The systems and methods disclosed herein are directed to surgical robotics, and more particularly to endoluminal navigation.
Bronchoscopy is a medical procedure that allows a physician to examine the inside conditions of a patient's lung airways, such as bronchi and bronchioles. The lung airways carry air from the trachea, or windpipe, to the lungs. During the medical procedure, a thin, flexible tubular tool, known as a bronchoscope, may be inserted into the patient's mouth and passed down the patient's throat into his/her lung airways, and patients are generally anesthetized in order to relax their throats and lung cavities for surgical examinations and operations during the medical procedure.
In the related art, a bronchoscope can include a light source and a small camera that allows a physician to inspect a patient's windpipe and airways, and a rigid tube may be used in conjunction with the bronchoscope for surgical purposes, e.g., when there is a significant amount of bleeding in the lungs of the patient or when a large object obstructs the throat of the patient. When the rigid tube is used, the patient is often anesthetized. Robotic bronchoscopes provide tremendous advantages in navigation through tubular networks. They can ease use and allow therapies and biopsies to be administered conveniently even during the bronchoscopy stage.
Apart from mechanical devices or platforms, e.g., robotic bronchoscopes described above, various methods and software models may be used to help with the surgical operations. As an example, a computerized tomography (CT) scan of the patient's lungs is often performed during pre-operation of a surgical examination. Data from the CT scan may be used to generate a three-dimensional (3D) model of airways of the patient's lungs, and the generated 3D model enables a physician to access a visual reference that may be useful during the operative procedure of the surgical examination.
However, previous techniques for navigation of tubular networks still have challenges, even when employing medical devices (e.g., robotic bronchoscopes) and when using existing methods (e.g., performing CT scans and generating 3D models). As one example, motion estimation of a medical device (e.g., a bronchoscope tool) inside a patient's body may not be accurate based on location and orientation change of the device, and as a result the device's position may not be accurately or correctly localized inside the patient's body in real time. Inaccurate location information for such an instrument may provide misleading information to the physician that uses the 3D model as a visual reference during medical operation procedures.
Thus, there is a need for improved techniques for navigating through a network of tubular structures.
In one aspect, there is provided a medical robotic system, comprising a set of one or more processors; and at least one computer-readable memory in communication with the set of processors and having stored thereon computer-executable instructions to cause the set of processors to: receive first image data from an image sensor located on an instrument, the instrument configured to be driven through a luminal network of a patient, detect a set of one or more points of interest the first image data, identify a set of first locations respectively corresponding to the set of points in the first image data, receive second image data from the image sensor, detect the set of one or more points in the second image data, identify a set of second locations respectively corresponding to the set of points in the second image data, and based on the set of first locations and the set of second locations, detect a change of location of the instrument within the luminal network caused by movement of the luminal network relative to the instrument.
In another aspect, there is provided a non-transitory computer readable storage medium having stored thereon instructions that, when executed, cause at least one computing device to: receive first image data from an image sensor located on an instrument, the instrument configured to be driven through a luminal network of a patient; detect a set of one or more points of interest the first image data; identify a set of first locations respectively corresponding to the set of points in the first image data; receive second image data from the image sensor; detect the set of one or more points in the second image data; identify a set of second locations respectively corresponding to the set of points in the second image data; and based on the set of first locations and the set of second locations, detect a change of location of the instrument within the luminal network caused by movement of the luminal network relative to the instrument.
In yet another aspect, there is provided a method for detecting a change of location of an instrument, comprising: receiving first image data from an image sensor located on the instrument, the instrument configured to be driven through a luminal network of a patient; detecting a set of one or more points of interest the first image data; identifying a set of first locations respectively corresponding to the set of points in the first image data; receiving second image data from the image sensor; detecting the set of one or more points in the second image data; identifying a set of second locations respectively corresponding to the set of points in the second image data; and based on the set of first locations and the set of second locations, detecting the change of location of the instrument within the luminal network caused by movement of the luminal network relative to the instrument.
The disclosed aspects will hereinafter be described in conjunction with the appended drawings, provided to illustrate and not to limit the disclosed aspects, wherein like designations denote like elements.
Reference will now be made in detail to several embodiments, examples of which are illustrated in the accompanying figures. It is noted that wherever practicable similar or like reference numbers may be used in the figures and may indicate similar or like functionality. The figures depict embodiments of the described system (or method) for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles described herein.
I. Surgical Robotic System
In some embodiments, the base 101 includes wheels 115 to transport the surgical robotic system 100. Mobility of the surgical robotic system 100 helps accommodate space constraints in a surgical operating room as well as facilitate appropriate positioning and movement of surgical equipment. Further, the mobility allows the robotic arms 102 to be configured such that the robotic arms 102 do not interfere with the patient, physician, anesthesiologist, or any other equipment. During procedures, a user may control the robotic arms 102 using control devices such as the command console.
In some embodiments, the robotic arm 102 includes set up joints that use a combination of brakes and counter-balances to maintain a position of the robotic arm 102. The counter-balances may include gas springs or coil springs. The brakes, e.g., fail safe brakes, may be include mechanical and/or electrical components. Further, the robotic arms 102 may be gravity-assisted passive support type robotic arms.
Each robotic arm 102 may be coupled to an instrument device manipulator (IDM) 117 using a mechanism changer interface (MCI) 116. The IDM 117 can be removed and replaced with a different type of IDM, for example, a first type of IDM manipulates an endoscope, while a second type of IDM manipulates a laparoscope. The MCI 116 includes connectors to transfer pneumatic pressure, electrical power, electrical signals, and optical signals from the robotic arm 102 to the IDM 117. The MCI 116 can be a set screw or base plate connector. The IDM 117 manipulates surgical instruments such as the endoscope 118 using techniques including direct drive, harmonic drive, geared drives, belts and pulleys, magnetic drives, and the like. The MCI 116 is interchangeable based on the type of IDM 117 and can be customized for a certain type of surgical procedure. The robotic 102 arm can include a joint level torque sensing and a wrist at a distal end, such as the KUKA AG® LBR5 robotic arm.
The endoscope 118 is a tubular and flexible surgical instrument that is inserted into the anatomy of a patient to capture images of the anatomy (e.g., body tissue). In particular, the endoscope 118 includes one or more imaging devices (e.g., cameras or other types of optical sensors) that capture the images. The imaging devices may include one or more optical components such as an optical fiber, fiber array, or lens. The optical components move along with the tip of the endoscope 118 such that movement of the tip of the endoscope 118 results in changes to the images captured by the imaging devices. The endoscope 118 is further described with reference to
Robotic arms 102 of the surgical robotic system 100 manipulate the endoscope 118 using elongate movement members. The elongate movement members may include pull wires, also referred to as pull or push wires, cables, fibers, or flexible shafts. For example, the robotic arms 102 actuate multiple pull wires coupled to the endoscope 118 to deflect the tip of the endoscope 118. The pull wires may include both metallic and non-metallic materials such as stainless steel, Kevlar, tungsten, carbon fiber, and the like. The endoscope 118 may exhibit nonlinear behavior in response to forces applied by the elongate movement members. The nonlinear behavior may be based on stiffness and compressibility of the endoscope 118, as well as variability in slack or stiffness between different elongate movement members.
II. Command Console
The console base 201 may include a central processing unit, a memory unit, a data bus, and associated data communication ports that are responsible for interpreting and processing signals such as camera imagery and tracking sensor data, e.g., from the endoscope 118 shown in
The user 205 can control a surgical instrument such as the endoscope 118 using the command console 200 in a velocity mode or position control mode. In velocity mode, the user 205 directly controls pitch and yaw motion of a distal end of the endoscope 118 based on direct manual control using the control modules. For example, movement on the joystick 204 may be mapped to yaw and pitch movement in the distal end of the endoscope 118. The joystick 204 can provide haptic feedback to the user 205. For example, the joystick 204 vibrates to indicate that the endoscope 118 cannot further translate or rotate in a certain direction. The command console 200 can also provide visual feedback (e.g., pop-up messages) and/or audio feedback (e.g., beeping) to indicate that the endoscope 118 has reached maximum translation or rotation.
In position control mode, the command console 200 uses a three-dimensional (3D) map of a patient and pre-determined computer models of the patient to control a surgical instrument, e.g., the endoscope 118. The command console 200 provides control signals to robotic arms 102 of the surgical robotic system 100 to manipulate the endoscope 118 to a target location. Due to the reliance on the 3D map, position control mode requires accurate mapping of the anatomy of the patient.
In some embodiments, users 205 can manually manipulate robotic arms 102 of the surgical robotic system 100 without using the command console 200. During setup in a surgical operating room, the users 205 may move the robotic arms 102, endoscopes 118, and other surgical equipment to access a patient. The surgical robotic system 100 may rely on force feedback and inertia control from the users 205 to determine appropriate configuration of the robotic arms 102 and equipment.
The display modules 202 may include electronic monitors, virtual reality viewing devices, e.g., goggles or glasses, and/or other means of display devices. In some embodiments, the display modules 202 are integrated with the control modules, for example, as a tablet device with a touchscreen. Further, the user 205 can both view data and input commands to the surgical robotic system 100 using the integrated display modules 202 and control modules.
The display modules 202 can display 3D images using a stereoscopic device, e.g., a visor or goggle. The 3D images provide an “endo view” (i.e., endoscopic view), which is a computer 3D model illustrating the anatomy of a patient. The “endo view” provides a virtual environment of the patient's interior and an expected location of an endoscope 118 inside the patient. A user 205 compares the “endo view” model to actual images captured by a camera to help mentally orient and confirm that the endoscope 118 is in the correct—or approximately correct—location within the patient. The “endo view” provides information about anatomical structures, e.g., the shape of an intestine or colon of the patient, around the distal end of the endoscope 118. The display modules 202 can simultaneously display the 3D model and computerized tomography (CT) scans of the anatomy the around distal end of the endoscope 118. Further, the display modules 202 may overlay the already determined navigation paths of the endoscope 118 on the 3D model and scans/images generated based on preoperative model data (e.g., CT scans).
In some embodiments, a model of the endoscope 118 is displayed with the 3D models to help indicate a status of a surgical procedure. For example, the CT scans identify a lesion in the anatomy where a biopsy may be necessary. During operation, the display modules 202 may show a reference image captured by the endoscope 118 corresponding to the current location of the endoscope 118. The display modules 202 may automatically display different views of the model of the endoscope 118 depending on user settings and a particular surgical procedure. For example, the display modules 202 show an overhead fluoroscopic view of the endoscope 118 during a navigation step as the endoscope 118 approaches an operative region of a patient.
III. Instrument Device Manipulator
In some embodiments, the IDM 117 includes additional sensors, e.g., inclinometers or accelerometers, to determine an orientation of the IDM 117. Based on measurements from the additional sensors and/or the strain gauge 334, the surgical robotic system 100 can calibrate readings from the strain gauge 334 to account for gravitational load effects. For example, if the IDM 117 is oriented on a horizontal side of the IDM 117, the weight of certain components of the IDM 117 may cause a strain on the motor mount 333. Accordingly, without accounting for gravitational load effects, the strain gauge 334 may measure strain that did not result from strain on the output shafts.
IV. Endoscope
Both the sheath base 414 and the leader base 418 include drive mechanisms (e.g., the independent drive mechanism further described with reference to
The endoscope 118 can navigate the anatomy of a patient with ease due to the multiple degrees of freedom provided by pull wires coupled to the sheath 411 and the leader 415. For example, four or more pull wires may be used in either the sheath 411 and/or the leader 415, providing eight or more degrees of freedom. In other embodiments, up to three pull wires may be used, providing up to six degrees of freedom. The sheath 411 and leader 415 may be rotated up to 360 degrees along a longitudinal axis 406, providing more degrees of motion. The combination of rotational angles and multiple degrees of freedom provides a user of the surgical robotic system 100 with a user friendly and instinctive control of the endoscope 118.
V. Registration Transform of EM System to 3D Model
V. A. Schematic Setup of an EM Tracking System
Additional fields may be applied by further field generators to aid in tracking instruments within the body. For example, a planar field generator (PFG) may be attached to a system arm adjacent to the patient and oriented to provide an EM field at an angle. Reference sensors 513 may be placed on the patient's body to provide local EM fields to further increase tracking accuracy. Each of the reference sensors 513 may be attached by cables 514 to a command module 515. The cables 514 are connected to the command module 515 through interface units 516 which handle communications with their respective devices as well as providing power. The interface unit 516 is coupled to a system control unit (SCU) 517 which acts as an overall interface controller for the various entities mentioned above. The SCU 517 also drives the field generators (e.g., WFG 512), as well as collecting sensor data from the interface units 516, from which it calculates the position and orientation of sensors within the body. The SCU 517 may be coupled to a personal computer (PC) 518 to allow user access and control.
The command module 515 is also connected to the various IDMs 519 coupled to the surgical robotic system 500 as described herein. The IDMs 519 are typically coupled to a single surgical robotic system (e.g., the surgical robotic system 500) and are used to control and receive data from their respective connected robotic components; for example, robotic endoscope tools or robotic arms. As described above, as an example, the IDMs 519 are coupled to an endoscopic tool (not shown here) of the surgical robotic system 500
The command module 515 receives data passed from the endoscopic tool. The type of received data depends on the corresponding type of instrument attached. For example, example received data includes sensor data (e.g., image data, EM data), robot data (e.g., endoscopic and IDM physical motion data), control data, and/or video data. To better handle video data, a field-programmable gate array (FPGA) 520 may be configured to handle image processing. Comparing data obtained from the various sensors, devices, and field generators allows the SCU 517 to precisely track the movements of different components of the surgical robotic system 500, and for example, positions and orientations of these components.
In order to track a sensor through the patient's anatomy, the EM tracking system 505 may require a process known as “registration,” where the system finds the geometric transformation that aligns a single object between different coordinate systems. For instance, a specific anatomical site on a patient has two different representations in the 3D model coordinates and in the EM sensor coordinates. To be able to establish consistency and common language between these two different coordinate systems, the EM tracking system 505 needs to find the transformation that links these two representations, i.e., registration. For example, the position of the EM tracker relative to the position of the EM field generator may be mapped to a 3D coordinate system to isolate a location in a corresponding 3D model.
V. B. 3D Model Representation
In some embodiments, a pre-operative software package is also used to analyze and derive a navigation path based on the generated 3D model of the anatomical space. For example, the software package may derive a shortest navigation path to a single lesion (marked by a centerline coordinate) or to several lesions. This navigation path may be presented to the operator intra-operatively either in two-dimensions or three-dimensions depending on the operator's preference. In certain implementations, the navigation path (or at a portion thereof) may be pre-operatively selected by the operator. The path selection may include identification of one or more target locations (also simply referred to as a “target”) within the patient's anatomy.
In some embodiments, the distal end of the endoscopic tool within the patient's anatomy is tracked, and the tracked location of the endoscopic tool within the patient's anatomy is mapped and placed within a computer model, which enhances the navigational capabilities of the tubular network. In order to track the distal working end of the endoscopic tool, i.e., location and orientation of the working end, a number of approaches may be employed, either individually or in combination.
In a sensor-based approach to localization, a sensor, such as an EM tracker, may be coupled to the distal working end of the endoscopic tool to provide a real-time indication of the progression of the endoscopic tool. In EM-based tracking, an EM tracker, embedded in the endoscopic tool, measures the variation in the electromagnetic field created by one or more EM transmitters. The transmitters (or field generators), may be placed close to the patient (e.g., as part of the surgical bed) to create a low intensity magnetic field. This induces small-currents in sensor coils in the EM tracker, which are correlated to the distance and angle between the sensor and the generator. The electrical signal may then be digitized by an interface unit (on-chip or PCB) and sent via cables/wiring back to the system cart and then to the command module. The data may then be processed to interpret the current data and calculate the precise location and orientation of the sensor relative to the transmitters. Multiple sensors may be used at different locations in the endoscopic tool, for instance in leader and sheath in order to calculate the individual positions of those components. Accordingly, based on readings from an artificially-generated EM field, the EM tracker may detect changes in field strength as it moves through the patient's anatomy.
V. C. On-the-Fly EM Registration
The points on the 3D model may also be determined and adjusted based on correlation between the 3D model itself, image data received from optical sensors (e.g., cameras) and robot data from robot commands. The 3D transformation between these points and collected EM data points will determine the initial registration of the EM coordinate system to the 3D model coordinate system.
In some embodiments, each of the graphs shown in
VI. Navigation Configuration System
VI. A. High-Level Overview of Navigation Configuration System
The input data, as used herein, refers to raw data gathered from and/or processed by input devices (e.g., command module, optical sensor, EM sensor, IDM) for generating estimated state information for the endoscope as well as output navigation data. The multiple input data stores 910-940 include an image data store 910, an EM data store 920, a robot data store 930, and a 3D model data store 940. Each type of the input data stores 910-940 stores the name-indicated type of data for access and use by a navigation module 905. Image data may include one or more image frames captured by the imaging device at the instrument tip, as well as information 911 such as frame rates or timestamps that allow a determination of the time elapsed between pairs of frames. Robot data may include data related to physical movement of the medical instrument or part of the medical instrument (e.g., the instrument tip or sheath) within the tubular network. Example robot data includes command data instructing the instrument tip to reach a specific anatomical site and/or change its orientation (e.g., with a specific pitch, roll, yaw, insertion, and retraction for one or both of a leader and a sheath) within the tubular network, insertion data representing insertion movement of the part of the medical instrument (e.g., the instrument tip or sheath), IDM data, and mechanical data representing mechanical movement of an elongate member of the medical instrument, for example motion of one or more pull wires, tendons or shafts of the endoscope that drive the actual movement of the medial instrument within the tubular network. EM data may be collected by EM sensors and/or the EM tracking system as described above. 3D model data may be derived from 2D CT scans as described above.
The output navigation data store 990 receives and stores output navigation data provided by the navigation module 905. Output navigation data indicates information to assist in directing the medical instrument through the tubular network to arrive at a particular destination within the tubular network, and is based on estimated state information for the medical instrument at each instant time, the estimated state information including the location and orientation of the medical instrument within the tubular network. In one embodiment, as the medical instrument moves inside the tubular network, the output navigation data indicating updates of movement and location/orientation information of the medical instrument is provided in real time, which better assists its navigation through the tubular network.
To determine the output navigation data, the navigation module 905 locates (or determines) the estimated state of the medical instrument within a tubular network. As shown in
VI. B. Navigation Module
VI. B. 1 State Estimator
The state estimator 980 included in the navigation module 905 receives various intermediate data and provides the estimated state of the instrument tip as a function of time, where the estimated state indicates the estimated location and orientation information of the instrument tip within the tubular network. The estimated state data are stored in the estimated data store 985 that is included in the state estimator 980.
The various stores introduced above represent estimated state data in a variety of ways. Specifically, bifurcation data refers to the location of the medical instrument with respect to the set of branches (e.g., bifurcation, trifurcation or a division into more than three branches) within the tubular network. For example, the bifurcation data can be set of branch choices elected by the instrument as it traverses through the tubular network, based on a larger set of available branches as provided, for example, by the 3D model which maps the entirety of the tubular network. The bifurcation data can further include information in front of the location of the instrument tip, such as branches (bifurcations) that the instrument tip is near but has not yet traversed through, but which may have been detected, for example, based on the tip's current position information relative to the 3D model, or based on images captured of the upcoming bifurcations.
Position data indicates three-dimensional position of some part of the medical instrument within the tubular network or some part of the tubular network itself. Position data can be in the form of absolute locations or relative locations relative to, for example, the 3D model of the tubular network. As one example, position data can include an indication of the position of the location of the instrument being within a specific branch. The identification of the specific branch may also be stored as a segment identification (ID) which uniquely identifies the specific segment of the model in which the instrument tip is located.
Depth data indicates depth information of the instrument tip within the tubular network. Example depth data includes the total insertion (absolute) depth of the medical instrument into the patient as well as the (relative) depth within an identified branch (e.g., the segment identified by the position data store 1087). Depth data may be determined based on position data regarding both the tubular network and medical instrument.
Orientation data indicates orientation information of the instrument tip, and may include overall roll, pitch, and yaw in relation to the 3D model as well as pitch, roll, raw within an identified branch.
Turning back to
As the state estimator 980 may use several different kinds of intermediate data to arrive at its estimates of the state of the medical instrument within the tubular network, the state estimator 980 is configured to account for the various different kinds of errors and uncertainty in both measurement and analysis that each type of underlying data (robotic, EM, image) and each type of algorithm module might create or carry through into the intermediate data used for consideration in determining the estimated state. To address these, two concepts are discussed, that of a probability distribution and that of confidence value.
The “probability” of the “probability distribution”, as used herein, refers to a likelihood of an estimation of a possible location and/or orientation of the medical instrument being correct. For example, different probabilities may be calculated by one of the algorithm modules indicating the relative likelihood that the medical instrument is in one of several different possible branches within the tubular network. In one embodiment, the type of probability distribution (e.g., discrete distribution or continuous distribution) is chosen to match features of an estimated state (e.g., type of the estimated state, for example continuous position information vs. discrete branch choice). As one example, estimated states for identifying which segment the medical instrument is in for a trifurcation may be represented by a discrete probability distribution, and may include three discrete values of 20%, 30% and 50% representing chance as being in the location inside each of the three branches as determined by one of the algorithm modules. As another example, the estimated state may include a roll angle of the medical instrument of 40±5 degrees and a segment depth of the instrument tip within a branch may be is 4±1 mm, each represented by a Gaussian distribution which is a type of continuous probability distribution. Different methods or modalities can be used to generate the probabilities, which will vary by algorithm module as more fully described below with reference to later figures.
In contrast, the “confidence value,” as used herein, reflects a measure of confidence in the estimation of the state provided by one of the algorithms based one or more factors. For the EM-based algorithms, factors such as distortion to EM Field, inaccuracy in EM registration, shift or movement of the patient, and respiration of the patient may affect the confidence in estimation of the state. Particularly, the confidence value in estimation of the state provided by the EM-based algorithms may depend on the particular respiration cycle of the patient, movement of the patient or the EM field generators, and the location within the anatomy where the instrument tip locates. For the image-based algorithms, examples factors that may affect the confidence value in estimation of the state include illumination condition for the location within the anatomy where the images are captured, presence of fluid, tissue, or other obstructions against or in front of the optical sensor capturing the images, respiration of the patient, condition of the tubular network of the patient itself (e.g., lung) such as the general fluid inside the tubular network and occlusion of the tubular network, and specific operating techniques used in, e.g., navigating or image capturing.
For example one factor may be that a particular algorithm has differing levels of accuracy at different depths in a patient's lungs, such that relatively close to the airway opening, a particular algorithm may have a high confidence in its estimations of medical instrument location and orientation, but the further into the bottom of the lung the medical instrument travels that confidence value may drop. Generally, the confidence value is based on one or more systemic factors relating to the process by which a result is determined, whereas probability is a relative measure that arises when trying to determine the correct result from multiple possibilities with a single algorithm based on underlying data.
As one example, a mathematical equation for calculating results of an estimated state represented by a discrete probability distribution (e.g., branch/segment identification for a trifurcation with three values of an estimated state involved) can be as follows:
S1=CEM*P1,EM+CImage*P1,Image+CRobot*P1,Robot;
S2=CEM*P2,EM+CImage*P2,Image+CRobot*P2,Robot;
S3=CEM*P3,EM+CImage*P3,Image+CRobot*P3,Robot.
In the example mathematical equation above, Si(i=1, 2, 3) represents possible example values of an estimated state in a case where 3 possible segments are identified or present in the 3D model, CEM, CImage, and CRobot represents confidence value corresponding to EM-based algorithm, image-based algorithm, and robot-based algorithm and Pi,EM, Pi,Image, and Pi,Robot represents the probabilities for segment i.
To better illustrate the concepts of probability distributions and confidence value associated with estimate states, a detailed example is provided here. In this example, a user is trying to identify segment where an instrument tip is located in a certain trifurcation within a central airway (the predicted region) of the tubular network, and three algorithms modules are used including EM-based algorithm, image-based algorithm, and robot-based algorithm. In this example, a probability distribution corresponding to the EM-based algorithm may be 20% in the first branch, 30% in the second branch, and 50% in the third (last) branch, and the confidence value applied to this EM-based algorithm and the central airway is 80%. For the same example, a probability distribution corresponding to the image-based algorithm may be 40%, 20%, 40% for the first, second, and third branch, and the confidence value applied to this image-based algorithm is 30%; while a probability distribution corresponding to the robot-based algorithm may be 10%, 60%, 30% for the first, second, and third branch, and the confidence value applied to this image-based algorithm is 20%. The difference of confidence values applied to the EM-based algorithm and the image-based algorithm indicates that the EM-based algorithm may be a better choice for segment identification in the central airway, compared with the image-based algorithm. An example mathematical calculation of a final estimated state can be:
for the first branch: 20%*80%+40%*30%+10%*20%=30%; for the second branch: 30%*80%+20%*30%+60%*20%=42%; and for the third branch: 50%*80%+40%*30%+30%*20%=58%.
In this example, the output estimated state for the instrument tip can be the result values (e.g., the resulting 30%, 42% and 58%), or derivative value from these result values such as the determination that the instrument tip is in the third branch.
As above the estimated state may be represented in a number of different ways. For example, the estimated state may further include an absolute depth from airway to location of the tip of the instrument, as well as a set of data representing the set of branches traversed by the instrument within the tubular network, the set being a subset of the entire set of branches provided by the 3D model of the patient's lungs, for example. The application of probability distribution and confidence value on estimated states allows improved accuracy of estimation of location and/or orientation of the instrument tip within the tubular network.
VI. B. 2 Algorithm Modules
As shown in
VI. B. 2. i. Image-Based Algorithm Module
Turning back to
The object-based algorithm module 962 detects and analyzes objects present in the field of view of the image data, such as branch openings or particles, to determine estimated state. In one embodiment, it includes an object detection module 963, and object mapping module 964, a topological reasoning module 965, and a motion estimation module 966. In some embodiments, it may or may not be necessary to apply the different modules 963, 964, 965 and 966 in a fixed sequential order, and when actually executing a process of object-based algorithm described by the object-based algorithm module 962, the order of employing each module within the module 962 is a different order than shown in
Turning to
In one embodiment, in a case where the estimated state and bifurcation data for a particular instant in time indicate that the instrument tip is at or near a branch point, this movement measurement may include an identification of an estimated new branch that the instrument tip is estimated to be entering or have entered. For example, if the bifurcation data indicates that the endoscope tip is at a branch point, pitch and yaw movements can be measured to determine changes in pointing angle, and the new estimated angle can be compared with the expected angles of different branches in the 3D model of the tubular network. A determination can then be made of which branch the endoscope is facing towards when it is moved into a new branch. Estimated state data reflecting each of these estimates of new position, orientation, and/or branch entry are output to the state estimator 980.
Specifically, the object detection module 964 detects, within an image, one or more objects and one or more points of interest of the object(s) that may indicate branch points in a tubular network, and then determines their position, size, and orientation. The objects detected by the object detection module 964 may also be referred to as “points of interest,” which may include, for example, one or more identifiable pixels within an image. In certain embodiments, the points of interest may comprise a set of one or more pixels which can be detected over a sequence of one or more images. In some implementations, the detected object may comprise one of more points of interest (e.g., image features) detected using image processing techniques of the related art, such as speeded up robust features (SURF) and scale-invariant feature transform (SIFT). However, any technique which can reliably detect and track one or more pixels through a series of images can be used to detect the points of interest which can be used in the image processing techniques described herein.
In certain implementations, objects may be calculated or represented in the object detection module 964 as being two-dimensional shapes, such as circles/ovals/ellipses for detected branch points. This corresponds to the fact that the image data used to capture the objects are images from the camera on the instrument tip pointed usually along an axis substantially parallel to the direction of the segment in which the instrument is located. As a consequence, objects such as branches in the tubular network appear as simple shapes such as ellipses in the images. In one embodiment, in a given image within a tubular network, each branch will typically appear as a dark, approximately elliptical region, and these regions may be detected automatically by a processor, using region-detection algorithms such as maximally stable extremal regions (MSER) as objects. These regions may then be fit to define an object (e.g., ellipse), with appropriate free parameters such as ellipse center, major and minor axes, and angle within the image. The roll measurement and the identified matching between model lumens and lumens in the image are also output to the state estimator 980, as well as topological reasoning module 966. An example of identified objects superimposed on an image of a bronchial network, along with a link joining their centers, is described with reference to
In one embodiment, an “airway” can also be identified as an object present in the image data. The object detection module 964 may use light reflective intensity combined with other techniques to identify airways.
The object detection module 964 may further track detected objects or points of interest across a set of sequential image frames. The object tracking may be used to detect which branch has been entered from among a set of possible branches in the tubular network. Alternatively or in addition, the tracking of objects may be used to detect a change of location of the instrument within the luminal network caused by movement of the luminal network relative to the instrument as described in greater detail below. Tracking the relative positions of the objects within the image frames may also be used to determine a local, absolute measurement of roll angle within a branched network.
Based on the received input data, the object mapping module 965 outputs object mapping data to an object mapping data store 1065 as well as image-based estimated state data (current) to the estimated state data store 985. As one example, the object mapping data indicates mapping information between physical branches (lumens) shown in image data (based on the detected objects) and virtual branch information generated by 3D model. The estimated state data (current) generated by module 965 includes identification of each branch of the tubular network visible within the image as well as an estimate of the roll of the endoscope tip relative to the 3D model. As above, the estimated state data (current) can be represented as a probability distribution. The identification of the visible lumens may include coordinates in x and y of each identified lumen center within the image, for example based on object sizes correlated with the 3D model virtual image data, as well as an association of each identified lumen location with a particular branch of the tubular network.
In some embodiments, since the 3D model is generated prior to the endoscopic procedure, the virtual images of the tubular network may be pre-computed to speed up processing. In alternative embodiments not shown, the tubular network may be represented by a structure such as a tree diagram of lumen midlines, with each such midline describing a 3D path, so that an expected position of local branch centers as seen from any arbitrary perspective may be compared to the identified actual locations of branch centers based on EM data and/or robot data.
If both images 1110 and 1120 are presented to a user via a user interface, the 3D model image 1120 may be rotated or translated to increase the closeness of fit between actual image 1110 and virtual image 1120, and the amount of roll needed for the rotation or translation can be output as a correction to the current estimated state (e.g., roll of the instrument tip).
In one embodiment, the probability applied to a possible estimated state as generated by the object mapping module 965 is based on the closeness of fit between the identified centers 1111 and 1112 detected in the actual image 1110 and estimated centers 1121 and 1121 in the 3D model image 1120, and as one example, the probability of being in the lumen with identified center 1112 drops as the distance between the estimated center 1122 and identified center 1112 increases.
Based on the received data, the topological reasoning module 966 determines which branch the endoscope tip is facing towards, thereby generating a prediction of which branch will be entered if the endoscope is moved forward. As above, the determination may be represented as a probability distribution. In one embodiment, when the instrument tip is moving forward, the topological reasoning module 966 determines that a new branch of the tubular network has been entered and identifies which branch the tip has moved into. The determination of which branch is being faced and which segment is entered may be made, for example, by comparing the relative sizes and locations of different identified objects (e.g., ellipses). As one example, as a particular lumen branch is entered, a corresponding detected object will grow larger in successive image frames, and will also become more centered in those frames. If this is behavior is identified for one of the objects, the topological reasoning module 966 assigns an increasingly large probability to a corresponding estimated state as the endoscope tip moves towards the lumen associated with that object. Other branches are assigned correspondingly lower probabilities, until finally their object shapes disappear from images entirely. In one embodiment, the probability of the medical instrument being in those branches depends only on the probability that the branches were misidentified by the object mapping module 964. The output of the topological reasoning module 966 is image-based estimated state data representing estimated probabilities of being in each of a set of possible branches within the branched network.
VII. Image-Based Detection of Physiological Noise
Pulmonologists can prevent intra-operative trauma by basing their decisions and actions on the respiratory cycle of the patient. One example of such an action is insertion of a biopsy tool to collect tissue samples, for example via bronchoscopy. At or near the periphery of the lung the airways may be narrow, and the circumference of the airways changes depending on the respiratory phase of the lung. The diameter of an airway expands as a patient inhales in the inspiration phase of the respiratory cycles and constricts as the patient exhales during the expiration phase of the cycle. During a procedure, a pulmonologist can observe the patient to determine whether they are in the inspiration phase or the expiration phase in order to decide whether a particular tool or endoscope of fixed diameter can enter the airway. An airway can close around a tool during expiration without causing trauma, however forcing a tool through a constricted airway during the expiration phase can cause critical trauma, for example by puncturing a blood vessel.
The aforementioned problems, among others, are addressed in certain embodiments by the luminal network navigation systems and techniques described herein. Some embodiments of the disclosed luminal network navigation systems and techniques relate to incorporating respiratory frequency and/or magnitude into a navigation framework to implement patient safety measures (e.g., instrument control techniques, user interface alerts, notifications, and the like).
A patient's respiratory cycle may also affect the accuracy of the detection of the position and/or orientation of an instrument inserted into the patient's airways. Thus, some embodiments of the disclosed bronchoscopy navigation systems and techniques relate to identifying, and/or compensating for, motion caused by patient respiration in order to provide a more accurate identification of the position of an instrument within patient airways. For example, an instrument positioned within patient airways can be provided with an EM sensor. The navigation system can filter instrument position information from the EM sensor to remove signal noise due to cyclic motion of the respiratory passages caused by respiration. A frequency of the cyclic respiratory motion can be obtained from data from one or more additional sensors. In some implementations, inspiration and expiration cycles can be determined based on data from additional EM sensor(s), accelerometer(s), and/or acoustic respiratory sensor(s) placed on the body of the patient in one example. In some implementations, the frequency can be obtained from other types of sensors or systems, for example respiratory cycle information from a ventilator used to control patient breathing, or respiratory cycle information extracted from automated analysis of images received from an optical sensor positioned to observe the patient.
Under certain circumstances, the filtering of the patient's respiration from the position information received from the EM sensor may not be sufficient to determine a sufficiently accurate estimate of the position of the instrument. For example, when additional EM sensor(s) are placed on the exterior of a patient's body, the EM sensors may detect the motion due to respiration in a transverse direction. That is, the EM sensor may track the overall expansion and contraction of the patient's airway via the movement of the EM sensors placed on the body of the patient.
Depending on the location of the instrument within the patient's airway, the patient's respiration may also have another effect on the location of the instrument. That is, the length of the path traversed by the instrument within the luminal network may expand and contract along with the respiratory cycle. Since the length of the instrument may not appreciably change during the procedure, the relative position of the instrument with respect to the luminal network may change as the overall length of luminal network defined by the path taken by the instrument in the luminal network expands and contracts. From the reference point of the distal end of the instrument, this may appear as though the instrument is being advanced and retraced within the luminal network even though the instrument is not being actively driven. In certain circumstances, the instrument may be substantially stationary with respect to the reference point of the platform even while from the reference point of the distal end of the instrument, the instrument is being advanced and retraced. In this case, the location of the instrument determined based on the EM sensor may indicate that the instrument is substantially stationary, the location of the instrument with respect to the reference frame of the luminal network may be changing in accordance with the patient's respiratory cycle.
Thus, certain aspects of this disclosure may relate to the detection of movement of the instrument with respect to the reference frame of the luminal network (e.g., movement of the luminal network around the instrument) due to a patient's respiration (or other physiological motion). Once detected, the robotic system may provide a user interface alert to indicate that there may be a certain amount of uncompensated error in the displayed location of the instrument.
VII. A. Overview of Image-Based Detection of Physiological Noise
The method 1200 begins at block 1201. At block 1205, the system may receive first image data from an image sensor located on an instrument, the instrument configured to be driven through a luminal network of a patient. In example embodiments, the instrument may comprise a bronchoscope configured to be driven through a patient's airways. In these embodiments, the system may be configured to detect respiratory motion of the instrument based at least in part on the images received from the image sensor.
At block 1210, the system may detect a set of one or more points of interest the first image data. As discussed above, the points of interest may be any distinguishable data across multiple image data, such as, for example, one or more identifiable pixels within the image or one or more objects detected in the image data. In certain embodiments, the points of interest may comprise a set of one or more pixels which can be detected over a sequence of one or more images. In some implementations, the detected object may comprise one of more distinguishable objects detected using image processing techniques of the related art, such as SURF and SIFT. However, any technique which can reliably detect and track one or more pixels through a series of images can be used to detect the points of interest which can be used in the image processing techniques described herein.
At block 1215, the system may identify a set of first locations respectively corresponding to the set of points in the first image data. In embodiments where the set of points correspond to identifiable pixels within the image, the set of locations may correspond to the row and/or column values of the pixels within the image. Thus, the first set of locations may comprise the X- and Y-coordinates for each of the pixels in the set of points.
At block 1220, the system may receive second image data from the image sensor. The second image may be an image received from the image sensor at a point in time occurring after the time at which the first image was captured by the image sensor.
At block 1225, the system may detect the set of one or more points in the second image data. The set of points detected in the second image may correspond to the set of points detected in the first image. The detection of the same set of points between multiple images will be described in greater detail below in connection with
At block 1230, the system may identify a set of second locations respectively corresponding to the set of points in the second image data. In some situations, when the physiological noise is affecting the relative position of the instrument with respect to the luminal network, the set of locations of the points of interest in the second image may be different from the set of locations of the points of interest in the first image. For example, as the instrument is advanced into the luminal network (e.g., due to contraction of the length of the luminal network), an object appearing in the images captured by the image sensor may appear as though it is approaching the image sensor. Thus, by tracking the location of the object (e.g., by tracking the points of interest), the system may be able to estimate motion of the instrument with respect to the luminal network.
At block 1235, the system may, based on the set of first locations and the set of second locations, detect a change of location of the luminal network around the instrument caused by movement of the luminal network relative to the instrument. As described above, movement of the location of the tracked points of interest may be indicative of movement of the luminal network with respect to the instrument. Specific embodiments related to the detection of the change of location caused by movement of the luminal network will be described below in connection with
VII. B. Example of Tracking Points of Interest Between a Series of Image Data Frames
The image data frames illustrated in
In the second image data 1300B of
The locations of the points of interest in
In more general terms, the system may track a set of points of interest over a series of image data frames received from an image sensor positions on the instrument. The system may determine a “scale change” between two successive image data frames in the series.
The system may use the first distance 1330 and the second distance 1335 to detect the change of location of the instrument within the luminal network. For example, in one embodiment, the system may determine a scale change estimate based on the first distance 1330 and the second distance 1335. In one implementation, the scale change estimate may be based on the difference between the first distance 1330 and the second distance 1335.
Although only two points of interest are illustrated in
The system may determine a scale change value between the two image data frames based on the scale estimates determined for the pairs of points. In certain embodiments, the scale change value may be representative of the scale change between the two image data frames based on all or a subset of the tracked pairs of points. In one embodiment, the system may determine the scale change value as a median value of the scale change estimates. In another embodiment, the system may determine the scale change value as an average value of the scale change estimates. Those skilled in the art will recognize that other techniques or methodologies may be used to generate a scale change value based on the set of scale change estimates.
VII. C. Example of Tracking a Cumulative Scale Change Over a Series of Image Data Frames
The system may accumulate a scale change value over a sequence of image data frames, and there by track the scale change over more than two image data frames. In certain implementations, the system may accumulate the scale change value my multiplying the scale change values between successive pairs of image data frames in the sequence of image data frames.
With reference to
Each of
The frequency determined from the cumulative scale change values may be utilized as an estimate of the frequency of physiological noise. However, physiological noise may not always have a large enough effect on the location of the instrument with respect to the luminal network that the physiological noise will introduce error in the localization of the instrument (e.g., as determined by the navigation configuration system 900). Thus, in certain embodiments, the system may compare the estimated frequency of the physiological noise to a separately estimated frequency of the physiological noise.
In one embodiment, the system may determine a first physiological movement frequency of the patient based on a sequence of image data frames received from the image sensor. The system may further determine a second physiological movement frequency of the patient based on the data received from one or more location sensors (e.g., an EM sensor, a shape-sensing fiber, robot command data, and a radiation-based image sensors). Examples of systems and techniques for determining a physiological movement frequency of a patient based on data received from one or more location sensors is described in U.S. Patent Application Pub. No. 2018/0279852, filed on Mar. 29, 2018, the entirety of which is incorporated herein by reference.
The system may then determine whether the difference between the first physiological movement frequency based on the sequence of image data and the second physiological movement frequency based on the location sensor data is less than a threshold difference. When the difference between the first and second physiological movement frequencies is less than the threshold difference, the system may determine that the frequency of the scale changes in the sequence of image data frames is due to a physiological noise source. In certain embodiments, the system may provide an indication of the detected change of location of the instrument within the luminal network to a display in response to determining that the frequency of the scale changes in the sequence of image data frames is due to a physiological noise source.
In contrast, when the difference between the first and second physiological movement frequencies is not less than the threshold difference, the system may not have sufficient confidence to determine that the movement in the luminal network with respect to the instrument will affect the accuracy of the in the localization of the instrument (e.g., as determined by the navigation configuration system 900). In other words, when the frequency of the scale changes in the sequence of image data does not sufficiently match the physiological frequency measured using a separate technique, the system may infer that the location of the instrument sufficiently stable with respect to the luminal network so as to not introduce errors into the localization of the instrument.
VII. D. Example of Backtracking of Points of Interest
Depending on the particular image processing technique used to identify the points of interest (e.g., SURF, SIFT, etc.), the order in which two frames of image data are processed may affect the identification of the locations of the points of interest within the image data. For example, referring to
Accordingly, the system may identify a set of backtracked locations of the set of points in first image data via backtracking the set of points from second image data to the first image data and compare the set of backtracked locations to the original set of locations of the set of points identified from the first image data. The system may identify a sub-set of the points from the set of points for which the backtracked locations are not within a threshold distance of the set of first locations (e.g., the locations of the backtracked pixels do not sufficiently match the originally determined locations of the pixels used for forward tracking). The system may remove the sub-set of points from the set of points and determine the scale change estimate without the removed sub-set of points. This may improve the accuracy and robustness of the point tracking over a series of image data frames.
VII. D. Example of Detecting Physiological Noise During Dynamic Instrument Movement
While certain aspects of this disclosure may be performed while the instrument is stationary (e.g., while no robot commands are provided to move the instrument), it may also be desirable to detect physiological noise during dynamic instrument movement (e.g., while driving the instrument within the luminal network). During such dynamic instrument movement, the change between two image data frames (e.g., received at a first time and a second time), may be the result of a combination of instrument movement and physiological noise. Accordingly, to detect the physiological noise during dynamic movement of the instrument, the instrument movement motion should be decoupled from the physiological noise in the motion detected by the image-based algorithm module 970. In certain embodiments, the system can perform motion decoupling in 3D space by using the 3D movement of the instrument received from positioning sensors (e.g., EM-based state data, robot-based state data, EM and/or optical shape sensing state data, etc.). The system can employ certain image processing techniques including image-based 3D motion estimation (e.g., structure from motion) to determine the relative 3D motion between the instrument and the luminal network.
In one example implementation, the system may determine a location sensor-based 3D instrument movement between two points in time (e.g., between t0 and t1) based on data received from locations sensors. The 3D instrument movement data may be represented by three spatial degrees-of-freedom (DoF), for example {xz,yz,zz}, and three rotational DoF, for example, {θsx,θsy,θsz}. The system may also determine an image sensor-based 3D instrument movement between the two points in time represented by the same six DoF measurements as in the location sensor-based 3D instrument movement.
The system may determine a 3D instrument movement estimate representative of physiological movement by determining the difference between the location sensor-based 3D instrument movement and the image sensor-based 3D instrument movement. The system may then accumulate the 3D instrument movement estimate representative of physiological movement over a sequence of image data and location sensor measurements over a given time period, from which a frequency and amplitude associated with the physiological noise can be extracted (e.g., using one or more of the above-defined techniques including harmonic analysis).
VII. E. Example of Detecting an Instrument Transitioning Between Junctions Due to Physiological Noise
There may be uncertainty in the determined location of an instrument introduced due to physiological noise when the instrument is located near a junction in a luminal network (e.g., when a current segment branches into two or more child segments). That is, if the instrument is not located near a junction, even though the instrument may have a change in depth within a current segment due to the physiological noise, the instrument may remain within the current segment without transitioning into another segment. However, if the instrument is located near a junction, the movement of the instrument due to physiological noise may be sufficient to move the instrument from one segment into another segment. Thus, it may be desirable to provide an indication to the user that the system is unable to accurately determine whether the instrument has crossed over the junction into a new segment of the luminal network.
In certain embodiments, the system can detect junction transition by identifying and analyzing the airways from image data received from an image sensor. For example, the system tracks the locations of detected airways between two image data frames (e.g., received at a first time t0 and a second time t1). The system may, in certain embodiments, determine that the instrument has transitioned through a junction in response to at least one of the following conditions being satisfied: 1) all of the estimated airways overlap with the detected airways in the image data at time t1, but there exists one or more detected airways in the image data at time t1 that do not have an overlap with the estimated airways; 2) all the detected airways in in the image data at time t1 overlap with the estimated airways, but there exists one or more estimated airways do not have an overlap with the detected airways the image data at time t0; and 3) there exists one or more detected airways that do not overlap with the estimated airways and there exists one or more estimated airways do not overlap with the detected airways. As such, embodiments may track the location and sizes of prior airways and compare them to the locations and sizes of airways detected in current image data. The presences of one or more of the above listed conditions and the detected of movement of the anatomy relative to the instrument may be used by the system to detect a transition between junctions.
VIII. Implementing Systems and Terminology
Implementations disclosed herein provide systems, methods and apparatuses for detecting physiological noise during navigation of a luminal network.
It should be noted that the terms “couple,” “coupling,” “coupled” or other variations of the word couple as used herein may indicate either an indirect connection or a direct connection. For example, if a first component is “coupled” to a second component, the first component may be either indirectly connected to the second component via another component or directly connected to the second component.
The path-based navigational functions described herein may be stored as one or more instructions on a processor-readable or computer-readable medium. The term “computer-readable medium” refers to any available medium that can be accessed by a computer or processor. By way of example, and not limitation, such a medium may comprise random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory, compact disc read-only memory (CD-ROM) or other optical disk storage may comprise RAM, ROM, EEPROM, flash memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer. It should be noted that a computer-readable medium may be tangible and non-transitory. As used herein, the term “code” may refer to software, instructions, code or data that is/are executable by a computing device or processor.
The methods disclosed herein comprise one or more steps or actions for achieving the described method. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is required for proper operation of the method that is being described, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, the term “plurality” denotes two or more. For example, a plurality of components indicates two or more components. The term “determining” encompasses a wide variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure), ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information), accessing (e.g., accessing data in a memory) and the like. Also, “determining” can include resolving, selecting, choosing, establishing and the like.
The phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase “based on” describes both “based only on” and “based at least on.”
The previous description of the disclosed implementations is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these implementations will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the scope of the invention. For example, it will be appreciated that one of ordinary skill in the art will be able to employ a number corresponding alternative and equivalent structural details, such as equivalent ways of fastening, mounting, coupling, or engaging tool components, equivalent mechanisms for producing particular actuation motions, and equivalent mechanisms for delivering electrical energy. Thus, the present invention is not intended to be limited to the implementations shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
This application claims the benefit of U.S. Provisional Application No. 62/678,520, filed May 31, 2018, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4745908 | Wardle | May 1988 | A |
5273025 | Sakiyam et al. | Dec 1993 | A |
5526812 | Dumoulin et al. | Jun 1996 | A |
5550953 | Seraji | Aug 1996 | A |
5831614 | Tognazzini et al. | Nov 1998 | A |
5935075 | Casscells | Aug 1999 | A |
6038467 | De Bliek et al. | Mar 2000 | A |
6047080 | Chen | Apr 2000 | A |
6059718 | Taniguchi et al. | May 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6167292 | Badano | Dec 2000 | A |
6203493 | Ben-Haim | Mar 2001 | B1 |
6246784 | Summers | Jun 2001 | B1 |
6246898 | Vesely | Jun 2001 | B1 |
6332089 | Acker | Dec 2001 | B1 |
6425865 | Salcudean et al. | Jul 2002 | B1 |
6454776 | Tajima et al. | Sep 2002 | B1 |
6466198 | Feinstein | Oct 2002 | B1 |
6490467 | Bucholz | Dec 2002 | B1 |
6553251 | Lahdesmaki | Apr 2003 | B1 |
6665554 | Charles | Dec 2003 | B1 |
6690963 | Ben-Haim | Feb 2004 | B2 |
6690964 | Beiger et al. | Feb 2004 | B2 |
6755797 | Stouffer | Jun 2004 | B1 |
6812842 | Dimmer | Nov 2004 | B2 |
6899672 | Chin | May 2005 | B2 |
6926709 | Beiger et al. | Aug 2005 | B2 |
7180976 | Wink | Feb 2007 | B2 |
7206627 | Abovitz | Apr 2007 | B2 |
7233820 | Gilboa | Jun 2007 | B2 |
7386339 | Strommer et al. | Jun 2008 | B2 |
7697972 | Verard et al. | Apr 2010 | B2 |
7756563 | Higgins | Jul 2010 | B2 |
7850642 | Moll et al. | Dec 2010 | B2 |
7901348 | Soper | Mar 2011 | B2 |
8155403 | Tschirren | Apr 2012 | B2 |
8190238 | Moll et al. | May 2012 | B2 |
8290571 | Younge et al. | Oct 2012 | B2 |
8298135 | Ito et al. | Oct 2012 | B2 |
8317746 | Sewell et al. | Nov 2012 | B2 |
8394054 | Wallace et al. | Mar 2013 | B2 |
8460236 | Roelle et al. | Jun 2013 | B2 |
8821376 | Tolkowsky | Sep 2014 | B2 |
8858424 | Hasegawa | Oct 2014 | B2 |
8929631 | Pfister et al. | Jan 2015 | B2 |
9014851 | Wong et al. | Apr 2015 | B2 |
9084623 | Gomez et al. | Jul 2015 | B2 |
9125639 | Mathis | Sep 2015 | B2 |
9138129 | Diolaiti | Sep 2015 | B2 |
9183354 | Baker et al. | Nov 2015 | B2 |
9186046 | Ramamurthy et al. | Nov 2015 | B2 |
9272416 | Hourtash et al. | Mar 2016 | B2 |
9289578 | Walker et al. | Mar 2016 | B2 |
9459087 | Dunbar | Oct 2016 | B2 |
9504604 | Alvarez | Nov 2016 | B2 |
9561083 | Yu et al. | Feb 2017 | B2 |
9603668 | Weingarten et al. | Mar 2017 | B2 |
9622827 | Yu et al. | Apr 2017 | B2 |
9629682 | Wallace et al. | Apr 2017 | B2 |
9636184 | Lee et al. | May 2017 | B2 |
9710921 | Wong et al. | Jul 2017 | B2 |
9713509 | Schuh et al. | Jul 2017 | B2 |
9717563 | Tognaccini | Aug 2017 | B2 |
9727963 | Mintz et al. | Aug 2017 | B2 |
9737371 | Romo et al. | Aug 2017 | B2 |
9737373 | Schuh | Aug 2017 | B2 |
9744335 | Jiang | Aug 2017 | B2 |
9763741 | Alvarez et al. | Sep 2017 | B2 |
9788910 | Schuh | Oct 2017 | B2 |
9818681 | Machida | Nov 2017 | B2 |
9844412 | Bogusky et al. | Dec 2017 | B2 |
9867635 | Alvarez et al. | Jan 2018 | B2 |
9918681 | Wallace et al. | Mar 2018 | B2 |
9931025 | Graetzel et al. | Apr 2018 | B1 |
9949749 | Noonan et al. | Apr 2018 | B2 |
9955986 | Shah | May 2018 | B2 |
9962228 | Schuh et al. | May 2018 | B2 |
9980785 | Schuh | May 2018 | B2 |
9993313 | Schuh et al. | Jun 2018 | B2 |
10016900 | Meyer et al. | Jul 2018 | B1 |
10022192 | Ummalaneni | Jul 2018 | B1 |
10046140 | Kokish et al. | Aug 2018 | B2 |
10080576 | Romo et al. | Sep 2018 | B2 |
10123755 | Walker et al. | Nov 2018 | B2 |
10130345 | Wong et al. | Nov 2018 | B2 |
10136950 | Schoenefeld | Nov 2018 | B2 |
10136959 | Mintz et al. | Nov 2018 | B2 |
10143360 | Roelle et al. | Dec 2018 | B2 |
10143526 | Walker et al. | Dec 2018 | B2 |
10145747 | Lin et al. | Dec 2018 | B1 |
10149720 | Romo | Dec 2018 | B2 |
10159532 | Ummalaneni et al. | Dec 2018 | B1 |
10159533 | Moll et al. | Dec 2018 | B2 |
10169875 | Mintz et al. | Jan 2019 | B2 |
10219874 | Yu et al. | Mar 2019 | B2 |
10231793 | Romo | Mar 2019 | B2 |
10231867 | Alvarez et al. | Mar 2019 | B2 |
10244926 | Noonan et al. | Apr 2019 | B2 |
10278778 | State | May 2019 | B2 |
10285574 | Landey et al. | May 2019 | B2 |
10299870 | Connolly et al. | May 2019 | B2 |
10524866 | Srinivasan | Jan 2020 | B2 |
10639114 | Schuh et al. | May 2020 | B2 |
10667875 | DeFonzo | Jun 2020 | B2 |
10743751 | Landey et al. | Aug 2020 | B2 |
10751140 | Wallace et al. | Aug 2020 | B2 |
10765487 | Ho | Sep 2020 | B2 |
10779898 | Hill | Sep 2020 | B2 |
10814101 | Jiang | Oct 2020 | B2 |
10820947 | Julian | Nov 2020 | B2 |
10820954 | Marsot et al. | Nov 2020 | B2 |
10827913 | Ummalaneni et al. | Nov 2020 | B2 |
10828118 | Schuh et al. | Nov 2020 | B2 |
10973422 | Pantelopoulos et al. | Apr 2021 | B2 |
20010021843 | Bosselmann et al. | Sep 2001 | A1 |
20010039421 | Heilbrun | Nov 2001 | A1 |
20020065455 | Ben-Haim et al. | May 2002 | A1 |
20020077533 | Bieger et al. | Jun 2002 | A1 |
20020120188 | Brock et al. | Aug 2002 | A1 |
20030105603 | Hardesty | Jun 2003 | A1 |
20030125622 | Schweikard | Jul 2003 | A1 |
20030181809 | Hall et al. | Sep 2003 | A1 |
20030195664 | Nowlin et al. | Oct 2003 | A1 |
20040047044 | Dalton | Mar 2004 | A1 |
20040072066 | Cho et al. | Apr 2004 | A1 |
20040097806 | Hunter et al. | May 2004 | A1 |
20040186349 | Ewers | Sep 2004 | A1 |
20040249267 | Gilboa | Dec 2004 | A1 |
20040263535 | Birkenbach et al. | Dec 2004 | A1 |
20050027397 | Niemeyer | Feb 2005 | A1 |
20050060006 | Pflueger | Mar 2005 | A1 |
20050085714 | Foley et al. | Apr 2005 | A1 |
20050107679 | Geiger | May 2005 | A1 |
20050143649 | Minai et al. | Jun 2005 | A1 |
20050143655 | Satoh | Jun 2005 | A1 |
20050182295 | Soper et al. | Aug 2005 | A1 |
20050182319 | Glossop | Aug 2005 | A1 |
20050193451 | Quistgaard et al. | Sep 2005 | A1 |
20050197557 | Strommer et al. | Sep 2005 | A1 |
20050256398 | Hastings | Nov 2005 | A1 |
20050272975 | McWeeney et al. | Dec 2005 | A1 |
20060004286 | Chang | Jan 2006 | A1 |
20060015096 | Hauck et al. | Jan 2006 | A1 |
20060025668 | Peterson | Feb 2006 | A1 |
20060058643 | Florent | Mar 2006 | A1 |
20060084860 | Geiger | Apr 2006 | A1 |
20060095066 | Chang | May 2006 | A1 |
20060098851 | Shoham | May 2006 | A1 |
20060149134 | Soper et al. | Jul 2006 | A1 |
20060173290 | Lavallee et al. | Aug 2006 | A1 |
20060184016 | Glossop | Aug 2006 | A1 |
20060209019 | Hu | Sep 2006 | A1 |
20060258935 | Pile-Spellman et al. | Nov 2006 | A1 |
20060258938 | Hoffman et al. | Nov 2006 | A1 |
20070032826 | Schwartz | Feb 2007 | A1 |
20070055128 | Glossop | Mar 2007 | A1 |
20070055144 | Neustadter | Mar 2007 | A1 |
20070073136 | Metzger | Mar 2007 | A1 |
20070083193 | Werneth | Apr 2007 | A1 |
20070123748 | Meglan | May 2007 | A1 |
20070135886 | Maschke | Jun 2007 | A1 |
20070156019 | Larkin et al. | Jul 2007 | A1 |
20070161857 | Durant et al. | Jul 2007 | A1 |
20070167743 | Honda | Jul 2007 | A1 |
20070167801 | Webler et al. | Jul 2007 | A1 |
20070208252 | Makower | Sep 2007 | A1 |
20070253599 | White et al. | Nov 2007 | A1 |
20070269001 | Maschke | Nov 2007 | A1 |
20070293721 | Gilboa | Dec 2007 | A1 |
20070299353 | Harlev et al. | Dec 2007 | A1 |
20080071140 | Gattani | Mar 2008 | A1 |
20080079421 | Jensen | Apr 2008 | A1 |
20080103389 | Begelman et al. | May 2008 | A1 |
20080118118 | Berger | May 2008 | A1 |
20080118135 | Averbuch | May 2008 | A1 |
20080123921 | Gielen et al. | May 2008 | A1 |
20080147089 | Loh | Jun 2008 | A1 |
20080161681 | Hauck | Jul 2008 | A1 |
20080183064 | Chandonnet | Jul 2008 | A1 |
20080183068 | Carls et al. | Jul 2008 | A1 |
20080183073 | Higgins et al. | Jul 2008 | A1 |
20080183188 | Carls et al. | Jul 2008 | A1 |
20080201016 | Finlay | Aug 2008 | A1 |
20080207997 | Higgins et al. | Aug 2008 | A1 |
20080212082 | Froggatt et al. | Sep 2008 | A1 |
20080218770 | Moll et al. | Sep 2008 | A1 |
20080243142 | Gildenberg | Oct 2008 | A1 |
20080262297 | Gilboa | Oct 2008 | A1 |
20080275349 | Halperin | Nov 2008 | A1 |
20080287963 | Rogers et al. | Nov 2008 | A1 |
20080300478 | Zuhars et al. | Dec 2008 | A1 |
20080306490 | Lakin et al. | Dec 2008 | A1 |
20080312501 | Hasegawa et al. | Dec 2008 | A1 |
20090030307 | Govari | Jan 2009 | A1 |
20090054729 | Mori | Feb 2009 | A1 |
20090076476 | Barbagli et al. | Mar 2009 | A1 |
20090149867 | Glozman | Jun 2009 | A1 |
20090209817 | Averbuch | Aug 2009 | A1 |
20090227861 | Ganatra | Sep 2009 | A1 |
20090228020 | Wallace et al. | Sep 2009 | A1 |
20090248036 | Hoffman et al. | Oct 2009 | A1 |
20090259230 | Khadem | Oct 2009 | A1 |
20090262109 | Markowitz et al. | Oct 2009 | A1 |
20090292166 | Ito | Nov 2009 | A1 |
20090295797 | Sakaguchi | Dec 2009 | A1 |
20100008555 | Trumer | Jan 2010 | A1 |
20100030061 | Canfield | Feb 2010 | A1 |
20100039506 | Sarvestani et al. | Feb 2010 | A1 |
20100041949 | Tolkowsky | Feb 2010 | A1 |
20100054536 | Huang | Mar 2010 | A1 |
20100080415 | Qureshi et al. | Apr 2010 | A1 |
20100113852 | Sydora | May 2010 | A1 |
20100121139 | OuYang | May 2010 | A1 |
20100160733 | Gilboa | Jun 2010 | A1 |
20100161022 | Tolkowsky | Jun 2010 | A1 |
20100161129 | Costa et al. | Jun 2010 | A1 |
20100174178 | Edwards et al. | Jul 2010 | A1 |
20100225209 | Goldberg | Sep 2010 | A1 |
20100240989 | Stoianovici | Sep 2010 | A1 |
20100290530 | Huang et al. | Nov 2010 | A1 |
20100292565 | Meyer | Nov 2010 | A1 |
20100298641 | Tanaka | Nov 2010 | A1 |
20100328455 | Nam et al. | Dec 2010 | A1 |
20110019878 | Soubelet et al. | Jan 2011 | A1 |
20110054303 | Barrick | Mar 2011 | A1 |
20110092808 | Shachar | Apr 2011 | A1 |
20110184238 | Higgins | Jul 2011 | A1 |
20110234780 | Ito | Sep 2011 | A1 |
20110238082 | Wenderow | Sep 2011 | A1 |
20110245665 | Nentwick | Oct 2011 | A1 |
20110248987 | Mitchell | Oct 2011 | A1 |
20110249016 | Zhang | Oct 2011 | A1 |
20110257480 | Takahashi | Oct 2011 | A1 |
20110276179 | Banks et al. | Nov 2011 | A1 |
20110319910 | Roelle et al. | Dec 2011 | A1 |
20120046521 | Hunter et al. | Feb 2012 | A1 |
20120056986 | Popovic | Mar 2012 | A1 |
20120059248 | Holsing et al. | Mar 2012 | A1 |
20120062714 | Liu | Mar 2012 | A1 |
20120065481 | Hunter | Mar 2012 | A1 |
20120069167 | Liu et al. | Mar 2012 | A1 |
20120071782 | Patil et al. | Mar 2012 | A1 |
20120082351 | Higgins | Apr 2012 | A1 |
20120120305 | Takahashi | May 2012 | A1 |
20120165656 | Montag | Jun 2012 | A1 |
20120172712 | Bar-Tal | Jul 2012 | A1 |
20120191079 | Moll et al. | Jul 2012 | A1 |
20120209069 | Popovic | Aug 2012 | A1 |
20120215094 | Rahimian et al. | Aug 2012 | A1 |
20120219185 | Hu | Aug 2012 | A1 |
20120289777 | Chopra | Nov 2012 | A1 |
20120289783 | Duindam et al. | Nov 2012 | A1 |
20120302869 | Koyrakh | Nov 2012 | A1 |
20130060146 | Yang et al. | Mar 2013 | A1 |
20130144116 | Cooper et al. | Jun 2013 | A1 |
20130165945 | Roelle | Jun 2013 | A9 |
20130204124 | Duindam | Aug 2013 | A1 |
20130225942 | Holsing | Aug 2013 | A1 |
20130243153 | Sra | Sep 2013 | A1 |
20130246334 | Ahuja | Sep 2013 | A1 |
20130259315 | Angot et al. | Oct 2013 | A1 |
20130303892 | Zhao | Nov 2013 | A1 |
20130345718 | Crawford | Dec 2013 | A1 |
20140058406 | Tsekos | Feb 2014 | A1 |
20140107390 | Brown | Apr 2014 | A1 |
20140114180 | Jain | Apr 2014 | A1 |
20140148808 | Inkpen et al. | Apr 2014 | A1 |
20140142591 | Alvarez et al. | May 2014 | A1 |
20140180063 | Zhao | Jun 2014 | A1 |
20140235943 | Paris | Aug 2014 | A1 |
20140243849 | Saglam | Aug 2014 | A1 |
20140257746 | Dunbar et al. | Sep 2014 | A1 |
20140264081 | Walker et al. | Sep 2014 | A1 |
20140275988 | Walker et al. | Sep 2014 | A1 |
20140276033 | Brannan | Sep 2014 | A1 |
20140276937 | Wong et al. | Sep 2014 | A1 |
20140296655 | Akhbardeh et al. | Oct 2014 | A1 |
20140296657 | Izmirli | Oct 2014 | A1 |
20140309527 | Namati et al. | Oct 2014 | A1 |
20140309649 | Alvarez et al. | Oct 2014 | A1 |
20140343416 | Panescu | Nov 2014 | A1 |
20140350391 | Prisco et al. | Nov 2014 | A1 |
20140357953 | Roelle et al. | Dec 2014 | A1 |
20140357984 | Wallace et al. | Dec 2014 | A1 |
20140364739 | Liu | Dec 2014 | A1 |
20140364870 | Alvarez et al. | Dec 2014 | A1 |
20140379000 | Romo et al. | Dec 2014 | A1 |
20150051482 | Liu et al. | Feb 2015 | A1 |
20150051592 | Kintz | Feb 2015 | A1 |
20150054929 | Ito et al. | Feb 2015 | A1 |
20150057498 | Akimoto | Feb 2015 | A1 |
20150073266 | Brannan | Mar 2015 | A1 |
20150101442 | Romo et al. | Apr 2015 | A1 |
20150119638 | Yu et al. | Apr 2015 | A1 |
20150141808 | Elhawary | May 2015 | A1 |
20150141858 | Razavi | May 2015 | A1 |
20150142013 | Tanner et al. | May 2015 | A1 |
20150164594 | Romo et al. | Jun 2015 | A1 |
20150164596 | Romo | Jun 2015 | A1 |
20150223725 | Engel | Aug 2015 | A1 |
20150223897 | Kostrzewski et al. | Aug 2015 | A1 |
20150223902 | Walker et al. | Aug 2015 | A1 |
20150255782 | Kim et al. | Sep 2015 | A1 |
20150265087 | Park | Sep 2015 | A1 |
20150265368 | Chopra | Sep 2015 | A1 |
20150275986 | Cooper | Oct 2015 | A1 |
20150287192 | Sasaki | Oct 2015 | A1 |
20150297133 | Jouanique-Dubuis et al. | Oct 2015 | A1 |
20150305650 | Hunter | Oct 2015 | A1 |
20150313503 | Seibel et al. | Nov 2015 | A1 |
20150335480 | Alvarez et al. | Nov 2015 | A1 |
20160000302 | Brown | Jan 2016 | A1 |
20160000414 | Brown | Jan 2016 | A1 |
20160000520 | Lachmanovich | Jan 2016 | A1 |
20160001038 | Romo et al. | Jan 2016 | A1 |
20160008033 | Hawkins et al. | Jan 2016 | A1 |
20160111192 | Suzara | Apr 2016 | A1 |
20160128992 | Hudson | May 2016 | A1 |
20160183841 | Duindam et al. | Jun 2016 | A1 |
20160184032 | Romo | Jun 2016 | A1 |
20160199134 | Brown et al. | Jul 2016 | A1 |
20160206389 | Miller | Jul 2016 | A1 |
20160213432 | Flexman | Jul 2016 | A1 |
20160228032 | Walker et al. | Aug 2016 | A1 |
20160270865 | Landey et al. | Sep 2016 | A1 |
20160287279 | Bovay et al. | Oct 2016 | A1 |
20160287346 | Hyodo et al. | Oct 2016 | A1 |
20160296294 | Moll et al. | Oct 2016 | A1 |
20160314710 | Jarc | Oct 2016 | A1 |
20160331469 | Hall et al. | Nov 2016 | A1 |
20160360947 | Iida | Dec 2016 | A1 |
20160372743 | Cho et al. | Dec 2016 | A1 |
20160374541 | Agrawal et al. | Dec 2016 | A1 |
20170007337 | Dan | Jan 2017 | A1 |
20170023423 | Jackson | Jan 2017 | A1 |
20170055851 | Al-Ali | Mar 2017 | A1 |
20170065364 | Schuh et al. | Mar 2017 | A1 |
20170065365 | Schuh | Mar 2017 | A1 |
20170079725 | Hoffman | Mar 2017 | A1 |
20170079726 | Hoffman | Mar 2017 | A1 |
20170100199 | Yu et al. | Apr 2017 | A1 |
20170119411 | Shah | May 2017 | A1 |
20170119412 | Noonan et al. | May 2017 | A1 |
20170119413 | Romo | May 2017 | A1 |
20170119481 | Romo et al. | May 2017 | A1 |
20170165011 | Bovay et al. | Jun 2017 | A1 |
20170172673 | Yu et al. | Jun 2017 | A1 |
20170189118 | Chopra | Jul 2017 | A1 |
20170202627 | Sramek et al. | Jul 2017 | A1 |
20170209073 | Sramek et al. | Jul 2017 | A1 |
20170215808 | Shimol et al. | Aug 2017 | A1 |
20170215969 | Zhai et al. | Aug 2017 | A1 |
20170238807 | Veritkov et al. | Aug 2017 | A9 |
20170258366 | Tupin | Sep 2017 | A1 |
20170290631 | Lee et al. | Oct 2017 | A1 |
20170296032 | Li | Oct 2017 | A1 |
20170296202 | Brown | Oct 2017 | A1 |
20170303941 | Eisner | Oct 2017 | A1 |
20170325896 | Donhowe | Nov 2017 | A1 |
20170333679 | Jiang | Nov 2017 | A1 |
20170340241 | Yamada | Nov 2017 | A1 |
20170340396 | Romo et al. | Nov 2017 | A1 |
20170348067 | Krimsky | Dec 2017 | A1 |
20170360418 | Wong et al. | Dec 2017 | A1 |
20170360508 | Germain et al. | Dec 2017 | A1 |
20170365055 | Mintz et al. | Dec 2017 | A1 |
20170367782 | Schuh et al. | Dec 2017 | A1 |
20180025666 | Ho et al. | Jan 2018 | A1 |
20180055576 | Koyrakh | Mar 2018 | A1 |
20180055582 | Krimsky | Mar 2018 | A1 |
20180055583 | Schuh et al. | Mar 2018 | A1 |
20180098690 | Iwaki | Apr 2018 | A1 |
20180177383 | Noonan et al. | Jun 2018 | A1 |
20180177556 | Noonan et al. | Jun 2018 | A1 |
20180214011 | Graetzel et al. | Aug 2018 | A1 |
20180217734 | Koenig et al. | Aug 2018 | A1 |
20180221038 | Noonan et al. | Aug 2018 | A1 |
20180221039 | Shah | Aug 2018 | A1 |
20180240237 | Donhowe | Aug 2018 | A1 |
20180250083 | Schuh et al. | Sep 2018 | A1 |
20180271616 | Schuh et al. | Sep 2018 | A1 |
20180279852 | Rafii-Tari et al. | Oct 2018 | A1 |
20180280660 | Landey et al. | Oct 2018 | A1 |
20180286108 | Hirakawa | Oct 2018 | A1 |
20180289243 | Landey et al. | Oct 2018 | A1 |
20180289431 | Draper et al. | Oct 2018 | A1 |
20180308247 | Gupta | Oct 2018 | A1 |
20180325499 | Landey et al. | Nov 2018 | A1 |
20180333044 | Jenkins | Nov 2018 | A1 |
20180360435 | Romo | Dec 2018 | A1 |
20180368920 | Ummalaneni | Dec 2018 | A1 |
20190000559 | Berman et al. | Jan 2019 | A1 |
20190000560 | Berman et al. | Jan 2019 | A1 |
20190000566 | Graetzel et al. | Jan 2019 | A1 |
20190000568 | Connolly et al. | Jan 2019 | A1 |
20190000576 | Mintz et al. | Jan 2019 | A1 |
20190046814 | Senden et al. | Feb 2019 | A1 |
20190066314 | Abhari | Feb 2019 | A1 |
20190083183 | Moll et al. | Mar 2019 | A1 |
20190086349 | Nelson | Mar 2019 | A1 |
20190105776 | Ho et al. | Apr 2019 | A1 |
20190105785 | Meyer | Apr 2019 | A1 |
20190107454 | Lin | Apr 2019 | A1 |
20190110839 | Rafii-Tari et al. | Apr 2019 | A1 |
20190110843 | Ummalaneni et al. | Apr 2019 | A1 |
20190117176 | Walker et al. | Apr 2019 | A1 |
20190117203 | Wong et al. | Apr 2019 | A1 |
20190151148 | Alvarez et al. | Apr 2019 | A1 |
20190125164 | Roelle et al. | May 2019 | A1 |
20190167366 | Ummalaneni | Jun 2019 | A1 |
20190175009 | Mintz | Jun 2019 | A1 |
20190175062 | Rafii-Tari et al. | Jun 2019 | A1 |
20190175287 | Hill | Jun 2019 | A1 |
20190175799 | Hsu | Jun 2019 | A1 |
20190183585 | Rafii-Tari et al. | Jun 2019 | A1 |
20190183587 | Rafii-Tari et al. | Jun 2019 | A1 |
20190216548 | Ummalaneni | Jul 2019 | A1 |
20190216550 | Eyre | Jul 2019 | A1 |
20190216576 | Eyre | Jul 2019 | A1 |
20190223974 | Romo | Jul 2019 | A1 |
20190228525 | Mintz et al. | Jul 2019 | A1 |
20190228528 | Mintz et al. | Jul 2019 | A1 |
20190246882 | Graetzel et al. | Aug 2019 | A1 |
20190262086 | Connolly et al. | Aug 2019 | A1 |
20190269468 | Hsu et al. | Sep 2019 | A1 |
20190274764 | Romo | Sep 2019 | A1 |
20190287673 | Michihata | Sep 2019 | A1 |
20190290109 | Agrawal et al. | Sep 2019 | A1 |
20190298160 | Ummalaneni et al. | Oct 2019 | A1 |
20190298460 | Al-Jadda | Oct 2019 | A1 |
20190298465 | Chin | Oct 2019 | A1 |
20190328213 | Landey et al. | Oct 2019 | A1 |
20190336238 | Yu | Nov 2019 | A1 |
20190365201 | Noonan et al. | Dec 2019 | A1 |
20190365209 | Ye et al. | Dec 2019 | A1 |
20190365479 | Rafii-Tari | Dec 2019 | A1 |
20190365486 | Srinivasan et al. | Dec 2019 | A1 |
20190374297 | Wallace et al. | Dec 2019 | A1 |
20190375383 | Alvarez | Dec 2019 | A1 |
20190380787 | Ye | Dec 2019 | A1 |
20190380797 | Yu | Dec 2019 | A1 |
20200000530 | DeFonzo | Jan 2020 | A1 |
20200000533 | Schuh | Jan 2020 | A1 |
20200022767 | Hill | Jan 2020 | A1 |
20200038123 | Graetzel | Feb 2020 | A1 |
20200039086 | Meyer | Feb 2020 | A1 |
20200046434 | Graetzel | Feb 2020 | A1 |
20200054405 | Schuh | Feb 2020 | A1 |
20200054408 | Schuh et al. | Feb 2020 | A1 |
20200060516 | Baez | Feb 2020 | A1 |
20200078103 | Duindam | Mar 2020 | A1 |
20200085516 | DeFonzo | Mar 2020 | A1 |
20200093549 | Chin | Mar 2020 | A1 |
20200093554 | Schuh | Mar 2020 | A1 |
20200100845 | Julian | Apr 2020 | A1 |
20200100853 | Ho | Apr 2020 | A1 |
20200100855 | Leparmentier | Apr 2020 | A1 |
20200101264 | Jiang | Apr 2020 | A1 |
20200107894 | Wallace | Apr 2020 | A1 |
20200121502 | Kintz | Apr 2020 | A1 |
20200146769 | Eyre | May 2020 | A1 |
20200155084 | Walker et al. | May 2020 | A1 |
20200170630 | Wong | Jun 2020 | A1 |
20200170720 | Ummalaneni | Jun 2020 | A1 |
20200171660 | Ho | Jun 2020 | A1 |
20200188043 | Yu | Jun 2020 | A1 |
20200197112 | Chin | Jun 2020 | A1 |
20200206472 | Ma | Jul 2020 | A1 |
20200217733 | Lin | Jul 2020 | A1 |
20200222134 | Schuh | Jul 2020 | A1 |
20200237458 | DeFonzo | Jul 2020 | A1 |
20200261172 | Romo | Aug 2020 | A1 |
20200268459 | Noonan et al. | Aug 2020 | A1 |
20200268460 | Tse | Aug 2020 | A1 |
20200281787 | Ruiz | Sep 2020 | A1 |
20200297437 | Schuh | Sep 2020 | A1 |
20200297444 | Camarillo | Sep 2020 | A1 |
20200305983 | Yampolsky | Oct 2020 | A1 |
20200305989 | Schuh | Oct 2020 | A1 |
20200305992 | Schuh | Oct 2020 | A1 |
20200315717 | Bovay | Oct 2020 | A1 |
20200315723 | Hassan | Oct 2020 | A1 |
20200323596 | Moll | Oct 2020 | A1 |
20200330167 | Romo | Oct 2020 | A1 |
20200345216 | Jenkins | Nov 2020 | A1 |
20200352420 | Graetzel | Nov 2020 | A1 |
20200360183 | Alvarez | Nov 2020 | A1 |
20200367726 | Landey et al. | Nov 2020 | A1 |
20200367981 | Ho et al. | Nov 2020 | A1 |
20200375678 | Wallace | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
101147676 | Mar 2008 | CN |
101222882 | Jul 2008 | CN |
102316817 | Jan 2012 | CN |
102458295 | May 2012 | CN |
102946801 | Feb 2013 | CN |
102973317 | Mar 2013 | CN |
103705307 | Apr 2014 | CN |
103735313 | Apr 2014 | CN |
103813748 | May 2014 | CN |
104758066 | Jul 2015 | CN |
105511881 | Apr 2016 | CN |
105559850 | May 2016 | CN |
105559886 | May 2016 | CN |
105611881 | May 2016 | CN |
106455908 | Feb 2017 | CN |
106821498 | Jun 2017 | CN |
104931059 | Sep 2018 | CN |
3 025 630 | Jun 2016 | EP |
2001000448 | Jan 2001 | JP |
2016529062 | Sep 2016 | JP |
10-2014-0009359 | Jan 2014 | KR |
2569699 | Nov 2015 | RU |
WO 05087128 | Sep 2005 | WO |
2006051523 | May 2006 | WO |
WO 09097461 | Jun 2007 | WO |
WO 15089013 | Jun 2015 | WO |
WO 16077419 | May 2016 | WO |
WO 17036774 | Mar 2017 | WO |
WO 17048194 | Mar 2017 | WO |
WO 17066108 | Apr 2017 | WO |
2017081821 | May 2017 | WO |
WO 17146890 | Aug 2017 | WO |
WO 17167754 | Oct 2017 | WO |
Entry |
---|
Anant et al., Dec. 2015, Inter-operative biopsy site relocations in endoluminal surgery, IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, <10.1109/TBME.2015.2503981>. <hal-01230752>. |
Ciuti et al., 2012, Intra-operative monocular 30 reconstruction for image-guided navigation in active locomotion capsule endoscopy. Biomedical Robotics And Biomechatronics (Biorob), 4th IEEE Ras & Embs International Conference On IEEE. |
Fallavollita et al., 2010, Acquiring multiview C-arm images to assist cardiac ablation procedures, EURASIP Journal on Image and Video Processing, vol. 2010, Article ID 871408, pp. 1-10. |
Haigron et al., 2004, Depth-map-based scene analysis for active navigation in virtual angioscopy, IEEE Transactions on Medical Imaging, 23(11):1380-1390. |
Konen et al., 1998, The VN-project: endoscopic image processing for neurosurgery, Computer Aided Surgery, 3:1-6. |
Kumar et al., 2014, Stereoscopic visualization of laparoscope image using depth information from 3D model, Computer methods and programs in biomedicine 113(3):862-868. |
Livatino et al., 2015, Stereoscopic visualization and 3-D technologies in medical endoscopic teleoperation, IEEE. |
Luo et al., 2010, Modified hybrid bronchoscope tracking based on sequential monte carlo sampler: Dynamic phantom validation, Asian Conference on Computer Vision. Springer, Berlin, Heidelberg. |
Mayo Clinic, Robotic Surgery, https://www.mayoclinic.org/tests-procedures/robotic-surgery/about/pac-20394974?p=1, downloaded from the Internet on Jul. 12, 2018, 2 pp. |
Mourgues et al., 2002, Flexible calibration of actuated stereoscopic endoscope for overlay inrobot assisted surgery, International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg. |
Nadeem et al., 2016, Depth Reconstruction and Computer-Aided Polyp Detection in Optical Colonoscopy Video Frames, arXiv preprint arXiv:1609.01329. |
Point Cloud, Sep. 10, 2010, Wikipedia, 2 pp. |
Racadio et al., Dec. 2007, Live 3D guidance in the interventional radiology suite, AJR, 189:W357-W364. |
Sato et al., 2016, Techniques of stapler-based navigational thoracoscopic segmentectomy using virtual assisted lung mapping (VAL-MAP), Journal of Thoracic Disease, 8(Suppl 9):S716. |
Shen et al., 2015, Robust camera localisation with depth reconstruction for bronchoscopic navigation. International Journal of Computer Assisted Radiology and Surgery, 10(6):801-813. |
Shi et al., Sep. 14-18, 2014, Simultaneous catheter and environment modeling for trans-catheter aortic valve implantation, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2024-2029. |
Solheim et al., May 14, 2009, Navigated resection of giant intracranial meningiomas based on intraoperative 3D ultrasound, Acta Neurochir, 151:1143-1151. |
Song et al., 2012, Autonomous and stable tracking of endoscope instrument tools with monocular camera, Advanced Intelligent Mechatronics (AIM), 2012 IEEE-ASME International Conference on. IEEE. |
Verdaasdonk et al., Jan. 23, 2012, Effect of microsecond pulse length and tip shape on explosive bubble formation of 2.78 μm Er,Cr;YSGG and 2.94 μm Er:YAG laser, Proceedings of SPIE, vol. 8221, 12. |
Wilson et al., 2008, a buyer's guide to electromagnetic tracking systems for clinical applications, Proc. of SPCI, 6918:69182B-1 p. 6918B-11. |
Yip et al., 2012, Tissue tracking and registration for image-guided surgery, IEEE transactions on medical imaging 31(11):2169-2182. |
Zhou et al., 2010, Synthesis of stereoscopic views from monocular endoscopic videos, Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on IEEE. |
International search report and written opinion dated Aug. 8, 2019 for PCT/US2019/034304. |
Al-Ahmad et al., dated 2005, Early experience with a computerized robotically controlled catheter system, Journal of Interventional Cardiac Electrophysiology, 12:199-202. |
Bell et al., 2014, Six DOF motion estimation for teleoperated flexible endoscopes using optical flow: a comparative study, IEEE International Conference on Robotis and Automation. |
Gutierrez et al., Mar. 2008, A practical global distortion correction method for an image intensifier based x-ray fluoroscopy system, Med. Phys, 35(3):997-1007. |
Hansen Medical, Inc. 2005. System Overview, product brochure, 2 pp., dated as available at http://hansenmedical.com/system.aspx on Jul. 14, 2006 (accessed Jun. 25, 2019 using the internet archive way back machine). |
Hansen Medical, Inc. Bibliography, product brochure, 1 p., dated as available at http://hansenmedical.com/bibliography.aspx on Jul. 14, 2006 (accessed Jun. 25, 2019 using the internet archive way back machine). |
Hansen Medical, Inc. dated 2007, Introducing the Sensei Robotic Catheter System, product brochure, 10 pp. |
Hansen Medical, Inc. dated 2009, Sensei X Robotic Catheter System, product brochure, 5 pp. |
Hansen Medical, Inc. Technology Advantages, product brochure, 1 p., dated as available at http://hansenmedical.com/advantages.aspx on Jul. 13, 2006 (accessed Jun. 25, 2019 using the internet archive way back machine). |
Kiraly et al, 2002, Three-dimensional Human Airway Segmentation Methods for Clinical Virtual Bronchoscopy, Acad Radiol, 9:1153-1168. |
Kiraly et al., Sep. 2004, Three-dimensional path planning for virtual bronchoscopy, IEEE Transactions on Medical Imaging, 23(9):1365-1379. |
Marrouche et al., dated May 6, 2005, AB32-1, Preliminary human experience using a novel robotic catheter remote control, Heart Rhythm, 2(5):S63. |
Oh et al., dated May 2005, P5-75, Novel robotic catheter remote control system: safety and accuracy in delivering RF Lesions in all 4 cardiac chambers, Heart Rhythm, 2(5):S277-S278. |
Reddy et al., May 2005, P1-53. Porcine pulmonary vein ablation using a novel robotic catheter control system and real-time integration of CT imaging with electroanatomical mapping, Hearth Rhythm, 2(5):S121. |
Ren et al., 2011, Multisensor data fusion in an integrated tracking systEm for endoscopic surgery, IEEE Transactions on Information Technology in Biomedicine, 16(1):106-111. |
Slepian, dated 2010, Robotic Catheter Intervention: the Hansen Medical Sensei Robot Catheter System, PowerPoint presentation, 28 pp. |
Solomon et al., Dec. 2000, Three-dimensional CT-Guided Bronchoscopy With a Real-Time Electromagnetic Position Sensor A Comparison of Two Image Registration Methods, Chest, 118(6):1783-1787. |
“Mourgues et al., 2002, Flexible calibration of actuated stereoscopic endoscope for overlay inrobotassisted surgery, International Conference on Medical Image Computing and Computer-Assisted Intervention. Sorinqer, Bedin, Heidelberq”, 10 pages. |
CN office action for appl No. 201880001545, dated Jul. 20, 2021, 8 pages. |
CN Office action for appl No. 201880001545, dated Oct. 20, 2020, 30 pages. |
EP Search report for appl No. 18778077, dated Jan. 20, 2021,3 page. |
EP written opinion for appl No. 18778077, dated Jan. 20, 2021, 4 page. |
International Search Report and Written Opinion dated Aug. 8, 2018 in application No. PCT/US18/25218, 15 pages. |
Notice of allowance for U.S. Appl. No. 15/939,678, dated Aug. 30, 2021, 5 pages. |
Vemuri et al., Dec. 2015, Inter-operative biopsy site relocations in endoluminal surgery, IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers,<10.1109/TBME.2015.2503981>, 13 pages. |
Wilson et al., 2008, a buyer's guide to electromagnetic tracking systems for clinical applications, Proc. of SPCI, 6918:691828-1 p 69188-11, 12 pages. |
“Mourgues et al., 2002, Flexible calibration of actuated stereoscopic endoscope for oveday inrobotassisted surgery, International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg”, 10 pages. |
Advisory action for U.S. Appl. No. 15/939,678, dated Aug. 9, 2019, 3 pages. |
Advisory action for U.S. Appl. No. 15/939,678, dated Sep. 8, 2020, 3 pages. |
Notice of allowance for U.S. Appl. No. 15/939,678, dated Jun. 18, 2021, 8 pages. |
Office action for U.S. Appl. No. 15/939,678, dated Feb. 10, 2020,15 pages. |
Office action for U.S. Appl. No. 15/939,678, dated Feb. 11, 2019, 6 pages. |
Office action for U.S. Appl. No. 15/939,678, dated Feb. 22, 2021, 14 pages. |
Office action for U.S. Appl. No. 15/939,678, dated Jun. 29, 2020, 14 pages. |
Office action for U.S. Appl. No. 15/939,678, dated Jun. 3, 2019, 14 pages. |
Office action for U.S. Appl. No. 15/939,678, dated Oct. 11, 2018, 14 pages. |
EP Search Report for appl No. 19810872.2, dated Feb. 4, 2022, 12 pages. |
Notice of Allowance for U.S. Appl. No. 15/939,678, dated Dec. 17, 2021, 8 pages. |
JP Office Action for Appl. No. 2019553011, dated Mar. 15, 2022,4 pages. |
JP Search Report for Appl. No. 2019553011, dated Jan. 13, 2022, 14 pages. |
KR Office Action for appl. No. 1020187028219, dated Mar. 31, 2022, 1 page. |
Notice of Allowance for U.S. Appl. No. 15/939,678, dated Jun. 20, 2022, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20190365209 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
62678520 | May 2018 | US |