Robotic surgical devices, systems, and related methods

Information

  • Patent Grant
  • 10582973
  • Patent Number
    10,582,973
  • Date Filed
    Friday, March 15, 2013
    11 years ago
  • Date Issued
    Tuesday, March 10, 2020
    4 years ago
Abstract
The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Certain embodiments include various modular medical devices for in vivo medical procedures.
Description
TECHNICAL FIELD

The embodiments disclosed herein relate to various medical devices and related components, including robotic and/or in vivo medical devices and related components. Certain embodiments include various robotic medical devices, including robotic devices that are disposed within a body cavity and positioned using a support component disposed through an orifice or opening in the body cavity. Further embodiment relate to methods of operating the above devices.


BACKGROUND

Invasive surgical procedures are essential for addressing various medical conditions. When possible, minimally invasive procedures such as laparoscopy are preferred.


However, known minimally invasive technologies such as laparoscopy are limited in scope and complexity due in part to 1) mobility restrictions resulting from using rigid tools inserted through access ports, and 2) limited visual feedback. Known robotic systems such as the da Vinci® Surgical System (available from Intuitive Surgical, Inc., located in Sunnyvale, Calif.) are also restricted by the access ports, as well as having the additional disadvantages of being very large, very expensive, unavailable in most hospitals, and having limited sensory and mobility capabilities.


There is a need in the art for improved surgical methods, systems, and devices.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram showing a robotic surgical system, including a robotic device positioned inside a body and axis of rotation, according to one embodiment.



FIG. 2A is a perspective view of a robotic medical device, according to one embodiment.



FIG. 2B is a perspective view of a robotic medical device, according to one embodiment.



FIG. 2C is a cut-away view of an arm of a robotic medical device, according to one embodiment.



FIG. 2D is a sideview of a robotic medical device, according to one embodiment.



FIG. 3A is a perspective view of a body portion of a robotic device and related equipment, according to one embodiment.



FIG. 3B is a perspective view of another body portion of a robotic device and related equipment, according to one embodiment.



FIG. 4A is an endlong view of the body portion of a robotic device and related equipment, according to one embodiment.



FIG. 4B is a sideview of the body portion of a robotic device and related equipment, according to one embodiment.



FIG. 5A is a sideview of a body portion of a robotic device and related equipment, according to one embodiment.



FIG. 5B is a side cross-sectional view of a body portion of a robotic device and related equipment, according to one embodiment.



FIG. 5C is a perspective cross-sectional view of a body portion of a robotic device and related equipment, according to one embodiment.



FIG. 5D is a side cross-sectional view of a body portion of a robotic device and related equipment, according to one embodiment.



FIG. 6 is an endlong cross-sectional view of a body portion of a robotic device, according to one embodiment.



FIG. 7A is a cross-sectional sideview of the upper arm of a robotic device, according to one embodiment.



FIG. 7B is a cross-sectional sideview of the upper arm of a robotic device from an alternate view, according to one embodiment.



FIG. 7C is a perspective internal view of the upper arm of a robotic device, according to one embodiment.



FIG. 8A is a sideview of a forearm of a robotic device, according to one embodiment.



FIG. 8B is a cross-sectional view of a forearm of a robotic device, according to one embodiment.



FIG. 8C is another cross-sectional view of a forearm of a robotic device, according to one embodiment.



FIG. 8D is yet another cross-sectional view of a forearm of a robotic device, according to one embodiment.



FIG. 9A is cross-sectional sideview of the forearm of a robotic device, according to another embodiment.



FIG. 9B is another cross-sectional sideview of the forearm of a robotic device, according to another embodiment.



FIG. 10 is a perspective internal view of a forearm of a robotic device, according to another exemplary embodiment.



FIG. 11A contains a perspective view of an exemplary embodiment of the rotary slip ring assembly according to an exemplary embodiment.



FIG. 11B contains another perspective view of an exemplary embodiment of the rotary slip ring assembly the embodiment of FIG. 11A.



FIG. 11C is a cross sectional sideview of the rotary slip ring assembly the embodiment of FIG. 11A.



FIG. 11D is another cross-sectional sideview of the embodiment of FIG. 11A.



FIG. 11E is an endview of the embodiment of FIG. 11A.



FIG. 11F is another cross-sectional sideview of the embodiment of FIG. 11A, with associated components in the forearm.



FIG. 12A is a cutaway sideview of an exemplary embodiment of the surgical device forearm and tool assembly.



FIG. 12B is a side view of the tool assembly, according to an exemplary embodiment.



FIG. 13A is a perspective cutaway view of an exemplary embodiment of the surgical device forearm showing an embodiment of a linear encoder.



FIG. 13B is a cross-sectional sideview of the embodiment of a linear encoder according to FIG. 13A.



FIG. 13C is an end view of the embodiment of a linear encoder according to FIG. 13A and showing the cross section of FIG. 13B.



FIG. 13D is a sideview of the embodiment of a linear encoder according to FIG. 13A.





DETAILED DESCRIPTION

The various systems and devices disclosed herein relate to devices for use in medical procedures and systems. More specifically, various embodiments relate to various medical devices, including robotic devices and related methods and systems.


It is understood that the various embodiments of robotic devices and related methods and systems disclosed herein can be incorporated into or used with any other known medical devices, systems, and methods. For example, the various embodiments disclosed herein may be incorporated into or used with any of the medical devices and systems disclosed in copending U.S. application Ser. No. 11/766,683 (filed on Jun. 21, 2007 and entitled “Magnetically Coupleable Robotic Devices and Related Methods”), Ser. No. 11/766,720 (filed on Jun. 21, 2007 and entitled “Magnetically Coupleable Surgical Robotic Devices and Related Methods”), Ser. No. 11/966,741 (filed on Dec. 28, 2007 and entitled “Methods, Systems, and Devices for Surgical Visualization and Device Manipulation”), 61/030,588 (filed on Feb. 22, 2008), Ser. No. 12/171,413 (filed on Jul. 11, 2008 and entitled “Methods and Systems of Actuation in Robotic Devices”), Ser. No. 12/192,663 (filed Aug. 15, 2008 and entitled Medical Inflation, Attachment, and Delivery Devices and Related Methods”), Ser. No. 12/192,779 (filed on Aug. 15, 2008 and entitled “Modular and Cooperative Medical Devices and Related Systems and Methods”), Ser. No. 12/324,364 (filed Nov. 26, 2008 and entitled “Multifunctional Operational Component for Robotic Devices”), 61/640,879 (filed on May 1, 2012), Ser. No. 13/493,725 (filed Jun. 11, 2012 and entitled “Methods, Systems, and Devices Relating to Surgical End Effectors”), Ser. No. 13/546,831 (filed Jul. 11, 2012 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), 61/680,809 (filed Aug. 8, 2012), Ser. No. 13/573,849 (filed Oct. 9, 2012 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), and Ser. No. 13/738,706 (filed Jan. 10, 2013 and entitled “Methods, Systems, and Devices for Surgical Access and Insertion”), and U.S. Pat. No. 7,492,116 (filed on Oct. 31, 2007 and entitled “Robot for Surgical Applications”), U.S. Pat. No. 7,772,796 (filed on Apr. 3, 2007 and entitled “Robot for Surgical Applications”), and U.S. Pat. No. 8,179,073 (issued May 15, 2011, and entitled “Robotic Devices with Agent Delivery Components and Related Methods”), all of which are hereby incorporated herein by reference in their entireties.


Certain device and system implementations disclosed in the applications listed above can be positioned within a body cavity of a patient in combination with a support component similar to those disclosed herein. An “in vivo device” as used herein means any device that can be positioned, operated, or controlled at least in part by a user while being positioned within a body cavity of a patient, including any device that is coupled to a support component such as a rod or other such component that is disposed through an opening or orifice of the body cavity, also including any device positioned substantially against or adjacent to a wall of a body cavity of a patient, further including any such device that is internally actuated (having no external source of motive force), and additionally including any device that may be used laparoscopically or endoscopically during a surgical procedure. As used herein, the terms “robot,” and “robotic device” shall refer to any device that can perform a task either automatically or in response to a command.


Certain embodiments provide for insertion of the present invention into the cavity while maintaining sufficient insufflation of the cavity. Further embodiments minimize the physical contact of the surgeon or surgical users with the present invention during the insertion process. Other implementations enhance the safety of the insertion process for the patient and the present invention. For example, some embodiments provide visualization of the present invention as it is being inserted into the patient's cavity to ensure that no damaging contact occurs between the system/device and the patient. In addition, certain embodiments allow for minimization of the incision size/length. Further implementations reduce the complexity of the access/insertion procedure and/or the steps required for the procedure. Other embodiments relate to devices that have minimal profiles, minimal size, or are generally minimal in function and appearance to enhance ease of handling and use.


Certain implementations disclosed herein relate to “combination” or “modular” medical devices that can be assembled in a variety of configurations. For purposes of this application, both “combination device” and “modular device” shall mean any medical device having modular or interchangeable components that can be arranged in a variety of different configurations. The modular components and combination devices disclosed herein also include segmented triangular or quadrangular-shaped combination devices. These devices, which are made up of modular components (also referred to herein as “segments”) that are connected to create the triangular or quadrangular configuration, can provide leverage and/or stability during use while also providing for substantial payload space within the device that can be used for larger components or more operational components. As with the various combination devices disclosed and discussed above, according to one embodiment these triangular or quadrangular devices can be positioned inside the body cavity of a patient in the same fashion as those devices discussed and disclosed above.


As best shown in FIG. 1, in certain exemplary embodiments, the device 10 has two coupleable bodies 12A, 12B, each of which is rotatably coupled to one of two arms 14A, 14B as shown. The coupleable bodies 12A, 12B are also referred to as “shoulders,” “shoulder assemblies,” “connectors,” and “connector assemblies.” More specifically, each arm 14A, 14B has a coupling link 8A, 8B that couples the arm 14A, 14B to one of the coupleable bodies 12A, 12B. Each arm has an inner link (also referred to herein as an “inner arm,” “inner arm assembly,” “upper arm,” “upper arm assembly,” “first link,” or “first link assembly”) 16A, 16B and an outer link (also referred to herein as an “outer arm,” “outer arm assembly,” “forearm,” “forearm assembly,” “second link,” or “second link assembly”) 18A, 18B. The upper arms 16A, 16B are rotatably coupled to the coupling links 8A, 8B, which are rotatably coupled to the coupleable bodies 12A, 12B. In the right arm 14A, the upper arm 16A is rotatably coupled to the forearm 18A, while in the left arm 14B, the upper arm 16B is rotatably coupled to the forearm 18B.


Each of the arms 14A, 14B has five degrees of freedom. That is, each arm 14A, 14B has four rotatable joints or components and a single bipolar tool. For example, as best shown in FIGS. 1, 5A, and 5B, the coupling link 8A, 8B of each arm 14A, 14B has a rotatable joint 20A, 20B that is rotatable around an axis A that is perpendicular to the length of each of the coupleable bodies 12A, 12B, as shown by arrow A1. The rotatable joints 20A, 20B couple each of the coupleable bodies 12A, 12B to one of the coupling links 8A, 8B. This rotation around axis A is also called “shoulder pitch.” FIGS. 5A and 5B depict the right coupleable body 12A. More specifically, FIG. 5A is a sideview of the right body 12A, while FIG. 5B is a cross-sectional cutaway view depicting the internal portion of the body 12A marked by line AA-AA in FIG. 5A. Further, FIG. 5B depicts axis A around which rotatable joint 20A rotates.


As best shown in FIGS. 1, 7A, and 7B, the coupling link 8A, 8B of each arm 14A, 14B also has a rotatable joint 22A, 22B that is rotatable around an axis B that is perpendicular to the axis A, as shown by arrow B1. FIGS. 7A and 7B depict the right upper arm 16A. More specifically, FIG. 7A is a top view of the right upper arm 16A, while FIG. 7B is a cross-section cutaway sideview depicted the internal portion of the upper arm 16A marked by line BB-BB in FIG. 7A. FIG. 7B also depicts axis B around which rotatable joint 22A rotates. The rotatable joints 22A, 22B couple the coupling links 8A, 8B to the upper arms 16A, 16B. This rotation around axis B is also called “shoulder yaw.”


Also best depicted in FIGS. 1, 7A, and 7B, the arms 14A, 14B each have a rotatable joint 24A, 24B that is rotatable around an axis C that is parallel to axis B, as shown by arrow C1. FIG. 7B depicts axis C around which rotatable joint 24A rotates. The rotatable joints 24A, 24B couple the upper arms 16A, 16B to the forearms 18A, 18B. This rotation around axis C is also called “forearm yaw.”


Additionally, as best shown in FIGS. 1 and 8B, each of the forearms 18A, 18B (or a portion thereof) are configured to rotate around an axis D that is perpendicular to axis C, as shown by arrow D1. This rotation allows for the rotation or “roll” of the end effectors 26A, 26B coupled to the distal end of each of the forearms 18A, 18B. This rotation around axis D is also called “end effector roll.”


Further, as best shown in FIGS. 1 and 8A, each of the end effectors 26A, 26B, or, more specifically, certain components thereof, are configured to rotate or move around an axis E that is perpendicular to axis D, as shown by arrow E1. This rotation or movement allows for the opening and closing of the end effector 26A, 26B (also referred to as moving the end effector 26A, 26B between an open and closed position), such as a grasper or gripper or scissors. This rotation around axis E is also called “end effector opening/closing.” FIG. 8A is a top view of the right forearm 18A, while FIG. 8B is a cross-section cutaway sideview depicted the internal portion of the forearm 18A marked by line CC-CC in FIG. 8A. FIG. 8A depicts axis E around which the end effector opening/closing occurs, while FIG. 8B depicts axis D around which the end effector roll occurs.


As best shown in FIGS. 1, 2A, 3A, 3B, 4A, and 4B, the two coupleable bodies 12A, 12B are configured to be coupled together. That is, each of the two bodies 12A, 12B have configurations that are mateable to each other such that the right body 12A can mate with and couple to the left body 12B such that the two bodies 12A, 12B form a single body 12. In one example, each of the bodies 12A, 12B have a matching coupling feature that allows the two bodies 12A, 12B to couple together such that they are retained in that coupled configuration. As shown in FIGS. 3A, 3B, 4A, and 4B, the right body 12A has a tapered notch 60 defined in one wall of the body 12A. The notch 60 is wider at the top of the notch 60 than it is at the bottom. Similarly, the left body 12B has a tapered projection 62 that is sized and configured to fit in the notch 60. The projection 62 is wider at the top of the projection 62 than it is at the bottom. In one embodiment, the two bodies 12A, 12B are coupled by positioning the left body 12B such that the bottom portion of the projection 62 can be slid into the top portion of the notch 60 and urged downward such that the projection 62 is positioned in the notch 60. When the projection 62 is correctly positioned in the notch 60, the two bodies 12A, 12B are mated correctly and the coupling is maintained by the mating of the notch 60 and projection 62. Alternatively, any other known mating or coupling feature or mechanism can be used. This coupleability of the two bodies 12A, 12B allows for the two bodies 12A, 12B to be coupled to each other prior to positioning the device 10 into the body or after the two arms 14A, 14B have been inserted into the target body cavity.


The upper arms 16A, 16B and the forearms 18A, 18B are operably coupled to an external controller (not shown) via electrical cables that transport both power and data. In certain embodiments, all six of the segments are operably coupled to such connection components (also referred to herein generally as “connection lines” or “connection components”), including both shoulders. In accordance with one implementation, two such connection components are provided, one for each arm. As best shown in FIG. 2B, in this embodiment the cables are bus power and communication lines 30A, 30B that are disposed in or coupled to the connector 12. The lines 30A, 30B transport power from an external power source (not shown) to the motors (not shown) disposed in the arm segments 16A, 16B, 18A, 18B and further transport data to and from the segments 16A, 16B, 18A, 18B to the controller. According to one embodiment, the proximal end of the lines 30A, 30B are operably coupled to an external source (not shown). According to one embodiment, the external source is an external controller that is a power supply and a communication port. Alternatively, the power supply and the controller can be separate external components. At their distal ends, the power and communication lines 30A, 30B are operably coupled to the microcontrollers and the motors in the arms 14A, 14B as well as the microcontrollers and motors in the shoulders. More specifically, as shown in FIGS. 1 and 2B, the right line 30A extends from the right connector 12A to the right upper arm 16A and is positioned through a hole 52A formed in a top portion of the upper arm 16A. In the upper arm 16A, the line 30A is operably coupled to the at least one microcontroller and the at least one motor (not shown) in the arm 16A. From the upper arm 16A, the line 30A extends out of a hole 54A and to the forearm 18A, where the line 30A is coupled to the at least one microcontroller and the at least one motor (not shown) in the forearm 18A.


Similarly, as also shown in FIGS. 1 and 2B, the left line 30B extends from the left connector 12B to the left upper arm 16B and is positioned through a hole 52B formed in a top portion of the upper arm 16B. In the upper arm 16B, the line 30B is operably coupled to the at least one microcontroller and the at least one motor (not shown) in the arm 16B. From the upper arm 16B, the line 30B extends out of a hole 54B and to the forearm 18B, where the line 30B is coupled to the at least one microcontroller and the at least one motor (not shown) in the forearm 18B. In certain embodiments, the lines 30A, 30B are reinforced or mechanically strain-relieved at the access points to the arm segments (such as holes 52A, 52B, 54A, 54B) to minimize or eliminate damage to the lines 30A, 30B caused by strain as a result of the movement of the arms 14A, 14B. Additionally the lines 30 A, 30B are sealed at the access points to prevent fluid ingress into the robot.


As best shown in FIGS. 1, 2A, and 2B, two cautery lines 32A, 32B are also disposed in or coupled to the connector 12A, 12B. In this depicted embodiment, the right cautery line 32A is attached to an exterior portion of the right connector 12A (as best shown in FIG. 1), while the left cautery line 32B is attached to an exterior portion of the left connector 12B (as best shown in FIGS. 2A and 2B). The proximal ends of the lines 32A, 32B are coupled to an external power source (not shown). As best shown in FIG. 2B, the right cautery line 32A extends from the right connector 12A to the right forearm 18A, in which the line 32A is operably coupled to the end effector 26A. In one implementation, the portion of the line 32A that extends from the connector 12A to the forearm 18A is coupled to an exterior portion of the upper arm 16A as shown. Alternatively, the line 32A could extend through an interior portion of the upper arm 16A. Similarly, the left cautery line 32B extends from the left connector 12B to the left forearm 18B, in which the line 32B is operably coupled to the end effector 26B. In one implementation, the portion of the line 32B that extends from the connector 12B to the forearm 18B is coupled to an exterior portion of the upper arm 16B as shown. Alternatively, the line 32B could extend through an interior portion of the upper arm 16B.


As best shown in FIGS. 1 and 2B, a dual suction/irrigation line 34A, 34B is also coupled to the connector 12. The dual line 34A, 34B is a known line that is comprised of at least one line that can be alternatively used for suction or irrigation. In certain other embodiments, more than one line can be provided, thus providing for suction and irrigation. In the embodiment depicted in FIGS. 1 and 2B, at its proximal end, the dual suction/irrigation line 34 is coupled to an external irrigation/suction component (not shown) that provides suction or irrigation to the lumen. In one embodiment, the line 34A, 34B is coupled at its proximal end to a valve having two separate lines: one line extending to a known suction device and the other line extending to a known irrigation device. This commercially-available valve is known generally as a “trumpet valve.” Alternatively, the dual line 34A, 34B is coupled to any known external component that provides suction and irrigation, or is coupled to two separate devices, one providing suction and the other providing irrigation. Alternatively, it is understood that two separate lines can be provided—a suction line and an irrigation line. In this embodiment, the dual suction/irrigationline 34A is coupled to an exterior portion of the right connector 12A. The suction/irrigation line 34A extends from the right connector 12A to the right arm 14A, where the line 34A is coupled to an exterior portion of the upper arm 16A and to an exterior portion of the forearm 18A as shown.


In one embodiment, the forearm 18A has an attachment component 36 configured to couple the suction/irrigation line 34 to the forearm 18A. In this particular exemplary embodiment, the attachment component 36 is an attachment collar 36 configured to be positioned around the forearm 18A and coupled to the line 34 such that the collar 36 helps to keep the line 34 coupled to the forearm 18A. At its distal end, the dual suction/irrigation line 34 is operably coupled to the cautery scissors 26A.


As shown in FIGS. 2A and 2B, the connector 12 has a laparoscope lumen 38 defined in the connector 12. The lumen 38 is configured to receive any standard laparoscopic imaging device. Further, each of the two coupleable connectors 12A, 12B defines an insertion rod lumen 40A, 40B. Each lumen 40A, 40B is configured to receive an insertion rod 42A, 42B.


In accordance with one implementation, each of the power and communications lines 30A, 30B, the cautery lines 32A, 32B, and the dual suction/irrigation line 34 are all coupled with or disposed in the connector 12 such that a seal is maintained between the connector 12 and the access port (not shown) mounted to the patient. That is, as best shown in FIG. 6, the connector 12 (and the two connector bodies 12A, 12B), according to one embodiment, has grooves or channels 70 defined along the outer surface of the two bodies 12A, 12B such that the various lines and cables (including the power and communications lines 30A, 30B, the cautery lines 32A, 32B, the suction/irrigation line 34, and any other lines or cables that might be incorporated into the device) are positioned in those grooves or channels 70. The positioning of the lines or cables in the grooves or channels 70 helps to maintain a smooth outer perimeter around the outer surface of the connector 12, thereby ensuring a successful fluidic seal with the access port when the connector 12 is positioned therethrough. It is understood that the access port can be any known port for use with laparoscopic surgical tools, including the port devices described in U.S. patent application Ser. No. 13/738,706, filed on Jan. 10, 2013, which is hereby incorporated herein by reference in its entirety. In certain exemplary embodiments, the access port can be readily removed, cleaned and sterilized.


According to one implementation, the arms 14A, 14B are configured to receive a fluid sealing component over the arms 14A, 14B. That is, as best shown in FIG. 1, each of the coupleable connectors 12A, 12B, has a channel 44A, 44B defined around the connectors 12A, 12B and each of the arms 14A, 14B has a channel 46A, 46B defined around a distal portion of the forearms 18A, 18B. Fluid sealing protective sleeves (not shown), such as those, for example, described in U.S. application Ser. No. 13/573,849, filed on Oct. 9, 2012, which is hereby incorporated by reference herein in its entirety, are positioned over each arm 14A, 14B and the ends of each sleeve are positioned in one of the channels 44A, 44B, 46A, 46B such that the sleeves are coupled to the arms 14A, 14B such that the sleeves create a fluidic seal around each arm 14A, 14B, whereby moisture and liquid are prevented from ingressing into the arms 14A, 14B.


Each of the joints described above is operably coupled to a motor via a geartrain (not shown). Further, each joint is also operably coupled to a microcontroller. In addition, each joint is operably coupled to at least one position sensor. According to one embodiment, each joint is coupled to both a relative position sensor and an absolute position sensor. According to another embodiment, each joint has at least a relative position sensor.


As best shown in FIGS. 2C and 2D, the configuration of the connector 12 and the arms 14A, 14B in this embodiment provide a minimal cross-sectional area for the device 10, thereby allowing for easy insertion of the device 10 through a small incision and into a small cavity of a patient. That is, the coupling of the arms 14A, 14B to the connector 12 via the coupling links 8A, 8B, along with the ability to position the arms 14A, 14B as shown in FIGS. 2C and 2D, results in a narrower device 10 that can fit through smaller incisions in comparison to devices that are wider/have larger cross-sections. In use, the arms 14A, 14B of the device 10 can be positioned as shown in these figures prior to insertion into a patient's cavity. The device 10 can then be positioned through an incision in a single linear motion. In one embodiment, the device 10 is inserted one arm at a time. That is, the two coupleable bodies 12A, 12B with arms attached are positioned in the patient's cavity prior to coupling the two bodies 12A, 12B together. Alternatively, the device 10 is inserted as a single unit, with the two bodies 12A, 12B already coupled together.



FIGS. 5C and 5D depict a close-up of the right connector 12A, according to one embodiment. It is understood that the internal components of the right connector 12A as described herein are substantially similar to the equivalent components in the left connector 12B, so the following description shall encompass those equivalent components as well. As best shown in FIG. 5D, the right connector 12A has a connector motor 160 that is operably coupled to a bevel motor gear 162. The bevel motor gear 162 is operably coupled to a bevel driven gear 164, which constitutes joint 20A discussed above. The drive gear 164 is supported in this embodiment by two bearings 166 and is operably coupled to the right coupling link 8A, which is also described above. In one implementation, a magnetic absolute position encoder 168 (also shown in FIG. 5C) and an encoder magnet 170 are operably coupled to the driven gear 164, and are thereby configured to provide information about the position of the gear 164. As best shown in FIG. 5C, a motor control board 172 is positioned in the housing of the connector 12A.


In accordance with one embodiment, the right and left upper arms 16A, 16B, including the coupling links 8A, 8B, have configurations that are identical or substantially similar and are simply minor versions of each other. Alternatively, they can have some different components as necessary for the specific end effectors that might be coupled to the forearms 18A, 18B.



FIGS. 7A, 7B, and 7C depict a right upper arm 16A, according to one embodiment. It is understood that the internal components of the right upper arm 16A as described herein are substantially similar to the equivalent components in the left upper arm 16B, so the following description shall encompass those equivalent components as well. The upper arm 16A has two motors 200, 202. The first motor 200 is configured to actuate the shoulder shaft 204 to rotate in relation to the coupling link 8A, thereby rotating around axis B. The second motor 202 is configured to actuate the elbow shaft 206 to rotate in relation to the forearm 18A, thereby rotating around axis C.


As best shown in FIG. 7B, the first motor 200 is operably coupled to motor gear 208, which is operably coupled to the driven gear 210. The driven gear 210 is operably coupled to the shoulder shaft 204 such that rotation of the driven gear 210 causes rotation of the shoulder shaft 204. The shaft 204 is supported by bearings 216A, 216B. The motor 202 is operably coupled to motor gear 212, which is operably coupled to the driven gear 214. The driven gear 214 is operably coupled to the elbow shaft 206 such that rotation of the driven gear 214 causes rotation of the elbow shaft 206. The shaft 206 is supported by bearings 218A, 218B.


Each of the shafts 204, 206 is operably coupled to an encoder magnet 222A, 222B, each of which is operably coupled to an absolute position magnetic encoder 220A, 220B. The encoders 220A, 220B work in a fashion similar to the position encoders described above. At least one motor control board 224 is positioned in the housing of the upper arm 16A as best shown in FIG. 7C.


In contrast, in this implementation as shown in FIGS. 1 and 2A, the right and left forearms 18A, 18B are not identical. That is, the right forearm 18A has an end effector 26A further comprising cautery scissors 26A. According to one embodiment, the cautery scissors 26A is a “quick-change” mono-polar cautery scissors 26A. That is, the cautery scissors 26A can be coupled to or removed from the forearm 18A without the need to assemble or disassemble any other components. More specifically, in this exemplary embodiment, a commercially-available cautery scissors 26A called the ReNew Laparoscopic Endocut Scissors Tip™, which is available from Microline Surgical, Inc., located in Beverly, Mass., is removeably coupled to the forearm 18A. Alternatively, any known easily removeable end effector or any known mechanism or method for providing easy coupling and uncoupling of the end effector 26A can be used. In a further alternative, the end effector 26A can be any known end effector for use with an arm of a robotic surgical device.


One exemplary embodiment is depicted in FIGS. 8A-8D. FIGS. 8A-8D depict several views of the right forearm 18A according to one implementation. FIG. 8C is a cross-sectional cutaway view of the forearm 18A that is perpendicular to the plane of the line CC-CC of FIG. 8A, while FIG. 8D is a cross-sectional cutaway view of the forearm along line CC-CC of FIG. 8A. The forearm 18A has two motors 80, 82. As best shown in FIG. 8C, the motor 80 is operably coupled to the end effector 26A such that the motor 80 actuates the end effector 26A to move between its open and closed positions. As best shown in FIG. 8D, the motor 82 is operably coupled to the end effector 26A such that the motor 82 actuates the end effector 26A to “roll,” which is rotation around an axis parallel to the longitudinal length of the arm 18A.


Focusing on FIG. 8C, the motor 80 actuates the end effector 26A to open and close in the following fashion. The motor 80 has a motor gear 84 that is operably coupled to a driven gear 86. The driven gear 86 is operably coupled to a connector component 88 such that the connector component 88 rotates when the driven gear 86 rotates. Connector component 88 is supported by two bearings (not shown). The connector component 88 has a threaded inner lumen 88A and is operably coupled to a translation component 90. More specifically, the translation component 90 has a proximal threaded projection 90A that is threadably coupled to the threaded inner lumen 88A such that rotation of the connector component 88 causes axial movement of the translation component 90. In addition, as best shown in FIG. 8D, the translation component 90 has a projection 90B extending from an outer circumference of the component 90 such that the projection 90B is positioned in a slot 92 that constrains the translation component 90 from rotating. As such, when the driven gear 86 rotates and thus causes the connector component 88 to rotate, the rotation of the connector component 88 causes the translation component 90 to move axially along the longitudinal axis of the arm 18A.


The translation component 90 defines a lumen 90C at its distal end that is configured to receive the coupling component 94, as best shown in FIG. 8C. Further, the lumen 90C contains at least one bearing 96 that is positioned between the translation component 90 and the coupling component 94 such that the translation component 90 and the coupling component 94 are rotationally independent of each other. That is, the coupling component 94 can rotate inside the lumen 90C of the translation component 90 while the translation component 90 does not rotate. The coupling component 94 has a threaded lumen 94A configured to receive a rod (or pin) 98 that has external threads on its proximal end that are threadably coupled to the threaded lumen 94A of the coupling component 94. The distal end of the rod 98 is slidably positioned in the end effector housing 100 such that the rod 98 can slide axially back and forth in relation to the housing 100. The rod 98 is operably coupled to the first and second blades 102A, 102B of the scissors 26A via linkages (not shown) such that the axial movement of the rod 98 causes the blades 102A, 102B to pivot around the pivot axis 104, thereby causing the blades 102A, 102B to open and close. More specifically, in one embodiment, movement of the rod 98 in a distal direction (toward the scissors 26A) causes the blades 102A, 102B to move away from each other such that the scissors 26A move toward an open position, while proximal movement of the rod 98 causes the scissors 26A to move toward a closes position.


Focusing on FIG. 8D, the motor 82 actuates the end effector 26A to roll in the following fashion. The motor 82 has a motor gear 104 that is operably coupled to a driven gear 106. The driven gear 106 is operably coupled to a roll shaft 108 such that the roll shaft 108 rotates when the driven gear 106 rotates. The at least one bearing 112 disposed around the roll shaft 108 allows the roll shaft 108 to rotate in relation to the forearm 18A. The roll shaft 108 is operably coupled to rotational connector 110, such that roll shaft is constrained linearly and rotationally. Housing 100 is threadably coupled to rotational connector 110, such that the two components are operably coupled, again constrained linearly and rotationally. In certain embodiments, roll shaft 108 does not have any threads. As such, the roll shaft 108, the housing 100, and the rotational connector 110 are all coupled together such that they are capable of rotating together. Thus, actuation of the motor 82 results in rotation of the housing 100 and thus rotation of the end effector 26A. According to one embodiment, the forearm 18A also has at least one position sensor to provide information to an external controller (not shown) or a microcontroller regarding the position of the end effector 26A.


The electrical connection required for the cautery feature of the end effector 26A is maintained in the following fashion. An electrical contact pin 114 is slidably positioned within the lumen 88A of the connector component 88 and is electrically coupled at its proximal end to the cautery line 32A discussed elsewhere herein (and depicted in FIGS. 1 and 2B). The lumen 88A contains bifurcated leaf springs which maintain electrical contact and provide long life to mechanism. This was accomplished by taking an off the shelf socket connector and press fitting the socket portion into part 88. At its distal end, the pin 114 is electrically coupled to the translation component 90, which is electrically coupled through the other coupling components discussed above to the blades 102A, 102B of the end effector 26A, thereby allowing for electrical coupling of the cautery line 32A to the end effector 26A.


The left forearm 18B has an end effector 26B that is a cautery grasper 26B, as shown in FIGS. 9A and 9B. According to one embodiment, the cautery grasper 26B is an integrated bi-polar cautery grasper 26B. In this context, “integrated” is intended to mean that the grasper 26B is an integral part of the forearm 18B such that replacement of the grasper 26B with another end effector would require disassembly of the forearm 18B. Alternatively, the grasper 26B is not an integral part of the forearm 18B but rather is easily removable and interchangeable with other end effectors. For example, in one embodiment, the end effector 26B is a “quick change” end effector 26B similar to the right end effector 26A as described above.



FIGS. 9A and 9B depict the left forearm 18B according to one implementation. FIG. 9A is a cross-sectional cutaway view of the forearm 18B along line DD-DD of FIG. 2D, while FIG. 9B is a cross-sectional cutaway view of the forearm along a line that is perpendicular to the plane of line DD-DD of FIG. 2D. The forearm 18B has two motors 120, 122. As best shown in FIG. 9A, the motor 120 is operably coupled to the end effector 26B such that the motor 120 actuates the end effector 26B to “roll,” which is rotation around an axis parallel to the longitudinal length of the arm 18B. As best shown in FIG. 9B, the motor 122 is operably coupled to the end effector 26B such that the motor 122 actuates the end effector 26B to move between its open and closed positions.


Focusing on FIG. 9A, the motor 120 actuates the end effector 26B to roll in the following fashion. The motor 120 has a motor gear 124 that is operably coupled to a driven gear 126. The driven gear 126 is operably coupled to a end effector housing 128 such that the housing 128 rotates when the driven gear 126 rotates. As such, actuation of the motor 120 causes rotation of the end effector 26B. The at least one bearing 130 positioned around a proximal portion of the driven gear 126 to allow the gear 126 and the housing 128 to rotate in relation to the arm 18B. An O-Ring 132 forms a seal around the housing 128, but does not support the shaft and does not aid in its rotation or constraint. Applying a radial loaded to the O-ring 132 could potentially compromise the seal which is its primary and sole function.


Focusing on FIG. 9B, the motor 122 actuates the end effector 26B to open and close in the following fashion. The motor 122 has a motor gear 134 that is operably coupled to a driven gear 136. The driven gear 136 is operably coupled to a connector component 138, which is threadably coupled to an inner lumen 136A of the driven gear 136 such that the connector component 138 translates when the driven gear 136 rotates. The connector component 138 is operably coupled to connector rods 140A, 140B, which are operably coupled at their proximal ends to a slip ring 142 (as best shown in FIG. 9A). The connector component 138, rods 140A, 140B, and slip ring 142 are coupled to each other rotationally and axially such that rotation of the connector component 138 causes rotation of both the rods 140A, 140B and the slip ring 142. Further, as the driven gear 136—rotates, the assembly of the coupled components 138, 140A, 140B, 142 moves axially in relation to the driven gear 136. The assembly 138, 140A, 140B, 142 is also coupled to the end effector housing 128 such that housing 128 rotates when the assembly 138, 140A, 140B, 142 rotates. However, the assembly 138, 140A, 140B, 142 can move axially independently of the housing 128. Each of the rods 140A, 140B is operably coupled to one of the fingers 148A, 148B of the grasper 26B via a linkage (not shown) within the housing 128. As the rods 140A, 140B move axially, they move the linkages, thereby causing the fingers 148A, 148B to move between their open and closed positions. The driven gear 136 thus causes translation, not rotation of the assembly 138, 140, 142. Its rotation is contrained by the housing 128, which in turn is constrained by the driven gear 126, which in turn is rotationally constrained by motor gear 124, which is in turn constrained by motor 120. Therefore, it is the motor 120 that provides the rotational constraint in a similar fashion to the projection 90B in FIG. 8D. In contrast to the right arm, the linear motion and the rotational motion of this mechanism is coupled. When a user wishes to roll the tool and maintain a constant open or closed position, both motors 120, 122 must be actuated and match speed. When a user wishes to open or close the tool, the motor 122 must be actuated and hold position to constrain the rotation.


According to one embodiment, the forearm 18B also has a set of position sensors to provide information to an external controller (not shown) or a microcontroller regarding the position of the end effector 26B. In the implementation as shown in FIG. 9A, an array of LEDs 144 and a set of position sensors 146 are positioned in the forearm 18B such that the axial position of the end effector 26B can be determined based on the position of the slip ring 142. More specifically, the array of LEDs 144 are positioned on one side of the ring 142 and the sensors 146 are positioned on the other side such that the position of the slip ring 142 can be determined based on which sensors 146 are sensing light emitted from LEDs 144 (and which sensors 146 are not). This information about the position of the slip ring 142 can be used to determine the position of the end effector 26B.


As best shown in FIG. 10, in certain exemplary embodiments of the present invention 300, the onboard microcontrollers, or PCBs 302, are operably connected with uniform flex tapes 304. In certain embodiments, the various PCBs are identical and the flex tapes are universally adaptable.


In certain exemplary embodiments of the forearm, 18 as shown in FIGS. 11A-11F and 12, the surgical device further comprises a linear slip ring assembly 402 (best shown in FIGS. 11A-11F) for use with an end effector, such as a bipolar cautery end effector, or “tool assembly” 460 which is shown generally in FIG. 12. In these embodiments, the bi-polar cautery end effector having two grasper fingers operates by coupling the two grasper fingers to separate electrical channels. The linear slip ring assembly 402 has an opening 402A that receives the tool assembly 460 (depicted in FIGS. 11F and 12) so as to provide electrical and mechanical communication between the tool assembly and the linear slip ring, and thereby couple the two grasper fingers to a power source. In certain embodiments, this is an external power source.


In certain implementations, the linear slip ring assembly 402 is a novel two-channel linear slip ring assembly 402 capable of allowing both rotating motion and translating motion of the tool assembly 460 disposed therein. The linear slip ring assembly also contains two electrical channels (as described below) that are isolated from one another throughout the assembly and connect to the linear slip ring 402 so as to pass bi-polar cautery power to the grasper fingers as they roll and open or close.


In exemplary embodiments, the linear slip ring assembly 402 has a first stator pair 408 and second stator pair 410. The first and second stator pairs 408, 410 are each spring loaded onto the housing 412 by U-springs 414, 416 and are operably coupled with the corresponding slip ring rotors 452, 454 of the tool assembly 460 (shown in FIG. 12). The slip ring rotors 452, 454 are capable of both translational and continuous rotation of the end effector. An insulator 418 separates the slip ring rotors 452, 454 to maintain electrical isolation.


Focusing on FIG. 12, in operation, exemplary end effector embodiments 440 having the linear slip ring assembly 440A further comprise a tool assembly 460 having a roll gear 442, which is permanently bonded to the tool housing 444. In operation, by rotating the roll gear 442, the tool housing assembly, 460 as described previously, all of the tool rotates. This rotation includes the grasper 448, the roll gear 442, the leadscrew 450, and the slip ring rotators 452, 454. In these embodiments, the roll gear 442 is fixed in place axially in the forearm assembly 440 and operably coupled to the roll motor 456. In these implementations, the roll gear 442 is not free to move linearly, and can only move rotationally. Actuating the roll motor 456 thus causes the entire tool assembly 460 to rotate.


In exemplary embodiments, a linear motor 462 is coupled to an internally threaded driven gear (shown in reference to FIG. 9B as the driven gear 136). This driven gear 136 is in turn threadably coupled to the connector component, or “leadscrew” 450 (shown in FIG. 9B as the connector component 138). The driven leadscrew drives the leadscrew 450 linearly so as to open and close the grasper 448.


Further, the leadscrew 450 and roll gear 442 are coupled together. In operation, in order to achieve pure roll, both the roll gear 442 and the driven leadscrew must rotate at the same speed. This is done so that there is no relative angular velocity between the leadscrew 450 and the leadscrew gear. By way of example, if the roll gear 442 were to spin (and the tool 460 spin with it), while the driven leadscrew gear maintained position, the leadscrew 450 would be spinning within the leadscrew gear and causing translation, in the depicted embodiment the opening or closing of the grasper 448.


Similarly, in order to achieve pure opening or closing of the grasper 448, the roll gear 442 must hold position while the driven leadscrew gear rotates and drives the leadscrew 450 linearly. If the roll gear 442 were free to spin while the driven leadscrew gear operates, no relative motion between the leadscrew 450 and leadscrew gear would occur and thus there would be no linear translation, and thus no opening or closing of the grasper 448.


In these exemplary embodiments, the cautery slip ring rotors 452, 454 are permanently coupled mechanically to the leadscrew 450 along an axis, but remain isolated 418 electrically from the leadscrew 450, such that the cautery slip ring rotors 452, 454 translate with the leadscrew 450 and rotated when entire tool 460 rotates.


Thus, in certain exemplary embodiments, the entire tool 460 is rotationally coupled. The proximal portion 470 (including the leadscrew 450 and the cautery slip ring rotors 452, 454) can translate with respect to the distal portion 480 (including the roll gear gear 442, the tool housing 440 and the grasper 448). This translation drives the grasper 448 open and closed. Further, and as discussed in relation to FIG. 11A-F, each of the cautery slip ring rotors 452, 454 is electrically coupled to one grasper jaw 448A, 448B. As previously discussed in reference to FIG. 11A-11F, each of the cautery slip ring rotors 452, 454 are also electrically coupled to a stator pair 408, 410, and is electrically isolated from every other element in the system.


According to another implementation, the surgical device forearm 18 further comprises a linear encoder, as is depicted in FIGS. 11A-F and discussed further herein in reference to 13A-D. Linear encoders serve as absolute position sensors by assessing the absolute position of the end effector or forearm. In these embodiments, the forearm 18 further comprises a pixel array 420 and LED array 422, as best shown in FIGS. 11A & 11B, which function together to determine the position of aspects of the surgical device. By way of example, in these embodiments, this functions is performed by broadcasting and receiving a signal—such as LED light—to determine the position of those aspects by assessing shadows or breaks in the LED light. Data from the magnetic absolute position encoder (discussed in relation to FIGS. 5C and 7B herein) and the linear position encoder can both be used as feedback sensors in the control algorithm. In certain implementations, the absolute linear position optical encoder is coupled to the gripper translation assembly and the custom relative rotary position optical encoder is coupled to the motor shaft, and both are used as the feedback sensors in the control algorithm. This is discussed further herein in relation to FIG. 13A-13D.


In the implementation shown in FIG. 11A-11F, an array of LEDs 422 and the pixel array 420 are positioned on the housing 412 such that the axial position of the end effector (not shown) can be determined based on the position of the projection from the LED array 422. More specifically, the array of LEDs on one side of the housing and the pixel array 420 are positioned on opposite sides of the housing 412 such that the position of the LED projection can be determined based on which sensors are sensing light emitted from LEDs (and which sensors are not) based on the position of the end effector disposed within that channel.


In certain embodiments, the motor control boards are integrated into the forearm housing, best shown as reference numbers 80 in FIGS. 8C and 122 in FIG. 9B. The linear position encoder is attached to the back of the tool drive motor. In certain embodiments, the surgical device comprises a rotary relative position encoder having a fan with a plurality of equally spaced blades operationally coupled to the dependant motor. As the dependant motor spins, these blades break a beam between an infrared sensor and receiver, thereby counting rotations of the motor.


Again, according to certain additional implementations, the surgical device has a linear encoder 500, as depicted in FIG. 13A-D. In these implementations, the LED emitter 522 is a PCB further comprising an array of LEDs. In these implementations, the receiver array 520 is also a PCB, and further comprises a linear array of light sensitive pixels. In certain implementations, the receiver array 520 comprises a COTS integrated circuit. In such exemplary embodiments, each element of output of the linear array 522 is continuously sampled by the receiver array 520 and the voltage level is recorded. By way of example, in these implementations, the voltage level is directly proportional to the amount of light collected by the pixel during the last sample period, such that increases in receive light correlates to increases in voltage, so as to communicate feedback concerning the absolute position of the surgical device and end effector.


In the exemplary embodiments of the linear encoder 500 depicted in FIGS. 13A-13D, the receiver array 520 and the LED emitter 522 are supported by a support piece 524 with at least one window (one labeled 526, others not shown), and a slit 528. According to one embodiment, the support piece 524 is made of machined delrin. The window 526 or windows allow light to pass from the LED emitter 522 to the receiver 520. The support piece 524 can accommodate a leadscrew 530. In certain implementations, the leadscrew 530 further comprises a slotted extrusion 532 which translates linearly to the slit 528. A gap in the extrusion 532 allows light to pass from the LED emitter 522 to the receiver 520. As the leadscrew 530 translates, the slot in extrusion 532 moves correspondingly, thereby casting a shadow on the receiver everywhere except in the location of the slot. In this way, absolute position of the leadscrew 530 is determined.


In certain implementations, a second extrusion 552 slides in a slot 550 in the second support piece 540. This slot 550 has a tighter fit than between the slotted extrusion 532 and slot 528. In this way the second support piece 540 can act as the rotational constraint for the leadscrew 530. In this implementation, the second extrusion 552 causes friction (or “rubs”) against the second support piece 540 and slot 550. Conversely, the slotted extrusion 532 does not rub in slot 528. This implementation prevents material build up, deformation, or other deterioration of the sensor unit.


Thus, certain embodiments of the present invention provide redundant position sensing. For example, each forearm may have a relative position sensor. In these embodiments, each forearm also may further comprise an absolute position encoder. As would be apparent to those of skill in the art, the coupling of the absolute and relative position sensing allows for both homing of the device and the addition of safety features.


While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.


Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims
  • 1. A robotic device, comprising: a. a connector comprising: i. a first coupleable body comprising at least one first connector motor;ii. a second coupleable body comprising at least one second connector motor; andiii. a lumen defined within the connector and sized to accept a laparoscopic imaging device;b. a first segmented robotic arm in operational communication with the first coupleable body and first connector motor, the first segmented robotic arm comprising: i. a first upper arm in operable and rotational communication with the first coupleable body, the first upper arm comprising a first upper arm housing containing: A. a plurality of first upper arm motors; andB. a first upper arm motor control board;ii. a first forearm in operable and rotational communication with the first upper arm, the first forearm having a first forearm housing containing: A. a plurality of first forearm motors;B. a first forearm motor control board; andC. a first end effector housing defined in the first forearm housing;c. a second segmented robotic arm in operational communication with the second coupleable body and second connector motor, the second segmented robotic arm comprising: i. a second upper arm in operable and rotational communication with the second coupleable body, the second upper arm comprising a second upper arm housing containing: A. a plurality of second upper arm motors; andB. a second upper arm motor control board;ii. a second forearm in operable and rotational communication with the second upper arm, the second forearm having a second forearm housing containing: A. a plurality of second forearm motors;B. a second forearm motor control board; andC. a second end effector housing defined in the second forearm housing;d. a first end effector in operational communication with the first segmented robotic arm via the first end effector housing; ande. a second end effector in operational communication with the second segmented robotic arm via the second end effector housing,wherein: i. the first coupleable body further comprises a notch;ii. the second coupleable body further comprises a projection; andiii. the notch and the projection are designed to be operationally communicable.
  • 2. The surgical device of claim 1, further comprising an LED array disposed within the first forearm housing.
  • 3. The surgical device of claim 1, further comprising an absolute position sensor disposed within the first forearm housing.
  • 4. A modular surgical device comprising: a. a connector comprising: i. a first coupleable body enclosing at least one motor control board;ii. a second coupleable body;iii. two or more connector motors disposed within the first or second coupleable body and in operational communication with the at least one motor control board;iv. a lumen defined within the connector and sized to accept a laparoscopic imaging device,wherein the first coupleable body is constructed and arranged to be coupled to the second coupleable body;b. a first segmented robotic arm in operational communication with at least one of the two or more connector motors, the first segmented robotic arm comprising: i. a first upper arm comprising a first upper arm housing containing: A. a plurality of first upper arm motors; andB. a first upper arm motor control board;ii. a first forearm in operable and rotational communication with the first upper arm, the first forearm having a first forearm housing containing: A. a plurality of first forearm motors;B. a first forearm motor control board; andC. a first end effector housing defined in the first forearm housing;c. a second segmented robotic arm in operational communication with at least one of the two or more connector motors, the second segmented robotic arm comprising: i. a second upper arm comprising a second upper arm housing containing: A. a plurality of second upper arm motors; andB. a second upper arm motor control board;ii. a second forearm in operable and rotational communication with the second upper arm, the second forearm having a second forearm housing containing: A. a plurality of second forearm motors;B. a second forearm motor control board; andC. a second end effector housing defined in the second forearm housing;d. a first end effector in operational communication with the first segmented robotic arm via the first end effector housing;e. a second end effector in operational communication with the second segmented robotic arm via the second end effector housing; andf. first and second connection lines, one for each segmented robotic arm,
  • 5. The surgical device of claim 4, further comprising at least one irrigation line.
  • 6. The surgical device of claim 4, wherein the connector comprises a first coupling body and a second coupling body.
  • 7. The surgical device of claim 6, wherein the first coupleable body and second coupleable body are mateable to form a single body.
  • 8. The surgical device of claim 7, wherein the first coupleable body comprises a first mating feature and the second coupleable body comprises a second mating feature.
  • 9. The surgical device of claim 8, wherein the first mating feature is a notch and the second mating feature is a projection.
  • 10. A modular surgical device comprising: a. a connector comprising: i. a first body portion comprising at least one motor control board in electrical communication with two or more connector motors disposed within the first body portion;ii. a second body portion; andiii. a lumen defined within the connector and sized to accept a laparoscopic imaging device,wherein the first body portion is constructed and arranged to be coupled to the second body portion;b. a first segmented robotic arm in operational communication with at least one of the two or more connector motors, the first segmented robotic arm comprising: i. a first upper arm comprising a first upper arm housing containing: A. a plurality of first upper arm motors; andB. a first upper arm motor control board;ii. a first forearm in operable and rotational communication with the first upper arm, the first forearm having a first forearm housing containing: A. a plurality of first forearm motors;B. a first forearm motor control board; andC. a first end effector housing defined in the first forearm housing;c. a second segmented robotic arm in operational communication with at least one of the two or more connector motors, the second segmented robotic arm comprising: i. a second upper arm comprising a second upper arm housing containing: A. a plurality of second upper arm motors; andB. a second upper arm motor control board;ii. a second forearm in operable and rotational communication with the second upper arm, the second forearm having a second forearm housing containing: A. a plurality of second forearm motors;B. a second forearm motor control board; andC. a second end effector housing defined in the second forearm housing;d. a first end effector in operational communication with the first segmented robotic arm via the first end effector housing; ande. a second end effector in operational communication with the second segmented robotic arm via the second end effector housing,
  • 11. The surgical device of claim 10, wherein the first end effector is chosen from a group consisting of a grasping component, a cauterizing component, a suturing component, an imaging component, an irrigation component, a suction component, an operational arm component, a sensor component, and a lighting component.
  • 12. The surgical device of claim 10, wherein the second end effector is chosen from a group consisting of a grasping component, a cauterizing component, a suturing component, an imaging component, an irrigation component, a suction component, an operational arm component, a sensor component, and a lighting component.
  • 13. The surgical device of claim 10, wherein the robotic device further comprises at least one absolute position sensor.
  • 14. The surgical device of claim 13, wherein the at least one absolute position sensor is selected from the group consisting of a magnetic absolute position encoder and a linear encoder.
  • 15. The surgical device of claim 10, further comprising a pixel array and an LED array.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority from U.S. Provisional Application 61/680,809, filed Aug. 8, 2012, and entitled “Robotic Surgical Devices, Systems, and Methods,” which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (493)
Number Name Date Kind
3870264 Robinson Mar 1975 A
3989952 Timberlake et al. Nov 1976 A
4246661 Pinson Jan 1981 A
4258716 Sutherland Mar 1981 A
4278077 Mizumoto Jul 1981 A
4538594 Boebel et al. Sep 1985 A
4568311 Miyaki Feb 1986 A
4623183 Amori Nov 1986 A
4736645 Zimmer Apr 1988 A
4771652 Zimmer Sep 1988 A
4852391 Ruch et al. Aug 1989 A
4896015 Taboada et al. Jan 1990 A
4897014 Tietze Jan 1990 A
4922755 Oshiro et al. May 1990 A
4922782 Kawai May 1990 A
4990050 Tsuge et al. Feb 1991 A
5019968 Wang et al. May 1991 A
5108140 Bartholet Apr 1992 A
5172639 Wiesman et al. Dec 1992 A
5176649 Wakabayashi Jan 1993 A
5178032 Zona et al. Jan 1993 A
5187032 Sasaki et al. Feb 1993 A
5187796 Wang et al. Feb 1993 A
5195388 Zona et al. Mar 1993 A
5201325 McEwen et al. Apr 1993 A
5217003 Wilk Jun 1993 A
5263382 Brooks et al. Nov 1993 A
5271384 McEwen et al. Dec 1993 A
5284096 Pelrine et al. Feb 1994 A
5297443 Wentz Mar 1994 A
5297536 Wilk Mar 1994 A
5304899 Sasaki et al. Apr 1994 A
5307447 Asano et al. Apr 1994 A
5353807 DeMarco Oct 1994 A
5363935 Schempf et al. Nov 1994 A
5382885 Salcudean et al. Jan 1995 A
5441494 Oritz Jan 1995 A
5388528 Pelrine et al. Feb 1995 A
5436542 Petelin et al. Jul 1995 A
5458131 Wilk Oct 1995 A
5458583 McNeely et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5471515 Fossum et al. Nov 1995 A
5515478 Wang May 1996 A
5524180 Wang et al. Jun 1996 A
5553198 Wang et al. Sep 1996 A
5562448 Mushabac Oct 1996 A
5588442 Scovil et al. Dec 1996 A
5620417 Jang et al. Apr 1997 A
5623582 Rosenberg Apr 1997 A
5624380 Shuichi et al. Apr 1997 A
5624398 Smith et al. Apr 1997 A
5632761 Smith et al. May 1997 A
5645520 Nakamura et al. Jul 1997 A
5657429 Wang et al. Aug 1997 A
5657584 Hamlin Aug 1997 A
5672168 de la Torre et al. Sep 1997 A
5674030 Sigel Oct 1997 A
5728599 Rosteker et al. Mar 1998 A
5736821 Suyama et al. Apr 1998 A
5754741 Wang et al. May 1998 A
5762458 Wang et al. Jun 1998 A
5769640 Jacobus et al. Jun 1998 A
5791231 Cohn et al. Aug 1998 A
5792135 Madhani et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5797900 Madhani et al. Aug 1998 A
5807377 Madhani et al. Sep 1998 A
5808665 Green Sep 1998 A
5815640 Wang et al. Sep 1998 A
5825982 Wright et al. Oct 1998 A
5841950 Wang et al. Nov 1998 A
5845646 Lemelson Dec 1998 A
5855583 Wang et al. Jan 1999 A
5876325 Mizuno et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5878783 Smart Mar 1999 A
5895417 Pomeranz et al. Apr 1999 A
5906591 Dario et al. May 1999 A
5907664 Wang et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5911036 Wright et al. Jun 1999 A
5971976 Wang et al. Oct 1999 A
5993467 Yoon Nov 1999 A
6001108 Wang et al. Dec 1999 A
6007550 Wang et al. Dec 1999 A
6030365 Laufer Feb 2000 A
6031371 Smart Feb 2000 A
6058323 Lemelson May 2000 A
6063095 Wang et al. May 2000 A
6066090 Yoon May 2000 A
6102850 Wang et al. Aug 2000 A
6107795 Smart Aug 2000 A
6132368 Cooper Oct 2000 A
6132441 Grace Oct 2000 A
6139563 Cosgrove, III et al. Oct 2000 A
6156006 Brosens et al. Dec 2000 A
6159146 El Gazayerli Dec 2000 A
6162171 Ng et al. Dec 2000 A
D438617 Cooper et al. Mar 2001 S
6206903 Ramans Mar 2001 B1
D441076 Cooper et al. Apr 2001 S
6223100 Green Apr 2001 B1
D441862 Cooper et al. May 2001 S
6238415 Sepetka et al. May 2001 B1
6240312 Alfano et al. May 2001 B1
6241730 Alby Jun 2001 B1
6244809 Wang et al. Jun 2001 B1
6246200 Blumenkranz et al. Jun 2001 B1
D444555 Cooper et al. Jul 2001 S
6286514 Lemelson Sep 2001 B1
6292678 Hall et al. Sep 2001 B1
6293282 Lemelson Sep 2001 B1
6296635 Smith et al. Oct 2001 B1
6309397 Julian et al. Oct 2001 B1
6309403 Minor et al. Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6321106 Lemelson Nov 2001 B1
6327492 Lemelson Dec 2001 B1
6331181 Tiemey et al. Dec 2001 B1
6346072 Cooper Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6371952 Madhani et al. Apr 2002 B1
6394998 Wallace et al. May 2002 B1
6398726 Ramans et al. Jun 2002 B1
6400980 Lemelson Jun 2002 B1
6408224 Lemelson Jun 2002 B1
6424885 Niemeyer et al. Jul 2002 B1
6432112 Brock et al. Aug 2002 B2
6436107 Wang et al. Aug 2002 B1
6441577 Blumenkranz et al. Aug 2002 B2
6450104 Grant et al. Sep 2002 B1
6451027 Cooper et al. Sep 2002 B1
6454758 Thompson et al. Sep 2002 B1
6459926 Nowlin et al. Oct 2002 B1
6463361 Wang et al. Oct 2002 B1
6468203 Belson Oct 2002 B2
6468265 Evans et al. Oct 2002 B1
6470236 Ohtsuki Oct 2002 B2
6491691 Morley et al. Dec 2002 B1
6491701 Nemeyer et al. Dec 2002 B2
6493608 Niemeyer et al. Dec 2002 B1
6496099 Wang et al. Dec 2002 B2
6508413 Bauer et al. Jan 2003 B2
6512345 Borenstein Jan 2003 B2
6522906 Salisbury, Jr. et al. Feb 2003 B1
6544276 Azizi Apr 2003 B1
6548982 Papanikolopoulos et al. Apr 2003 B1
6554790 Moll Apr 2003 B1
6565554 Niemeyer May 2003 B1
6574355 Green Jun 2003 B2
6587750 Gerbi et al. Jul 2003 B2
6591239 McCall et al. Jul 2003 B1
6594552 Nowlin et al. Jul 2003 B1
6610007 Belson et al. Aug 2003 B2
6620173 Gerbi et al. Sep 2003 B2
6642836 Wang et al. Nov 2003 B1
6645196 Nixon et al. Nov 2003 B1
6646541 Wang et al. Nov 2003 B1
6648814 Kim et al. Nov 2003 B2
6659939 Moll et al. Dec 2003 B2
6661571 Shioda et al. Dec 2003 B1
6671581 Niemeyer et al. Dec 2003 B2
6676684 Morley et al. Jan 2004 B1
6684129 Salisbury, Jr. et al. Jan 2004 B2
6685648 Flaherty et al. Feb 2004 B2
6685698 Morley et al. Feb 2004 B2
6687571 Byrne et al. Feb 2004 B1
6692485 Brock et al. Feb 2004 B1
6699177 Wang et al. Mar 2004 B1
6699235 Wallace et al. Mar 2004 B2
6702734 Kim et al. Mar 2004 B2
6702805 Stuart Mar 2004 B1
6714839 Salisbury, Jr. et al. Mar 2004 B2
6714841 Wright et al. Mar 2004 B1
6719684 Kim et al. Apr 2004 B2
6720988 Gere et al. Apr 2004 B1
6726699 Wright et al. Apr 2004 B1
6728599 Wright et al. Apr 2004 B2
6730021 Vassiliades, Jr. et al. May 2004 B2
6731988 Green May 2004 B1
6746443 Morley et al. Jun 2004 B1
6764441 Chiel et al. Jul 2004 B2
6764445 Ramans et al. Jul 2004 B2
6766204 Niemeyer et al. Jul 2004 B2
6770081 Cooper et al. Aug 2004 B1
6774597 Borenstein Aug 2004 B1
6776165 Jin Aug 2004 B2
6780184 Tanrisever Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6785593 Wang et al. Aug 2004 B2
6788018 Blumenkranz Sep 2004 B1
6792663 Krzyzanowski Sep 2004 B2
6793653 Sanchez et al. Sep 2004 B2
6799065 Niemeyer Sep 2004 B1
6799088 Wang et al. Sep 2004 B2
6801325 Farr et al. Oct 2004 B2
6804581 Wang et al. Oct 2004 B2
6810281 Brock et al. Oct 2004 B2
6817972 Snow Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6817975 Farr et al. Nov 2004 B1
6820653 Schempf et al. Nov 2004 B1
6824508 Kim et al. Nov 2004 B2
6824510 Kim et al. Nov 2004 B2
6832988 Sprout Dec 2004 B2
6832996 Woloszko et al. Dec 2004 B2
6836703 Wang et al. Dec 2004 B2
6837846 Jaffe et al. Jan 2005 B2
6837883 Moll et al. Jan 2005 B2
6839612 Sanchez et al. Jan 2005 B2
6840938 Morley et al. Jan 2005 B1
6852107 Wang et al. Feb 2005 B2
6858003 Evans et al. Feb 2005 B2
6860346 Burt et al. Mar 2005 B2
6860877 Sanchez et al. Mar 2005 B1
6866671 Tiemey et al. Mar 2005 B2
6870343 Borenstein et al. Mar 2005 B2
6871117 Wang et al. Mar 2005 B2
6871563 Choset et al. Mar 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6892112 Wang et al. May 2005 B2
6899705 Niemeyer May 2005 B2
6902560 Morley et al. Jun 2005 B1
6905460 Wang et al. Jun 2005 B2
6905491 Wang et al. Jun 2005 B1
6911916 Wang et al. Jun 2005 B1
6917176 Schempf et al. Jul 2005 B2
6933695 Blumenkranz Aug 2005 B2
6936001 Snow Aug 2005 B1
6936003 Iddan Aug 2005 B2
6936042 Wallace et al. Aug 2005 B2
6943663 Wang et al. Sep 2005 B2
6949096 Davison et al. Sep 2005 B2
6951535 Ghodoussi et al. Oct 2005 B2
6965812 Wang et al. Nov 2005 B2
6974411 Belson Dec 2005 B2
6974449 Niemeyer Dec 2005 B2
6979423 Moll Dec 2005 B2
6984203 Tartaglia et al. Jan 2006 B2
6984205 Gazdzinski Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6993413 Sunaoshi Jan 2006 B2
6994703 Wang et al. Feb 2006 B2
6994708 Manzo Feb 2006 B2
6997908 Carrillo, Jr. et al. Feb 2006 B2
7025064 Wang et al. Apr 2006 B2
7027892 Wang et al. Apr 2006 B2
7033344 Imran Apr 2006 B2
7039453 Mullick May 2006 B2
7042184 Oleynikov et al. May 2006 B2
7048745 Tierney et al. May 2006 B2
7053752 Wang et al. May 2006 B2
7063682 Whayne et al. Jun 2006 B1
7066879 Fowler et al. Jun 2006 B2
7066926 Wallace et al. Jun 2006 B2
7074179 Wang et al. Jul 2006 B2
7077446 Kameda et al. Jul 2006 B2
7083571 Wang et al. Aug 2006 B2
7083615 Peterson et al. Aug 2006 B2
7087049 Nowlin et al. Aug 2006 B2
7090683 Brock et al. Aug 2006 B2
7097640 Wang et al. Aug 2006 B2
7105000 McBrayer Sep 2006 B2
7107090 Salisbury, Jr. et al. Sep 2006 B2
7109678 Kraus et al. Sep 2006 B2
7118582 Wang et al. Oct 2006 B1
7121781 Sanchez et al. Oct 2006 B2
7125403 Julian et al. Oct 2006 B2
7126303 Farritor et al. Oct 2006 B2
7147650 Lee Dec 2006 B2
7155315 Niemeyer et al. Dec 2006 B2
7169141 Brock et al. Jan 2007 B2
7182025 Ghorbel et al. Feb 2007 B2
7182089 Ries Feb 2007 B2
7199545 Oleynikov et al. Apr 2007 B2
7206626 Quaid, III Apr 2007 B2
7206627 Abovitz et al. Apr 2007 B2
7210364 Ghorbel et al. May 2007 B2
7214230 Brock et al. May 2007 B2
7217240 Snow May 2007 B2
7239940 Wang et al. Jul 2007 B2
7250028 Julian et al. Jul 2007 B2
7259652 Wang et al. Aug 2007 B2
7273488 Nakamura et al. Sep 2007 B2
7311107 Harel et al. Dec 2007 B2
7339341 Oleynikov et al. Mar 2008 B2
7372229 Farritor et al. May 2008 B2
7447537 Funda et al. Nov 2008 B1
7492116 Oleynikov et al. Feb 2009 B2
7566300 Devierre et al. Jul 2009 B2
7574250 Niemeyer Aug 2009 B2
7637905 Saadat et al. Dec 2009 B2
7645230 Mikkaichi et al. Jan 2010 B2
7655004 Long Feb 2010 B2
7670329 Flaherty et al. Mar 2010 B2
7678043 Gilad Mar 2010 B2
7731727 Sauer Jun 2010 B2
7762825 Burbank et al. Jul 2010 B2
7772796 Farritor et al. Aug 2010 B2
7785251 Wilk Aug 2010 B2
7785333 Miyamoto et al. Aug 2010 B2
7789825 Nobis et al. Sep 2010 B2
7794494 Sahatjian et al. Sep 2010 B2
7865266 Moll et al. Jan 2011 B2
7960935 Farritor et al. Jun 2011 B2
8021358 Doyle et al. Sep 2011 B2
8179073 Farritor et al. May 2012 B2
8353897 Doyle et al. Jan 2013 B2
8604742 Farritor et al. Dec 2013 B2
9089353 Farritor Jul 2015 B2
20010018591 Brock et al. Aug 2001 A1
20010049497 Kalloo et al. Dec 2001 A1
20020003173 Bauer et al. Jan 2002 A1
20020013601 Nobles et al. Jan 2002 A1
20020026186 Woloszka et al. Feb 2002 A1
20020038077 de la Torre et al. Mar 2002 A1
20020065507 Azizi May 2002 A1
20020091374 Cooper Jul 2002 A1
20020103417 Gazdzinski Aug 2002 A1
20020111535 Kim et al. Aug 2002 A1
20020120254 Julien et al. Aug 2002 A1
20020128552 Nowlin et al. Sep 2002 A1
20020140392 Borenstein et al. Oct 2002 A1
20020147487 Sundquist et al. Oct 2002 A1
20020151906 Demarais et al. Oct 2002 A1
20020156347 Kim et al. Oct 2002 A1
20020171385 Kim et al. Nov 2002 A1
20020173700 Kim et al. Nov 2002 A1
20020190682 Schempf et al. Dec 2002 A1
20030020810 Takizawa et al. Jan 2003 A1
20030045888 Brock et al. Mar 2003 A1
20030065250 Chiel et al. Apr 2003 A1
20030089267 Ghorbel et al. May 2003 A1
20030092964 Kim et al. May 2003 A1
20030097129 Davison et al. May 2003 A1
20030100817 Wang et al. May 2003 A1
20030114731 Cadeddu et al. Jun 2003 A1
20030135203 Wang et al. Jul 2003 A1
20030139742 Wampler et al. Jul 2003 A1
20030144656 Ocel et al. Jul 2003 A1
20030167000 Mullick Sep 2003 A1
20030172871 Scherer Sep 2003 A1
20030179308 Zamorano et al. Sep 2003 A1
20030181788 Yokoi et al. Sep 2003 A1
20030229268 Uchiyama et al. Dec 2003 A1
20030230372 Schmidt Dec 2003 A1
20040117032 Roth et al. Jan 2004 A1
20040024311 Quaid Feb 2004 A1
20040034282 Quaid Feb 2004 A1
20040034283 Quaid Feb 2004 A1
20040034302 Abovitz et al. Feb 2004 A1
20040050394 Jin Mar 2004 A1
20040070822 Shioda et al. Apr 2004 A1
20040099175 Perrot et al. May 2004 A1
20040102772 Baxter et al. May 2004 A1
20040106916 Quaid et al. Jun 2004 A1
20040111113 Nakamura et al. Jun 2004 A1
20040138525 Saadat Jul 2004 A1
20040138552 Harel et al. Jul 2004 A1
20040140786 Borenstein Jul 2004 A1
20040153057 Davison Aug 2004 A1
20040173116 Ghorbel et al. Sep 2004 A1
20040176664 Iddan Sep 2004 A1
20040215331 Chew et al. Oct 2004 A1
20040225229 Viola Nov 2004 A1
20040254680 Sunaoshi Dec 2004 A1
20040267326 Ocel et al. Dec 2004 A1
20050014994 Fowler et al. Jan 2005 A1
20050021069 Feuer et al. Jan 2005 A1
20050029978 Oleynikov et al. Feb 2005 A1
20050043583 Killmann et al. Feb 2005 A1
20050049462 Kanazawa Mar 2005 A1
20050054901 Yoshino Mar 2005 A1
20050054902 Konno Mar 2005 A1
20050064378 Toly Mar 2005 A1
20050065400 Banik et al. Mar 2005 A1
20050083460 Hattori et al. Apr 2005 A1
20050095650 Khalili et al. May 2005 A1
20050096502 Khalili May 2005 A1
20050143644 Gilad et al. Jun 2005 A1
20050154376 Riviere et al. Jul 2005 A1
20050165449 Cadeddu et al. Jul 2005 A1
20050283137 Doyle et al. Dec 2005 A1
20050288555 Binmoeller Dec 2005 A1
20050288665 Woloszko Dec 2005 A1
20060020272 Gildenberg Jan 2006 A1
20060046226 Bergler et al. Mar 2006 A1
20060119304 Farritor et al. Jun 2006 A1
20060149135 Paz Jul 2006 A1
20060152591 Lin Jul 2006 A1
20060155263 Lipow Jul 2006 A1
20060195015 Mullick et al. Aug 2006 A1
20060196301 Oleynikov et al. Sep 2006 A1
20060198619 Oleynikov et al. Sep 2006 A1
20060241570 Wilk Oct 2006 A1
20060241732 Denker et al. Oct 2006 A1
20060253109 Chu Nov 2006 A1
20060258954 Timberlake Nov 2006 A1
20070032701 Fowler et al. Feb 2007 A1
20070043397 Ocel et al. Feb 2007 A1
20070055342 Wu et al. Mar 2007 A1
20070080658 Farritor et al. Apr 2007 A1
20070106113 Ravo May 2007 A1
20070123748 Meglan May 2007 A1
20070142725 Hardin et al. Jun 2007 A1
20070156019 Larkin et al. Jul 2007 A1
20070156211 Ferren et al. Jul 2007 A1
20070167955 De La Menardiere et al. Jul 2007 A1
20070225633 Ferren et al. Sep 2007 A1
20070225634 Ferren et al. Sep 2007 A1
20070241714 Oleynikov et al. Oct 2007 A1
20070244520 Ferren et al. Oct 2007 A1
20070250064 Darois et al. Oct 2007 A1
20070255273 Fernandez et al. Nov 2007 A1
20080004634 Farritor Jan 2008 A1
20080015565 Davison Jan 2008 A1
20080015566 Livneh Jan 2008 A1
20080033569 Ferren et al. Feb 2008 A1
20080045803 Williams Feb 2008 A1
20080058835 Farritor et al. Mar 2008 A1
20080058989 Oleynikov et al. Mar 2008 A1
20080103440 Ferren et al. May 2008 A1
20080109014 Pena May 2008 A1
20080111513 Farritor et al. May 2008 A1
20080119870 Williams et al. May 2008 A1
20080132890 Woloszko et al. Jun 2008 A1
20080161804 Rioux et al. Jul 2008 A1
20080164079 Ferren et al. Jul 2008 A1
20080183033 Bern et al. Jul 2008 A1
20080221591 Farritor et al. Sep 2008 A1
20080269557 Marescaux et al. Oct 2008 A1
20080269562 Marescaux et al. Oct 2008 A1
20090020724 Paffrath Jan 2009 A1
20090024142 Ruiz Morales Jan 2009 A1
20090048612 Farritor et al. Feb 2009 A1
20090054909 Farritor et al. Feb 2009 A1
20090069821 Farritor et al. Mar 2009 A1
20090076536 Rentschler et al. Mar 2009 A1
20090137952 Ramamurthy et al. May 2009 A1
20090143787 De La Pena Jun 2009 A9
20090163929 Yeung et al. Jun 2009 A1
20090171373 Farritor et al. Jul 2009 A1
20090234369 Bax et al. Sep 2009 A1
20090236400 Cole et al. Sep 2009 A1
20090240246 Devill et al. Sep 2009 A1
20090247821 Rogers Oct 2009 A1
20090248038 Blumenkranz et al. Oct 2009 A1
20090281377 Newell et al. Nov 2009 A1
20090305210 Guru et al. Dec 2009 A1
20100010294 Conlon et al. Jan 2010 A1
20100016659 Weitzner et al. Jan 2010 A1
20100016853 Burbank Jan 2010 A1
20100042097 Newton et al. Feb 2010 A1
20100056863 Dejima et al. Mar 2010 A1
20100069710 Yamatani et al. Mar 2010 A1
20100069940 Miller et al. Mar 2010 A1
20100081875 Fowler et al. Apr 2010 A1
20100139436 Kawashima et al. Jun 2010 A1
20100198231 Manzo et al. Aug 2010 A1
20100204713 Ruiz Aug 2010 A1
20100245549 Allen et al. Sep 2010 A1
20100262162 Omori Oct 2010 A1
20100292691 Brogna Nov 2010 A1
20100318059 Farritor et al. Dec 2010 A1
20110015569 Kirschenman et al. Jan 2011 A1
20110020779 Hannaford et al. Jan 2011 A1
20110071347 Rogers et al. Mar 2011 A1
20110071544 Steger et al. Mar 2011 A1
20110077478 Freeman et al. Mar 2011 A1
20110082365 McGrogan et al. Apr 2011 A1
20110098529 Ostrovsky et al. Apr 2011 A1
20110152615 Schostek et al. Jun 2011 A1
20110224605 Farritor et al. Sep 2011 A1
20110230894 Simaan et al. Sep 2011 A1
20110237890 Farritor et al. Sep 2011 A1
20110238080 Ranjit et al. Sep 2011 A1
20110264078 Lipow Oct 2011 A1
20110270443 Kamiya et al. Nov 2011 A1
20120035582 Nelson et al. Feb 2012 A1
20120109150 Quaid et al. May 2012 A1
20120116362 Kieturakis May 2012 A1
20120179168 Farritor Jul 2012 A1
20120253515 Coste-Maniere et al. Oct 2012 A1
20130041360 Farritor Feb 2013 A1
20130131695 Scarfogliero et al. May 2013 A1
20130345717 Scarfogliero et al. May 2013 A1
20140039515 Mondry et al. Feb 2014 A1
20140046340 Wilson et al. Feb 2014 A1
20140058205 Frederick et al. Feb 2014 A1
20140303434 Farritor et al. Oct 2014 A1
20150051446 Farritor et al. Feb 2015 A1
Foreign Referenced Citations (53)
Number Date Country
1082821918 Dec 2012 CN
102010040405 Mar 2012 DE
1354670 Oct 2003 EP
2286756 Feb 2011 EP
2286756 Feb 2011 EP
2329787 Aug 2011 EP
2563261 Mar 2013 EP
2004144533 May 1990 JP
5115425 May 1993 JP
200716235 Jun 1993 JP
2006507809 Sep 1994 JP
07 136173 May 1995 JP
7306155 Nov 1995 JP
08-224248 Sep 1996 JP
2001505810 May 2001 JP
2003220065 Aug 2003 JP
2004322310 Jun 2004 JP
2004180781 Jul 2004 JP
2004329292 Nov 2004 JP
2006508049 Mar 2006 JP
2010536436 Aug 2007 JP
2009-106606 May 2009 JP
2010-533045 Oct 2010 JP
2010-536436 Dec 2010 JP
2011-504794 Feb 2011 JP
2011-045500 Mar 2011 JP
2011-115591 Jun 2011 JP
WO 199221291 May 1991 WO
WO 0189405 Nov 2001 WO
WO 2002082979 Oct 2002 WO
WO 2002100256 Dec 2002 WO
WO 2005009211 Jul 2004 WO
WO 2005009211 Feb 2005 WO
WO 2005044095 May 2005 WO
WO 2006052927 Aug 2005 WO
WO 2006 005075 Jan 2006 WO
WO 2006079108 Jan 2006 WO
WO2006079108 Jul 2006 WO
WO 2007011654 Jan 2007 WO
WO 2007111571 Oct 2007 WO
WO 2007149559 Dec 2007 WO
WO 2009023851 Aug 2008 WO
WO 2009144729 Dec 2009 WO
WO2010042611 Apr 2010 WO
WO2010046823 Apr 2010 WO
WO201050771 May 2010 WO
WO 2011118646 Sep 2011 WO
WO 2011135503 Nov 2011 WO
WO 2011135503 Nov 2011 WO
WO 2011135503 Nov 2011 WO
WO 2011075693 Jul 2012 WO
WO 2013009887 Jan 2013 WO
WO 2014011238 Jan 2014 WO
Non-Patent Literature Citations (171)
Entry
Definition of Individually. Dictionary.com, retrieved on Aug. 9, 2016; Retrieved from the Internet: <http://www.dictionary.com/browse/individually>.
International Preliminary Report on Patentability from related case PCT/US2007/014567, dated Jan. 8, 2009, 11 pp.
International Search report and Written Opinion from international application No. PCT/US2012/41911, dated Mar. 13, 2013.
International Search Report and Written Opinion from international application No. PCT/US12/46274, dated Sep. 25, 2012.
International Search Report and Written Opinion from international application No. PCT/US2007/089191, dated Nov. 10, 2008, 20 pp.
“International Search Report and Written Opinion from international application No. PCT/US07/14567, dated Apr. 28, 2008, 19 pp.”
International Search Report and Written Opinion of international application No. PCT/US2008/069822, dated Aug. 5, 2009, 12 pp.
International Search Report and Written Opinion of international application No. PCT/US2008/073334, dated Jan. 12, 2009, 11 pp.
International Search Report and Written Opinion of international application No. PCT/US2008/073369, dated Nov. 12, 2008, 12 pp.
International Search Report and Written Opinion issued in PCT/US11/46809, dated Dec. 8, 2011.
Ishiyama et al., “Spiral-type Micro-machine for Medical Applications,” 2000 International Symposium on Micromechatronics and Human Science, 2000: 65-69.
Jagannath et al., “Peroral transgastric endoscopic ligation of fallopian tubes with long-term survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 61(3): 449-453.
Kalloo et al., “Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity,” Gastrointestinal Endoscopy, 2004; 60(1): 114-117.
Kang et al., “Robotic Assistants Aid Surgeons During Minimally Invasive Procedures,” IEEE Engineering in Medicine and Biology, Jan.-Feb. 2001; pp. 94-104.
Kantsevoy et al., “Endoscopic gastrojejunostomy with survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 62(2): 287-292.
Kantsevoy et al., “Transgastric endoscopic splenectomy,” Surgical Endoscopy, 2006; 20: 522-525.
Kazemier et al. (1998), “Vascular Injuries During Laparoscopy,” J. Am. Coli. Surg. 186(5): 604-5.
Kim, “Early Experience with Telemanipulative Robot-Assisted Laparoscopic Cholecystectomy Using da Vinci,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1):33-40.
Ko et al., “Per-Oral transgastric abdominal surgery,” Chinese Journal of Digestive Diseases, 2006; 7: 67-70.
Lafullarde et al., “Laparoscopic Nissen Fundoplication: Five-year Results and Beyond,” Arch/Surg, Feb. 2001; 136:180-184.
Leggett et al. (2002), “Aortic injury during laparoscopic fundoplication,” Surg. Endoscopy 16(2): 362.
Li et al. (2000), “Microvascular Anastomoses Performed in Rats Using a Microsurgical Telemanipulator,” Comp. Aid. Surg. 5: 326-332.
Liem et al., “Comparison of Conventional Anterior Surgery and Laparoscopic Surgery for Inguinal-hernia Repair,” New England Journal of Medicine, 1997; 336 (22): 1541-1547.
MacFarlane et al., “Force-Feedback Grasper Helps Restore the Sense of Touch in Minimally Invasive Surgery,” Journal of Gastrointestinal Surgery, 1999; 3: 278-285.
Mack et al., “Present Role of Thoracoscopy in the Diagnosis and Treatment of Diseases of the Chest,” Ann Thorac Surgery, 1992; 54: 403-409.
Mack, “Minimally Invasive and Robotic Surgery,” JAMA, Feb. 2001; 285(5): 568-572.
Mei et al., “Wireless Drive and Control of a Swimming Microrobot,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, May 2002: 1131-1136.
Melvin et al., “Computer-Enhanced vs. Standard Laparoscopic Antireflux Surgery,” J Gastrointest Surg 2002; 6: 11-16.
Menciassi et al., “Locomotion of a Leffed Capsule in the Gastrointestinal Tract: Theoretical Study and Preliminary Technological Results,” IEEE Int. Conf. on Engineering in Medicine and Biology, San Francisco, CA, pp. 2767-2770, Sep. 2004.
Menciassi et al., “Robotic Solutions and Mechanisms for a Semi-Autonomous Endoscope,” Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Oct. 2002; 1379-1384.
Menciassi et al., “Shape memory alloy clamping devices of a capsule for monitoring tasks in the gastrointestinal tract,” J. Micromech. Microeng, 2005, 15: 2045-2055.
Meron, “The development of the swallowable video capsule (M2A),” Gastrointestinal Endoscopy 2000; 52 6: 817-819.
Micron, http://www.micron.com, 2006, ¼-inch VGA NTSC/PAL CMOS Digital Image Sensor, 98 pp.
Midday Jeff et al., “Material Handling System for Robotic natural Orifice Surgery”, Proceedings of the 2011 Design of medical Devices Conference, Apr. 12-14, 2011, Minneapolis, MN, 4 pages.
Miller, Ph.D., et al., “In-Vivo Stereoscopic Imaging System with 5 Degrees-of-Freedom for Minimal Access Surgery,” Dept. of Computer Science and Dept. Of Surgery, Columbia University, New York, NY, 7 pp.
Munro (2002), “Laparoscopic access: complications, technologies, and techniques,” Curro Opin. Obstet. Gynecol., 14(4): 365-74.
Nio et al., “Efficiency of manual vs robotical (Zeus) assisted laparoscopic surgery in the performance of standardized tasks,” Surg Endosc, 2002; 16: 412-415.
Office Action dated Apr. 17, 2007, received in related case U.S. Appl. No. 11/552,379, 5 pp.
Office Action dated Apr. 3, 2009, received in related case U.S. Appl. No. 11/932,516, 43 pp.
Office Action dated Aug. 18, 2006, received in related case U.S. Appl. No. 11/398,174, 6 pp.
Office Action dated Aug. 21, 2006, received in related case U.S. Appl. No. 11/403,756, 6 pp.
Office Action dated Oct. 29, 2007, received in related case U.S. Appl. No. 11/695,944, 6 pp.
Office Action dated Oct. 9, 2008, received in related case U.S. Appl. No. 11/932,441, 4 pp.
Oleynikov et al., “In Vivo Camera Robots Provide Improved Vision for Laparoscopic Surgery,” Computer Assisted Radiology and Surgery (CARS), Chicago, IL, Jun. 23-26, 2004b.
Oleynikov et al., “In Vivo Robotic Laparoscopy,” Surgical Innovation, Jun. 2005, 12(2): 177-181.
Oleynikov et al., “Miniature Robots Can Assist in Laparoscopic Cholecystectomy,” Journal of Surgical Endoscopy, 19-4: 473-476, 2005.
O'Neill, “Surgeon takes new route to gallbladder,” The Oregonian, Jun. 2007, 2 pp.
Orlando et al., (2003), “Needle and Trocar Injuries in Diagnostic Laparoscopy under Local Anesthesia: What Is the True Incidence of These Complications?” Journal of Laparoendoscopic & Advanced Surgical Techniques 13(3): 181-184.
Park et al., “Trocar-less Instrumentation for Laparoscopy: Magnetic Positioning of Intra-abdominal Camera and Retractor,” Ann Surg, Mar. 2007; 245(3): 379-384.
Park et al., “Experimental studies of transgastric gallbladder surgery: cholecystectomy and cholecystogastric anastomosis (videos),” Gastrointestinal Endoscopy, 2005; 61(4): 601-606.
Abbott et al., “Design of an Endoluminal NOTES Robotic System,” from the Proceedings of the 2007 IEEE/RSJ Int'l Conf. on Intelligent Robot Systems, San Diego, CA, Oct. 29-Nov. 2, 2007, pp. 410-416.
Allendorf et al., “Postoperative Immune Function Varies Inversely with the Degree of Surgical Trauma in a Murine Model,” Surgical Endoscopy 1997; 11:427-430.
Ang, “Active Tremor Compensation in Handheld Instrument for Microsurgery,” Doctoral Dissertation, tech report CMU-RI-TR-04-28, Robotics Institute, Carnegie Mellon Unviersity, May 2004, 167pp.
Applicant Amendment after Notice of Allowance under Rule 312, filed Aug. 25, 2008, in related case U.S. Appl. No. 11/695,944, 6pp.
Applicant Response to Office Action dated Apr. 17, 2007, in related case U.S. Appl. No. 11/552,379, filed Aug. 8, 2007, 7 pp.
Applicant Response to Office Action dated Aug. 18, 2006, in related case U.S. Appl. No. 11/398,174, filed Nov. 7, 2006, 8pp.
Applicant Response to Office Action dated Aug. 21, 2006, in related case U.S. Appl. No. 11/403,756, filed Nov. 21, 2006, 52pp.
Applicant Response to Office Action dated Oct. 29, 2007, in related case U.S. Appl. No. 11/695,944, filed Jan. 22, 2008, 6pp.
Atmel 8005X2 Core, http://www.atmel.com, 2006, 186pp.
Bailey et al., “Complications of Laparoscopic Surgery,” Quality Medical Publishers, Inc., 1995, 25pp.
Ballantyne, “Robotic Surgery, Telerobotic Surgery, Telepresence, and Telementoring,” Surgical Endoscopy, 2002; 16: 1389-1402.
Bauer et al., “Case Report: Remote Percutaneous Renal Percutaneous Renal Access Using a New Automated Telesurgical Robotic System,” Telemedicine Journal and e-Health 2001; (4): 341-347.
Begos et al., “Laparoscopic Cholecystectomy: From Gimmick to Gold Standard,” J Clin Gastroenterol, 1994; 19(4): 325-330.
Berg et al., “Surgery with Cooperative Robots,” Medicine Meets Virtual Reality, Feb. 2007, 1 pg.
Breda et al., “Future developments and perspectives in laparoscopy,” Eur. Urology 2001; 40(1): 84-91.
Breedveld et al., “Design of Steerable Endoscopes to Improve the Visual Perception of Depth During Laparoscopic Surgery,” ASME, Jan. 2004; vol. 126, pp. 1-5.
Breedveld et al., “Locomotion through the Intestine by means of Rolling Stents,” Proceedings of the ASME Design Engineering Technical Conferences, 2004, pp. 1-7.
Calafiore et al., Multiple Arterial Conduits Without Cardiopulmonary Bypass: Early Angiographic Results,: Ann Thorac Surg, 1999; 67: 450-456.
Camarillo et al., “Robotic Technology in Surgery: Past, Present and Future,” The American Journal of Surgery, 2004; 188: 2S-15.
Cavusoglu et al., “Telesurgery and Surgical Simulation: Haptic Interfaces to Real and Virtual Surgical Environments,” In McLaughliin, M.L., Hespanha, J.P., and Sukhatme, G., editors. Touch in virtual environments, IMSC Series in Multimedia 2001, 28pp.
Cavusoglu et al., “Robotics for Telesurgery: Second Generation Berkeley/UCSF Laparoscopic Telesurgical Workstation and Looking Towards the Future Applications,” Industrial Robot: An International Journal, 2003; 30(1): 22-29.
Chanthasopeephan et al., (2003), “Measuring Forces in Liver Cutting: New Equipment and Experimenal Results,” Annals of Biomedical Engineering 31: 1372-1382.
Choi et al., “Flexure-based Manipulator for Active Handheld Microsurgical Instrument,” Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Sep. 2005, 4pp.
Cuschieri, “Technology for Minimal Access Surgery,” BMJ, 1999, 319: 1-6.
Dakin et al., “Comparison of laparoscopic skills performance between standard instruments and two surgical robotic systems,” Surg Endosc., 2003; 17: 574-579.
Dumpert et al., “Improving in Vivo Robot Visioin Quality,” from the Proceedings of Medicine Meets Virtual Realtiy, Long Beach, CA, Jan. 26-29, 2005. 1 pg.
Dumpert et al., “Stereoscopic In Vivo Surgical Robots,” IEEE Sensors Special Issue on In Vivo Sensors for Medicine, Jan. 2007, 10 pp.
Examiner Interview Summary dated Aug. 6 and Aug. 12, 2008, in related case U.S. Appl. No. 11/695,944, 1 pg.
Examiner Interview Summary dated May 9, 2008, in related case U.S. Appl. No. 11/695,944, 1 pg.
Examiner Interview Summary dated Nov. 30, 2006, in related case U.S. Appl. No. 11/398,174, 2pp.
Falcone et al., “Robotic Surgery,” Clin. Obstet. Gynecol. 2003, 46(1): 37-43.
Faraz et al., “Engineering Approaches to Mechanical and Robotic Design for Minimaly Invasive Surgery (MIS),” Kluwer Academic Publishers (Boston), 2000, 13pp.
Fearing et al., “Wing Transmission for a Micromechanical Flying Insect,” Proceedings of the 2000 IEEE International Conference to Robotics & Automation, Apr. 2000; 1509-1516.
Fireman et al., “Diagnosing small bowel Crohn's desease with wireless capsule endoscopy,” Gut 2003; 52: 390-392.
Flynn et al., “Tomorrow's Surgery: micromotors and microbots for minimally invasive procedures,” Minimally Invasive Surgery & Allied Technologies.
Franklin et al., “Prospective Comparison of Open vs. Laparoscopic Colon Surgery for Carcinoma: Five-Year Results,” Dis Colon Rectum, 1996; 39: S35-S46.
Franzino, “The Laprotek Surgical System and the Next Generation of Robotics,” Surg Clin North Am, 2003 83(6): 1317-1320.
Fraulob et al., “Miniature assistance module for robot-assisted heart surgery,” Biomed. Tech. 2002, 47 Suppl. 1, Pt. 1:12-15.
Fukuda et al., “Mechanism and Swimming Experiment of Micro Mobile Robot in Water,” Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994: 814-819.
Fukuda et al., “Micro Active Catheter System with Multi Degrees of Freedom,” Proceedings of the IEEE International Conference on Robotics and Automation, May 1994, pp. 2290-2295.
Fuller et al., “Laparoscopic Trocar Injuries: A Report from a U.S. Food and Drug Administration (FDA) Center for Devices and Radiological Health (CDRH) Systematic Technology Assessment of Medical Products (STAMP) Committe,” U.S. Food and Drug Adminstration, available at http://www.fdaJ:?;ov, Finalized: Nov. 7, 2003; Updated: Jun. 24, 2005, 11 pp.
Grady, “Doctors Try New Surgery for Gallbladder Removal,” The New York Times, Apr. 20, 2007, 3 pp.
Guber et al., “Miniaturized Instrument Systems for Minimally Invasive Diagnosis and Therapy,” Biomedizinishe Technic. 2002, Band 47, Erganmngsband 1: 198-201.
Tendick et al., “Applications of Micromechatronics in Minimally Invasive Surgery,” IEEE/ASME Transactions on Mechatronics, 1998; 3(1): 34-42.
Thomann et al., “The Design of a new type of Micro Robot for the Intestinal Inspection,” Proceedings of the 2002 IEEE Intl. Conference on Intelligent Robots and Systems, Oct. 2002: 1385-1390.
U.S. Appl. No. 60/180,960, filed Feb. 2000.
U.S. Appl. No. 60/956,032, filed Aug. 15, 2007.
U.S. Appl. No. 60/983,445, filed Oct. 29, 2007.
U.S. Appl. No. 60/990,062, filed Nov. 26, 2007.
U.S. Appl. No. 60/990,076, filed Nov. 26, 2007.
U.S. Appl. No. 60/990,086, filed Nov. 26, 2007.
U.S. Appl. No. 60/990,106, filed Nov. 26, 2007.
U.S. Appl. No. 60/990,470, filed Nov. 27, 2007.
U.S. Appl. No. 61/025,346, filed Feb. 1, 2008.
U.S. Appl. No. 61/030,588, filed Feb. 22, 2008.
U.S. Appl. No. 61/030,617 filed Feb. 22, 2008.
Way et al., (editors), “Fundamentals of Laparoscopic Surgery,” Churchill Livingstone Inc., 1995, 14 pp.
Wolfe et al., “Endoscopic Cholecystectomy: An analysis of Complications,” Arch. Surg. Oct. 1991; 126: 1192-1196.
Worn et al., “Espirit Project No. 33915: Miniaturised Robot for Micro Manipulation (MINIMAN)”, Nov. 1998; http://www.ipr.ira.ujka.de/-microbot/miniman.
Yu et al., “Microrobotic Cell Injection,” Proceedings of the 2001 IEEE International Conference on Robotics and Automation, May 2001; 620-625.
Yu, BSN, RN, “M2ATM Capsule Endoscopy a Breakthrough Diagnostic Tool for Small Intestine Imagining,” vol. 25, No. 1, Gastroenterology Nursing, pp. 24-27.
International Search Report and Written Opinion of international application No. PCT/US2010/061137, dated Feb. 11, 2011, 10 pp.
Abbou et al., “Laparoscopic Radical Prostatectomy with a Remote Controlled Robot,” The Journal of Urology, Jun. 2001, 165: 1964-1966.
Glukhovsky et al.., “The development and application of wireless capsule endoscopy,” Int. J. Med. Robot. Comput. Assist. Surgery, 2004; I (1): 114-123.
Gong et al., Wireless endoscopy, Gastrointestinal Endoscopy 2000; 51(6): 725-729.
Hanly et al., “Value of the SAGES Learning Center in introducing new technology,” Surgical Endoscopy, 2004; 19 (4): 477-483.
Hanly et al., “Robotic Abdominal Surgery,” The American Journal of Surgery 188 (Suppl.to Oct. 1994): 19S-26S,2004.
Palm, William, “Rapid Prototyping Primer” May 1998 (revised Jul. 30, 2002) (http://www.me.psu.edu/lamancusa/rapidpro/primer/chapter2.htm).
Patronik et al., “Development of a Tethered Epicardial Crawler for Minimally Invasive Cardiac Therapies,” IEEE, pp. 239-240.
Patronik et al., “Crawling on the Heart: A Mobile Robotic Device for Minimally Invasive Cardiac Interventions,” MICCAI, 2004, pp. 9-16.
Patronik et al., “Preliminary evaluation of a mobile robotic device for navigation and intervention on the beating heart,” Computer Aided Surgery, 10(4): 225-232, Jul. 2005.
Peirs et al., “A miniature manipulator for integration in a self-propelling endoscope,” Sensors and Actuators A, 2001, 92: 343-349.
Peters, “Minimally Invasive Colectomy: Are the Potential Benefits Realized?” Dis Colon Rectum 1993; 36: 751-756.
Phee et al, “Analysis and Development of Locomotion Devices for the Gastrointestinal Tract,” IEEE Transaction on Biomedical Engineering, vol. 49, No.6, Jun. 2002, pp. 613-616.
Phee et al, “Development of Microrobotic Devices for Locomotion in the Human Gastrointestinal Tract,” International Conference on Computational Intelligence, Robotics and Autonomous Systems (CIRAS 2001), Nov. 28-30, (2001), Singapore.
Platt et al., “In Vivo Robotic Cameras can Enhance Imaging Capability During Laparoscopic Surgery,” in the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, Ft. Lauderdale, FL, Apr. 13-16, 2005, I pg.
Preliminary Amendment filed Apr. 11, 2007, in related case U.S. Appl. No. 11/403,756, 7 pp.
Preliminary Amendment filed July 30, 2008, in related case U.S. Appl. No. 12/171,413, 4 pp.
RCE and Amendment filed Jun. 13, 2007, in related case U.S. Appl. No. 11/403,756, 8 pp.
Rentschler et al., “Mobile In Vivo Biopsy and Camera Robot,” Studies in Health and Infonnatics Medicine Meets Virtual Reality, vol. 119., pp. 449-454, IOS Press, Long Beach, CA, 2006e.
Rentschler et al., “Mobile In Vivo Biopsy Robot,” IEEE International Conference on Robotics and Automation, Orlando, Florida, May 2006, pp. 4155-4160.
Rentschler et al., “Miniature in vivo Robots for Remote and Harsh Environments,” IEEE Transactions on Information Technology in Biomedicine, Jan. 2006; 12(1): 66-75.
Rentschler et al., “An In Vivo Mobile Robot for Surgical Vision and Task Assistance,” Journal of Medical Devices, Mar. 2007, vol. 1: 23-29.
Rentschler et al., “In vivo Mobile Surgical Robotic Task Assistance,” 1 pg.
Rentschler et al., “In vivo Robotics during the NEEMO 9 Mission,” Medicine Meets Virtual Reality, Feb. 2007, I pg.
Rentschler et al., “In Vivo Robots for Laparoscopic Surgery,” Studies in Health Technology and Infonnatics—Medicine Meets Virtual Reality, ISO Press, Newport Beach, CA, 2004a, 98: 316-322.
Rentschler et al., “Mechanical Design of Robotic In Vivo Wheeled Mobility,” ASME Journal of Mechanical Design, 2006a, pp. I-II.
Rentschler et al., “Mobile In Vivo Camera Robots Provide Sole Visual Feedback for Abdominal Exploration and Cholecystectomy,” Journal of Surgical Endoscopy, 20-I: 135-138, 2006b.
Rentschler et al., “Mobile in Vivo Robots Can Assist in Abdominal Exploration,” from the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, Ft. Lauderdale, FL, Apr. 13-16, 2005b.
Rentschler et al., “Modeling, Analysis, and Experimental Study of In Vivo Wheeled Robotic Mobility,” IEEE Transactions on Robotics, 22 (2): 308-321, 2005c.
Rentschler et al., “Natural Orifice Surgery with an Endoluminal Mobile Robot,” The Society of American Gastrointestinal Endoscopic Surgeons, Dallas, TX, Apr. 2006d, 14 pp.
Rentschler et al., “Theoretical and Experimental Analysis of In Vivo Wheeled Mobility,” ASME Design Engineering Technical Conferences: 28th Biennial Mechanisms and Robotics Conference, Salt Lake City, Utah, Sep. 28-Oct. 2, 2004, pp. 1-9.
Rentschler et al., “Toward In Vivo Mobility,” Studies in Health Technology and Informatics—Medicine Meets Virtual Reality, ISO Press, Long Beach, CA, 2005a, III: 397-403.
Response to Rule 312 Amendment in related case U.S. Appl. No. 11/695,944, dated Jan. 12, 2009, 2 pp.
Riviere et al., “Toward Active Tremor Canceling in Handheld Microsurgical Instruments,” IEEE Transactions on Robotics and Automation, Oct. 2003, 19(5): 793-800.
Rosen et al., “Force Controlled and Teleoperated Endoscopic, Grasper for Minimally Invasive Surgery—Experimental Performance Evaluation,” IEEE Transactions of Biomedical Engineering, Oct. 1999; 46(10): 1212-1221.
Rosen et al., “Objective Laparoscopic Skills Assessments of Surgical Residents Using Hidden Markov Models Based on Haptic Information and Tool/Tissue Interactions,” Studies in Health Technology and Informatics—Medicine Meets Virtual Reality, Jan. 2001, 7 pp.
Rosen et al., “Spherical Mechanism Analysis of a Surgical Robot for Minimally Invasive Surgery—Analytical and Experimental Approaches,” Studies in Health Technology and Informatics—Medicine Meets Virtual Reality, pp. 442-448, Jan. 2005.
Rosen et al., “Task Decomposition of Laparoscopic Surgery for Objective Evaluation of Surgical Residents' Learning Curve Using Hidden Markov Model,” Computer Aided Surgery, vol. 7, pp. 49-61, 2002.
Rosen et al., “The Blue DRAGON—A System of Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo,” Proc. of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, pp. 1876-1881, May 2002.
Ruurda et al., “Robot-Assisted surgical systems: a new era in laparoscopic surgery,” Ann R. Coll Surg Engl., 2002; 84: 223-226.
Ruurda et al., “Feasibility of Robot-Assisted Laparoscopic Surgery,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1):41-45.
Sackier et al., “Robotically assisted laparoscopic surgery,” Surgical Endoscopy, 1994; 8: 63-66.
Salky, “What is the Penetration of Endoscopic Techniques into Surgical Practice?” Digestive Surgery, 2000; 17:422-426.
Satava, “Surgical Robotics: The Early Chronicles,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1): 6-16.
Schippers et al., (1996) “Requirements and Possibilities of Computer-Assisted Endoscopic Surgery,” In: Computer Integrated Surgery: Technology and Clinical Applications, pp. 561-565.
Schurr et al., “Robotics and Telemanipulation Technologies for Endoscopic Surgery,” Surgical Endoscopy, 2000; 14: 375-381.
Schwartz, “In the Lab: Robots that Slink and Squirm,” The New York Times, Mar. 27, 2007, 4 pp.
Sharp LL-151-3D, http://www.sharp3d.com, 2006, 2 pp.
Slatkin et al., “The Development of a Robotic Endoscope,” Proceedings of the 1995 IEEE International Conference on Robotics and Automation, pp. 162-171, 1995.
Smart Pill “Fantastic Voyage: Smart Pill to Expand Testing,” http://www.smartpilldiagnostics.com, Apr. 13, 2005, 1 pg.
Southern Surgeons Club (1991), “A prospective analysis of 1518 laparoscopic cholecystectomies,” N. Eng. 1 Med. 324 (16): 1073-1078.
Stefanini et al., “Modeling and Experiments on a Legged Microrobot Locomoting in a Tubular Compliant and Slippery Environment,” Int. Journal of Robotics Research, vol. 25, No. 5-6, pp. 551-560, May-Jun. 2006.
Stiff et al.., “Long-term Pain: Less Common After Laparoscopic than Open Cholecystectomy,” British Journal of Surgery, 1994; 81: 1368-1370.
Strong, et al., “Efficacy of Novel Robotic Camera vs. a Standard Laproscopic Camera,” Surgical Innovation vol. 12, No. 4, Dec. 2005, Westminster Publications, Inc., pp. 315-318.
Suzumori et al., “Development of Flexible Microactuator and its Applications to Robotics Mechanisms,” Proceedings of the IEEE International Conference on Robotics and Automation, 1991: 1622-1627.
Taylor et al., “A Telerobotic Assistant for Laparoscopic Surgery,” IEEE Eng Med Biol, 1995; 279-287.
Tendick et al.. (1993), “Sensing and Manipulation Problems in Endoscopic Surgery: Experiment, Analysis, and Observation,” Presence 2( 1): 66-81.
Stoianovici et al., “Robotic Tools for Minimally Invasive Urologic Surgery”, Jan. 1, 2002, pp. 1-17.
Cleary et al., “State of the Art in Surgical Rootics: Clinical Applications and Technology Challenges”, “Computer Aided Surgery”, Jan. 1, 2002, pp. 312-328, vol. 6.
Green, “Telepresence Surgery”, Jan. 1, 1995, Publisher: IEEE Engineering in Medicine and Biology.
Related Publications (1)
Number Date Country
20140046340 A1 Feb 2014 US
Provisional Applications (1)
Number Date Country
61680809 Aug 2012 US