The technology disclosed herein (hereinafter, “the present disclosure”) relates to a robot device, a surgical manipulator, and a system having a plurality of links hinge-coupled.
Recent surgical systems have made use of a robotics technology mainly for prevention of a tremor in hands of an operator, operation support, absorption of a difference in skill between operators, implementation of remote surgery, and the like.
Here, for a surgical manipulator having a configuration in which a plurality of links is hinge-coupled, it is necessary to route wiring for signal and power transmission, so that the following problems will occur.
For example, a method for producing a three-dimensional structure that develops into a three-dimensional shape like paper-folding by laminating a plurality of layers on a single sheet and partially cutting the laminate has been proposed (see Patent Document 1). Robot manufacturing is simplified on the basis of the production method; on the other hand, in a case where a drive unit is mounted on a distal end located away from a mechanical ground, it is necessary to route electric wiring from the outside, and thus, there is concern that control performance is adversely affected by rigidity and tension of the electric wiring.
It is therefore an object of the present disclosure to provide a robot device having a structure in which a plurality of links is hinge-coupled, and having simplified wiring for signal and power transmission at a hinge portion, a surgical manipulator that has a link structure and to which a surgical instrument is attached, and a system.
The present disclosure has been made in view of the above-described problems, and a first aspect of the present disclosure is a robot device including: a plurality of links; and a hinge part including a deformable signal transmission part and connecting the links adjacent to each other.
The robot device according to the first aspect further includes a flexible circuit board including a signal transmission line layer and a low-rigidity insulating layer stacked on top of each other, the signal transmission line layer transmitting a signal, the low-rigidity insulating layer insulating the signal transmission line layer. Then, each of the plurality of links is formed by the flexible circuit board having a high-rigidity material bonded to both sides or at least one side thereof. Furthermore, the hinge part is formed by the flexible board having no high-rigidity material bonded to either of the sides thereof.
The signal transmission line layer includes a conductive layer that transmits an electric signal. Then, in a case where the robot device according to the first aspect includes an open link structure, the open link structure includes an electrode pad used for transmission and reception of the electric signal provided at both ends of the flexible board, the electrode pad being formed by an exposed portion of the signal transmission line layer. Furthermore, in a case where the robot device according to the first aspect includes a closed link structure, at least some of the high-rigidity materials bonded to the links have an opening, and the closed link structure includes an electrode pad used for transmission and reception of the electric signal, the electrode pad being formed by a portion of the signal transmission line layer exposed through the opening.
Furthermore, the robot device according to the first aspect may include a plurality of the closed link structures coupled to each other.
Furthermore, a second aspect of the present disclosure is a surgical manipulator including: a surgical instrument; and a link structure including a plurality of links and a hinge part including a deformable signal transmission part and connecting the links adjacent to each other, in which the surgical instrument is attached to a link located at a distal end.
The link structure may cause the surgical instrument to pivot with a predetermined trocar insertion point on an axis of the surgical instrument fixed.
Furthermore, a third aspect of the present disclosure is a system including: a robot device including a plurality of links and a hinge part that includes a deformable signal transmission part and connects the links adjacent to each other, an end effector being attached to a link located at a distal end; and an authentication server configured to perform authentication of the end effector, in which the robot device transmits identification information read from the end effector via the signal transmission part to the authentication server, and the authentication server performs authentication processing on the end effector on the basis of the identification information received from the robot device, and acquires configuration data for the end effector.
Note that a “system” described herein refers to a logical assembly of a plurality of devices (or functional modules that implement specific functions), and each of the devices or functional modules may be or may be not in a single housing.
According to the present disclosure, it is possible to provide a robot device having a structure in which a plurality of links is hinge-coupled and allowing simple routing of wiring for signal and power transmission by routing the wiring through a hinge, a surgical manipulator that has a link structure allowing simple routing of wiring and to which a surgical instrument is attached, and a system that performs processing such as authentication of the surgical instrument attached to the surgical manipulator.
Note that the effects described herein are merely examples, and the effects brought about by the present disclosure are not limited thereto. Furthermore, the present disclosure may further provide additional effects in addition to the effects described above.
Still another object, feature, and advantage of the present disclosure will become clear by further detailed description with reference to an embodiment to be described later and the attached drawings.
Hereinafter, the present disclosure will be described in the following order with reference to the drawings.
One major cause of difficulty in wiring in a manipulator is that a hinge structure is based on a rotation structure with a pin as an axis. In a case where a joint (rotation axis) and a link are connected in series or in parallel as in a multi-degree-of-freedom robot arm, wiring to an end effector connected to a distal end of the arm is designed to pass through the rotation axis and the center of the link to the extent possible. However, the closer the wiring is to the center, the greater difficulty in assembly or disassembly, which increases a manufacturing cost or a risk of failure.
Aerial wiring corresponding to wiring made away from the link, such as an industrial robot arm, improves serviceability for assembly and disassembly, but has a risk of adversely affecting control performance due to a decrease in cable rigidity and a risk of cutting the wiring by mistake when a user operates a product. In addition, in a case where a plurality of types of end effectors is changed and operated, it is necessary to make wiring every time an end effector is changed, which makes a workload excessively large.
Furthermore, in a case where a surgical manipulator is used, in order to ensure cleanliness of a surgical instrument that serves as an end effector, it is necessary to clean and sterilize the surgical instrument every time the surgical instrument is changed, and to structurally separate a clean region and a non-clean region. If the wiring is complicated, the sterilization process becomes difficult. Furthermore, given that a medical worker who may not be familiar with electric wiring performs the work of changing the surgical instrument, it is necessary to make the wiring structure easy to understand and simple.
Therefore, the present disclosure proposes a surgical manipulator having a wiring structure that includes a plurality of links, allows easy change of an end effector (for example, a surgical instrument) mounted on a tip (or a distal end), and allows structural separation of a clean region and a non-clean region. As will be described later, the surgical manipulator according to the present disclosure includes a new wiring structure passing through the inside of a hinge connecting links, and a hardware and system configuration that allows easy switching between a plurality of end effectors.
The surgical manipulator according to the present disclosure forms a plurality of links and a hinge connecting the links using a flexible electric circuit board having low rigidity and flexibility. With such a basic configuration, it is possible to realize a wiring structure passing through a hinge.
Then, finally, a surface of the multilayer structure including the insulating layer, the conductive layer, and the adhesive layer is covered with a low-rigidity material including polyimide or the like, thereby forming the electric circuit board 100 having low rigidity and flexibility. Herein, an electric circuit board having such a multilayer structure and having low rigidity and flexibility is also referred to as a flexible circuit board (FCB). The FCB may be the same as general flexible printed circuits (FPCs).
Similarly, a link 212 with high rigidity can be formed by bonding a pair of high-rigidity parts 204 and 205 to the front and back surfaces of the FCB 201, a link 213 with high rigidity can be formed by bonding a pair of high-rigidity parts 206 and 207 to the front and back surfaces of the FCB 201, a link 214a with high rigidity can be formed by bonding a pair of high-rigidity parts 208a and 209a to the front and back surfaces of the FCB 201, and a link 214b with high rigidity can be formed by bonding a pair of high-rigidity parts 208b and 209b to the front and back surfaces of the FCB 201. Note that the links 214a and 214b located at both ends of the open link structure 200 have, at their respective ends, electrode pads 201a and 201b used for electric connection or signal extraction, the electrode pads 201a and 201b each corresponding to the conductive layer of the FCB 201 exposed to the outside.
A space between the link 211 and the link 212, a space between the link 212 and the link 213, a space between the link 213 and the link 214a, and a space between the link 214b and the link 211 constitute hinge parts 221, 222, 223, and 224 connected by the FCB 201. As described above, since the FCB 201 is a flexible electric circuit board having low rigidity and flexibility, each of the hinge parts 221, 222, 223, and 224 can function as a “joint” that provides a degree of freedom of rotation between links adjacent to each other.
Then, in each of the hinge parts 221, 222, 223, and 224, the conductive layer in the FCB 201 passes through the joint (or a rotation axis), so that it can be said that a wiring structure passing through a hinge is realized. Even when a rotation motion is made between the links, stress such as tension or compression affecting conductivity is kept low, so that an adverse effect on control performance or a risk of cutting wiring is extremely low.
Note that the open link structure 400 is different from the open link structure 200 in that the high-rigidity part 403 has an opening in its center to expose the conductive layer of the FCB 401 to the outside through the opening so that the link 411 has an electrode pad 431 used for electric connection or signal extraction, the high-rigidity part 405 has an opening in its center to expose the conductive layer of the FCB 401 to the outside through the opening so that the link 412 has an electrode pad 432 used for electric connection or signal extraction, and the high-rigidity part 407 has an opening in its center to expose the conductive layer of the FCB 401 to the outside through the opening so that the link 413 has an electrode pad 433 used for electric connection or signal extraction.
Furthermore,
In the closed link structure 500 in a manner similar to the closed link structure 300 depicted in
An angle between links adjacent to each other changes when a portion including only the FCB between the links is bent. Each of the joints 611 to 614 includes only the FCB, in other words, the conductive layer in the FCB passes through the rotation axis, so that a wiring structure passing through a hinge is realized. Each of the joints 611 to 614 can be regarded as a driven joint having a degree of freedom of rotation about an axis orthogonal to the page.
Then, the link 601 and the link 603 facing each other, and the link 602 and the link 604 facing each other are equal in length to each other, so that the degree-of-freedom configuration model 600 constitutes a parallel link mechanism (or a four-bar link mechanism). In this case, when a driving link moves, a driven link moves in the same manner, and angles of the links facing each other are kept identical to each other.
A closed link structure 910, a closed link structure 920, and a closed link structure 930 are coupled in this order from a distal end of the manipulator 900. One link 934 of the closed link structure 930 located at a proximal end side serves as a mechanical ground (or a fixed link).
A link 941 of an open link structure 940 is coupled to a link 931 hinge-coupled to one end of the link 934. Furthermore, a link 942 of the open link structure 940 can be moved in a horizontal direction of the page (or x direction) by a linear motion actuator 950 having one end serving as the mechanical ground. Therefore, the link 931 serves as a driving link. Furthermore, a link 933 facing the link 931 serves as a driven link, and the other link 932 serves as an intermediate link.
Note that specific configurations of each of the closed link structures 910 to 930 and the open link structure 940 are similar to the configurations depicted in
The open link structure 940 has one electrode pad 943 in the link 942 and one electrode pad 944 in the link 941. The electrode pad 943 is used to input and output a first signal V1, and the electrode pad 944 is used to transmit the first signal V1 to and from the closed link structure 930.
The link 931 of the closed link structure 930 has one electrode pad 935 at a position facing the electrode pad 944. Then, the link 941 of the open link structure 940 is fixed to the link 931 of the closed link structure 930 with conduction between the electrode pad 944 and the electrode pad 935 established by a joining part 961 having conductivity. Therefore, the first signal V1 can be transmitted between the closed link structure 930 and the open link structure 940. Furthermore, the closed link structure 930 has one electrode pad 936 in the link 934. The electrode pad 936 is used to input and output a second signal V2.
The closed link structure 930 has two electrode pads 937 and 938 in the link 932, the electrode pads 937 and 938 being used for the first signal and the second signal, respectively. Furthermore, a link 924 of the closed link structure 920 coupled to the link 932 has two electrode pads 925 and 926 at positions facing the electrode pads 937 and 938, respectively. Then, the link 924 is fixed to the link 932 with conduction between the electrode pad 925 and the electrode pad 937 and conduction between the electrode pad 926 and the electrode pad 938 established, respectively, by joining parts 962 and 963 having conductivity. Therefore, the first signal V1 and the second signal V2 can be transmitted between the closed link structure 930 and the closed link structure 920.
The closed link structure 920 has two electrode pads 927 and 928 in a link 923, the electrode pads 927 and 928 being used for the first signal V1 and the second signal V2, respectively. Furthermore, a link 911 of the closed link structure 910 coupled to the link 923 has two electrode pads 915 and 916 at positions facing the electrode pads 927 and 928, respectively. Then, the link 911 is fixed to the link 922 with conduction between the electrode pad 915 and the electrode pad 927 and conduction between the electrode pad 916 and the electrode pad 928 established, respectively, by joining parts 964 and 965 having conductivity. Therefore, the first signal V1 and the second signal V2 can be transmitted between the closed link structure 920 and the closed link structure 910.
A link 913 of the closed link structure 911 corresponds to a link located at the distal end of the manipulator 900, and constitutes a portion to which an end effector including a surgical instrument such as forceps (not depicted in
The surgical instrument that is used with the surgical instrument attached to the manipulator 900 includes a memory that stores, for example, a surgical instrument identification ID for identifying the type, specification, capabilities, or individual information of the surgical instrument, authentication information used for determining whether or not the surgical instrument is usable on the manipulator 900, calibration data for operation of the surgical instrument, and the like. Then, the manipulator 900 can access the surgical instrument through an electric interface including the electrode pads 917 and 918 located at the distal end of the manipulator 900, read the surgical instrument identification ID from the memory, and transmit corresponding authentication information, calibration data, and the like to the memory in the surgical instrument.
The manipulator 900 according to the present embodiment has a wiring structure in which a signal line used for transmission of the first signal V1 and the second signal V2 passes through a hinge. Therefore, even when the manipulator 900 is operated to make a rotation motion between the links, stress such as tension or compression affecting conductivity is kept low, so that an adverse effect on control performance or a risk of cutting wiring is extremely low.
On the signal transmission line, a control signal and power to the surgical instrument that is the end effector, a signal of information read from the memory in the surgical instrument, and the like are transmitted.
Note that
In this section D, kinematics of the manipulator 900 described in the above-described section C with reference to
In a case where the surgical instrument attached to the distal end of the manipulator 900 is operated to perform a surgical operation, it is necessary to perform, for minimum invasiveness, the operation with a load as small as possible on the vicinity of a trocar into which the surgical instrument is inserted, so that it is ideal to cause the surgical instrument to pivot using the trocar insertion point as a fulcrum (or with the trocar insertion point fixed) to make an impulse generated at the trocar insertion point equal to zero.
In
It is therefore possible to achieve, by setting the trocar insertion point at the intersection point A, minimally invasive surgery using the surgical instrument attached to the link 913. E. Usage Example of Surgical Instrument
The surgical instrument includes a memory that stores, for example, a surgical instrument identification ID for identifying the type, specification, capabilities, or individual information of the surgical instrument, authentication information used for determining whether or not the surgical instrument is usable on the manipulator 900, calibration data for operation of the surgical instrument, the date of manufacture, and the like. Then, the manipulator 900 can access the surgical instrument through the electric interface including the electrode pads 917 and 918 located at the distal end of the manipulator 900, read the surgical instrument identification ID from the memory, and transmit corresponding authentication information, calibration data, and the like to the memory in the surgical instrument.
In a surgical facility 1310 such as a hospital, the manipulator 900 to which the surgical instrument is attached and an authentication server 1311 that performs authentication processing on the surgical instrument attached to the manipulator 900 are arranged.
The manipulator 900 transfers, to the authentication server 1311, the surgical instrument identification ID read from the surgical instrument attached to the manipulator 900.
The authentication server 1311 uploads the surgical instrument identification ID acquired from the manipulator 900 to a cloud 1320 and intervenes between the cloud 1320 and the manipulator 900 to perform the authentication processing on the surgical instrument.
Then, when the authentication processing results in a success, the authentication server 1311 downloads the calibration data of the surgical instrument from the cloud 1320 and transfers the data to the manipulator 900. The manipulator 900 transmits the calibration data received from the authentication server 1311 to the surgical instrument located at the distal end through the transmission line of the first signal and the second signal to write the calibration data to the memory in the surgical instrument. As a result, the manipulator 900 is brought into a state where the manipulator 900 can perform a surgical operation using the surgical instrument.
In this section F, effects brought about by the manipulator to which the present disclosure is applied will be described.
In this section G, the above-described embodiment will be described.
The present disclosure has been described in detail with reference to the specific embodiment. It is, however, obvious that those skilled in the art can make modifications and substitutions of the embodiment without departing from the gist of the present disclosure.
The present disclosure is applicable mainly to ocular surgery such as retinal surgery, and is further applicable to various types of surgery performed with a surgical instrument inserted into a body through a trocar. Furthermore, the present disclosure is also applicable to, for example, remote control or operation support using a master-slave robot, or autonomous control of a surgical robot.
Furthermore, examples of the surgical instrument attached to the manipulator according to the present disclosure may include, other than the forceps, a tweezer, an insufflation tube, an energy treatment tool, and a medical observation device such as a microscope and an endoscope (a rigid endoscope such as a laparoscope and an arthroscope, and a flexible endoscope such as a gastrointestinal endoscope and a bronchoscope).
In short, the present disclosure has been described in an illustrative manner, and the contents described herein should not be interpreted in a limited manner. In order to determine the gist of the present disclosure, the claims should be taken into consideration.
Note that, the present disclosure may also have the following configurations.
Number | Date | Country | Kind |
---|---|---|---|
2021-037863 | Mar 2021 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2021/049008 | 12/28/2021 | WO |