfguAfgAfaAfgGfcAfuGfa
1940



us{invAb}

sUfsu






D-2406
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfagugg
1941
asGfscCfaCfUfguagAfaAfggcaugasusu
1942



cs{invAb}








D-2407
{sGalNAc3K2AhxC6}[invAb]augccuUfuCfUfAfCfa
1943
asGfscCfaCfUfguagAfaAfggcaususu
1944



guggcususu








D-2408
{sGalNAc3K2AhxC6}[invAb]augccuUfuCfUfAfCfa
1945
asGfscCfaCfUfguagAfaAfggcaususu
1946



gUfgGfcUfsusUf








D-2409
{sGalNAc3K2AhxC6}[invAb]ucaugccuUfuCfUfAf
1947
asGfscCfaCfUfguagAfaAfggcaugasusu
1948



Cfaguggscsu








D-2410
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfagUfg
1949
asGfscCfaCfUfguagAfaAfggcaugasusu
1950



Gfcs{invAb}








D-2411
{sGalNAc3K2AhxC6}[invAb]augccuUfuCfUfAfCfa
1951
asGfscCfaCfUfguAfgAfaAfggcaususu
1952



guggcususu








D-2412
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfagugg
1953
asGfscCfaCfUfguAfgAfaAfggcaugasusu
1954



cs{invAb}








D-2413
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfagugg
1955
asGfsccacUfguagAfaAfggcaugasusu
1956



cs{invAb}








D-2414
{sGalNAc3K2AhxC6}[invAb]ucaugccuUfuCfUfAf
1957
asGfscCfaCfUfguagAfaAfggcaugasusu
1958



Cfaguggcs{invAb}








D-2415
{sGalNAc3K2AhxC6}[invAb]augccuUfuCfUfAfCfa
1959
usGfscCfaCfUfguagAfaAfggcaususu
1960



guggcasusu








D-2416
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfagugg
1961
usGfscCfaCfUfguagAfaAfggcaugasusu
1962



cs{invAb}








D-2417
{sGalNAc3K2AhxC6}[invAb]ucaugccuUfuCfUfAf
1963
usGfscCfaCfUfguagAfaAfggcaugasusu
1964



Cfaguggscsa








D-2418
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfagugg
1965
usGfscCfaCfUfguagAfaAfggcaugasusu
1966



cs{invDA}








D-2419
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1967
asUfsguagAfaaggCfaUfgaagcagsusu
1968



as{invAb}








D-2420
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1969
usUfsguagAfaaggCfaUfgaagcagsusu
1970



as{invAb}








D-2421
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1971
usUfsguagAfaaggCfaUfgaagcagsusu
1972



as{invDA}








D-2422
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfagugg
1973
usGfsccacUfguagAfaAfggcaugasusu
1974



cs{invAb}








D-2423
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfagugg
1975
usGfsccacUfguagAfaAfggcaugasusu
1976



cs{invDA}








D-2424
{sGalNAc3K2AhxC6}[invAb]cuucauGfcCfuUfUfc
1977
{Phosphate}asCfsuGfuAfGfaaAfgGfcAfugaagsusu
1978



uacagususu








D-2425
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1979
asUfsgUfa[ANAfaaggCfaUfgaagcagsusu
1980



as{invAb}








D-2426
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1981
asUfsgua[Ab]AfaaggCfaUfgaagcagsusu
1982



as{invAb}








D-2427
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcuaca
1983
asCfsuGfu[Ab]GfaaagGfcAfugaagcasusu
1984



gs{invAb}








D-2428
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcuaca
1985
asCfsugu[Ab]GfaaagGfcAfugaagcasusu
1986



gs{invAb}








D-2429
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfagugg
1987
asGfscCfa[Ab]UfguagAfaAfggcaugasusu
1988



cs{invAb}








D-2430
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfagugg
1989
asGfscca[Ab]UfguagAfaAfggcaugasusu
1990



cs{invAb}








D-2431
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1991
asUfs[GNA-G]uagAfaaggCfaUfgaagcagsusu
1992



as{invAb}








D-2432
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1993
asUfsg[GNA-U]agAfaaggCfaUfgaagcagsusu
1994



as{invAb}








D-2433
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1995
asUfsgu[GNA-A]gAfaaggCfaUfgaagcagsusu
1996



as{invAb}








D-2434
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1997
asUfsgua[GNA-G]AfaaggCfaUfgaagcagsusu
1998



as{invAb}








D-2435
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
1999
asUfsguag[GNA-A]aaggCfaUfgaagcagsusu
2000



as{invAb}








D-2436
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2001
asUfsguagAf[GNA-A]aggCfaUfgaagcagsusu
2002



as{invAb}








D-2437
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2003
asUfsgUfagAfaaggCfaUfgaagcagsusu
2004



as{invAb}








D-2438
{sGalNAc3K2AhxC6}[invAb]cugcuucaUfgCfCfUf
2005
asUfsguagAfaaggCfaUfgaagcagsusu
2006



Ufucuacsasu








D-2439
{sGalNAc3K2AhxC6}[invAb]cugcuucaUfgCfCfUf
2007
asUfsguagAfaaggCfaUfgaagcagsusu
2008



Ufucuacas{invAb}








D-2440
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2009
asUfsguagAfaaGfgCfaUfgaagcagsusu
2010



as{invAb}








D-2441
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucUfa
2011
asUfsguagAfaaggCfaUfgaagcagsusu
2012



Cfas{invAb}








D-2442
{sGalNAc3K2AhxC6}[invAb]cugcuucaUfgCfCfUf
2013
asUfsguagAfaaggCfaUfgaagcagsusu
2014



UfucUfaCfasUf








D-2443
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucUfa
2015
asUfsguagAfaaGfgCfaUfgaagcagsusu
2016



Cfas{invAb}








D-2444
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2017
asUfsgUfaGfAfaaGfgCfaUfgaagcagsusu
2018



as{invAb}








D-2445
{sGalNAc3K2AhxC6}[invAb]cugcuucaUfgCfCfUf
2019
asUfsgUfaGfAfaaGfgCfaUfgaagcagsusu
2020



Ufucuacsasu








D-2446
{sGalNAc3K2AhxC6}[invAb]cugcuucaUfgCfCfUf
2021
asUfsgUfaGfAfaaggCfaUfgaagcagsusu
2022



Ufucuacas{invAb}








D-2447
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2023
as[Ab]guagAfaaggCfaUfgaagcagsusu
2024



as{invAb}








D-2448
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2025
asUfs[Ab]uagAfaaggCfaUfgaagcagsusu
2026



as{invAb}








D-2449
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2027
asUfsg[Ab]agAfaaggCfaUfgaagcagsusu
2028



as{invAb}








D-2450
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2029
asUfsgu[Ab]gAfaaggCfaUfgaagcagsusu
2030



as{invAb}








D-2451
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2031
asUfsguag[Ab]aaggCfaUfgaagcagsusu
2032



as{invAb}








D-2452
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2033
asUfsguagAf[Ab]aggCfaUfgaagcagsusu
2034



as{invAb}








D-2453
{sGalNAc3K2AhxC6}caacguacCfcUfUfCfAfuugau
2035
asCfsaucaAfugaaGfgGfuacguugsusu
2036



gs{invAb}








D-2454
{sGalNAc3K2AhxC6}caacguacCfcUfUfCfAfuugau
2037
asCfsaUfcAfAfugaaGfgGfuacguugsusu
2038



gs{invAb}








D-2455
{sGalNAc3K2AhxC6}acauggcuUfcCfAfGfAfuaugc
2039
asGfsgcauAfucugGfaAfgccaugususu
2040



cs{invAb}








D-2456
{sGalNAc3K2AhxC6}acauggcuUfcCfAfGfAfuaugc
2041
asGfsgCfaUfAfucugGfaAfgccaugususu
2042



cs{invAb}








D-2457
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2043
asUfsguaGfAfaaggCfaUfgaagcagsusu
2044



as{invAb}








D-2458
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucUfa
2045
asUfsguagAfaaggCfaUfgaagcagsusu
2046



cas{invAb}








D-2459
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuaC
2047
asUfsguagAfaaggCfaUfgaagcagsusu
2048



fas{invAb}








D-2460
{sGalNAc3K2AhxC6}cugcggcuUfcCfUfGfGfgcuuc
2049
usAfsgAfaGfCfccagGfaAfgccgcagsusu
2050



us{invAb}








D-2461
{sGalNAc3K2AhxC6}cugcggcuUfcCfUfGfGfgcuuc
2051
usAfsgaagCfccagGfaAfgccgcagsusu
2052



us{invAb}








D-2462
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcuaca
2053
asCfsuGfuaGfaaagGfcAfugaagcasusu
2054



gs{invAb}








D-2463
{sGalNAc3K2AhxC6}[invAb]ugcuucauGfcCfUfUf
2055
asCfsuGfuaGfaaagGfcAfugaagcasusu
2056



Ufcuacasgsu








D-2464
{sGalNAc3K2AhxC6}[invAb]ugcuucauGfcCfUfUf
2057
asCfsuGfuaGfaaagGfcAfugaagcasusu
2058



Ufcuacags{invAb}








D-2465
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcuaca
2059
asCfsuGfuaGfaaAfgGfcAfugaagcasusu
2060



gs{invAb}








D-2466
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcuAfc
2061
asCfsuGfuaGfaaagGfcAfugaagcasusu
2062



Afgs{invAb}








D-2467
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcuAfc
2063
asCfsuGfuAfGfaaagGfcAfuGfaAfgCfasUfsu
2064



Afgs{invAb}








D-2468
{sGalNAc3K2AhxC6}cugcuuCfaUfGfCfcuuucuacs
2065
asUfsguaGfaaAfggcaUfgAfagcagsusu
2066



asu








D-2469
{sGalNAc3K2AhxC6}cugcuuCfaUfGfCfcuuucuacs
2067
asUfsguaGfaaaggcaUfgAfagcagsusu
2068



asu








D-2470
{sGalNAc3K2AhxC6}cugcuuCfaUfGfCfcuuucuacs
2069
asUfsguaGfaAfAfggcaUfgAfagcagsusu
2070



asu








D-2471
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcuaca
2071
usCfsuguaGfaaagGfcAfugaagcasusu
2072



gs{invAb}








D-2472
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcuaca
2073
usCfsuguaGfaaagGfcAfugaagcasusu
2074



gs{invDA}








D-2473
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2075
asUfsguagAfaaggCfaUfgaagcagsusu
2076



as{invDTI








D-2474
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2077
asUfsguagAf[sGNA-A]aggCfaUfgaagcagsusu
2078



as{invAb}








D-2475
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2079
asUfsguagAfs[GNA-A]aggCfaUfgaagcagsusu
2080



as{invAb}








D-2476
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2081
asUfsguagAfs[sGNA-A]aggCfaUfgaagcagsusu
2082



as{invAb}








D-2477
csusgcuucaUfgCfCfUfUfucuacas{invAb}
2083
asUfsguagAf[GNA-A]aggCfaUfgaagcagsusu
2084





D-2478
csusgcuucaUfgCfCfUfUfucuacas{invAb}
2085
asUfsguagAf[GNA-A]AfggCfaUfgaagcagsusu
2086





D-2479
csusgcuucaUfgCfCfUfUfucuacas{invAb}
2087
asUfsguaga[GNA-A]aggCfaUfgaagcagsusu
2088





D-2480
csusgcuucaUfgCfCfUfuucuacas{invAb}
2089
asUfsguagAf[GNA-A]aggCfaUfgaagcagsusu
2090





D-2481
csusgcuucaUfgCfCfUfuucuacas{invAb}
2091
asUfsguaga[GNA-A]aggCfaUfgaagcagsusu
2092





D-2482
csusgcuucaUfgCfCfUfUfucuacas{invAb}
2093
asUfsguaga[GNA-A]AfggCfaUfgaagcagsusu
2094





D-2483
csusgcuucaUfgCfCfUfuucuacas{invAb}
2095
asUfsguagAf[GNA-A]AfggCfaUfgaagcagsusu
2096





D-2484
csusgcuucaUfgCfCfUfuucuacas{invAb}
2097
asUfsguaga[GNA-A]AfggCfaUfgaagcagsusu
2098





D-2485
csusgcuucaUfgCfCfUfUfucuacas{invAb}
2099
asUfsgUfaGfAf[GNA-A]aggCfaUfgaagcagsusu
2100





D-2486
csusgcuucaUfgCfCfUfUfucuacas{invAb}
2101
asUfsgUfagAf[GNA-A]aGfgCfaUfgaagcagsusu
2102





D-2487
csusgcuucaUfgCfCfUfUfucuacas{invAb}
2103
asUfsgUfagAf[GNA-A]aggCfaUfgaagcagsusu
2104





D-2488
csusgcuucaUfgCfCfUfUfucuacas{invAb}
2105
asUfsgUfaGfAf[GNA-A]aGfgCfaUfgaagcagsusu
2106





D-2489
csusgcuucaUfgCfCfUfUfucuacas{invAb}
2107
asUfsguagAf[GNA-A]aGfgCfaUfgaagcagsusu
2108





D-2490
csusgcuucaUfgCfCfUfUfucUfaCfas{invAb}
2109
asUfsguagAf[GNA-A]aGfgCfaUfgaagcagsusu
2110





D-2491
csusgcuucaUfgCfCfUfUfucuacas{invAb}
2111
asUfsguagAf[GNA-A]a[dG]gCfaUfgaagcagsusu
2112





D-2492
csusgcuucaUfgCfCfUfUfucuacas{invAb}
2113
asUfsguagAf[GNA-A][dA]ggCfaUfgaagcagsusu
2114





D-2493
csusgcuucaUfgCfCfUfUfucuacas{invAb}
2115
asUfsguagAf[GNA-A]ag[dG]CfaUfgaagcagsusu
2116





D-2494
csusgcuucaUfgCfCfUfUfucuacas{invAb}
2117
asUfsguaGfAf[GNA-A]aggCfaUfgaagcagsusu
2118





D-2495
csusgcuucaUfgCfCfUfUfucuacas{invAb}
2119
asUfsguaGfa[GNA-A]aggCfaUfgaagcagsusu
2120





D-2496
csusgcuucaUfgCfCfUfUfucuacas{invAb}
2121
asUfsguaGfa[GNA-A]AfggCfaUfgaagcagsusu
2122





D-2497
csusgcuuCfaUfGfCfcuuucuacas{invAb}
2123
asUfsguaGfa[GNA-A]aggcaUfgAfagcagsusu
2124





D-2498
csusgcuuCfaUfGfCfcuuucuacas{invAb}
2125
asUfsguaGfa[GNA-A]AfggcaUfgAfagcagsusu
2126





D-2499
csusgcuuCfaUfgCfcuuucuacas{invAb}
2127
asUfsguaga[GNA-A]aggCfaUfgAfagcagsusu
2128





D-2500
csusgcuuCfaUfgCfcuuucuacas{invAb}
2129
asUfsguagaaaggCfaUfgAfagcagsusu
2130





D-2501
usgscuucauGfcCfUfUfUfcuacags{invDA}
2131
us[sGNA-C]uguaGfaaagGfcAfugaagcasusu
2132





D-2502
usgscuucauGfcCfUfUfUfcuacags{invDA}
2133
usCfs[GNA-U]guaGfaaagGfcAfugaagcasusu
2134





D-2503
usgscuucauGfcCfUfUfUfcuacags{invDA}
2135
usCfsug[GNA-U]aGfaaagGfcAfugaagcasusu
2136





D-2504
usgscuucauGfcCfUfUfUfcuacags{invDA}
2137
usCfsugu[GNA-A]GfaaagGfcAfugaagcasusu
2138





D-2505
usgscuucauGfcCfUfUfUfcuacags{invDA}
2139
usCfsuguaGf[GNA-A]aagGfcAfugaagcasusu
2140





D-2506
usgscuucauGfcCfUfUfUfcuacags{invDA}
2141
us[Ab]uguaGfaaagGfcAfugaagcasusu
2142





D-2507
usgscuucauGfcCfUfUfUfcuacags{invDA}
2143
usCfs[Ab]guaGfaaagGfcAfugaagcasusu
2144





D-2508
usgscuucauGfcCfUfUfUfcuacags{invDA}
2145
usCfsu[Ab]uaGfaaagGfcAfugaagcasusu
2146





D-2509
usgscuucauGfcCfUfUfUfcuacags{invDA}
2147
usCfsug[ANaGfaaagGfcAfugaagcasusu
2148





D-2510
usgscuucauGfcCfUfUfUfcuacags{invDA}
2149
usCfsugu[ANGfaaagGfcAfugaagcasusu
2150





D-2511
usgscuucauGfcCfUfUfUfcuacags{invDA}
2151
usCfsugua[Ab]aaagGfcAfugaagcasusu
2152





D-2512
usgscuucauGfcCfUfUfUfcuacags{invDA}
2153
usCfsuguaGf[Ab]aagGfcAfugaagcasusu
2154





D-2513
uscsaugccuUfuCfUfAfCfaguggcs{invDA}
2155
asGfsccacUfguagAfaAfggcaugasusu
2156





D-2514
uscsaugccuUfuCfUfAfCfaguggcs{invAb}
2157
usGfsccacUfguagAfaAfggcaugasusu
2158





D-2515
uscsaugccuUfuCfUfAfCfaguggcs{invDA}
2159
usGfsccacUfguagAfaAfggcaugasusu
2160





D-2516
uscscugcuuCfaUfGfCfCfuuucuas{invDA}
2161
asUfsagaaAfggcaUfgAfagcaggasusu
2162





D-2517
uscscugcuuCfaUfGfCfCfuuucuas{invAb}
2163
usUfsagaaAfggcaUfgAfagcaggasusu
2164





D-2518
uscscugcuuCfaUfGfCfCfuuucuas{invDA}
2165
usUfsagaaAfggcaUfgAfagcaggasusu
2166





D-2519
usasuguuccUfgCfUfUfCfaugccus{invDA}
2167
asAfsggcaUfgaagCfaGfgaacauasusu
2168





D-2520
usasuguuccUfgCfUfUfCfaugccus{invAb}
2169
usAfsggcaUfgaagCfaGfgaacauasusu
2170





D-2521
usasuguuccUfgCfUfUfCfaugccus{invDA}
2171
usAfsggcaUfgaagCfaGfgaacauasusu
2172





D-2522
{sGalNAc3K2AhxC6}uccugcuuCfaUfGfCfCfuuucu
2173
asUfsagaaAfggcaUfgAfagcaggasusu
2174



as{invAb}








D-2523
{sGalNAc3K2AhxC6}uauguuccUfgCfUfUfCfaugcc
2175
asAfsggcaUfgaagCfaGfgaacauasusu
2176



us{invAb}








D-2524
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfagugg
2177
asGfsccacUfguagAfaAfggcaugasusu
2178



cs{invDT}








D-2525
{sGalNAc3K2AhxC6}uccugcuuCfaUfGfCfCfuuucu
2179
asUfsagaaAfggcaUfgAfagcaggasusu
2180



as{invDT}








D-2526
{sGalNAc3K2AhxC6}uccugcuuCfaUfGfCfCfuuucu
2181
usUfsagaaAfggcaUfgAfagcaggasusu
2182



as{invDA}








D-2527
{sGalNAc3K2AhxC6}uauguuccUfgCfUfUfCfaugcc
2183
usAfsggcaUfgaagCfaGfgaacauasusu
2184



us{invDA}








D-2528
usgscuucauGfcCfUfUfUfcuacags{invDA}
2185
usCfsugua[GNA-G]aaagGfcAfugaagcasusu
2186





D-2529
cugcuucaUfgCfCfUfUfsucuacas{invAb}
2187
asUfsguagAf[GNA-A]aggCfaUfgaagcagsusu
2188





D-2530
cugcuucaUfgCfCfUfsUfucuacas{invAb}
2189
asUfsguagAf[GNA-A]aggCfaUfgaagcagsusu
2190





D-2531
cugcuucaUfgCfCfUfsUfsucuacas{invAb}
2191
asUfsguagAf[GNA-A]aggCfaUfgaagcagsusu
2192





D-2532
cugcuucaUfgCfCfUfsUfucuacas{invAb}
2193
asUfsguagAfs[GNA-A]aggCfaUfgaagcagsusu
2194





D-2533
cugcuucaUfgCfCfUfsUfsucuacas{invAb}
2195
asUfsguagAfs[GNA-A]aggCfaUfgaagcagsusu
2196





D-2534
cugcuucaUfgCfCfUfUfsucuacas{invAb}
2197
asUfsguagAf[sGNA-A]aggCfaUfgaagcagsusu
2198





D-2535
cugcuucaUfgCfCfUfsUfsucuacas{invAb}
2199
asUfsguagAf[sGNA-A]aggCfaUfgaagcagsusu
2200





D-2536
cugcuucaUfgCfCfUfUfsucuacas{invAb}
2201
asUfsguagAfs[sGNA-A]aggCfaUfgaagcagsusu
2202





D-2537
cugcuucaUfgCfCfUfsUfucuacas{invAb}
2203
asUfsguagAfs[sGNA-A]aggCfaUfgaagcagsusu
2204





D-2538
cugcuucaUfgCfCfUf[LNA-T]ucuacas{invAb}
2205
asUfsguagAf[GNA-A]aggCfaUfgaagcagsusu
2206





D-2539
cugcuucaUfgCfCf[LNA-T]Ufucuacas{invAb}
2207
asUfsguagAf[GNA-A]aggCfaUfgaagcagsusu
2208





D-2540
cugcuucaUfgCfCfUfUf[LNA-T]cuacas{invAb}
2209
asUfsguagAf[GNA-A]aggCfaUfgaagcagsusu
2210





D-2541
cugcuucaUfgCfCfUfUfuc[LNA-T]acas{invAb}
2211
asUfsgu[GNA-A]gAfaaggCfaUfgaagcagsusu
2212





D-2542
cugcuucaUfgCfCfUfUfucu[LNA-A]cas{invAb}
2213
asUfsg[GNA-U]agAfaaggCfaUfgaagcagsusu
2214





D-2543
cugcuucaUfgCfCfUfUfucuac[sLNA-A]{invAb}
2215
as[sGNA-U]guagAfaaggCfaUfgaagcagsusu
2216





D-2544
cugcuucaUfgCfCfUfUf[LNA-T]cuacas{invAb}
2217
asUfsguag[Ab]aaggCfaUfgaagcagsusu
2218





D-2545
cugcuucaUfgCfCfUfUfuc[LNA-T]acas{invAb}
2219
asUfsgu[Ab]gAfaaggCfaUfgaagcagsusu
2220





D-2546
cugcuucaUfgCfCfUfUfucu[LNA-A]cas{invAb}
2221
asUfsg[Ab]agAfaaggCfaUfgaagcagsusu
2222





D-2547
cugcuucaUfgCfCfUfUfucUfaCfas{invAb}
2223
asUfsgUfagAf[GNA-A]aggCfaUfgaagcagsusu
2224





D-2548
cugcuucaUfgCfCfUfUfucUfaCfas{invAb}
2225
asUfsguagAf[GNA-A]aggCfaUfgaagcagsusu
2226





D-2549
cugcuucaUfgCfCfUfs[LNA-T]ucuacas{invAb}
2227
asUfsguagAf[GNA-A]aggCfaUfgaagcagsusu
2228





D-2550
cugcuucaUfgCfCfUfs[sLNA-T]ucuacas{invAb}
2229
asUfsguagAf[GNA-A]aggCfaUfgaagcagsusu
2230





D-2551
cugcuucaUfgCfCfUf[LNA-T]ucuacas{invAb}
2231
asUfsguagAf[sGNA-A]aggCfaUfgaagcagsusu
2232





D-2552
cugcuucaUfgCfCfUf[LNA-T]ucuacas{invAb}
2233
asUfsguagAfs[GNA-A]aggCfaUfgaagcagsusu
2234





D-2553
usgscuucauGfcCfUfUfUfcu[LNA-A]cags{invDA}
2235
usCfsug[Ab]aGfaaagGfcAfugaagcasusu
2236





D-2554
usgscuucauGfcCfUfUfUfc[LNA-T]acags{invDA}
2237
usCfsugu[Ab]GfaaagGfcAfugaagcasusu
2238





D-2555
usgscuucauGfcCfUfUf[LNA-T]cuacags{invDA}
2239
usCfsuguaGf[Ab]aagGfcAfugaagcasusu
2240





D-2556
usgscuucauGfcCfUfUfUfcuac[LNA-A]gs{invDA}
2241
usCfs[GNA-U]guaGfaaagGfcAfugaagcasusu
2242





D-2557
usgscuucauGfcCfUfUfUfcu[LNA-A]cags{invDA}
2243
usCfsug[GNA-U]aGfaaagGfcAfugaagcasusu
2244





D-2558
usgscuucauGfcCfUfUfUfc[LNA-T]acags{invDA}
2245
usCfsugu[GNA-A]GfaaagGfcAfugaagcasusu
2246





D-2559
usgscuucauGfcCfUfUfUfcuaca[sLNA-G]{invDA}
2247
us[Ab]uguaGfaaagGfcAfugaagcasusu
2248





D-2560
usgscuucauGfcCfUfUfUfcuac[LNA-A]gs{invDA}
2249
usCfs[Ab]guaGfaaagGfcAfugaagcasusu
2250





D-2561
ucaugccuUfuCfUfAfCfa[LNA-G]uggcs{invAb}
2251
asGfscca[Ab]UfguagAfaAfggcaugasusu
2252





D-2562
ucaugccuUfuCfUfAfCfag[LNA-T]ggcs{invAb}
2253
asGfscca[Ab]UfguagAfaAfggcaugasusu
2254





D-2563
ucaugccuUfuCfUfAfCfasgsuggcs{invAb}
2255
asGfscca[Ab]UfguagAfaAfggcaugasusu
2256





D-2564
{GalNAc3K2AhxC6}GfgUfaUfgUfuCfCfUfGfcuUfc
2349
{Phosphate}asAfsuGfaAfGfcaggAfaCfaUfaCfcsUfs
2350



AfuUfsusUf

u






D-2565
{GalNAc3K2AhxC6}GfgUfaUfgUfuCfCfUfGfcuUfc
2351
{Phosphate}usAfsuGfaAfGfcaggAfaCfaUfaCfcsUfs
2352



AfuAfsusUf

u






D-2566
{GalNAc3K2AhxC6}GfuAfuGfuUfcCfUfGfCfuuCfa
2353
{Phosphate}asCfsaUfgAfAfgcagGfaAfcAfuAfcsUfs
2354



UfgUfsusUf

u






D-2567
{GalNAc3K2AhxC6}UfaUfgUfuCfcUfGfCfUfucAfu
2355
{Phosphate}usGfscAfuGfAfagcaGfgAfaCfaUfasUfs
2356



GfcAfsusUf

u






D-2568
{GalNAc3K2AhxC6}AfuGfuUfcCfuGfCfUfUfcaUfg
2357
{Phosphate}asGfsgCfaUfGfaagcAfgGfaAfcAfusUfs
2358



CfcUfsusUf

u






D-2569
{GalNAc3K2AhxC6}UfgUfuCfcUfgCfUfUfCfauGfc
2359
{Phosphate}asAfsgGfcAfUfgaagCfaGfgAfaCfasUfs
2360



CfuUfsusUf

u






D-2570
{GalNAc3K2AhxC6}GfuUfcCfuGfcUfUfCfAfugCfc
2361
{Phosphate}asAfsaGfgCfAfugaaGfcAfgGfaAfcsUfs
2362



UfuUfsusUf

u






D-2571
{GalNAc3K2AhxC6}UfuCfcUfgCfuUfCfAfUfgcCfu
2363
{Phosphate}asAfsaAfgGfCfaugaAfgCfaGfgAfasUfs
2364



UfuUfsusUf

u






D-2572
{GalNAc3K2AhxC6}UfuCfcUfgCfuUfCfAfUfgcCfu
2365
{Phosphate}usAfsaAfgGfCfaugaAfgCfaGfgAfasUfs
2366



UfuAfsusUf

u






D-2573
{GalNAc3K2AhxC6}UfcCfuGfcUfuCfAfUfGfccUfu
2367
{Phosphate}asGfsaAfaGfGfcaugAfaGfcAfgGfasUfs
2368



UfcUfsusUf

u






D-2574
{GalNAc3K2AhxC6}CfcUfgCfuUfcAfUfGfCfcuUfu
2369
{Phosphate}usAfsgAfaAfGfgcauGfaAfgCfaGfgsUfs
2370



CfuAfsusUf

u






D-2575
{GalNAc3K2AhxC6}CfuGfcUfuCfaUfGfCfCfuuUfc
2371
{Phosphate}asUfsaGfaAfAfggcaUfgAfaGfcAfgsUfs
2372



UfaUfsusUf

u






D-2576
{GalNAc3K2AhxC6}CfuGfcUfuCfaUfGfCfCfuuUfc
2373
{Phosphate}usUfsaGfaAfAfggcaUfgAfaGfcAfgsUfs
2374



UfaAfsusUf

u






D-2577
{GalNAc3K2AhxC6}UfgCfuUfcAfuGfCfCfUfuuCfu
2375
{Phosphate}usGfsuAfgAfAfaggcAfuGfaAfgCfasUfs
2376



AfcAfsusUf

u






D-2578
{GalNAc3K2AhxC6}GfcUfuCfaUfgCfCfUfUfucUfa
2377
{Phosphate}asUfsgUfaGfAfaaggCfaUfgAfaGfcsUfs
2378



CfaUfsusUf

u






D-2579
{GalNAc3K2AhxC6}GfcUfuCfaUfgCfCfUfUfucUfa
2379
{Phosphate}usUfsgUfaGfAfaaggCfaUfgAfaGfcsUfs
2380



CfaAfsusUf

u






D-2580
{GalNAc3K2AhxC6}CfuUfcAfuGfcCfUfUfUfcuAfc
2381
{Phosphate}asCfsuGfuAfGfaaagGfcAfuGfaAfgsUf
2382



AfgUfsusUf

su






D-2581
{GalNAc3K2AhxC6}UfuCfaUfgCfcUfUfUfCfuaCfa
2383
{Phosphate}asAfscUfgUfAfgaaaGfgCfaUfgAfasUfs
2384



GfuUfsusUf

u






D-2582
{GalNAc3K2AhxC6}UfuCfaUfgCfcUfUfUfCfuaCfa
2385
{Phosphate}usAfscUfgUfAfgaaaGfgCfaUfgAfasUfs
2386



GfuAfsusUf

u






D-2583
{GalNAc3K2AhxC6}UfcAfuGfcCfuUfUfCfUfacAfg
2387
{Phosphate}asCfsaCfuGfUfagaaAfgGfcAfuGfasUfs
2388



UfgUfsusUf

u






D-2584
{GalNAc3K2AhxC6}UfcAfuGfcCfuUfUfCfUfacAfg
2389
{Phosphate}usCfsaCfuGfUfagaaAfgGfcAfuGfasUfs
2390



UfgAfsusUf

u






D-2585
{GalNAc3K2AhxC6}CfaUfgCfcUfuUfCfUfAfcaGfu
2391
{Phosphate}asCfscAfcUfGfuagaAfaGfgCfaUfgsUfs
2392



GfgUfsusUf

u






D-2586
{GalNAc3K2AhxC6}CfaUfgCfcUfuUfCfUfAfcaGfu
2393
{Phosphate}usCfscAfcUfGfuagaAfaGfgCfaUfgsUfs
2394



GfgAfsusUf

u






D-2587
{GalNAc3K2AhxC6}AfuGfcCfuUfuCfUfAfCfagUfg
2395
{Phosphate}asGfscCfaCfUfguagAfaAfgGfcAfusUfs
2396



GfcUfsusUf

u






D-2588
{GalNAc3K2AhxC6}AfuGfcCfuUfuCfUfAfCfagUfg
2397
{Phosphate}usGfscCfaCfUfguagAfaAfgGfcAfusUfs
2398



GfcAfsusUf

u






D-2589
{GalNAc3K2AhxC6}UfgCfcUfuUfcUfAfCfAfguGfg
2399
{Phosphate}asGfsgCfcAfCfuguaGfaAfaGfgCfasUfs
2400



CfcUfsusUf

u






D-2590
{GalNAc3K2AhxC6}GfcCfuUfuCfuAfCfAfGfugGfc
2401
{Phosphate}asAfsgGfcCfAfcuguAfgAfaAfgGfcsUfs
2402



CfuUfsusUf

u






D-2591
{GalNAc3K2AhxC6}GfgUfaUfgUfuCfCfUfGfcuUfc
2403
{Phosphate}gsAfsuGfaAfGfcaggAfaCfaUfaCfcsUfs
2404



AfuCfsusUf

u






D-2592
{GalNAc3K2AhxC6}GfuAfuGfuUfcCfUfGfCfuuCfa
2405
{Phosphate}gsGfsaUfgAfAfgcagGfaAfcAfuAfcsUfs
2406



UfcCfsusUf

u






D-2593
{GalNAc3K2AhxC6}UfaUfgUfuCfcUfGfCfUfucAfu
2407
{Phosphate}gsGfsgAfuGfAfagcaGfgAfaCfaUfasUfs
2408



CfcCfsusUf

u






D-2594
{GalNAc3K2AhxC6}AfuGfuUfcCfuGfCfUfUfcaUfc
2409
{Phosphate}gsGfsgGfaUfGfaagcAfgGfaAfcAfusUfs
2410



CfcCfsusUf

u






D-2595
{GalNAc3K2AhxC6}UfgUfuCfcUfgCfUfUfCfauCfc
2411
{Phosphate}asGfsgGfgAfUfgaagCfaGfgAfaCfasUfs
2412



CfcUfsusUf

u






D-2596
{GalNAc3K2AhxC6}GfuUfcCfuGfcUfUfCfAfucCfc
2413
{Phosphate}asAfsgGfgGfAfugaaGfcAfgGfaAfcsUfs
2414



CfuUfsusUf

u






D-2597
{GalNAc3K2AhxC6}UfuCfcUfgCfuUfCfAfUfccCfc
2415
{Phosphate}gsAfsaGfgGfGfaugaAfgCfaGfgAfasUfs
2416



UfuCfsusUf

u






D-2598
{GalNAc3K2AhxC6}UfcCfuGfcUfuCfAfUfCfccCfu
2417
{Phosphate}asGfsaAfgGfGfgaugAfaGfcAfgGfasUfs
2418



UfcUfsusUf

u






D-2599
{GalNAc3K2AhxC6}CfcUfgCfuUfcAfUfCfCfccUfu
2419
{Phosphate}usAfsgAfaGfGfggauGfaAfgCfaGfgsUfs
2420



CfuAfsusUf

u






D-2600
{GalNAc3K2AhxC6}CfuGfcUfuCfaUfCfCfCfcuUfc
2421
{Phosphate}gsUfsaGfaAfGfgggaUfgAfaGfcAfgsUfs
2422



UfaCfsusUf

u






D-2601
{GalNAc3K2AhxC6}UfgCfuUfcAfuCfCfCfCfuuCfu
2423
{Phosphate}usGfsuAfgAfAfggggAfuGfaAfgCfasUfs
2424



AfcAfsusUf

u






D-2602
{GalNAc3K2AhxC6}GfcUfuCfaUfcCfCfCfUfucUfa
2425
{Phosphate}csUfsgUfaGfAfagggGfaUfgAfaGfcsUfs
2426



CfaGfsusUf

u






D-2603
{GalNAc3K2AhxC6}CfuUfcAfuCfcCfCfUfUfcuAfc
2427
{Phosphate}asCfsuGfuAfGfaaggGfgAfuGfaAfgsUf
2428



AfgUfsusUf

su






D-2604
{GalNAc3K2AhxC6}UfuCfaUfcCfcCfUfUfCfuaCfa
2429
{Phosphate}csAfscUfgUfAfgaagGfgGfaUfgAfasUfs
2430



GfuGfsusUf

u






D-2605
{GalNAc3K2AhxC6}UfcAfuCfcCfcUfUfCfUfacAfg
2431
{Phosphate}csCfsaCfuGfUfagaaGfgGfgAfuGfasUfs
2432



UfgGfsusUf

u






D-2606
{GalNAc3K2AhxC6}CfaUfcCfcCfuUfCfUfAfcaGfu
2433
{Phosphate}gsCfscAfcUfGfuagaAfgGfgGfaUfgsUfs
2434



GfgCfsusUf

u






D-2607
{GalNAc3K2AhxC6}AfuCfcCfcUfuCfUfAfCfagUfg
2435
{Phosphate}gsGfscCfaCfUfguagAfaGfgGfgAfusUfs
2436



GfcCfsusUf

u






D-2608
{GalNAc3K2AhxC6}UfcCfcCfuUfcUfAfCfAfguGfg
2437
{Phosphate}asGfsgCfcAfCfuguaGfaAfgGfgGfasUfs
2438



CfcUfsusUf

u






D-2609
{GalNAc3K2AhxC6}CfcCfcUfuCfuAfCfAfGfugGfc
2439
{Phosphate}asAfsgGfcCfAfcuguAfgAfaGfgGfgsUfs
2440



CfuUfsusUf

u






D-2610
cugcuucaUfgCfCfUfUfucua[LNA-mC]as{invAb}
2805
asUfs[GNA-G]uagAfaaggCfaUfgaagcagsusu
2806





D-2611
cugcuucaUfgCfCfUfUfucua[LNA-mC]as{invAb}
2807
asUfs[Ab]uagAfaaggCfaUfgaagcagsusu
2808





D-2612
usgscuucauGfcCfUfUfUfcua[LNA-mC]ags{invDA}
2809
usCfsu[Ab]uaGfaaagGfcAfugaagcasusu
2810





D-2613
usgscuucauGfcCfUfUfUfcua[LNA-mC]ags{invDA}
2811
usCfsu[GNA-G]uaGfaaagGfcAfugaagcasusu
2812





D-2614
ucaugccuUfuCfUfAfCfasguggcs{invAb}
2813
asGfscca[Ab]UfguagAfaAfggcaugasusu
2814





D-2615
ucaugccuUfuCfUfAfCfagsuggcs{invAb}
2815
asGfscca[Ab]UfguagAfaAfggcaugasusu
2816





D-2616
ucaugccuUfuCfUfAfCfas[LNA-G]uggcs{invAb}
2817
asGfscca[Ab]UfguagAfaAfggcaugasusu
2818





D-2617
ucaugccuUfuCfUfAfCfas[sLNA-G]uggcs{invAb}
2819
asGfscca[Ab]UfguagAfaAfggcaugasusu
2820





D-2618
cugcuucaUfgCfCfUfUfucuacas{invAb}
2821
as[sMeO-I]guagAfaaggCfaUfgaagcagsusu
2822





D-2619
cugcuucaUfgCfCfUfUfucuacas{invAb}
2823
asUfsg[MeO-I]agAfaaggCfaUfgaagcagsusu
2824





D-2620
cugcuucaUfgCfCfUfUfucuacas{invAb}
2825
asUfsgu[MeO-I]gAfaaggCfaUfgaagcagsusu
2826





D-2621
cugcuucaUfgCfCfUfUfucuacas{invAb}
2827
asUfsgua[MeO-I]AfaaggCfaUfgaagcagsusu
2828





D-2622
cugcuucaUfgCfCfUfUfucuacas{invAb}
2829
asUfsguagAf[MeO-I]aggCfaUfgaagcagsusu
2830





D-2623
cugcuucaUfgCfCfUfUfucuaccs{invAb}
2831
as[sMeO-I]guagAfaaggCfaUfgaagcagsusu
2832





D-2624
cugcuucaUfgCfCfUfUfucuccas{invAb}
2833
asUfsg[MeO-I]agAfaaggCfaUfgaagcagsusu
2834





D-2625
cugcuucaUfgCfCfUfUfccuacas{invAb}
2835
asUfsguag[MeO-I]aaggCfaUfgaagcagsusu
2836





D-2626
cugcuucaUfgCfCfUfCfucuacas{invAb}
2837
asUfsguagAf[MeO-I]aggCfaUfgaagcagsusu
2838





D-2627
cugcuucaUfgCfCfUfUfucuacus{invAb}
2839
asAfsguagAfaaggCfaUfgaagcagsusu
2840





D-2628
cugcuucaUfgCfCfUfUfucuucas{invAb}
2841
asUfsgaagAfaaggCfaUfgaagcagsusu
2842





D-2629
cugcuucaUfgCfCfUfUfucaacas{invAb}
2843
asUfsguugAfaaggCfaUfgaagcagsusu
2844





D-2630
cugcuucaUfgCfCfUfAfucuacas{invAb}
2845
asUfsguagAfuaggCfaUfgaagcagsusu
2846





D-2631
ugcuucauGfcCfUfUfUfcuacacs{invAb}
2847
as[sMeO-I]uguaGfaaagGfcAfugaagcasusu
2848





D-2632
ugcuucauGfcCfUfUfUfcuacags{invAb}
2849
asCfs[MeO-I]guaGfaaagGfcAfugaagcasusu
2850





D-2633
ugcuucauGfcCfUfUfUfcuacags{invAb}
2851
asCfsug[MeO-I]aGfaaagGfcAfugaagcasusu
2852





D-2634
ugcuucauGfcCfUfUfUfcuacags{invAb}
2853
asCfsugu[MeO-I]GfaaagGfcAfugaagcasusu
2854





D-2635
ugcuucauGfcCfUfUfUfcuacags{invAb}
2855
asCfsugua[MeO-I]aaagGfcAfugaagcasusu
2856





D-2636
ugcuucauGfcCfUfUfUfcuaccgs{invAb}
2857
asCfs[MeO-I]guaGfaaagGfcAfugaagcasusu
2858





D-2637
ugcuucauGfcCfUfUfUfcuccags{invAb}
2859
asCfsug[MeO-I]aGfaaagGfcAfugaagcasusu
2860





D-2638
ugcuucauGfcCfUfUfUfccacags{invAb}
2861
asCfsugu[MeO-I]GfaaagGfcAfugaagcasusu
2862





D-2639
cugcuucaUfgCfCfUfUfucuaaas{invAb}
2863
asUfsuuagAfaaggCfaUfgaagcagsusu
2864





D-2640
cugcuucaUfgCfCfUfUfuauacas{invAb}
2865
asUfsguauAfaaggCfaUfgaagcagsusu
2866





D-2641
cugcuucaUfgCfCfUfsUfucuacas{invAb}
2867
asUfsguagAf[sGNA-A]aggCfaUfgaagcagsusu
2868





D-2642
cugcuucaUfgCfCfUf[LNA-T]ucuacas{invAb}
2869
asUfsguagAfs[sGNA-A]aggCfaUfgaagcagsusu
2870





D-2643
usgscuucauGfcCfUfUfUfcuaca[sLNA-G]{invDA}
2871
us[sGNA-C]uguaGfaaagGfcAfugaagcasusu
2872





D-2644
usgscuucauGfcCfUfUf[LNA-T]cuacags{invDA}
2873
usCfsuguaGf[GNA-A]aagGfcAfugaagcasusu
2874





D-2645
ucaugccuUfuCfUfAfCf[LNA-A]guggcs{invAb}
2875
asGfscca[Ab]UfguagAfaAfggcaugasusu
2876





D-2646
cugcuucaUfgCfCfUfUfu[LNA-mC]uacas{invAb}
2877
asUfsgua[Ab]AfaaggCfaUfgaagcagsusu
2878





D-2647
ucaugccuUfuCfUfAfCfa[sLNA-G]uggcs{invAb}
2879
asGfscca[Ab]UfguagAfaAfggcaugasusu
2880





D-2648
cugcuucaUfgCfCfUfUfucuacas{invAb}
2881
asUfs[MeO-I]uagAfaaggCfaUfgaagcagsusu
2882





D-2649
cugcuucaUfgCfCfUfUfucuagas{invAb}
2883
asUfscuagAfaaggCfaUfgaagcagsusu
2884





D-2650
cugcuucaUfgCfCfUfUfacuacas{invAb}
2885
asUfsguagUfaaggCfaUfgaagcagsusu
2886





D-2651
ugcuucauGfcCfUfUfUfcuacags{invAb}
2887
asCfsu[MeO-I]uaGfaaagGfcAfugaagcasusu
2888





D-2652
ugcuucauGfcCfUfUfUfcuacags{invAb}
2889
asCfsuguaGf[MeO-I]aagGfcAfugaagcasusu
2890





D-2653
ugcuucauGfcCfUfUfCfcuacags{invAb}
2891
asCfsuguaGf[MeO-I]aagGfcAfugaagcasusu
2892





D-2654
cugcuucaUfgCfCfUfUfucuauas{invAb}
2893
asUfsauagAfaaggCfaUfgaagcagsusu
2894





D-2655
cugcuucaUfgCfCfUfUfuuuacas{invAb}
2895
asUfsguaaAfaaggCfaUfgaagcagsusu
2896





D-2656
cugcuucaUfgCfCfUfUfucuacas{invAb}
2897
asUfsguagAf[GNA-A]aggCfaUfgaagcagsusu
2898





D-2657
cugcuucaUfgCfCfUfUfsucuacas{invAb}
2899
asUfsguagAfs[GNA-A]aggCfaUfgaagcagsusu
2900





D-2658
cugcuucaUfgCfCfUfUf[LNA-T]cuacas{invAb}
2901
asUfsguag[GNA-A]aaggCfaUfgaagcagsusu
2902





D-2659
cugcuucaUfgCfCfUf[LNA-T]ucuacas{invAb}
2903
asUfsguagAf[Ab]aggCfaUfgaagcagsusu
2904





D-2660
cugcuucaUfgCfCfUfUfucuac[sLNA-A]{invAb}
2905
as[sAb]guagAfaaggCfaUfgaagcagsusu
2906





D-2661
cugcuucaUfgCfCfUfUfu[LNA-mC]uacas{invAb}
2907
asUfsgua[GNA-G]AfaaggCfaUfgaagcagsusu
2908





D-2662
usgscuucauGfcCfUfUfUf[LNA-mC]uacags{invDA}
2909
usCfsugua[Ab]aaagGfcAfugaagcasusu
2910





D-2663
cugcuucaUfgCfCfUfUfucuacas{invAb}
2911
asUfsguag[MeO-I]aaggCfaUfgaagcagsusu
2912





D-2664
cugcuucaUfgCfCfUfsUfsucuacas{invAb}
2913
asUfsguagAfs[sGNA-A]aggCfaUfgaagcagsusu
2914





D-2665
cugcuucaUfgCfCfUf[sLNA-T]ucuacas{invAb}
2915
asUfsguagAf[GNA-A]aggCfaUfgaagcagsusu
2916





D-2666
{sGalNAc3K2AhxC6}cusgcuucaUfgCfCfUfUfucUf
2917
asUfsguagAf[GNA-A]aGfgCfaUfgaagcagsusu
2918



aCfas{invAb}








D-2667
{sGalNAc3K2AhxC6}cugcuuCfaUfGfCfCfuuucuac
2919
asUfsgUfaGfa[GNA-A]aggcaUfgAfagcagsusu
2920



as{invAb}








D-2668
{sGalNAc3K2AhxC6}cugcuuCfaUfGfCfCfuuucuac
2921
asUfsgUfaGfa[GNA-A]AfggcaUfgAfagcagsusu
2922



as{invAb}








D-2669
{sGalNAc3K2AhxC6}cugcuuCfaUfgCfcuuucuacas
2923
asUfsguaga[GNA-A]aggCfaUfgAfagcagsusu
2924



{invAb}








D-2670
{sGalNAc3K2AhxC6}cugcuucaUfgCfcUfuucuacas
2925
asUfsguagAf[GNA-A]AfggCfaUfgaagcagsusu
2926



{invAb}








D-2671
{sGalNAc3K2AhxC6}cugcuucaUfgCfcUfuucuacas
2927
asUfsguaga[GNA-A]AfggCfaUfgaagcagsusu
2928



{invAb}








D-2672
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUf[LNA-
2929
asUfsguagAf[GNA-A]aggCfaUfgaagcagsusu
2930



T]ucuacas{invAb}








D-2673
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucua[
2931
asUfs[GNA-G]uagAfaaggCfaUfgaagcagsusu
2932



LNA-mC]as{invAb}








D-2674
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfa[LNA
2933
asGfscca[Ab]UfguagAfaAfggcaugasusu
2934



-G]uggcs{invAb}








D-2675
{sGalNAc3K2AhxC6}cugcuucaUfgGfGfAfUfucuac
2935
asUfsguagAfauccCfaUfgaagcagsusu
2936



as{invAb}








D-2676
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2937
asUfsguaGfa[GNA-A]AfggCfaUfgaagcagsusu
2938



as{invAb}








D-2677
{sGalNAc3K2AhxC6}guauguucCfuGfCfUfUfcaugc
2939
asGfsgcauGfaagcAfgGfaacauacsusu
2940



cs{invAb}








D-2678
{sGalNAc3K2AhxC6}uguccugcUfuCfAfUfGfccuuu
2941
asGfsaaagGfcaugAfaGfcaggacasusu
2942



cs{invAb}








D-2679
{sGalNAc3K2AhxC6}gcuucaugCfcUfUfUfCfuacag
2943
asAfscuguAfgaaaGfgCfaugaagcsusu
2944



us{invAb}








D-2680
{sGalNAc3K2AhxC6}cuucaugcCfuUfUfCfUfacagu
2945
asCfsacugUfagaaAfgGfcaugaagsusu
2946



gs{invAb}








D-2681
{sGalNAc3K2AhxC6}uucaugccUfuUfCfUfAfcagug
2947
asCfscacuGfuagaAfaGfgcaugaasusu
2948



gs{invAb}








D-2682
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucaac
2949
asUfsguugAfaaggCfaUfgaagcagsusu
2950



as{invAb}








D-2683
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucucc
2951
asUfsg[MeO-I]agAfaaggCfaUfgaagcagsusu
2952



as{invAb}








D-2684
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcucca
2953
asCfsug[MeO-I]aGfaaagGfcAfugaagcasusu
2954



gs{invAb}








D-2685
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2955
asUfsgu[MeO-I]gAfaaggCfaUfgaagcagsusu
2956



as{invAb}








D-2686
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcuaca
2957
asCfsugu[MeO-I]GfaaagGfcAfugaagcasusu
2958



gs{invAb}








D-2687
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2959
asUfsgua[MeO-I]AfaaggCfaUfgaagcagsusu
2960



as{invAb}








D-2688
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcuaca
2961
asCfsugua[MeO-I]aaagGfcAfugaagcasusu
2962



gs{invAb}








D-2689
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfccuac
2963
asUfsguag[MeO-I]aaggCfaUfgaagcagsusu
2964



as{invAb}








D-2690
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfCfucuac
2965
asUfsguagAf[MeO-I]aggCfaUfgaagcagsusu
2966



as{invAb}








D-2691
{sGalNAc3K2AhxC6}usgscuucauGfcCfUfUfUfcu[
2967
usCfsug[Ab]aGfaaagGfcAfugaagcasusu
2968



LNA-A]cags{invDA}








D-2692
{sGalNAc3K2AhxC6}usgscuucauGfcCfUfUfUfcua
2969
usCfs[GNA-U]guaGfaaagGfcAfugaagcasusu
2970



c[LNA-A]gs{invDA}








D-2693
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfasgsu
2971
asGfscca[Ab]UfguagAfaAfggcaugasusu
2972



ggcs{invAb}








D-2694
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfuc[LN
2973
asUfsgu[GNA-A]gAfaaggCfaUfgaagcagsusu
2974



A-T]acas{invAb}








D-2695
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfuc[LN
2975
asUfsgu[Ab]gAfaaggCfaUfgaagcagsusu
2976



A-T]acas{invAb}








D-2696
{sGalNAc3K2AhxC6}usgscuucauGfcCfUfUfUfc[L
2977
usCfsugu[GNA-A]GfaaagGfcAfugaagcasusu
2978



NA-TIacags{invDA}








D-2697
{sGalNAc3K2AhxC6}usgscuucauGfcCfUfUfUfcua
2979
usCfsu[GNA-G]uaGfaaagGfcAfugaagcasusu
2980



[LNA-mC]ags{invDA}








D-2698
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfas[sL
2981
asGfscca[Ab]UfguagAfaAfggcaugasusu
2982



NA-G]uggcs{invAb}








D-2699
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2983
asUfs[MeO-I]uagAfaaggCfaUfgaagcagsusu
2984



as{invAb}








D-2700
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
2985
asUfsguag[MeO-I]aaggCfaUfgaagcagsusu
2986



as{invAb}








D-2701
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfacuac
2987
asUfsguagUfaaggCfaUfgaagcagsusu
2988



as{invAb}








D-2702
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcuaca
2989
asCfsuguaGf[MeO-I]aagGfcAfugaagcasusu
2990



gs{invAb}








D-2703
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfCfcuaca
2991
asCfsuguaGf[MeO-I]aagGfcAfugaagcasusu
2992



gs{invAb}








D-2704
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUfcuaca
2993
asCfsu[MeO-I]uaGfaaagGfcAfugaagcasusu
2994



gs{invAb}








D-2705
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucusa
2995
asUfsgu[MeO-I]gAfaaggCfaUfgaagcagsusu
2996



cas{invAb}








D-2706
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucsua
2997
asUfsgu[MeO-I]gAfaaggCfaUfgaagcagsusu
2998



cas{invAb}








D-2707
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucsus
2999
asUfsgu[MeO-I]gAfaaggCfaUfgaagcagsusu
3000



acas{invAb}








D-2708
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfuscua
3001
asUfsguag[MeO-I]aaggCfaUfgaagcagsusu
3002



cas{invAb}








D-2709
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfa[sLN
3003
asGfscca[ANUfguagAfaAfggcaugasusu
3004



A-G]uggcs{invAb}








D-2710
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCf[LNA-
3005
asGfscca[ANUfguagAfaAfggcaugasusu
3006



A]guggcs{invAb}








D-2711
{sGalNAc3K2AhxC6}cugcuucaUfgGfGfAfUfugua
3007
asUfsguacAfauccCfaUfgaagcagsusu
3008



cas{invAb}








D-2712
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfuc[LN
3009
asUfsgu[MeO-I]gAfaaggCfaUfgaagcagsusu
3010



A-T]acas{invAb}








D-2713
{sGalNAc3K2AhxC6}ugcuucauGfcCfUfUfUf[LNA-
3011
asCfsugua[MeO-I]aaagGfcAfugaagcasusu
3012



mquacags{invAb}








D-2714
{sGalNAc3K2AhxC6}cugcuuCfaUfGfCfCfu[LNA-
3013
asUfsgUfaGfa[GNA-A]aggcaUfgAfagcagsusu
3014



T]ucuacas{invAb}








D-2715
{sGalNAc3K2AhxC6}cugcuuCfaUfGfCfCfu[LNA-
3015
asUfsgUfaGfa[GNA-A]AfggcaUfgAfagcagsusu
3016



T]ucuacas{invAb}








D-2716
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUf[LNA-
3017
asUfsguag[MeO-I]aaggCfaUfgaagcagsusu
3018



T]cuacas{invAb}








D-2717
{sGalNAc3K2AhxC6}ucaugcCfuUfuCfuacaguggcs
3019
asGfsccacuguagAfaAfgGfcaugasusu
3020



{invAb}








D-2718
{sGalNAc3K2AhxC6}uauguuCfcUfgCfuucaugccus
3021
asAfsggcaugaagCfaGfgAfacauasusu
3022



{invAb}








D-2719
{sGalNAc3K2AhxC6}ugcuucAfuGfcCfuuucuacags
3023
asCfsuguagaaagGfcAfuGfaagcasusu
3024



{invAb}








D-2720
{sGalNAc3K2AhxC6}uguuccUfgCfUfUfCfaugccuu
3025
asAfsggcaUfgaagCfaGfgaacasusu
3026



us{invAb}








D-2721
{sGalNAc3K2AhxC6}cugcuuCfaUfgCfcuuucuacas
3027
asUfsguagaaaggCfaUfgAfagcagsusu
3028



{invAb}








D-2722
{sGalNAc3K2AhxC6}uauguuccUfgCfuUfCfaugccu
3029
asAfsggcaUfgaagCfaGfgaacauasusu
3030



s{invAb}








D-2723
{sGalNAc3K2AhxC6}uguuccUfgCfUfUfCfaugccus
3031
asAfsggcaUfgaagCfaGfgaacasusu
3032



{invAb}








D-2724
{sGalNAc3K2AhxC6}uauguuCfcUfgCfuucaugccu
3033
asAfsggcaugaagCfaGfgAfacauasusu
3034



us{invAb}








D-2725
{sGalNAc3K2AhxC6}uauguuCfcUfgCfuucaugccus
3035
asAfsggcaugaagCfaGfgAfacauascsc
3036



{invAb}








D-2726
{sGalNAc3K2AhxC6}uauguuCfcUfgCfuucaugccu
3037
asAfsggcaugaagCfaGfgAfacauascsc
3038



us{invAb}








D-2727
uauguuccUfgCfUfUfCfaugccus{invAb}
3039
asAfsggcaUfgaagCfaGfgaacauasusu
3040





D-2728
uauguuccUfgCfUfUfCfaugcgus{invAb}
3041
asAfscgcaUfgaagCfaGfgaacauasusu
3042





D-2729
uauguuccUfgCfUfUfCfauggcus{invAb}
3043
asAfsgccaUfgaagCfaGfgaacauasusu
3044





D-2730
uauguuccUfgCfUfUfCfaagccus{invAb}
3045
asAfsggcuUfgaagCfaGfgaacauasusu
3046





D-2731
uauguuccUfgCfUfUfCfuugccus{invAb}
3047
asAfsggcaAfgaagCfaGfgaacauasusu
3048





D-2732
uauguuccUfgCfUfUfGfaugccus{invAb}
3049
asAfsggcaUfcaagCfaGfgaacauasusu
3050





D-2733
uauguuccUfgCfUfAfCfaugccus{invAb}
3051
asAfsggcaUfguagCfaGfgaacauasusu
3052





D-2734
uauguuccUfgCfAfUfCfaugccus{invAb}
3053
asAfsggcaUfgaugCfaGfgaacauasusu
3054





D-2735
uauguuccUfgGfUfUfCfaugccus{invAb}
3055
asAfsggcaUfgaacCfaGfgaacauasusu
3056





D-2736
uauguuccUfcCfUfUfCfaugccus{invAb}
3057
asAfsggcaUfgaagGfaGfgaacauasusu
3058





D-2737
uauguuccAfgCfUfUfCfaugccus{invAb}
3059
asAfsggcaUfgaagCfuGfgaacauasusu
3060





D-2738
uauguucgUfgCfUfUfCfaugccus{invAb}
3061
asAfsggcaUfgaagCfaCfgaacauasusu
3062





D-2739
uauguugcUfgCfUfUfCfaugccus{invAb}
3063
asAfsggcaUfgaagCfaGfcaacauasusu
3064





D-2740
uauguaccUfgCfUfUfCfaugccus{invAb}
3065
asAfsggcaUfgaagCfaGfguacauasusu
3066





D-2741
uaugauccUfgCfUfUfCfaugccus{invAb}
3067
asAfsggcaUfgaagCfaGfgaucauasusu
3068





D-2742
uaucuuccUfgCfUfUfCfaugccus{invAb}
3069
asAfsggcaUfgaagCfaGfgaagauasusu
3070





D-2743
uaaguuccUfgCfUfUfCfaugccus{invAb}
3071
asAfsggcaUfgaagCfaGfgaacuuasusu
3072





D-2744
uuuguuccUfgCfUfUfCfaugccus{invAb}
3073
asAfsggcaUfgaagCfaGfgaacaaasusu
3074





D-2745
aauguuccUfgCfUfUfCfaugccus{invAb}
3075
asAfsggcaUfgaagCfaGfgaacauususu
3076





D-2746
ucaugccuUfuCfUfAfCfaguggcs{invAb}
3077
asGfsccacUfguagAfaAfggcaugasusu
3078





D-2747
ucaugccuUfuCfUfAfCfagugggs{invAb}
3079
asCfsccacUfguagAfaAfggcaugasusu
3080





D-2748
ucaugccuUfuCfUfAfCfagugccs{invAb}
3081
asGfsgcacUfguagAfaAfggcaugasusu
3082





D-2749
ucaugccuUfuCfUfAfCfagucgcs{invAb}
3083
asGfscgacUfguagAfaAfggcaugasusu
3084





D-2750
ucaugccuUfuCfUfAfCfagaggcs{invAb}
3085
asGfsccucUfguagAfaAfggcaugasusu
3086





D-2751
ucaugccuUfuCfUfAfCfacuggcs{invAb}
3087
asGfsccagUfguagAfaAfggcaugasusu
3088





D-2752
ucaugccuUfuCfUfAfCfuguggcs{invAb}
3089
asGfsccacAfguagAfaAfggcaugasusu
3090





D-2753
ucaugccuUfuCfUfAfGfaguggcs{invAb}
3091
asGfsccacUfcuagAfaAfggcaugasusu
3092





D-2754
ucaugccuUfuCfUfUfCfaguggcs{invAb}
3093
asGfsccacUfgaagAfaAfggcaugasusu
3094





D-2755
ucaugccuUfuCfAfAfCfaguggcs{invAb}
3095
asGfsccacUfguugAfaAfggcaugasusu
3096





D-2756
ucaugccuUfuGfUfAfCfaguggcs{invAb}
3097
asGfsccacUfguacAfaAfggcaugasusu
3098





D-2757
ucaugccuAfuCfUfAfCfaguggcs{invAb}
3099
asGfsccacUfguagAfuAfggcaugasusu
3100





D-2758
ucaugcguUfuCfUfAfCfaguggcs{invAb}
3101
asGfsccacUfguagAfaAfcgcaugasusu
3102





D-2759
ucauggcuUfuCfUfAfCfaguggcs{invAb}
3103
asGfsccacUfguagAfaAfgccaugasusu
3104





D-2760
ucaagccuUfuCfUfAfCfaguggcs{invAb}
3105
asGfsccacUfguagAfaAfggcuugasusu
3106





D-2761
ucuugccuUfuCfUfAfCfaguggcs{invAb}
3107
asGfsccacUfguagAfaAfggcaagasusu
3108





D-2762
ugaugccuUfuCfUfAfCfaguggcs{invAb}
3109
asGfsccacUfguagAfaAfggcaucasusu
3110





D-2763
acaugccuUfuCfUfAfCfaguggcs{invAb}
3111
asGfsccacUfguagAfaAfggcaugususu
3112





D-2764
ucaugccuUfaCfUfAfCfaguggcs{invAb}
3113
asGfsccacUfguagUfaAfggcaugasusu
3114





D-2765
{sGalNAc3K2AhxC6}augccuUfuCfUfAfCfaguggcu
3115
asGfsccacUfguagAfaAfggcaususu
3116



sus{invAb}








D-2766
{sGalNAc3K2AhxC6}augccuUfuCfUfAfCfaguggcs
3117
asGfsccacUfguagAfaAfggcaususu
3118



{invAb}








D-2767
{sGalNAc3K2AhxC6}ucaugccuUfuCfuAfCfaguggc
3119
asGfsccacUfguagAfaAfggcaugasusu
3120



s{invAb}








D-2768
{sGalNAc3K2AhxC6}[invAb]augccuUfUfCfUfacag
3121
asGfsccacUfguagaaAfgGfcaususu
3122



uggscsu








D-2769
{sGalNAc3K2AhxC6}ucaugcCfuUfuCfuacaguggcu
3123
asGfsccacuguagAfaAfgGfcaugasusu
3124



s{invAb}








D-2770
{sGalNAc3K2AhxC6}ucaugcCfuUfuCfuacaguggcs
3125
asGfsccacuguagAfaAfgGfcaugasasc
3126



{invAb}








D-2771
{sGalNAc3K2AhxC6}ucaugcCfuUfuCfuacaguggcu
3127
asGfsccacuguagAfaAfgGfcaugasasc
3128



s{invAb}








D-2772
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfagugg
3129
asGfsccacUfguagAfaAfggcaugasusu
3130



cus{invAb}








D-2773
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfagugg
3131
asGfsccacUfguagAfaAfggcaugasasc
3132



cs{invAb}








D-2774
{sGalNAc3K2AhxC6}ucaugccuUfuCfUfAfCfagugg
3133
asGfsccacUfguagAfaAfggcaugasasc
3134



cus{invAb}








D-2775
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfu[LNA
3135
asUfsgua[MeO-I]AfaaggCfaUfgaagcagsusu
3136



-mC]uacas{invAb}








D-2776
{GalNAc3K2AhxC6}gcggcuUfcGfAfCfGfgcuucuas
3137
{Phosphate}usAfsgAfaGfCfcgucGfaAfgccgcsusu
3138



usu








D-2777
{GalNAc3K2AhxC6}gcggcuUfcGfAfCfGfgguucuas
3139
{Phosphate}usAfsgAfaCfCfcgucGfaAfgccgcsusu
3140



usu








D-2778
{GalNAc3K2AhxC6}gcggcuUfcGfAfCfGfccuucuas
3141
{Phosphate}usAfsgAfaGfGfcgucGfaAfgccgcsusu
3142



usu








D-2779
{GalNAc3K2AhxC6}gcggcuUfcGfAfCfCfgcuucuas
3143
{Phosphate}usAfsgAfaGfCfggucGfaAfgccgcsusu
3144



usu








D-2780
{GalNAc3K2AhxC6}gcggcuUfcCfUfGfGfgcuucuas
3145
[sInvAb]usAfgAfaGfCfccagGfaAfgccgcsusu
3146



usu








D-2781
{sGalNAc3K2AhxC6}[invAb]gcuucaUfgGfGfAfUf
3147
{Phosphate}asUfsgUfaCfAfauccCfaUfgaagcsusu
3148



uguacaususu








D-2782
{sGalNAc3K2AhxC6}ucaugccuUfuGfAfUfCfacugg
3149
asGfsccagUfgaucAfaAfggcaugasusu
3150



cs{invAb}








D-2783
{sGalNAc3K2AhxC6}cugcuucaUfgCfCfUfUfucuac
3151
csUfsguagAfaaggCfaUfgaagcagsusu
3152



asc








D-2784
{sGalNAc3K2AhxC6}[invAb]cuucauGfcGfAfAfUfc
3153
{Phosphate}asCfsuGfuUfGfauucGfcAfugaagsusu
3154



aAfcAfgUfsusUf








D-2785
{sGalNAc3K2AhxC6}ggccuuAfuCfCfCfuccuuccus
3155
usAfsaggAfaGfGfagggAfuAfaggccsasc
3156



usa








D-2786
{sGalNAc3K2AhxC6}gugucuGfaGfUfUfccauuccas
3157
usUfsuggAfaUfGfgaacUfcAfgacacscsa
3158



asa









EXAMPLE 2
Efficacy of Select PNPLA3 siRNA Molecules in RNA FISH Assay

A panel of fully chemically modified siRNA, including siRNA spanning the rs738409 and/or the rs738408 SNP in PNPLA3, were prepared and tested for potency and selectivity of mRNA knockdown in vitro. Each siRNA duplex consisted of two strands, the sense or ‘passenger’ strand and the antisense or ‘guide’ strand. The strands are 21 or 23 nucleotides in length with 19 complementary base pairs. In some instances, there are two base pair 3′ overhangs. The siRNA were prepared with substitution of the natural 2′-OH in the ribose of each nucleotide with either a 2′-OMe or 2′-F group. Optionally, phosphosdiester internucleotide linkages at one or both strands were replaced with phosphorothioates to reduce degradation by exonucleases.


The efficacy of each of the siRNA molecules in reducing PNPLA3 expression was assessed using a 384-well format in vitro siRNA transfection assay followed by a fluorescent in situ hybridization targeting ribonucleic acid molecules (RNA FISH) assay to determine IC50 and maximum activity values. This assay was performed on human hepatocellular carcinoma cell line Hep3B cells (ATCC HB-8064) and Chinese hamster ovary (CHO) cells expressing human PNPLA3 I1481. Human hepatocellular carcinoma HepB3 was maintained in EMEM media (ATCC 30-2003) supplemented with 10% fetal bovine serum and 1% antibiotic/antimycotic at 37° C. and 5% CO2. CHO cells expressing human PNPLA3 I1481 was maintained in media containing 50% CD-CHO (Life Technologies), 50% Ex-Cell CHO 5 Medium (Sigma), 8 mM L-Glutamine, 1×HT, 1% antibiotic/antimycotic, and 10 μg/mL Puromycin at 37° C. and 5% CO2.


For Hep3B cell assays, transfection complexes of the siRNA molecules and the Lipofectamine RNAiMAX transfection reagent (Life Technologies) in EMEM media (ATCC 30-2003) were prepared in 384-well plates (PerkinElmer), at 10 μg per well, in accordance with manufacturer's recommendations. For CHO human cell assays, transfection complexes of the siRNA molecules and the Lipofectamine RNAiMAX transfection reagent in F 12K media (Mediatech) were prepared in 384-well plates, at 10 μg per well, in accordance with manufacturer's recommendations. Cells were diluted to 67,000 cells/ml in antibiotic/antimycotic-free media and 30 μl added to each well, a final density of 2000 cells/well in 40 μl media. After a 20 minute incubation at room temperature, plates were transferred to a 37° C. and 5% CO2 incubator. Hep3B cell transfection assays were incubated for 72 hours and CHO human PNPLA3 I1481 transfection assays were incubated for 48 hours.


At harvest, the cells were fixed in an 8% formaldehyde fixative solution (Thermo Scientific) for 15 minutes at room temperature. The plates were then subjected to dehydration with sequential 50%, 70%, and 100% ethanol washes. Plates were then sealed and stored at −20° C.


The RNA FISH assay was performed using the Affymetrix QuantiGene® View RNA HC Screening Assay kit (QVP0011), the Affymetrix View HC Signal Amplification Kit 3-plex (QVP0213), and Affymetrix gene specific probes: PNPLA3 Human 0.33mL View RNA Type 6 (650 label) VA6-20279-01 and PPM Human 0.44 mL View RNA Type 1 (488 label) VA1-10148-01.


Plates were first rehydrated with sequential 100%, 70%, and 50% ethanol washes. Cells were then washed with PBS, and then permeabilized and protease-digested according to the kit instructions. The target Working Probe Sets were prepared according to the manufacturer's protocol, added to the wells, and incubated for 3 hours at 40° C. The manufacturer's protocol was followed for the sequential hybridizations with the Working Probe Sets, the Working PreAmps, the Working Amps, and the Working LPs. Last, nuclei counterstains were applied (Hoechst 33342 and Cell Mask Blue; Molecular Probes). Plates were incubated for 30 minutes at room temperature, washed with PBS, overlaid with 80 μl of PBS, and then the plates were sealed for imaging.


All plates were imaged on an Opera Phenix High Content Screening System (PerkinElmer), using the UV Channel for Hoechst 33342 and Cell Mask Blue, the 488 Channel for Typel probes, and the 647 Channel for Type6 probes.


RNA FISH data was analyzed using Columbus software and images were generated using Genedata Screener. The results of the assay for CHO transfected PNPLA3 I1481 are shown in Table 3. The results of the assay for CHO transfected PNPLA3 I148M are shown in Table 4. PNPLA3 knockdown provides a percentage of knockdown compared to control. Negative values indicate a decrease in PNPLA3 levels.









TABLE 3







RNA FISH assay on CHO transfected PNPLA3 I148I











Duplex No.
IC50 (μM)
PNPLA3 knockdown (%)















D-2001
.0589
−33.9



D-2002
.0158
−67.2



D-2003
.0427
−43.4



D-2004
.00835
−63.5



D-2006
.0177
−77.8



D-2008
.125
−10.7



D-2009
.00769
−45.5



D-2010
.00558
−80



D-2011
.035
−3



D-2012
>0.5
−3.7



D-2013
.036
−6.4



D-2014
.0122
−58.2



D-2015
>0.5
8



D-2016
>0.5
8



D-2017
.0153
−73.2



D-2018
.00386
−31.5



D-2019
.125



D-2020
>0.5



D-2021
>0.5
8



D-2022
>0.167
−6.8



D-2023
.0257
−36.9



D-2024
>0.5
4



D-2025
>0.5
−2.5



D-2026
.022
−35.1



D-2027
.00172
−16.5



D-2028
>0.5
10



D-2029
.0106
−56.2



D-2032
.00205
−52.9



D-2033
.0107
−61.7



D-2034
>0.5
6



D-2035
>0.5
−3.8



D-2036
.00665
−55.9



D-2037
>0.5
4



D-2038
>0.5
10



D-2039
.0116
−23.9



D-2040
>0.5
−25.4



D-2041
>0.5
9



D-2042
.00959
−25.5



D-2043
>0.5
9



D-2044
.00552
−29



D-2045
>0.5
9



D-2046
>0.5
9



D-2047
>0.5
−5.9



D-2048
.00618
−56.3



D-2049
>0.5
12



D-2050
>0.5
10



D-2051
>0.5
−17.2



D-2052
>0.5
−8.3



D-2053
>0.5
11



D-2054
>0.5
−14.9



D-2055
>0.5
−10.6



D-2056
>0.5
10



D-2057
.00485
−59.2



D-2058
.014
−53



D-2059
>0.5
−4.9



D-2060
>0.5
18



D-2061
.00795
−44.8



D-2062
.000668
−74.6



D-2063
>0.5
−21.8



D-2064
>0.5
9



D-2065
>0.5
−10.5



D-2066
.0412
−42.2



D-2067
>0.5
10

















TABLE 4







RNA FISH assay on CHO transfected PNPLA3 I148M











Duplex No.
IC50 (μM)
PNPLA3 knockdown (%)















D-2000
.0316
−29.2



D-2001
.0131
−81.8



D-2002
.00216
−90.5



D-2003
.022
−50.4



D-2004
.00429
−88



D-2005
>0.5
15



D-2006
.00301
−89.2



D-2007
>0.5
6



D-2009
.00274
−86.9



D-2010
.00203
−93.3



D-2011
.000694
−11.9



D-2012
>0.5
−18



D-2013
.011
−66.4



D-2014
.0057
−84.3



D-2015
>0.5
−13.5



D-2016
>0.5
−12.4



D-2017
.00448
−89.4



D-2018
.0104
−36.2



D-2019
.0302
−7.7



D-2020
.01
−78.9



D-2021
.00435
−83.5



D-2022
.00628
−88.6



D-2023
.0143
−44.3



D-2024
>0.5
11



D-2025
.00355
−58.2



D-2026
.000867
−39.4



D-2027
>0.5
32



D-2028
.00205
−89.9



D-2029
.0019
−94



D-2030
>0.5
−9.4



D-2031
>0.5
4











RNA FISH was also run on a hepatic cell line containing the double mutant PNPLA3-rs738408-rs738409, as well as a control wild-type cell line, Hep3B. Hep3B and HepG2 cells (purchased from ATCC) were cultured in minimal essential medium (MEM from Corning for Hep3B and EMEM from ATCC for HepG2) supplemented with 10% fetal bovine serum (FBS, Sigma) and 1% penicillin-streptomycin (P-S, Corning). The siRNA transfection was performed as follows: 1 μL of test siRNAs and 4 μL of plain MEM or EMEM, depending on the cell line, were added to PDL-coated CellCarrier-384 Ultra assay plates (PerkinElmer) by BioMek FX (Beckman Coulter). 5 μL of Lipofectamine RNAiMAX (Thermo Fisher Scientific), pre-diluted in plain MEM or EMEM (specifically 0.035 μL RNAiMAX in 5 μL MEM for Hep3B and 0.06 μL of RNAiMAX in 5 μL EMEM for HepG2), was then dispensed into the assay plates by Multidrop Combi Reagent Dispenser (Thermo Fisher Scientific). After 20 mins incubation of the siRNA/RNAiMAX mixture at room temperature (RT), 30 μL of either Hep3B or HepG2 cells (2000 cells per well) in MEM or EMEM supplemented with 10% FBS and 1% P—S were added to the transfection complex using Multidrop Combi Reagent Dispenser. The assay plates were incubated for 20 mins at RT prior to being placed in an incubator. Cells were then incubated for 72 hrs at 37 ° C. and 5% CO2. ViewRNA ISH Cell Assay was performed following manufacture's protocol (Thermo Fisher Scientific) using an in-house assembled automated FISH assay platform for liquid handling. In brief, cells were fixed in 4% formaldehyde (Thermo Fisher Scientific) for 15 mins at RT, permeabilized with detergent for 3 mins at RT and then treated with protease solution for 10 mins at RT. Incubation of target-specific probe pairs (Thermo Fisher Scientific) was done for 3 hrs, while for Preamplifiers, Amplifiers and Label Probes (Thermo Fisher Scientific) were for 1 hr each. All hybridization steps were carried out at 40° C. in Cytomat 2 C-LIN automated incubator (Thermo Fisher Scientific). After hybridization reactions, cells were stained for 30 mins with Hoechst and CellMask Blue (Thermo Fisher Scientific) and then imaged on Opera Phenix (PerkinElmer). The images were analyzed using Columbus Image Data Storage and Analysis System (PerkinElmer) to obtain mean spot counts per cell. The spot counts were normalized using the high (containing phosphate-buffered saline, Corning) and low (without target probe pairs) control wells. The normalized values against the total siRNA concentrations were plotted and the data were fit to a four-parameter sigmoidal model in Genedata Screener (Genedata) to obtain IC50 and maximum activity. The results of the assay for HepG2 cells is shown in Table 5 and the results of the assay for Hep3B cells is shown in Table 6. PNPLA3 knockdown provides a percentage of knockdown compared to control. Negative values indicate a decrease in PNPLA3 levels. In instances where a duplex was run more than once, the average IC50 is shown, with a standard deviation.









TABLE 5







RNA FISH assay on hepatic HepG2 cells









Duplex No.
IC50 (μM)
PNPLA3 knockdown (%)












D-2001
.0132
−70.5


D-2003
.0458
−46.9


D-2004
.0049
−74.2


D-2006
.00283
−69.6


D-2009
.00448
−62.2


D-2010
.00206
−52


D-2013
.00319
−71.7


D-2014
.00164
−67.4


D-2017
.00222
−60.9


D-2018
.00717
−52.7


D-2020
.00664
−68.3


D-2021
.00559
−61.5


D-2022
.004
−30.5


D-2023
>0.5
−18


D-2025
.0041
−61.9


D-2026
.00937
−34.6


D-2043
>0.1
−5.394


D-2045
>0.1
−37.195


D-2046
>0.1
0.94


D-2047
>0.1
−11.446


D-2048
0.000355
−56.824


D-2049
Undefined
−30.881


D-2050
>0.1
−11.814


D-2051
0.000903
−73.749


D-2052
0.000235
−38.467


D-2053
0.000142
−19.405


D-2054
>0.1
−29.069


D-2055
>0.1
−31.986


D-2056
Undefined
−38.596


D-2057
0.000197
−87.199


D-2058
0.00126
−40.177


D-2059
>0.1
−11.162


D-2060
>0.1
−8.147


D-2069
0.0329
−62.804


D-2072
0.00377
−47.552


D-2078
>0.1
−25.077


D-2073
0.00602
−54.092


D-2084
0.000549
−45.854


D-2084
0.0018
−60.106


D-2085
0.000122
−38.539


D-2085
0.0076
−68.83


D-2086
0.00182
−25.524


D-2087
0.00103
−53.242


D-2088
0.00111
−26.614


D-2089
0.000776
−55.436


D-2089
 0.000457 +/− 0.000174
 −62.57 +/− 1.46


D-2090
Undefined
−56.094


D-2092
0.000979
−52.168


D-2099
0.000727
−43.233


D-2100
0.000152
−40.651


D-2104
0.000712
−72.734


D-2105
0.000129
−75.994


D-2128
0.00154
−60.927


D-2138
0.0142
−63.864


D-2149
0.000518
−74.288


D-2152
0.00524
−64.758


D-2153
0.00149
−72.861


D-2155
>0.1
−32.937


D-2156
0.0183
−75.145


D-2157
>0.0333
−37.881


D-2158
0.00368
−79.231


D-2159
0.00167
−85.848


D-2160
0.00442
−37.827


D-2172
0.0000615
−74.462


D-2182
0.000211
−79.605


D-2183
0.000159
−80.865


D-2187
0.00109
−67.777


D-2188
0.000728
−71.503


D-2189
0.000224
−58.772


D-2190
0.000803
−72.508


D-2192
0.00125
−33.021


D-2193
0.000152
−74.239


D-2194
0.00385
−50.848


D-2196
0.000362
−70.158


D-2197
0.000180
−54.44


D-2198
0.000269
−45.556


D-2199
0.000198
−81.082


D-2201
0.000356
−82.2


D-2202
0.000123
−62.466


D-2203
0.00476
−68.112


D-2204
0.000300
−63.383


D-2205
0.000442
−70.712


D-2206
0.000969
−74.194


D-2208
0.000202
−64.046


D-2209
0.000752
−63.083


D-2210
0.0000991
−60.426


D-2211
0.0000948
−71.098


D-2213
0.00119
−65.57


D-2214
0.000293
−72.959


D-2215
0.000307
−64.561


D-2217
0.00198
−87.273


D-2218
0.000186
−64.522


D-2219
0.000577
−74.879


D-2220
0.000189
−74.278


D-2221
0.000173
−54.639


D-2223
0.00131
−69.834


D-2224
0.000527
−84.911


D-2225
0.000561
−68.969


D-2226
0.00109
−75.536


D-2227
0.000227
−85.915


D-2228
0.00202
−50.227


D-2229
Undefined
−59.847


D-2230
0.000156
−53.194


D-2231
0.000351
−65.054


D-2232
0.0000619
−63.991


D-2233
0.0000982
−74.304


D-2234
0.000290
−81.992


D-2235
0.000127
−83.593


D-2236
0.000243
−80.826


D-2237
0.0000711
−62.814


D-2238
0.0000690
−76.476


D-2239
0.000123
−74.747


D-2240
0.000120
−79.301


D-2241
0.000201
−88.769


D-2242
0.000179
−84.503


D-2243
0.000264
−88.712


D-2244
0.0000605
−82.556


D-2245
0.000125
−83.93


D-2246
0.000122
−84.41


D-2247
0.000100
−81.777


D-2248
0.000141
−79.18


D-2249
0.0000710
−85.093


D-2250
0.000494
−81.724


D-2251
0.000196
−87.601


D-2252
0.0000796
−62.87


D-2253
0.000501
−78.699


D-2254
0.0000979
−67.617


D-2255
0.000359
−81.18


D-2256
0.000610
−98.206


D-2257
0.000151
−76.718


D-2258
0.000325
−87.548


D-2259
0.000124
−82.545


D-2260
0.000109
−85.47


D-2261
0.000231
−75.386


D-2262
0.000162
−72.407


D-2263
0.000271
−74.968


D-2264
0.000132
−76.418


D-2265
>0.1
−17.144


D-2266
Undefined
−58.475


D-2267
>0.1
−3.991


D-2280
0.0000390
−85.368


D-2286
0.00304
−89.536


D-2287
0.00142
−85.435


D-2287
0.000261
−66.501


D-2288
0.000839
−81.988


D-2289
0.0012
−83.437


D-2289
0.00168
−69.471


D-2290
0.00157
−73.089


D-2291
0.0112
−64.108


D-2292
0.00411
−66.681


D-2292
0.00138
−56.253


D-2293
0.00112
−61.118


D-2294
0.000408
−70.684


D-2295
0.000195
−65.493


D-2297
0.00165
−61.821


D-2297
0.000684
−69.444


D-2318
0.000986
−69.28


D-2319
0.00136
−67.654


D-2320
0.00129
−83.723


D-2323
0.00194
−74.525


D-2324
0.00209
−63.745


D-2325
0.000301
−81.302


D-2327
0.000306
−77.959


D-2327
0.000610
−56.293


D-2328
0.000131
−72.631


D-2345
0.000131
−72.677


D-2346
0.0000274
−71.459


D-2347
0.000640
−78.414


D-2348
0.000101
−64.627


D-2349
0.000487
−52.131


D-2350
0.000102
−68.668


D-2351
Undefined
−70.229


D-2352
0.000332
−81.083


D-2352
0.0027713 +/− 0.00426 
−68.138 +/− 9.28


D-2353
0.000410
−83.001


D-2353
0.00215
−64.343


D-2354
0.003405 +/− 0.00185
 −72.56 +/− 7.42


D-2354
0.000362
−72.776


D-2355
0.00215
−69.321


D-2358
0.0011
−61.081


D-2359
0.000654
−76.258


D-2360
Undefined
−59.027


D-2361
0.00414
−57.88


D-2362
0.000772
−87.512


D-2364
0.00104
−53.895


D-2370
0.0024
−83.423


D-2371
0.00418
−72.262


D-2372
0.00492
−67.648


D-2373
0.000906
−64.099


D-2374
0.00282
−64.049


D-2375
0.00125
−59.813


D-2376
0.00171
−63.025


D-2377
0.00168
−61.597


D-2378
0.00505
−72.446


D-2379
0.00511
−80.576


D-2380
0.0497
−82.835


D-2381
0.000944
−71.788


D-2382
0.000830
−65.087


D-2383
0.00118
−71.393


D-2386
0.0000367
−44.073


D-2387
0.00224
−74.24


D-2390
0.00188
−69.313


D-2391
0.000493
−72.314


D-2393
0.008875 +/− 0.0112 
−48.855 +/− 15.6


D-2401
0.000125
−69.217


D-2409
0.00479
−68.703


D-2402
>0.5
 21.01 +/− 6.08


D-2410
0.00533
−64.812


D-2411
0.00283
−64.889


D-2412
0.00211
−67.781


D-2413
 0.006575 +/− 0.0000212
−64.021 +/− 15.8


D-2417
0.00558
−50.293


D-2418
0.00566
−59.533


D-2419
>0.5
−15.364 +/− 7.56


D-2423
 0.000498 +/− 0.000414
 −65.15 +/− 17.5


D-2426
>0.1
−15.207


D-2430
0.0000511
−63.602


D-2444
 0.000262 +/− 0.000192
−67.206 +/− 9.13


D-2454
 0.001795 +/− 0.000106
 −51.619 +/− 0.163


D-2456
0.000274
−61.291


D-2472
0.000314
−70.624


D-2473
>0.1
−19.624 +/− 7.27


D-2474
0.000339
−37.846


D-2475
0.002249 +/− 0.00231
−41.661 +/− 8.64


D-2476
0.000594
−26.48


D-2477
0.000547
−61.592


D-2478
0.000168
−65.904


D-2479
0.0005565
−65.14


D-2480
0.000907
−53.271


D-2481
0.0004005
−59.5


D-2482
0.000493
−61.712


D-2483
0.0004015 +/− 0.000218
−66.803 +/− .197


D-2484
0.0003375
−67.4


D-2485
0.0002865
−44.529


D-2486
0.0012575
−62.847


D-2487
0.000454
−54.396


D-2488
0.0002415
−66.315


D-2489
>0.5
 −2.973 +/− 1.98


D-2490
0.0011555
−62.566


D-2491
0.0006005
−60.304


D-2492
0.0007775
−47.748


D-2493
0.001465
−48.8


D-2494
0.0008985
−50.707


D-2495
0.001317
−55.5


D-2496
0.0001374
−68.949


D-2497
0.00013615 +/− 0.0000691
−72.763 +/− 4.02


D-2498
 0.000332 +/− 0.000259
−82.507 +/− 6.15


D-2499
0.0004155
−75.4


D-2500
 0.0000742 +/− 0.0000407
−74.968 +/− 5.41


D-2501
>0.5
−1.648 +/− 2.2


D-2502
0.0002705 +/− 0.000252
−68.406 +/− 5.36


D-2503
 0.000313 +/− 0.000198
−67.858 +/− 8.2 


D-2504
0.0006445 +/− 0.000385
−59.733 +/− 7.96


D-2505
0.0004985
−53.3


D-2506
>0.1
−16.588 +/− 14.9


D-2507
0.002136
−64.978


D-2508
>0.1
 −20.61 +/− 11.1


D-2509
0.001242
−65.112


D-2510
0.0015895
−56.416


D-2511
0.00166
−19.901


D-2512
0.000593
−0.374


D-2513
0.0001497 +/− 0.000123
−69.663 +/− 11.6


D-2514
 0.000204 +/− 0.0000594
−69.924 +/− 13.7


D-2515
 0.000331 +/− 0.000129
 −71.29 +/− 8.74


D-2516
 0.000348 +/− 0.000249
−65.905 +/− 14.8


D-2517
 0.000452 +/− 0.000322
−68.212 +/− 11.2


D-2518
0.0006965
−73.226


D-2519
>0.5
 −1.486 +/− 4.67


D-2520
0.000098
−75.127


D-2521
 0.000717 +/− 0.000378
−61.216 +/− 12.8


D-2522
 0.000661 +/− 0.000748
−56.771 +/− 16.9


D-2523
0.0003685
−73.312


D-2524
 0.0002745 +/− 0.0000686
−65.341 +/− 12.7


D-2525
0.003855 +/− 0.0033 
−44.288 +/− 19.0


D-2526
0.0006115 +/− 0.000204
 −57.77 +/− 13.2


D-2527
0.000333
−77.405


D-2528
0.0002665 +/− 0.000105
−62.407 +/− 8.65


D-2529
0.0076967 +/− 0.00555 
−44.194 +/− 6.73


D-2530
0.0132
 −42.657 +/− 0.222


D-2531
0.00312
−32.789 +/− 12.0


D-2532
0.005795 +/− 0.00268
−44.051 +/− 2.82


D-2533
0.005515 +/− 0.00356
−43.145


D-2534
0.0129
−28.734 +/− 16.4


D-2535
 0.003195 +/− 0.000233
−29.79


D-2536
0.005865 +/− 0.00456
−25.918


D-2537
0.0133
−25.755 +/− 3.32


D-2538
>0.1
−40.955 +/− 5.3 


D-2539
0.004785 +/− 0.00183
−34.334 +/− 11.0


D-2540
 0.0044 +/− 0.00075
−39.221


D-2541
0.002735 +/− 0.00141
 −62.39 +/− 3.03


D-2542
0.01323 +/− 0.0108
−30.917 +/− 1.57


D-2543
>0.1
 −8.54 +/− 8.37


D-2544
0.017
−23.757 +/− 2.2 


D-2545
0.01642 +/− 0.0164
−52.394 +/− 7.21


D-2546
>0.1
−25.351 +/− 7.84


D-2547
0.00412
−25.042 +/− 5.28


D-2548
 0.00411 +/− 0.00184
−40.406 +/− 1.26


D-2549
 0.02285 +/− 0.00318
−53.713 +/− 14.1


D-2550
0.015935 +/− 0.0115
−41.907


D-2551
0.00795
−26.39


D-2552
 0.01165 +/− 0.00841
−41.306


D-2553
0.00361
−70.457


D-2554
0.00656
−42.866


D-2555
>0.1
−11.425


D-2556
0.00336
−63.996


D-2557
>0.1
−2.734


D-2558
0.00251
−66.775


D-2559
>0.1
−7.034


D-2560
0.0234
−44.657


D-2561
0.00154
−74.225


D-2562
0.00454
−66.578


D-2563
0.00182
−77.025


D-2564
0.009
−64.021


D-2565
0.00609
−70.965


D-2566
0.00255
−52.65


D-2567
0.00584
−56.603


D-2568
0.0157
−63.002


D-2569
0.00327
−64.898


D-2570
0.00144
−55.424


D-2571
>0.1
−18.661


D-2572
0.00557
−25.668


D-2573
0.0115
−55.329


D-2574
0.00289
−69.84


D-2575
0.00378
−69.491


D-2576
0.00527
−64.841


D-2577
0.00511
−46.449


D-2578
0.0026
−67.821


D-2579
0.00402
−67.057


D-2580
0.00119
−64.422


D-2581
0.00915
−73.008


D-2582
0.000823
−77.053


D-2583
0.00851
−66.555


D-2584
0.00513
−54.442


D-2585
0.0154
−67.707


D-2586
0.00701
−69.624


D-2587
0.00732
−66.627


D-2588
0.00226
−70.854


D-2589
0.00837
−31.221


D-2590
0.0249
−41.857


D-2591
0.009
−64.021


D-2592
0.00609
−70.965


D-2593
0.00255
−52.65


D-2594
0.00584
−56.603


D-2595
0.0157
−63.002


D-2596
0.00327
−64.898


D-2597
0.00144
−55.424


D-2598
>0.1
−18.661


D-2599
0.00557
−25.668


D-2600
0.0115
−55.329


D-2601
0.00289
−69.84


D-2602
0.00378
−69.491


D-2603
0.00527
−64.841


D-2604
0.00511
−46.449


D-2605
0.0026
−67.821


D-2606
0.00402
−67.057


D-2607
0.00119
−64.422


D-2608
0.00915
−73.008


D-2609
0.000823
−77.053


D-2610
0.00141
−37.663 +/− 39.4


D-2611
>0.1
 −2.829 +/− 0.006


D-2612
>0.1
−15.894


D-2613
0.00809
−58.833


D-2614
0.00204
−73.042


D-2615
0.00306
−70.087


D-2616
7.95E−04
−71.014


D-2617
0.00218
−75.769


D-2618
0.0429
 −31.19 +/− 2.61


D-2619
0.02495 +/− 0.0192
−59.645 +/− 13.4


D-2620
 0.0055 +/− 0.00329
−73.308 +/− 5.33


D-2621
0.004705 +/− 0.00176
−63.053 +/− 7.66


D-2622
0.004525 +/− 0.00231
−66.895 +/− 7.78


D-2623
0.00435
−31.366 +/− 14.5


D-2624
 0.0056 +/− 0.0016
 −65.16 +/− 10.9


D-2625
 0.00764 +/− 0.00115
−73.065 +/− 9.97


D-2626
0.021645 +/− 0.0267 
−71.117 +/− 3.63


D-2627
 0.00651 +/− 0.00489
−63.009 +/− 8.83


D-2628
 0.01334 +/− 0.00588
−48.771 +/− 2.35


D-2629
0.005504 +/− 0.00434
−74.111 +/− 4.61


D-2630
0.007965 +/− 0.00684
 −70.17 +/− 5.32


D-2631
>0.1
−8.645


D-2632
>0.1
−37.841


D-2633
0.0111
−53.354


D-2634
0.0187
−63.686


D-2635
0.00797
−58.605


D-2636
>0.1
−34.727


D-2637
0.00541
−61.225


D-2638
0.00397
−62.221


D-2639
 0.0295 +/− 0.0187
−51.328 +/− 12.8


D-2640
0.0212
−37.799 +/− 16.1


D-2641
0.00164
−21.913 +/− 14.1


D-2642
>0.1
−11.733 +/− 23.5


D-2643
>0.1
−23.009


D-2644
0.00165
−46.514


D-2645
0.00242
−75.956


D-2646
>0.1
−15.539 +/− 1.03


D-2647
0.00243
−73.363


D-2648
  0.00117 +/− 0.0000849
 −74.63 +/− 1.55


D-2649
0.007455 +/− 0.00756
−46.662 +/− 2.86


D-2650
0.003845 +/− 0.00122
−67.914 +/− 1.87


D-2651
0.000449
−70.274


D-2652
0.0014
−66.6


D-2653
0.00299
−59.695


D-2654
0.00431
−26.338 +/− 4.54


D-2655
0.00254 +/− 0.0012
 −52.632 +/− 0.938


D-2656
0.003275 +/− 0.00112
−37.351 +/− 0.79


D-2657
0.007435 +/− 0.00357
−37.313 +/− 3.03


D-2658
>0.1
−22.486 +/− 10.6


D-2659
>0.1
−10.905 +/− 3.7 


D-2660
>0.1
 −4.489 +/− 8.45


D-2661
 0.00875 +/− 0.00728
−56.877 +/− 9.41


D-2662
>0.1
−8.133


D-2663
 0.00268 +/− 0.000778
−73.024 +/− 1.16


D-2664
0.008
−30.908 +/− 1.19


D-2665
 0.004675 +/− 0.000516
−39.914 +/− 3.72


D-2666
 0.004085 +/− 0.000106
−46.423 +/− 3.66


D-2667
0.017107 +/− 0.0145 
−72.967 +/− 2.96


D-2668
 0.00589 +/− 0.000919
−73.779 +/− 2.9 


D-2669
0.0035033 +/− 0.00167 
 −67.153 +/− 0.761


D-2670
0.0129
 −59.149 +/− 0.371


D-2671
 0.0157 +/− 0.00156
 −57.5 +/− 3.88


D-2672
>0.1
 −3.262 +/− 6.36


D-2673
 0.00461 +/− 0.00173
−50.295 +/− 14.1


D-2674
0.00279
−54.886 +/− 32.2


D-2675
>0.1
 −13.5 +/− 21.4


D-2676
0.015075 +/− 0.0156 
−50.255 +/− 8.86


D-2677
>0.1
−22.123


D-2678
>0.1
−43.995


D-2679
0.00268
−83.804


D-2680
>0.1
−47.702


D-2681
>0.1
−38.246


D-2682
 0.00305 +/− 0.000255
−70.849 +/− 11.3


D-2683
0.00363
−59.037 +/− 15.6


D-2684
0.00763
−74.35


D-2685
 0.00585 +/− 0.00379
−72.725 +/− 18.8


D-2686
>0.1
−6.429


D-2687
0.0031933 +/− 0.000225
−70.122 +/− 5.47


D-2688
0.0023063 +/− 0.00152 
−65.267 +/− 8.73


D-2689
0.0025767 +/− 0.000721
−66.016 +/− 11.4


D-2690
0.0032367 +/− 0.00272 
 −63.04 +/− 13.4


D-2691
>0.1
−63.208


D-2692
0.00376
−62.833


D-2693
0.002915 +/− 0.00131
−71.229 +/− 10.9


D-2694
 0.003245 +/− 0.000573
−69.264


D-2695
0.01652 +/− 0.0179
−51.139 +/− 17.8


D-2696
0.0024
12.88


D-2697
0.013
−63.845


D-2698
 0.003285 +/− 0.000304
−79.24


D-2699
0.002205 +/− 0.00117
 −67.306 +/− 0.216


D-2700
0.0022297 +/− 0.00129 
−67.949 +/− 7.66


D-2701
0.0026037 +/− 0.00196 
−54.669 +/− 7.49


D-2702
0.00448
−64.496


D-2703
0.00254
−65.869


D-2704
0.00257
−71.285


D-2705
 0.002505 +/− 0.000346
−64.722 +/− 4.62


D-2706
0.003865 +/− 0.00264
−63.247 +/− 10.0


D-2707
 0.003425 +/− 0.000318
 −65.82 +/− 2.07


D-2708
0.0055112 +/− 0.00582 
−66.395 +/− 10.4


D-2709
0.00243
−76.778


D-2710
0.000912
−78.289


D-2711
>0.1
  4.37 +/− 9.89


D-2712
0.0046104 +/− 0.00608 
−65.876 +/− 9.59


D-2713
0.0010115 +/− 0.00102 
−67.741 +/− 2.46


D-2714
0.0063585 +/− 0.00869 
 −66.904 +/− 0.044


D-2715
0.0061022 +/− 0.00862 
−74.054


D-2716
 0.00338 +/− 0.00308
−70.054 +/− 9.47


D-2717
 0.0033 +/− 0.00155
−72.932 +/− 7.6 


D-2718
0.0155
−58.784


D-2719
0.00527
−57.281


D-2720
0.0215
−41.76


D-2721
0.01829 +/− 0.0132
−64.649 +/− 3.84


D-2722
0.0164
−53.261


D-2723
0.00733
−47.56


D-2724
0.00564
−37.19


D-2725
0.00776
−42.77


D-2726
0.00675
−42.811


D-2727
0.00667
−57.414


D-2728
0.0438
−37.169


D-2729
0.00454
−25.538


D-2730
0.0241
−47.501


D-2731
0.0088
−44.866


D-2732
0.0326
−44.68


D-2733
0.0217
−25.146


D-2734
>0.1
−14.582


D-2735
0.0202
−28.294


D-2736
0.014
−38.251


D-2737
>0.1
−17.833


D-2738
0.00514
−62.424


D-2739
0.0317
−41.409


D-2740
0.0111
−59.253


D-2741
0.0111
−59.687


D-2742
0.0229
−82.351


D-2743
0.00933
−59.271


D-2744
0.0215
−54.24


D-2745
0.00619
−57.406


D-2746
0.00654
−69.738


D-2747
0.0307
−63.431


D-2748
0.0152
−59.477


D-2749
0.0329
−45.543


D-2750
0.0149
−47.589


D-2751
0.0261
−54.747


D-2752
0.0106
−65.912


D-2753
0.0113
−66.051


D-2754
0.0201
−65.582


D-2755
>0.1
−25.144


D-2756
0.0179
−65.965


D-2757
0.0251
−40.795


D-2758
0.0312
−40.55


D-2759
0.00936
−63.545


D-2760
0.00859
−74.99


D-2761
0.0115
−71.716


D-2762
0.00777
−68.169


D-2763
0.0106
−72.426


D-2764
0.0327
−58.009


D-2766
 0.003215 +/− 0.000516
−77.976


D-2767
 0.00376 +/− 0.000552
−74.346


D-2768
  0.00396 +/− 0.0000566
−76.319


D-2769
0.005655 +/− 0.00165
−72.844 +/− 3.26


D-2770
  0.0041 +/− 0.000778
−79.301 +/− 1.36


D-2771
 0.00891 +/− 0.00137
−70.223


D-2772
  0.004855 +/− 0.00000707
−72.651


D-2773
 0.004115 +/− 0.000544
−77.716 +/− 5.2 


D-2774
 0.00467 +/− 0.000354
−76.397 +/− 3.67
















TABLE 6







RNA FISH assay on hepatic Hep3B cells











Duplex No.
IC50 (μM)
PNPLA3 knockdown (%)















D-2001
.00842
−37



D-2003
.0158
−32.1



D-2004
.00266
−32.4



D-2006
.00948
−54.1



D-2009
.00228
−29.5



D-2010
.00219
−37.2



D-2013
.00524
−31.5



D-2014
.00148
−37.6



D-2017
.00333
−37.6



D-2018
.00315
−21.3



D-2020
>0.5
6



D-2021
>0.5
−1.6



D-2022
.00272
−30.9



D-2023
>0.5
24



D-2025
.0101
−30.3



D-2026
.00551
−23



D-2413

−45.832



D-2419
>0.5
−4.545



D-2426
>0.1
−15.207



D-2454
0.00187
−51.735



D-2473
>0.1
−21.333



D-2522
0.00504
−43.036



D-2523
0.0122
−52.084



D-2564
0.01
−63.199



D-2565
0.00938
−58.392



D-2566
0.00343
−61.484



D-2567
0.0175
−53.489



D-2568
>0.1
−18.367



D-2569
0.0195
−62.568



D-2570
0.0127
−77.141



D-2571
>0.1
−15.922



D-2572
>0.1
−12.434



D-2573
>0.1
−14.649



D-2574
0.0215
−52.515



D-2575
0.0203
−53.175



D-2576
0.018
−48.137



D-2577
>0.1
−16.105



D-2578
>0.1
−21.309



D-2579
>0.1
−17.510



D-2580
>0.1
−24.616



D-2581
>0.1
−13.987



D-2582
0.0574
−30.543



D-2583
>0.1
−23.990



D-2584
>0.1
−6.715



D-2585
>0.1
−17.518



D-2586
>0.1
−24.518



D-2587
0.0391
−58.478



D-2588
0.0218
−56.609



D-2589
>0.1
−17.418



D-2590
>0.1
−21.161



D-2591
0.0167
−59.366



D-2592
0.0104
−61.548



D-2593
Undefined
−61.879



D-2594
0.0211
−43.856



D-2595
0.0272
−63.020



D-2596
>0.1
−10.278



D-2597
0.0546
−31.743



D-2598
Undefined
−47.517



D-2599
0.00489
−70.825



D-2600
>0.1
−8.522



D-2601
0.0364
−31.836



D-2602
0.00577
−65.062



D-2603
0.01
−58.287



D-2604
0.00353
−40.649



D-2605
0.0113
−50.691



D-2606
>0.1
−5.097



D-2607
0.0261
−49.898



D-2608
>0.1
−23.747



D-2609
>0.1
−23.804



D-2620
>0.5
−21.969



D-2637
>0.1
−12.63



D-2638
>0.1
−16.25



D-2639
>0.1
−22.905



D-2640
>0.1
−14.572



D-2666
>0.5
−14.898



D-2667
>0.5
−14.537



D-2668
>0.5
−18.779



D-2669
>0.5
−8.624



D-2670
>0.5
−16.641



D-2671
>0.5
−8.665



D-2672
>0.5
4.92



D-2673
>0.5
−8.024



D-2675
>0.5
−17.999



D-2676
>0.5
−22.989



D-2677
>0.5
−11.245



D-2678
>0.5
−10.209



D-2679

−46.578



D-2680
>0.5
−12.289



D-2681
>0.5
−9.564



D-2682
0.184
−57.848



D-2683
>0.5
−19.024



D-2684
>0.5
−5.026



D-2685
0.0395
−34.673



D-2686
>0.5
−12.298



D-2687
>0.5
−7.153



D-2688
>0.5
−12.895



D-2689
>0.5
−20.429



D-2690
>0.5
−8.608



D-2691
>0.5
−7.608



D-2692
>0.5
−7.763



D-2693
>0.5
−12.294



D-2694
>0.5
−10.718



D-2695

−25.618



D-2696
>0.5
−7.666



D-2697
>0.5
−11.529



D-2698
>0.5
−11.875



D-2699
>0.5
−4.132



D-2700

−34.399



D-2701
>0.5
−4.434



D-2702
>0.5
−9.919



D-2703
>0.5
−9.667



D-2704
>0.5
−1.989



D-2705
>0.5
−8.5



D-2706
>0.167



D-2707
>0.167



D-2708
0.103
−32.624



D-2709
>0.5
−2.042



D-2710
>0.5
−5.079



D-2712
>0.5
−1.399



D-2717
>0.5
−1.399



D-2718
0.00521
−38.552



D-2719
0.013



D-2720
>0.5
−2.52



D-2721
>0.5
−3.882



D-2722
>0.5
−6.527



D-2723
>0.5
−16.917



D-2724
0.0227
−46.386



D-2725
0.0187



D-2726
0.0105



D-2727
0.0124
−38.592



D-2728
0.00741
−30.796



D-2729
0.0152
−36.3



D-2730
>0.5
−17.996



D-2731
0.00433
−45.007



D-2732
>0.5
−4.662



D-2733
>0.5
−8.838



D-2734
>0.5
−11.614



D-2735
>0.5
−15.778



D-2736
>0.5
−17.337



D-2737
>0.5
−11.139



D-2717
>0.5
−6.604



D-2738
0.00878
−30.636



D-2739
>0.5
−12.614



D-2740
0.013
−57.307



D-2741
0.00938
−48.272



D-2742
0.0271



D-2743
0.00623
−41.449



D-2744
0.015
−37.951



D-2745
0.00611
−53.267



D-2746
0.0108
−63.434



D-2747
>0.5
−13.578



D-2748
0.0382
−38.04



D-2749
>0.5
−8.412



D-2750
>0.5
−2.25



D-2751
>0.5
−12.014



D-2752
>0.5
10.68



D-2753
>0.5
−3.443



D-2754
0.0704
−40.897



D-2755
>0.5
−9.405



D-2756
>0.5
−18.327



D-2757
>0.5
−10.531



D-2758
>0.5
−13.929



D-2759
0.0174
−39.948



D-2760
0.048
−66.415



D-2761
>0.5
−14.128



D-2762
0.0132
−61.074



D-2763
0.0333
−67.071



D-2764
>0.5
−10.771



D-2413

−45.832



D-2419
>0.5
−4.545










EXAMPLE 3
Droplet Digital PCR Assay of siRNA for PNPLA3-rs738409 and PNPLA3-rs738409-rs738408

Following the manufacturers protocol, thawed human primary hepatocyte cells (Xenotech/Sekisui donor lot #HC3-38) in OptiThaw media (Xenotech cat #K8000), cells were centrifuged and post media aspiration, resuspended in OptiPlate hepatocyte media (Xenotech cat #K8200) and plated into 96 well collagen coated plates (Greiner cat #655950). Following a 2-4 hour incubation period, media was removed and replaced with OptiCulture hepatocyte media (Xenotech cat #K8300). 2-4 hours post addition of OptiCulture media, delivered GalNAc conjugated siRNAs to cells via free uptake (no transfection reagent). Cells were incubated 24-72 hours at 37° C. and 5% CO2. Cells were then lysed with Qiagen RLT buffer (79216) +1% 2-mercaptoethanol (Sigma, M-3148), and lysates were stored at −20° C. RNA was purified using a Qiagen QIACube HT instrument (9001793) and a Qiagen RNeasy 96 QIACube HT Kit (74171) according to manufacturer's instructions. Samples were analyzed using a QIAxpert system (9002340). cDNA was synthesized from RNA samples using the Applied Biosystems High Capacity cDNA Reverse Transcription kit (4368813), reactions were assembled according to manufacturer's instructions, input RNA concentration varied by sample. Reverse transcription was carried out on a BioRad tetrad thermal cycler (model #PTC-0240G) under the following conditions: 25° C. 10 minutes, 37° C. 120 minutes, 85° C. 5 minutes followed by (an optional) 4° C. infinite hold.


Droplet digital PCR (ddPCR) was performed using BioRad's QX200 AutoDG droplet digital PCR system according to manufacturer's instructions. Reactions were assembled into an Eppendorf clear 96 well PCR plate (951020303) using BioRad ddPCR Supermix for Probes (1863010), and fluorescently labeled qPCR assays for PNPLA3 (IDT Hs.PT.58.21464637, primer to probe ratio 3.6:1 and TBP (IDT Hs.PT.53a.20105486, primer to probe ratio 3.6:1) and RNase free water (Ambion, AM9937). Final primer/probe concentration is 900 nM/250 nM respectively, input cDNA concentration varied among wells. Droplets were formed using a BioRad Auto DG droplet generator (1864101) set up with manufacturer recommended consumables (BioRad DG32 cartridges 1864108, BioRad tips 1864121, Eppendorf blue 96 well PCR plate 951020362, BioRad droplet generation oil for probes 1864110 and a BioRad droplet plate assembly). Droplets were amplified on a BioRad C1000 touch thermal cycler (1851197) using the following conditions: enzyme activation 95° C. 10 minutes, denaturation 94° C. 30 seconds followed by annealing/extension 60° C. for one minute, 40 cycles using a 2° C./second ramp rate, enzyme deactivation 98° C. 10 minutes followed by (an optional) 4° C. infinite hold. Samples were then read on a BioRad QX200 Droplet Reader measuring FAM/HEX signal that correlates to PNPLA3 or TBP concentration. Data was analyzed using BioRad's QuantaSoft software package. Samples are gated by channel (fluorescent label) to determine the concentration per sample. Each sample is then expressed as the ratio of the concentration of the gene of interest (PNPLA3)/concentration of the housekeeping gene (TBP) to control for differences in sample loading. Data is then imported into Genedata Screener, where each test siRNA is normalized to the median of the neutral control wells (buffer only). IC50 values are reported in Table 7.









TABLE 7







ddPCR assay on primary hepatocyte cells









Duplex No.
IC50 (μM)
% PNPLA3 knockdown












D-2068
.0339
−49.628


D-2069
.00408
−52.997


D-2070
.00433
−42.193


D-2072
.00884
−53.16


D-2073
>2.0
−7.435


D-2078
.0044
−43.123


D-2084
0.00499
−38.791


D-2085
0.00539
−64.312


D-2086
>2.0
−14.938


D-2087
>2.0
−25.465


D-2088
0.207
−34.944


D-2089
0.0107
−38.791


D-2090
0.0218
−38.977


D-2091
0.0508
−41.209


D-2092
0.00192
−44


D-2093
0.00634
−30.233


D-2094
>2.0
4.93


D-2095
0.00181
−59.814


D-2096
0.0181
−52.807


D-2099
0.00549
−39.296


D-2100
0.0142
−55.281


D-2158
0.0681
−48.649


D-2159
0.0325
−36.036


D-2160
>0.667
−13.514


D-2161
>2.0
−24.229


D-2162
0.0726
−28.634


D-2163
>0.667
−16.3


D-2164
>2.0
−15.418


D-2165
0.00644
−26.872


D-2166
0.00192
−30.045


D-2167
>0.667
−6.726


D-2168
>2.0
−15.418


D-2169
>2.0
−13.004


D-2170
>2.0
−9.417


D-2171
0.00505
−44.395


D-2172
0.003
−55.336


D-2173
0.00598
−46.188


D-2174
>2.0
−9.009


D-2175
0.017
−27.928


D-2176
0.00452
−35.426


D-2177
>2.0
4.5


D-2178
>2.0
1.8


D-2179
>2.0
−6.306


D-2180
0.00546
−40.969


D-2181
0.00152
−43.119


D-2182
0.00317
−54.128


D-2183
0.00232
−53.211


D-2184
0.0109
−50.459


D-2185
>2.0
−7.339


D-2186
0.0021
−48.624


D-2187
>2.0
−11.009


D-2188
>2.0
1.32


D-2191
0.0984
−66.923


D-2192
0.124
−64.231


D-2193
0.138
−60.606


D-2194
0.0478
−54.182


D-2195
0.0801
−47.515


D-2199
0.0517
−62.973


D-2201
0.0165
−72.404


D-2202
0.00946
−49.459


D-2203
0.0241
−58.545


D-2204
0.0382
−45.576


D-2205
0.0222
−50.946


D-2206
0.0459
−46.081


D-2209
0.0867
−46.622


D-2212
0.358
−60


D-2216
0.0826
−58.942


D-2218
0.0242
−63.462


D-2220
0.0113
−69.333


D-2221
0.138
−55.541


D-2224
0.0198
−66.486


D-2225
0.245
−68.077


D-2228
0.155
−44.606


D-2229
0.0651
−38.909


D-2231
0.0512
−56.892


D-2232
0.0678
−67.981


D-2233
0.00802
−57.182


D-2234
0.00473
−55.947


D-2235
0.00816
−62.115


D-2236
0.00245
−51.542


D-2237
0.00495
−60


D-2238
0.00561
−63.017


D-2239
0.00453
−55.537


D-2240
0.00584
−56.116


D-2241
0.00755
−54.76


D-2242
0.0137
−56.332


D-2243
0.00329
−57.118


D-2244
0.0127
−56.909


D-2245
0.00697
−58.364


D-2246
0.00713
−56.828


D-2247
0.00875
−57.797


D-2248
0.0098
−58.59


D-2249
0.00603
−57.759


D-2250
0.0105
−62.155


D-2251
0.00521
−59.914


D-2252
0.00988
−58.678


D-2253
0.00481
−57.118


D-2254
0.00721
−56.332


D-2255
0.00788
−52.838


D-2256
0.00831
−55.455


D-2257
0.00503
−54.545


D-2258
0.00626
−54.545


D-2259
0.00401
−55.947


D-2260
0.00379
−52.423


D-2261
0.00151
−54.31


D-2262
0.00292
−53.448


D-2263
0.00607
−59.483


D-2264
0.00703
−59.504


D-2265
>4.0
−20.524


D-2266
0.0129
−32.727


D-2267
0.107
−27.273


D-2275
0.00359
−45.701


D-2276
0.00416
−43.891


D-2277
0.00218
−49.14


D-2278
0.00743
−42.986


D-2279
0.0116
−53.846


D-2280
0.00347
−36.652


D-2281
0.0134
−37.557


D-2282
0.00864
−34.842


D-2283
0.00738
−49.558


D-2284
0.0202
−38.053


D-2285
0.00543
−45.487


D-2286
0.00934
−47.611


D-2287
0.00652
−55.575


D-2288
0.0259
−61.593


D-2289
0.00549
−53.805


D-2290
0.00476
−51.062


D-2291
0.0105
−42.584


D-2292
0.0059
−45.455


D-2293
0.0117
−45.646


D-2294
0.0109
−52.823


D-2295
0.01246 +/− 0.015 
−59.847 +/− 15.2


D-2296
0.0279
−41.346


D-2297
0.00529
−55.926


D-2298
0.00838
−35.577


D-2299
0.00832
−40.865


D-2300
0.00371
−40.096


D-2301
0.00563
−38.365


D-2302
0.00639
−40.385


D-2303
0.00669
−41.25


D-2304
0.00212
−38.462


D-2305
0.00573
−37.736


D-2306
0.0645
−33.962


D-2307
0.00232
−33.019


D-2308
0.00181
−31.132


D-2309
0.0447
−45.283


D-2310
0.00655
−42.453


D-2311
0.00613
−41.509


D-2312
0.00941
−50


D-2313
0.0218
−41.784


D-2314
0.0142
−42.723


D-2315
0.0182
−31.455


D-2316
>4.0
−23.005


D-2317
0.0228
−37.089


D-2318
0.00809
−45.352


D-2319
0.0165
−44.601


D-2320
0.0184
−38.373


D-2321
0.00766
−41.627


D-2322
0.00815
−46.507


D-2323
0.0168
−48.325


D-2324
0.00663
−62.254


D-2325
0.00716
−39.367


D-2326
0.044
−52.036


D-2327
0.00282
−65.701


D-2328
0.00411
−53.991


D-2329
0.012
−48.357


D-2330
0.019
−42.593


D-2331
0.00448
−47.418


D-2332
0.00944
−37.327


D-2333
0.00514
−37.327


D-2334
0.154
−38.249


D-2335
0.0089
−40.092


D-2336
0.0169
−48.148


D-2337
0.00274
−46.296


D-2338
0.0225
−42.723


D-2339
0.00222 +/− 0.00136
−43.218 +/− 4.81


D-2340
0.0136
−56.561


D-2341
0.0222
−50.226


D-2342
0.0273
−55.385


D-2343
0.0164
−41.784


D-2344
0.0314
−60.282


D-2345
0.0103
−65.1


D-2346
0.0427
−63.9


D-2347
0.00446
−49.4


D-2348
0.113
−53.4


D-2349
0.0176
−56.3


D-2350
0.00467
−49.4









EXAMPLE 4
Efficacy Screening of Select PNPLA3 siRNA Molecules in a Humanized Mouse Model

Associated adenovirus (AAV; serotype AAV8 or AAV7; endotoxin-free, prepared internally by Amgen) diluted in phosphate buffered saline (Thermo Fisher Scientific, 14190-136) to 4e11 up to 1e12 viral particles per animal, was injected intravenously into the tail vein of C57BL/6NCrl male mice (Charles River Laboratories Inc.) to drive expression of either human PNPLA3WT (PNPLA3-WT), PNPLA3rs738409 (PNPLA3-I148M), or PNPLA3rs738409-rs738408 (PNPLA3-I148M DM) in the liver. Mice were generally 10-12 weeks of age and an n=4-6 animals were included per group. Every round of screening included at least two vehicle-treated control groups: AAV-empty vector and AAV-PNPLA3WT or PNPLA3rs738409 and PNPLA3rs738409-rs738408 treated with vehicle. All siRNAs were tested against AAV-PNPLA3WT, PNPLA3rs738409, and/or PNPLA3rs738409-rs738408 Two weeks after AAV injection, mice were treated with a single dose of siRNA D-2324 (0.5mM), via subcutaneous injection, at 0.5, 1.0, 3.0 or 5.0 milligrams per kilogram of animal, diluted in phosphate buffered saline (Thermo Fisher Scientific,14190-136). At 8, 15, 22, 28 or 42 days post-siRNA injection, livers were collected from the animals, snap frozen in liquid nitrogen, processed for purified RNA using a QIACube HT instrument (Qiagen, 9001793) and RNeasy 96 QIACube HT kits (Qiagen, 74171) according to manufacturer's instructions. Samples were analyzed using a QIAxpert system (Qiagen, 9002340). RNA was treated with RQ1 RNase-Free DNase (Promega, M6101) and prepared for Real-Time qPCR using the TaqMan™ RNA-to-CT™ 1-Step kit (Applied Biosystems, 4392653). Real-Time qPCR was run on a QuantStudio Real-Time PCR machine. Results are based on gene expression of human PNPLA3 as normalized to mouse Gapdh (TaqMan™ assays from Invitrogen, hs00228747_m1 and 4352932E, respectively), and presented as the relative knockdown of human PNPLA3 mRNA expression compared to vehicle-treated control animals. Endogenous mouse Pnpla3 expression was determined for comparison (Invitrogen, Mm00504420_m1).


For hepatic triglyceride content analysis, approximately 0.05-0.1 milligrams of frozen liver from an animal was homogenized in one milliliter of isopropanol. After one hour of incubation on ice, samples were spun at 10,000 rpm in a microfuge, and supernatants transferred to a clean deep-well 96-well plate. Triglyceride content was determined using the colorimetric Infinity Triglyceride Reagent (Thermo Fisher Scientific, TR22421) and Triglyceride Standard (Pointe Scientific, T7531-STD) according to manufacturer's instructions. Results are presented as milligrams of triglyceride per milligrams of tissue.



FIG. 1A-D. An example of five siRNA molecules screened for both dose-dependent mRNA knockdown and functional durability in vivo. Mice expressing human PNPLA3rs738409-rs738408 were treated with siRNA two-weeks after intravenous AAV injections. N=6 mice per group; data represented as the average and the standard error of the mean. (A) siRNAs were injected at 0.5, 1.0, 3.0, or 5.0 milligrams per kilogram of body weight subcutaneously into the abdomen of the mouse. Four weeks after siRNA treatment, mice were sacrificed, and the livers were collected and processed for gene expression analysis. The data represents the average relative knockdown of human PNPLA3rs738409-rs738408 in each group set to the vehicle-treated control group. (B) Livers from the same four-week treatment group were also processed for triglyceride content to access functional efficacy. The data represents the average milligrams of triglyceride per gram of tissue processed. (C) siRNAs were injected at 1.0 and 3.0 milligrams per kilogram of body weight subcutaneously into the abdomen of a parallel cohort of animals. Mice were harvested six weeks after siRNA treatment to compare durability of the siRNA molecules in vivo. The livers were collected and processed for gene expression analysis. The data represents the average relative knockdown of human PNPLA3rs738409-rs738408 in each group set to the vehicle-treated control group. (D) Livers from the same six-week treatment group were also processed for triglyceride content to access functional efficacy over time. The data represents the average milligrams of triglyceride per gram of tissue processed.


Data for relative knockdown is shown in Tables 8-12, showing relative knockdown at day 8, 15, 22, 28, and 42, respectively and the various doses. PNPLA3 knockdown is a percentage, with negative values indicating a decrease in PNPLA3 levels.









TABLE 8







Day 8 PNPLA3 knockdown assay













AAV
Dose
PNPLA3


Duplex

particles/
administered
knockdown


number
AAV vector
animal
(mg/kg)
(%)














D-2092
PNPLA3-I148M
1.00E+12
3
−91.51


D-2092
PNPLA3-I148M
1.00E+12
5
−92.64


D-2095
PNPLA3-I148M
1.00E+12
3
−79.21


D-2095
PNPLA3-I148M
1.00E+12
5
−86.38


D-2068
PNPLA3-I148M
4.00E+11
5
−34.15


D-2069
PNPLA3-I148M
4.00E+11
5
−82.74


D-2070
PNPLA3-I148M
4.00E+11
5
−79.64


D-2071
PNPLA3-I148M
4.00E+11
5
−48.80


D-2071
PNPLA3-WT
4.00E+11
5
−59.43


D-2075
PNPLA3-I148M
4.00E+11
5
−79.10


D-2075
PNPLA3-WT
4.00E+11
5
−60.60


D-2079
PNPLA3-I148M
4.00E+11
5
−50.08


D-2072
PNPLA3-I148M
4.00E+11
5
−44.40


D-2072
PNPLA3-WT
4.00E+11
5
−43.75


D-2077
PNPLA3-I148M
4.00E+11
5
−28.46


D-2076
PNPLA3-I148M
4.00E+11
5
−83.25


D-2078
PNPLA3-I148M
4.00E+11
5
−49.10


D-2078
PNPLA3-WT
4.00E+11
5
−3.45


D-2073
PNPLA3-I148M
4.00E+11
5
−39.42


D-2074
PNPLA3-I148M
4.00E+11
5
−46.68


D-2074
PNPLA3-WT
4.00E+11
5
−5.11


D-2084
PNPLA3-I148M
4.00E+11
5
−87.49


D-2084
PNPLA3-I148M
8.00E+11
5
−88.75


D-2084
PNPLA3-I148M
8.00E+11
1
−16.49


D-2084
PNPLA3-WT
8.00E+11
1
−15.42


D-2085
PNPLA3-I148M
4.00E+11
5
−77.14


D-2085
PNPLA3-I148M
8.00E+11
5
−84.42


D-2085
PNPLA3-I148M
8.00E+11
1
−25.19


D-2085
PNPLA3-WT
8.00E+11
1
−21.14


D-2086
PNPLA3-I148M
4.00E+11
5
−64.54


D-2086
PNPLA3-I148M
4.00E+11
5
−52.95


D-2087
PNPLA3-I148M
4.00E+11
5
−20.15


D-2088
PNPLA3-I148M
4.00E+11
5
−47.18


D-2088
PNPLA3-I148M
8.00E+11
5
−66.96


D-2089
PNPLA3-I148M
8.00E+11
5
−85.47


D-2089
PNPLA3-WT
8.00E+11
1
−21.01


D-2089
PNPLA3-I148M
8.00E+11
1
−34.21


D-2089
PNPLA3-I148M
1.00E+12
5
−90.55


D-2090
PNPLA3-I148M
8.00E+11
5
−89.58


D-2090
PNPLA3-I148M
8.00E+11
1
−50.13


D-2090
PNPLA3-WT
8.00E+11
1
8.76


D-2091
PNPLA3-WT
8.00E+11
5
−35.70


D-2092
PNPLA3-I148M
8.00E+11
5
−92.34


D-2092
PNPLA3-I148M
8.00E+11
1
−51.35


D-2092
PNPLA3-WT
8.00E+11
1
−42.88


D-2093
PNPLA3-I148M
8.00E+11
5
−83.87


D-2094
PNPLA3-I148M
8.00E+11
5
−70.12


D-2095
PNPLA3-I148M
8.00E+11
1
−29.95


D-2095
PNPLA3-WT
8.00E+11
1
67.40


D-2095
PNPLA3-I148M
8.00E+11
5
−85.42


D-2096
PNPLA3-WT
8.00E+11
5
−90.44


D-2081
PNPLA3-I148M
8.00E+11
5
6.25


D-2081
PNPLA3-I148M
8.00E+11
5
−11.81


D-2097
PNPLA3-I148M
8.00E+11
5
−87.61


D-2098
PNPLA3-I148M
8.00E+11
5
−79.84


D-2099
PNPLA3-I148M
8.00E+11
5
−84.36


D-2100
PNPLA3-I148M
8.00E+11
5
−79.67


D-2101
PNPLA3-I148M
8.00E+11
5
−89.64


D-2102
PNPLA3-I148M
8.00E+11
5
−61.49


D-2103
PNPLA3-I148M
8.00E+11
5
−19.65


D-2104
PNPLA3-I148M
8.00E+11
5
−79.70


D-2104
PNPLA3-I148M
1.00E+12
5
−82.87


D-2105
PNPLA3-I148M
8.00E+11
5
−84.49


D-2105
PNPLA3-I148M
1.00E+12
5
−87.71


D-2152
PNPLA3-I148M
1.00E+12
5
−39.35


D-2153
PNPLA3-I148M
1.00E+12
5
−79.04


D-2154
PNPLA3-I148M
1.00E+12
5
−66.72


D-2155
PNPLA3-I148M
1.00E+12
5
−44.68


D-2156
PNPLA3-I148M
1.00E+12
5
−84.72


D-2157
PNPLA3-I148M
1.00E+12
5
−17.25


D-2280
PNPLA3-I148M DM
1.00E+12
5
−99.70


D-2280
PNPLA3 WT
1.00E+12
5
−51.13


D-2295
PNPLA3-WT
1.00E+12
5
−35.90


D-2295
PNPLA3-I148M DM
1.00E+12
5
−94.68


D-2296
PNPLA3-WT
1.00E+12
5
−23.24


D-2296
PNPLA3-I148M DM
1.00E+12
5
−92.78


D-2297
PNPLA3-WT
1.00E+12
5
43.71


D-2297
PNPLA3-I148M DM
1.00E+12
5
−94.59


D-2324
PNPLA3-WT
1.00E+12
5
6.53


D-2324
PNPLA3-I148M DM
1.00E+12
5
−97.39


D-2326
PNPLA3-WT
1.00E+12
5
−8.25


D-2326
PNPLA3-I148M DM
1.00E+12
5
−77.82


D-2328
PNPLA3-WT
1.00E+12
5
−2.12


D-2328
PNPLA3-I148M DM
1.00E+12
5
−92.49
















TABLE 9







Day 15 PNPLA3 knockdown assay













AAV
Dose
PNPLA3


Duplex

particles/
administered
knockdown


number
AAV vector
animal
(mg/kg)
(%)














D-2092
PNPLA3-I148M
1.00E+12
3
−87.58


D-2092
PNPLA3-I148M
1.00E+12
5
−93.96


D-2095
PNPLA3-I148M
1.00E+12
3
−81.73


D-2095
PNPLA3-I148M
1.00E+12
5
−72.99


D-2131
PNPLA3-I148M
1.00E+12
5
−66.02


D-2186
PNPLA3-I148M
1.00E+12
5
−87.67


D-2089
PNPLA3-I148M
1.00E+12
5
−95.01


D-2104
PNPLA3-I148M
1.00E+12
5
−76.01


D-2105
PNPLA3-I148M
1.00E+12
5
−72.67


D-2123
PNPLA3-I148M
1.00E+12
5
−56.93


D-2128
PNPLA3-I148M
1.00E+12
5
−37.26


D-2138
PNPLA3-I148M
1.00E+12
5
−62.16


D-2149
PNPLA3-I148M
1.00E+12
5
−72.34


D-2156
PNPLA3-I148M
1.00E+12
5
−75.81


D-2259
PNPLA3-I148M
1.00E+12
5
−79.15


D-2260
PNPLA3-I148M
1.00E+12
5
−69.97


D-2261
PNPLA3-I148M
1.00E+12
5
−50.40


D-2262
PNPLA3-I148M
1.00E+12
5
−84.36


D-2263
PNPLA3-I148M
1.00E+12
5
−77.08


D-2264
PNPLA3-I148M
1.00E+12
5
−40.86


D-2269
PNPLA3-I148M
1.00E+12
5
−37.55


D-2270
PNPLA3-I148M
1.00E+12
5
−77.42


D-2271
PNPLA3-I148M
1.00E+12
5
−26.87


D-2272
PNPLA3-I148M
1.00E+12
5
−56.05


D-2280
PNPLA3-I148M DM
1.00E+12
3
−86.30


D-2287
PNPLA3-I148M DM
1.00E+12
3
−94.73


D-2289
PNPLA3-I148M DM
1.00E+12
3
−93.48


D-2292
PNPLA3-I148M DM
1.00E+12
3
−82.48


D-2297
PNPLA3-I148M DM
1.00E+12
3
−72.61


D-2322
PNPLA3-I148M DM
1.00E+12
3
−32.92


D-2324
PNPLA3-I148M DM
1.00E+12
3
−87.56


D-2327
PNPLA3-I148M DM
1.00E+12
3
−86.70


D-2345
PNPLA3-WT
1.00E+12
5
−83.48


D-2346
PNPLA3-WT
1.00E+12
5
−75.93


D-2347
PNPLA3-WT
1.00E+12
5
−22.83


D-2348
PNPLA3-WT
1.00E+12
5
−20.09


D-2349
PNPLA3-WT
1.00E+12
5
−67.70


D-2350
PNPLA3-WT
1.00E+12
5
−57.51


D-2351
PNPLA3-WT
1.00E+12
5
−56.11


D-2352
PNPLA3-I148M DM
1.00E+12
3
−92.21


D-2353
PNPLA3-I148M DM
1.00E+12
3
−89.55


D-2354
PNPLA3-I148M DM
1.00E+12
3
−90.21


D-2358
PNPLA3-I148M DM
1.00E+12
3
−95.10


D-2359
PNPLA3-I148M DM
1.00E+12
3
−91.17


D-2360
PNPLA3-I148M DM
1.00E+12
3
−63.98


D-2361
PNPLA3-I148M DM
1.00E+12
3
−92.47


D-2362
PNPLA3-I148M DM
1.00E+12
3
−95.10


D-2364
PNPLA3-I148M DM
1.00E+12
3
−95.31


D-2370
PNPLA3-I148M DM
1.00E+12
3
−95.99


D-2370
PNPLA3 WT
1.00E+12
3
11.88


D-2371
PNPLA3-I148M DM
1.00E+12
3
−91.14


D-2372
PNPLA3-I148M DM
1.00E+12
3
−93.71


D-2373
PNPLA3-I148M DM
1.00E+12
3
−73.80


D-2374
PNPLA3-I148M DM
1.00E+12
3
−75.98


D-2375
PNPLA3-I148M DM
1.00E+12
3
−96.68


D-2376
PNPLA3-I148M DM
1.00E+12
3
−96.78


D-2377
PNPLA3-I148M DM
1.00E+12
3
−96.88


D-2378
PNPLA3-I148M DM
1.00E+12
3
−97.60


D-2379
PNPLA3-I148M DM
1.00E+12
3
−94.73


D-2380
PNPLA3-I148M DM
1.00E+12
3
−94.73


D-2381
PNPLA3-I148M DM
1.00E+12
3
−76.24


D-2382
PNPLA3-I148M DM
1.00E+12
3
−80.33


D-2383
PNPLA3-I148M DM
1.00E+12
3
−71.98


D-2384
PNPLA3-I148M DM
1.00E+12
3
−87.24


D-2385
PNPLA3-I148M DM
1.00E+12
3
−78.77


D-2386
PNPLA3-I148M DM
1.00E+12
3
−70.58


D-2387
PNPLA3-I148M DM
1.00E+12
3
−67.09


D-2390
PNPLA3-I148M DM
1.00E+12
3
−92.97


D-2391
PNPLA3-I148M DM
1.00E+12
3
−94.10


D-2392
PNPLA3-I148M DM
1.00E+12
3
−92.14


D-2395
PNPLA3-I148M DM
1.00E+12
3
−85.63


D-2396
PNPLA3-I148M DM
1.00E+12
3
−94.63


D-2397
PNPLA3-I148M DM
1.00E+12
3
−92.90


D-2398
PNPLA3-I148M DM
1.00E+12
3
−95.48


D-2399
PNPLA3-I148M DM
1.00E+12
3
−93.40


D-2400
PNPLA3-I148M DM
1.00E+12
3
−97.55


D-2401
PNPLA3-I148M DM
1.00E+12
3
−96.98


D-2402
PNPLA3-I148M DM
1.00E+12
3
−97.25


D-2403
PNPLA3 WT
1.00E+12
3
36.90


D-2404
PNPLA3-I148M DM
1.00E+12
3
−95.08


D-2405
PNPLA3-I148M DM
1.00E+12
3
−96.93


D-2406
PNPLA3 WT
1.00E+12
3
28.80


D-2395
PNPLA3-I148M DM
1.00E+12
3
−17.25


D-2396
PNPLA3-I148M DM
1.00E+12
3
−93.70


D-2413
PNPLA3-I148M DM
1.00E+12
3
−94.80


D-2415
PNPLA3-I148M DM
1.00E+12
3
−90.95


D-2418
PNPLA3-I148M DM
1.00E+12
3
−88.45


D-2419
PNPLA3 WT
1.00E+12
3
43.72


D-2453
PNPLA3 WT
1.00E+12
3
−81.33


D-2454
PNPLA3 WT
1.00E+12
3
−83.38


D-2455
PNPLA3 WT
1.00E+12
3
−68.85


D-2456
PNPLA3 WT
1.00E+12
3
−89.03


D-2460
PNPLA3 WT
1.00E+12
3
−68.65


D-2461
PNPLA3 WT
1.00E+12
3
−47.85
















TABLE 10







Day 22 PNPLA3 knockdown assay













AAV
Dose
PNPLA3


Duplex

particles/
administered
knockdown


number
AAV vector
animal
(mg/kg)
(%)














D-2092
PNPLA3-I148M
1.00E+12
3
−74.61


D-2092
PNPLA3-I148M
1.00E+12
5
−85.78


D-2095
PNPLA3-I148M
1.00E+12
3
−27.78


D-2095
PNPLA3-I148M
1.00E+12
5
−33.60


D-2324
PNPLA3-I148M DM
1.00E+12
3
−56.68


D-2324
PNPLA3-I148M DM
1.00E+12
5
−88.02


D-2089
PNPLA3-I148M
1.00E+12
5
−80.86


D-2104
PNPLA3-I148M
1.00E+12
5
−65.61


D-2105
PNPLA3-I148M
1.00E+12
5
−39.67


D-2280
PNPLA3-I148M DM
1.00E+12
5
−84.12


D-2297
PNPLA3-I148M DM
1.00E+12
3
−58.01


D-2297
PNPLA3-I148M DM
1.00E+12
5
−76.43


D-2352
PNPLA3-I148M DM
1.00E+12
5
−92.74


D-2353
PNPLA3-I148M DM
1.00E+12
5
−84.54


D-2354
PNPLA3-I148M DM
1.00E+12
5
−89.06


D-2355
PNPLA3-I148M DM
1.00E+12
5
−95.53


D-2356
PNPLA3-I148M DM
1.00E+12
5
−94.99


D-2357
PNPLA3-I148M DM
1.00E+12
5
−97.37
















TABLE 11







Day 28 PNPLA3 knockdown assay













AAV
Dose
PNPLA3


Duplex

particles/
administered
knockdown


number
AAV vector
animal
(mg/kg)
(%)














D-2092
PNPLA3-I148M
1.00E+12
3
−72.57


D-2092
PNPLA3-I148M
1.00E+12
5
−82.74


D-2095
PNPLA3-I148M
1.00E+12
3
−32.93


D-2095
PNPLA3-I148M
1.00E+12
5
−55.31


D-2089
PNPLA3-I148M
1.00E+12
5
−63.49


D-2104
PNPLA3-I148M
1.00E+12
5
−44.39


D-2105
PNPLA3-I148M
1.00E+12
5
−39.80


D-2370
PNPLA3-I148M DM
1.00E+12
3
−89.28


D-2400
PNPLA3-I148M DM
1.00E+12
3
−88.23


D-2401
PNPLA3-I148M DM
1.00E+12
3
−91.95


D-2402
PNPLA3-I148M DM
1.00E+12
0.5
−50.65


D-2402
PNPLA3-I148M DM
1.00E+12
1
−69.37


D-2402
PNPLA3-I148M DM
1.00E+12
3
−96.43


D-2402
PNPLA3-I148M DM
1.00E+12
3
−85.44


D-2402
PNPLA3-I148M DM
1.00E+12
3
−90.52


D-2404
PNPLA3-I148M DM
1.00E+12
3
−95.67


D-2419
PNPLA3-I148M DM
1.00E+12
0.5
−68.83


D-2419
PNPLA3-I148M DM
1.00E+12
1
−76.88


D-2419
PNPLA3-I148M DM
1.00E+12
3
−97.53


D-2419
PNPLA3-I148M DM
1.00E+12
3
−93.95


D-2419
PNPLA3-I148M DM
1.00E+12
3
−89.66


D-2419
PNPLA3-I148M DM
1.00E+12
3
−93.25


D-2420
PNPLA3-I148M DM
1.00E+12
3
−95.93


D-2421
PNPLA3-I148M DM
1.00E+12
0.5
−50.01


D-2421
PNPLA3-I148M DM
1.00E+12
1
−66.30


D-2421
PNPLA3-I148M DM
1.00E+12
3
−94.99


D-2421
PNPLA3-I148M DM
1.00E+12
3
−80.05


D-2421
PNPLA3 WT
1.00E+12
3
−36.65


D-2421
PNPLA3-I148M DM
1.00E+12
3
−91.08


D-2425
PNPLA3-I148M DM
1.00E+12
3
−16.07


D-2426
PNPLA3-I148M DM
1.00E+12
3
−37.54


D-2427
PNPLA3-I148M DM
1.00E+12
3
−25.19


D-2428
PNPLA3-I148M DM
1.00E+12
3
−16.71


D-2437
PNPLA3-I148M DM
1.00E+12
3
−93.78


D-2438
PNPLA3-I148M DM
1.00E+12
3
−90.63


D-2439
PNPLA3-I148M DM
1.00E+12
3
−88.10


D-2440
PNPLA3-I148M DM
1.00E+12
3
−95.25


D-2441
PNPLA3-I148M DM
1.00E+12
3
−90.13


D-2442
PNPLA3-I148M DM
1.00E+12
3
−57.24


D-2443
PNPLA3-I148M DM
1.00E+12
3
−95.43


D-2444
PNPLA3-I148M DM
1.00E+12
3
−90.58


D-2445
PNPLA3-I148M DM
1.00E+12
3
−84.55


D-2446
PNPLA3-I148M DM
1.00E+12
3
−81.50


D-2427
PNPLA3-I148M DM
1.00E+12
3
−90.09


D-2462
PNPLA3-I148M DM
1.00E+12
3
−89.20


D-2463
PNPLA3-I148M DM
1.00E+12
3
−41.25


D-2464
PNPLA3-I148M DM
1.00E+12
3
−60.53


D-2465
PNPLA3-I148M DM
1.00E+12
3
−91.35


D-2466
PNPLA3-I148M DM
1.00E+12
3
−93.68


D-2467
PNPLA3-I148M DM
1.00E+12
3
−85.15


D-2472
PNPLA3-I148M DM
1.00E+12
0.5
−46.58


D-2472
PNPLA3-I148M DM
1.00E+12
1
−74.47


D-2472
PNPLA3-I148M DM
1.00E+12
3
−88.79


D-2472
PNPLA3 WT
1.00E+12
3
−23.16


D-2472
PNPLA3-I148M DM
1.00E+12
3
−90.54


D-2473
PNPLA3-I148M DM
1.00E+12
0.5
−57.95


D-2473
PNPLA3-I148M DM
1.00E+12
1
−71.96


D-2473
PNPLA3-I148M DM
1.00E+12
3
−91.70


D-2473
PNPLA3-I148M DM
1.00E+12
3
−85.94


D-2473
PNPLA3 WT
1.00E+12
3
−18.70


D-2675
PNPLA3-I148M DM
1.00E+12
3
−25.9


D-2677
PNPLA3-I148M DM
1.00E+12
3
−3.807


D-2678
PNPLA3-I148M DM
1.00E+12
3
−31.76


D-2679
PNPLA3-I148M DM
1.00E+12
3
−88.48


D-2680
PNPLA3-I148M DM
1.00E+12
3
−56.44


D-2681
PNPLA3-I148M DM
1.00E+12
3
−35.71


D-2682
PNPLA3-I148M DM
1.00E+12
3
−71.43


D-2683
PNPLA3-I148M DM
1.00E+12
3
−68.62


D-2685
PNPLA3-I148M DM
1.00E+12
3
−29.93


D-2687
PNPLA3-I148M DM
1.00E+12
3
−75.05


D-2689
PNPLA3-I148M DM
1.00E+12
3
−81.12


D-2690
PNPLA3-I148M DM
1.00E+12
3
−79.08


D-2694
PNPLA3-I148M DM
1.00E+12
3
−4.531


D-2695
PNPLA3-I148M DM
1.00E+12
3
29.23


D-2668
PNPLA3-I148M DM
1.00E+12
3
−65.16


D-2669
PNPLA3-I148M DM
1.00E+12
3
−78.36


D-2670
PNPLA3-I148M DM
1.00E+12
3
−56.05


D-2671
PNPLA3-I148M DM
1.00E+12
3
−56.87
















TABLE 12







Day 42 PNPLA3 knockdown assay













AAV
Dose
PNPLA3


Duplex

particles/
administered
knockdown


number
AAV vector
animal
(mg/kg)
(%)














D-2402
PNPLA3-I148M DM
1.00E+12
1
−57.74


D-2402
PNPLA3-I148M DM
1.00E+12
3
−83.75


D-2419
PNPLA3-I148M DM
1.00E+12
1
−71.07


D-2419
PNPLA3-I148M DM
1.00E+12
3
−70.8


D-2421
PNPLA3-I148M DM
1.00E+12
1
−62.21


D-2421
PNPLA3-I148M DM
1.00E+12
3
−80.12


D-2472
PNPLA3-I148M DM
1.00E+12
1
−60.54


D-2472
PNPLA3-I148M DM
1.00E+12
3
−74.77


D-2473
PNPLA3-I148M DM
1.00E+12
1
−54.55


D-2473
PNPLA3-I148M DM
1.00E+12
3
−81.13









EXAMPLE 5
Prevention and Rescue of NAFLD by siRNA Molecules in a Humanized PNPLA3rs738409-rs738408 mouse model

The ‘American Lifestyle-Induced Obesity Syndrome’, or ALIOS mouse model for NAFLD/NASH is developed by feeding mice with a diet high in trans-fats (45% of the total amount of fat) and sugar (Tetri 2008). For these studies, eight to ten-week old C57BL/6NCrl male mice (Charles River Laboratories Inc.) were injected with AAV-empty vector or AAV8-PNPLA3rs738409-rs738408 as described previously. At the time of AAV injection, mice were either maintained on a normal chow diet or placed on the ALIOS diet (Envigo, TD.06303) complete with drinking water composed of 55% fructose and 45% glucose (Sigma, F0127 and G7021, respectively) until harvest. In previous experiments, it was established that over-expression of PNPLA3rs738409-rs738408, in this context, both accelerates and worsens NAFLD phenotypes (data not shown).


Two weeks after AAV injection and diet initiation, mice were treated with a single dose of siRNA D-2324 (0.5 mM), via subcutaneous injection, at 5.0 milligrams per kilogram of animal, diluted in phosphate buffered saline (Thermo Fisher Scientific,14190-136) or a vehicle control. Dosing was repeated biweekly until harvest. At the time of harvest, body weights were collected, followed by serum via cardiac puncture under isoflurane anesthesia, followed by liver weights. The median lobe was fixed via 10% neutral buffered formalin, followed by paraffin processing and embedding. The remainder of the liver was snap frozen for content and gene expression analysis, as described previously.


Snap frozen liver tissue was processed for RNA and gene expression analysis, as described previously. Results are shown as both the raw Ct value and relative mRNA expression of the indicated gene normalized to mouse Gapdh. (TaqMan™ assays from Invitrogen: human PNPLA3, hs00228747_m1; mouse Pnpla3, Mm00504420_m1; mouse Gapdh, 4352932E).


Formalin-fixed tissues were processed for Hemotoxylin and Eosin staining (Dako, CS70030-2, CS70130-2, respectively) according to the manufacturer's instructions. Scoring for steatosis and inflammation was performed by a board-certified pathologist.


Serum analysis included TIMP1, a biomarker associated with NASH and NASH-related fibrosis (Youssani 2011). The TIMP1 ELISA (R&D Systems, MTM100) was performed according to the manufacturer's instructions.



FIG. 2A-G. To evaluate the ability of a PNPLA3rs738409-rs738408-specific siRNA molecule D-2324 to prevent the development of phenotypes associated with NAFLD and overexpression of PNPLA3rs738409-rs738408, mice received AAV8-empty vector (EV), or AAV8-PNPLA3rs738409-rs738408 or vehicle, and were maintained on a regular chow diet or transitioned to the ALIOS diet. Two weeks after AAV injections, mice were treated with siRNA or vehicle, every other week for six weeks; a total of three injection rounds. Mice were harvested at the eight-week time point. Results are presented as the group average and standard error, N=8 per group. Asterisks represent statistical significance to the AAV8-PNPLA3rs738409-rs738408 cohort, generated by One-way ANOVA employing Dunnett's multiple comparisons test. (A) The ratio of liver weight (grams) to body weight (grams) at the time of harvest. Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, **=0.0018, AAV-PNPLA3rs738409-rs738408+siRNA, ****<0.0001. (B) Confirmation of human PNPLA3 mRNA expression and silencing in the liver by qPCR. (left) Raw Ct value and (right) relative fold mRNA expression normalized to mouse Gapdh; comparing the ALIOS-fed PNPLA3rs738409-rs738408+vehicle and PNPLA3rs738409-rs738408+siRNA groups. (C) Analysis of mouse Pnpla3 mRNA expression in liver by qPCR indicates endogenous Pnpla3 is not significantly altered by AAV-mediated over-expression or siRNA silencing. (left) Raw Ct value and (right) relative fold mRNA expression normalized to mouse Gapdh; comparing the chow-fed no-AAV group to the ALIOS-fed PNPLA3rs738409-rs738408+vehicle and PNPLA3rs738409-rs738408+siRNA groups. (D) Hepatic triglyceride content presented as milligrams of triglyceride per gram of liver tissue. Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, *=0.0393, AAV-PNPLA3rs738409-rs738408 siRNA, **=0.0063. (E) Serum TIMP1 presented as picograms per milliliter of serum. Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, ****<0.0001, AAV-PNPLA3rs738409-rs738408 siRNA, ****<0.0001. (F) Histological indication of steatosis based on H&E staining, scored as: Within normal limits (0), minimal (1), mild (2), moderate (3), and severe (4). Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, no significance, AAV-PNPLA3rs738409-rs738408 siRNA, **=0.0012. (G) Histological indication of inflammation based on H&E staining, scored as: Within normal limits (0), minimal (1), mild (2), moderate (3), and severe (4). Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, ****<0.0001, AAV-PNPLA3rs738409-rs738408+siRNA, ****<0.0001.



FIG. 3A-G. To evaluate the ability of a PNPLA3rs738409-rs738408-specific siRNA molecule to prevent further progression of PNPLA3rs738409-rs738408-mediated disease after disease onset, mice received AAV8-empty vector (EV), or AAV8-PNPLA3rs738409-rs738408, or vehicle, and were maintained on a regular chow diet or transitioned to the ALIOS diet. Eight weeks after AAV injections and diet changes, mice were treated with siRNA or vehicle, every other week for eight more weeks; a total of four injection rounds. Mice were harvested at the sixteen-week time point. Although no change was observed in steatosis, if siRNA treatment began after disease induction, several other disease-associated end points were significantly reduced. Results are presented as averages and standard error, N=8 per group. Asterisks represent statistical significance to the AAV8-PNPLA3rs738409-rs738408 cohort, generated by One-way ANOVA employing Dunnett's multiple comparisons test. (A) The ratio of liver weight (grams) to body weight (grams) at the time of harvest. Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, not significant, AAV-PNPLA3rs738409-rs738408 siRNA, ***=0.0006. (B) Confirmation of human PNPLA3 mRNA expression and silencing in the liver by qPCR. (left) Raw Ct value and (right) relative fold mRNA expression normalized to mouse Gapdh; comparing the ALIOS-fed PNPLA3rs738409-rs738408+vehicle and PNPLA3rs738409-rs738408+siRNA groups. (C) Analysis of mouse Pnpla3 mRNA expression in liver by qPCR indicates endogenous Pnpla3 is not significantly altered by AAV-mediated over-expression or siRNA silencing. (left) Raw Ct value and (right) relative fold mRNA expression normalized to mouse Gapdh; comparing the chow-fed no-AAV group to the ALIOS-fed PNPLA3rs738409-rs73808+vehicle and PNPLA3rs738409-rs738408+siRNA groups. (D) Hepatic triglyceride content presented as milligrams of triglyceride per gram of liver tissue. Adjusted P values: AAV-EV+vehicle, not significant, AAV-PNPLA3rs738409-rs738408 siRNA, *=0.0403. (E) Serum TIMP1 presented as picograms per milliliter of serum. Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, **=0.0027, AAV-PNPLA3rs738409-rs738408+siRNA, **=0.002. (F) Histological indication of steatosis based on H&E staining, scored as: Within normal limits (0), minimal (1), mild (2), moderate (3), and severe (4). Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, not significant, AAV-PNPLA3rs738409-rs738408+siRNA, not significant. (G) Histological indication of inflammation based on H&E staining, scored as: Within normal limits (0), minimal (1), mild (2), moderate (3), and severe (4). Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, not significant, AAV-PNPLA3rs738409-rs738408+siRNA, **=0.0068.



FIG. 4A-D. To evaluate the ability of a PNPLA3rs738409-rs738408-specific siRNA molecule to rescue disease-associated phenotypes due to overexpression of PNPLA3rs738409-rs738408, liver and serum from ALIOS-fed eight-week AAV8-PNPLA3rs738409-rs738408-vehicle treated mice were compared to livers and serum from ALIOS-fed sixteen-week vehicle- or siRNA-treated AAV8-PNPLA3rs738409-rs738408 mice. Although no change was observed in steatosis at this time point with siRNA treatment, hepatic triglyceride, serum TIMP1, and inflammation were all statistically lower at sixteen weeks compared to vehicle controls at eight weeks. Results are presented as averages and standard error, N=8 per group. Asterisks represent statistical significance to the eight-week AAV8-PNPLA3rs738409-rs738408 vehicle-treated cohort, generated by One-way ANOVA employing Dunnett's multiple comparisons test. (A) Hepatic triglyceride content presented as milligrams of triglyceride per gram of liver tissue. Adjusted P values: 16 WK AAV-PNPLA3rs738409-rs738408+vehicle, not significant; 16 WK AAV-PNPLA3rs738409-rs738408+siRNA, **=0.0011. (B) Serum Timp1 presented as picograms per milliliter of serum. Adjusted P values: 16 WK AAV-PNPLA3rs738409-rs738408+vehicle, not significant; 16 WK AAV-PNPLA3rs738409-rs738408+siRNA, *=0.0134. (C) Histological indication of steatosis based on H&E staining, scored as: Within normal limits (0), minimal (1), mild (2), moderate (3), and severe (4). Adjusted P values: 16 WK AAV-PNPLA3rs738409-rs738408 vehicle, not significant; 16 WK AAV-PNPLA3rs738409-rs738408+siRNA, not significant. (D) Histological indication of inflammation based on H&E staining, scored as: Within normal limits (0), minimal (1), mild (2), moderate (3), and severe (4). Adjusted P values: 16 WK AAV-PNPLA3rs738409-rs738408+vehicle, not significant; 16 WK AAV-PNPLA3rs738409-rs738408+siRNA, *=0.0112.


EXAMPLE 6
Prevention of Liver Fibrosis by siRNA Molecules in a Humanized PNPLA3rs738409-rs738408 Mouse Model

The “AMLN” diet, developed by Amylin Pharmaceuticals (Clapper 2013), is a modified version of the ALIOS diet. The feed includes a ten-fold increase in cholesterol (2%) and additional sucrose. Mice placed on the “AMLN” diet develop mild to moderate fibrosis after 20-30 weeks (Clapper, Mells and Kristiansen papers). For this study, eight to ten-week old C57BL/6NCr1 male mice (Charles River Laboratories Inc.) were injected with AAV-empty vector or AAV-PNPLA3rs738409-rs738408, as described above, to accelerate disease onset. At the time of AAV injection, mice were continued on a normal chow diet or placed on the Envigo diet, TD.170748, complete with drinking water composed of 55% fructose and 45% glucose (Sigma, F0127 and G7021, respectively) until harvest.


Two weeks post-AAV injection and diet initiation, mice were treated with a single dose of siRNA D-2324 (0.5mM), via subcutaneous injection, at 5.0 milligrams per kilogram of animal, diluted in phosphate buffered saline (Thermo Fisher Scientific, 14190-136) or a vehicle control. Dosing was repeated biweekly until harvest. At the time of harvest, body weights were collected, followed by serum via cardiac puncture under isoflurane anesthesia, followed by liver weights. The median lobe was fixed via 10% neutral buffered formalin, followed by paraffin processing and embedding. The remainder of the liver was snap frozen for gene expression analysis.


Snap frozen liver tissue was processed for RNA and gene expression analysis, as described previously. Results are shown as both the raw Ct value and relative mRNA expression of the indicated gene normalized to mouse Gapdh. (TaqMan™ assays from Invitrogen: human PNPLA3, hs00228747_m1; mouse Pnpla3, Mm00504420_m1; mouse Col1a1, Mm00801666_g1; mouse Col3a1, Mm01254471_g1; Col4a1, Mm01210125_ml; mouse Gapdh, 4352932E). Col1al, Col3a1 and Col4a1 are extracellular matrix markers associated with hepatic stellate cell activation and liver fibrosis (Baiocchini 2016).


Formalin-fixed tissues were processed for Hemotoxylin, Eosin, and Masson's Trichrome staining (Dako, CS70030-2, CS70130-2, AR17311-2, respectively) according to the manufacturer's instructions. Anti-Smooth Muscle Actin staining was performed without antigen retrieval and using a DAKO autostainer. Slides were processed using Peroxidazed 1 and Sniper (Biocare, PX968 and BS966, respectively) and stained with monoclonal anti-Actin, alpha-Smooth Muscle antibody (Sigma, F3777), followed by Rabbit anti-FITC (Invitrogen, 711900), Envision-Rabbit HRP polymer (Dako, K4003), DAB+ (Dako, K3468), and Hemotoxylin. Scoring for the amount of steatosis, inflammation, oval cell/bile duct hyperplasia, and aSMA-positive cells was performed by a board-certified pathologist.


Serum was analyzed for mouse TIMP1 (R&D Systems, MTM100) and Mouse Cytokeratin 18-M30 (Cusabio, CSB-E14265m) according to manufacturer's instructions. In addition to TIMP1, Cytokine 18-M30 has been identified as a potential biomarker for NAFLD/NASH, including early fibrosis (Neuman 2014 and Yang 2015). FIG. 5A-L. To evaluate the ability of a PNPLA3rs738409-rs738408-specific siRNA molecule to prevent the development of early fibrosis, mice received AAV8-empty vector (EV), or AAV8-PNPLA3rs738409-rs738408, or vehicle, and were maintained on a regular chow diet or transitioned to the AMLN diet. Two weeks after AAV injections, mice were treated with siRNA, D-2324, or vehicle, every other week for ten more weeks; a total of six injection rounds. Mice were harvested at the ten-week time point. Results are presented as averages and standard error, Chow-fed no AAV+vehicle and AMLN-fed AAV8-PNPLA3rs738409-rs738408+vehicle, N=8 per group; AMLN-fed AAV8-PNPLA3rs738409-rs738408+vehicle and AAV8-PNPLA3rs738409-rs738408+siRNA, N=12 per group. Asterisks represent statistical significance to the AAV8-PNPLA3rs738409-rs738408-vehicle-treated cohort, generated by One-way ANOVA employing Dunnett's multiple comparisons test. (A) The ratio of liver weight (grams) to body weight (grams) at the time of harvest. Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, not significant, AAV-PNPLA3rs738409-rs738408+siRNA, ****<0.0001. (B) Confirmation of human PNPLA3 mRNA expression and silencing in the liver by qPCR. (left) Raw Ct value and (right) relative fold mRNA expression normalized to mouse Gapdh; comparing the PNPLA3rs738409-rs738408+vehicle and PNPLA3rs738409-rs738408 siRNA groups. (C) Analysis of mouse Pnpla3 mRNA expression in liver by qPCR indicates endogenous Pnpla3 is not significantly altered by AAV-mediated over-expression or siRNA silencing. (left) Raw Ct value and (right) relative fold mRNA expression normalized to mouse Gapdh; comparing the chow-fed no-AAV group to the AMLN-fed PNPLA3rs738409-rs738408+vehicle and PNPLA3rs738409-rs738408 siRNA groups. (D) Serum Timp1 presented as picograms per milliliter of serum. Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, ****<0.0001, AAV-PNPLA3rs738409-rs738408 siRNA, ****<0.0001. (E) Serum CK18m30 presented as picograms per milliliter of serum. Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, ****<0.0001, AAV-PNPLA3rs738409-rs738408 siRNA, ****<0.0001. (F) Histological indication of inflammation based on H&E staining, scored as: Within normal limits (0), minimal (1), mild (2), moderate (3), and severe (4). Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, *=0.0108, AAV-PNPLA3rs738409-rs738408+siRNA, ****<0.0001. (G) Histological indication of oval cell/bile duct hyperplasia based on H&E staining, scored as: Within normal limits (0), minimal (1), mild (2), moderate (3), and severe (4). Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, not significant, AAV-PNPLA3rs738409-rs738408+siRNA, **=0.0081. (H) Immunohistochemical staining for anti-Smooth Muscle Actin, scored as: Within normal limits (0), minimal (1), mild (2), moderate (3), and severe (4). Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, *=0.0101, AAV-PNPLA3rs738409-rs738408 siRNA, ***=0.0002. (I) Masson's Trichrome staining for fibrosis, scored as: Within normal limits (0), minimal (1), mild (2), moderate (3), and severe (4). Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, not significant, AAV-PNPLA3r5738409-rs738408 siRNA, not significant. (J) Mouse Col1a1 mRNA expression in liver by qPCR. Relative fold mRNA expression normalized to mouse Gapdh. Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, ****<0.0001, AAV-PNPLA3rs738409-rs738408 siRNA, ****<0.0001. (K) Mouse Col3a1 mRNA expression in liver by qPCR. Relative fold mRNA expression normalized to mouse Gapdh. Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, ****<0.0001, AAV-PNPLA3rs738409-rs738408+siRNA, ****<0.0001. (L) Mouse Col4a1 mRNA expression in liver by qPCR. Relative fold mRNA expression normalized to mouse Gapdh. Adjusted P values: no AAV+vehicle group, ****<0.0001, AAV-EV+vehicle, ***<0.0005, AAV-PNPLA3rs738409-rs738408 siRNA, **<0.0041.


EXAMPLE 7
Screening of PNPLA3 siRNA Molecules using a Bioluminescence Imaging Mouse Model

BALB/c male mice (Charles River Laboratories Inc.), generally 10-12 weeks of age were injected with Associated adenovirus (AAV; serotype AAVDJ8; endotoxin-free, prepared internally by Amgen) diluted in phosphate buffered saline (Thermo Fisher Scientific, 14190-136). AAV was administered from 5e11 up to 7.5e11 viral particles per animal and injected intravenously into the tail vein. The AAV constructs were designed with a murine Cytomegalovirus) CMV promoter and a Firefly Luciferase reporter in which, at the 3′ end, a string of nucleotides containing stretches of either the human PNPLA3WT (reference allele) or human PNPLA3rs738409-rs738408 (minor allele) siRNA target sequences, and other non-SNP spanning human PNPLA3 target sequences of interest, as detailed in FIGS. 6 and 7.


Two weeks after AAV injection, mice were injected with RediJect D-Luciferin (PerkinElmer, 770504) according to the manufacturer's instructions. The bioluminescent signal in the mice was captured using an IVIS Spectrum In Vivo Imaging System (PerkinElmer) and analyzed using Living Image Software (PerkinElmer). Mice were then randomized into groups of n=5 based on the total flux [photons/second] signal in the liver region. After randomization into treatment groups, mice were given a single dose of siRNA (0.5 mM) diluted in phosphate buffered saline (Thermo Fisher Scientific, 14190-136). siRNA was administered via subcutaneous injection, at the indicated milligrams per kilogram of animal dose. For every round of screening, and each AAV type, one vehicle-treated control group was included.


At 1, 2, 3 and 4 weeks post-siRNA injection, mice were re-imaged and total flux [p/s] measurements were collected using the same defined region of interest established for the baseline readings. For each animal, the relative percent knockdown was determined by calculating the percent change in total flux at week 1, 2, 3 or 4 from that animal's total flux at baseline, normalized to the average change in total flux from baseline of the vehicle control group for the same time point. For example, Animal treated with siRNA has relative knockdown calculated as follows: (total flux of animal at week 2)/(total flux of animal at baseline), normalized to the average (total flux of vehicle animals at week 2/total flux of vehicle animals at baseline). FIG. 8 depicts representative images of animals injected with either AAV expressing human PNPLA3 minor allele target sequences or reference allele target sequences, and the change in total flux over time, both before and after siRNA treatment.









TABLE 13







PNPLA3 knockdown assay

















AAV
Dose
PNPLA3
PNPLA3
PNPLA3
PNPLA3
PNPLA3


Duplex

particles/
administered
knockdown,
knockdown,
knockdown,
knockdown,
knockdown,


number
AAV vector
animal
(mg/kg)
Day 8 (%)
Day 15 (%)
Day 22 (%)
Day 29 (%)
Day 43 (%)


















D-2324
PNPLA3-I148M DM

5E+11

5
−98.03
−94.77
−94.15

−65.40


D-2370
PNPLA3-I148M DM

5E+11

5
−96.48
−96.52
−95.40

−69.31


D-2419
PNPLA3-I148M DM

5E+11

5
−97.66
−97.09
−96.84

−90.52


D-2324
PNPLA3-I148M DM

5E+11

3
−96.39
−91.43
−87.71

−61.75


D-2370
PNPLA3-I148M DM

5E+11

3
−97.42
−95.98
−95.51

−85.66


D-2419
PNPLA3-I148M DM

5E+11

3
−97.37
−95.32
−95.52

−81.81


D-2421
PNPLA3-I148M DM

5E+11

3
−96.13
−93.99
−95.26

−85.49


D-2404
PNPLA3-I148M DM

5E+11

3
−97.77
−96.82
−96.83


D-2402
PNPLA3-I148M DM

5E+11

3
−97.69
−96.69
−96.81

−55.46


D-2472
PNPLA3-I148M DM

5E+11

3
−95.89
−93.61
−92.05

−68.74


D-2443
PNPLA3-I148M DM

5E+11

3
−97.33
−96.51
−95.82

−84.56


D-2466
PNPLA3-I148M DM

5E+11

3
−97.96
−97.13
−96.75

−79.62


D-2473
PNPLA3-I148M DM

5E+11

3
−97.18
−95.95
−95.79

−68.96


D-2324
PNPLA3-I148M DM

5E+11

1
−90.86
−82.53
−80.56

−74.32


D-2370
PNPLA3-I148M DM

5E+11

1
−93.49
−90.34
−89.17

−56.45


D-2419
PNPLA3-I148M DM

5E+11

1
−89.12
−84.16
−87.52

−47.52


D-2421
PNPLA3-I148M DM

5E+11

1
−83.03
−70.41
−74.45

−26.47


D-2404
PNPLA3-I148M DM

5E+11

1
−94.34
−91.18
−90.01

−59.48


D-2402
PNPLA3-I148M DM

5E+11

1
−87.41
−79.59
−84.95

−32.94


D-2472
PNPLA3-I148M DM

5E+11

1
−87.28
−79.86
−76.77

−33.42


D-2443
PNPLA3-I148M DM

5E+11

1
−48.96
−46.63
−69.39

−34.70


D-2466
PNPLA3-I148M DM

5E+11

1
−90.36
−83.03
−85.21

−44.20


D-2473
PNPLA3-I148M DM

5E+11

1
−80.89
−76.26
−84.45

−56.63


D-2454
PNPLA3 WT

5E+11

3
−97.89
−85.94
−92.41

−44.16


D-2453
PNPLA3 WT

5E+11

3
−98.67
−90.86
−94.56

−72.71


D-2456
PNPLA3 WT

5E+11

3
−97.75
−84.03
−87.90

−40.07


D-2455
PNPLA3 WT

5E+11

3
−89.75
−61.34
−80.50

−38.33


D-2454
PNPLA3 WT

5E+11

1
−94.43
−73.24
−89.57

−60.76


D-2453
PNPLA3 WT

5E+11

1
−94.15
−72.63
−80.99

5.10


D-2456
PNPLA3 WT

5E+11

1
−79.90
−50.52
−69.95

−20.01


D-2455
PNPLA3 WT

5E+11

1
−71.82
−1.32
−55.65

17.39


D-2419
PNPLA3-I148M DM
7.5E+11
3
−98.00
−97.61
−96.67
−91.38


D-2666
PNPLA3-I148M DM
7.5E+11
3
−94.32
−94.07
−90.69
−80.56


D-2667
PNPLA3-I148M DM
7.5E+11
3
−95.49
−94.77
−93.58
−85.70


D-2676
PNPLA3-I148M DM
7.5E+11
3
−94.63
−91.64
−89.02
−72.10


D-2699
PNPLA3-I148M DM
7.5E+11
3

−90.85
−85.48
−57.10


D-2700
PNPLA3-I148M DM
7.5E+11
3
−97.65
−96.86
−93.76
−87.13


D-2701
PNPLA3-I148M DM
7.5E+11
3
−97.37
−96.59
−95.00
−88.29


D-2705
PNPLA3-I148M DM
7.5E+11
3
−95.74
−91.67
−86.98
−75.38


D-2706
PNPLA3-I148M DM
7.5E+11
3
−95.51
−91.01
−85.19
−68.36


D-2707
PNPLA3-I148M DM
7.5E+11
3
−94.33
−89.29
−85.91
−66.08


D-2708
PNPLA3-I148M DM
7.5E+11
3
−97.72
−96.34
−95.70
−89.66


D-2684
PNPLA3-I148M DM
7.5E+11
3
−94.66
−89.59
−85.28
−55.31


D-2686
PNPLA3-I148M DM
7.5E+11
3
−96.29
−94.61
−89.34
−51.49


D-2688
PNPLA3-I148M DM
7.5E+11
3
−95.97
−94.43
−93.01
−82.63


D-2691
PNPLA3-I148M DM
7.5E+11
3
−94.47
−86.71
−81.93
−64.98


D-2692
PNPLA3-I148M DM
7.5E+11
3
−96.52
−94.01
−89.97
−80.83


D-2696
PNPLA3-I148M DM
7.5E+11
3
−96.94
−94.79
−92.89
−83.76


D-2697
PNPLA3-I148M DM
7.5E+11
3
−91.39
−83.82
−75.89
−51.50


D-2419
PNPLA3-I148M DM
7.5E+11
3
−95.52
−93.54
−91.46
−74.42


D-2523
PNPLA3-I148M DM
7.5E+11
3
−94.27
−91.79
−66.89
−50.87


D-2413
PNPLA3-I148M DM
7.5E+11
3
−94.04
−95.17
−76.04
−53.22


D-2523
PNPLA3-I148M DM
7.5E+11
1
−65.61
−86.75
78.32
163.55


D-2413
PNPLA3-I148M DM
7.5E+11
1
−83.37
−85.51
−26.85
−9.13


D-2667
PNPLA3-I148M DM
7.5E+11
1
−58.87
−59.41
−4.15
35.34


D-2419
PNPLA3-I148M DM
7.5E+11
1
−91.58
−90.56
−73.21
−54.90


D-2688
PNPLA3-I148M DM
7.5E+11
1
−73.57
−84.01
−37.46
−1.49


D-2708
PNPLA3-I148M DM
7.5E+11
1
−84.06
−86.91
−65.11
−62.60


D-2669
PNPLA3-I148M DM
7.5E+11
1
−0.36
15.49
220.82
268.45


D-2711
PNPLA3-I148M DM
7.5E+11
3
−0.01
49.59
238.44
212.77


D-2713
PNPLA3-I148M DM
7.5E+11
3
−91.72
−90.51
−63.93
−30.60


D-2716
PNPLA3-I148M DM
7.5E+11
3
−86.43
−87.62
−53.78
−44.36


D-2674
PNPLA3-I148M DM
7.5E+11
3
−80.59
−81.95
−36.01
0.59


D-2698
PNPLA3-I148M DM
7.5E+11
3
−85.22
−71.73
483.18
807.64


D-2693
PNPLA3-I148M DM
7.5E+11
3
−75.98
−59.22
39.49
110.57


D-2456
PNPLA3 WT
7.5E+11
3
−85.45
−78.57
−73.40
−58.06


D-2523
PNPLA3 WT
7.5E+11
3
−27.40
−30.01
−40.22
−49.59


D-2413
PNPLA3 WT
7.5E+11
3
−36.68
−27.93
−10.77
12.54


D-2419
PNPLA3 WT
7.5E+11
3
115.08
100.96
101.39
64.16


D-2679
PNPLA3 WT
7.5E+11
3
−34.16
−6.82
17.45
17.46


D-2688
PNPLA3 WT
7.5E+11
3
135.68
67.66
73.67
48.09


D-2708
PNPLA3 WT
7.5E+11
3
69.43
40.96
50.89
52.15


D-2669
PNPLA3 WT
7.5E+11
3
189.68
50.72
148.32
147.67


D-2711
PNPLA3 WT
7.5E+11
3
109.67
114.26
75.39
93.47


D-2713
PNPLA3 WT
7.5E+11
3
115.32
48.86
18.67
1.36


D-2716
PNPLA3 WT
7.5E+11
3
205.93
114.38
114.09
83.88


D-2674
PNPLA3 WT
7.5E+11
3
81.00
67.18
109.44
65.24


D-2698
PNPLA3 WT
7.5E+11
3
105.88
76.39
62.37
37.65


D-2693
PNPLA3 WT
7.5E+11
3
148.52
125.48
116.64
61.43


D-2690
PNPLA3 WT
7.5E+11
3
260.84
226.65
132.56
143.47


D-2419
PNPLA3-I148M DM
7.5E+11
1
−93.56
−89.52
−84.43
−63.34


D-2717
PNPLA3-I148M DM
7.5E+11
1
−80.51
−67.95
−58.97
−22.43


D-2718
PNPLA3-I148M DM
7.5E+11
1
−71.69
−55.51
−36.08
38.24


D-2721
PNPLA3-I148M DM
7.5E+11
1
−63.71
−62.50
−48.52
−12.97


D-2719
PNPLA3-I148M DM
7.5E+11
1
−78.95
−70.97
−65.38
−13.45


D-2713
PNPLA3-I148M DM
7.5E+11
1
−70.43
−64.51
−43.23
−0.48


D-2712
PNPLA3-I148M DM
7.5E+11
1
−79.63
−68.64
−51.82
−8.94


D-2720
PNPLA3-I148M DM
7.5E+11
1
−65.95
−86.70
−40.92
2.24


D-2722
PNPLA3-I148M DM
7.5E+11
1
−80.32
−75.04
−63.28
−34.56


D-2723
PNPLA3-I148M DM
7.5E+11
1
−72.69
−55.59
−39.98
35.01


D-2724
PNPLA3-I148M DM
7.5E+11
1
−87.97
−78.29
−73.04
−42.89


D-2725
PNPLA3-I148M DM
7.5E+11
1
−79.65
−70.69
−32.50
−35.65


D-2726
PNPLA3-I148M DM
7.5E+11
1
−40.03
−38.86
−14.74
55.71


D-2716
PNPLA3-I148M DM
7.5E+11
1
34.75
92.81
181.00
440.62


D-2454
PNPLA3 WT
7.5E+11
3
−98.16
−95.32
−90.10
−88.50


D-2523
PNPLA3 WT
7.5E+11
3
−44.09
−18.41
133.97
45.50


D-2413
PNPLA3 WT
7.5E+11
3
−64.12
−40.89
38.07
−3.05


D-2717
PNPLA3 WT
7.5E+11
3
−47.67
−19.71
109.49
42.75


D-2718
PNPLA3 WT
7.5E+11
3
−77.04
−60.05
−3.84
−40.18


D-2721
PNPLA3 WT
7.5E+11
3
−47.41
−49.33
10.37
−41.12


D-2719
PNPLA3 WT
7.5E+11
3
−29.15
−27.68
72.52
−20.99


D-2720
PNPLA3 WT
7.5E+11
3
−67.46
−46.37
66.09
−20.66


D-2726
PNPLA3 WT
7.5E+11
3
−83.36
−81.38
−37.21
−61.84


D-2723
PNPLA3 WT
7.5E+11
3
−76.09
−57.32
−7.17
−45.85


D-2419
PNPLA3-I148M DM
7.5E+11
3
−96.66
−97.62
−93.93
−88.77


D-2765
PNPLA3-I148M DM
7.5E+11
3
−96.64
−97.81
−95.29
−87.53


D-2766
PNPLA3-I148M DM
7.5E+11
3
−97.30
−98.15
−95.74
−90.07


D-2724
PNPLA3-I148M DM
7.5E+11
3
−97.41
−97.40
−94.77
−74.92


D-2768
PNPLA3-I148M DM
7.5E+11
3
−93.09
−95.62
−90.36
−74.62


D-2769
PNPLA3-I148M DM
7.5E+11
3
−96.94
−97.93
−95.17
−89.60


D-2770
PNPLA3-I148M DM
7.5E+11
3
−89.23
−94.14
−90.41
−79.60


D-2771
PNPLA3-I148M DM
7.5E+11
3
−97.22
−97.80
−95.95
−90.02


D-2772
PNPLA3-I148M DM
7.5E+11
3
−97.47
−97.84
−95.09
−92.03


D-2773
PNPLA3-I148M DM
7.5E+11
3
−97.51
−97.95
−96.18
−93.12


D-2774
PNPLA3-I148M DM
7.5E+11
3
−96.78
−97.86
−95.36
−91.98


D-2413
PNPLA3-I148M DM
7.5E+11
3
−97.94
−98.01
−96.24
−91.62


D-2419
PNPLA3-I148M DM
7.5E+11
3
−95.82
−97.64
−93.55
−89.59


D-2717
PNPLA3-I148M DM
7.5E+11
3
−96.64
−97.39
−95.19
−90.49


D-2453
PNPLA3 WT
7.5E+11
1.5
−94.74
−92.67
−88.92
−82.19


D-2724
PNPLA3 WT
7.5E+11
3
20.64
74.00
49.42
77.34


D-2522
PNPLA3 WT
7.5E+11
3
−27.08
53.78
58.28
17.26


D-2765
PNPLA3 WT
7.5E+11
3
−65.40
−34.32
−35.49
−46.32


D-2766
PNPLA3 WT
7.5E+11
3
−11.64
30.74
34.37
27.78


D-2767
PNPLA3 WT
7.5E+11
3
14.66
60.91
75.79
39.35


D-2768
PNPLA3 WT
7.5E+11
3
50.61
196.44
345.66
149.29


D-2769
PNPLA3 WT
7.5E+11
3
30.51
68.93
90.25
35.98


D-2770
PNPLA3 WT
7.5E+11
3
25.01
69.81
95.00
99.26


D-2771
PNPLA3 WT
7.5E+11
3
60.93
158.57
281.70
147.49


D-2772
PNPLA3 WT
7.5E+11
3
−3.32
58.08
89.41
85.72


D-2773
PNPLA3 WT
7.5E+11
3
−36.28
−20.77
21.91
−22.36


D-2774
PNPLA3 WT
7.5E+11
3
2.83
51.07
71.49
65.75


D-2413
PNPLA3 WT
7.5E+11
3
−5.20
44.59
50.74
28.08


D-2419
PNPLA3 WT
7.5E+11
3
101.03
115.15
32.98
−16.47


D-2717
PNPLA3 WT
7.5E+11
1.5
21.80
107.39
173.59
87.94









EXAMPLE 8
Efficacy Confirmation of a PNPLA3rs738409-rs738408-Selective siRNA Molecule in a Chimeric Humanized Liver Mouse Model

To evaluate the efficacy of a PNPLA3 minor-allele selective siRNA in human hepatocytes in vivo, chimeric humanized liver PXB-mice from PhoenixBio Co., Ltd (Japan) were used (Miyamoto et al. (2017) Xenobiotica 47(12):1052-1063; Tateno et al. (2015) PLoS One 10(11):e0142145. doi:10.1371/journal.pone.0142145). At the time of study initiation, the male mice were approximately four months old; at least three months post-transplant. The mice were determined, by PhoenixBio, to have a human hepatocyte replacement index of 90-95% and, based on previous genotyping, were heterozygous for PNPLA3rs738409 (Lot BD195). Upon arrival, mice were placed on ProLab RMH 3000 chow, as recommended by PhoenixBio. After a one-week acclimation period, the diet was switched to a high fat-fructose-rich NASH-inducing diet (Research Diets, D19021301). After one week on the NASH diet, mice were randomized based on body weight measurements. Mice were treated with a single dose of siRNA (0.5 mM), via subcutaneous injection, at 3.0 or 10.0 milligrams per kilogram of animal, diluted in phosphate buffered saline (Thermo Fisher Scientific,14190-136), or received vehicle only. At two- or four-weeks post-siRNA injection, livers were collected from the animals, snap frozen in liquid nitrogen, processed for purified RNA using a QIAcube Automated DNA/RNA Isolation Purification System (Qiagen) and RNeasy Mini QIAcube Kit (Qiagen, 74116) according to manufacturer's instructions. Samples were analyzed using a NanoDrop™ 8000 Spectrophotometer (Thermo Scientific, ND-8000-GL). RNA was treated with RQ1 RNase-Free DNase (Promega, M6101) and prepared for Digital Droplet PCR (ddPCR) according to the manufacturer's instructions. AccuScript High Fidelity 1st Strand cDNA Synthesis Kit (Thermo Fisher, 200820) was used for the reverse transcription reaction and the PCR reactions were assembled using ddPCR Supermix for Probes (BioRad, 1863010). ddPCR was performed using an AutoDG droplet digital PCR system (BioRad, QX200). The following TaqMan™ assays were purchased from Invitrogen: human PNPLA3 (Hs00228747_m1), human ASGR1 (Hs1005019_m1), mouse Asgrl (Mm01245581_m1), and a human PNPLA3 rs738409 minor/reference allele discrimination assay (C______7241 10). The following assays were purchased from Integrated DNA Technologies Inc.: human TBP (Hs. PT 53a.20105486; primer to probe ratio 3.6:1), human HPRT1 (Hs.PT.39a.22214821; primer to probe ratio 3.6:1), and mouse Hprt (Mm.PT.39a.22214828; primer to probe ratio 3.6:1). Results for human PNPLA3, HPRT and ASGR1, and mouse Hprt and Asgr1, are presented as copies per 20 microliter reaction, normalized to human TBP. The data for human PNPLA3, human HPRT and mouse Hprt is also presented as the relative percent knockdown of mRNA expression compared to that of vehicle-treated control animals.


For hepatic triglyceride content analysis, approximately 0.05-0.1 milligrams of frozen liver from the mice were homogenized in one milliliter of isopropanol. After one hour of incubation on ice, samples were spun at 10,000 rpm in a microfuge, and supernatants transferred to a clean deep-well 96-well plate. Triglyceride content was determined using the colorimetric Infinity Triglyceride Reagent (Thermo Fisher Scientific, TR22421) and Triglyceride Standard (Pointe Scientific, T7531-STD) according to manufacturer's instructions, and a SpectraMax Plus microplate reader with SoftMax Pro6 software (Molecular Devices). Results are presented as milligrams of triglyceride per gram of liver tissue.



FIG. 9 shows an example of siRNA molecule, D-2419, demonstrating both dose-dependent and allele-selective mRNA knockdown and functional efficacy in vivo. Following one week of a NASH-diet, mice heterozygous for human PNPLA3rs738409-rs738408 were treated with siRNA or vehicle. (A) siRNA molecule, D-2419, was injected at 3.0 and 10.0 milligrams per kilogram of body weight subcutaneously into the abdomen of the mouse. Two and four weeks after siRNA treatment, mice were sacrificed, and the livers were collected and processed for analysis. Using ddPCR and an allele-specific TaqMan® two-dye reagent to discriminate the minor versus reference alleles for PNPLA3, the data demonstrates both dose-dependent and allele-selective knockdown of PNPLA3rs738409-rs738408 and no measurable change of PNPLA3WT. N=5 mice per group; data is presented as the average value and the standard error of the mean. Two-way ANOVA, **0.001, ***<0.001, ****<0.0001, NS=not significant. (B) The data represents the average relative percent mRNA knockdown, and standard error of the mean, of the human PNPLA3rs738409-rs738408 allele verses PNPLA3WT set to the vehicle-treated control group. Values are relative to the two-week vehicle control average value, all normalized to human TBP. (C) Livers from the two-week treatment group were processed for triglyceride content to evaluate functional efficacy. The data represents the milligrams of triglyceride per gram of liver. N=5 mice per group; data is presented as the average value and the standard error of the mean. One-way ANOVA, **0.01, NS=not significant. (D) To control for efficient GalNAc-mediated delivery of siRNA, D-2787, a siRNA cross-reactive for human and mouse HPRT and Hprt, respectively, was delivered at 10 milligrams per kilogram and the livers harvested after two weeks. The data represents the copies of HPRT mRNA and Hprt mRNA in D-2787-treated (N=4) versus vehicle-treated (N=5) mice. The data is presented as the average value and the standard error of the mean. One-way ANOVA, *0.01. (E) The data represents the average relative percent mRNA knockdown, and standard error of the mean, of human HPRT and mouse Hprt mRNA, respectively, set to the vehicle-treated control group; all normalized to human TBP. (F) To confirm expression of GalNAc receptor on the hepatocytes of PXB mice®, mouse Asgr1 mRNA and human ASGR1 mRNA levels were evaluated in the absence and presence of D-2419, at both two-weeks and four-weeks post-siRNA injection. N=5 mice per group; the data is presented as the average value and the standard error of the mean.

Claims
  • 1. An RNAi construct comprising a sense strand and an antisense strand, wherein the antisense strand comprises a region having at least 15 contiguous nucleotides differing by no more than 3 nucleotides from an antisense sequence listed in Table 1 or 2, and wherein the RNAi construct inhibits the expression of Patatin-Like Phospholipase Domain Containing 3 (PNPLA3).
  • 2. The RNAi construct of claim 1, wherein the antisense strand comprises a region that is complementary to a PNPLA3 mRNA sequence.
  • 3. The RNAi construct of claim 1, wherein the sense strand comprises a region having at least 15 contiguous nucleotides differing by no more than 3 nucleotides from an antisense sequence listed in Table 1 or 2.
  • 4. The RNAi construct of claim 1, wherein the construct preferentially inhibits a PNPLA3-rs738409 minor allele or a PNPLA3-rs738408 minor allele.
  • 5. (canceled)
  • 6. (canceled)
  • 7. The RNAi construct of claim 4, wherein the construct has at least 10% greater inhibition of a PNPLA3-rs738409-rs738408 double minor allele as compared to the major allele.
  • 8. The RNAi construct of claim 1, wherein the sense strand comprises a sequence that is sufficiently complementary to the sequence of the antisense strand to form a duplex region of about 15 to about 30 base pairs in length.
  • 9-13. (canceled)
  • 14. The RNAi construct of claim 8, wherein the sense strand and the antisense strand are each about 15 to about 30 nucleotides in length.
  • 15-17. (canceled)
  • 18. The RNAi construct of claim 1, wherein the RNAi construct comprises at least one blunt end.
  • 19. The RNAi construct of claim 1, wherein the RNAi construct comprises at least one nucleotide overhang of 1 to 4 unpaired nucleotides.
  • 20. The RNAi construct of claim 19, wherein the nucleotide overhang has 2 unpaired nucleotides.
  • 21. (canceled)
  • 22. (canceled)
  • 23. The RNAi construct of claim 1, wherein the RNAi construct comprises at least one modified nucleotide.
  • 24. The RNAi construct of claim 23, wherein the modified nucleotide is a 2′-modified nucleotide, wherein the modified nucleotide is a 2′-fluoro modified nucleotide, a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-allyl modified nucleotide, a bicyclic nucleic acid (BNA), a glycol nucleic acid, an inverted base or combinations thereof.
  • 25-28. (canceled)
  • 29. The RNAi construct of claim 1, wherein the RNAi construct comprises at least one phosphorothioate internucleotide linkage.
  • 30. (canceled)
  • 31. (canceled)
  • 32. The RNAi construct of claim 1, wherein the antisense strand comprises a sequence selected from the antisense sequences listed in Table 1 or Table 2.
  • 33. The RNAi construct of claim 32, wherein the sense strand comprises a sequence selected from the sense sequences listed in Table 1 or Table 2.
  • 34. The RNAi construct of claim 1, wherein the RNAi construct is any one of the duplex compounds listed in any one of Tables 1 to 2.
  • 35. The RNAi construct of claim 1, wherein the RNAi construct reduces the expression level of PNPLA3 in liver cells following incubation with the RNAi construct as compared to the PNPLA3 expression level in liver cells that have been incubated with a control RNAi construct.
  • 36-40. (canceled)
  • 41. A pharmaceutical composition comprising the RNAi construct of claim 1 and a pharmaceutically acceptable carrier, excipient, or diluent.
  • 42. A method for reducing the expression of PNPLA3 in a patient in need thereof comprising administering to the patient the RNAi construct of claim 1.
  • 43. (canceled)
PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/065481 12/10/2019 WO 00
Provisional Applications (1)
Number Date Country
62777714 Dec 2018 US