The fact that minimally invasive techniques are continuously gaining momentum in medicine is well known. Among these increasing success collect those dedicated to angiography and angioplasty especially in lieu of the traditional surgery, which can take up to extracorporeal circulation and which are less well tolerated by the patient.
However, even these minimally invasive procedures carry a significant risk linked to exposure to ionizing radiation (which can induce cancer) not so much for the patient, who is exposed once in a while and gains an advantage, but the doctor who operates on the patient's side, even wearing the specific protections anti-radiation, is forced to receive an important daily dose of rays having to conduct the procedure, to handle guides and catheters within the vascular system of the patient directly at the table where X rays are applied. For this reason the firm Corindus (EP1755727B1, U.S. Pat. Nos. 7,615,042, D671,640, among others) created a robot that enables to guide the catheters during coronary procedures allowing both the catheter progress and the rotation by moving mouse and joystick. However, the method of handling joystick requires additional specific training to a doctor who instead has been trained to perform tasks manually operating directly on guides and catheters, resulting in use of additional time and financial resources. Moreover the system needs a major disposable component containing also engines, and is not flexible.
A robotic system for angioplasty and endoluminar surgery is described including a console, comprising joysticks and buttons; an actuator to be placed near a patient comprising at least three motors, the actuator configured to control three degrees of actuation of the at least three motors; and a nose disposable element configured to contact with catheters and guide wires, thereby forcing their rotation, advancement, and retrieval within an artery or a vein of the patient; where the console may be driven by the joysticks and the buttons to move the catheters or the guide wires; where the actuator comprises at least three gears maintained coaxial by gears placed both externally and internally and separated by suitable bearings, of which a front one of the at least three gears holds the nose disposable element and a couple of bevel gears that are fixed to spur gears meshing with an internal toothing of a second one and a third one of the at least three gears, and mesh with bevel gears of the nose disposable element, so that turning the second one and the third one of the at least three gears will cause rotation of the bevel gears; where, while rotating at a same speed, the at least three gears will rotate the disposable nose element but not the bevel gears; and where the console is configured to compute and record amounts of the rotation, advancement, and retrieval.
A robotic system for angioplasty is described comprising the system described above, to which a plurality of syringe pumps are connected for distally controlling a contrast liquid injection.
Many aspects of the present disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, with emphasis instead being placed upon clearly illustrating the principles of the disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
The initial idea of this system was instead to develop a new system whose basic mechanism should be able to function both as a measurement of penetration and rotation of the catheter, in the control section, master with an interface for the surgeon that reproduces a traditional operatory field, and, as an actuator of the same movements in the section of implementation, Slave, giving also the possibility of independent movement of guide and catheter, and introducing a small disposable component, while all the rest of the apparatus can also be used thousands of times. All this will be made possible thanks to the innovative working scheme described below.
In other words, the purpose of the present invention was to allow the separation of the doctor from the patient, with an innovative robot that uses the same basic mechanism to measure the movements of the doctor, and to actuate them, introducing guides and catheters into the vascular system of the patient. In this way the doctor can keep the patient under continuous radiographic control, without being affected by ionizing radiation, while operating in a way in he/she has been already trained. This is also foreseen in a Mitsubishi patent U.S. Pat. No. 6,096,004 to Corindus US.
However the reduced dimensions of the Slave and of the disposable component allowed the simultaneous use of more Slaves, for instance to guide the first catheter by coupling two slaves into a series, and also to allow control of two guide-catheter pairs by placing two in parallel and possibly one In series for the first catheter. But this possibility has induced us to develop a new Master Unit ad hoc.
Also note that different versions of disposables have been designed, to be described later on, together with the reasons that induced their development.
It should also be noted that thanks to the possibility of placing two Slaves in series, with the one next to the patient that controls the movement of the initial catheter, and the one behind which controls the movement of a guide with moving core, the system is practically able to reach any point in a patient's vascular system, which greatly amplifies its applicability well outside the angioplasty for which it was initially conceived. Finally, the system will also be able to allow doctors' training to traditional manual use, while allowing them to practice on previously recorded cases through an ambient in VR representing various scenarios and relative decision making options.
In practice, the system allows all the usual and unusual operations, being virtually configurable in the configuration preferred by the doctor for the particular case, all using small disposables not too expensive, of course one for Slave. Obviously all the advancements are independently controllable, and measured, so the system, for example, knows how much a catheter has penetrated, so it even knows, when retreating the catheter, how much it needs to call in order to be always controlled by the system. Among other things, it is possible to adjust the speeds of both feed and feedback, and it is possible to introduce contacts on the disposable element informing about the blocking or unlocking state of the transmission element (locked, guide the catheter, unlocked, leave it free), even if this can simply be detected by the operator simply observing the motion of the catheters inside the patient's body. It should also be noted that the separation operation between the guide and the catheter is in this case particularly simple. Of course remote controls both for the injection of contrast medium.
The basic idea was to measure rotations and advancement of the catheters made by the doctor and reproduce them on the patient, using two rotating systems virtually identical from a mechanical point of view, basically made by three hollow cylindrical gears, of which the first is used to measure the rotations imposed by the physician to the catheter, the second and the third to measure independently of the advancements of guide and catheter when this is needed.
Referring to
Returning to the nose (7), of which several prototypes were developed, the standard model contains internally a system of friction wheels, of which the upper ones (9) and (10) are fixed and connected axially each to a bevel gear, of which is clearly visible only the (11), which mesh in turn with other two bevel gears of which only is visible as before (12), having an axis parallel to the system composed by the three main gears, but not coaxial to these. This gear (12), whose axis is integral with the front wheel, is then fixed to a second gear which will be shown later, which in turn meshes with an internal toothings integral with the second gear (2) placed behind the first one (1).
Note also that both the upper and lower wheels contain a micro ball bearing in order to reduce friction. In addition, the wheels are covered by O-rings to increase the friction between the wheels and the catheter. Finally, note from the back, the presence of a tube (21) that serves to isolate catheters and guides from internal mechanisms, ensuring sterility. Finally, still on the subject of sterility, a special disk has been designed that covers the entire central wheel so as to allow the whole apparatus to be covered with a sterile cloth, but allowing the rotation of the nose itself without allowing the whole cloth to be dragged. This disk (22), to be supplied with the nose, is shown in
Obviously for the first catheter, which has a much larger diameter, there will also be a simpler nose, in which the whole part dedicated to the 0.014″ guide will not be present.
Moving instead to the description of how the nose is made for moving a guide with moving core, we begin to notice that if it is necessary to use a guide with moving core, it is also necessary to drive an initial catheter at the same time, and certainly not a balloon. Therefore in this case, as mentioned also in the introductory part, a first slave placed closest to the patient should be used, with which the progression, retraction and rotation of the initial catheter will be controlled, while with a second slave, the mobile core guide will be operated, which will be able to advance and rotate completely independently of the initial catheter, thus also varying the penetration of the core into the guide. Recalling that a Slave is able to simultaneously control three movements, rotation of the assembly and independent driving and catheter advances, we understand that it is possible to use rotation and advancement of the guide, but movement of the guide core with the third available movement. It is therefore only a matter of making a new nose that can do this, as described hereinafter. Naturally, it will also be necessary to give the master joystick the possibility of controlling a third movement. But this is easy, just use one that provides a third degree of freedom in addition to the usual backward, left-right.
To better illustrate how the advancements are measured, the
Consequently, if you manage to get the right friction between the wheels and the catheter, simply record the rotations of the three wheels of the mechanism driven by the doctor, playing them on the one connected to the patient, a coronary angiography can be conducted at a distance. In fact turning on its axis the catheter, or more simply directly acting on the nose, turns the first gear (1) by dragging however also the two other coaxial gears (2) and (3) by means of the gear (29) for the (2) and (33) for (3). Conversely pushing the catheter or guide on the left side of the nose, you rotate the wheel (9) which, via the bevel gear (11) and (12) transmits the rotation to (29) which causes the rotation of (2). Similarly takes place for the advancement of the catheter or guide on the right side of the nose from the wheel (33) to (3). However, since the movements are combined, it is sufficient to record the rotations on the measuring robots to reproduce them on the slave to obtain the system operation. However, it is also possible to accelerate or decelerate the advancement movements recorded on the master, since it is sufficient to subtract the recorded motion from the main wheel to obtain the value of pure advancement, which can be multiplied or divided by the desired factor, adding the result to the rotation movement to obtain precisely the new value.
The subsequent
Resistance to advancement will be shown as a column of varying height on the screen, initially green, which becomes red if the effort exceeds certain levels, which will naturally be calibrated carefully.
As for the injection of contrast fluid, one may use a syringe pump with commercial remote control.
It should also be noted that in order to allow the guide-wire to be blocked during the introduction of the balloon catheter, it is envisaged to attach to the slave a small rod to hold about 25 cm away a clamp (43),
About the possibility of utilizing two slaves also to introduce the first catheter, in is enough to place the second slave in front of the first (45, closer to the patient). In this case the nose will be made for a single catheter of bigger diameter that the balloon ones. In the first slave (46, behind) the guide-wire must be positioned so that it can be moved within the first catheter, and also in this case the nose will be different, such the one shown in
And yet, if you want to use two guides and two balloon catheters, the two slaves can be placed in parallel (thanks to their asymmetric configuration,
Of course, you can use only one master to guide all the operations, adding to the master a selector to choose which slave must be activated from time to time. This however does not allow independent control of two slaves, as necessary when one wants to use the system also for the introduction of the initial catheter and relative guide-wire, whose rotations must be independent. This induced to study a joystick Master to replace the catheter Master that, even if not necessarily sterile, is in any event less flexible. The catheter Master will be available in any event for training for conventional operation, associating in to a VR representation of the operatory field. Obviously the same software will be available also in conjunction with the joystick Master.
Passing to discuss the possible programs selectable with switch (54):
In option 1, the left joystick will command the rotations of the nose of the slave closer to the patient (dashed line in
In option 2, the left joystick will control the advancements of the catheter placed in the left channel of the nose present in the slave behind on the right (continuous line), while the right joystick will command the feeds of the guide and the guide and catheter rotations.
In option 3, the system will command the third slave (dashed dotted lines)) in the previous modes. Obviously then the final choice of channels to be used will be made in concert with the doctors.
Ultimately the system can be configured in practically many different versions, depending on the type and difficulty of the procedure to be performed.
Among the various options of this system, it will also be possible to add a second catheter Master to be used in parallel to the main one for the tutoring of young operators, who obviously have the possibility to take control in case of need, something that can also be done by a second console.
Another option, combining the use of a Master to a simulation in VR environment for the pre-clinical training of the operators, and, as a further option, the system could also be used for non-coronary procedures, with new noses and new programs.
Finally, the system, being usually connected to a personal computer (PC), may be used also as a kind of black box of the surgery, since it is able to register and store the entire procedure, eventually adding also the patient's pulsations, in order to provide complete documentation of what has been done, thus increasing the security of the procedure. This last solution is also useful for developing an advanced process risk management process. In summary, all procedural data may be re-evaluated in case of certain complications, thus helping the operator to recognize any complicating or facilitating factors, also allowing for specific restrictions on driving or catheter movements (e.g., avoiding the guide is inadvertently pushed forward too fast and/or too advanced with respect to the catheter).
Number | Date | Country | Kind |
---|---|---|---|
102017000114767 | Oct 2017 | IT | national |
102017000151259 | Jan 2018 | IT | national |
102018000009380 | Oct 2018 | IT | national |
This application is a § 371 national phase application of PCT/IT2018/050209 filed Oct. 26, 2018 entitled “ROBOTIC SYSTEM FOR ANGIOPLASTY AND ENDOLUMINAR SURGERY,” which claims the benefit of and priority to Italian Patent Application No. 102017000114767 filed Oct. 26, 2017, Italian Patent Application No. 102017000151259 filed Jan. 2, 2018, and Italian Patent Application No. 102018000009380 filed Oct. 11, 2018, the contents of which being incorporated by reference in their entireties herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IT2018/050209 | 10/26/2018 | WO | 00 |