The present invention relates to a robot and robot system.
Research and development of technologies on respective robots and robot control apparatuses that control robots are carried out.
In this regard, a horizontal articulated robot connected to a separate robot control apparatus by a wire (wired connection) and controlled by the robot control apparatus is known (see Patent Document 1 (JP-A-2016-78221)).
In the horizontal articulated robot, a connecting portion (e.g. connector) to which the wire connecting between the horizontal articulated robot and the robot control apparatus is provided outside of the base of the horizontal articulated robot. In the connecting portion provided outside of the base, a defect of deformation by application of an unintended impact or the like may be caused. On the other hand, when the connecting portion is provided inside of the base of the horizontal articulated robot, the connecting portion floats in the air inside of the base, and a defect of breaking of the wire connected to the connecting portion may be caused.
An aspect of the invention is directed to a robot including a base, a movable unit provided on the base, a drive unit that drives the movable unit, a connecting portion to which at least a part of a first wire of another apparatus is connected, and a second wire that connects the drive unit and the connecting portion, wherein the base has a housing part having an opening portion, to which the connecting portion is fixed, and a lid part covering at least a part of the opening portion, through which the first wire is inserted.
According to this configuration, the robot includes the base, the movable unit provided on the base, the drive unit that drives the movable unit, the connecting portion to which at least a part of the first wire of another apparatus is connected, and the second wire that connects the drive unit and the connecting portion, wherein the base has the housing part having the opening portion, to which the connecting portion is fixed, and the lid part covering at least a part of the opening portion, through which the first wire is inserted. Thereby, the robot may suppress a defect in at least one of the connecting portion and the second wire.
In another aspect of the invention, the robot may be configured such that the lid part has a cutout portion with which the lid part can be detached from the housing part in a state in which a fastening member for fastening the lid part and the housing part is loosened.
According to this configuration, in the robot, the lid part has the cutout portion with which the lid part can be detached from the housing part in the state in which the fastening member for fastening the lid part and the housing part is loosened. Thereby, the robot may shorten the time required for work of attaching the lid part from the housing part.
In another aspect of the invention, the robot may be configured such that a first sealing member is provided between the first wire and the lid part.
According to this configuration, the robot has the first sealing member between the first wire and the lid part. Thereby, the robot may suppress entry of foreign matter from between the first wire and the lid part.
In another aspect of the invention, the robot may be configured such that the other apparatus is a robot control apparatus that controls the robot.
According to this configuration, in the robot, the other apparatus is the robot control apparatus that controls the robot. Thereby, the robot may suppress a defect in at least one of the connecting portion and the second wire to which at least a part of the first wire of the robot control apparatus is connected through the connecting portion.
In another aspect of the invention, the robot may be configured such that the first wire includes a power line for supplying electric power from the robot control apparatus to the drive unit and a signal line for transmitting signals between the robot control apparatus and the drive unit.
According to this configuration, in the robot, the first wire includes the power line for supplying electric power from the robot control apparatus to the drive unit and the signal line for transmitting signals between the robot control apparatus and the drive unit. Thereby, the robot may suppress a defect in at least one of the connecting portion and the second wire to which at least a part of the first wire including the power line and the signal line is connected.
In another aspect of the invention, the robot may be configured such that the connecting portion has a first connecting portion to which the power line is connected and a second connecting portion to which the signal line is connected.
According to this configuration, in the robot, the connecting portion has the first connecting portion to which the power line is connected and a second connecting portion to which the signal line is connected. Thereby, the robot may suppress a defect in a part or all of the connecting portion having the first connecting portion and the second connecting portion and the second wire.
Another aspect of the invention is directed to a robot system including the above described robot and a robot control apparatus that controls the robot.
According to this configuration, in the robot system, the robot includes the base, the movable unit provided on the base, the drive unit that drives the movable unit, the connecting portion to which at least a part of the first wire of another apparatus is connected, and the second wire that connects the drive unit and the connecting portion, wherein the base has the housing part having the opening portion, to which the connecting portion is fixed, and the lid part covering at least a part of the opening portion, through which the first wire is inserted. Thereby, the robot system may suppress a defect in at least one of the connecting portion and the second wire.
As descried above, the robot includes the base, the movable unit provided on the base, the drive unit that drives the movable unit, the connecting portion to which at least a part of the first wire of another apparatus is connected, and the second wire that connects the drive unit and the connecting portion, wherein the base has the housing part having the opening portion, to which the connecting portion is fixed, and the lid part covering at least a part of the opening portion, through which the first wire is inserted. Thereby, the robot may suppress a defect in at least one of the connecting portion and the second wire.
Further, in the robot system, the robot includes the base, the movable unit provided on the base, the drive unit that drives the movable unit, the connecting portion to which at least a part of the first wire of another apparatus is connected, and the second wire that connects the drive unit and the connecting portion, wherein the base has the housing part having the opening portion, to which the connecting portion is fixed, and the lid part covering at least a part of the opening portion, through which the first wire is inserted. Thereby, the robot system may suppress a defect in at least one of the connecting portion and the second wire.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Embodiment
As below, an embodiment of the invention will be explained with reference to the drawings.
Outline of Robot
First, the outline of a robot 20 of a robot system 1 according to the embodiment will be explained.
Here, in a robot X (e.g. a robot of related art) different from the robot 20, a connecting portion (e.g. connector) to which a wire connecting the robot X and a robot control apparatus 30 may be provided outside of the base of the robot X. In this case, in the connecting portion provided outside of the base, a defect of deformation by application of an unintended impact or the like may be caused. Further, in this case, a liquid such as water may enter between the connecting portion and the wire, and the connecting portion and the wire are waterproofed and monetary cost of the manufacture of the robot X may increase. On the other hand, when the connecting portion is provided inside of the base, the connecting portion floats in the air inside of the base, and a defect of breaking of the wire connected to the connecting portion may occur.
Accordingly, the robot 20 includes a base, a movable unit provided on the base, a drive unit that drives the movable unit, a connecting portion to which at least a part of a first wire of another apparatus is connected, and a second wire that connects the drive unit and the connecting portion, and the base has a housing part having an opening portion, to which the connecting portion is fixed and a lid part covering at least a part of the opening portion, through which the first wire is inserted. Thereby, the robot 20 may suppress a defect in at least one of the connecting portion and the second wire. Further, the robot 20 may suppress entry of a liquid such as water between the connecting portion and the first wire. As a result, the inexpensive connecting portion and the inexpensive first wire may be used and the increase in the monetary cost of the manufacture of the robot 20 may be suppressed. As below, a specific example of the configuration of the robot system 1 including the configuration of the robot 20 will be explained in detail. Further, as below, as an example, the case where the other apparatus is the robot control apparatus 30 will be explained.
Configuration of Robot System
As below, the configuration of the robot system 1 will be explained.
As shown in
The robot 20 is a horizontal articulated robot (scalar robot). Note that the robot 20 may be another robot such as a Cartesian coordinate robot or vertical articulated robot (e.g. single-arm robot, dual-arm robot, or the like) in place of the horizontal articulated robot. The Cartesian coordinate robot is e.g. a gantry robot.
In the example shown in
The robot 20 includes a base B installed (fixed) unmovably on the installation surface and a movable unit A. The movable unit A includes a first arm A1 rotatably supported by the base B about a first axis AX1, a second arm A2 rotatably supported by the first arm A1 about a second axis AX2, and a shaft S rotatably supported about a third axis AX3 and translationally supported in the axis direction of the third axis AX3 by the second arm A2.
The shaft S is an axial member having a cylindrical shape. A ball screw groove and a spline groove (not shown) are respectively formed in the circumference surface of the shaft S. The shaft S is provided to penetrate an opposite end portion to the first arm A1 of the end portions of the second arm A2 in the upward and downward directions. Further, in the shaft S, in the example, a flange in a circular disc shape having a larger radius than the radius of the cylinder is provided in the upper end portion of the end portions of the shaft S. The center axis of the cylinder coincides with the center axis of the flange. It may be possible or impossible to attach an end effector to the distal end as the end portion of the shaft S in which the flange is not provided. Further, the cylinder and the flange may be integrally or separately formed.
In the example shown in
Further, the base B has a housing part R. In the example shown in
The housing part R is a member that can fix a connecting portion CN, which will be described later, inside of the housing part R, in e.g. a container shape. However, the part may have a frame shape instead or any shape as long as the member can fix a connecting portion CN inside of the housing part R. In the example shown in
An opening portion RH as a hole connecting outside and inside of the housing part R is formed in the back surface of the base B (i.e., the surface on the negative direction side of the X-axis in the robot coordinate system RC of the surfaces of the housing part R). The shape of the opening portion RH when the base B is seen toward the positive direction of the X-axis in the robot coordinate system RC is nearly a rectangular shape with the respective triangles on the four corners cut off in the rectangular shape. Note that the shape of the opening portion RH in the case may be another shape such as a circular shape.
Further, the housing part R is the container to which the connecting portion CN is fixed.
The connecting portion CN has a first part CN1 (not shown in
The first wire CA1 is a wire connecting between the robot control apparatus 30 and the robot 20. The first wire CA1 includes a power line for supplying electric power from the robot control apparatus 30 to a drive unit (i.e., an actuator, which will be described later) of the robot 20, and a signal line for transmitting signals between the robot control apparatus 30 and the drive unit. Note that the first wire CA1 may include another wire in addition to the power line and the signal line.
The second wire CA2 is a wire connecting the drive unit of the robot 20 and the connecting portion CN.
The first wire CA1 is connected to the first part CN1 (not shown in
Note that the connecting portion CN may be another connecting member in place of the connector. Or, the connecting portion CN may be a connector to which a part of the first wire CA1 (e.g. one of the above described power line and signal line, a part of the power line, a part of the signal line, or the like) is connected. Or, the connecting portion CN may be a connector to which a part of the second wire CA2 (a wire corresponding to the first wire CA1) is connected.
The surface to which the connecting portion CN of the surfaces of the housing part R is fixed is the surface on the positive direction side of the X-axis in the robot coordinate system RC of the surfaces of the housing part R. Note that the surface to which the connecting portion CN is fixed of the surfaces of the housing part R may be another surface of the housing part R in place of the surface on the positive direction side.
Further, the base B has a lid part CV through which the first wire CA1 is inserted. The lid part CV covers at least a part of the opening portion RH. As below, as an example, the case where the lid part CV has a plate-like member that covers the whole opening portion RH, in which an insertion hole CH (not shown in
Here, referring to
In the example shown in
Further, in the example shown in
In the example shown in
Here, the lid part CV has cutout portions with which the lid part CV can be detached from the housing part R in the state in which the fastening members SC for fastening the relative position relationship between the lid part CV and the housing part R are loosened. The cutout portion CO1 shown in
The cutout portion CO1 has a first hole CO11, a second hole CO12, and a third hole CO13. That is, the cutout portion CO1 is formed in the lid part CV to have a structure of a combination of the first hole CO11, the second hole CO12, and the third hole CO13.
The cutout portion CO2 has a first hole CO21, a second hole CO22, and a third hole CO23. That is, the cutout portion CO2 is formed in the lid part CV to have a structure of a combination of the first hole CO21, the second hole CO22, and the third hole CO23.
The cutout portion CO3 has a first hole CO31, a second hole CO32, and a third hole CO33. That is, the cutout portion CO3 is formed in the lid part CV to have a structure of a combination of the first hole CO31, the second hole CO32, and the third hole CO33.
The cutout portion CO4 has a first hole CO41, a second hole CO42, and a third hole CO43. That is, the cutout portion CO4 is formed in the lid part CV to have a structure of a combination of the first hole CO41, the second hole CO42, and the third hole CO43.
The respective structures of the cutout portions CO1 to CO4 are the same as one another. That is, the respective structures of the first holes CO11 to CO41 are the same as one another. The respective structures of the second holes CO12 to CO42 are the same as one another. The respective structures of the third holes CO13 to CO43 are the same as one another. Accordingly, as below, the cutout portion CO1 will be explained and the explanation of the respective cutout portions CO2 to CO4 will be omitted.
The first hole CO11 is a hole having the same radius as the radius of the screw hole H1. Further, the first hole CO11 is a hole overlapping (coinciding) with the screw hole H1 when the base B is seen toward the positive direction of the X-axis in the robot coordinate system RC and the relative position relationship between the lid part CV and the housing part R coincides with the first position relationship.
The second hole CO12 is a hole having a radius larger than the radius of a screw head SH of the fastening member SC. The screw head SH is a part grasped when the user turns the fastening member SC with a hand as described above. Further, the center of the second hole CO12 is a hole that coincides with the center of the screw hole H1 when the base B is seen toward the positive direction and the relative position relationship between the lid part CV and the housing part R coincides with a second position relationship. That is, in this case, the second hole CO12 and the screw hole H1 are concentric. The second position relationship refers to a relative position relationship between the lid part CV and the housing part R when the lid part CV is detached from the housing part R. In the example, the second position relationship refers to a relative position relationship between the lid part CV and the housing part R when the lid part CV is rotated by a predetermined angle about a predetermined axis from the state in which the relative position relationship between the lid part CV and the housing part R coincides with the first position relationship. The predetermined axis is e.g. an axis passing through the center of the lid part CV orthogonally to the lid part CV when the back surface is seen toward the positive direction. Note that the predetermined axis may be another axis according to the lid part CV instead. The predetermined angle is e.g. 10°. Note that the predetermined angle may be an angle smaller than 10° or larger than 10°. The rotation about the predetermined axis may be clockwise rotation or counterclockwise rotation.
Note that
Returning to
Further, in the example shown in
Next, referring to
Next, referring to
As described above, the first part CN1 and the first wire CA1 of the connecting portion CN are housed inside of the housing part R. Accordingly, it is unnecessary to perform processing for suppressing entry of foreign matter such as waterproofing between the first part CN1 and the first wire CA1. As a result, a manufacturer of the robot 20 may manufacture the robot 20 using an inexpensive connector as the connecting portion CN and may manufacture the robot 20 using an inexpensive wire as the first wire CA1. That is, the robot 20 may suppress monetary cost increase related to the manufacture of the robot 20.
The connecting portion CN is fixed to the housing part R, and thus, the connecting portion CN is not taken from inside of the base B to outside of the base B when work of detaching the first wire CA1 from the connecting portion CN is performed. Accordingly, regarding the second wire CA2 connected to the second part CN2 of the connecting portion CN outside of the housing part R inside of the base B, the extra length for the connecting portion CN to be taken from inside of the base B to outside of the base B may be made shorter. As a result, the robot 20 may suppress generation of noise in the second wire CA2.
Returning to
The base B includes the first drive unit M1 as the drive unit that rotates the first arm A1 about the first axis AX1. The first drive unit M1 is an actuator controlled by the robot control apparatus 30. That is, the first axis AX1 is an axis that coincides with the rotation shaft of the first drive unit M1.
The first arm A1 rotates about the first axis AX1 and moves in horizontal directions with the rotation of the rotation shaft of the first drive unit M1. The horizontal directions are directions orthogonal to the upward and downward directions in the example. The horizontal directions are e.g. directions along the XY-plane in the world coordinate system or directions along the XY-plane in the robot coordinate system RC of the robot 20.
The second arm A2 rotates about the second axis AX2 and moves in the horizontal directions. The second arm A2 includes the second drive unit M2 as the drive unit that rotates the second arm A2 about the second axis AX2 with respect to the first arm A1. The second drive unit M2 is an actuator controlled by the robot control apparatus 30. That is, the second axis AX2 is an axis that coincides with the rotation shaft of the second drive unit M2.
Further, the second arm A2 includes the third drive unit M3 as a vertical actuator and the fourth drive unit M4 as a rotation actuator and supports the shaft S. The third drive unit M3 turns the ball screw nut provided in the outer circumference part of the ball screw groove of the shaft S with a timing belt (not shown) or the like, and thereby, moves the shaft S in the upward and downward directions. The fourth drive unit M4 turns the ball spline nut provided in the outer circumference part of the spline groove of the shaft S with a timing belt (not shown) or the like, and thereby, rotates the shaft S about the center axis of the shaft S.
The respective first drive unit M1 to fourth drive unit M4 as the four drive units of the robot 20 are communicably connected to the robot control apparatus 30 by the first wire CA1. The first wire CA1 includes power lines for supplying electric power from the robot control apparatus 30 to the respective four drive units and signal lines for transmitting signals between the robot control apparatus 30 and the respective four drive units. Thereby, the respective four drive units perform operation based on control signals acquired from the robot control apparatus 30. Note that the wired communications via the signal lines are performed according to standards of e.g. Ethernet (registered trademark), USB (Universal Serial Bus), or the like. Or, part of the four drive units may be adapted to be connected to the robot control apparatus 30 via wireless communications performed according to communication standards of Wi-Fi (registered trademark) or the like. Or, the first wire CA1 may include another wire in addition to the power lines and the signal lines.
The robot control apparatus 30 transmits the control signals to the robot 20 to operate the robot 20. Thereby, the robot control apparatus 30 may allow the robot to perform predetermined work. The robot control apparatus 30 is separately provided from the robot 20 and placed outside of the robot 20.
Note that the first wire CA1 connected to the connecting portion CN may be a wire connected from another apparatus than the robot control apparatus 30 to the robot 20 in place of the wire connected from the robot control apparatus 30 to the robot 20. For example, the other apparatus is a teaching pendant, notebook PC (Personal Computer), or the like connected to the robot 20.
In
The respective cutout portions CO1 to CO4 of the lid part CV may be formed in the lid part CV by e.g. cutting out through holes for screws to which the ground of the first wire CA1 is fixed.
Or, the lid part CV does not necessarily include a part or all of the cutout portions CO1 to CO4. When the lid part CV does not include all of the cutout portions CO1 to CO4, screw holes through which the fastening members SC as screws are inserted are formed in the lid part CV. Then, the lid part CV is fastened to the housing part R by the fastening members SC. Note that, in the case, the lid part CV may be fixed to the housing part R using another member than the fastening members SC.
The first wire CA1 is connected to the first part CN1 of the connecting portion CN using e.g. a one-touch panel-mounted connector. In this case, the user may easily detach the first wire CA1 from the connecting portion CN with a hand. Note that the first wire CA1 may be connected to the connecting portion CN by another connector.
As described above, the robot 20 in the embodiment includes a base (the base B in the example), a movable unit (the movable unit A in the example) provided on the base, a drive unit (the first drive unit M1 to fourth drive unit M4 in the example) that drives the movable unit, a connecting portion (the connecting portion CN) to which at least a part of a first wire (the first wire CA1 in the example) of another apparatus (the robot control apparatus 30 in the example) is connected, and a second wire (the second wire CA2 in the example) that connects the drive unit and the connecting portion, and the base has a housing part (the housing part R in the example) having an opening portion (the opening portion RH in the example), to which the connecting portion is fixed and a lid part (the lid part CV in the example) covering at least a part of the opening portion, through which the first wire is inserted. Thereby, the robot 20 may suppress a defect in at least one of the connecting portion and the second wire.
Further, in the robot 20, the lid part has a cutout portion (the the cutout portions CO1 to CO4 in the example) with which the lid part can be detached from the housing part in the state in which a fastening member for fastening the lid part and the housing part is loosened. Thereby, the robot 20 may shorten the time required for work of detaching the lid part from the housing part.
The robot 20 has a first sealing member (the sealing member SM in the example) between the first wire and the lid part. Thereby, the robot 20 may suppress entry of foreign matter from between the first wire and the lid part.
In the robot 20, the other apparatus is a robot control apparatus (the robot control apparatus 30 in the example) that controls the robot 20. Thereby, the robot 20 may suppress a defect in at least one of the connecting portion and the second wire to which at least a part of the first wire of the robot control apparatus is connected via the connecting portion.
In the robot 20, the first wire includes a power line for supplying electric power from the robot control apparatus to the drive unit and a signal line for transmitting signals between the robot control apparatus and the drive unit. Thereby, the robot 20 may suppress a defect in at least one of the connecting portion and the second wire to which at least a part of the first wire including the power line and the signal line is connected.
In the robot 20, the connecting portion has a first connecting portion (the first connecting portion CN11 in the example) to which the power line is connected and a second connecting portion (the second connecting portion CN12 in the example) to which the signal line is connected. Thereby, the robot 20 may suppress a defect in a part or all of the connecting portion having the first connecting portion and the second connecting portion and the second wire.
As above, the embodiments of the invention are described with reference to the drawings, however, the specific configurations are not limited to the embodiments and changes, replacements, deletions, etc. may be made without departing from the scope of the invention.
The entire disclosure of Japanese Patent Application No. 2017-121159, filed Jun. 21, 2017 is expressly incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2017-121159 | Jun 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5375480 | Nihei | Dec 1994 | A |
5777267 | Szydel | Jul 1998 | A |
7715946 | Watanabe | May 2010 | B2 |
9227327 | Nakahara | Jan 2016 | B2 |
20100043587 | Broberg | Feb 2010 | A1 |
20120111135 | Ichibangase | May 2012 | A1 |
20130098190 | Pan | Apr 2013 | A1 |
20130168505 | Ljungkvist | Jul 2013 | A1 |
20130260606 | Hahakura | Oct 2013 | A1 |
20140103168 | Kume | Apr 2014 | A1 |
20140109712 | Ono | Apr 2014 | A1 |
20140290415 | Hasuo | Oct 2014 | A1 |
20150007681 | Murakami | Jan 2015 | A1 |
20150034698 | Takahashi | Feb 2015 | A1 |
20150039125 | Takahashi | Feb 2015 | A1 |
20160114491 | Lee | Apr 2016 | A1 |
20170291313 | Inoue | Oct 2017 | A1 |
20180093376 | Teranaka | Apr 2018 | A1 |
20180319022 | Yoshimura | Nov 2018 | A1 |
20180333844 | Inoue | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
2016-078221 | May 2016 | JP |
Number | Date | Country | |
---|---|---|---|
20180370022 A1 | Dec 2018 | US |