The present invention relates to the securing of body tissue.
Body tissue has previously been secured utilizing sutures, staples, pegs, screws, and/or other fasteners. When one or more of these known devices is to be utilized to secure body tissue, the device may be concealed from view within a patient's body. Of course, this makes the securing of the body tissue more difficult. The manner in which a suture may be utilized to secure body tissue is disclosed in U.S. Pat. No. 6,159,234. The manner in which a staple may be utilized in association with body tissue is disclosed in U.S. Pat. No. 5,289,963. It has previously been suggested that a robotic mechanism may be utilized to assist in the performance of surgery. Various known robotic mechanisms are disclosed in U.S. Pat. Nos. 5,078,140; 5,572,999; 5,791,231; 6,063,095; 6,231,565; and 6,325,808.
The present invention relates to a method of securing either hard or soft body tissue. A robotic mechanism or manual effort may be used to position a fastener relative to the body tissue. The fastener may be a suture, staple, screw, or other known device.
The fastener may be a suture which is tensioned with a predetermined force by a robotic mechanism or manual effort. The robotic mechanism or manual effort may also be used to urge a retainer toward body tissue with a predetermined force. The suture may be gripped with the retainer while the suture is tensioned with a predetermined force and while the retainer is urged toward the body tissue with a predetermined force.
Alternatively, the fastener may be a staple. A robotic mechanism or manual effort may be utilized to position the staple relative to body tissue. The robotic mechanism or manual effort may effect a bending of the staple to move legs of the staple into engagement with each other. The legs of the staple may be bonded together at a location where the legs of the staple are disposed in engagement.
Regardless of what type of fastener is utilized, a positioning apparatus may be used to position the body tissue before and/or during securing with a fastener. The positioning apparatus may include a long thin member which transmits force to the body tissue. Force may be transmitted from an expanded end portion of the long thin member to the body tissue. A second member may cooperate with the long thin member to grip the body tissue. The long thin member may be positioned relative to the body tissue by a robotic mechanism or manual effort.
Various imaging devices may be utilized to assist in positioning a fastener, such as a rivet suture or staple, relative to body tissue. Under certain circumstances at least, it may be desirable to utilize two or more different types of imaging devices. Thus, an endoscope and a magnetic resonance imaging apparatus (MRI) may be utilized to provide an image. Alternatively, an endoscope and a fluoroscopic device may be utilized. If desired, ultrasonic imaging devices may be utilized in association with another imaging device, such as an endoscope or magnetic resonance imaging device. One or more markers may be provided on fasteners to facilitate location of the fasteners in an image.
A fastener may be utilized to secure a scaffold containing viable tissue components in place on body tissue. The tissue components may be stem cells, fetal cells, mesenchymal cells, and/or any desired type of precursor cells. It is contemplated that the scaffold with one or more different types of tissue components may be positioned at any desired location within a patient's body, such as within an organ, by the robotic mechanism. For example, the scaffold could be positioned in the pancreas or liver of a patient. Alternatively, the scaffold could be connected with a bone in the patient's body. The scaffold may be positioned relative to the body tissue by the robotic mechanism or manual effort. One or more markers may be provided on the scaffold to facilitate location of the scaffold in an image.
It is contemplated that the robotic mechanism may advantageously be utilized to position surgical implants other than fasteners in a patient's body. For example, the robotic mechanism may be utilized to position a prosthesis in a patient's body. If desired, the robotic mechanism may be utilized to position a screw type fastener at a specific location in a patient's body. The robotic mechanism may be used to position a scaffold containing viable tissue components relative to body tissue.
The foregoing and other features of the invention will become more apparent upon a consideration of the following description taken in connection with the accompanying drawings wherein:
Robotic Securing of Tissue
An apparatus 30 for use in securing tissue in a patient's body is illustrated schematically in
The apparatus 30 includes an operating table 32 which is disposed in a sterile operating room environment. A patient 34 may be covered by a known sterile drapery system. Alternatively, the patient 34 may be covered by a drapery system which is connected with a surgeon so as to maintain a sterile field between the surgeon and the patient in the manner disclosed in U.S. patent application Ser. No. 09/941,185 Filed Aug. 28, 2001 by Peter M. Bonutti. Of course, any desired sterile drapery system may be provided to cover the patient 34.
A robotic mechanism 38 is provided to position a tissue securing device, fastener, or other apparatus at a desired location within the patient during performance of a surgical procedure. An imaging device 40 is operable to provide an image of a location where the robotic mechanism 38 is securing the body tissue with a fastener or performing other steps in a surgical procedure. A programmable computer 44 is connected with the robotic mechanism 38 through a robotic arm interface 46. In addition, the computer 44 is connected with the imaging device 40 and a monitor or display 48. The monitor or display 48 is visible to a surgeon operating the apparatus 30 and provides an image of the location where the robotic mechanism 38 is being utilized in the performance of a surgical procedure on the patient 34.
The robotic mechanism 38 is guided by automatic controls which include the computer 44 and robotic arm interface 46. The robotic mechanism 38 may have a construction which is different than the illustrated construction and may include one or more adaptive arms. The robotic mechanism 38 is a reprogrammable, multifunctional manipulator designed to move through various programmed motions for the performance of a surgical procedure. The robotic mechanism 38 may have manually operable controls which provide for interaction between the surgeon and the robotic mechanism. The robotic mechanism 38 is utilized in the securing of a patient's body tissue. However, it is contemplated that the robotic mechanism 38 will be utilized during the performance of other surgical steps in addition to the securing of body tissue.
The robotic mechanism 38 may have many different constructions, including constructions similar to those disclosed in U.S. Pat. Nos. 5,078,140; 5,572,999; 5,791,231; 6,063,095; 6,231,565; and/or 6,325,808. The specific robotic mechanism 38 illustrated in
The use of the robotic mechanism 38 and imaging device 40 enables the size of incisions 52 and 54 in the patient's body to be minimized. Of course, minimizing the size of the incisions 52 and 54 tends to reduce patient discomfort and recovery time. It contemplated that the robotic mechanism 38 and imaging device 40 will be utilized during the performance of many different surgical procedures.
During the performances of these surgical procedures, the robotic mechanism 38 may be utilized to secure body tissue. The robotic mechanism 38 may be used to position a suture anchor 60 (
Once the anchor 60 has been positioned relative to the body tissue 64, the robotic mechanism 38 is operated to tension a suture 66 connected with the anchor 60 with a predetermined force, in the manner indicated schematically by an arrow 70 in
The anchor 60, suture 66, and suture retainer 72 may be formed of any desired material. The illustrated anchor 60, suture 66 and suture retainer 77 are all formed of a polymeric material. The anchor 60, suture 66, and suture retainer 72 may all be formed of a biodegradable polymeric material. However, the anchor 60, suture 66, and/or suture retainer 72 could be formed of metal or other known materials if desired.
The suture 55 is a monofilament. However, the suture 66 could be formed by a plurality of filaments and could have a braided construction. The suture 66 could have a construction similar to the construction of a rope or cable if desired.
While the suture 66 is tensioned with the predetermined force 70 and while the suture retainer 72 is pressed against the body tissue 64 with a force 74, the robotic mechanism 38 plastically deforms the polymeric material of the suture retainer 72 in the manner illustrated schematically in
Alternatively, the suture retainer 72 may be deformed by transmitting force from the robotic mechanism 38 to the retainer after the polymeric material of the retainer has been heated into a transition temperature range of the material of the suture retainer. When the material of the suture retainer 72 has been heated into its transition temperature range, the material can be readily plastically deformed with a viscous flow or movement of the material. It is believed that it may be preferred to maintain the material of the suture 66 at a temperature which is below the transition temperature range for the material of the suture. The suture retainer 72 may be formed of the materials disclosed in U.S. Pat. No. 6,203,565 and heated in the manner disclosed in the patent.
It is contemplated that the anchor 60, suture 66, and suture retainer 72 may all be formed of biodegradable polymeric materials. However, it is believed that it may be desired to form the suture retainer 72 of a biodegradable material having a lower transition temperature range than the transition temperature range for the material of the suture 66. This would facilitate operation of the robotic mechanism 38 to heat the suture retainer 72 into its transition temperature range without heating the material of the suture 66 into the transition temperature of the material of the suture. This would minimize damage to or deformation of the suture 66 when the suture retainer 72 is deformed by operation of the robotic mechanism 38. Of course, the anchor 60, suture 66 and suture retainer 72 could all be formed of the same biodegradable material if desired.
It is contemplated that, in some circumstances at least, it may be desired to heat both the polymeric material of the suture 66 and the polymeric material of the retainer 72 into their transition temperature ranges. If this is done, the material of the suture 66 and the retainer 72 could be fused together. This would result in a blending of the material of the suture 66 and suture retainer 72 in the area where they are disposed in engagement.
During operation of the robotic mechanism 38, the suture retainer 72 is bonded to the suture 66 without significant deformation of the suture. When the polymeric material of the suture retainer 72 is heated into its transition temperature range, the material of the suture retainer softens and loses some of its rigidity. By applying force against the heated material of the suture retainer 72, the robotic mechanism 38 can be operated to cause the material of the suture retainer to plastically deform and flow around and into engagement with the suture 66.
When the material of the suture retainer 72 cools, a secure bond is formed between the material of the suture retainer and the suture 66. This bond may be formed in the manner disclosed in the aforementioned U.S. Pat. No. 6,203,565. However, it is contemplated that the material of the suture retainer 72 could be plastically deformed and bonded without heating, in the manner disclosed in U.S. Pat. No. 6,010,525.
It is contemplated that the suture retainer 72 may be plastically deformed by operating the robotic mechanism 38 to press the force transmitting members 80 and 82 against opposite sides of the suture retainer 72 in the manner indicated by arrows 84 and 86 in
It is contemplated that the suture retainer 72 may be heated by the robotic mechanism into the transition temperature range of the material of the suture retainer in many different ways. For example, the suture retainer 72 may be heated into its transition temperature range by the application of ultrasonic vibratory energy to the suture retainer. If this is to be done, the force transmitting member 80 functions as an anvil and the force transmitting member 82 functions as a horn. To enable the force transmitting member 82 to function as a horn, the force transmitting member is connected with a source 90 of ultrasonic vibratory energy by the robotic mechanism 58. One commercially available source of ultrasonic vibratory energy is provided by Dukane Corporation Ultrasonics Division, 2900 Dukane Drive, St. Charles, Ill. Of course, there are other sources of apparatus which can be utilized to provide ultrasonic vibratory energy.
When the ultrasonic vibratory energy is to be applied to the suture retainer 72 by the robotic mechanism, the force transmitting member or horn 82 is vibrated at a rate in excess of 20 kilohertz. Although the horn or force transmitting member 82 may be vibrated at any desired frequency within a range of 20 kilohertz to 70 kilohertz, it is believed that it may be desirable to vibrate the force transmitting member or horn 82 at a rate which is close to or greater than 70 kilohertz. The force transmitting member or horn 82 is vibrated for a dwell time which is sufficient to transmit enough ultrasonic vibratory energy to the suture retainer 72 to heat at least a portion of the material of the suture retainer into its transition temperature range.
The frictional heat created by the ultrasonic vibratory energy transmitted to the suture retainer 72 is sufficient to heat the material of the suture retainer at locations adjacent to the suture 66, into the transition temperature range of the material of the suture retainer. As this occurs, the softened material of the suture retainer 72 is plastically deformed by force applied against the suture retainer by the anvil or force transmitting member 80 and the horn or force transmitting member 82. After interruption of the transmission of ultrasonic vibratory energy to the suture retainer 72, the material of the suture retainer cools and bonds to the suture 66.
The general manner in which ultrasonic vibratory energy is applied to the suture retainer 72 and in which the suture retainer is plastically deformed to grip the suture 66 is the same as disclosed in U.S. patent application Ser. No. 09/524,397 Filed Mar. 13, 2000 by Peter M. Bonutti, et al. and entitled Method of Using Ultrasonic Vibration to Secure Body Tissue. However, it is contemplated that the material of the suture retainer 72 could be heated in ways other than the application of ultrasonic vibratory energy. For example, the suture retainer 72 could be heated by an electrical resistance heater element or by a laser.
It is contemplated that the robotic mechanism 38 may be operated to secure the body tissue 64 in many different ways utilizing the anchor 60, suture 66, and suture retainer 72. One way in which the body tissue 64 may be secured is by linear apposition in the manner illustrated schematically in
The sutures 66 are connected with openings which extend diametrically across the cylindrical anchors 60. However, it is contemplated that the sutures 66 could be connected with the anchors 60 in a different manner by operation of the robotic mechanism 38. For example, it is contemplated that the sutures 66 could be connected with the anchors 60 in any one of the ways disclosed in U.S. Pat. Nos. 5,534,012; 5,713,921; 5,718,717; or 5,845,645. It is also contemplated that the anchors could have the same construction and/or be formed of materials disclosed in any one of the aforementioned U.S. patents.
In the embodiment illustrated in
The suture anchor 60, suture 66 and retainer 72 form a fastener assembly which is used by surgeon controlling operation of the robotic mechanism 38 to secure body tissues together or with surgical implants. The robotic mechanism 38 may be used with many different types of fastener assemblies during performance of surgical procedures at many different locations in a patient's body. The fastener assembly positioned by the robotic mechanism 38 may be a bonded rivet of the type disclosed in the aforementioned U.S. Pat. No. 6,203,565. However, it should be understood that the fastener assembly may have any desired construction.
The fastener assembly utilized with the robotic mechanism 38 may be used to secure soft body tissues to each other and/or to secure soft body tissues with hard body tissues. The fastener assembly utilized with the robotic mechanism 38 may be used to secure hard body tissues together. The robotic mechanism 38 may be used to secure a surgical implant, such as a prosthesis, with hard and/or soft body tissue.
Anchor, Suture and Retainer Assembly
In the embodiment invention illustrated in
The use of the robotic mechanism 38 to position the anchor 60, suture 66 and retainer 72 enables tension force in the suture 66 and force applied against the body tissue by the anchor 60 and retainer 72 to be accurately controlled. By using the imaging device 40 in association with the robotic mechanism 38, a surgeon can view the monitor 48 and be certain that the anchor 60, suture 66 and retainer 72 are being positioned in the desired manner in the patient's body. This enables the surgeon to minimize the size of the incisions 52 and 54 and still have visual assurance that the surgical procedure is being properly performed in the patient's body by the robotic mechanism. When the robotic mechanism 38 includes adaptive arms, input by the surgeon in response to an image on the monitor 48 is facilitated.
The robotic mechanism 38 includes a cylindrical tubular inserter member 102 (
Although the cylindrical anchor 60 has been illustrated in
The anchor 60 may be formed of a material which absorbs body liquid while the pointed leading end portion of the anchor is formed of a different material that is relatively rigid and capable of piercing the imperforate body tissue 64. When the body of the anchor 60 absorbs body liquid, the anchor expands in all directions and forms an interlock with the body tissue 64 in the manner disclosed in U.S. Pat. No. 5,718,717. Of course the pointed end portion of the anchor could be omitted in the manner also disclosed in the aforementioned U.S. Pat. No. 5,718,717.
When the anchor 60 is to be inserted into the body tissue by the robotic mechanism, a cylindrical pusher member 108 is pressed against the trailing end of the anchor 60. The pusher member 108 is telescopically moved along the passage 104 by a suitable drive assembly in the robotic mechanism 38. When the pusher member 108 has moved the anchor to a desired position relative to the body tissues 64, the robotic mechanism 38 is operated to extend a push rod 112 from the pusher member 108. The push rod 112 applies a force to the anchor 60 at a location offset from a central axis of the anchor. The resulting torque on the anchor 60 causes the anchor to pivot relative to the body tissue 64 and change orientation relative to the body tissue.
The manner in which the pusher member 108 is moved along the passage 104 in the inserter member 102 by the robotic mechanism 38 may be the same as is disclosed in U.S. patent application Ser. No. 09/789,621 filed Feb. 21, 2001 by Peter M. Bonutti and entitled Method of Securing Body Tissue. The manner in which the anchor 60 pivots relative to the body tissue 64 when the push rod 112 is extended from the pusher member 108 may be the same as is disclosed in U.S. Pat. No. 5,814,072. However, the anchor 60 may be pivoted relative to the body tissue 64 in a different manner if desired. For example, the anchor 60 could be pivoted relative to the body tissue 64 in the manner disclosed in U.S. Pat. No. 5,782,862.
In the embodiment invention illustrated in
In the embodiment invention illustrated in
If desired, the anchor 60 may not be moved through the upper layer 116 of body tissue. The anchor 60 may be moved into and/or through only the layer 118 of body tissue. Once this has been done, the suture 66 may be moved through the layer 116 of body tissue.
It is also contemplated that the anchor could be positioned in hard body tissue. For example, the anchor 60 could be positioned in bone in the manner disclosed in U.S. Pat. No. 6,033,430. When the anchor 60 is positioned in bone, the suture 66 may be used to secure a tendon or ligament to the bone in the manner disclosed in U.S. Pat. No. 6,152,949. Regardless of whether the anchor 60 is positioned in hard body tissue or soft body tissue, the anchor may be formed of any one of the materials and/or constructed in any one of the ways disclosed in the aforementioned U.S. Pat. No. 6,152,949.
Once the anchor 60 has been moved to the desired orientation relative to the body tissue (
The suture retainer 72 and suture 66 are both preferably formed of a biodegradable polymer, such as polycaperlactone. Alternatively, the suture 66 and/or suture retainer 72 could be formed of polyethylene oxide terephthalate or polybutylene terephthalate. It is contemplated that other biodegradable or bioerodible copolymers could be utilized if desired. The suture anchor 60 may be formed of the same material as the suture 66 and/or retainer 72. Also, the suture 66 and/or retainer 72 could be formed of an acetyl resin, such as “Delrin” (Trademark). Alternatively, the suture 66 and/or suture retainer 72 could be formed of a pora-dimethylamino-benzenediazo sodium sulfonate, such as “Dexon” (Trademark). The suture 66 may also be a monofilament or formed of a plurality of interconnected filaments.
Although it may be desired to form the anchor 60 of the same material as the suture 66 and/or retainer 72, the anchor could be formed of a different material if desired. For example, the anchor 60 may be formed of body tissue, such as bone or other dense connective tissue. The anchor 60 may be formed of many different materials containing collagen. The anchor 60 may be formed of natural or synthetic materials which absorb body fluid and expand when positioned in a patient's body. As the anchor expands in the patient's body, a solid interlock is obtained with adjacent tissue in the patient's body. The anchor 60 may be formed of any of the materials disclosed in the aforementioned U.S. Pat. Nos. 5,713,921 and/or 5,718,717.
Once the anchor 60 has been moved to the position illustrated in
The tensioner 122 and computer 44 may be set to limit the magnitude of the tension applied to the suture 66 to a preselected magnitude. Alternatively, the tensioner 122 and computer 44 may have a visual readout which enables a surgeon to determine the magnitude of the tension in the suture 66 and to maintain the tension in the suture at a desired magnitude. The image provided at the monitor 48 facilitates control of the tension in the suture 66 by the surgeon. If this is done, the tensioner 122 may be set to limit the tension in the suture to a desired maximum.
The tensioner 122 may include a gripper which grips the suture 66. A drive mechanism is operable to move to the gripper to tension the suture 66. The drive mechanism includes a piezoelectric cell which detects when the tension transmitted from the gripper to the suture 66 has reached the predetermined magnitude. The drive mechanism may move the gripper to maintain the tension in the suture at the predetermined magnitude. Alternatively, the drive mechanism may respond to inputs from the surgeon.
Of course, the tensioner 122 could have a different construction if desired. For example, the tensioner 122 could include a spring, deflected through a predetermined distance to maintain a predetermined tension on the suture 66. The tensioner 122 could also have a construction similar to construction disclosed in U.S. patent application Ser. No. 09/556,458 Filed May 3, 2000 by Peter M. Bonutti and entitled Method and Apparatus for Securing Tissue.
While the suture 66 is tensioned with a predetermined force by the tensioner 122, a retainer pusher member 126 is pressed against the retainer 72 with a predetermined force indicated schematically by an arrow 74 in
While the retainer 72 is being pressed against the body tissue 64 with a predetermined force, the suture 66 is tensioned with a predetermined force by the tensioner 122. The force transmitted through the suture 66 presses the anchor 60 against the lower layer 118 of body tissue with a predetermined force. The force with which the anchor 60 is pressed against the body tissue 118 may be the same as, less than, or greater than the force with which the retainer is pressed against the tissue 116. This results in the two layers 116 and 118 of body tissue being clamped between the suture 60 and retainer 72 with a predetermined force.
The anchor 60 is pulled against a bottom surface 132 of the lower layer 118 of body tissue and the retainer 72 is pressed upper against the surface 134 of the upper layer 116 of body tissue. This results in the two layers 116 and 118 of body tissue being gripped between the retainer 72 and anchor 60 with a predetermined compressive force. This compressive force is a function of the sum of the tension force 70 transmitted to suture 66 by the tensioner 122 and the force 74 transmitted to the retainer pusher member 126 by the pusher assembly 128. A force distribution member, such as a button, may be provided between the anchor 60 and surface 132 of the body tissue 118. Another force distribution member may be provided between the retainer 120 and the surface 134 of the body tissue 116.
The pusher assembly 128 may have any desired construction, including for example, a hydraulically actuated piston and cylinder type motor in which the fluid pressure determines the magnitude of the force 74. Alternatively, an electric motor could be associated with a screw type drive and a force measurement device to apply the force 74 to the retainer pusher member 126. The force measurement device may be a piezoelectric cell or a spring assembly to control energization of the electric motor.
While anchor 60 and retainer 72 are being pressed against their respective body tissues, the robotic mechanism 38 is effective to plastically deform the retainer 72 to grip the suture 66. A retainer deformation assembly 144 (
The retainer deformation assembly 144 includes a tubular cylindrical inner member 152 having a central cylindrical passage 154 in which the retainer pusher member 126 is telescopically received. A cylindrical outer member 156 extends around the cylindrical inner member 152 and is disposed in a coaxial relationship with the inner member 152 and retainer pusher member 126.
The force transmitting members 80 and 82 are carried by the inner member 152.
When the inner member 152 is pressed against the upper layer 116 body tissue, the force transmitting members 80 and 82 are aligned with the suture retainer 72. At this time, the force transmitting members 80 and 82 are disposed below (as viewed in
When the retainer 72 is to be plastically deformed to grip the suture 66, the outer member 156 is moved downward (as viewed in
The camming force 162 transmitted from the outer member 156 to the force transmitting members 80 and 82 causes the force transmitting members to move inward toward the suture retainer 72, as indicated by arrows 84 and 86. The force indicated by the arrows 84 and 86 causes the passage 120 (
In order to facilitate deformation of the retainer 72, the material of the suture retainer may be heated. Heating of the material of the retainer 72 results in the material becoming soft and malleable under the influence of forces 84 and 86 applied by the force transmitting members 80 and 82. Ultrasonic vibratory energy is transmitted to the force transmitting member 82 from a source or generator 90 of ultrasonic vibratory energy. The force transmitting member 82 functions as a horn and applies the ultrasonic vibratory energy to the retainer 72. The force transmitting member 80 acts as an anvil which presses against the opposite side of the retainer 72.
As ultrasonic vibratory energy is transmitted to the retainer 72 and the temperature of the retainer increases, the material of the retainer is heated into its transition temperature range and softens. As the material of the retainer 72 softens, the forces 84 and 86 applied against the retainer by the force transmitting members 80 and 82 cause the material of the suture retainer to flow or ooze around and engage the suture 66.
The softened material of the retainer 72 engages the suture and bonds to the suture without significant deformation of the suture. Materials of the suture 66 and retainer 70 are chemically compatible so that a molecular bond can be established between the retainer and the suture. Like materials, that is materials having chemical properties which are the same or very similar, usually bond together. However, dissimilar materials may bond if their melt temperatures are reasonably close and they are of like molecular structure. Generally speaking, amorphous polymers are readily bonded to each other.
While it is preferable to heat the material of the retainer 72 by the application of energy, such as ultrasonic vibratory energy, other sources of energy could be used. For example, the retainer 72 could be heated by a laser or resistance wire. Regardless of whether or not the material of the retainer 72 is heated, the suture 66 is tensioned with the predetermined force 70. At the same time, the retainer 72 is urged toward the body tissue 64 of the predetermined force 74 when the retainer 72 is plastically deformed to grip the suture 66.
The anchor 60 could be formed out of body tissue in the manner disclosed in the aforementioned U.S. Pat. No. 5,713,921. The body tissue may be bone. If the anchor is formed of bone, the anchor may be formed with either the configuration illustrated in
The inserter member 102 could have a construction different from the construction illustrated in
Linear Apposition
The robotic mechanism 38 may be operated to place the layers 116 and 118 of body tissue in a side-by-side relationship, in the manner illustrated schematically in
Regardless of how the anchor 60, suture 66 and retainers 72 are positioned relative to the body tissue 64, each of the sutures 66 is tensioned so that it extends in a straight line between an anchor 60 and retainer 72 in the manner illustrated in
Under certain circumstances, body tissues are preferably joined in end-to-end relationship rather than the side-by-side relationship illustrated schematically in
A plurality of anchors 60, sutures 66 and retainer 72 may be provided across the break 172 between the portions 174 and 176 of a bone to be interconnected in the manner disclosed U.S. Pat. No. 6,117,160. It should be understood that the suture 66 could be utilized to connect soft body tissue with the portions 174 and 176 of bone in much the same manner as is disclosed in U.S. Pat. No. 6,117,160 and/or U.S. Pat. No. 6,152,949. The anchor 60, suture 66, and retainer 72 may be utilized to interconnect bone fragments in a manner similar to that disclosed in U.S. Pat. No. 6,117,160.
Plural Retainers
In the embodiments of the invention illustrated in
The two layers 116 and 118 of body tissue 64 (
The retainers 72, (
While the suture 66 is being tensioned with a predetermined force and while the retainers 72 are being pressed against the layers 116 and 118 with a predetermined force, the pair of retainer deformation assemblies 144 are pressed against opposite sides of the body tissue 64 by drive assemblies 148. The retainer deformation assemblies 144 are pressed against the body tissue with a predetermined force which may be the same as the force with which the retainers 72 are pressed against the two layers 116 and 118 of body tissue.
The force transmitting members 80 and 82 are moved radially inward against spherical outer side surfaces of the upper and lower retainers 72. To press the force transmitting members 80 and 82 against the retainers 72 with a predetermined force, an upper tubular cylindrical outer member 156 is moved downward toward the upper layer 116 of body tissue 64 by a drive assembly 160. At the same time, a lower tubular cylindrical outer member 156 is moved upward toward the lower layer 118 of body tissue by a drive assembly 160, causing the upper and lower force transmitting members 80 and 82 to be jammed radially inward toward the retainers 72 to plastically deform the retainers and securely grip the suture 66.
As it was previously described in conjunction with the embodiment of the invention illustrated in
Once the two retainers 72 have gripped the suture 66, the robotic mechanism 38 is operated to withdraw the retainer deformation assemblies 144 and pusher members 126, suitable cutters are then utilized to trim the suture 66. This may be accomplished in the manner disclosed in the aforementioned U.S. patent application Ser. No. 09/556,458 filed May 3, 2000.
A plurality of retainer and suture assemblies may be utilized to effect the linear apposition of body tissue in the manner illustrated in
The linear apposition of the layers 116 and 118 of body tissue in the manner illustrated in
Although only a single suture 66 has been illustrated in
In
Although it is preferred to utilize the robotic mechanism 38 to position the anchors 60, sutures 66 and retainers 72, they could be manually positioned in the body tissue if desired. For example, the anchors could be positioned in either hard or soft body tissue in the manner disclosed in U.S. Pat. No. 5,527,343 or 6,033,430. However, it is preferred to utilized the robotic mechanism 38 to position the anchors 60, sutures 66 and retainers 72 in the manner previously described in order to facilitate accurate positioning and tensioning of the sutures with minimally invasive surgery.
Tissue Positioning Assembly
A tissue positioning assembly 200 (
The tissue positioning assembly 200 includes a long thin member 202 connected with and moved by the robotic mechanism 38. The long thin member 202 has a leading end portion 204 which is utilized to pierce the layers 116 and 118 of body tissue 64. The leading end portion 204 of the long thin member 202 is pointed to facilitate piercing imperforate surface areas on the layers 116 and 118 of body tissue 64.
The long thin member 202 is illustrated in
The tissue positioning assembly 200 may be utilized in association with two or more pieces of bone. Thus, the long thin member 202 could be moved across a fracture or break in a bone or could extend through a main portion of a bone and a bone fragment during interconnection of the separate portions of the bone in a manner similar to that disclosed in U.S. Pat. No. 6,045,551. Similarly, the tissue positioning assembly 200 may be used with both hard and soft body tissue, as disclosed in U.S. Pat. No. 5,527,343 and/or U.S. patent application Ser. No. 09/789,621 filed Feb. 21, 2001, by Peter M. Bonutti and entitled Method of Securing Body Tissue.
The leading end portion 204 of the long thin member 202 is expandable from the contracted condition of
As the long thin member 202 is pulled upward, the expanded leading end portion 204 (
The force on the lower layer 118 of body tissue pulls the lower layer of body tissue upward toward the upper layer 116 of body tissue, eliminating space 208 (
The tissue positioning assembly 200 may be used to move the layers 116 and 118 of body tissue together to a desired position in a patient's body. Thus, after the upper and lower layers 116 and 118 of body tissue 64 have been moved into engagement (
If desired, a cannulated anchor 216 (
The pusher member 220 applies an axial force to the cannulated anchor 216. This force slides the anchor 216 along the long thin member 200 to move the anchor 216 through the upper (as viewed in
As the anchor 216 moves through the lower layer 118 of body tissue to a position adjacent to the expanded leading end portion 204, the leading end portion 204 is returned to the contracted condition of
The long thin member 202 is then withdrawn from the body tissue 64 and, contemporaneously with withdrawal of the long thin member 202, the anchor 216 is pivoted or toggled to the orientation of the anchor 60 in
A retainer 72 is then pressed against the upper layer 116 of body tissue by a retainer pusher member, corresponding to the retainer pusher member 126 of
The cannulated anchor 216 has been illustrated as having a fustro conical leading end 226 which is connected with a cylindrical body 228. The conical configuration of the leading end 226 of the anchor facilitates movement of the anchor through the body tissue 64 under the influence of force applied against the trailing end of the anchor by the pusher member 220. However, the anchor 216 could have a different configuration, for example, a configuration corresponding to the configuration of the anchors
The long thin member 202 is moved into the body tissue 64, the leading end portion 204 expanded, and the long thin member pulled upward, as viewed in
In the embodiment illustrated in
The anchor 60 may be pivoted or toggled in the layer of body tissue 118 in response to axially downward movement of the push rod 112 (
After the anchor 60 has been pivoted to the desired orientation in the body tissue 118, the long thin member 202 is withdrawn from the two layers 116 and 118 of body tissue 64. Before this can be done, the leading end portion 204 of the long thin member 202 is operated from the expanded condition of
Although the anchor 60 has been described above as moving only part way through the lower layer 118 of body tissue, the anchor 60 could be moved completely through the lower layer 118 of body tissue and into the orientation shown in
It is contemplated that it may be desired to grip the two layers 116 and 118 of body tissue with a clamping action. When this is to be done, a tubular cylindrical gripper member 232 is pressed against the surface 134 on the upper (as viewed in
The anchor 60 is moved along the long thin member 202 into the body tissue 64 at a location offset to one side of and disposed adjacent to the long thin member 202. The tissue positioning assembly 200 (
The gripped body tissue 64 can be moved to any desired position in the patient's body by moving the long thin member 202 and gripper member 232. Thus, the long thin member 202 and gripper member 232 can be moved upward, downward, and/or sideward while gripping the body tissue 64. The long thin member 202 and gripper member 232 can be moved manually or by the robotic mechanism 38 to move the body tissue 64 to a desired location in a patient's body.
While the anchor 60 is pushed through the two layers 116 and 118 of body tissue by the pusher member 108 as previously described in conjunction with
Once the anchor 60 has been moved to a desired position relative to the body tissue 64, the long thin member 202 and gripper member 232 (
It is preferred to have the tissue positioning assembly 200, the inserter member 102, and the pusher member 108 be part of the robotic mechanism 38. The force transmitted from the robotic mechanism to the inserter member 102 and pusher member 108 enables the anchor 60 to be pushed into the body tissue 64 with a desired force. However, it should be understood that the tissue positioning assembly 200, the inserter member 102, and the pusher member 108 could be separate from the robotic mechanism 38 and could be manually operated.
The tissue positioning assembly 200 may also be utilized to indicate the depth to which the anchor 60 must be moved into the body tissue 64 by the pusher member 108. The leading ending portion 204 of the long thin member 202 (
An encoder connected with a drive assembly in the robotic mechanism 38 may be utilized to indicate the depth to which the long thin member 202 is moved into the patient's body. By comparing the depth of the thin member 202 in the patient's body with the depth to which the gripper member 232 is moved into the patient's body, the thickness of the body tissue 64 can be determined. This enables the robotic mechanism 38 to move the inserter member 102 to a position in engagement with the upper surface 134 of the layer 116 of body tissue 64. It also enables the robotic mechanism 38 to be operated to move the pusher member 108 through a distance sufficient to push the anchor 60 through both the upper layer 116 of body tissue and the lower layer 118 of body tissue to the position corresponding to the position illustrated in
When the tissue positioning assembly 200, inserter member 102, and pusher member 108 are to be manually moved relative to the body tissue 64, indicia to indicate the depth of movement of the various members may be provided on the outside of various members. The indicia may be numerical indicia indicating the depth of insertion of a member into the body tissue. Alternatively, the indicia may be colored bands or other markings. If the indica is to be colored bands, the indicia may be similar to the indicia disclosed in U.S. Pat. No. 6,056,772.
Once the anchor 60 (
A retainer deformation assembly having the same construction as the retainer deformation assembly 144 (
Once the body tissue has been gripped between the anchor 60 and the retainer 72 and the retainer secured to the suture 66, the tissue positioning assembly 200 is disengaged from the body tissue as noted above.
It is contemplated that the leading end portion 204 of the long thin member 202 may include a resilient panel 240 (
When the leading end portion 204 of the long thin member 202 is to be expanded, fluid under pressure is conducted through a passage 250 in the long thin member to the annular recess 246 in the leading end portion of the long thin member. This fluid pressure is applied against an inner side surface of the resilient panel 240. The fluid pressure forces the resilient panel 240 to expand outward to the annular configuration illustrated in solid lines in
When relatively large forces are to be transmitted from the leading end portion 204 of the long thin member 202 to the body tissue 64, it may be preferred to utilize a liquid to effect radial expansion of the panel 240. When somewhat smaller forces are to be transmitted from the long thin member 202 to the body tissue 64, the resilient panel 240 may be expanded under the influence of gas pressure.
The long thin member 202 has a pointed end 254 which is utilized to pierce imperforate areas on upper and lower surfaces of the upper layer 116 of body tissue and on upper and lower surfaces of the lower layer 118 of body tissue. The pointed end 254 of the long thin member 202 is coaxial with the longitudinal central axis of the long thin member and has a conical configuration. The pointed end 254 of the long thin member 202 is immediately ahead of and coaxial with the resilient panel 240.
The resilient panel on the leading end portion 204 of the long thin member may be formed of any desired resilient material which can be expanded under the influence of fluid pressure. It is contemplated that the resilient panel 240 will be formed of a polymeric material. The remainder of the long thin member 202 may be formed of either metal or a polymeric material.
An alternative embodiment of the long thin member 202 is illustrated in
When the leading end portion 204 is in the contracted condition, the resilient panel 240 is disposed in the position indicated in dash lines in
In the embodiment of the long thin member 202 illustrated in
Pulling upward, in the manner indicated by an arrow 276 in
The longitudinally extending elements 260 of
Although the long thin member 202 has been illustrated in
The leading end portion 204 of the long thin member 202 would then be expanded in the bone, under the influence of fluid pressure and/or force transmitted through the long thin member. Expansion of the leading end portion 204 of the long thin member 202 would deflect the relatively soft consellous bone enclosed by the hard cortical outer layer of bone. This would result in the long thin member being secured with the bone.
After the leading end portion 204 of the long thin member 202 has been expanded in a bone, the gripper member 232 (
In the embodiment illustrated in
When the tissue positioning assembly 200 is to be used in association with a fractured bone or bone fragments, the long thin member 202 is moved through portions of the bone while the leading end portion 204 of the long thin member is in the contracted condition. Once the leading end portion 204 of the long thin member 202 has moved through portions of the bone separated by a fracture or break, the leading end portion of the long thin member may be expanded. The expanded leading end portion 204 of the long thin member 202 would engage an outer surface of a portion of a bone in the same manner as in which the expanded leading end portion engages an outer surface of the tissue layer 118 in
A gripper member, corresponding to the gripper member 232 of
In the embodiment of the tissue positioning assembly 200 illustrated in
When the tissue positioning assembly 200 is to be utilized to position the layers 116 and 118 of the body tissue 64 relative to each other, the long thin member 202 is extended through the upper (as viewed in
Once the long thin member 202 (
In order to close a space 208 between the upper layer 116 and the lower layer 118 body tissue 64, the long thin member is pulled upward as indicated by the arrow 212 in
Once the two layers 116 and 118 of body tissue have been moved to a desired position in the patient's body by the tissue positioning assembly 200, the anchor 60 (
While the anchor 60 is being pushed into the body tissue 116 and the body tissue 118, an upwards force 212 is transmitted from the long thin member 202 through the external thread convolution 278 to the lower layer 118 of body tissue. This force holds the lower layer of body tissue in engagement with the upper layer 116 of body tissue in the manner illustrated schematically in
It is contemplated that the long thin member 202 may be utilized as part of a fastener to interconnect the two layers 116 and 118 of body tissue in the manner illustrated schematically in
The retainer deformation assembly 144 can then be utilized to deform the retainer 72 in the manner previously discussed in conjunction with
The long thin member 202, the external thread convolution 278, and the retainer 72 may be formed of either biodegradable or non-biodegradable material. When the long thin member 202, external thread convolution 278 and retainer 72 are formed of biodegradable material, they will degrade and be absorbed by the patient's body with passage of time. However, when the long thin member 202, external thread convolution, and retainer 72 are formed of non-biodegradable material, they are effective to maintain the two layers 116 and 118 of body tissue in engagement with each other, in the manner illustrated in
The long thin member 202 and external thread convolution 278 are illustrated in
It is believed that it may be particularly advantageous to utilize the external thread convolution 278 in association with the long thin member 202 when pieces of bone are to be positioned relative to each other. Thus, the long thin member 202 may be moved through a passage drilled or formed in another manner, in one piece of bone and the external thread convolution moved into engagement with a second piece of bone. The long thin member 202 would then be rotated about its central axis to screw the external thread convolution 278 into the second piece of bone. Force applied to the long thin member 202 could then be utilized to pull the second piece of bone into engagement with the first piece of bone.
It is also contemplated that the long thin member 202 and external thread convolution 278 may be advantageously utilized to close a fracture or break in a bone. This is because the thread convolution 278 may engage one portion of the bone to enable it to be pulled into engagement with another portion of the bone. Once the two portions of the bone have been pulled into engagement with each other, they may be interconnected in the manner disclosed in U.S. Pat. No. 6,117,160. Alternatively, they may be interconnected by securing a retainer 72 to the long thin member 202 in the manner previously discussed herein.
Securing With Suture And Retainer
In the embodiments of the invention illustrated in
The suture 66 is sewn through the two layers 116 and 118 of body tissue using a needle or other known device. The suture is moved through the body tissue 64 by the robotic mechanism 38. It is contemplated that the magnetic suturing system and method disclosed in the aforementioned U.S. patent application Ser. No. 10/005,652, will be used by the robotic mechanism 38. Alternatively, the needle could be manually moved through the two layers 116 and 118 of body tissue 64.
The suture 66 has a connector section 280 (
While the suture 66 is being tensioned with the predetermined force 70, the retainer 72 is pressed against the body tissue 64 by the retainer pusher member 126. The retainer pusher member 126 is pressed against the retainer 72 by the pusher drive assembly 128. The pusher drive assembly 128 causes the retainer pusher member 126 to press the retainer 72 against the body tissue 64 with a predetermined force indicated at 74 in
While the retainer 72 is pressed against the body tissue, the retainer deformation assembly 144 deforms a retainer 72 to grip the two leg sections 282 and 284 of the suture 66. Thus, the outer member 156 is moved axially downward, as viewed in
Although the retainer has been illustrated in
In order to facilitate positioning of the suture 66 (
Similarly, iron particles may be embedded in the suture retainer 72. To move the suture retainer 72 to a desired position in the patient's body, a magnet is positioned close enough to the retainer to attract the iron particles in the retainer. The magnet is then moved relative to the body tissue to move the suture retainer 72 relative to the body tissue. The magnet may be positioned inside the patient's body or outside the patient's body. The magnet may be an electromagnet or a permanent magnet.
When iron particles are to be provided in the suture 66 and/or retainer 72, the suture and/or retainer may advantageously be formed of a biodegradable material. As the biodegradable material of the suture 66 and/or retainer 72 degrades in the patient's body, the iron particles also degrade. The iron particles are subsequently absorbed by the patient's body.
Staple—Bonded
Leg Ends
In the embodiments of the invention illustrated in
When the upper and lower layers 116 and 118 of the body tissue 64 are to be interconnected, the long thin member 202 (
Once the layers 116 and 118 of body tissue 64 have been gripped as illustrated schematically in
Force transmitting members 312 and 314 (
While the end portions 302 and 304 of the staple legs 306 and 308 are pressed together, ultrasonic vibratory energy is transmitted to the staple 300 to effect the heating of the end portions 302 and 304 of the staple legs 306 and 308 and a bonding of the staple legs together. To this end, ultrasonic vibratory energy is transmitted from the force transmitting member 312 to the staple legs 306 and 308. This results in the force transmitting member 312 functioning as a horn for ultrasonic vibratory energy. The force transmitting member 314 functions as an anvil.
The apparatus for transmitting ultrasonic vibratory energy to the staple legs 306 and 308 may have a construction and mode of operation which is similar to the construction and mode of operation of the apparatus disclosed in U.S. Pat. Nos. 5,836,897 and 5,906,625 and in U.S. patent application Ser. No. 09/524,397. However, it should be understood that the staple legs 306 and 308 could be heated with devices other than sources of ultrasonic vibratory energy. For example, a laser and/or resistance wire could be used to heat the staple legs 306 and 308.
The staple 300 is formed of a biodegradable polymeric material. However, staple 300 may be formed of any one of many different type of materials, including polymers of lactic acid, lactides, l-lactides, and isomers of lactic acids and/or lactides. Although it is believed that it may be desired to form the staple 300 of polycaperlactone, other known biodegradable or non-biodegradable polymers may be utilized to form the staple 300.
To effect a bonding of the end portions 302 and 304 of the staple legs 306 and 308 together, the material of the end portions of the staple legs is heated to a temperature in its transition temperature range by the application of ultrasonic vibratory energy to the end portions 302 and 304 of the staple legs 306 and 308. This results in the polymeric material of the end portions 302 and 304 of the staple legs 306 and 308 changing from a rigid solid condition in which it has a fixed form to a soft or viscous condition. The material of the staple legs 306 and 308 adjacent to the end portions 302 and 304 is not heated into its transition temperature range and maintains its original configuration.
After the material the end portions 302 and 304 of the staple leg 306 and 308 has been heated into the transition temperature range and has a soft moldable condition, the material moves under the influence of the force applied against the staple legs 306 and 308 by the force transmitting members 312 and 314. The heated material of the staple legs 306 and 308 molds itself together and blends at the end portions 302 and 304 of the suture legs 306 and 308. The staple leg end portions 302 and 304 are cooled to a temperature below the transition temperature range of the material of the staple 300 and a secure bond is obtained between the polymeric material of the end portion 302 and the end portion 304 of the staple legs. This secure bond prevents a springing back of the resilient staple legs 306 and 308 toward their initial positions (
Although only a single staple 300 has been illustrated in
One or more of the staples 300 and/or the anchors 60, sutures 66 and retainers 72 may be used for purposes other than the interconnecting of layers 116 and 118 of body tissue. They may be used in association with the repair of cartilage, pancreas, kidney, a stomach, a colon, etc. They may also be utilized in open or endoscopic surgery and may be applied by a robotic mechanism, similar to the robotic mechanism 38, or may be manually applied.
Additionally, they may be utilized for many different purposes, including rotator cuff repair, meniscus repair, the attachment of soft tissue, such as a ligament or tendon to bone, interconnection of various soft tissues to each other, and interconnections of portions of bone, or with many different types of surgical implants, such as a prosthesis in a patient's body.
In the embodiment of
The tissue positioning assembly 200 of
Staple—Bonded
Leg Sides
The sides of legs of a staple 330 (
When the staple 330 (
The staple 330 enters the body tissue 334, a connector or bight portion 346 of the staple 330 moves into engagement with a pair of anvils 350 and 352 (
Continued downward movement of the pusher plate 338 causes force transmitting members or lands 356 and 358 connected to the pusher plate 338 to press against the connector or bight portion 346 of the staple 330 (
Longitudinally extending side surfaces of the staple legs 342 and 344 are disposed in engagement with each other when the staple 330 is in the bent or deflected condition of
Once the staple 330 has been bent or deformed to grip the body tissue 334 in the manner illustrated schematically in
To effect a heating of the legs 342 and 344 of the staple, ultrasonic vibratory energy is transmitted from the land or force transmitting member 356 to the staple 330. As this is done, the land or force transmitting member 356 functions as a horn for ultrasonic vibratory energy. The opposite land or force transmitting member 358 functions as an anvil of the ultrasonic vibratory energy application system. The ultrasonic vibratory energy application system may have a construction similar to the construction disclosed in the aforementioned U.S. Pat. Nos. 5,836,897 and 5,906,625 or in U.S. patent application Ser. No. 09/524,397. It should be understood that other known devices could be used to heat the staple 330. Thus, an electrical resistance wire heater or a laser could be used to heat the staple 330.
The staple 330 is formed of a polymeric material. The ultrasonic vibratory energy transmitted to the staple 330 from the force transmitting member 356 is effective to heat the polymeric material of the staple legs 342 and 344 into a transition temperature range for the material. When the material of the staple legs 342 and 344 is cooled, a bond is formed between the staple legs in the same manner as previously explained in conjunction with the staple 300 of
Once the legs 342 and 344 of the staple have been bonded together, the staple is released or disengaged from the anvils 350 and 352 by an injector spring 362 having legs 364 and 366 (
It is contemplated that the staple mechanism 332 may have any one of many known constructions. It is also contemplated that the staple 330 could have a configuration other than the configuration illustrated in
The stapling mechanism 332 has a general construction and mode of operation which is similar is to the construction and mode of operation of a known stapling mechanism disclosed in U.S. Pat. No. 5,289,963. However, this known stapling mechanism does not bond the legs of a staple together. By bonding the legs 342 and 344 of the staple 330 together, a resilient springing back of the legs toward their initial positions and a resulting release of the body tissue 334 is prevented.
The staple 330 (
The staple 330 will be utilized for tissue repair within a patient's body and in the locations on the surface of the patient's body. Regardless of whether the stapling mechanism 332 is used to staple outside of a patient's body or within the patient's body, the stapling mechanism may advantageously be utilized as part of the robotic mechanism 38 of
The stapling mechanism 332 is illustrated in
Although only a single staple 330 is illustrated in
Implant of Viable Tissue Components
Rather than using the staple 330 to connect the surgical mesh 380 with the body tissue 334, the staple 330 may be used to connect a scaffold or framework 382 (
When the scaffold or framework 382 is formed of a non-biodegradable material, body tissue will grow through the scaffold or framework so that the scaffold becomes embedded in new tissue growth. When the scaffold or framework 382 is formed of a biodegradable material, the scaffold will eventually degrade and be absorbed by body tissue. The scaffold 382 may have fibers of biodegradable material randomly arranged in the manner illustrated schematically in
It is contemplated that the scaffold or framework 382 may have either a flexible or rigid construction. The scaffold 382 could be formed of a biodegradable material such as polyglycolic acid or polylactic acid. If desired, the scaffold or framework 382 could be formed of fibrous connective materials such as portions of body tissue obtained from human and/or animal sources. The scaffold or framework 382 may be formed of collagen or submucosal tissue.
The scaffold or matrix 382 forms a supporting framework for tissue inductive factors and viable tissue components 384. The viable tissue components 384 may be mesenchymal cells which are introduced into the scaffold or framework in the operating room. Thus, the matrix or scaffold 382 may be constructed at a location remote from an operating room. After the scaffold 382 has been transported to the operating room, the viable tissue components 384, such as mesenchymal cells, may be introduced into the scaffold.
It is contemplated that the matrix or scaffold 382 may contain viable tissue components 384 which include stem cells and/or fetal cells. The stem cells and/or fetal cells may be introduced into the matrix or scaffold 382 in the operating room. It is contemplated that tissue growth inductive factors may be provided in the matrix or scaffold 382 along with any desired type of precursor cells. The scaffold or matrix 382 may also contain viable tissue components 384 which are viable platelets centrifuged from blood in a manner similar to that described in U.S. patent application Ser. No. 09/483,676, filed Jan. 14, 2000 and U.S. Pat. No. 6,174,313. The viable tissue components 384 may be fragments harvested from a patient in the manner disclosed in the aforementioned U.S. Pat. No. 6,174,313.
The scaffold or matrix 382 may have a layered construction with each of the layers being formed at different materials. Each of the layers of the scaffold or matrix may be impregnated with a different material and/or contain different viable tissue components 384. For example, precursor cells may be provided in one layer of the scaffold or matrix 382 and tissue growth inductive factors and/or antibiotics may be provided in another layer of the scaffold or matrix. The scaffold or matrix 382 may be formed of body tissue such as allograft or autograft. The viable tissue components 384 in the scaffold or matrix 382 may be obtained from the patient or from another human being. Alternatively, the viable tissue components 384 may be obtained from an animal.
The scaffold 382 and viable tissue components 384 may be utilized to create organ or gland structure or tissue, such as structural tissue of a pancreas, liver, or kidney. The scaffold or matrix 382 and viable tissue components 384 may be used in the repair of components of a patient's cardiovascular system including the heart and/or blood vessels. It should be understood that a plurality of different types of viable cells may be provided on a single three dimensional matrix or scaffold 382.
The scaffold 382 and viable tissue components 384 may advantageously be positioned in the patient's body by the robotic mechanism 38. When the scaffold 382 and viable tissue components 384 are to be positioned in the patient's body by the robotic mechanism 38, the scaffold and viable tissue components are moved through the limited incision 52 (
When the scaffold or matrix 382 (
The tissue positioning assembly 200 (
A gripper member 232 (
The long thin member 202 (
The viable tissue components 384 may be positioned in the patient's body in ways other than using the scaffold or matrix 382. Thus, body tissue components, including viable body tissue components 384, may be harvested from a human or animal body in the manner disclosed in the aforementioned U.S. Pat. No. 6,174,313. The tissue components may then be shaped to form a body having a desired configuration. The tissue components may be shaped using a press in the manner disclosed in U.S. Pat. No. 6,132,472. Alternatively, the tissue components may be shaped to a desired configuration by a molding process. The molding process may be performed using a press similar to any one of the presses disclosed in U.S. Pat. No. 6,132,472. Alternatively, the molding process may be performed using an open mold. The resulting shaped body of tissue components, including viable tissue components, may be secured in a patient's body using the robotic mechanism 38 and one or more of the fasteners disclosed herein.
Tissue Retractors
The robotic mechanism 38 (
The tissue retractor assembly 392 (
As the bladder or balloon expands, portions of body tissue 406 are deflected under the influence of force applied to the body tissue by the bladder or balloon 402. If desired, the bladder or balloon 402 may have a toroidal configuration with a central passage so that surgical instruments may be inserted through the balloon to a working space 404 offset to the right (as viewed in
The tubular shaft 398 has a central passage through which fluid, such as a liquid or gas, may be conducted to the bladder or balloon 402 to effect expansion of the bladder or balloon from the contracted condition to the expanded condition. The shaft 398 and cannula or scope 396 are connected with the robotic mechanism 38 (
It is contemplated that the tissue retractor assembly 392 may have a construction which is different than the construction illustrated in
If the tissue retractor assembly is to effect separation of body tissues along naturally occurring planes, the robotic mechanism 38 may be operated to move the tissue retractor assembly 392 to the desired position in a patient's body where the balloon or bladder 402 is filled with fluid to effect expansion of the bladder or balloon to the condition illustrated in solid lines in
It is contemplated that the balloon or bladder 402 may be left in a patient's body. When this is to be done, the balloon or bladder 402 may be formed of a biodegradable material. Of course, components of the retractor assembly 392 other than the balloon bladder 402 may be formed of biodegradable material.
A tissue retractor assembly may be utilized to separate bones at a joint. In
Once the tissue retractor assembly 410 has been positioned at a desired location in the shoulder joint 412, the robotic mechanism 38 effects expansion of a balloon or bladder in the tissue retractor assembly 410 from a contracted condition to an expanded condition. This effects movement of the achromium 416 relative to the rotator cuff 418. This increases the space in the shoulder joint for the surgeon to work on the body tissue. The manner in which the tissue retractor assembly 410 is used in the shoulder joint 412 is similar to the manner disclosed in the aforementioned in U.S. Pat. No. 6,277,136.
In
When a tissue retractor assembly is to be utilized to create space in a joint in a patient's spinal column, the contracted tissue retractor assembly may be inserted between adjacent vertebrae. A balloon or bladder in the tissue retractor assembly is then expanded under the influence of fluid pressure to increase the space between the vertebrae. Depending upon the construction of the tissue retractor assembly and the position where it is located in the patient's spinal column by the robotic mechanism 38, the expansion of the tissue retractor assembly can separate adjacent vertebrae without significantly changing the spatial orientation of vertebrae relative to each other. Alternatively, the tissue retractor assembly may be positioned by the robotic mechanism 38 at a location where expansion of the tissue retractor assembly results in a tilting or pivoting movement of one vertebra relative to an adjacent vertebra. The tissue retractor assembly may have any one of the constructions disclosed in the aforementioned U.S. Pat. Nos. 6,042,596 and 6,277,136.
A tissue retractor assembly 422 (
Once the robotic mechanism 38 has been operated to position the tissue retractor assembly relative to the vertebra 424, the robotic mechanism effects expansion of a bladder or balloon 426 from a contracted condition to the expanded condition illustrated schematically in
The tissue retractor assembly 422 is subsequently contracted from the expanded condition of
The balloon or bladder 426 may be formed of a biodegradable material and filled with bone growth inductive factors. The bone growth inductive factors may include bone particles and bone morphogenetic protein. Viable tissue components may be provided in the balloon or bladder 426. The balloon or bladder 426 will degrade with the passage of time and enable bone or other tissue to grow in the space created in the vertebra 424. The balloon or bladder 426 may be filled with a patient's body tissue components harvested in the manner disclosed in U.S. Pat. No. 6,174,313.
In
Threaded Fasteners
The robotic mechanism 38 may also be utilized to secure body tissue with a threaded fastener 440 as illustrated in
The robotic mechanism 38 includes a programmable computer 444 (
The threaded fastener 440 includes a head end portion 456 with a recess 458 which receives a polygonal projection 460 from the fastener drive member 446. Rotation of the fastener drive member 446 by the motor 448 causes the projection 460 to transmit drive torque to the head end portion 456 of the fastener 440.
As the fastener 440 is rotated, a thread convolution 462 on a shank portion 464 engages body tissue. The thread convolution 462 has a spiral configuration. The thread convolution cooperates with the body tissue to pull the threaded fastener into the body tissue as the threaded fastener is rotated.
By utilizing the robotic mechanism 38 to manipulate the fastener 440, the fastener can be accurately positioned relative to body tissue. The output from the force measurement assembly 450 to a computer 444 enables the force, that is resistance to rotation on the threaded fastener 440, to be controlled during rotation of the fastener. This prevents the application of excessive force to the body tissue. In addition, the position sensor 452 enables the distance to which the fastener 440 is moved into the body tissue to be accurately controlled.
Implant
In addition to fasteners to secure tissue in a patient's body, the robotic mechanism 38 may be utilized to position prosthetic implants in a patient's body. During joint replacement surgery and other surgical procedures, prosthetic implants may be placed in a patient's body. The robotic mechanism 38 may be utilized to control movement of a cutting tool during resection of bone in a patient's body.
It is contemplated that the joint replacement surgery may include knee joint replacement. The computer 38 may be utilized to effect a cutting of end portions of a tibia and/or femur in the manner disclosed in U.S. patent application Ser. No. 09/976,396 filed Oct. 11, 2001, by Peter M. Bonutti and entitled Method of Performing Surgery. In addition, the robotic mechanism 38 may be utilized to position a prosthetic implant, such as a tibial tray 470 (
During the knee replacement operation, the robotic mechanism 38 effects a resection of both the tibia 474 and femur 480 in the leg 476 of the patient. The robotic mechanism 38 then moves a force transmitting member 484 to move the keel 478 of the tibial tray 470 through a limited incision 488 in the leg 476 of the patient.
The robotic mechanism 38 includes a programmable computer 444 which is connected with the force transmitting member 484 by a motor 492. Operation of the motor 492 is effective to move the force transmitting member and tibial tray 470 relative to the tibia 472 to force the keel 478 of the tibial tray 470 into the tibia 472. A force measurement assembly 494 is connected with the force transmitting member 484 and the computer 444. The output from the force measurement assembly 494 is indicative of a resistance encountered by the force transmitting member 484 in moving the tibial tray 470 into the tibia 474. By monitoring the output from the force measurement assembly 494, the computer 444 can provide an indication to a surgeon of the resistance being encountered to movement of the keel 478 of the tibial tray into the tibia 474 in the patient's leg 476.
A position sensor 496 is connected with the force transmitting member 484 and the computer 444. The position sensor 496 has an output indicative of the position of the force transmitting member 484 relative to the proximal end portion 472 of the tibia 474. This enables a surgeon to monitor the extent movement of the keel 478 on the tibial tray into the proximal end portion 472 of the tibia 474.
The motor 492 has an operating mechanism which effects a pounding of the tibial tray 470 into the proximal end portion 472 of the tibia 474 in much the same manner as in which a hammer has previously been utilized to pound the tibial tray 470 into the 474. However, it is believed that it may be desired to effect the operation of the motor 492 to move the force transmitting member 484 and tibial tray 470 with a continuous insertion stroke without pounding on the tibial tray. This would result in the tibial tray 470 being slowly pressed into the proximal end portion 472 of the tibia 474 with a continuous movement which is monitored by the output from the force measurement assembly 494 and the position sensor 496. By moving the tibial tray 470 with a smooth insertion stroke, accurate insertion of the tibial tray into the tibia 474 is facilitated.
Once the robotic mechanism 38 has been utilized to position the tibial tray 470, a related component of a replacement knee joint may be positioned on the femur 480 by the robotic mechanism. The robotic mechanism 38 may also be utilized to check stability of the knee joint in flexion, extension, and/or rotation. In the manner in which the robotic mechanism is utilized to perform these functions is the same as disclosed in the aforementioned U.S. patent application Ser. No. 09/976,396.
Imaging
It is contemplated that various imaging arrangements may be utilized to enable a surgeon to monitor a surgical procedure, while using the robotic mechanism 38. In the embodiment illustrated in
A pair of endoscopes 502 and 504 (
The viewing screen of the monitor 48 may be divided into two sections with one section being a monoscopic, that is, two dimensional, image resulting from the output of the endoscope 502. The other section of the screen of the monitor 48 has a monoscopic, that is, two dimensional, image resulting from the output of the endoscope 504. The monitor 508 may be utilized to provide a steroscopic image, that is, a three dimensional image, resulting from the output of both of the endoscopes 502 and 504. The manner in which the stereoscopic images may be obtained from the two endoscopes 502 and 504 at the monitor 508 is similar to that disclosed in U.S. Pat. Nos. 4,651,201 and 5,474,519.
By providing a three dimensional image at the monitor 508, a surgeon has a realistic view of the area where the robotic mechanism 38 is performing a surgical procedure. This enables the surgeon to conduct stereotactic surgery.
A navigation system may also provide inputs to the computer 44 to assist in the control of the robotic mechanism 38 and the performance of the surgical procedure. The navigation system may include transmitters connected with the robotic mechanism 38. Transmitters may also be connected with the endoscope 502 and 504.
If desired, a plurality of navigation members may be connected with tissue in the patient's body by the robotic mechanism 38. Reflective end portions of the navigation members are disposed in the patient's body and are illuminated by light conducted along fiber optic pathways in the endoscopes 502 and 504. Images of the ends of the navigation members are conducted from the endoscopes 502 and 504 to the monitors 48 and 508. The images of the ends of the navigation members enable a surgeon to determine the relative positions of body tissue in the patient's body during performance of a surgical procedure with the robotic mechanism.
Alternatively, the navigation members may extend through the patient's skin into engagement with one or more tissues in a patient's body. Reflective ends of the navigation members would be disposed outside of the patient's body and would be visible to the surgeon. In addition, the reflective ends of the navigation members would be visible to an optical sensing system connected with the computer 44 and robotic mechanism 38. Relative movement between the reflective ends of the navigation members would be sensed by the optical sensing system and would enable the computer 44 to determine the relative positions of tissues in the patient's body. In addition, relative movement between the reflective ends of the navigation members could be visually sensed by the surgeon and would enable the surgeon to determine the relative positions of tissues in the patient's body based on direct observation of the navigation members.
For example, the navigation members could be connected with one or more bones in a patient's body. When the reflective ends of the navigation members are disposed in the patient's body, the endoscope 502 and 504 can be used to determine the location of one or more bones relative to other tissues. When the reflective ends of the navigation members are disposed outside the patient's body, the surgeon and/or an optical sensing system can determine the location of one or more bones relative to other tissues.
Rather than using two endoscopes 502 and 504 to obtain images, an ultrasonic imaging device may be used with only one of the endoscopes. For example, the endoscope 504 could be omitted or merely turned off. A known ultrasonic imaging device may be used to provide images which are transmitted to the computer 44. The ultrasonic imaging device may be constructed and operated in a manner similar to that disclosed in U.S. Pat. Nos. 5,897,495 and 6,059,727. The images which are transmitted to the computer 44 from the ultrasonic imaging device may be used to create monoscopic images at the monitor 48. Alternatively, the images from the ultrasonic imaging device may be combined with images from the endoscope 502 to create stereoscopic images. If desired, the stereoscopic images may be created in the manner disclosed in U.S. Pat. No. 6,059,727.
The images provided by the endoscopes 502 and 504 and/or an ultrasonic imaging device enable the surgeon to monitor the performance of any of the surgical procedures disclosed herein. Additionally, various combinations of the foregoing steps may be included in the surgical procedures. For all surgical procedures, the images provided at the monitors 48 and 508 (
The robotic mechanism 38 may be utilized with a fluoroscope 520 (
The three dimensional image provided by the monitor connected with the computer 526 results from a combining of images obtained with the endoscope 524 and fluoroscope 520. The three dimensional image enables a surgeon to have a clear view of a location in a patient's body where the robotic mechanism 38 is being utilized to perform a surgical procedure. Of course, the surgical procedure performed by the robotic mechanism 38 may involve the securing of body tissue and/or a scaffold containing viable tissue components with fasteners in the manner previously explained herein. Alternatively, the surgical procedure may involve the moving and/or dissecting of body tissue with one of the retractors of
If desired, an ultrasonic imaging device may be used with either or both of the fluoroscope 520 and endoscope 524. Images obtained with the ultrasonic imaging device may be used with images from the fluoroscope and/or endoscope to provide wither stereoscopic or monoscopic images at monitors which are visible to the surgeon and correspond to the monitors 48 and 508 of
A magnetic resonance imaging unit 530 (
An endoscope 534 (
The monitor 538 may provide the surgeon a stereoscopic image, that is, a three dimensional image, resulting from outputs of the magnetic resonance imaging unit 530 and the endoscope 534. Alternatively, the imaging unit 538 may provide one monoscopic image, that is, a two dimensional image corresponding to the output of the magnetic resonance imaging unit 530 and a second monoscopic image corresponding to the output of the endoscope 534. The endoscope 534 is constructed of non-magnetic materials which are not effected by the magnetic field of the magnetic resonance imaging unit 530.
Rather than using a magnetic resonance imaging unit 530 to provide an image in association with the endoscope 534, the image may be provided by computerized tomographic scanning and/or positron emission tomography. Regardless of which of the imaging devices is utilized to provide an image of the area where surgical procedure is being conducted, it is believed that it would be advantageous to utilize the robotic mechanism 38 to conduct the surgical procedure.
Markers
In order to facilitate a surgeon's visualization of the location of articles utilized during the performance of surgical procedures by the robotic mechanism 38, markers may be provided in association with the articles. The markers which are utilized in association with one or more articles should be readily detected in an image provided by an imaging unit associated with the robotic mechanism 38. When the endoscopes 40, 502, 504, 524 and/or 534 are associated with the robotic mechanism 38, the markers should be clearly visible in an image transmitted to a monitor, such as the monitor 48, 508, and/or 538 from one or more of the endoscopes. When the fluoroscope 520 (
To facilitate locating articles with the endoscopes 40, 502, 504, 524, and/or 534, light reflective particles may be used as markers. The light reflective particles are illuminated by light conducted along fiber optic pathways in the endoscopes. The light reflective particles may be embedded in the material of the anchor 60 and the suture retainer 72. Alternatively, a light reflective coating could be provided on the exterior of the anchor 60 and/or suture retainer 72. It is also contemplated that light reflective particles could be included in the material of the suture 66.
The staples 300 and 330 (
In order to facilitate positioning of the scaffold 382 and viable tissue components 384, light reflective particles may be connected with portions of the scaffold 382. Thus, a marker formed of light reflective particle may be provided at each of the corners of the rectangular scaffold 382 illustrated in
The light reflective particles may be disposed in small groups at spaced locations on the scaffold. Alternatively, the light reflective particles may be disposed in one or more threads which extend along one or more edges of the scaffold. The light reflective particles are formed of a substance which is compatible with the patient's body and reflects light. For example, polished titanium, gold, or platinum particles could be utilized. Alternatively, crystals which reflect light may be used as markers. The crystals may be formed of a salt and dissolve in a patient's body.
When the markers are to be used with the fluoroscope 520 and endoscope 524, it is believed that it may be preferred to form the marker of a radiopaque material which is also reflective. For example, polished particles of titanium, would reflect light so as to be visible in an image transmitted from the endoscope 524 and would be radiopaque so as to be visible in an image transmitted from the fluoroscope 520. It is contemplated that the radiopaque and light reflective particles could be formed off of other materials if desired. For example, a particle which is radiopaque and another particle which is reflective may be utilized. The radiopaque particle would be visible in the image transmitted from the fluoroscope 520 and the reflective particle would be visible in an image transmitted from the endoscope 534.
The reflective radiopaque particles may be embedded in the material of the anchor 60 and suture retainer 72. In addition, the particles may be embedded in the material of the suture 66. Alternatively, the radiopaque and light reflective particles may be provided as a coating on at least a portion of the anchor 60, suture retainer 72 and/or suture 66.
When the robotic mechanism 38 of
The magnetic resonance imaging unit 530 has a relatively strong magnetic field. Therefore, markers provided in association with articles to be used during performance of a surgical procedure to be imaged with the magnetic resonance imaging unit 530 cannot be formed of a magnetic or magnetizable material. Images transmitted to the monitor 538 from the magnetic resonance imaging unit 530 (
The microcapsules may be embedded in the material of the anchor 60 and/or suture retainer 72. The microcapsules may also be embedded in the material of the staples 300 and 330. This would enable the anchor 60, suture retainer 72 and/or staples 300 and 330 to be readily visible in an image transmitted from the magnetic resonance imaging unit 530.
When articles are to be imaged with the magnetic resonance imaging unit 530, the articles may be marked by a coating of hydrophilic material. The coating of hydrophilic material absorbs body liquid and increases the contrast between the articles and the surrounding environment. For example, the staple 300 (
The scaffold 382 may have one or more fibers formed of a hydrophilic material. Alternatively, small bodies of hydrophilic material could be positioned at various locations along the periphery of the scaffold 382. It is contemplated that the entire scaffold 382 could be formed a hydrophilic material, such as collagen.
A marker which is to be used with an endoscope 40, 502, 504, 524, and/or 534 may be a luminescent material. The luminescent material may be in the form of crystals such as zinc or cadmium sulfide. Alternatively, the luminescent material may be a dye. The marker may have chemiluminescence, bioluminescence, photoluminescence or triboluminescence.
The luminescent material forming a marker may be disposed on the surface of the anchor 60, suture retainer 72, and/or the suture 66. It is contemplated that the luminescent material forming a marker may form a coating over a portion of either the staple 300 (
It is contemplated the markers for use with the endoscopes 40, 502, 504, 524 and/or 534 may be used with fasteners other than the particular fasteners enclosed herein. Thus, one or more of the various markers previously described herein may be utilized in connection with a bonded rivet of the type disclosed in U.S. Pat. No. 6,203,565. Of course, the makers may be used in association with any of the other surgical implants disclosed in the aforementioned U.S. Pat. No. 6,203,565.
The markers previously described herein may be utilized with any one of the expandable retractor assemblies 392, 410, or 422 (
The marker on the balloon or bladder 402 (
In view of the foregoing description, it is clear that the present invention relates to a method of securing either hard or soft body tissue. A robotic mechanism 38 or manual effort may be used to position a fastener relative to the body tissue. The fastener may be a suture 66, staple 300 or 330, screw 440, or other known device.
The fastener may be a suture 66 which is tensioned with a predetermined force by a robotic mechanism 38 or manual effort. The robotic mechanism 38 or manual effort may also be used to urge a retainer 72 toward body tissue 64 with a predetermined force. The suture 66 may be gripped with the retainer 72 while the suture is tensioned with a predetermined force and while the retainer is urged toward the body tissue 64 with a predetermined force.
Alternatively, the fastener may be a staple 300 or 330. A robotic mechanism 38 or manual effort may be utilized to position the staple relative to body tissue. The robotic mechanism 38 or manual effort may effect a bending of the staple 300 or 330 to move legs of the staple into engagement with each other. The legs of the staple 300 or 330 may be bonded together at a location where the legs of the staple are disposed in engagement.
Regardless of what type of fastener is utilized, a positioning apparatus 200 may be used to position the body tissue 64 before and/or during securing with a fastener. The positioning apparatus may include a long thin member 202 which transmits force to the body tissue. Force may be transmitted from an expanded end portion 204 of the long thin member 202 to the body tissue 64. A second member 232 may cooperate with the long thin member 202 to grip the body tissue. The long thin member 202 may be positioned relative to the body tissue by a robotic mechanism 38 or manual effort.
Various imaging devices may be utilized to assist in positioning a fastener, such as a rivet suture or staple, relative to body tissue. Under certain circumstances at least, it may be desirable to utilize two or more different types of imaging devices. Thus, an endoscope 534 and a magnetic resonance imaging apparatus (MRI) 530 may be utilized to provide an image. Alternatively, an endoscope 524 and a fluoroscopic device 520 may be utilized. If desired, ultrasonic imaging devices may be utilized in association with another imaging device, such as an endoscope or magnetic resonance imaging device. One or more markers may be provided on fasteners to facilitate location of the fasteners in an image.
A fastener (
It is contemplated that the robotic mechanism 38 may advantageously be utilized to position surgical implants other than fasteners in a patient's body. For example, the robotic mechanism 38 may be utilized to position a prosthesis 470 in a patient's body. If desired, the robotic mechanism 38 may be utilized to position a screw type fastener 440 at a specific location in a patient's body. The robotic mechanism 38 may be used to position a scaffold 382 containing viable tissue components relative to body tissue.
This application is a continuation of U.S. patent application Ser. No. 16/132,159, filed Sep. 14, 2018, which is a continuation of U.S. patent application Ser. No. 15/218,608, filed Jul. 25, 2016, which is a continuation of U.S. patent application Ser. No. 13/951,073 filed Jul. 25, 2013, which is a continuation of U.S. patent application Ser. No. 13/923,944 filed Jun. 21, 2013, which is a continuation of U.S. patent application Ser. No. 13/912,730 filed Jun. 7, 2013, which is a continuation of U.S. patent application Ser. No. 13/888,957 filed May 7, 2013, which is a continuation of U.S. patent application Ser. No. 10/102,413 filed Mar. 20, 2002, each of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
319296 | Molesworth | Jun 1885 | A |
668878 | Jensen | Feb 1901 | A |
668879 | Miller | Feb 1901 | A |
702789 | Gibson | Jun 1902 | A |
862712 | Collins | Aug 1907 | A |
2121193 | Hanicke | Dec 1932 | A |
2187852 | Friddle | Aug 1936 | A |
2178840 | Lorenian | Nov 1936 | A |
2199025 | Conn | Apr 1940 | A |
2235419 | Callahan | Mar 1941 | A |
2248054 | Becker | Jul 1941 | A |
2270188 | Longfellow | Jan 1942 | A |
2518276 | Braward | Aug 1950 | A |
2557669 | Lloyd | Jun 1951 | A |
2566499 | Richter | Sep 1951 | A |
2621653 | Briggs | Dec 1952 | A |
2725053 | Bambara | Nov 1955 | A |
2830587 | Everett | Apr 1958 | A |
3204635 | Voss | Sep 1965 | A |
3347234 | Voss | Oct 1967 | A |
3367809 | Soloff | May 1968 | A |
3391690 | Armao | Jul 1968 | A |
3477429 | Sampson | Nov 1969 | A |
3513848 | Winston | May 1970 | A |
3518993 | Blake | Jul 1970 | A |
3577991 | Wilkinson | May 1971 | A |
3596292 | Erb | Aug 1971 | A |
3608539 | Miller | Sep 1971 | A |
3625220 | Engelsher | Dec 1971 | A |
3648705 | Lary | Mar 1972 | A |
3653388 | Tenckhoff | Apr 1972 | A |
3656476 | Swinney | Apr 1972 | A |
3657056 | Winston | Apr 1972 | A |
3678980 | Gutshall | Jul 1972 | A |
3709218 | Halloran | Jan 1973 | A |
3711347 | Wagner | Jan 1973 | A |
3739773 | Schmitt | Jun 1973 | A |
3760808 | Bleuer | Sep 1973 | A |
3788318 | Kim | Jan 1974 | A |
3789852 | Kim | Feb 1974 | A |
3802438 | Wolvek | Apr 1974 | A |
3807394 | Attenborough | Apr 1974 | A |
3809075 | Matles | May 1974 | A |
3811449 | Gravlee | May 1974 | A |
3825010 | McDonald | Jul 1974 | A |
3833003 | Taricco | Sep 1974 | A |
3835849 | McGuire | Sep 1974 | A |
3842824 | Neufeld | Oct 1974 | A |
3845772 | Smith | Nov 1974 | A |
3857396 | Hardwick | Dec 1974 | A |
3867932 | Huene | Feb 1975 | A |
3875652 | Arnold | Apr 1975 | A |
3898992 | Balamuth | Aug 1975 | A |
3918442 | Nikolaev | Nov 1975 | A |
3968800 | Vilasi | Jul 1976 | A |
3976079 | Samuels | Aug 1976 | A |
4023559 | Gaskell | May 1977 | A |
4064566 | Fletcher | Dec 1977 | A |
4089071 | Kainberz | May 1978 | A |
4108399 | Pilgram | Aug 1978 | A |
4156574 | Boben | May 1979 | A |
4164794 | Spector | Aug 1979 | A |
4171544 | Hench | Oct 1979 | A |
4183102 | Guiset | Jan 1980 | A |
4199864 | Ashman | Apr 1980 | A |
4200939 | Oser | May 1980 | A |
4210148 | Stivala | Jul 1980 | A |
4213816 | Morris | Jul 1980 | A |
4218173 | Coindet | Aug 1980 | A |
4235233 | Mouwen | Nov 1980 | A |
4235238 | Ogiu | Nov 1980 | A |
4244370 | Furlow | Jan 1981 | A |
4257411 | Cho | Mar 1981 | A |
4259876 | Belyanin | Apr 1981 | A |
4265231 | Scheller | May 1981 | A |
4281649 | Derweduwen | Aug 1981 | A |
4291698 | Fuchs | Sep 1981 | A |
4309488 | Heide | Jan 1982 | A |
4320762 | Bentov | Mar 1982 | A |
4351069 | Ballintyn | Sep 1982 | A |
4364381 | Sher | Dec 1982 | A |
4365356 | Broemer | Dec 1982 | A |
4388921 | Sutter | Jun 1983 | A |
4395798 | McVey | Aug 1983 | A |
4409974 | Freedland | Oct 1983 | A |
4414166 | Carlson | Nov 1983 | A |
4437191 | Van Der Zat | Mar 1984 | A |
4437362 | Hurst | Mar 1984 | A |
4444180 | Schneider | Apr 1984 | A |
4448194 | Digiovanni | May 1984 | A |
4456005 | Lichty | Jun 1984 | A |
4461281 | Carson | Jul 1984 | A |
4493317 | Klaue | Jan 1985 | A |
4495664 | Bianquaert | Jan 1985 | A |
4501031 | McDaniel | Feb 1985 | A |
4504268 | Herlitze | Mar 1985 | A |
4506681 | Mundell | Mar 1985 | A |
4514125 | Stol | Apr 1985 | A |
4526173 | Sheehan | Jul 1985 | A |
4532926 | O'Holla | Aug 1985 | A |
4535772 | Sheehan | Aug 1985 | A |
4545374 | Jacobson | Oct 1985 | A |
4547327 | Bruins | Oct 1985 | A |
4556059 | Adamson | Dec 1985 | A |
4556350 | Bernhardt | Dec 1985 | A |
4566138 | Lewis | Jan 1986 | A |
4589868 | Dretler | May 1986 | A |
4590928 | Hunt | May 1986 | A |
4597379 | Kihn | Jul 1986 | A |
4599085 | Riess | Jul 1986 | A |
4601893 | Cardinal | Jul 1986 | A |
4606335 | Wedeen | Aug 1986 | A |
4611593 | Fogarty | Sep 1986 | A |
4621640 | Mulhollan | Nov 1986 | A |
4630609 | Chin | Dec 1986 | A |
4632101 | Freedland | Dec 1986 | A |
4645503 | Lin | Feb 1987 | A |
4657460 | Bien | Apr 1987 | A |
4659268 | Del Mundo | Apr 1987 | A |
4662063 | Collins | May 1987 | A |
4662068 | Polonsky | May 1987 | A |
4662887 | Turner | May 1987 | A |
4669473 | Richards | Jun 1987 | A |
4681107 | Kees | Jul 1987 | A |
4685458 | Leckrone | Aug 1987 | A |
4691741 | Affa | Sep 1987 | A |
4705040 | Mueller | Nov 1987 | A |
4706670 | Andersen | Nov 1987 | A |
4708139 | Dunbar | Nov 1987 | A |
4713077 | Small | Dec 1987 | A |
4716901 | Jackson | Jan 1988 | A |
4718909 | Brown | Jan 1988 | A |
4722331 | Fox | Feb 1988 | A |
4722948 | Sanderson | Feb 1988 | A |
4724584 | Kasai | Feb 1988 | A |
4738255 | Goble | Apr 1988 | A |
4739751 | Sapega | Apr 1988 | A |
4741330 | Hayhurst | May 1988 | A |
4749585 | Greco | Jun 1988 | A |
4750492 | Jacobs | Jun 1988 | A |
4768507 | Fischell | Sep 1988 | A |
4772286 | Goble | Sep 1988 | A |
4776328 | Frey | Oct 1988 | A |
4776738 | Winston | Oct 1988 | A |
4776851 | Bruchman | Oct 1988 | A |
4781182 | Purnell | Nov 1988 | A |
4790303 | Steffee | Dec 1988 | A |
4792336 | Hiavacek | Dec 1988 | A |
4806066 | Rhodes | Feb 1989 | A |
4817591 | Klause | Apr 1989 | A |
4822224 | Carl | Apr 1989 | A |
4823794 | Pierce | Apr 1989 | A |
4832025 | Coates | May 1989 | A |
4832026 | Jones | May 1989 | A |
4834752 | Vankampen | May 1989 | A |
4841960 | Garner | Jun 1989 | A |
4843112 | Gerhart | Jun 1989 | A |
4846812 | Walker | Jul 1989 | A |
4862812 | Walker | Jul 1989 | A |
4862882 | Venturi | Sep 1989 | A |
4869242 | Galluzo | Sep 1989 | A |
4870957 | Goble | Oct 1989 | A |
4883048 | Purnell | Nov 1989 | A |
4890612 | Kensey | Jan 1990 | A |
4895148 | Bays | Jan 1990 | A |
4898156 | Gattuma | Feb 1990 | A |
4899729 | Gill | Feb 1990 | A |
4899743 | Nicholson | Feb 1990 | A |
4899744 | Fujitsuka | Feb 1990 | A |
4901721 | Hakki | Feb 1990 | A |
4921479 | Grayzel | May 1990 | A |
4922897 | Sapega | May 1990 | A |
4924865 | Bays | May 1990 | A |
4924866 | Yoon | May 1990 | A |
4932960 | Green | Jun 1990 | A |
4935026 | McFadden | Jun 1990 | A |
4935028 | Drews | Jun 1990 | A |
4945625 | Winston | Aug 1990 | A |
4946468 | Li | Aug 1990 | A |
4954126 | Wallsten | Sep 1990 | A |
4955910 | Bolesky | Sep 1990 | A |
4957498 | Caspari | Sep 1990 | A |
4961741 | Hayhurst | Oct 1990 | A |
4963151 | Ducheyne | Oct 1990 | A |
4964862 | Arms | Oct 1990 | A |
4966583 | Debbas | Oct 1990 | A |
4968315 | Gattuma | Nov 1990 | A |
4969888 | Scholten | Nov 1990 | A |
4969892 | Burton | Nov 1990 | A |
4979949 | Matsen | Dec 1990 | A |
4990161 | Kampner | Feb 1991 | A |
4994071 | MacGregor | Feb 1991 | A |
4997445 | Hodorek | Mar 1991 | A |
4998539 | Delsanti | Mar 1991 | A |
5002550 | Li | Mar 1991 | A |
5002563 | Pyka | Mar 1991 | A |
5009652 | Morgan | Apr 1991 | A |
5009663 | Broome | Apr 1991 | A |
5009664 | Sievers | Apr 1991 | A |
5013316 | Goble | May 1991 | A |
5016489 | Yoda | May 1991 | A |
5019090 | Pinchuk | May 1991 | A |
5021059 | Kensey | Jun 1991 | A |
5031841 | Schafer | Jul 1991 | A |
5035713 | Friis | Jul 1991 | A |
5037404 | Gold | Aug 1991 | A |
5037422 | Hayhurst | Aug 1991 | A |
5041093 | Chu | Aug 1991 | A |
5041114 | Chapman | Aug 1991 | A |
5041129 | Hayhurst | Aug 1991 | A |
5046513 | Gattuma | Sep 1991 | A |
5047055 | Gattuma | Sep 1991 | A |
5051049 | Wills | Sep 1991 | A |
5053046 | Janese | Oct 1991 | A |
5053047 | Yoon | Oct 1991 | A |
5059193 | Kuslich | Oct 1991 | A |
5059206 | Winters | Oct 1991 | A |
5061274 | Kensey | Oct 1991 | A |
5061286 | Lyle | Oct 1991 | A |
5069674 | Farnot | Dec 1991 | A |
5078140 | Kwoh | Jan 1992 | A |
5078731 | Hayhurst | Jan 1992 | A |
5078744 | Chvapil | Jan 1992 | A |
5078745 | Rhenter | Jan 1992 | A |
5084050 | Draenert | Jan 1992 | A |
5084051 | Tormala | Jan 1992 | A |
5085660 | Lin | Feb 1992 | A |
5085661 | Moss | Feb 1992 | A |
5086401 | Glassman | Feb 1992 | A |
5090072 | Kratoska | Feb 1992 | A |
5098433 | Freedland | Mar 1992 | A |
5098434 | Serbousek | Mar 1992 | A |
5098436 | Ferrante | Mar 1992 | A |
5100405 | McLaren | Mar 1992 | A |
5100417 | Cerier | Mar 1992 | A |
5102417 | Palmaz | Apr 1992 | A |
5102421 | Anspach | Apr 1992 | A |
5120175 | Arbegast | Jun 1992 | A |
5123520 | Schmid | Jun 1992 | A |
5123914 | Cope | Jun 1992 | A |
5123941 | Lauren | Jun 1992 | A |
5133732 | Wiktor | Jul 1992 | A |
RE34021 | Mueller | Aug 1992 | E |
5139499 | Small et al. | Aug 1992 | A |
5141520 | Goble | Aug 1992 | A |
5147362 | Goble | Sep 1992 | A |
5152765 | Ross | Oct 1992 | A |
5154720 | Trott | Oct 1992 | A |
5156613 | Sawyer | Oct 1992 | A |
5156616 | Meadows | Oct 1992 | A |
5158566 | Pianetti | Oct 1992 | A |
5158934 | Ammann | Oct 1992 | A |
5163960 | Bonutti | Nov 1992 | A |
5171251 | Bregen | Dec 1992 | A |
5176682 | Chow | Jan 1993 | A |
5179964 | Cook | Jan 1993 | A |
5180388 | Dicarlo | Jan 1993 | A |
5183464 | Dubrul | Feb 1993 | A |
5184601 | Putman | Feb 1993 | A |
5192287 | Fournier | Mar 1993 | A |
5192326 | Bao | Mar 1993 | A |
5197166 | Meier | Mar 1993 | A |
5197971 | Bonutti | Mar 1993 | A |
5203784 | Ross | Apr 1993 | A |
5203787 | Noblitt | Apr 1993 | A |
5208950 | Merritt | May 1993 | A |
5209776 | Bass | May 1993 | A |
5217486 | Rice | Jun 1993 | A |
5217493 | Raad | Jun 1993 | A |
5219359 | McQuilkin | Jun 1993 | A |
5224946 | Hayhurst | Jul 1993 | A |
5226899 | Lee | Jul 1993 | A |
5230352 | Putnam | Jul 1993 | A |
5234006 | Eaton | Aug 1993 | A |
5234425 | Fogarty | Aug 1993 | A |
5236438 | Wilk | Aug 1993 | A |
5236445 | Hayhurst | Aug 1993 | A |
5236432 | Matsen, III et al. | Sep 1993 | A |
5242902 | Murphy | Sep 1993 | A |
5246441 | Ross | Sep 1993 | A |
5250026 | Ehrlich | Oct 1993 | A |
5250055 | Moore | Oct 1993 | A |
5254113 | Wilk | Oct 1993 | A |
5258007 | Spetzler | Nov 1993 | A |
5258015 | Li | Nov 1993 | A |
5258016 | Di Poto | Nov 1993 | A |
5261914 | Warren | Nov 1993 | A |
5266325 | Kuzma | Nov 1993 | A |
5269783 | Sander | Dec 1993 | A |
5269785 | Bonutti | Dec 1993 | A |
5269809 | Hayhurst | Dec 1993 | A |
5281235 | Haber | Jan 1994 | A |
5282832 | Toso | Feb 1994 | A |
5290281 | Tschakaloff | Mar 1994 | A |
5304119 | Balaban | Apr 1994 | A |
5306280 | Bregen | Apr 1994 | A |
5306301 | Graf | Apr 1994 | A |
5312438 | Johnson | May 1994 | A |
5315741 | Dubberke | May 1994 | A |
5318588 | Horzewski | Jun 1994 | A |
5320611 | Bonutti | Jun 1994 | A |
5324308 | Pierce | Jun 1994 | A |
5328480 | Melker | Jul 1994 | A |
5329846 | Bonutti | Jul 1994 | A |
5329924 | Bonutti | Jul 1994 | A |
5330468 | Burkhart | Jul 1994 | A |
5330476 | Hiot | Jul 1994 | A |
5330486 | Wilkinson | Jul 1994 | A |
5336231 | Adair | Aug 1994 | A |
5336240 | Metzler | Aug 1994 | A |
5339799 | Kami | Aug 1994 | A |
5343385 | Joskowicz | Aug 1994 | A |
5349956 | Bonutti | Sep 1994 | A |
5352229 | Goble | Oct 1994 | A |
5354298 | Lee | Oct 1994 | A |
5354302 | Ko | Oct 1994 | A |
5366480 | Corriveaau | Nov 1994 | A |
5370646 | Reese | Dec 1994 | A |
5370660 | Weinstein | Dec 1994 | A |
5372146 | Branch | Dec 1994 | A |
5374235 | Ahrens | Dec 1994 | A |
5376126 | Lin | Dec 1994 | A |
5382254 | McGarry | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5383883 | Wilk | Jan 1995 | A |
5383905 | Golds | Jan 1995 | A |
5391171 | Schmieding | Feb 1995 | A |
5391173 | Wilk | Feb 1995 | A |
5395308 | Fox | Mar 1995 | A |
5395371 | Miller et al. | Mar 1995 | A |
5397311 | Walker | Mar 1995 | A |
5397323 | Taylor | Mar 1995 | A |
5400805 | Warren | Mar 1995 | A |
5402801 | Taylor | Apr 1995 | A |
5403312 | Yates | Apr 1995 | A |
5403348 | Bonutti | Apr 1995 | A |
5405359 | Pierce | Apr 1995 | A |
5395033 | Byrne et al. | May 1995 | A |
5411523 | Goble | May 1995 | A |
5413585 | Pagedas | May 1995 | A |
5417691 | Hayhurst | May 1995 | A |
5417701 | Holmes | May 1995 | A |
5417712 | Whittaker | May 1995 | A |
5423796 | Shikhman | Jun 1995 | A |
5423860 | Lizardi | Jun 1995 | A |
5431670 | Holmes | Jul 1995 | A |
5411538 | Bonutti | Aug 1995 | A |
5438746 | Demarest | Aug 1995 | A |
5439470 | Li | Aug 1995 | A |
5441502 | Bartlett | Aug 1995 | A |
5441538 | Bonutti | Aug 1995 | A |
5443512 | Parr | Aug 1995 | A |
5445166 | Taylor | Aug 1995 | A |
5447503 | Miller | Sep 1995 | A |
5449372 | Schmaltz | Sep 1995 | A |
5449382 | Dayton | Sep 1995 | A |
5451235 | Lock | Sep 1995 | A |
5453090 | Martinez | Sep 1995 | A |
5456722 | McLeod | Oct 1995 | A |
5458653 | Davison | Oct 1995 | A |
5462561 | Voda | Oct 1995 | A |
5464424 | O'Donnell | Nov 1995 | A |
5464425 | Skiba | Nov 1995 | A |
5464426 | Bonutti | Nov 1995 | A |
5464427 | Curtis | Nov 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5467911 | Tsuruta | Nov 1995 | A |
5470337 | Moss | Nov 1995 | A |
5472444 | Huebner | Dec 1995 | A |
5474554 | Ku | Dec 1995 | A |
5478351 | Meade | Dec 1995 | A |
5478353 | Yoon | Dec 1995 | A |
5480403 | Lee | Jan 1996 | A |
5480440 | Kambin | Jan 1996 | A |
5486197 | Le | Jan 1996 | A |
5487216 | Demarest | Jan 1996 | A |
5487844 | Fujita | Jan 1996 | A |
5488958 | Topel | Feb 1996 | A |
5496292 | Burnham | Mar 1996 | A |
5496335 | Thomason | Mar 1996 | A |
5496348 | Bonutti | Mar 1996 | A |
5500000 | Feagin | Mar 1996 | A |
5501700 | Hirata | Mar 1996 | A |
5504977 | Weppner | Apr 1996 | A |
5505735 | Li | Apr 1996 | A |
5507754 | Green | Apr 1996 | A |
5514153 | Bonutti | May 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5520700 | Beyar | May 1996 | A |
5522844 | Johnson | Jun 1996 | A |
5522845 | Wenstrom | Jun 1996 | A |
5522846 | Bonutti | Jun 1996 | A |
5527341 | Goglewski | Jun 1996 | A |
5527342 | Pietrzak | Jun 1996 | A |
5527343 | Bonutti | Jun 1996 | A |
5528844 | Johnson | Jun 1996 | A |
5529075 | Clark | Jun 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5531759 | Kensey | Jul 1996 | A |
5534012 | Bonutti | Jul 1996 | A |
5534028 | Bao | Jul 1996 | A |
5540703 | Barker | Jul 1996 | A |
5540718 | Bartlett | Jul 1996 | A |
5542423 | Bonutti | Aug 1996 | A |
5545178 | Kensey | Aug 1996 | A |
5545180 | Le | Aug 1996 | A |
5545206 | Carson | Aug 1996 | A |
5549630 | Bonutti | Aug 1996 | A |
5549631 | Bonutti | Aug 1996 | A |
5556402 | Xu | Sep 1996 | A |
5562688 | Riza | Oct 1996 | A |
5569252 | Justin | Oct 1996 | A |
5569305 | Bonutti | Oct 1996 | A |
5569306 | Thal | Oct 1996 | A |
5573517 | Bonutti | Nov 1996 | A |
5573538 | Laboureau | Nov 1996 | A |
5573542 | Stevens | Nov 1996 | A |
5575801 | Habermeyer | Nov 1996 | A |
5580344 | Hasson | Dec 1996 | A |
5584835 | Greenfield | Dec 1996 | A |
5584860 | Goble | Dec 1996 | A |
5584862 | Bonutti | Dec 1996 | A |
5591206 | Moufarrege | Jan 1997 | A |
5593422 | Muijs Van De Moer | Jan 1997 | A |
5593425 | Bonutti | Jan 1997 | A |
5593625 | Riebel | Jan 1997 | A |
5601557 | Hayhurst | Feb 1997 | A |
5601558 | Torrie | Feb 1997 | A |
5601595 | Schwartz | Feb 1997 | A |
5607427 | Tschakaloff | Mar 1997 | A |
5609595 | Pennig | Mar 1997 | A |
5618314 | Harwin | Apr 1997 | A |
5620461 | Muijs Van De Moer | Apr 1997 | A |
5626612 | Bartlett | May 1997 | A |
5626614 | Hart | May 1997 | A |
5626718 | Phillippe | May 1997 | A |
5628446 | Geiste | May 1997 | A |
5628756 | Barker | May 1997 | A |
5630824 | Hart | May 1997 | A |
5634926 | Jobe | Jun 1997 | A |
5628751 | Sander | Jul 1997 | A |
5643272 | Haines | Jul 1997 | A |
5643274 | Sander | Jul 1997 | A |
5643293 | Kogasaka | Jul 1997 | A |
5643295 | Yoon | Jul 1997 | A |
5643320 | Lower | Jul 1997 | A |
5643321 | McDevitt | Jul 1997 | A |
5645553 | Kolesa | Jul 1997 | A |
5645597 | Krapiva | Jul 1997 | A |
5645599 | Samani | Jul 1997 | A |
5649940 | Hart | Jul 1997 | A |
5649955 | Hashimoto | Jul 1997 | A |
5649963 | McDevitt | Jul 1997 | A |
5651377 | O'Donnell | Jul 1997 | A |
5658313 | Thal | Aug 1997 | A |
5660225 | Saffran | Aug 1997 | A |
5662658 | Wenstrom | Sep 1997 | A |
5665089 | Dall | Sep 1997 | A |
5665109 | Yoon | Sep 1997 | A |
5665112 | Thal | Sep 1997 | A |
5667513 | Torrie | Sep 1997 | A |
5669917 | Sauer | Sep 1997 | A |
5674240 | Bonutti | Oct 1997 | A |
5680981 | Mililli | Oct 1997 | A |
5681310 | Yuan | Oct 1997 | A |
5681333 | Burkhart | Oct 1997 | A |
5681351 | Jamiolkowski | Oct 1997 | A |
5681352 | Clancy | Oct 1997 | A |
5682886 | Delp | Nov 1997 | A |
5683401 | Schmieding | Nov 1997 | A |
5683418 | Luscombe | Nov 1997 | A |
5685820 | Riek | Nov 1997 | A |
5688283 | Knapp | Nov 1997 | A |
5690654 | Ovil | Nov 1997 | A |
5690655 | Hart | Nov 1997 | A |
5690674 | Diaz | Nov 1997 | A |
5690676 | Dipoto | Nov 1997 | A |
5693055 | Zahiri | Dec 1997 | A |
5697950 | Fucci | Dec 1997 | A |
5702397 | Gonle | Dec 1997 | A |
5702408 | Wales et al. | Dec 1997 | A |
5702462 | Oberlander | Dec 1997 | A |
5707395 | Li | Jan 1998 | A |
5713903 | Sander | Feb 1998 | A |
5713921 | Bonutti | Feb 1998 | A |
5718717 | Bonutti | Feb 1998 | A |
5720747 | Burke | Feb 1998 | A |
5725529 | Nicholson | Mar 1998 | A |
5725541 | Anspach | Mar 1998 | A |
5725556 | Moser | Mar 1998 | A |
5725582 | Bevan | Mar 1998 | A |
5730747 | Ek | Mar 1998 | A |
5733306 | Bonutti | Mar 1998 | A |
5720753 | Sander | Apr 1998 | A |
5735875 | Bonutti | Apr 1998 | A |
5735877 | Pagedas | Apr 1998 | A |
5735899 | Schwartz | Apr 1998 | A |
5741268 | Schutz | Apr 1998 | A |
5741282 | Anspach | Apr 1998 | A |
5743915 | Bertin | Apr 1998 | A |
5748767 | Raab | May 1998 | A |
5752952 | Adamson | May 1998 | A |
5752974 | Rhee | May 1998 | A |
5755809 | Cohen | May 1998 | A |
5762458 | Wang | Jun 1998 | A |
5766126 | Anderson | Jun 1998 | A |
5766221 | Benderev | Jun 1998 | A |
5769092 | Williamson, Jr. | Jun 1998 | A |
5769894 | Ferragamo | Jun 1998 | A |
5772594 | Barrick | Jun 1998 | A |
5772672 | Toy | Jun 1998 | A |
5776136 | Sahay | Jul 1998 | A |
5776151 | Chan | Jul 1998 | A |
5779706 | Tschakaloff | Jul 1998 | A |
5779719 | Klein | Jul 1998 | A |
5782862 | Bonutti | Jul 1998 | A |
5784542 | Ohm | Jul 1998 | A |
5785713 | Jobe | Jul 1998 | A |
5792044 | Foley | Aug 1998 | A |
5792096 | Rentmeester | Aug 1998 | A |
5796188 | Bays | Aug 1998 | A |
5797931 | Bito | Aug 1998 | A |
5797963 | McDevitt | Aug 1998 | A |
5799055 | Peshkin | Aug 1998 | A |
5799130 | Hoshi | Aug 1998 | A |
5800537 | Bell | Sep 1998 | A |
5806518 | Mittelstadt | Sep 1998 | A |
5807403 | Beyar | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810849 | Kontos | Sep 1998 | A |
5810853 | Yoon | Sep 1998 | A |
5810884 | Kim | Sep 1998 | A |
5814072 | Bonutti | Sep 1998 | A |
5814073 | Bonutti | Sep 1998 | A |
5817107 | Schaller | Oct 1998 | A |
5823994 | Sharkey | Oct 1998 | A |
5824009 | Fukuda | Oct 1998 | A |
5824085 | Sahay | Oct 1998 | A |
5830125 | Scribner | Nov 1998 | A |
5836897 | Sakural | Nov 1998 | A |
5839899 | Robinson | Nov 1998 | A |
5843178 | Vanney | Dec 1998 | A |
5844142 | Blanch | Dec 1998 | A |
5845645 | Bonutti | Dec 1998 | A |
5851185 | Berns | Dec 1998 | A |
5855583 | Wang | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5865728 | Moll | Feb 1999 | A |
5865834 | McGuire | Feb 1999 | A |
5866634 | Tokushige | Feb 1999 | A |
5868749 | Reed | Feb 1999 | A |
5873212 | Esteves | Feb 1999 | A |
5873891 | Sohn | Feb 1999 | A |
5874235 | Chan | Feb 1999 | A |
5876325 | Mizuno | Mar 1999 | A |
5879371 | Gardiner | Mar 1999 | A |
5879372 | Bartlett | Mar 1999 | A |
5885299 | Winslow et al. | Mar 1999 | A |
5891166 | Schervinsky | Apr 1999 | A |
5891168 | Thal | Apr 1999 | A |
5893880 | Egan | Apr 1999 | A |
5897574 | Bonutti | Apr 1999 | A |
5899911 | Carter | May 1999 | A |
5899921 | Casparai | May 1999 | A |
5906579 | Vander Salm | May 1999 | A |
5906625 | Bito | May 1999 | A |
5908429 | Yoon | Jun 1999 | A |
5911449 | Daniele | Jun 1999 | A |
5911721 | Nicholson | Jun 1999 | A |
5915751 | Esteves | Jun 1999 | A |
5918604 | Whelan | Jul 1999 | A |
5919193 | Slavitt | Jul 1999 | A |
5919194 | Andersen | Jul 1999 | A |
5919208 | Valenti | Jul 1999 | A |
5919215 | Wiklund | Jul 1999 | A |
5921986 | Bonutti | Jul 1999 | A |
5924976 | Stelzer | Jul 1999 | A |
5925064 | Meyers | Jul 1999 | A |
5928244 | Tovey | Jul 1999 | A |
5928267 | Bonutti | Jul 1999 | A |
5931838 | Vito | Aug 1999 | A |
5931869 | Boucher | Aug 1999 | A |
5937504 | Esteves | Aug 1999 | A |
5940942 | Fong | Aug 1999 | A |
5941900 | Bonutti | Aug 1999 | A |
5941901 | Egan | Aug 1999 | A |
5945002 | Bonutti | Sep 1999 | A |
5947982 | Duran | Sep 1999 | A |
5948000 | Larsen | Sep 1999 | A |
5948001 | Larsen | Sep 1999 | A |
5948002 | Bonutti | Sep 1999 | A |
5951590 | Goldfarb | Sep 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5956927 | Daniele | Sep 1999 | A |
5957953 | Dipoto | Sep 1999 | A |
5961499 | Bonutti | Oct 1999 | A |
5961521 | Roger | Oct 1999 | A |
5961538 | Pedlick | Oct 1999 | A |
5961554 | Janson | Oct 1999 | A |
5964075 | Daniele | Oct 1999 | A |
5964765 | Fenton | Oct 1999 | A |
5964769 | Wagner | Oct 1999 | A |
5967970 | Cowan | Oct 1999 | A |
5968046 | Castleman | Oct 1999 | A |
5968047 | Reed | Oct 1999 | A |
5970686 | Demarest | Oct 1999 | A |
5976156 | Taylor | Nov 1999 | A |
5980520 | Vancaillie | Nov 1999 | A |
5980558 | Wiley | Nov 1999 | A |
5980559 | Bonutti | Nov 1999 | A |
5983601 | Blanch | Nov 1999 | A |
5984929 | Bashiri | Nov 1999 | A |
5987848 | Blanch | Nov 1999 | A |
5989282 | Bonutti | Nov 1999 | A |
5993458 | Vaitekunas | Nov 1999 | A |
5993477 | Vaitekunas | Nov 1999 | A |
6007567 | Bonutti | Dec 1999 | A |
6007580 | Lehto | Dec 1999 | A |
6010525 | Bonutti | Jan 2000 | A |
6010526 | Sandstrom | Jan 2000 | A |
6012216 | Esteves | Jan 2000 | A |
6014851 | Daniele | Jan 2000 | A |
6017321 | Boone | Jan 2000 | A |
6032343 | Blanch | Mar 2000 | A |
6033415 | Mittelstadt | Mar 2000 | A |
6033429 | Magovern | Mar 2000 | A |
6033430 | Bonutti | Mar 2000 | A |
6045551 | Bonutti | Apr 2000 | A |
6050998 | Fletcher | Apr 2000 | A |
6056751 | Fenton | May 2000 | A |
6056772 | Bonutti | May 2000 | A |
6056773 | Bonutti | May 2000 | A |
6059797 | Mears | May 2000 | A |
6059817 | Bonutti | May 2000 | A |
6059827 | Fenton | May 2000 | A |
6063095 | Wang | May 2000 | A |
6066151 | Miyawaki | May 2000 | A |
6066160 | Colvin | May 2000 | A |
6066166 | Bischoff | May 2000 | A |
6068637 | Popov | May 2000 | A |
6068648 | Cole | May 2000 | A |
6074409 | Goldfarb | Jun 2000 | A |
6077277 | Mollenauer | Jun 2000 | A |
6077292 | Bonutti | Jun 2000 | A |
6080161 | Eaves | Jun 2000 | A |
6081981 | Demarest | Jul 2000 | A |
6083244 | Lubbers | Jul 2000 | A |
6083522 | Chu | Jul 2000 | A |
6086593 | Bonutti | Jul 2000 | A |
6086608 | Ek | Jul 2000 | A |
6090072 | Kratoska | Jul 2000 | A |
6099531 | Bonutti | Aug 2000 | A |
6099537 | Sugai | Aug 2000 | A |
6099547 | Gellman | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6099552 | Adams | Aug 2000 | A |
6102850 | Wang | Aug 2000 | A |
6106545 | Egan | Aug 2000 | A |
6117160 | Bonutti | Sep 2000 | A |
6120536 | Ding | Sep 2000 | A |
6125574 | Ganaja | Oct 2000 | A |
6126677 | Ganaja | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6139320 | Hahn | Oct 2000 | A |
RE36974 | Bonutti | Nov 2000 | E |
6149658 | Gardiner | Nov 2000 | A |
6149669 | Li | Nov 2000 | A |
6152871 | Foley | Nov 2000 | A |
6152949 | Bonutti | Nov 2000 | A |
6155756 | Mericle | Dec 2000 | A |
6159224 | Yoon | Dec 2000 | A |
6159234 | Bonutti | Dec 2000 | A |
6162170 | Foley | Dec 2000 | A |
6171307 | Orlich | Jan 2001 | B1 |
6174324 | Egan | Jan 2001 | B1 |
6175758 | Kambin | Jan 2001 | B1 |
6179840 | Bowman | Jan 2001 | B1 |
6179850 | Goradia | Jan 2001 | B1 |
6187008 | Hamman | Feb 2001 | B1 |
6190400 | Van De Moer | Feb 2001 | B1 |
6190401 | Green | Feb 2001 | B1 |
6200322 | Branch | Mar 2001 | B1 |
6200329 | Fung | Mar 2001 | B1 |
6205411 | Gigioia | Mar 2001 | B1 |
6205748 | Daniele | Mar 2001 | B1 |
6217591 | Egan | Apr 2001 | B1 |
6224593 | Ryan | May 2001 | B1 |
6224630 | Bao | May 2001 | B1 |
6226548 | Foley et al. | May 2001 | B1 |
6228086 | Wahl | May 2001 | B1 |
6231565 | Tovey | May 2001 | B1 |
6231592 | Bonutti | May 2001 | B1 |
6238395 | Bonutti | May 2001 | B1 |
6238396 | Bonutti | May 2001 | B1 |
6241749 | Rayhanabad | Jun 2001 | B1 |
6246200 | Blumenkranz | Jun 2001 | B1 |
6258091 | Sevrain | Jul 2001 | B1 |
6263558 | Blanch | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6264675 | Brotz | Jul 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6273717 | Hahn | Aug 2001 | B1 |
6280474 | Cassidy | Aug 2001 | B1 |
6286746 | Egan | Sep 2001 | B1 |
6287325 | Bonutti | Sep 2001 | B1 |
6293961 | Schwartz | Sep 2001 | B2 |
6306159 | Schwartz | Oct 2001 | B1 |
6309405 | Bonutti | Oct 2001 | B1 |
6312448 | Bonutti | Nov 2001 | B1 |
6319252 | McDevitt | Nov 2001 | B1 |
6319271 | Schwartz | Nov 2001 | B1 |
6322567 | Mittelstadt | Nov 2001 | B1 |
6327491 | Franklin | Dec 2001 | B1 |
6331181 | Tierney | Dec 2001 | B1 |
6334067 | Brabrand | Dec 2001 | B1 |
6338730 | Bonutti | Jan 2002 | B1 |
6340365 | Dittrich | Jan 2002 | B2 |
6342056 | Mac-Thiong et al. | Jan 2002 | B1 |
6346072 | Cooper | Feb 2002 | B1 |
6348056 | Bates | Feb 2002 | B1 |
6358271 | Egan | Mar 2002 | B1 |
6364897 | Bonutti | Apr 2002 | B1 |
6368325 | McKinley | Apr 2002 | B1 |
6368326 | Dakin | Apr 2002 | B1 |
6368343 | Bonutti | Apr 2002 | B1 |
6371957 | Amrein | Apr 2002 | B1 |
6385475 | Cinquin | May 2002 | B1 |
6395007 | Bhatnagar | May 2002 | B1 |
6409735 | Andre | Jun 2002 | B1 |
6409742 | Fulton | Jun 2002 | B1 |
6409743 | Fenton | Jun 2002 | B1 |
6419704 | Ferree | Jul 2002 | B1 |
6423072 | Zappala | Jul 2002 | B1 |
6423088 | Fenton | Jul 2002 | B1 |
6425919 | Lambrect | Jul 2002 | B1 |
6428562 | Bonutti | Aug 2002 | B2 |
6430434 | Mittelstadt | Aug 2002 | B1 |
6432112 | Brock | Aug 2002 | B2 |
6432115 | Mollenauer | Aug 2002 | B1 |
6434415 | Foley | Aug 2002 | B1 |
6436107 | Wang | Aug 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6447516 | Bonutti | Sep 2002 | B1 |
6447550 | Hunter | Sep 2002 | B1 |
6450985 | Schoelling | Sep 2002 | B1 |
6451027 | Cooper | Sep 2002 | B1 |
6461360 | Adam | Oct 2002 | B1 |
6468265 | Evans | Oct 2002 | B1 |
6468293 | Bonutti | Oct 2002 | B2 |
6470207 | Simon et al. | Oct 2002 | B1 |
6471715 | Weiss | Oct 2002 | B1 |
6475230 | Bonutti | Nov 2002 | B1 |
6477400 | Barrick | Nov 2002 | B1 |
6484049 | Seeley | Nov 2002 | B1 |
6488196 | Fenton | Dec 2002 | B1 |
6496003 | Okumura et al. | Dec 2002 | B1 |
6500195 | Bonutti | Dec 2002 | B2 |
6503259 | Huxel | Jan 2003 | B2 |
6530926 | Davison | Mar 2003 | B1 |
6530933 | Yeung | Mar 2003 | B1 |
6533157 | Whitman | Mar 2003 | B1 |
6533818 | Weber | Mar 2003 | B1 |
6535764 | Imran | Mar 2003 | B2 |
6544267 | Cole | Apr 2003 | B1 |
6545390 | Hahn | Apr 2003 | B1 |
6546279 | Bova | Apr 2003 | B1 |
6547792 | Tsuji | Apr 2003 | B1 |
6551304 | Whalen | Apr 2003 | B1 |
6554844 | Lee | Apr 2003 | B2 |
6554852 | Oberlander | Apr 2003 | B1 |
6527774 | Lieberman | May 2003 | B2 |
6557426 | Reinemann | May 2003 | B2 |
6558390 | Cragg | May 2003 | B2 |
6562043 | Chan | May 2003 | B1 |
6565554 | Niemeyer | May 2003 | B1 |
6568313 | Fukui | May 2003 | B2 |
6569167 | Bobechko | May 2003 | B1 |
6569187 | Bonutti | May 2003 | B1 |
6572635 | Bonutti | Jun 2003 | B1 |
6575899 | Foley | Jun 2003 | B1 |
D477776 | Pontaoe | Jul 2003 | S |
6585746 | Gildenberg | Jul 2003 | B2 |
6585750 | Bonutti | Jul 2003 | B2 |
6592609 | Bonutti | Jul 2003 | B1 |
6594517 | Nevo | Jul 2003 | B1 |
6585764 | Wright | Aug 2003 | B2 |
6605090 | Trieu | Aug 2003 | B1 |
6610080 | Morgan | Aug 2003 | B2 |
6618910 | Pontaoe | Sep 2003 | B1 |
6623486 | Weaver | Sep 2003 | B1 |
6623487 | Goshert | Sep 2003 | B1 |
6626944 | Taylor | Sep 2003 | B1 |
6632245 | Kim | Oct 2003 | B2 |
6635073 | Bonutti | Oct 2003 | B2 |
6638279 | Bonutti | Oct 2003 | B2 |
6641592 | Sauer | Nov 2003 | B1 |
6645227 | Fallin | Nov 2003 | B2 |
6666877 | Morgan | Dec 2003 | B2 |
6669705 | Westhaver | Dec 2003 | B2 |
6676669 | Charles | Jan 2004 | B2 |
6679888 | Green | Jan 2004 | B2 |
6685750 | Plos | Feb 2004 | B1 |
6697664 | Kienzle, III | Feb 2004 | B2 |
6699177 | Wang | Mar 2004 | B1 |
6699235 | Wallace et al. | Mar 2004 | B2 |
6699240 | Francischelli | Mar 2004 | B2 |
6702821 | Bonutti | Mar 2004 | B2 |
6705179 | Mohtasham | Mar 2004 | B1 |
6709457 | Otte | Mar 2004 | B1 |
6712828 | Schraft | Mar 2004 | B2 |
6714841 | Wright | Mar 2004 | B1 |
6719765 | Bonutti | Apr 2004 | B2 |
6719797 | Ferree | Apr 2004 | B1 |
6722552 | Fenton | Apr 2004 | B2 |
6731988 | Green | May 2004 | B1 |
6733506 | McDevitt | May 2004 | B1 |
6733531 | Trieu | May 2004 | B1 |
6764514 | Li | Jul 2004 | B1 |
6770078 | Bonutti | Aug 2004 | B2 |
6770079 | Bhatnagar | Aug 2004 | B2 |
6780198 | Gregoire | Aug 2004 | B1 |
6783524 | Anderson | Aug 2004 | B2 |
6786989 | Torriani | Sep 2004 | B2 |
6796003 | Marvel | Sep 2004 | B1 |
6796988 | Melkent | Sep 2004 | B2 |
6799065 | Niemeyer | Sep 2004 | B1 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6818010 | Eichhorn | Nov 2004 | B2 |
6823871 | Schmieding | Nov 2004 | B2 |
6827712 | Tovey | Dec 2004 | B2 |
6837892 | Shoham | Jan 2005 | B2 |
6840938 | Morley | Jan 2005 | B1 |
6843403 | Whitman | Jan 2005 | B2 |
6852107 | Wang et al. | Feb 2005 | B2 |
6856827 | Seeley | Feb 2005 | B2 |
6860878 | Brock | Mar 2005 | B2 |
6860885 | Bonutti | Mar 2005 | B2 |
6869437 | Hausen | Mar 2005 | B1 |
6878167 | Ferree | Apr 2005 | B2 |
6884264 | Spiegelberg | Apr 2005 | B2 |
6887245 | Kienzle, III et al. | May 2005 | B2 |
6893434 | Fenton | May 2005 | B2 |
6899722 | Bonutti | May 2005 | B2 |
6890334 | Brace | Jul 2005 | B2 |
6913666 | Aeschlimann | Jul 2005 | B1 |
6916321 | TenHuisen | Jul 2005 | B2 |
6920347 | Simon | Jul 2005 | B2 |
6921264 | Mayer | Jul 2005 | B2 |
6923824 | Morgan | Aug 2005 | B2 |
6932835 | Bonutti | Aug 2005 | B2 |
6942684 | Bonutti | Sep 2005 | B2 |
6944111 | Nakamura | Sep 2005 | B2 |
6951535 | Ghodoussi | Oct 2005 | B2 |
6955540 | Mayer | Oct 2005 | B2 |
6955683 | Bonutti | Oct 2005 | B2 |
6958077 | Suddaby | Oct 2005 | B2 |
6978921 | Shelton, IV et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6987983 | Rosenblatt | Jan 2006 | B2 |
6990368 | Simon | Jan 2006 | B2 |
6997940 | Bonutti | Feb 2006 | B2 |
7001411 | Dean | Feb 2006 | B1 |
7004959 | Bonutti | Feb 2006 | B2 |
7008226 | Mayer | Mar 2006 | B2 |
7013191 | Rubbert | Mar 2006 | B2 |
7018380 | Cole | Mar 2006 | B2 |
7022123 | Heldreth | Apr 2006 | B2 |
7033379 | Peterson | Apr 2006 | B2 |
7048755 | Bonutti | May 2006 | B2 |
7066960 | Dickman | Jun 2006 | B1 |
7087073 | Bonutti | Aug 2006 | B2 |
7090111 | Egan | Aug 2006 | B2 |
7090683 | Brock | Aug 2006 | B2 |
7094251 | Bonutti | Aug 2006 | B2 |
7104996 | Bonutti | Sep 2006 | B2 |
7128763 | Blatt | Oct 2006 | B1 |
7147652 | Bonutti | Dec 2006 | B2 |
7153312 | Torrie | Dec 2006 | B1 |
7160405 | Aeschlimann | Jan 2007 | B2 |
7179259 | Gibbs | Feb 2007 | B1 |
7192448 | Ferree | Mar 2007 | B2 |
7209776 | Leitner | Apr 2007 | B2 |
7217279 | Reese | May 2007 | B2 |
7217290 | Bonutti | May 2007 | B2 |
7235076 | Pacheco | Jun 2007 | B2 |
7241297 | Shaolian | Jul 2007 | B2 |
7250051 | Francischelli | Jul 2007 | B2 |
7252685 | Bindseil | Aug 2007 | B2 |
7273497 | Ferree | Sep 2007 | B2 |
7297142 | Brock | Nov 2007 | B2 |
7329263 | Bonutti | Feb 2008 | B2 |
7331932 | Leitner | Feb 2008 | B2 |
7331967 | Lee | Feb 2008 | B2 |
7333642 | Green | Feb 2008 | B2 |
7335205 | Aeschlimann | Feb 2008 | B2 |
7445634 | Trieu | Nov 2008 | B2 |
7477926 | McCombs | Jan 2009 | B2 |
7481825 | Bonutti | Jan 2009 | B2 |
7481831 | Bonutti | Jan 2009 | B2 |
7491180 | Pacheco | Feb 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7510895 | Rateman | Mar 2009 | B2 |
7524320 | Tierney et al. | Apr 2009 | B2 |
7599730 | Hunter et al. | Oct 2009 | B2 |
7607440 | Coste-Maniere | Oct 2009 | B2 |
7623902 | Pacheco | Nov 2009 | B2 |
7641660 | Lakin | Jan 2010 | B2 |
7708741 | Bonutti | May 2010 | B1 |
7794467 | McGinley | Sep 2010 | B2 |
7831295 | Friedrich | Nov 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7854750 | Bonutti | Dec 2010 | B2 |
7879072 | Bonutti | Feb 2011 | B2 |
7891691 | Bearey | Feb 2011 | B2 |
7959635 | Bonutti | Jun 2011 | B1 |
7967820 | Bonutti | Jun 2011 | B2 |
8007511 | Brock | Aug 2011 | B2 |
8109942 | Carson | Feb 2012 | B2 |
8126239 | Sun | Feb 2012 | B2 |
8128669 | Bonutti | Mar 2012 | B2 |
8140982 | Hamilton | Mar 2012 | B2 |
8147514 | Bonutti | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8162977 | Bonutti | Apr 2012 | B2 |
8196795 | Moore et al. | Jun 2012 | B2 |
8196796 | Shelton, IV et al. | Jun 2012 | B2 |
8214016 | Lavalee | Jul 2012 | B2 |
8277461 | Pacheco | Oct 2012 | B2 |
8382765 | Axelson | Feb 2013 | B2 |
8425519 | Mast et al. | Apr 2013 | B2 |
8429266 | Vanheuverzwyn | Apr 2013 | B2 |
8479969 | Shelton, IV | Jul 2013 | B2 |
8480679 | Park | Jul 2013 | B2 |
8483469 | Pavlovskaia | Jul 2013 | B2 |
8500816 | Dees | Aug 2013 | B2 |
8532361 | Pavlovskaia | Sep 2013 | B2 |
8560047 | Haider | Oct 2013 | B2 |
8616431 | Timm et al. | Dec 2013 | B2 |
8617171 | Park | Dec 2013 | B2 |
8702732 | Woodard | Apr 2014 | B2 |
8715291 | Park | May 2014 | B2 |
8737700 | Park | May 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8777875 | Park | Jul 2014 | B2 |
8781556 | Kienzle | Jul 2014 | B2 |
8820603 | Shelton, IV et al. | Sep 2014 | B2 |
8894634 | Devengenzo | Nov 2014 | B2 |
8931682 | Timm et al. | Jan 2015 | B2 |
8968320 | Park | Mar 2015 | B2 |
8991677 | Moore et al. | Mar 2015 | B2 |
9005211 | Brundobler | Apr 2015 | B2 |
9008757 | Wu | Apr 2015 | B2 |
9084601 | Moore et al. | Jul 2015 | B2 |
9113874 | Shelton, IV et al. | Aug 2015 | B2 |
9119655 | Bowling | Sep 2015 | B2 |
9314306 | Yu | Apr 2016 | B2 |
9456765 | Odermatt | Oct 2016 | B2 |
9585658 | Shelton, IV | Mar 2017 | B2 |
9675272 | Selover et al. | Jun 2017 | B2 |
9713499 | Bar et al. | Jul 2017 | B2 |
9750510 | Kostrzewski et al. | Sep 2017 | B2 |
9775682 | Quaid et al. | Oct 2017 | B2 |
9795394 | Bonutti | Oct 2017 | B2 |
10172679 | Mewes | Jan 2019 | B2 |
10258285 | Hauck | Apr 2019 | B2 |
20010002440 | Bonutti | May 2001 | A1 |
20010005975 | Golightly | Jul 2001 | A1 |
20010009250 | Herman | Jul 2001 | A1 |
20010031983 | Brock | Oct 2001 | A1 |
20010041916 | Bonutti | Nov 2001 | A1 |
20010049497 | Kalloo | Dec 2001 | A1 |
20020016593 | Hearn | Feb 2002 | A1 |
20020016633 | Lin | Feb 2002 | A1 |
20020019649 | Sikora | Feb 2002 | A1 |
20020022764 | Smith | Feb 2002 | A1 |
20020026244 | Trieu | Feb 2002 | A1 |
20020029083 | Zucherman | Mar 2002 | A1 |
20020029084 | Paul | Mar 2002 | A1 |
20020032451 | Tierney et al. | Mar 2002 | A1 |
20020035321 | Bucholz et al. | Mar 2002 | A1 |
20020038118 | Shoham | Mar 2002 | A1 |
20020042620 | Julian et al. | Apr 2002 | A1 |
20020045888 | Ramans | Apr 2002 | A1 |
20020045902 | Bonutti | Apr 2002 | A1 |
20020049449 | Bhatnagar | Apr 2002 | A1 |
20020055795 | Niemeyer et al. | May 2002 | A1 |
20020062136 | Hillstead | May 2002 | A1 |
20020062153 | Paul | May 2002 | A1 |
20020077533 | Bieger | Jun 2002 | A1 |
20020082612 | Moll | Jun 2002 | A1 |
20020087048 | Brock | Jul 2002 | A1 |
20020087049 | Brock | Jul 2002 | A1 |
20020087148 | Brock | Jul 2002 | A1 |
20020087166 | Brock | Jul 2002 | A1 |
20020087169 | Brock | Jul 2002 | A1 |
20020095175 | Brock | Jul 2002 | A1 |
20020103495 | Cole | Aug 2002 | A1 |
20020115934 | Tuke | Aug 2002 | A1 |
20020120252 | Brock | Aug 2002 | A1 |
20020122536 | Kerrien et al. | Sep 2002 | A1 |
20020123750 | Eisermann | Sep 2002 | A1 |
20020128633 | Brock | Sep 2002 | A1 |
20020128661 | Brock | Sep 2002 | A1 |
20020128662 | Brock | Sep 2002 | A1 |
20020133173 | Brock | Sep 2002 | A1 |
20020133174 | Charles | Sep 2002 | A1 |
20020133175 | Carson | Sep 2002 | A1 |
20020138082 | Brock | Sep 2002 | A1 |
20020138109 | Keogh | Sep 2002 | A1 |
20020143319 | Brock | Oct 2002 | A1 |
20020165541 | Whitman | Nov 2002 | A1 |
20020177843 | Anderson et al. | Nov 2002 | A1 |
20020183610 | Foley | Dec 2002 | A1 |
20020183761 | Johnson et al. | Dec 2002 | A1 |
20020183762 | Anderson | Dec 2002 | A1 |
20020183851 | Spiegelberg | Dec 2002 | A1 |
20020188301 | Dallara | Dec 2002 | A1 |
20030014064 | Blatter | Jan 2003 | A1 |
20030028196 | Bonutti | Feb 2003 | A1 |
20030039196 | Nakamura | Feb 2003 | A1 |
20030040758 | Wang | Feb 2003 | A1 |
20030045900 | Hahnen | Mar 2003 | A1 |
20030055409 | Brock | Mar 2003 | A1 |
20030060927 | Gerbi | Mar 2003 | A1 |
20030065361 | Dreyfuss | Apr 2003 | A1 |
20030069591 | Carson | Apr 2003 | A1 |
20030083673 | Tierney et al. | May 2003 | A1 |
20030100892 | Morley | May 2003 | A1 |
20030105474 | Bonutti | Jun 2003 | A1 |
20030120283 | Stoianovici | Jun 2003 | A1 |
20030125808 | Hunter | Jul 2003 | A1 |
20030135204 | Lee | Jul 2003 | A1 |
20030153978 | Whiteside | Aug 2003 | A1 |
20030158582 | Bonutti | Aug 2003 | A1 |
20030167072 | Oberlander | Aug 2003 | A1 |
20030118518 | Hahn | Sep 2003 | A1 |
20030167061 | Schlegel | Sep 2003 | A1 |
20030176783 | Hu | Sep 2003 | A1 |
20030181800 | Bonutti | Sep 2003 | A1 |
20030187348 | Goodwin | Oct 2003 | A1 |
20030195530 | Thill | Oct 2003 | A1 |
20030195565 | Bonutti | Oct 2003 | A1 |
20030204204 | Bonutti | Oct 2003 | A1 |
20030212403 | Swanson | Nov 2003 | A1 |
20030216669 | Lang | Nov 2003 | A1 |
20030216742 | Wetzler | Nov 2003 | A1 |
20030225438 | Bonutti | Dec 2003 | A1 |
20030229361 | Jackson | Dec 2003 | A1 |
20040010287 | Bonutti | Jan 2004 | A1 |
20040024311 | Quaid, III | Feb 2004 | A1 |
20040024410 | Olson, Jr. et al. | Feb 2004 | A1 |
20040030341 | Aeschlimann | Feb 2004 | A1 |
20040034282 | Quaid | Feb 2004 | A1 |
20040034357 | Beane | Feb 2004 | A1 |
20040092932 | Aubin et al. | May 2004 | A1 |
20040097939 | Bonutti | May 2004 | A1 |
20040097948 | Heldreth | May 2004 | A1 |
20040098050 | Foerster | May 2004 | A1 |
20040102804 | Chin | May 2004 | A1 |
20040106916 | Quaid | Jun 2004 | A1 |
20040111183 | Sutherland et al. | Jun 2004 | A1 |
20040138703 | Alleyne | Jul 2004 | A1 |
20040143334 | Ferree | Jul 2004 | A1 |
20040152970 | Hunter | Aug 2004 | A1 |
20040157188 | Luth | Aug 2004 | A1 |
20040167548 | Bonutti | Aug 2004 | A1 |
20040176763 | Foley | Sep 2004 | A1 |
20040199072 | Sprouse | Oct 2004 | A1 |
20040215190 | Nguyen et al. | Oct 2004 | A1 |
20040220616 | Bonutti | Nov 2004 | A1 |
20040225325 | Bonutit | Nov 2004 | A1 |
20040230223 | Bonutti | Nov 2004 | A1 |
20040236374 | Bonutti | Nov 2004 | A1 |
20040236424 | Berez | Nov 2004 | A1 |
20040240715 | Wicker | Dec 2004 | A1 |
20040243109 | Tovey | Dec 2004 | A1 |
20040267242 | Grimm | Dec 2004 | A1 |
20050033315 | Hankins | Feb 2005 | A1 |
20050033366 | Cole | Feb 2005 | A1 |
20050038514 | Helm | Feb 2005 | A1 |
20050043796 | Grant | Feb 2005 | A1 |
20050070789 | Aferzon | Mar 2005 | A1 |
20050071012 | Serhan | Mar 2005 | A1 |
20050085714 | Foley | Apr 2005 | A1 |
20050090827 | Gedebou | Apr 2005 | A1 |
20050090840 | Gerbino | Apr 2005 | A1 |
20050096699 | Wixey | May 2005 | A1 |
20050101970 | Rosenberg | May 2005 | A1 |
20050113846 | Carson | May 2005 | A1 |
20050113928 | Cragg | May 2005 | A1 |
20050126680 | Aeschlimann | Jun 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050143826 | Zucherman | Jun 2005 | A1 |
20050240227 | Bonutti | Jun 2005 | A1 |
20050149024 | Ferrante | Jul 2005 | A1 |
20050149029 | Bonutti | Jul 2005 | A1 |
20050177169 | Fisher | Aug 2005 | A1 |
20050182321 | Frangioni | Aug 2005 | A1 |
20050192673 | Saltzman | Sep 2005 | A1 |
20050203521 | Bonutti | Sep 2005 | A1 |
20050216059 | Bonutti | Sep 2005 | A1 |
20050216087 | Zucherman | Sep 2005 | A1 |
20050222620 | Bonutti | Oct 2005 | A1 |
20050234332 | Murphy | Oct 2005 | A1 |
20050234461 | Burdulis | Oct 2005 | A1 |
20050234465 | McCombs | Oct 2005 | A1 |
20050240190 | Gall | Oct 2005 | A1 |
20050246021 | Ringelsen | Nov 2005 | A1 |
20050261684 | Shaolian | Nov 2005 | A1 |
20050267481 | Carl | Dec 2005 | A1 |
20050267534 | Bonutti | Dec 2005 | A1 |
20060009855 | Goble | Jan 2006 | A1 |
20060015101 | Warburton | Jan 2006 | A1 |
20060015108 | Bonutti | Jan 2006 | A1 |
20060024357 | Carpenter | Feb 2006 | A1 |
20060026244 | Watson | Feb 2006 | A1 |
20060036253 | Leroux | Feb 2006 | A1 |
20060036264 | Selover | Feb 2006 | A1 |
20060064095 | Senn | Mar 2006 | A1 |
20060084867 | Tremblay | Apr 2006 | A1 |
20060089646 | Bonutti | Apr 2006 | A1 |
20060122600 | Cole | Jun 2006 | A1 |
20060122704 | Vresilovic | Jun 2006 | A1 |
20060142657 | Quaid | Jun 2006 | A1 |
20060142799 | Bonutti | Jun 2006 | A1 |
20060161051 | Terrill-Grisoni | Jul 2006 | A1 |
20060161136 | Anderson | Jul 2006 | A1 |
20060167495 | Bonutti | Jul 2006 | A1 |
20060200199 | Bonutti | Sep 2006 | A1 |
20060212073 | Bonutti | Sep 2006 | A1 |
20060217765 | Bonutti | Sep 2006 | A1 |
20060229623 | Bonutti | Oct 2006 | A1 |
20060235470 | Bonutti | Oct 2006 | A1 |
20060241695 | Bonutti | Oct 2006 | A1 |
20060265009 | Bonutti | Nov 2006 | A1 |
20060265011 | Bonutti | Nov 2006 | A1 |
20060271056 | Terrill-Grisoni | Nov 2006 | A1 |
20070032825 | Bonutti | Feb 2007 | A1 |
20070055291 | Birkmeyer | Mar 2007 | A1 |
20070066887 | Mire | Mar 2007 | A1 |
20070088340 | Brock | Apr 2007 | A1 |
20070088362 | Bonutti | Apr 2007 | A1 |
20070100258 | Shoham | May 2007 | A1 |
20070118055 | McCombs | May 2007 | A1 |
20070118129 | Fraser | May 2007 | A1 |
20070151389 | Prisco | Jul 2007 | A1 |
20070156157 | Nahum | Jul 2007 | A1 |
20070158385 | Hueil et al. | Jul 2007 | A1 |
20070173946 | Bonutti | Jul 2007 | A1 |
20070185498 | Lavallee | Aug 2007 | A2 |
20070198555 | Friedman | Aug 2007 | A1 |
20070219561 | Lavallee | Sep 2007 | A1 |
20070239153 | Hodorek | Oct 2007 | A1 |
20070265561 | Yeung | Nov 2007 | A1 |
20070270685 | Kang et al. | Nov 2007 | A1 |
20070270833 | Bonutti | Nov 2007 | A1 |
20070287889 | Mohr | Dec 2007 | A1 |
20080004603 | Larkin | Jan 2008 | A1 |
20080021474 | Bonutti | Jan 2008 | A1 |
20080039845 | Bonutti | Feb 2008 | A1 |
20080039873 | Bonutti | Feb 2008 | A1 |
20080046090 | Paul | Feb 2008 | A1 |
20080097448 | Binder | Apr 2008 | A1 |
20080108897 | Bonutti | May 2008 | A1 |
20080108916 | Bonutti | May 2008 | A1 |
20080114399 | Bonutti | May 2008 | A1 |
20080132950 | Lange | Jun 2008 | A1 |
20080140088 | Orban | Jun 2008 | A1 |
20080140116 | Bonutti | Jun 2008 | A1 |
20080140117 | Bonutti | Jun 2008 | A1 |
20080167672 | Giordano et al. | Jul 2008 | A1 |
20080177285 | Brock | Jul 2008 | A1 |
20080195145 | Bonutti | Aug 2008 | A1 |
20080215181 | Smith | Sep 2008 | A1 |
20080243127 | Lang | Oct 2008 | A1 |
20080249394 | Giori | Oct 2008 | A1 |
20080251568 | Zemlok et al. | Oct 2008 | A1 |
20080262812 | Arata | Oct 2008 | A1 |
20080269753 | Cannestra | Oct 2008 | A1 |
20080269808 | Gall | Oct 2008 | A1 |
20080300613 | Shelton, IV et al. | Dec 2008 | A1 |
20080308601 | Timm et al. | Dec 2008 | A1 |
20090024161 | Bonutti | Jan 2009 | A1 |
20090138014 | Bonutti | Jan 2009 | A1 |
20090093684 | Schorer | Apr 2009 | A1 |
20090101692 | Whitman et al. | Apr 2009 | A1 |
20090131941 | Park | May 2009 | A1 |
20090138025 | Stahler et al. | May 2009 | A1 |
20090194969 | Bearey | Aug 2009 | A1 |
20090197217 | Butscher | Aug 2009 | A1 |
20090287222 | Lee | Nov 2009 | A1 |
20100036384 | Gorek et al. | Feb 2010 | A1 |
20100211120 | Bonutti | Feb 2010 | A1 |
20100114288 | Haller et al. | May 2010 | A1 |
20100210939 | Hartmann et al. | Aug 2010 | A1 |
20100217400 | Nortman | Aug 2010 | A1 |
20100256504 | Moreau-Gaudry | Oct 2010 | A1 |
20110029093 | Bojarski | Feb 2011 | A1 |
20110060375 | Bonutti | Mar 2011 | A1 |
20110082462 | Suarez | Apr 2011 | A1 |
20110087332 | Bojarski | Apr 2011 | A1 |
20110130761 | Plaskos | Jun 2011 | A1 |
20110144661 | Houser | Jun 2011 | A1 |
20110276179 | Banks et al. | Nov 2011 | A1 |
20110282390 | Hua | Nov 2011 | A1 |
20110295253 | Bonutti | Dec 2011 | A1 |
20110301647 | Hua | Dec 2011 | A1 |
20120053591 | Haines | Mar 2012 | A1 |
20120165841 | Bonutti | Jun 2012 | A1 |
20120184961 | Johannaber | Jul 2012 | A1 |
20120191140 | Bonutti | Jul 2012 | A1 |
20120215233 | Bonutti | Aug 2012 | A1 |
20120298719 | Shelton, IV | Nov 2012 | A1 |
20120323244 | Cheal | Dec 2012 | A1 |
20120330429 | Axelson | Dec 2012 | A1 |
20130006267 | Odermatt | Jan 2013 | A1 |
20130035696 | Qutub | Feb 2013 | A1 |
20130072821 | Odermatt | Mar 2013 | A1 |
20130211531 | Steines | Aug 2013 | A1 |
20130303883 | Zehavi | Nov 2013 | A1 |
20130345718 | Crawford | Dec 2013 | A1 |
20140257293 | Axelson | Sep 2014 | A1 |
20140325373 | Kramer et al. | Oct 2014 | A1 |
20140343567 | Morash | Nov 2014 | A1 |
20150032164 | Crawford et al. | Jan 2015 | A1 |
20150106024 | Lightcap | Apr 2015 | A1 |
20150157416 | Andersson | Jun 2015 | A1 |
20150196365 | Kostrzewski | Jul 2015 | A1 |
20150257768 | Bonutti | Sep 2015 | A1 |
20150305817 | Kostrzewski | Oct 2015 | A1 |
20150320500 | Lightcap | Nov 2015 | A1 |
20150366624 | Kostrzewski et al. | Dec 2015 | A1 |
20160030115 | Shen | Feb 2016 | A1 |
20160081758 | Bonutti | Mar 2016 | A1 |
20160151120 | Kostrzewski et al. | Jun 2016 | A1 |
20160206375 | Abbasi | Jul 2016 | A1 |
20160228204 | Quaid et al. | Aug 2016 | A1 |
20160235492 | Morard et al. | Aug 2016 | A1 |
20160354162 | Yen et al. | Dec 2016 | A1 |
20160374769 | Schena et al. | Dec 2016 | A1 |
20170128041 | Hasser | May 2017 | A1 |
20170129108 | Diolaiti | May 2017 | A1 |
20170151021 | Quaid, III | Jun 2017 | A1 |
20170151022 | Jascob et al. | Jun 2017 | A1 |
20170151025 | Mewes et al. | Jun 2017 | A1 |
20170296202 | Brown | Oct 2017 | A1 |
20170296273 | Brown | Oct 2017 | A9 |
20170305016 | Larkin et al. | Oct 2017 | A1 |
20170311951 | Shelton, IV et al. | Nov 2017 | A1 |
20170333057 | Kostrzewski et al. | Nov 2017 | A1 |
20180280097 | Cooper et al. | Oct 2018 | A1 |
20190038366 | Johnson | Feb 2019 | A1 |
20190038371 | Wixey et al. | Feb 2019 | A1 |
20200060775 | Bonutti | Feb 2020 | A1 |
20200240861 | Blumenkranz | Jul 2020 | A1 |
20200246063 | Shelton, IV | Aug 2020 | A1 |
20200246096 | Gomez | Aug 2020 | A1 |
Number | Date | Country |
---|---|---|
2641580 | Aug 2007 | CA |
2660827 | Sep 2008 | CA |
2698057 | Mar 2009 | CA |
1903016 | Oct 1964 | DE |
1903316 | Oct 1964 | DE |
1903016 | Aug 1970 | DE |
3517204 | Nov 1986 | DE |
3722538 | Jan 1989 | DE |
9002844 | Jan 1991 | DE |
0784454 | May 1996 | EP |
0773004 | May 1997 | EP |
1614525 | Jan 2006 | EP |
1988837 | Aug 2007 | EP |
2134294 | Dec 2009 | EP |
2717368 | Mar 1994 | FR |
2696338 | Apr 1994 | FR |
2728779 | Jan 1995 | FR |
2736257 | Jul 1995 | FR |
2750031 | Jun 1996 | FR |
2771621 | Nov 1997 | FR |
2785171 | Oct 1998 | FR |
2093701 | Sep 1982 | GB |
2306110 | Apr 1997 | GB |
8140982 | Jun 1996 | JP |
184396 | Jul 1966 | SU |
1991012779 | Sep 1991 | WO |
199323094 | Nov 1993 | WO |
1994008642 | Apr 1994 | WO |
1995016398 | Jun 1995 | WO |
1995031941 | Nov 1995 | WO |
1996014802 | May 1996 | WO |
1997012779 | Apr 1997 | WO |
1997049347 | Dec 1997 | WO |
1998011838 | Mar 1998 | WO |
1998026720 | Jun 1998 | WO |
2002053011 | Jul 2002 | WO |
2007092869 | Aug 2007 | WO |
2008116203 | Sep 2008 | WO |
2009029908 | Mar 2009 | WO |
2010099222 | Feb 2010 | WO |
Entry |
---|
Arthrex, Protect your graft, Am J Sports Med, vol. 22, No. 4, Jul.-Aug. 1994. |
Barrett et al, T-Fix endoscopic meniscal repair: technique and approach to different types of tears, Apr. 1995, Arthroscopy vol. 11 No. 2 p. 245-51. |
Cope, Suture Anchor for Visceral Drainage, AJR, vol. 148 p. 160-162, Jan. 1986. |
Gabriel, Arthroscopic Fixation Devices, Wiley Enc. of Biomed Eng., 2006. |
Innovasive, We've got you covered, Am J Sports Med, vol. 26, No. 1, Jan.-Feb. 1998. |
510k—TranSet Fracture Fixation System, Feb. 24, 2004, k033717. |
510k—Linvatec Biomaterials modification of Duet and impact Suture Anchor, Nov. 19, 2004, k042966. |
510k, Arthrex Pushlock, Jun. 29, 2005, K051219. |
510k, Mitek Micro anchor, Nov. 6, 1996, K962511. |
510k, Multitak Suture System, Jan. 10, 1997, K964324. |
510k, Modified Mitek 3.5mm Absorbable Suture Anchor System, Jun. 9, 1997, K970896. |
510K, Summary for Arthrex Inc.'s Bio-Interference Screw, Jul. 9, 1997, K971358. |
510k, Surgicraft Bone Tie, Sep. 25, 1998, K982719. |
Karlsson et al, Repair of Bankart lesions with a suture anchor in recurrent dislocation of the shoulder, Scand. j. of Med & Science in Sports, 1995, 5:170-174. |
Madjar et al, Minimally Invasive Pervaginam Procedures, for the Treatment of Female Stress Incontinence . . . , Artificial Organs, 22 (10) 879-885, 1998. |
Nowak et al, Comparative Study of Fixation Techniques in the Open Bankart Operation Using Either a Cannulated Screw or Suture-Anchors, Acta Orthopcedica Belgica, vol. 64—2—1998. |
Packer et al, Repair of Acute Scapho-Lunate Dissociation Facilitated by the “Tag” Suture Anchor, Journal of Hand Surgery (British and European Volume, 1994) 19B: 5: 563-564. |
Richmond, Modification of the Bankart reconstruction with a suture anchor, Am J Sports Med, vol. 19, No. 4, p. 343-346, 1991. |
Shea et al, Technical Note: Arthroscopic Rotator Cuff Repair Using a Transhumeral Approach to Fixation, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 14, No. 1 Jan.-Feb. 1998: pp. 118-122. |
Tfix, Acufexjust tied the knot . . . , Am. J. Sports Med., vol. 22, No. 3, May-Jun. 1994. |
Wong et al, Case Report: Proper Insertion Angle Is Essential to Prevent Intra-Articular Protrusion of a Knotless Suture Anchor in Shoulder Rotator Cuff Repair, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 26, No. 2 Feb. 2010: pp. 286-290. |
Cobb et al, Late Correction of Malunited Intercondylar Humeral Fractures Intra-Articular Osteotomy and Tricortical Bone Grafting, J BoneJointSurg [Br] 1994; 76-B:622-6. |
Fellinger. et al, Radial avulsion of the triangular fibrocartilage complex in acute wrist trauma: a new technique for arthroscopic repair, Jun. 1997, Arthroscopy vol. 13 No. 3 p. 370-4. |
Hecker et al , Pull-out strength of suture anchors for rotator cuff and Bankart lesion repairs, Nov.-Dec. 1993 , The American Journal of Sports Medicine, vol. 21 No. 6 p. 874-9. |
Hernigou et al, Proximal Tibial Osteotomy for Osteoarthritis with Varus Deformity a Ten to Thirteen-Year Follow-Up Study, J Bone Joint Surg, vol. 69-A, No. 3. Mar. 1987, p. 332-354. |
Ibarra et al, Glenoid Replacement in Total Shoulder Arthroplasty, The Orthopedic Clinics of North America: Total Shoulder Arthroplasty, vol. 29 No. 3, Jul. 1998 p. 403-413. |
Mosca et al, Calcaneal Lengthening for Valgus Deformity of the Hindfoot: Results in Children Who Had Severe, Symptomatic Flatfoot and Skewfoot, J Bone Joint Surg,, 1195—p. 499-512. |
Murphy et al , Radial Opening Wedge Osteotomy in Madelung's Deformity, J. Hand Surg, vol. 21 A No. 6 Nov. 1996, p. 1035-44. |
Biomet, Stanmore Modular Hip, J. Bone Joint Surg., vol. 76-B : No. Two, Mar. 1994. |
Petition for Inter Partes Review of U.S. Pat. No. 5,980,559, IPR 2013-00603, Filing Date Sep. 24, 2013. |
Declaration of David Kaplan. Ph.D. Regarding U.S. Pat. No. 5,980,559, IPR 2013-00603, Sep. 24, 2013. |
Petition for Inter Partes Review of U.S. Pat. No. 7,087,073, IPR 2013-00604, Filing Date Sep. 24, 2013. |
Declaration of Wayne J. Sebastianelli, MD Regarding U.S. Pat. No. 7,087,073, Sep. 24, 2013, IPR 2013-00604. |
Petition for Inter Partes Review of U.S. Pat. No. 6,500,195, IPR 2013-00624, Filing Date Oct. 2, 2013. |
Declaration of Dr. Philip Hardy in Support of Petition for Inter Partes Review of U.S. Pat. No. 6,500,195, IPR 2013-00624, Sep. 25, 2013. |
Petition for Inter Partes Review of U.S. Pat. No. 5,527,343, IPR 2013-00628, Filing Date Sep. 26, 2013,Sep. 25, 2013. |
Declaration of Dr. Philip Hardy in Support of Petition for Inter Partes Review of U.S. Pat. No. 5,527,343, IPR 2013-00628, Sep. 25, 2013. |
Corrected Petition for Inter Partes Review of U.S. Pat. No. 5,921,986, IPR 2013-00631, Filing Date Sep. 27, 2013. |
Expert Declaration of Steve E. Jordan, MD, for Inter Partes Review of U.S. Pat. No. 5,921,986, IPR 2013-00631, Sep. 24, 2013. |
Corrected Petition for Inter Partes Review of U.S. Pat. No. 8,147,514, IPR 2013-00632, Filing Date Sep. 27, 2013. |
Declaration of Steve Jordan for U.S. Pat. No. 8,147,514, from IPR 2013-00632, dated Sep. 23, 2013 (exhibit 1009). |
Corrected Petition for Inter Partes Review of U.S. Pat. No. 8,147,514, IPR 2013-00633, Filing Date Sep. 27, 2013. |
Declaration of Steve Jordan for U.S. Pat. No. 8,147,514, from IPR 2013-00633, dated Sep. 23, 2013 (exhibit 1006). |
Flory, Principles of Polymer Chemistry, 1953, selected pages (cited in IPR 2013-00603, exhibit 1012). |
Grizzi, Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence, Biomaterials, 1995, vol. 16, No. 4, p. 305-11 (cited in IPR 2013-00603, exhibit 1006). |
Gopferich, Mechanisms of polymer degradation and erosion, Biomaterials, 1996, vol. 17, No. 2, p. 103-114 (cited in IPR 2013-00603, exhibit 1013). |
Gao et el, Swelling of Hydroxypropyl Methylcellulose Matrix Tablets . . . , J. of Pharmaceutical Sciences, vol. 85, No. 7, Jul. 1996, p. 732-740 (cited in IPR 2013-00603, exhibit 1014). |
Linvatec, Impact Suture Anchor brochure, 2004 (cited in IPR 2013-00628, exhibit 1010). |
Seitz et al, Repair of the Tibiofibular Syndesmosis with a Flexible Implant, J. of Orthopaedic Trauma, vol. 5, No. 1, p. 18-82, 1991 (cited in IPR 2013-00631, exhibit 1007) (cited in 2013-00632). |
Translation of FR2696338 with translator's certificate dated Sep. 17, 2013 (cited in IPR 2013-00631, 2013-00632). |
Translation of DE9002844.9 with translator's certificate dated Sep. 26, 2013 (cited in IPR 2013-00631, 2013-00632). |
Declaration of Steve Jordan for U.S. Pat. No. 5,921,986, from IPR 2013-00632, dated Sep. 24, 2013 (exhibit 1010). |
Declaration of Steve Jordan for U.S. Pat. No. 5,921,986, from IPR 2013-00633, dated Sep. 24, 2013 (exhibit 1007). |
Declaration of Dr. Steve E. Jordan for U.S. Pat. No. 8,147,514, from IPR 2013-00631, dated Sep. 23, 2013. |
The Search for the Holy Grail: A Century of Anterior Cruciate Ligament Reconstruction, R. John Naranja, American Journal of Orthopedics, Nov. 1997. |
Femoral Bone Plug Recession in Endoscope Anterior Cruciate Ligament Reconstruction, David E. Taylor, Arthroscopy: The Journal of Arthroscopic and Related Surgery, Aug. 1996. |
Meniscus Replacement with Bone Anchors: A Surgical Technique, Arthroscopy: The Journal of Arthroscopic and Related Surgery, 1994. |
Problem Solving Report Question No. 1014984.066, Ultrasonic Welding, (c) 1999. |
Guide to Ultrasound Plastic Assembly, Ultrasonic Division Publication, (c) 1995. |
Branson, Polymers: Characteristics and Compatibility for Ultrasonic Assembly, Applied Technologies Group, Publication unknown. |
Enabling Local Drug Delivery-Implant Device Combination Therapies, Surmodics, Inc., (c) 2003. |
Stent Based Delivery of Sirolimus Reduces Neointimal Formation in a Porcine Coronary Model, Takeshi Suzuki, American Heart Association, Inc. (c) 2001. |
Why Tie a Knot When You Can Use Y-Knot?, Innovasive Devices Inc., (c) 1998. |
Ask Oxford, compact Oxford English dictionary: projection, Mar. 30, 2009. |
Ask Oxford, compact Oxford English dictionary: slit, Mar. 30, 2009. |
Textured Surface Technology, Branson Technology, Branson Ultrasonics Copr., (c) 1992. |
Non-Final Office Action dated Sep. 3, 2014 relating to U.S. Appl. No. 10/102,413, 8 pages. |
Final Office Action dated Feb. 21, 2014 relating to U.S. Appl. No. 10/102,413, 9 pages. |
Non-Final Office Action dated Jun. 20, 2013 relating to U.S. Appl. No. 10/102,413, 12 pages. |
Final Office Action dated Nov. 9, 2010 relating to U.S. Appl. No. 10/102,413, 8 pages. |
Non-Final Office Action dated Feb. 16, 2010 relating to U.S. Appl. No. 10/102,413, 10 pages. |
Final Office Action dated Aug. 17, 2009 relating to U.S. Appl. No. 10/102,413, 9 pages. |
Non-Final Office Action dated Dec. 24, 2008 relating to U.S. Appl. No. 10/102,413, 9 pages. |
Final Office Action dated May 13, 2008 relating to U.S. Appl. No. 10/102,413, 7 pages. |
Non-Final Office Action dated Sep. 13, 2007 relating to U.S. Appl. No. 10/102,413, 6 pages. |
Final Office Action dated Apr. 7, 2014 relating to U.S. Appl. No. 13/888,957, 16 pages. |
Non-Final Office Action dated Sep. 30, 2013 relating to U.S. Appl. No. 13/888,957, 11 pages. |
Final Office Action dated Sep. 12, 2014 relating to U.S. Appl. No. 13/912,730, 8 pages. |
Non-Final Office Action dated Jan. 10, 2014 relating to U.S. Appl. No. 13/912,730, 7 pages. |
Final Office Action dated Oct. 23, 2015 relating to U.S. Appl. No. 13/923,944, 16 pages. |
Non-Final Office Action dated Mar. 17, 2015 relating to U.S. Appl. No. 13/923,944, 18 pages. |
Non-Final Office Action dated Jun. 17, 2016 relating to U.S. Appl. No. 13/923,944, 20 pages. |
Final Office Action dated Nov. 16, 2015 relating to U.S. Appl. No. 13/951,073, 10 pages. |
Non-Final Office Action dated Apr. 8, 2015 relating to U.S. Appl. No. 13/951,073, 8 pages. |
Final Office Action dated Jul. 31, 2014 relating to U.S. Appl. No. 13/951,073, 12 pages. |
Non-Final Office Action dated Oct. 24, 2013 relating to U.S. Appl. No. 13/951,073, 8 pages. |
Non-Final Office Action dated Mar. 26, 2015 relating to U.S. Appl. No. 13/962,269, 5 pages. |
Appeal Board Decision Denying Institution of Inter Partes Review, Case IPR2018-00938, U.S. Pat. No. 9,113,874, Dec. 4, 2018, 41 pages, United States Patent and Trademark Office. |
Number | Date | Country | |
---|---|---|---|
20190274763 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15218608 | Jul 2016 | US |
Child | 15947565 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15947565 | Apr 2018 | US |
Child | 16272650 | US | |
Parent | 13951073 | Jul 2013 | US |
Child | 15218608 | US | |
Parent | 13923944 | Jun 2013 | US |
Child | 13951073 | US | |
Parent | 13912730 | Jun 2013 | US |
Child | 13923944 | US | |
Parent | 13888957 | May 2013 | US |
Child | 13912730 | US | |
Parent | 10102413 | Mar 2002 | US |
Child | 13888957 | US |