The embodiments disclosed herein relate to various medical devices and related components, including robotic and/or in vivo medical devices and related components. Certain embodiments include various robotic medical devices, including robotic devices that are disposed within a body cavity and positioned using a support component disposed through an orifice or opening in the body cavity. Further embodiment relate to methods of operating the above devices.
Invasive surgical procedures are essential for addressing various medical conditions. When possible, minimally invasive procedures such as laparoscopy are preferred.
However, known minimally invasive technologies such as laparoscopy are limited in scope and complexity due in part to 1) mobility restrictions resulting from using rigid tools inserted through access ports, and 2) limited visual feedback. Known robotic systems such as the da Vinci® Surgical System (available from Intuitive Surgical, Inc., located in Sunnyvale, Calif.) are also restricted by the access ports, as well as having the additional disadvantages of being very large, very expensive, unavailable in most hospitals, and having limited sensory and mobility capabilities.
There is a need in the art for improved surgical methods, systems, and devices.
The various systems and devices disclosed herein relate to devices for use in medical procedures and systems. More specifically, various embodiments relate to various medical devices, including robotic devices and related methods and systems.
It is understood that the various embodiments of robotic devices and related methods and systems disclosed herein can be incorporated into or used with any other known medical devices, systems, and methods.
For example, the various embodiments disclosed herein may be incorporated into or used with any of the medical devices and systems disclosed in copending U.S. application Ser. No. 12/192,779 (filed on Aug. 15, 2008 and entitled “Modular and Cooperative Medical Devices and Related Systems and Methods”), U.S. Pat. No. 7,492,116 (filed on Oct. 31, 2007 and entitled “Robot for Surgical Applications”), U.S. Pat. No. 7,772,796 (filed on Apr. 3, 2007 and entitled “Robot for Surgical Applications”), Ser. No. 11/947,097 (filed on Nov. 27, 2007 and entitled “Robotic Devices with Agent Delivery Components and Related Methods), Ser. No. 11/932,516 (filed on Oct. 31, 2007 and entitled “Robot for Surgical Applications”), Ser. No. 11/766,683 (filed on Jun. 21, 2007 and entitled “Magnetically Coupleable Robotic Devices and Related Methods”), Ser. No. 11/766,720 (filed on Jun. 21, 2007 and entitled “Magnetically Coupleable Surgical Robotic Devices and Related Methods”), Ser. No. 11/966,741 (filed on Dec. 28, 2007 and entitled “Methods, Systems, and Devices for Surgical Visualization and Device Manipulation”), Ser. No. 12/171,413 (filed on Jul. 11, 2008 and entitled “Methods and Systems of Actuation in Robotic Devices”), 60/956,032 (filed on Aug. 15, 2007), 60/983,445 (filed on Oct. 29, 2007), 60/990,062 (filed on Nov. 26, 2007), 60/990,076 (filed on Nov. 26, 2007), 60/990,086 (filed on Nov. 26, 2007), 60/990,106 (filed on Nov. 26, 2007), 60/990,470 (filed on Nov. 27, 2007), 61/025,346 (filed on Feb. 1, 2008), 61/030,588 (filed on Feb. 22, 2008), 61/030,617 (filed on Feb. 22, 2008), U.S. Pat. No. 8,179,073 (issued May 15, 2011, and entitled “Robotic Devices with Agent Delivery Components and Related Methods”), Ser. No. 12/324,364 (filed Nov. 26, 2008, U.S. Published App. 2009/0171373 and entitled “Multifunctional Operational Component for Robotic Devices”), and Ser. No. 13/493,725 (filed Jun. 11, 2012 and entitled “Methods, Systems, and Devices Relating to Surgical End Effectors”), all of which are hereby incorporated herein by reference in their entireties.
Certain device and system implementations disclosed in the applications listed above can be positioned within a body cavity of a patient in combination with a support component similar to those disclosed herein. An “in vivo device” as used herein means any device that can be positioned, operated, or controlled at least in part by a user while being positioned within a body cavity of a patient, including any device that is coupled to a support component such as a rod or other such component that is disposed through an opening or orifice of the body cavity, also including any device positioned substantially against or adjacent to a wall of a body cavity of a patient, further including any such device that is internally actuated (having no external source of motive force), and additionally including any device that may be used laparoscopically or endoscopically during a surgical procedure. As used herein, the terms “robot,” and “robotic device” shall refer to any device that can perform a task either automatically or in response to a command.
Certain embodiments provide for insertion of the present invention into the cavity while maintaining sufficient insufflation of the cavity. Further embodiments minimize the physical contact of the surgeon or surgical users with the present invention during the insertion process. Other implementations enhance the safety of the insertion process for the patient and the present invention. For example, some embodiments provide visualization of the present invention as it is being inserted into the patient's cavity to ensure that no damaging contact occurs between the system/device and the patient. In addition, certain embodiments allow for minimization of the incision size/length. Further implementations reduce the complexity of the access/insertion procedure and/or the steps required for the procedure. Other embodiments relate to devices that have minimal profiles, minimal size, or are generally minimal in function and appearance to enhance ease of handling and use.
Certain implementations disclosed herein relate to “combination” or “modular” medical devices that can be assembled in a variety of configurations. For purposes of this application, both “combination device” and “modular device” shall mean any medical device having modular or interchangeable components that can be arranged in a variety of different configurations. The modular components and combination devices disclosed herein also include segmented triangular or quadrangular-shaped combination devices. These devices, which are made up of modular components (also referred to herein as “segments”) that are connected to create the triangular or quadrangular configuration, can provide leverage and/or stability during use while also providing for substantial payload space within the device that can be used for larger components or more operational components. As with the various combination devices disclosed and discussed above, according to one embodiment these triangular or quadrangular devices can be positioned inside the body cavity of a patient in the same fashion as those devices discussed and disclosed above.
The body 12 is connected to two arms 16, 18 in one example of the device. In the implementation shown, the right shoulder 14A is coupled to right arm 16 and left shoulder 14B is coupled to left arm 18. In addition, the body 12 is also coupled to a support component 20, as best shown in
Returning to
As mentioned above and as shown in
Continuing with
According to one embodiment, the operational components 16E, 18E, such as graspers or scissors, are also removable from the forearms 16C, 18C, such that the operational components 16E, 18E are interchangeable with other operational components configured to perform other/different types of procedures. Returning to
It is understood that the device 10 in this embodiment contains the motors (also referred to as “actuators,” and intended to include any known source of motive force) that provide the motive force required to move the arms 16, 18 and the operational components 16E, 18E. In other words, the motors are contained within the device 10 itself (either in the body, the upper arms, the forearms or any and all of these), rather than being located outside the patient's body. Various motors incorporated into various device embodiments will be described in further detail below.
In use, as in the example shown in
According to one implementation, the device 10 can be sealed inside the insufflated abdominal cavity 30 using a port 32 designed for single incision laparoscopic surgery. Alternatively, the device 10 can be inserted via a natural orifice, or be used in conjunction with other established methods for surgery. The device 10 is supported inside the abdominal cavity using the support rod 20 discussed above. The laparoscopic port 32 can also be used for insertion of an insufflation tube 34, a laparoscope 36 or other visualization device that may or may not be coupled to the device assembly. As an example, a 5 mm laparoscope 36 is shown in
Alternatively, as shown in
According to one alternative embodiment as shown in
In use, the device 10 can first be separated into the two smaller components as described above and then each of the two components are inserted in consecutive fashion through the orifice into the body cavity. In accordance with one implementation, due to the limitations associated with the amount of space in the cavity, each of the components can form a sequence of various configurations that make it possible to insert each such component into the cavity. That is, each component can be “stepped through” a sequence of configurations that allow the component to be inserted through the orifice and into the cavity.
For example, according to one implementation shown in
When the device half 10A is properly positioned in the patient's cavity, the first support rod component 20A, which is coupled to the right shoulder 14A, is disposed through an orifice or any other kind of opening in the body cavity wall (shown as a dashed line in
As discussed above, in this example, the two coupleable support rod components (such as 20A as shown in
Alternatively, the device body 10 can be a single component that is coupled to both support rod components 20A, 20B, which are coupled to each other to form a full support rod 20.
Once assembled, an external device (not shown) can be used to stabilize the support component assembly. According to this implementation, the device 10 is maintained in a desired position or location within the body cavity of the patient using an external component that has a clamp that is removably attached to the support component 20. Alternatively, the external component can have any known attachment component that is capable of removably coupling to or attaching to support component.
As an example, the external component can be an iron intern (commercially available from Automated Medical Products Corp.) that includes several sections connected by joints that can be loosened and locked using knobs to allow the iron intern to be positioned in various orientations. The iron intern can be attached to rails on any standard surgical table or any other appropriate surface to provide support for device.
In use, according to one embodiment, the device 10 is positioned within the body cavity of the patient and the support component assembly 20 is positioned through a port 32 positioned in the hole or opening in the body cavity wall, as shown, for example, in
The shoulder pitch PCB is also connected to the upper arm via a service loop 130B and connectors (J3 & J4). In the upper arm 18B there is an upper arm shoulder PCB 132 (for axis BB in
Here and throughout the robot service loops may or may not be required. The forearm contains three PCBs 150, 152, 154 to drive/control the gripper cutting device 154A, the gripper jaws 152A and the gripper roll 150A (axis DD). As before various sensors 156 and motors 150A, 152A, 154A are powered and used with the PCBs and various service loops 130C, 130D, 130E are used. As shown previously, the gripper can be electrified for cautery with one or more clips or connectors (or with a direct connection) that may or may not allow relative motion of the gripper jaws (axis DD). This example design shows a PCB for each joint. Alternatively a PCB could be used for each link, or each arm, or any combination of the above. The description above and shown in
Again, in this version both operating components (vessel sealing and interchangeable Babcock grasper) can be electrified for cautery. In general any and combination of the operating components can be electrified with either no cautery, mono-polar cautery, bi-polar cautery, or other surgical treatment technique.
The robotic surgical device described here can be either single use and be designed to be disposed of after its use, or can be made so it can be re-used and sterilized between uses. In one embodiment, to ease cleaning of the device between uses, a protective sleeve is disclosed here that covers the majority of the outer surfaces of the robotic device.
According to one embodiment, shown in
Also, according to one embodiment,
In another embodiment, a mold, grooves, and sleeve could be created at each the proximal and distal ends of the joints so smaller protective sleeves would be created that would only cover the joint areas. Other combinations are also possible. For example one sleeve could cover two proximal joints and a second sleeve could cover a distal joint.
In use according to one embodiment as shown in
When the mold material is cured, according to one embodiment and shown in
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
This application claims priority from U.S. Provisional Application 61/680,809, filed Aug. 8, 2012, and entitled “Robotic Surgical Devices, Systems, and Methods,” which is hereby incorporated herein by reference in its entirety.
This invention was made with government support under Grant No. W81XWH-08-02-0043 awarded by the U.S. Army Medical Research and Materiel Command within the Department of Defense. Accordingly, the government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
3870264 | Robinson | Mar 1975 | A |
3989952 | Hohmann | Nov 1976 | A |
4246661 | Pinson | Jan 1981 | A |
4258716 | Sutherland | Mar 1981 | A |
4278077 | Mizumoto | Jul 1981 | A |
4538594 | Boebel et al. | Sep 1985 | A |
4568311 | Miyake | Feb 1986 | A |
4623183 | Amori | Nov 1986 | A |
4736645 | Zimmer | Apr 1988 | A |
4771652 | Zimmer | Sep 1988 | A |
4852391 | Ruch et al. | Aug 1989 | A |
4896015 | Taboada et al. | Jan 1990 | A |
4897014 | Tietze | Jan 1990 | A |
4922755 | Oshiro et al. | May 1990 | A |
4922782 | Kawai | May 1990 | A |
4990050 | Tsuge et al. | Feb 1991 | A |
5019968 | Wang et al. | May 1991 | A |
5108140 | Bartholet | Apr 1992 | A |
5172639 | Wiesman et al. | Dec 1992 | A |
5176649 | Wakabayashi | Jan 1993 | A |
5178032 | Zona et al. | Jan 1993 | A |
5187032 | Sasaki et al. | Feb 1993 | A |
5187796 | Wang et al. | Feb 1993 | A |
5195388 | Zona et al. | Mar 1993 | A |
5201325 | McEwen et al. | Apr 1993 | A |
5217003 | Wilk | Jun 1993 | A |
5263382 | Brooks et al. | Nov 1993 | A |
5271384 | McEwen et al. | Dec 1993 | A |
5284096 | Pelrine et al. | Feb 1994 | A |
5297443 | Wentz | Mar 1994 | A |
5297536 | Wilk | Mar 1994 | A |
5304899 | Sasaki et al. | Apr 1994 | A |
5307447 | Asano et al. | Apr 1994 | A |
5353807 | DeMarco | Oct 1994 | A |
5363935 | Schempf et al. | Nov 1994 | A |
5382885 | Salcudean et al. | Jan 1995 | A |
5388528 | Pelrine et al. | Feb 1995 | A |
5436542 | Petelin et al. | Jul 1995 | A |
5441494 | Ortiz | Aug 1995 | A |
5458131 | Wilk | Oct 1995 | A |
5458583 | McNeely et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5471515 | Fossum et al. | Nov 1995 | A |
5515478 | Wang | May 1996 | A |
5524180 | Wang et al. | Jun 1996 | A |
5553198 | Wang et al. | Sep 1996 | A |
5562448 | Mushabac | Oct 1996 | A |
5588442 | Scovil et al. | Dec 1996 | A |
5620417 | Jang et al. | Apr 1997 | A |
5623582 | Rosenberg | Apr 1997 | A |
5624380 | Takayama et al. | Apr 1997 | A |
5624398 | Smith et al. | Apr 1997 | A |
5632761 | Smith et al. | May 1997 | A |
5645520 | Nakamura et al. | Jul 1997 | A |
5657429 | Wang et al. | Aug 1997 | A |
5657584 | Hamlin | Aug 1997 | A |
5672168 | de la Torre et al. | Sep 1997 | A |
5674030 | Sigel | Oct 1997 | A |
5728599 | Rostoker et al. | Mar 1998 | A |
5736821 | Suyaman et al. | Apr 1998 | A |
5754741 | Wang et al. | May 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5769640 | Jacobus et al. | Jun 1998 | A |
5791231 | Cohn et al. | Aug 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5797538 | Heaton et al. | Aug 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5807377 | Madhani et al. | Sep 1998 | A |
5808665 | Green | Sep 1998 | A |
5815640 | Wang et al. | Sep 1998 | A |
5825982 | Wright et al. | Oct 1998 | A |
5841950 | Wang et al. | Nov 1998 | A |
5845646 | Lemelson | Dec 1998 | A |
5855583 | Wang et al. | Jan 1999 | A |
5876325 | Mizuno et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5878783 | Smart | Mar 1999 | A |
5895417 | Pomeranz et al. | Apr 1999 | A |
5906591 | Dario et al. | May 1999 | A |
5907664 | Wang et al. | May 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5911036 | Wright et al. | Jun 1999 | A |
5971976 | Wang et al. | Oct 1999 | A |
5993467 | Yoon | Nov 1999 | A |
6001108 | Wang et al. | Dec 1999 | A |
6007550 | Wang et al. | Dec 1999 | A |
6030365 | Laufer | Feb 2000 | A |
6031371 | Smart | Feb 2000 | A |
6058323 | Lemelson | May 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6066090 | Yoon | May 2000 | A |
6102850 | Wang et al. | Aug 2000 | A |
6107795 | Smart | Aug 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6132441 | Grace | Oct 2000 | A |
6139563 | Cosgrove, III et al. | Oct 2000 | A |
6156006 | Brosens et al. | Dec 2000 | A |
6159146 | El Gazayerli | Dec 2000 | A |
6162171 | Ng et al. | Dec 2000 | A |
D438617 | Cooper et al. | Mar 2001 | S |
6206903 | Ramans | Mar 2001 | B1 |
D441076 | Cooper et al. | Apr 2001 | S |
6223100 | Green | Apr 2001 | B1 |
D441862 | Cooper et al. | May 2001 | S |
6238415 | Sepetka et al. | May 2001 | B1 |
6240312 | Alfano et al. | May 2001 | B1 |
6241730 | Alby | Jun 2001 | B1 |
6244809 | Wang et al. | Jun 2001 | B1 |
6246200 | Blumenkranz et al. | Jun 2001 | B1 |
D444555 | Cooper et al. | Jul 2001 | S |
6286514 | Lemelson | Sep 2001 | B1 |
6292678 | Hall et al. | Sep 2001 | B1 |
6293282 | Lemelson | Sep 2001 | B1 |
6296635 | Smith et al. | Oct 2001 | B1 |
6309397 | Julian et al. | Oct 2001 | B1 |
6309403 | Minoret et al. | Oct 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6321106 | Lemelson | Nov 2001 | B1 |
6327492 | Lemelson | Dec 2001 | B1 |
6331181 | Tiemey et al. | Dec 2001 | B1 |
6346072 | Cooper | Feb 2002 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6371952 | Madhani et al. | Apr 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6398726 | Ramans et al. | Jun 2002 | B1 |
6400980 | Lemelson | Jun 2002 | B1 |
6408224 | Okamoto et al. | Jun 2002 | B1 |
6424885 | Niemeyer et al. | Jul 2002 | B1 |
6432112 | Brock et al. | Aug 2002 | B2 |
6436107 | Wang et al. | Aug 2002 | B1 |
6441577 | Blumenkranz et al. | Aug 2002 | B2 |
6450104 | Grant et al. | Sep 2002 | B1 |
6451027 | Cooper et al. | Sep 2002 | B1 |
6454758 | Thompson et al. | Sep 2002 | B1 |
6459926 | Nowlin et al. | Oct 2002 | B1 |
6463361 | Wang et al. | Oct 2002 | B1 |
6468203 | Belson | Oct 2002 | B2 |
6468265 | Evans et al. | Oct 2002 | B1 |
6470236 | Ohtsuki | Oct 2002 | B2 |
6491691 | Morley et al. | Dec 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6493608 | Niemeyer et al. | Dec 2002 | B1 |
6496099 | Wang et al. | Dec 2002 | B2 |
6508413 | Bauer et al. | Jan 2003 | B2 |
6512345 | Borenstein | Jan 2003 | B2 |
6522906 | Salisbury, Jr. et al. | Feb 2003 | B1 |
6544276 | Azizi | Apr 2003 | B1 |
6548982 | Papanikolopoulos et al. | Apr 2003 | B1 |
6554790 | Moll | Apr 2003 | B1 |
6565554 | Niemeyer | May 2003 | B1 |
6574355 | Green | Jun 2003 | B2 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6591239 | McCall et al. | Jul 2003 | B1 |
6594552 | Nowlin et al. | Jul 2003 | B1 |
6610007 | Belson et al. | Aug 2003 | B2 |
6620173 | Gerbi et al. | Sep 2003 | B2 |
6642836 | Wang et al. | Nov 2003 | B1 |
6645196 | Nixon et al. | Nov 2003 | B1 |
6646541 | Wang et al. | Nov 2003 | B1 |
6648814 | Kim et al. | Nov 2003 | B2 |
6659939 | Moll et al. | Dec 2003 | B2 |
6661571 | Shioda et al. | Dec 2003 | B1 |
6671581 | Niemeyer et al. | Dec 2003 | B2 |
6676684 | Morley et al. | Jan 2004 | B1 |
6684129 | Salisbury, Jr. et al. | Jan 2004 | B2 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6685698 | Morley et al. | Feb 2004 | B2 |
6687571 | Byrne et al. | Feb 2004 | B1 |
6692485 | Brock et al. | Feb 2004 | B1 |
6699177 | Wang et al. | Mar 2004 | B1 |
6699235 | Wallace et al. | Mar 2004 | B2 |
6702734 | Kim et al. | Mar 2004 | B2 |
6702805 | Stuart | Mar 2004 | B1 |
6714839 | Salisbury, Jr. et al. | Mar 2004 | B2 |
6714841 | Wright et al. | Mar 2004 | B1 |
6719684 | Kim et al. | Apr 2004 | B2 |
6720988 | Gere et al. | Apr 2004 | B1 |
6726699 | Wright et al. | Apr 2004 | B1 |
6728599 | Wright et al. | Apr 2004 | B2 |
6730021 | Vassiliades, Jr. et al. | May 2004 | B2 |
6731988 | Green | May 2004 | B1 |
6746443 | Morley et al. | Jun 2004 | B1 |
6764441 | Chiel et al. | Jul 2004 | B2 |
6764445 | Ramans et al. | Jul 2004 | B2 |
6766204 | Niemeyer et al. | Jul 2004 | B2 |
6770081 | Cooper et al. | Aug 2004 | B1 |
6774597 | Borenstein | Aug 2004 | B1 |
6776165 | Jin | Aug 2004 | B2 |
6780184 | Tanrisever | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6785593 | Wang et al. | Aug 2004 | B2 |
6788018 | Blumenkranz | Sep 2004 | B1 |
6792663 | Krzyzanowski | Sep 2004 | B2 |
6793653 | Sanchez et al. | Sep 2004 | B2 |
6799065 | Niemeyer | Sep 2004 | B1 |
6799088 | Wang et al. | Sep 2004 | B2 |
6801325 | Farr et al. | Oct 2004 | B2 |
6804581 | Wang et al. | Oct 2004 | B2 |
6810281 | Brock et al. | Oct 2004 | B2 |
6817972 | Snow | Nov 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6817975 | Farr et al. | Nov 2004 | B1 |
6820653 | Schempf et al. | Nov 2004 | B1 |
6824508 | Kim et al. | Nov 2004 | B2 |
6824510 | Kim et al. | Nov 2004 | B2 |
6832988 | Sprout | Dec 2004 | B2 |
6832996 | Woloszko et al. | Dec 2004 | B2 |
6836703 | Wang et al. | Dec 2004 | B2 |
6837846 | Jaffe et al. | Jan 2005 | B2 |
6837883 | Moll et al. | Jan 2005 | B2 |
6839612 | Sanchez et al. | Jan 2005 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6852107 | Wang et al. | Feb 2005 | B2 |
6858003 | Evans et al. | Feb 2005 | B2 |
6860346 | Burt et al. | Mar 2005 | B2 |
6860877 | Sanchez et al. | Mar 2005 | B1 |
6866671 | Tiemey et al. | Mar 2005 | B2 |
6870343 | Borenstein et al. | Mar 2005 | B2 |
6871117 | Wang et al. | Mar 2005 | B2 |
6871563 | Choset et al. | Mar 2005 | B2 |
6879880 | Nowlin et al. | Apr 2005 | B2 |
6892112 | Wang et al. | May 2005 | B2 |
6899705 | Niemeyer | May 2005 | B2 |
6902560 | Morley et al. | Jun 2005 | B1 |
6905460 | Wang et al. | Jun 2005 | B2 |
6905491 | Wang et al. | Jun 2005 | B1 |
6911916 | Wang et al. | Jun 2005 | B1 |
6917176 | Schempf et al. | Jul 2005 | B2 |
6933695 | Blumenkranz | Aug 2005 | B2 |
6936001 | Snow | Aug 2005 | B1 |
6936003 | Iddan | Aug 2005 | B2 |
6936042 | Wallace et al. | Aug 2005 | B2 |
6943663 | Wang et al. | Sep 2005 | B2 |
6949096 | Davison et al. | Sep 2005 | B2 |
6951535 | Ghodoussi et al. | Oct 2005 | B2 |
6965812 | Wang et al. | Nov 2005 | B2 |
6974411 | Belson | Dec 2005 | B2 |
6974449 | Niemeyer | Dec 2005 | B2 |
6979423 | Moll | Dec 2005 | B2 |
6984203 | Tartaglia et al. | Jan 2006 | B2 |
6984205 | Gazdzinski | Jan 2006 | B2 |
6991627 | Madhani et al. | Jan 2006 | B2 |
6993413 | Sunaoshi | Jan 2006 | B2 |
6994703 | Wang et al. | Feb 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6997908 | Carrillo, Jr. et al. | Feb 2006 | B2 |
7025064 | Wang et al. | Apr 2006 | B2 |
7027892 | Wang et al. | Apr 2006 | B2 |
7033344 | Imran | Apr 2006 | B2 |
7039453 | Mullick et al. | May 2006 | B2 |
7042184 | Oleynikov et al. | May 2006 | B2 |
7048745 | Tierney et al. | May 2006 | B2 |
7053752 | Wang et al. | May 2006 | B2 |
7063682 | Whayne et al. | Jun 2006 | B1 |
7066879 | Fowler et al. | Jun 2006 | B2 |
7066926 | Wallace et al. | Jun 2006 | B2 |
7074179 | Wang et al. | Jul 2006 | B2 |
7077446 | Kameda et al. | Jul 2006 | B2 |
7083571 | Wang et al. | Aug 2006 | B2 |
7083615 | Peterson et al. | Aug 2006 | B2 |
7087049 | Nowlin et al. | Aug 2006 | B2 |
7090683 | Brock et al. | Aug 2006 | B2 |
7097640 | Wang et al. | Aug 2006 | B2 |
7105000 | McBrayer | Sep 2006 | B2 |
7107090 | Salisbury, Jr. et al. | Sep 2006 | B2 |
7109678 | Kraus et al. | Sep 2006 | B2 |
7118582 | Wang et al. | Oct 2006 | B1 |
7121781 | Sanchez | Oct 2006 | B2 |
7125403 | Julian et al. | Oct 2006 | B2 |
7126303 | Farritor et al. | Oct 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7155315 | Niemeyer et al. | Dec 2006 | B2 |
7169141 | Brock et al. | Jan 2007 | B2 |
7182025 | Ghorbel et al. | Feb 2007 | B2 |
7182089 | Ries | Feb 2007 | B2 |
7199545 | Oleynikov et al. | Apr 2007 | B2 |
7206626 | Quaid, III | Apr 2007 | B2 |
7206627 | Abovitz et al. | Apr 2007 | B2 |
7210364 | Ghorbel et al. | May 2007 | B2 |
7214230 | Brock et al. | May 2007 | B2 |
7217240 | Snow | May 2007 | B2 |
7239940 | Wang et al. | Jul 2007 | B2 |
7250028 | Julian et al. | Jul 2007 | B2 |
7259652 | Wang et al. | Aug 2007 | B2 |
7273488 | Nakamura et al. | Sep 2007 | B2 |
7311107 | Harel et al. | Dec 2007 | B2 |
7339341 | Oleynikov et al. | Mar 2008 | B2 |
7372229 | Farritor et al. | May 2008 | B2 |
7447537 | Funda et al. | Nov 2008 | B1 |
7492116 | Oleynikov et al. | Feb 2009 | B2 |
7566300 | Devierre et al. | Jul 2009 | B2 |
7574250 | Niemeyer | Aug 2009 | B2 |
7637905 | Saadat et al. | Dec 2009 | B2 |
7645230 | Mikkaichi et al. | Jan 2010 | B2 |
7655004 | Long | Feb 2010 | B2 |
7670329 | Flaherty et al. | Mar 2010 | B2 |
7678043 | Gilad | Mar 2010 | B2 |
7731727 | Sauer | Jun 2010 | B2 |
7762825 | Burbank et al. | Jul 2010 | B2 |
7772796 | Farritor et al. | Aug 2010 | B2 |
7785251 | Wilk | Aug 2010 | B2 |
7785333 | Miyamoto et al. | Aug 2010 | B2 |
7789825 | Nobis et al. | Sep 2010 | B2 |
7794494 | Sahatjian et al. | Sep 2010 | B2 |
7865266 | Moll et al. | Jan 2011 | B2 |
7960935 | Farritor et al. | Jun 2011 | B2 |
8021358 | Doyle et al. | Sep 2011 | B2 |
8179073 | Farritor et al. | May 2012 | B2 |
8343171 | Farritor et al. | Jan 2013 | B2 |
8353897 | Doyle et al. | Jan 2013 | B2 |
8604742 | Farritor et al. | Dec 2013 | B2 |
9089353 | Farritor | Jul 2015 | B2 |
20010018591 | Brock et al. | Aug 2001 | A1 |
20010049497 | Kalloo et al. | Dec 2001 | A1 |
20020003173 | Bauer et al. | Jan 2002 | A1 |
20020013601 | Nobles et al. | Jan 2002 | A1 |
20020026186 | Woloszka et al. | Feb 2002 | A1 |
20020038077 | de la Torre et al. | Mar 2002 | A1 |
20020065507 | Azizi | May 2002 | A1 |
20020091374 | Cooper | Jul 2002 | A1 |
20020103417 | Gazdzinski | Aug 2002 | A1 |
20020111535 | Kim et al. | Aug 2002 | A1 |
20020120254 | Julian et al. | Aug 2002 | A1 |
20020128552 | Nowlin et al. | Sep 2002 | A1 |
20020140392 | Borenstein et al. | Oct 2002 | A1 |
20020147487 | Sundquist et al. | Oct 2002 | A1 |
20020151906 | Demarais et al. | Oct 2002 | A1 |
20020156347 | Kim et al. | Oct 2002 | A1 |
20020171385 | Kim et al. | Nov 2002 | A1 |
20020173700 | Kim et al. | Nov 2002 | A1 |
20020190682 | Schempf et al. | Dec 2002 | A1 |
20030020810 | Takizawa et al. | Jan 2003 | A1 |
20030045888 | Brock et al. | Mar 2003 | A1 |
20030065250 | Chiel et al. | Apr 2003 | A1 |
20030089267 | Ghorbel et al. | May 2003 | A1 |
20030092964 | Kim et al. | May 2003 | A1 |
20030097129 | Davison et al. | May 2003 | A1 |
20030100817 | Wang et al. | May 2003 | A1 |
20030114731 | Cadeddu et al. | Jun 2003 | A1 |
20030135203 | Wang et al. | Jul 2003 | A1 |
20030139742 | Wampler et al. | Jul 2003 | A1 |
20030144656 | Ocel et al. | Jul 2003 | A1 |
20030167000 | Mullick | Sep 2003 | A1 |
20030172871 | Scherer | Sep 2003 | A1 |
20030179308 | Zamorano et al. | Sep 2003 | A1 |
20030181788 | Yokoi et al. | Sep 2003 | A1 |
20030229268 | Uchiyama et al. | Dec 2003 | A1 |
20030230372 | Schmidt | Dec 2003 | A1 |
20040024311 | Quaid | Feb 2004 | A1 |
20040034282 | Quaid | Feb 2004 | A1 |
20040034283 | Quaid | Feb 2004 | A1 |
20040034302 | Abovitz et al. | Feb 2004 | A1 |
20040050394 | Jin | Mar 2004 | A1 |
20040070822 | Shioda et al. | Apr 2004 | A1 |
20040099175 | Perrot et al. | May 2004 | A1 |
20040102772 | Baxter et al. | May 2004 | A1 |
20040106916 | Quaid et al. | Jun 2004 | A1 |
20040111113 | Nakamura et al. | Jun 2004 | A1 |
20040117032 | Roth | Jun 2004 | A1 |
20040138525 | Saadat | Jul 2004 | A1 |
20040138552 | Harel et al. | Jul 2004 | A1 |
20040140786 | Borenstein | Jul 2004 | A1 |
20040153057 | Davison | Aug 2004 | A1 |
20040173116 | Ghorbel et al. | Sep 2004 | A1 |
20040176664 | Iddan | Sep 2004 | A1 |
20040215331 | Chew et al. | Oct 2004 | A1 |
20040225229 | Viola | Nov 2004 | A1 |
20040254680 | Sunaoshi | Dec 2004 | A1 |
20040267326 | Ocel et al. | Dec 2004 | A1 |
20050014994 | Fowler et al. | Jan 2005 | A1 |
20050021069 | Feuer et al. | Jan 2005 | A1 |
20050029978 | Oleynikov et al. | Feb 2005 | A1 |
20050043583 | Killmann et al. | Feb 2005 | A1 |
20050049462 | Kanazawa | Mar 2005 | A1 |
20050054901 | Yoshino | Mar 2005 | A1 |
20050054902 | Konno | Mar 2005 | A1 |
20050064378 | Toly | Mar 2005 | A1 |
20050065400 | Banik et al. | Mar 2005 | A1 |
20050083460 | Hattori et al. | Apr 2005 | A1 |
20050096502 | Khalili | May 2005 | A1 |
20050143644 | Gilad et al. | Jun 2005 | A1 |
20050154376 | Riviere et al. | Jul 2005 | A1 |
20050165449 | Cadeddu et al. | Jul 2005 | A1 |
20050283137 | Doyle et al. | Dec 2005 | A1 |
20050288555 | Binmoeller | Dec 2005 | A1 |
20050288665 | Woloszko | Dec 2005 | A1 |
20060020272 | Gildenberg | Jan 2006 | A1 |
20060046226 | Bergler et al. | Mar 2006 | A1 |
20060119304 | Farritor et al. | Jun 2006 | A1 |
20060149135 | Paz | Jul 2006 | A1 |
20060152591 | Lin | Jul 2006 | A1 |
20060155263 | Lipow | Jul 2006 | A1 |
20060195015 | Mullick et al. | Aug 2006 | A1 |
20060196301 | Oleynikov et al. | Sep 2006 | A1 |
20060198619 | Oleynikov et al. | Sep 2006 | A1 |
20060241570 | Wilk | Oct 2006 | A1 |
20060241732 | Denker et al. | Oct 2006 | A1 |
20060253109 | Chu | Nov 2006 | A1 |
20060258954 | Timberlake | Nov 2006 | A1 |
20070032701 | Fowler et al. | Feb 2007 | A1 |
20070043397 | Ocel et al. | Feb 2007 | A1 |
20070055342 | Wu et al. | Mar 2007 | A1 |
20070080658 | Farritor et al. | Apr 2007 | A1 |
20070106113 | Ravo | May 2007 | A1 |
20070123748 | Meglan | May 2007 | A1 |
20070142725 | Hardin et al. | Jun 2007 | A1 |
20070156019 | Larkin et al. | Jul 2007 | A1 |
20070156211 | Ferren et al. | Jul 2007 | A1 |
20070167955 | De La Menardiere et al. | Jul 2007 | A1 |
20070225633 | Ferren et al. | Sep 2007 | A1 |
20070225634 | Ferren et al. | Sep 2007 | A1 |
20070241714 | Okeynikov et al. | Oct 2007 | A1 |
20070244520 | Ferren et al. | Oct 2007 | A1 |
20070250064 | Darois et al. | Oct 2007 | A1 |
20070255273 | Fernandez et al. | Nov 2007 | A1 |
20080004634 | Farritor et al. | Jan 2008 | A1 |
20080015565 | Davison | Jan 2008 | A1 |
20080015566 | Livneh | Jan 2008 | A1 |
20080033569 | Ferren et al. | Feb 2008 | A1 |
20080045803 | Williams | Feb 2008 | A1 |
20080058835 | Farritor et al. | Mar 2008 | A1 |
20080058989 | Oleynikov et al. | Mar 2008 | A1 |
20080103440 | Ferren et al. | May 2008 | A1 |
20080109014 | Pena | May 2008 | A1 |
20080111513 | Farritor et al. | May 2008 | A1 |
20080119870 | Williams et al. | May 2008 | A1 |
20080132890 | Woloszko et al. | Jun 2008 | A1 |
20080161804 | Rioux et al. | Jul 2008 | A1 |
20080164079 | Jacobsen | Jul 2008 | A1 |
20080183033 | Bern et al. | Jul 2008 | A1 |
20080221591 | Farritor et al. | Sep 2008 | A1 |
20080269557 | Marescaux et al. | Oct 2008 | A1 |
20080269562 | Marescaux et al. | Oct 2008 | A1 |
20090020724 | Paffrath | Jan 2009 | A1 |
20090024142 | Ruiz Morales | Jan 2009 | A1 |
20090048612 | Farritor et al. | Feb 2009 | A1 |
20090054909 | Farritor et al. | Feb 2009 | A1 |
20090069821 | Farritor et al. | Mar 2009 | A1 |
20090076536 | Rentschler et al. | Mar 2009 | A1 |
20090137952 | Ramamurthy et al. | May 2009 | A1 |
20090143787 | De La Pena | Jun 2009 | A9 |
20090163929 | Yeung et al. | Jun 2009 | A1 |
20090171373 | Farritor et al. | Jul 2009 | A1 |
20090234369 | Bax et al. | Sep 2009 | A1 |
20090236400 | Cole et al. | Sep 2009 | A1 |
20090240246 | Devill et al. | Sep 2009 | A1 |
20090247821 | Rogers | Oct 2009 | A1 |
20090248038 | Blumenkranz et al. | Oct 2009 | A1 |
20090281377 | Newell et al. | Nov 2009 | A1 |
20090305210 | Guru et al. | Dec 2009 | A1 |
20100010294 | Conlon et al. | Jan 2010 | A1 |
20100016659 | Weitzner et al. | Jan 2010 | A1 |
20100016853 | Burbank | Jan 2010 | A1 |
20100042097 | Newton et al. | Feb 2010 | A1 |
20100056863 | Dejima et al. | Mar 2010 | A1 |
20100069710 | Yamatani et al. | Mar 2010 | A1 |
20100069940 | Miller et al. | Mar 2010 | A1 |
20100081875 | Fowler et al. | Apr 2010 | A1 |
20100139436 | Kawashima et al. | Jun 2010 | A1 |
20100198231 | Scott | Aug 2010 | A1 |
20100204713 | Ruiz | Aug 2010 | A1 |
20100245549 | Allen et al. | Sep 2010 | A1 |
20100262162 | Omori | Oct 2010 | A1 |
20100292691 | Brogna | Nov 2010 | A1 |
20100318059 | Farritor et al. | Dec 2010 | A1 |
20110015569 | Kirschenman et al. | Jan 2011 | A1 |
20110020779 | Hannaford et al. | Jan 2011 | A1 |
20110071347 | Rogers et al. | Mar 2011 | A1 |
20110071544 | Steger et al. | Mar 2011 | A1 |
20110077478 | Freeman et al. | Mar 2011 | A1 |
20110082365 | McGrogan et al. | Apr 2011 | A1 |
20110098529 | Ostrovsky et al. | Apr 2011 | A1 |
20110152615 | Schostek et al. | Jun 2011 | A1 |
20110224605 | Farritor et al. | Sep 2011 | A1 |
20110230894 | Simaan et al. | Sep 2011 | A1 |
20110237890 | Farritor et al. | Sep 2011 | A1 |
20110238080 | Ranjit et al. | Sep 2011 | A1 |
20110264078 | Lipow | Oct 2011 | A1 |
20110270443 | Kamiya et al. | Nov 2011 | A1 |
20120035582 | Nelson et al. | Feb 2012 | A1 |
20120109150 | Quaid et al. | May 2012 | A1 |
20120116362 | Kieturakis | May 2012 | A1 |
20120179168 | Farritor | Jul 2012 | A1 |
20120253515 | Coste-Maniere et al. | Oct 2012 | A1 |
20130041360 | Farritor | Feb 2013 | A1 |
20130131695 | Scarfogliero et al. | May 2013 | A1 |
20140046340 | Wilson et al. | Feb 2014 | A1 |
20140058205 | Frederick et al. | Feb 2014 | A1 |
20140039515 | Mondry et al. | Jun 2014 | A1 |
20140303434 | Farritor et al. | Oct 2014 | A1 |
20150051446 | Farritor et al. | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
1082821918 | Dec 2012 | CN |
102010040405 | Mar 2012 | DE |
1354670 | Oct 2003 | EP |
2286756 | Feb 2011 | EP |
2286756 | Feb 2011 | EP |
2329787 | Aug 2011 | EP |
2563261 | Mar 2013 | EP |
2004144533 | May 1990 | JP |
5115425 | May 1993 | JP |
200716235 | Jun 1993 | JP |
2006507809 | Sep 1994 | JP |
07 136173 | May 1995 | JP |
7306155 | Nov 1995 | JP |
08-224248 | Sep 1996 | JP |
2001505810 | May 2001 | JP |
2003220065 | Aug 2003 | JP |
2004322310 | Jun 2004 | JP |
2004180781 | Jul 2004 | JP |
2004329292 | Nov 2004 | JP |
2006508049 | Mar 2006 | JP |
2009-106606 | May 2009 | JP |
2010-533045 | Oct 2010 | JP |
2010-536436 | Dec 2010 | JP |
2011-504794 | Feb 2011 | JP |
2011-045500 | Mar 2011 | JP |
2011-115591 | Jun 2011 | JP |
WO 9221291 | Dec 1992 | WO |
WO 0189405 | Nov 2001 | WO |
WO 02082979 | Oct 2002 | WO |
WO 02100256 | Dec 2002 | WO |
WO 2005009211 | Feb 2005 | WO |
WO 2005009211 | Feb 2005 | WO |
WO 2005044095 | May 2005 | WO |
WO 2006 005075 | Jan 2006 | WO |
WO 2006079108 | Jan 2006 | WO |
WO 2006052927 | May 2006 | WO |
WO2006079108 | Jul 2006 | WO |
WO 2007011654 | Jan 2007 | WO |
WO 2007111571 | Oct 2007 | WO |
WO 2007149559 | Dec 2007 | WO |
WO 2009023851 | Feb 2009 | WO |
WO 2009144729 | Dec 2009 | WO |
WO2010042611 | Apr 2010 | WO |
WO2010046823 | Apr 2010 | WO |
WO2010050771 | May 2010 | WO |
WO 2011075693 | Jun 2011 | WO |
WO 2011118646 | Sep 2011 | WO |
WO 2011135503 | Nov 2011 | WO |
WO 2011135503 | Nov 2011 | WO |
WO 2013009887 | Jan 2013 | WO |
WO 2014011238 | Jan 2014 | WO |
Entry |
---|
Abbott et al., “Design of an Endoluminal Notes Robotic System,” from the Proceedings of the 2007 IEEE/RSJ Int'l Conf. on Intelligent Robot Systems, San Diego, CA, Oct. 29-Nov. 2, 2007, pp. 410-416. |
Allendorf et al., “Postoperative Immune Function Varies Inversely with the Degree of Surgical Trauma in a Murine Model,” Surgical Endoscopy 1997; 11:427-430. |
Ang, “Active Tremor Compensation in Handheld Instrument for Microsurgery,” Doctoral Dissertation, tech report CMU-RI-TR-04-28, Robotics Institute, Carnegie Mellon Unviersity, May 2004, 167pp. |
Applicant Amendment after Notice of Allowance under Rule 312, filed Aug. 25, 2008, in related case U.S. Appl. No. 11/695,944, 6pp. |
Applicant Response to Office Action dated Apr. 17, 2007, in related case U.S. Appl. No. 11/552,379, filed Aug. 8, 2007, 7 pp. |
Applicant Response to Office Action dated Aug. 18, 2006, in related case U.S. Appl. No. 11/398,174, filed Nov. 7, 2006, 8pp. |
Applicant Response to Office Action dated Aug. 21, 2006, in related case U.S. Appl. No. 11/403,756, filed Nov. 21, 2006, 52pp. |
Applicant Response to Office Action dated Oct. 29, 2007, in related case U.S. Appl. No. 11/695,944, filed Jan. 22, 2008, 6pp. |
Atmel 8005X2 Core, http://www.atmel.com, 2006, 186pp. |
Bailey et al., “Complications of Laparoscopic Surgery,” Quality Medical Publishers, Inc., 1995, 25pp. |
Ballantyne, “Robotic Surgery, Telerobotic Surgery, Telepresence, and Telementoring,” Surgical Endoscopy, 2002; 16: 1389-1402. |
Bauer et al., “Case Report: Remote Percutaneous Renal Percutaneous Renal Access Using a New Automated Telesurgical Robotic System,” Telemedicine Journal and e-Health 2001; (4): 341-347. |
Begos et al., “Laparoscopic Cholecystectomy: From Gimmick to Gold Standard,” J Clin Gastroenterol, 1994; 19(4): 325-330. |
Berg et al., “Surgery with Cooperative Robots,” Medicine Meets Virtual Reality, Feb. 2007, 1 pg. |
Breda et al., “Future developments and perspectives in laparoscopy,” Eur. Urology 2001; 40(1): 84-91. |
Breedveld et al., “Design of Steerable Endoscopes to Improve the Visual Perception of Depth During Laparoscopic Surgery,” ASME, Jan. 2004; vol. 126, pp. 1-5. |
Breedveld et al., “Locomotion through the Intestine by means of Rolling Stents,” Proceedings of the ASME Design Engineering Technical Conferences, 2004, pp. 1-7. |
Calafiore et al., Multiple Arterial Conduits Without Cardiopulmonary Bypass: Early Angiographic Results,: Ann Thorac Surg, 1999; 67: 450-456. |
Camarillo et al., “Robotic Technology in Surgery: Past, Present and Future,” The American Journal of Surgery, 2004; 188: 2S-15. |
Cavusoglu et al., “Telesurgery and Surgical Simulation: Haptic Interfaces to Real and Virtual Surgical Environments,” In McLaughliin, M.L., Hespanha, J.P., and Sukhatme, G., editors. Touch in virtual environments, IMSC Series in Multimedia 2001, 28pp. |
Cavusoglu et al., “Robotics for Telesurgery: Second Generation Berkeley/UCSF Laparoscopic Telesurgical Workstation and Looking Towards the Future Applications,” Industrial Robot: An International Journal, 2003; 30(1): 22-29. |
Chanthasopeephan et al., (2003), “Measuring Forces in Liver Cutting: New Equipment and Experimenal Results,” Annals of Biomedical Engineering 31: 1372-1382. |
Choi et al., “Flexure-based Manipulator for Active Handheld Microsurgical Instrument,” Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Sep. 2005, 4pp,. |
Cuschieri, “Technology for Minimal Access Surgery,” BMJ, 1999, 319: 1-6. |
Dakin et al., “Comparison of laparoscopic skills performance between standard instruments and two surgical robotic systems,” Surg Endosc., 2003; 17: 574-579. |
Dumpert et al., “Improving in Vivo Robot Visioin Quality,” from the Proceedings of Medicine Meets Virtual Realtiy, Long Beach, CA, Jan. 26-29, 2005. 1 pg. |
Dumpert et al., “Stereoscopic In Vivo Surgical Robots,” IEEE Sensors Special Issue on In Vivo Sensors for Medicine, Jan. 2007, 10 pp. |
Examiner Interview Summary dated Aug. 6 and Aug. 12, 2008, in related case U.S. Appl. No. 11/695,944, 1 pg. |
Examiner Interview Summary dated May 9, 2008, in related case U.S. Appl. No. 11/695,944, 1 pg. |
Examiner Interview Summary dated Nov. 30, 2006, in related case U.S. Appl. No. 11/398,174, 2pp. |
Falcone et al., “Robotic Surgery,” Clin. Obstet. Gynecol. 2003, 46(1): 37-43. |
Faraz et al., “Engineering Approaches to Mechanical and Robotic Design for Minimaly Invasive Surgery (MIS),” Kluwer Academic Publishers (Boston), 2000, 13pp. |
Fearing et al., “Wing Transmission for a Micromechanical Flying Insect,” Proceedings of the 2000 IEEE International Conference to Robotics & Automation, Apr. 2000; 1509-1516. |
Fireman et al., “Diagnosing small bowel Crohn's desease with wireless capsule endoscopy,” Gut 2003; 52: 390-392. |
Flynn et al., “Tomorrow's Surgery: micromotors and microbots for minimally invasive procedures,” Minimally Invasive Surgery & Allied Technologies. |
Franklin et al., “Prospective Comparison of Open vs. Laparoscopic Colon Surgery for Carcinoma: Five-Year Results,” Dis Colon Rectum, 1996; 39: S35-S46. |
Franzino, “The Laprotek Surgical System and the Next Generation of Robotics,” Surg Clin North Am, 2003 83(6): 1317-1320. |
Fraulob et al., “Miniature assistance module for robot-assisted heart surgery,” Biomed. Tech. 2002, 47 Suppl. 1, Pt. 1: 12-15. |
Fukuda et al., “Mechanism and Swimming Experiment of Micro Mobile Robot in Water,” Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994: 814-819. |
Fukuda et al., “Micro Active Catheter System with Multi Degrees of Freedom,” Proceedings of the IEEE International Conference on Robotics and Automation, May 1994, pp. 2290-2295. |
Fuller et al., “Laparoscopic Trocar Injuries: A Report from a U.S. Food and Drug Administration (FDA) Center for Devices and Radiological Health (CDRH) Systematic Technology Assessment of Medical Products (STAMP) Committe,” U.S. Food and Drug Adminstration, available at http://www.fdaJ:?;ov, Finalized: Nov. 7, 2003; Updated: Jun. 24, 2005, 11 pp. |
Grady, “Doctors Try New Surgery for Gallbladder Removal,” The New York Times, Apr. 20, 2007, 3 pp. |
Guber et al., “Miniaturized Instrumetn Systems for Minimally Invasive Diagnosis and Therapy,” Biomedizinishe Technic. 2002, Band 47, Erganmngsband 1: 198-201. |
International Preliminary Report on Patentability from related case PCT/US2007/014567, mailed Jan. 8, 2009, 11 pp. |
International Search report and Written Opinion from international application No. PCT/US2012/41911, mailed Mar. 13, 2013. |
International Search Report and Written Opinion from international application No. PCT/US12/46274, mailed Sep. 25, 2012. |
International Search Report and Written Opinion from international application No. PCT/US2007/089191, mailed Nov. 10, 2008, 20 pp. |
“International Search Report and Written Opinion from international application No. PCT/US07/14567, mailed Apr. 28, 2008, 19 pp.”. |
International Search Report and Written Opinion of international application No. PCT/US2008/069822, mailed Aug. 5, 2009, 12 pp. |
International Search Report and Written Opinion of international application No. PCT/US2008/073334, mailed Jan. 12, 2009, 11 pp. |
International Search Report and Written Opinion of international application No. PCT/US2008/073369, mailed Nov. 12, 2008, 12 pp. |
International Search Report and Written Opinion issued in PCT/US11/46809, mailed Dec. 8, 2011. |
Ishiyama et al., “Spiral-type Micro-machine for Medical Applications,” 2000 International Symposium on Micromechatronics and Human Science, 2000: 65-69. |
Jagannath et al., “Peroral transgastric endoscopic ligation of fallopian tubes with long-term survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 61(3): 449-453. |
Kalloo et al., “Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity,” Gastrointestinal Endoscopy, 2004; 60(1): 114-117. |
Kang et al., “Robotic Assistants Aid Surgeons During Minimally Invasive Procedures,” IEEE Engineering in Medicine and Biology, Jan.-Feb. 2001; pp. 94-104. |
Kantsevoy et al., “Endoscopic gastrojejunostomy with survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 62(2): 287-292. |
Kantsevoy et al., “Transgastric endoscopic splenectomy,” Surgical Endoscopy, 2006; 20: 522-525. |
Kazemier et al. (1998), “Vascular Injuries During Laparoscopy,” J. Am. Coli. Surg. 186(5): 604-5. |
Kim, “Early Experience with Telemanipulative Robot-Assisted Laparoscopic Cholecystectomy Using da Vinci,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1):33-40. |
Ko et al., “Per-Oral transgastric abdominal surgery,” Chinese Journal of Digestive Diseases, 2006; 7: 67-70. |
Lafullarde et al., “Laparoscopic Nissen Fundoplication: Five-year Results and Beyond,” Arch/Surg, Feb. 2001; 136:180-184. |
Leggett et al. (2002), “Aortic injury during laparoscopic fundoplication,” Surg. Endoscopy 16(2): 362. |
Li et al. (2000), “Microvascular Anastomoses Performed in Rats Using a Microsurgical Telemanipulator,” Comp. Aid. Surg. 5: 326-332. |
Liem et al., “Comparison of Conventional Anterior Surgery and Laparoscopic Surgery for Inguinal-hernia Repair,” New England Journal of Medicine, 1997; 336 (22): 1541-1547. |
MacFarlane et al., “Force-Feedback Grasper Helps Restore the Sense of Touch in Minimally Invasive Surgery,” Journal of Gastrointestinal Surgery, 1999; 3: 278-285. |
Mack et al., “Present Role of Thoracoscopy in the Diagnosis and Treatment of Diseases of the Chest,” Ann Thorac Surgery, 1992; 54: 403-409. |
Mack, “Minimally Invasive and Robotic Surgery,” JAMA, Feb. 2001; 285(5): 568-572. |
Mei et al., “Wireless Drive and Control of a Swimming Microrobot,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, May 2002: 1131-1136. |
Melvin et al., “Computer-Enhanced vs. Standard Laparoscopic Antireflux Surgery,” J Gastrointest Surg 2002; 6: 11-16. |
Menciassi et al., “Locomotion of a Leffed Capsule in the Gastrointestinal Tract: Theoretical Study and Preliminary Technological Results,” IEEE Int. Conf. on Engineering in Medicine and Biology, San Francisco, CA, pp. 2767-2770, Sep. 2004. |
Menciassi et al., “Robotic Solutions and Mechanisms for a Semi-Autonomous Endoscope,” Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Oct. 2002; 1379-1384. |
Menciassi et al., “Shape memory alloy clamping devices of a capsule for monitoring tasks in the gastrointestinal tract,” J. Micromech. Microeng, 2005, 15: 2045-2055. |
Meron, “The development of the swallowable video capsule (M2A),” Gastrointestinal Endoscopy 2000; 52 6: 817-819. |
Micron, http://www.micron.com, 2006, I/4-inch VGA NTSC/PAL CMOS Digital Image Sensor, 98 pp. |
Midday Jeff et al., “Material Handling System for Robotic natural Orifice Surgery”, Proceedings of the 2011 Design of medical Devices Conference, Apr. 12-14, 2011, Minneapolis, MN, 4 pages. |
Miller, Ph.D., et al., “In-Vivo Stereoscopic Imaging System with 5 Degrees-of-Freedom for Minimal Access Surgery,” Dept. of Computer Science and Dept. of Surgery, Columbia University, New York, NY, 7 pp. |
Munro (2002), “Laparoscopic access: complications, technologies, and techniques,” Curro Opin. Obstet. Gynecol., 14(4): 365-74. |
Nio et al, “Efficiency of manual vs robotical (Zeus) assisted laparoscopic surgery in the performance of standardized tasks,” Surg Endosc, 2002; 16: 412-415. |
Office Action dated Apr. 17, 2007, received in related case U.S. Appl. No. 11/552,379, 5 pp. |
Office Action dated Apr. 3, 2009, received in related case U.S. Appl. No. 11/932,516, 43 pp. |
Office Action dated Aug. 18, 2006, received in related case U.S. Appl. No. 11/398,174, 6 pp. |
Office Action dated Aug. 21, 2006, received in related case U.S. Appl. No. 11/403,756, 6 pp. |
Office Action dated Oct. 29, 2007, received in related case U.S. Appl. No. 11/695,944, 6 pp. |
Office Action dated Oct. 9, 2008, received in related case U.S. Appl. No. 11/932,441, 4 pp. |
Oleynikov et al., “In Vivo Camera Robots Provide Improved Vision for Laparoscopic Surgery,” Computer Assisted Radiology and Surgery (CARS), Chicago, IL, Jun. 23-26, 2004b. |
Oleynikov et al., “In Vivo Robotic Laparoscopy,” Surgical Innovation, Jun. 2005, 12(2): 177-181. |
Oleynikov et al., “Miniature Robots Can Assist in Laparoscopic Cholecystectomy,” Journal of Surgical Endoscopy, 19-4: 473-476, 2005. |
O'Neill, “Surgeon takes new route to gallbladder,” The Oregonian, Jun. 2007, 2 pp. |
Orlando et al., (2003), “Needle and Trocar Injuries in Diagnostic Laparoscopy under Local Anesthesia: What Is the True Incidence of These Complications?” Journal of Laparoendoscopic & Advanced Surgical Techniques 13(3): 181-184. |
Park et al., “Trocar-less Instrumentation for Laparoscopy: Magnetic Positioning of Intra-abdominal Camera and Retractor,” Ann Surg, Mar. 2007; 245(3): 379-384. |
Park et al., “Experimental studies of transgastric gallbladder surgery: cholecystectomy and cholecystogastric anastomosis (videos),” Gastrointestinal Endoscopy, 2005; 61(4): 601-606. |
Patronik et al., “Development of a Tethered Epicardial Crawler for Minimally Invasive Cardiac Therapies,” IEEE, pp. 239-240. |
Patronik et al., “Crawling on the Heart: A Mobile Robotic Device for Minimally Invasive Cardiac Interventions,” MICCAI, 2004, pp. 9-16. |
Patronik et al., “Preliminary evaluation of a mobile robotic device for navigation and intervention on the beating heart,” Computer Aided Surgery, 10(4): 225-232, Jul. 2005. |
Peirs et al., “A miniature manipulator for integration in a self-propelling endoscope,” Sensors and Actuators A, 2001, 92: 343-349. |
Peters, “Minimally Invasive Colectomy: Are the Potential Benefits Realized?” Dis Colon Rectum 1993; 36: 751-756. |
Phee et al., “Analysis and Development of Locomotion Devices for the Gastrointestinal Tract,” IEEE Transaction on Biomedical Engineering, vol. 49, No. 6, Jun. 2002, pp. 613-616. |
Phee et al., “Development of Microrobotic Devices for Locomotion in the Human Gastrointestinal Tract,” International Conference on Computational Intelligence, Robotics and Autonomous Systems (CIRAS 2001), Nov. 28-30, 2001, Singapore. |
Platt et al., “In Vivo Robotic Cameras can Enhance Imaging Capability During Laparoscopic Surgery,” in the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, Ft. Lauderdale, FL, Apr. 13-16, 2005, I pg. |
Preliminary Amendment filed Apr. 11, 2007, in related case U.S. Appl. No. 11/403,756, 7 pp. |
Preliminary Amendment filed Jul. 30, 2008, in related case U.S. Appl. No. 12/171,413, 4 pp. |
RCE and Amendment filed Jun. 13, 2007, in related case U.S. Appl. No. 11/403,756, 8 pp. |
Rentschler et al., “Mobile In Vivo Biopsy and Camera Robot,” Studies in Health and Infonnatics Medicine Meets Virtual Reality, vol. 119., pp. 449-454, IOS Press, Long Beach, CA, 2006e. |
Rentschler et al., Mobile In Vivo Biopsy Robot, IEEE International Conference on Robotics and Automation, Orlando, Florida, May 2006, pp. 4155-4160. |
Rentschler et al., “Miniature in vivo Robots for Remote and Harsh Environments,” IEEE Transactions on Information Technology in Biomedicine, Jan. 2006; 12(1): 66-75. |
Rentschler et al., “An In Vivo Mobile Robot for Surgical Vision and Task Assistance,” Journal of Medical Devices, Mar. 2007, vol. 1: 23-29. |
Rentschler et al., “In vivo Mobile Surgical Robotic Task Assistance,” 1 pg. |
Rentschler et al., “In vivo Robotics during the NEEMO 9 Mission,” Medicine Meets Virtual Reality, Feb. 2007, I pg. |
Rentschler et al.., “In Vivo Robots for Laparoscopic Surgery,” Studies in Health Technology and Infonnatics Medicine Meets Virtual Reality, ISO Press, Newport Beach, CA, 2004a, 98: 316-322. |
Rentschler et al., “Mechanical Design of Robotic In Vivo Wheeled Mobility,” ASME Journal of Mechanical Design, 2006a, pp. I-II. |
Rentschler et al., “Mobile In Vivo Camera Robots Provide Sole Visual Feedback for Abdominal Exploration and Cholecystectomy,” Journal of Surgical Endoscopy, 20-I: 135-138, 2006b. |
Rentschler et al., “Mobile In Vivo Robots Can Assist in Abdominal Exploration,” from the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, Ft. Lauderdale, FL, Apr. 13-16, 2005b. |
Rentschler et al., “Modeling, Analysis, and Experimental Study of In Vivo Wheeled Robotic Mobility,” IEEE Transactions on Robotics, 22 (2): 308-321, 2005c. |
Rentschler et al., “Natural Orifice Surgery with an Endoluminal Mobile Robot,” The Society of American Gastrointestinal Endoscopic Surgeons, Dallas, TX, Apr. 2006d, 14 pp. |
Rentschler et al., “Theoretical and Experimental Analysis of In Vivo Wheeled Mobility,” ASME Design Engineering Technical Conferences: 28th Biennial Mechanisms and Robotics Conference, Salt Lake City, Utah, Sep. 28-Oct. 2, 2004, pp. 1-9. |
Rentschler et al., “Toward In Vivo Mobility,” Studies in Health Technology and Informatics—Medicine Meets Virtual Reality, ISO Press, Long Beach, CA, 2005a, III: 397-403. |
Response to Rule 312 Amendment in related case U.S. Appl. No. 11/695,944, dated Jan. 12, 2009, 2 pp. |
Riviere et al., “Toward Active Tremor Canceling in Handheld Microsurgical Instruments,” IEEE Transactions on Robotics and Automation, Oct. 2003, 19(5): 793-800. |
Rosen et al., “Force Controlled and Teleoperated Endoscopic, Grasper for Minimally Invasive Surgery—Experimental Performance Evaluation,” IEEE Transactions of Biomedical Engineering, Oct. 1999; 46(10): 1212-1221. |
Rosen et al., “Objective Laparoscopic Skills Assessments of Surgical Residents Using Hidden Markov Models Based on Haptic Information and Tool/Tissue Interactions,” Studies in Health Technology and Infonnatics-Medicine Meets Virtual Reality, Jan. 2001, 7 pp. |
Rosen et al., “Spherical Mechanism Analysis of a Surgical Robot for Minimally Invasive Surgery—Analytical and Experimental Approaches,” Studies in Health Technology and Informatics—Medicine Meets Virtual Reality, pp. 442-448, Jan. 2005. |
Rosen et al., “Task Decomposition of Laparoscopic Surgery for Objective Evaluation of Surgical Residents' Learning Curve Using Hidden Markov Model,” Computer Aided Surgery, vol. 7, pp. 49-61, 2002. |
Rosen et al., “The Blue Dragon—A System of Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo,” Proc. of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, pp. 1876-1881, May 2002. |
Ruurda et al., “Robot-Assisted surgical systems: a new era in laparoscopic surgery,” Ann R. Coll Surg Engl., 2002; 84: 223-226. |
Ruurda et al., “Feasibility of Robot-Assisted Laparoscopic Surgery,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1):41-45. |
Sackier et al., “Robotically assisted laparoscopic surgery,” Surgical Endoscopy, 1994; 8: 63-66. |
Salky, “What is the Penetration of Endoscopic Techniques into Surgical Practice?” Digestive Surgery, 2000; 17:422-426. |
Satava, “Surgical Robotics: The Early Chronicles,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1): 6-16. |
Schippers et al., (1996) “Requirements and Possibilities of Computer-Assisted Endoscopic Surgery,” In: Computer Integrated Surgery: Technology and Clinical Applications, pp. 561-565. |
Schurr et al., “Robotics and Telemanipulation Technologies for Endoscopic Surgery,” Surgical Endoscopy, 2000; 14: 375-381. |
Schwartz, “In the Lab: Robots that Slink and Squirm,” The New York Times, Mar. 27, 2007, 4 pp. |
Sharp LL-151-3D, http://www.sharp3d.com, 2006, 2 pp. |
Slatkin et al., “The Development of a Robotic Endoscope,” Proceedings of the 1995 IEEE International Conference on Robotics and Automation, pp. 162-71, 1995. |
Smart Pill “Fastastic Voyage: Smart Pill to Expand Testing,” http://www.smartpilldiagnostics.com, Apr. 13, 2005, 1 pg. |
Southern Surgeons Club (1991), “A prospective analysis of 1518 laparoscopic cholecystectomies,” N. Eng. 1 Med. 324 (16): 1073-1078. |
Stefanini et al., “Modeling and Experiments on a Legged Microrobot Locomoting in a Tubular Compliant and Slippery Environment,” Int. Journal of Robotics Research, vol. 25, No. 5-6, pp. 551-560, May-Jun. 2006. |
Stiff et al.., “Long-term Pain: Less Common After Laparoscopic than Open Cholecystectomy,” British Journal of Surgery, 1994; 81: 1368-1370. |
Strong, et al., “Efficacy of Novel Robotic Camera vs. A Standard Laproscopic Camera,” Surgical Innovation vol. 12, No. 4, Dec. 2005, Westminster Publications, Inc., pp. 315-318. |
Suzumori et al., “Development of Flexible Microactuator and its Applications to Robotics Mechanisms,” Proceedings of the IEEE International Conference on Robotics and Automation, 1991: 1622-1627. |
Taylor et al., “A Telerobotic Assistant for Laparoscopic Surgery,” IEEE Eng Med Biol, 1995; 279-287. |
Tendick et al.. (1993), “Sensing and Manipulation Problems in Endoscopic Surgery: Experiment, Analysis, and Observation,” Presence 2( 1): 66-81. |
Tendick et al., “Applications of Micromechatronics in Minimally Invasive Surgery,” IEEE/ASME Transactions on Mechatronics, 1998; 3(1): 34-42. |
Thomann et al., “The Design of a new type of Micro Robot for the Intestinal Inspection,” Proceedings of the 2002 IEEE Intl. Conference on Intelligent Robots and Systems, Oct. 2002: 1385-1390. |
U.S. Appl. No. 60/180,960, filed Feb. 2000. |
U.S. Appl. No. 60/956,032, filed Aug. 15, 2007. |
U.S. Appl. No. 60/983,445, filed Oct. 29, 2007. |
U.S. Appl. No. 60/990,062, filed Nov. 26, 2007. |
U.S. Appl. No. 60/990,076, filed Nov. 26, 2007. |
U.S. Appl. No. 60/990,086, filed Nov. 26, 2007. |
U.S. Appl. No. 60/990,106, filed Nov. 26, 2007. |
U.S. Appl. No. 60/990,470, filed Nov. 27, 2007. |
U.S. Appl. No. 61/025,346, filed Feb. 1, 2008. |
U.S. Appl. No. 61/030,588, filed Feb. 22, 2008. |
U.S. Appl. No. 61/030,617, filed Feb. 22, 2008. |
Way et al, (editors), “Fundamentals of Laparoscopic Surgery,” Churchill Livingstone Inc., 1995, 14 pp. |
Wolfe et al., “Endoscopic Cholecystectomy: An analysis of Complications,” Arch. Surg. Oct. 1991; 126: 1192-1196. |
Worn et al., “Espirit Project No. 33915: Miniaturised Robot for Micro Manipulation (MINIMAN)”, Nov. 1998; http://www.ipr.ira.ujka.de/-microbot/miniman. |
Yu et al., “Microrobotic Cell Injection,” Proceedings of the 2001 IEEE International Conference on Robotics and Automation, May 2001; 620-625. |
Yu, BSN, RN, “M2ATM Capsule Endoscopy A Breakthrough Diagnostic Tool for Small Intestine Imagining,” vol. 25, No. 1, Gastroenterology Nursing, pp. 24-27. |
International Search Report and Written Opinion of international application No. PCT/US2010/061137, mailed Feb. 11, 2011, 10 pp. |
Abbou et al., “Laparoscopic Radical Prostatectomy with a Remote Controlled Robot,” The Journal of Urology, Jun. 2001, 165: 1964-1966. |
Glukhovsky et al.., “The development and application of wireless capsule endoscopy,” Int. J. Med. Robot. Comput. Assist. Surgery, 2004; I (1): 114-123. |
Gong et al., Wireless endoscopy, Gastrointestinal Endoscopy 2000; 51(6): 725-729. |
Hanly et al., “Value of the SAGES Learning Center in introducing new technology,” Surgical Endoscopy, 2004; 19(4): 477-483. |
Hanly et al., “Robotic Abdominal Surgery,” The American Journal of Surgery 188 (Suppl.to Oct. 1994): 19S-26S, 2004. |
Palm, William, “Rapid Prototyping Primer.” May 1998 (revised Jul. 30, 2002) (http://www.me.psu.edu/lamancusa/rapidpro/primerlchapter2.htm). |
Stoianovici et al., “Robotic Tools for Minimally Invasive Urologic Surgery”, Jan. 1, 2002, pp. 1-17. |
Cleary et al., “State of the Art in Surgical Rootics: Clinical Applications and Technology Challenges”, “Computer Aided Surgery”, Jan. 1, 2002, pp. 312-328, vol. 6. |
Green, “Telepresence Surgery”, Jan. 1, 1995, Publisher: IEEE Engineering in Medicine and Biology. |
Number | Date | Country | |
---|---|---|---|
20140100587 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
61680809 | Aug 2012 | US |