This invention is generally in the field of therapeutic delivery systems including bacteria, and systems and methods for providing chimeric proteins efficiently targeted to cancer cells.
Citation or identification of any reference herein, or any section of this application shall not be construed as an admission that such reference is available as prior art to the present application. The disclosures of each of these publications and patents are hereby incorporated by reference in their entirety in this application, and shall be treated as if the entirety thereof forms a part of this application.
Tumor-targeted bacteria offer tremendous potential advantages for the treatment of solid tumors, including the targeting from a distant inoculation site and the ability to express therapeutic agents directly within the tumor (Pawelek et al., 1997, Tumor-targeted Salmonella as a novel anticancer agent, Cancer Research 57: 4537-4544; Low et al., 1999, Lipid A mutant salmonella with suppressed virulence and TNF-alpha induction retain tumor-targeting in vivo, Nature Biotechnol. 17: 37-41). However, the primary shortcoming of tumor-targeted bacteria investigated in the human clinical trials (Salmonella strain VNP20009 and its derivative TAPET-CD; Toso et al., 2002, Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma, J. Clin, Oncol. 20: 142-152; Meir et al., 2001, Phase 1 trial of a live, attenuated Salmonella typhimurium (VNP20009) administered by direct Intra-tumoral (IT) injection, Proc Am Soc Clin Oncol 20: abstr 1043); Nemunaitis et al., 2003, Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients, Cancer Gene Therapy 10: 737-744) is that no significant antitumor activity has been observed, even in patients where the bacteria was documented to target the tumor. One method of increasing the ability of the bacteria to kill tumor cells is to engineer the bacteria to express conventional bacterial toxins (e.g., WO 2009/126189, WO 03/014380, WO/2005/018332, WO/2008/073148, US 2003/0059400 U.S. Pat. Nos. 7,452,531, 7,354,592, 6,962,696, 6,923,972, 6,863,894, 6,685,935, 6,475,482, 6,447,784, 6,190,657 and 6,080,849, 8,241,623, 8,524,220 8,771,669, 8,524,220, each of which is expressly incorporated herein by reference).
Use of protein toxins for treatment of various disorders including inflammation, autoimmunity, neurological disorders and cancer has long-suffered from off-target toxicity. Enhancing toxin specificity, which offers the potential to eliminate side effect, has been achieved by several different means, such as attachment of a specific antibodies or peptide ligand (e.g., Pseudomonas exotoxin A (PE-ToxA) antibody conjugate, known as an immunotoxin), or a ligand targeted to a surface molecule of the target cell. Based upon the binding specificity of the attached antibody or ligand moiety for a specific target, enhanced specificity of the target is achieved (Quintero et al., 2016. EGFR-targeted chimeras of Pseudomonas Tox A released into the extracellular milieu by attenuated Salmonella selectively kill tumor cells. Biotechnology and Bioengineering 113: 2698-2711).
Other toxins have been engineered to achieve specificity based upon their sight of activation. For example, proaerolysin requires proteolytic activation to become the cytotoxic protein aerolysin. Substitution of the natural protease cleavage site for a tumor-specific protease cleavage site (e.g., that of the prostate specific antigen (PSA) protease or urokinase) results in a toxin selectively activated within tumors (Denmeade et al. WO 03/018611 and Denmeade et al. U.S. Pat. No. 7,635,682), specifically incorporated by reference herein. Another similar activation system has utilized ubiquitin fusion, coupled with a hydrolysable tumor protease (e.g., PSA) sequence and a toxin (e.g., saporin), as described by Tschrniuk et al. 2005 (Construction of tumor-specific toxins using ubiquitin fusion technique, Molecular Therapy 11: 196-204), also specifically incorporated by reference herein. However, while some specificity is engendered and thus these activated protein types are useful in the present technology as modified herein, in these types of engineered toxins, off-target toxicity can occur. In the case of the Pseudomonas immunotoxin, several dose-limiting toxicities have been identified. Vascular leakage syndrome (VLS) is associated with hypoalbuminemia, edema, weight gain, hypotension and occasional dyspnea, which is suggested to occur by immunotoxin-mediated endothelial cell injury (Baluna et al., 2000, Exp. Cell Res. 258: 417-424), resulting in a dose-limiting toxicity. Renal injury has occurred in some patients treated with immunotoxins, which may be due to micro-aggregates of the immunotoxin (Frankel et al., 2001, Blood 98:722a). Liver damage from immunotoxins is a frequent occurrence that is believed to be multifactorial (Frankel, 2002, Clinical Cancer Research 8: 942-944). To date, antibodies linked to proteinaceous toxins have limited success clinically.
Recently developed approaches to delivery of therapeutic molecules (U.S. Pat. Nos. 8,241,623; 8,524,220; 8,771,669; and 8,524,220) have coupled a protease sensitive therapeutic molecule with co-expression of protease inhibitors, expressly incorporated by reference herein.
Use of secreted proteins in live bacterial vectors has been demonstrated by several authors. Holland et al. (U.S. Pat. No. 5,143,830) have illustrated the use of fusions with the C-terminal portion of the hemolysin A (hlyA) gene, a member of the type I secretion system. When co-expressed in the presence of the hemolysin protein secretion channel (hlyBD) and a functional TolC, heterologous fusions are readily secreted from the bacteria. The type I secretion system that has been utilized most widely, and although it is currently considered the best system available, is thought to have limitations for delivery by attenuated bacteria (Hahn and Specht, 2003, FEMS Immunology and Medical Microbiology, 37: 87-98). Those limitations include the amount of protein secreted and the ability of the protein fused to it to interfere with secretion. Improvements of the type I secretion system have been demonstrated by Sugamata and Shiba (2005 Applied and Environmental Microbiology 71: 656-662) using a modified hlyB, and by Gupta and Lee (2008 Biotechnology and Bioengineering, 101: 967-974) by addition of rare codons to the hlyA gene, each of which is expressly incorporated by reference in their entirety herein. Fusion to the gene ClyA (Galen et al., 2004, Infection and Immunity, 72: 7096-7106 and Type III secretion proteins have also been used. Surface display has been used to export proteins outside of the bacteria. For example, fusion of the Lpp protein amino acids 1-9 with the transmembrane region B3-B7 of OmpA has been used for surface display (Samuelson et al., 2002, Display of proteins on bacteria, J. Biotechnology 96: 129-154, expressly incorporated by reference in its entirety herein). The autotransporter surface display has been described by Berthet et al., WO/2002/070645, expressly incorporated by reference herein. Other heterologous protein secretion systems utilizing the autotransporter family can be modulated to result in either surface display or complete release into the medium (see Henderson et al., 2004, Type V secretion pathway: the autotransporter story, Microbiology and Molecular Biology Reviews 68: 692-744; Jose, 2006 Applied Microbiol. Biotechnol. 69: 607-614; Jose J, Zangen D (2005) Autodisplay of the protease inhibitor aprotinin in Escherichia coli. Biochem Biophys Res Commun 333:1218-1226 and Rutherford and Mourez 2006 Microbial Cell Factories 5: 22). For example, Veiga et al. (2003 Journal of Bacteriology 185: 5585-5590 and Klauser et al., 1990 EMBO Journal 9: 1991-1999) demonstrated hybrid proteins containing the β-autotransporter domain of the immunoglobulin A (IgA) protease of Nisseria gonorrhea. Fusions to flagellar proteins have been demonstrated. The peptide, usually of 15 to 36 amino acids in length, is inserted into the central, hypervariable region of the FliC gene such as that from Salmonella muenchen (Verma et al. 1995 Vaccine 13: 235-24; Wu et al., 1989 Proc. Natl. Acad. Sci. USA 86: 4726-4730; Cuadro et al., 2004 Infect. Immun. 72: 2810-2816; Newton et al., 1995, Res. Microbiol. 146: 203-216, expressly incorporated by reference in their entirety herein). Multihybrid FliC insertions of up to 302 amino acids have also been prepared (Tanskanen et al. 2000, Appl. Env. Microbiol. 66: 4152-4156, expressly incorporated by reference in its entirety herein). Trimerization of antigens can be achieved using the T4 fibritin foldon trimerization sequence (Wei et al. 2008 J. Virology 82: 6200-6208) and VASP tetramerization domains (Kühnel et al., 2004 PNAS 101: 17027-17032), expressly incorporated by reference in their entirety herein. The multimerization domains are used to create, bi-specific, tri-specific, and quatra-specific targeting agents, whereby each individual agent is expressed with a multimerization tag, each of which may have the same or separate targeting peptide, such that following expression, surface display, secretion and/or release, they form multimers with multiple targeting domains. A fusion with the Pseudomonas ice nucleation protein (INP) wherein the N- and C-terminus of INP with an internal deletion consisting of the first 308 amino acids is followed by the mature sequence of the protein to be displayed (Jung et al., 1998, Surface display of Zymomonas mobilis levansucrase by using ice-nucleation protein of Pseudomonas syringae, Nature Biotechnology 16: 576-580; Kim et al., 2000, Bacterial surface display of an enzyme library for selective screening of improved cellulase variants, Applied and Environmental Microbiology 66: 788-793; Part:BBa_K811003 from www.iGEM.org; WO2005005630).
Modified Therapeutic Molecules
The present technology, according to various embodiments, consists of known and/or novel chimeric proteins, or combinations of proteins, that are expressed, secreted, surface displayed and/or released by bacteria and result in anticancer activity or have direct inhibitory or cytotoxic anti-neoplastic activity, including activity against cancer stem cells and/or cancer mesenchymal stromal cells, and may optionally include the combination with secreted protease inhibitors. The bacterial delivery vector may be attenuated, non-pathogenic, low pathogenic (including wild type), or a probiotic bacterium. The bacteria are introduced either systemically (e.g., parentral, intravenous (IV), intramuscular (IM), intralymphatic (IL), intradermal (ID), subcutaneously (sub-q), local-regionally (e.g., intralesionally, intratumorally (IT), intrapaeritoneally (IP), topically, intrathecally (intrathecal), by inhaler or nasal spray) or to the mucosal system through oral, nasal, pulmonary intravessically, enema or suppository administration where they are able to undergo limited replication, express, surface display, secrete and/or release the anti-cancer inhibitory proteins or a combination thereof, and thereby provide a therapeutic benefit by reducing or eliminating the disease, malignancy and/or neoplasia.
The present technology, according to various embodiments, further consists of modified forms of toxins with improved secretion, surface display and/or release by the bacteria, and/or modifications that improve the overall activity and/or specificity of the toxin. Such toxins may be further co-expressed with protease inhibitors as previously described (See, U.S. Pat. Nos. 8,241,623; 8,524,220; 8,771,669; 8,524,220).
Toxins, therapeutic cytokines and other molecules, homologues or fragments thereof useful in conjunction with the present technology, according to various embodiments, includes small lytic peptides, larger lytic peptides, pore-forming toxins, protein inhibitors, extracellular DNAases (DNase), intracellular DNAases, apoptosis inducing peptides, cytokines, prodrug converting enzymes, metabolite destroying enzymes, ribonucleases, antibody inactivating toxins and other anticancer peptides. In a preferred embodiment, the toxins include those that are naturally secreted, released and/or surface displayed, or heterologously secreted, released and/or surface displayed, and that can be modified uniquely to suit the delivery by a bacterium and may be further engineered to have the tumor, lymphoma, leukemic bone marrow or proximity-selective targeting system described herein, including but not limited to the proteins azurin, carboxyesterase Est55 (a prodrug-converting enzyme from Geobacillus that activates CPT-11 to SN-38), thiaminase (e.g., from Bacillus), methionase (methioninase), asparaginase, tryptophanase, apoptin, Torquetnovirus (TTV) derived apoptosis-inducing protein TAIP and with gyrovirus VP3 bax, bim, p53, BAK, BH3 peptide (BCL2 homology domain 3), cytochrome C, thrombospondin, platlet factor 4 (PF4) peptide, Bacillus sp. cytolysins, Bacillus sp. nheABC toxins, cytolethal distending toxins (cldt) including those cldts from Haemophilus, Aggregatibacter, Salmonella, Escherichia, Shigella, Campylobacter, Helicobacter, Hahella and Yersinia, typhoid toxins (including pertussis like toxins; pltAB), pertussis toxin, cldt:plt hybrids, actAB, cytotoxic nectrotic factor (cnf), dermonecrotic factor (dnf), shiga toxins and shiga-like toxins, bacteriocins, (colicins and microcins; Hen and Jack, Chapter 13 Microcins, in Kastin (ed), 2006, Handbook of Biologically Active Peptides, Academic Press; Nes et al., Chapter 17, The nonlantibiotic heat-stable bacteriocins in gram-positive bacteria, in Kastin (ed), 2006, Handbook of Biologically Active Peptides, Academic Press; Sharma et al., Chapter 18 in Kastin (ed), 2006, Handbook of Biologically Active Peptides, Academic Press) including membrane depolarizing (or pore-forming), DNAases (including colicin DNase, Staphylococcal Nuclease A:OmpA fusions (Takahara et al., 1985 J. Biol. Chem 260: 2670-2674), Serratia marcescens DNase (Clegg and Allen, 1985, FEMS Microbiology Letters 27: 257-262; Vibrio DNase Newland et al., 1985 Infect Immun 47: 691-696) or other bacterial DNase), RNAases, and tRNAases, including but not limited colicin A, colicin D, colicin E5, colicin E492, microcin M24, colE1, colE2, colE3, colE5 colE7, coleE8, colE9, col-Ia, colicin N and colicin B, membrane lytic peptides from Staphalococcus (listed below) and sea anemones, P15 peptide and other TGF-beta mimics, repeat in toxin (RTX) family members (together with the necessary acylation and secretion genes) including Actinobacillus leucotoxins, a leuckotoxin: E. coli HlyA hybrid, E. coli HlyA hemolysin, Bordetella adenylate cyclase toxin, heat stable enterotoxins from E. coli and Vibrio sp. (Dubreuil 2006, Chapter 48, Escherichia coli, Vibrio and Yersinia species heat stable enterotoxins, Alouf and Popoff (eds), 2006, Comprehensive Sourcebook of Bacterial Protein Toxins, Third Edition, Academic Press), autotransporter toxins including but not limited to IgA protease, picU espC, and sat, Staphalococcus protein A, chlostridium enterotoxin, Clostridium difficile toxin A, scorpion chlorotoxin, aerolysin, subtilase, cereolysin, Staphalococcus leukotoxins (e.g. LukF-PV, LukF-R, LukF-I, LukM, HlgB) and the other, to class S (e.g. LukS-PV, LukS-R, LukS-I, HlgA, HlgC). Best known are the toxins produced by S. aureus: γ-haemolysins, HlgA/HlgB and HlgC/HlgB and leukocidin Panton-Valentine, LukS-PV/LukF-PV (Luk-PV, PVL)) TRAIL, fasL, IL-18, CCL-21, human cyokine LIGHT, agglutinins (Maackia amurensis, wheat germ, Datura stramonium, Lycopersicon (tomato) plant lectin, leukoagglutinin (L-PHA, Helix pomatia) saporin, ricin, pertussus toxin, and porB, as well as other toxins and peptides (Kastin (ed), 2006, Handbook of Biologically Active Peptides, Academic Press; Alouf and Popoff (eds), 2006, Comprehensive Sourcebook of Bacterial Protein Toxins, Third Edition, Academic Press; each of which is expressly incorporated by reference in their entirety herein). Metabolite toxins such as the Chromobacterium violacium dipsepeptides (Shigeatsu et al., 1994, FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. II. Structure determination. J Antibiot (Tokyo) 47(3):311-4) or those from Serratia are also of use in the present technology.
The chimeras may be further modified by addition of one or more multimerization domains, such as the T4 foldon trimerization domain (Meier et al., 2004, Journal of Molecular Biology, 344: 1051-1069; Bhardwaj et al., Protein Sci. 2008 17: 1475-1485) or tetramerization domains such as VASP (Kane′ et al., 2004 PNAS 101: 17027-17032). Chimeric toxins may be further modified by the addition of known cell penetrating (ferry) peptide which further improves their entry into target cells. Cell penetrating peptides include those derived from the human immunodifficency virus (HIV) TAT protein amino acids 47-57 (YGRKKRRQRRR SEQ ID NO: 001) and used in fusion proteins (e.g., TAT-apoptin, TAT-bim, TAT-p53), the antennapedia homeodomain (penetraxin), Kaposi fibroblast growth factor (FGF) membrane-translocating sequence (MTS), herpes simplex virus VP22, hexahistidine, hexylysine, hexaarginine or “Chariot” (Active Motif, Carlsbad, Calif.; U.S. Pat. No. 6,841,535). Nuclear localization signals (NLSs) may also be added, including but not limited to that from herpes simplex virus thymidine kinase, the SV40 large T antigen monopartite NLS, or the nucleoplamin bipartite NLS or more preferably, the NLS from apoptin, a tumor associated (tumor-selective) NLS. The tumor-selective nuclear export signal from apoptin may be used alone or together with NLS from apoptin (Heckl et al., 2008, Value of apoptin's 40-amino-acid C-terminal fragment for the differentiation between human tumor and non-tumor cells, Apoptosis 13: 495-508; Backendor et al., 2008, Apoptin: Therapeutic potential of an early sensor of carcinogenic transformation, Ann Rev Pharmacol Toxicol 48: 143-69).
Regarding use of tumor-targeted bacteria expressing wild type cytolethal distending toxin and chimeras including those with apoptin, there have been several earlier descriptions (U.S. Pat. Nos. 6,962,696; 7,452,531; 8,241,623; 8,524,220; 8,623,350; 8,771,669). Cytolethal distending toxins (CLDTs) comprise a family of heterotrimeric holotoxins produced by bacteria that are internalized into mammalian cells and translocated into the nucleus. CLDTs are known to occur in a number of bacterial genera including Haemophilus, Aggregatibacter, Salmonella, Escherichia, Shigella, Campylobacter, Helicobacter, Hahella and Yersinia (Gargi et al., 2012 Bacterial toxin modulation of the eukaryotic cell cycle: are all cytolethal distending toxins created equally? Frontiers in Cellular and Infection Microbiol. 2:124. doi: 10.3389/fcimb.2012.00124), however CLDT does not exist in the VNP20009 strain of Salmonella used in human clinical studies (Toso et al. 2002. Phase I Study of the Intravenous Administration of Attenuated Salmonella typhimurium to Patients With Metastatic Melanoma. J. Clin. Oncol. 20, 142-152; Low et al., 2004, Construction of VNP20009, a novel, genetically stable antibiotic sensitive strain of tumor-targeting Salmonella for parenteral administration in humans. Methods Mol Med 90: 47-60).
Depending upon both the specific CLDT and the mammalian cells type, different effects have been documented. All CLDTs have homology to exonuclease III and several have been directly shown to exhibit DNase activity in vitro (Ewell and Dreyfus 2000 DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest. Mol Microbiol 37, 952-963; Lara-Tejero and Galan, 2000 A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 290, 354-357), which is believed to be the primary effect of the toxin. The DNase activity results in double-stranded DNA breaks that activates the cell's DNA damage response and interrupts the cell cycle at G2M. Non-haematopoetic cells tend to enlarge, hence part of the toxin name distending, and in many cases the cells subsequently undergo apoptosis. In haematopoitic cells apoptosis is more rapidly produced (Jinadasa et al., 2011, Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. Microbiology 157: 1851-1875; Gargi et al., 2012).
Most of the CLDTs are organized in a unidirectional operon of cldtA, cldtB and cldtC genes, where the cldtB encodes the active subcomponent, and cldtA and cldtC encode peptides that are involved in cell binding and translocation. In Salmonella however, the genes exist as a bidirectional operon consisting of cldtB together with a two pertussis like toxin subunits oriented in the opposite direction, pltA and pltB, as well as sty and ttsA, also in opposing directions of each other, that are reported to be required for secretion of the toxin (Hodak and Galan 2013 A Salmonella Typhi homologue of bacteriophage muramidase controls typhoid toxin secretion. EMBO Reports 14: 95-102). However, in the present technology, according to various embodiments, the presence of sty and ttsA are not required for secretion of the active toxin when the operon is reorganized into a unidirectional operon of cldtB, pltB and pltA.
Translocation of E. coli CLDTs to the nucleus, which constitutes the target location for the endonuclease activity, requires the presence of a nuclear localization signal (NLS). In Escherichia coli CLDT-II for example, the NLS is bipartite and located at the C-terminus (McSweeney and Dreyfus, 2004). Nishikubo et al., 2003 identified an NLS occurring in the 48-124 amino acid region in Actinobacillus actinomycetemcomitans.
Apoptins are a family of viral genes that were first discovered in chicken anemia virus. Apoptin is the product of the VP3 gene that is involved in lymphoidal atropy and anemia in infected chickens (Peñaloza et al., 2014 Apoptins: selective anticancer agents, Trends in Molecular Medicine 20: 519-528; Los et al., 2009 Apoptin, a tumor selective killer, Biochimica et Biophysica Acta 1793: 1335-1342). Apoptin was subsequently found to selectively induce apoptosis in cancer cells (Danen-Van Oorschot et al., 1997 Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells. Proc. Natl. Acad. Sci. USA 94: 5843-5847). Apoptin shares similarity with Torquetnovirus (TTV) derived apoptosis-inducing protein TAIP and with gyrovirus VP3. Apoptin consists of several different domains including a leucine rich sequence (LRS) which is involved in binding to the promyelocytic leukemia (PML) protein of nuclei and in apoptin multimerization, an SRC homology 3 (SH3) binding domain with is part of a bipartite nuclear localization signal (NLS), a nuclear export sequence (NES) that promotes egress of apoptin from normal cell nuclei, a set of threonines of which T108 must be phosphorylated for full apoptin activity, the C-terminal portion of the bipartite NLS and an anaphase promoting complex/cyclosome 1 (APC/Cl) binding domain that consists of approximately one third of the C-terminus.
The pertussis toxin from Bordetella species, including B. pertussis, is a multi-subunit (S1, S2, S3, S4 and S5 subunits) that is both secreted and cell-bound. Pawelek (US Patent Application 2005/0026866), expressly incorporated herein by reference in its entirety, has suggested the use of pertussis toxin, and pertussis toxin fusions as anticancer agents. However, Pawelek did not suggest chimeric CLDTs with pertussis toxin S2 or S3 subunits, which are non-covalently bound subunits rather than fusions, nor did he suggest CLDT pertussis PltBs chimeric with S2, S3 or both, neither of which contains the pertussis toxin cytotoxic activity.
The present technology, according to various embodiments, consists of a modified Salmonella CLDT operon and forms of cytolethal distending toxins that are chimeric with the S2 or S3 subunits of pertussis toxin, or both, or PltB:S2 or Plt:S3 chimeras, or both, chimeric with CLDTs. The S2 and/or S3, or PltB:S2 or Plt:S3 chimeras may be co-expressed with the CLDT operon PltB, or may replace the CLDT operon PltB.
The types of cancers or neoplasias to which the present technology is directed include all neoplastic malignancies, including solid tumors such as those of colon, lung, breast, prostate, sarcomas, carcinomas, head and neck tumors, melanoma, as well as hematological, non-solid or diffuse cancers such as leukemia and lymphomas, myelodysplastic cells, plasma cell myeloma, plasmacytomas, and multiple myelomas. Specific types of cancers include acute lymphoblastic leukemia, acute myeloid leukemia, adrenocortical carcinoma adrenocortical carcinoma, adult (primary) liver cancer, adult acute myeloid leukemia, AIDS-related cancers, AIDS-related lymphoma, anal cancer, appendix cancer, astrocytomas, astrocytomas (childhood), basal cell carcinoma, bile duct cancer, bladder cancer, bone cancer, brain stem glioma, brain tumor, breast cancer (female), breast cancer (male), bronchial tumors, Burkitt's lymphoma, carcinoid tumor, carcinoma of unknown primary site, central nervous system atypical teratoid/rhabdoid tumor, central nervous system embryonal tumors, central nervous system lymphoma, central nervous system tumors, cervical cancer, childhood acute myeloma, childhood multiple myeloma/plasma cell neoplasm, chordoma, chronic lymphocytic leukemia, chronic myelogenous leukemia, chronic myeloid leukemia, chronic myeloproliferative disorders, colon cancer, colorectal cancer, craniopharyngioma, cutaneous T-cell lymphoma, embryonal tumors, endometrial cancer, endometrial uterine sarcoma, ependymoblastoma, ependymoma, esophageal cancer, Ewing sarcoma family of tumors, extracranial germ cell tumor, extragonadal germ cell tumor, extrahepatic bile duct cancer, extrahepatic gallbladder cancer, eye cancer, gallbladder cancer, gastric (stomach) cancer, gastrointestinal carcinoma, gastrointestinal carcinoid tumor, gastrointestinal stromal cell tumor, gastrointestinal stromal tumor (gist), germ cell tumor, glioma, hairy cell leukemia, head and neck cancer, hepatocellular (liver) cancer, histiocytosis, Hodgkin lymphoma, hypopharyngeal cancer, intraocular (eye) melanoma, intraocular melanoma, islet cell tumors, Kaposi sarcoma, kidney (renal cell) cancer, kidney cancer, Langerhans cell, Langerhans cell histiocytosis, laryngeal cancer, leukemia, lip and oral cavity cancer, lip and oropharyngeal cancer, liver cancer (metastatic), lung cancer (primary), macroglobulinemia, medulloblastoma, medulloepithelioma, melanoma, Merkel cell carcinoma, mesothelioma, metastatic squamous neck cancer with occult primary, metastatic stomach (gastric) cancer, mouth cancer, multiple endocrine neoplasia syndrome, multiple myeloproliferative disorders, mycosis fungoides, myelodysplastic syndromes, myelodysplastic/myeloproliferative diseases, myelogenous leukemia, nasal cavity and paranasal sinus cancer, nasopharyngeal cancer, nervous system atypical teratoid/rhabdoid tumor, neuroblastoma, non-Hodgkin lymphoma, non-small cell lung cancer, oral cancer, oral cavity cancer, osteosarcoma and malignant fibrous histiocytoma, osteosarcoma and malignant fibrous histiocytoma of bone, ovarian cancer, ovarian epithelial cancer, ovarian germ cell tumor, ovarian gestational trophoblastic tumor, ovarian low malignant potential tumor, pancreatic cancer, papillomatosis, paranasal sinus and nasal cavity cancer, parathyroid cancer, penile cancer, pharyngeal cancer, pineal parenchymal tumors, pineal parenchymal tumors of intermediate differentiation, pineoblastoma and supratentorial primitive neuroectodermal tumors, pituitary tumor, plasma cell neoplasm/multiple myeloma, pleuropulmonary blastoma, primary central nervous system lymphoma, primary cervical cancer, primary hepatocellular (liver) cancer, prostate cancer, rectal cancer, renal cell (kidney) cancer, renal pelvis and ureter, respiratory tract carcinoma involving the nut gene on chromosome 15, retinoblastoma, rhabdomyosarcoma, salivary gland cancer, sarcoma, skin cancer (Basal cell carcinoma), Sézary syndrome, skin cancer (nonmelanoma), skin carcinoma, small cell lung cancer, small cell lymphoma, small intestine cancer, soft tissue sarcoma, spinal cord tumors, squamous cell carcinoma, squamous neck cancer with occult primary, stomach (gastric) cancer, supratentorial primitive neuroectodermal tumors and pineoblastoma, T-cell lymphoma, teratoid/rhabdoid tumor (childhood), testicular cancer, throat cancer, thymoma and thymic carcinoma, thyroid cancer, transitional cell cancer, transitional cell cancer of the renal pelvis and ureter, trophoblastic tumor (gestational), unknown primary site, ureter and renal pelvis, urethral cancer, uterine cancer, uterine sarcoma, vaginal cancer, vulvar cancer, Waldenström macroglobulinemia, Waldenström malignant fibrous histiocytoma of bone and osteosarcoma, and Wilms tumor.
The therapeutic agent can be a chimera consisting of a peptide or protein, toxin, chimeric toxin, cytokine, antibody, bispecific antibody including single chain antibodies, camel antibodies and nanobodies chemokine, prodrug converting enzyme or metabolite-degrading enzyme such as thiaminase, methionase (methioninase, L-methionine γ-lyase) or asparaginase. In a preferred embodiment the therapeutic agent is a toxin, or modified toxin.
The chimeric proteins may have one or more additional features or protein domains known to those skilled in the art which are designed to be active or catalytic domains that result in the death of the cell, allow or facilitate them being secreted or released by autolytic peptides such as those associated with colicins or bacteriophage release peptides have targeting peptides that direct them to the target cells, and protease cleavage sites for activation (e.g., release from parent peptide), and thioredoxin or glutathione S-transferase (GST) fusions that improve solubility.
The present technology also provides in accordance with some embodiments, unique chimeric modifications of the above listed toxins that contain specific combinations of components resulting in secretion by selective anti-tumor activity. The technology also provides extracellular protease sensitivity (deactivation) that may include the addition of protease cleavage sites and may be co-expressed with a protease inhibitor. The chimeric proteins may have one or more additional features or protein domains known to those skilled in the art which are designed to 1) be active or catalytic domains that result in the death of the cell or make them susceptible to other known anticancer agents, 2) allow or facilitate them being secreted or released by autolytic peptides such as colicin release peptides, 3) membrane protein transduction (ferry) peptides, 4) autotransporter domains, 5) have targeting peptides that direct them to the target cells, and 6) protease cleavage sites for activation (e.g., release from parent peptide). However, the specific organization and combination of these domains is unique and specific to the technology.
Small lytic peptides (less than 50 amino acids) are used to construct chimeric proteins for more than one purpose. The chimeric proteins containing lytic peptides may be directly cytotoxic for the cancer cells, and/or other cells of the tumor including the tumor matrix cells and immune cells which may diminish the effects of the bacteria by eliminating them. Furthermore, the lytic peptides are useful in chimeric proteins for affecting release from the endosome. Small lytic peptides have been used in the experimental treatment of cancer. However, it is evident that most, if not all, of the commonly used antitumor small lytic peptides have strong antibacterial activity, and thus are not compatible with delivery by a bacterium (see Table 1 of Leschner and Hansel, 2004 Current Pharmaceutical Design 10: 2299-2310, the entirety of which is expressly incorporated herein by reference). Small lytic peptides useful in the technology, according to various embodiments, are those derived from Staphylococcus aureus, S. epidermidis and related species, including the phenol-soluble modulin (PSM) peptides and delta-lysin (Wang et al., 2007 Nature Medicine 13: 1510-1514, expressly incorporated herein by reference). Larger lytic peptides that may be used includes the actinoporins from sea anemones or other coelenterates, such as SrcI, FraC equinatoxin-II and sticholysin-II (Anderluh and Macek 2002, Toxicon 40: 111-124). The selection of the lytic peptide depends upon the primary purpose of the construct, which may be used in combination with other constructs providing other anticancer features. Construct designed to be directly cytotoxic to cells employ the more cytotoxic peptides, particularly PSM-α-3 and actinoporins. Constructs which are designed to use the lytic peptide to affect escape from the endosome use the peptides with the lower level of cytotoxicity, such as PSM-alpha-1, PSM-α-2 or delta-lysin.
Promoters, i.e., genetic regulatory elements that control the expression of the genes encoding the therapeutic molecules described above that are useful in the present technology, according to various embodiments, include constitutive and inducible promoters. A preferred constitutive promoter is that from the vector pTrc99a (Promega). Preferred inducible promoters include the tetracycline inducible promoter (TET promoter), SOS-response promoters responsive to DNA damaging agents such as mitomycin, alkylating agents, X-rays and ultraviolet (UV) light such as the recA promoter, colicin promoters, sulA promoters and hypoxic-inducible promoters including but not limited to the PepT promoter (Bermudes et al., WO 01/25397), the arabinose inducible promoter (AraBAD) (Lossner et al., 2007, Cell Microbiol. 9: 1529-1537; WO/2006/048344) the salicylate (aspirin) derivatives inducible promoter (Royo et al., 2007, Nature Methods 4: 937-942; WO/2005/054477), a tumor-specific promoter (Arrach et al., 2008, Cancer Research 68: 4827-4832; WO/2009/152480) or a quorum-sensing (autoinduction) promoter Anerson et al., 2006 Environmentally controlled invasion of cancer cells by engineered bacteria, J. Mol. Biol. 355: 619-627.
A single promoter may be used to drive the expression of more than one gene, such as a protease sensitive toxin and a protease inhibitor. The genes may be part of a single synthetic operon (polycistronic), or may be separate, monocystronic constructs, with separate individual promoters of the same type used to drive the expression of their respective genes. The promoters may also be of different types, with different genes expressed by different constitutive or inducible promoters. Use of two separate inducible promoter for more than one cytotoxin or other effector type peptide allows, when sufficient X-ray, tetracycline, arabinose or salicylic acid is administered following administration of the bacterial vector, their expression to occur simultaneously, sequentially, or alternatingly (i.e., repeated).
The present technology provides, according to one embodiment, live attenuated therapeutic bacterial strains that express one or more therapeutic molecules. The technology, according to various embodiments, relates specifically to certain modified forms of chimeric toxins especially suitable for expression by tumor-targeted bacteria. In a preferred embodiment, the modified toxin is derived from cytolethal distending toxin. In a more preferred embodiment, the cytolethal distending toxin is derived from Salmonella paratyphi A, Salmonella typhi or Salmonella bongori. In particular, the technology, according to various embodiments, relates to live attenuated tumor-targeted bacterial strains that may include Salmonella sp., group B Streptococcus Bifidobacterium sp. or Listeria vectoring chimeric anti-tumor toxins to an individual to elicit a therapeutic response against cancer. Another aspect of the technology relates to live attenuated tumor-targeted bacterial strains that may include Salmonella, group B Streptococcus Bifidobacterium sp. or Listeria vectoring chimeric anti-tumor toxin molecules to an individual to elicit a therapeutic response against cancer including cancer stem cells. The toxins may also be targeted to tumor matrix cells, and/or immune cells. In another embodiment of the technology, Salmonella strains including Salmonella paratyphi A, Salmonella typhi or Salmonella bongori which contain endogenous cytolethal distending toxins may, when suitably attenuated, be used as vectors for delivery of cytolethal distending toxin. In order to achieve inducible control, the endogenous reporter is replaced with an inducible promoter by homologous recombination. In another embodiment, a chimeric secreted protease inhibitor is used alone or in combination with the chimeric toxins.
Whereas the prior strains of Salmonella studied in human clinical trials used either no heterologous antitumor protein (i.e., VNP20009) or an antitumor protein located within the cytoplasm of the bacterium (i.e., cytosine deaminase expressed by TAPET-CD), or secreted proteins (Bermudes et al., WO 2001/025397) the technology, according to various embodiments, provides, according to some embodiments, methods and compositions comprising bacterial vectors that express, secrete, surface display and/or release protease inhibitors that protect co-expressed protease sensitive antitumor molecules that are also secreted, surface displayed and/or released into the tumor, lymphoma-containing lymph node, leukemic bone lumen, or proximally or topically on a carcinoma or precancerous lesion for the treatment of the neoplasia.
The primary characteristic of the bacteria of the technology, according to various embodiments, is the enhanced effect of the effector molecule such as a toxin, lytic peptide etc. relative to the parental strain of bacteria. In one embodiment, the percent increase in effect is approximately 2% to approximately 95%, approximately 2% to approximately 75%, approximately 2% to approximately 50%, approximately 2% to about 40%, approximately 2% to about 30%, approximately 2% to about 25%, approximately 2% to about 20% or about 2% to approximately 10% greater than the parental strain of bacteria without expressing one or more protease inhibitors under the same conditions. A second characteristic of the bacteria of the technology, according to various embodiments, is that they carry novel chimeric proteins that improve their function compared to other chimeric protein expression systems. In one embodiment, the percent improvement is approximately 2% to approximately 95%, approximately 2% to approximately 75%, approximately 2% to approximately 50%, approximately 2% to about 40%, approximately 2% to about 30%, approximately 2% to about 25%, approximately 2% to about 20% or about 2% to approximately 10% that of another expression system under the same conditions.
The bacteria according to a preferred embodiment of the present technology, according to various embodiments, include those modified to have little or no ability to undergo bacterial conjugation, limiting incoming and outgoing exchange of genetic material, whereas the prior art fails to limit exchange of genetic material. In addition, certain of the therapeutic molecules have co-transmission requirements (e.g., colicin proteins and colicin immunity) that are distal (i.e., genetically dissected and separated) to the therapeutic molecule location further limiting known forms of genetic exchange.
Aspects of the present technology also provide novel chimeric bacterial toxins particularly suited for expression by gram-negative bacteria. The toxins may have added targeting ligands that render them selectively cytotoxic for tumor cells, tumor stem cells and/or matrix and tumor-infiltrating immune cells. The technology also provides means to determine optimal toxin combinations which are preferably additive or more preferably synergistic. The technology also provides means to determine the optimal combination of protein toxin with conventional cancer chemotherapeutics, liposomal agents or biologics, including immunosuppressive anti-complement agents (e.g., anti-C5B). Accordingly, administration to an individual, of a live Salmonella bacterial vector, in accordance with an aspect of the present technology, that is genetically engineered to express one or more protease inhibitors as described herein co-expressed with one or more cytotoxic proteins has the ability to establish a population in the tumor, kill tumor cells, tumor stem cells as well as tumor matrix and immune infiltrating cells, resulting in a therapeutic benefit.
A preferred composition will contain, for example, a sufficient amount of live bacteria expressing the targeted cytotoxin(s) or effector proteins/peptides to produce a therapeutic response in the patient. Accordingly, the attenuated Salmonella strains described herein are both safe and useful as live bacterial vectors that can be systemically or orally administered to an individual to provide therapeutic benefit for the treatment of cancer.
Although not wishing to be bound by any particular mechanism, an effective antitumor response in humans by administration of genetically engineered, attenuated strains of Salmonella strains as described herein may be due to the ability of such mutant strains to persist within the tumor, lymphoma or leukemic bone marrow and to supply their own nutrient needs by killing tumor cells, tumor matrix and or immune infiltrating cells and further expanding the zone of the tumor that they occupy. Bacterial strains useful in accordance with a preferred aspect of the technology may carry the ability to produce a therapeutic molecule expressing plasmid or chromosomally integrated cassette that encodes and directs expression of one or more therapeutic molecules together with optionally one or more protease inhibitors, as described herein. The protease inhibitors serve to prevent the destruction of the therapeutic molecule while within the tumor. The protease inhibitor may also have an anticlotting effect, wherein a blood clot may prevent spread of the bacteria throughout the tumor. The protease inhibitor may also have direct or indirect anticancer effects through the inhibition of proteases that participate in the spread of cancerous cells. If the cytotoxin and protease inhibitor diffuse outside of the tumor, lymph node, bone lumen, proximity to a carcinoma or other neoplasia-localized distribution, they fall below the protease inhibitory concentration, no longer inhibit proteolysis of the cytotoxins or effector genes, and are then inactivated. Thus the protease inhibitor system both increases activity and provides tumor specificity.
Novel modifications of the bacteria to express and surface display, secrete and/or release peptides that have the effect of enhancing tumor penetration are also encompassed. Tumor and lymphatic vessel targeting includes peptides previously described (Teesalu et al, 2013, Tumor-penetrating peptides, Frontiers in Oncology 2013/Vol. 3/Article 216/1-8; Sugahara et al. 2010, Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs, Science 328: 1031-1035; U.S. Pat. No. 8,367,621 Ruoslahti et al., Methods and compositions related to internalizing RGD peptides; U.S. Pat. No. 8,753,604 Ruoslahti et al., Methods and compositions for synaphically-targeted treatment for cancer; United States Patent Application 20090226372, Ruoslahti et al, Methods aAnd Compositions Related To Peptides And Proteins With C-Terminal Elements; United States Patent Application 20110262347, Ruoslahti et al., Methods And Compositions For Enhanced Delivery Of Compounds) which includes lymphatic vessels and hypoxic portions of tumors targeting peptid, LyP-1CGNKRTRGC SEQ ID NO: 002, as well as tripartate peptides containing a vacular homing motif (e.g.. RGD). a CendR paptide (e.g.. R/KXXR/K SEQ ID NO: 003) and a protcasc recognition site (e.g., K) such as the peptide CRGDKGPDC SEQ ID NO: 004 or other variants including but not limited to CR/KGDR/KGPDC SEQ ID NO: 005. Such peptides first bind through the RGD motif to alpha-v integrins that are over expressed on tumor endothelial cells, followed by proteolytic cleavage leaving the CendR peptide R/KXXR/K SEQ ID NO: 003. Other preferred peptides include CRGDRGPDC (SEQ ID NO: 006) and CRGDKGPEC (SEQ ID NO: 007). Other examples of this class of peptides include CRGDRGFEC SEQ ID NO: 008, RGD (R/K/H) SEQ ID NO: 009), CRGD (R/K/H) GP (D/H) C SEQ ID NO: 010, CRGD (R/K/H) GP (D/E/H) C SEQ ID NO: 011, CRGD (R/K/H) G (P/V) (D/E/H) C SEQ ID NO: 012. CRGDHGPDC SEQ ID NO: 013, CRGDHGPEC SEQ ID NO: 014, CRGDHGPHC SEQ ID NO: 015. CRGDHGVDC SEQ ID NO: 016, CRGDHGVEC SEQ ID NO: 017, CRGDHGVHC SEQ ID NO: 018. CRGDKGPHC SEQ ID NO: 019, CRGDKGVDC SEQ ID NO: 020, CRGDKGVEC SEQ ID NO: 021, CRGDKGVHC SEQ ID NO: 022, CRGDRGPEC SEQ ID NO: 023, CRGDRGPHC SEQ ID NO: 024, CRGDRGVDC SEQ ID NO: 025, CRGDRGVEC SEQ ID NO: 026. or CRGDRGVHC SEQ ID NO: 027. Alternatively, peptides that bind other receptors such as aminopeptidase N (e.g., and CRNGRGPDC SEQ ID NO: 028) may be used. These peptides may be secreted, released or surface displayed by tumor-targeting bacteria, and thereby penetrate tumors more efficiently.
The serovars of S. enterica that may be used as the attenuated bacterium of the live compositions described in accordance with various embodiments herein include, without limitation, Salmonella enterica serovar Typhimurium (“S. typhimurium”), Salmonella montevideo, Salmonella enterica serovar Typhi (“S. typhi”), Salmonella enterica serovar Paratyphi A (“S. paratyphi A”), Salmonella enterica serovar Paratyphi B (“S. paratyphi B”), Salmonella enterica serovar Paratyphi C (“S. paratyphi C”), Salmonella enterica serovar Hadar (“S. hadar”), Salmonella enterica serovar Enteriditis (“S. enteriditis”), Salmonella enterica serovar Kentucky (“S. kentucky”), Salmonella enterica serovar Infantis (“S. infantis”), Salmonella enterica serovar Pullorurn (“S. pullorum”), Salmonella enterica serovar Gallinarum (“S. gallinarum”), Salmonella enterica serovar Muenchen (“S. muenchen”), Salmonella enterica serovar Anaturn (“S. anatum”), Salmonella enterica serovar Dublin (“S. dublin”), Salmonella enterica serovar Derby (“S. derby”), Salmonella enterica serovar Choleraesuis var. Kunzendorf (“S. cholerae kunzendorf), and Salmonella enterica serovar Minnesota (S. minnesota). A preferred serotype for the treatment of bone marrow related diseases is S. dublin. In another embodiment of the technology, Salmonella strains including Salmonella paratyphi A, Salmonella typhi or Salmonella bongori which contain endogenous cytolethal distending toxins, may, when suitably attenuated, be used as vectors for delivery of cytolethal distending toxin. In order to achieve inducible control, the endogenous reporter is replaced with an inducible promoter by homologous recombination.
By way of example, live bacteria in accordance with aspects of the technology include known strains of S. enterica serovar Typhimurium (S. typhimurium) and S. enterica serovar Typhi (S. typhi) which are further modified as provided by the technology to form vectors for the prevention and/or treatment of neoplasia. Such Strains include Ty21a, CMV906, CMV908, CMV906-htr, CMV908-htr, Ty800, aroA−/serC−, HOLAVAX, M01ZH09, VNP20009. These strains contain defined mutations within specific serotypes of bacteria. The technology also includes the use of these same mutational combinations contained within alternate serotypes or strains in order to avoid immune reactions which may occur in subsequent administrations. In a preferred embodiment, S. typhimurium, S. montevideo, and S. typhi which have non-overlapping O-antigen presentation (e.g., S. typhimurium is O-1, 4, 5, 12 and S. typhi is Vi, S. montevideo is O-6, 7) may be used. Thus, for example, S. typhimurium is a suitable serotype for a first injection and another serotype such as S. typhi or S. montevideo are used for a second injection and third injections. Likewise, the flagellar antigens are also selected for non-overlapping antigenicity between different injections. The flagellar antigen may be H1 or H2 or no flagellar antigen, which, when combined with the three different O-antigen serotypes, provides three completely different antigenic profiles.
Novel strains of Salmonella are also encompassed that are, for example, attenuated in virulence by mutations in a variety of metabolic and structural genes. The technology therefore may provide a live composition for treating cancer comprising a live attenuated bacterium that is a serovar of Salmonella enterica comprising an attenuating mutation in a genetic locus of the chromosome of said bacterium that attenuates virulence of said bacterium and wherein said attenuating mutation is a combinations of other known attenuating mutations. Other attenuating mutation useful in the Salmonella bacterial strains described herein may be in a genetic locus selected from the group consisting of phoP, phoQ, edt, cya, crp, poxA, rpoS, htrA, nuoG, pmi, pabA, pts, damA, met, cys, pur, purA, purB, purI, purF, leu, ilv, arg, lys, zwf, aroA, aroB, aroC, aroD, serC, gua, cadA, rfc, rjb, rfa, ompR, msbB, pfkAB, crr, glk, ptsG, ptsHI, manXYZ and combinations thereof. The strain may also contain a mutation known as “Suwwan”, which is an approximately 100 kB deletion between two IS200 elements. The strain may also carry a defective thioredoxin gene (trxA−; which may be used in combination with a TrxA fusion), a defective glutathione oxidoreductase (gor−) and optionally, overexpress a protein disulfide bond isomerase (DsbA). The strain may also be engineered to express invasion and/or escape genes tlyA, tlyC patI and pld from Rickettsia, whereby the bacteria exhibit enhanced invasion and/or escape from the phagolysosome (Witworth et al., 2005, Infect. Immun. 73:6668-6673), thereby enhancing the activity of the effector genes described below. The strain may also be engineered to be deleted in an avirulence (anti-virulence) gene, such as zirTS, grvA and/or pcgL, or express the E. coli lac repressor, which is also an avirulence gene in order to compensate for over-attenuation. The strain may also express SlyA, a known transcriptional activator. In a preferred embodiment, the Salmonella strains are msbB mutants (msbB−). In a more preferred embodiment, the strains are msbB− and Suwwan. In a more preferred embodiment the strains are msbB−, Suwwan and zwf−. Zwf has recently been shown to provide resistance to CO2, acidic pH and osmolarity (Karsten et al., 2009, BMC Microbiology Aug. 18; 9:170). Use of the msbB zwf genetic combination is also particularly preferred for use in combination with administered carbogen (an oxygen carbon dioxide mixture that may enhance delivery of therapeutic agents to a tumor). In a more preferred embodiment, the strains are msbB−, Suwwan, zwf− and trxA−. In a most preferred embodiment, the strains are msbB−, Suwwan, zwf−, trxA− and gor−.
The technology also encompasses according to a preferred embodiment, gram-positive bacteria. Preferred bacteria of the technology are group B Streptococcus including S. agalaciae, Bifidobacterium sp, and Listeria species including L. monocytogenes. It is known to those skilled in the art that minor variations in molecular biology techniques such as use of gram-positive origins of replication, gram-positive signal sequences gram-positive promoters (e.g., Lactococcus expression, Mohamadzadeh et al., PNAS Mar. 17, 2009 vol. 106 no. 11 4331-4336; Geertsma and Poolman, 2007, High-throughput cloning and expression in recalcitrant bacteria, Nature Methods 4: 705-707; Prudhomme et al., 2006, Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae, Science 313: 89-92; WO/2009/139985 Methods and materials for gastrointestinal delivery of a pathogen toxin binding agent; van Asseldonk, M et al. 1990, Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363 Gene 95, 15-160; Kim et al., J Appl Microbiol. 2008 June; 104(6):1636-43. Epub 2008 Feb. 19. Display of heterologous proteins on the surface of Lactococcus lactis using the H and W domain of PrtB from Lactobacillus delburueckii subsp. bulgaricus as an anchoring matrix; Lee et al., 1999, Characterization of Enterococcus faecalis alkaline phosphatase and use in identifying Streptococcus agalactiae secreted proteins, J. Bacteriol 181(18):5790-9.) are required and substituted as needed.
Mutational backgrounds of Listeria vectors include those previously isolated, including the delta-actA strain 142 (Wallecha et al., 2009, Construction and characterization of an attenuated Listeria monocytogenes strain for clinical use in cancer immunotherapy, Clin Vaccine Immunol 16: 96-103), the double D-alanine (D-ala) strain described by Jiang et al., 2007, Vaccine 16: 7470-7479, Yoshimura et al., 2006, Cancer Research 66: 1096-1104, Lenz et al., 2008, Clinical and Vaccine Immunology 15: 1414-1419, Roberts et al., 2005, Definition of genetically distinct attenuation mechanisms in naturally virulent Listeria moncyogenes by comparative cell culture and molecular characterization, Appl. Environ. Microbiol 71: 3900-3910, the actA, prfA strain by Yan et al., Infect Immun 76: 3439-3450, and those described by Portnoy et al., EP1513924 and Portnoy et al., WO/2003/102168.
Mutational backgrounds of the group B Streptococcus, S. agalactiae, include wild type (no mutations), of any of the nine serotypes that depend on the immunologic reactivity of the polysaccharide capsule and among nine serotypes, preferably types Ia, Ib, II, III, and V capable of being invasive in humans. The strain may be deleted in the beta-hemolysin/cytolysin (beta-H/C), including any member of the cly operon, preferably the clyE gene, or the CspA protease associated with virulence (Shelver and Bryan, 2008, J Bacteriol. 136: 129-134), or the hyaluronate lyse C5a peptidase CAMP factor, oligopeptidase (Liu and Nizet 2004, Frontiers in Biosci 9: 1794-1802; Doran and Nizet 2004, Mol Microbiol 54: 23-31; Herbert et al., 2004, Curr Opin Infect Dis 17: 225-229). The strains may further have mutations in metabolic genes pur, purA, aroA, aroB, aroC, aroD, pgi (glucose-6-phosphate isomerase), fructose-1,6-bisphosphatase, ptsH, ptsI, and/or one or more amino acid transporters and/or amino acid permeases. In a preferred embodiment, the strain is clyE deficient.
Other bacterial strains are also encompassed, including non-pathogenic bacteria of the gut such as E. coli strains, Bacteroides, Bifidobacterium and Bacillus, attenuated pathogenic strains of E. coli including enteropathogenic and uropathogenic isolates, Enterococcus sp. and Serratia sp. as well as attenuated Shigella sp., Yersinia sp., Streptococcus sp. and Listeria sp.
Bacteria of low pathogenic potential to humans such as Clostridium spp. and attenuated Clostridium spp., Proteus mirabilis, insect pathogenic Xenorhabdus sp., Photorhabdus sp. and human wound Photorhabdus (Xenorhabdus) are also encompassed. Probiotic strains of bacteria are also encompassed, including Lactobacillus sp., Lactococcus sp., Leuconostoc sp., Pediococcus sp., Streptococcus sp., Streptococcus agalactiae, Lactococcus sp., Bacillus sp., Bacillus natto, Bifidobacterium sp., Bacteroides sp., and Escherichia coli such as the 1917 Nissel strain.
The technology also provides, according to one embodiment, a process for preparing genetically stable therapeutic bacterial strains comprising genetically engineering the therapeutic genes of interest into a bacterially codon optimized expression sequence within a bacterial plasmid expression vector, endogenous virulence (VIR) plasmid (of Salmonella sp.), or chromosomal localization expression vector for any of the deleted genes or IS200 genes, defective phage or intergenic regions within the strain and further containing engineered restriction endonuclease sites such that the bacterially codon optimized expression gene contains subcomponents which are easily and rapidly exchangeable, and the bacterial strains so produced. Administration of the strain to the patient is therapeutic for the treatment of cancer.
The present technology provides, for example, and without limitation, live bacterial compositions that are genetically engineered to express one or more protease inhibitors combined with antitumor effector molecules for the treatment of cancers or neoplasias.
According to various embodiments, the technology provides pharmaceutical compositions comprising pharmaceutically acceptable carriers and one or more bacterial mutants. The technology also provides pharmaceutical compositions comprising pharmaceutically acceptable carriers and one or more bacterial mutants comprising nucleotide sequences encoding one or more therapeutic molecules. The pharmaceutical compositions of the technology may be used in accordance with the methods of the technology for the prophylaxis or treatment of neoplastic disease. Preferably, the bacterial mutants are attenuated by introducing one or more mutations in one or more genes in the lipopolysaccharide (LPS) biosynthetic pathway (for gram-negative bacteria), and optionally one or more mutations to auxotrophy for one or more nutrients or metabolites.
In one embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes. In another embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules where the therapeutic molecule is chimeric toxin.
In one embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes. In another embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules where the therapeutic molecule is a molecule with direct anti-cancer lytic capability.
In one embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes. In another embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules where the therapeutic molecule has direct anti-cancer cytotoxic or inhibitory ability.
In one embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes. In another embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules where the therapeutic molecule has direct anti-cellular activity against other cells of a tumor, including neutrophils, macrophages, T-cells, stromal cells, endothelial cells (tumor vasculature) and/or cancer stem cells.
In one embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes. In another embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules co-expressed with a protease inhibitor.
In a specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein the bacterial mutants are a Salmonella sp. In another specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated stress-resistant gram-negative bacterial mutants, wherein the attenuated stress-resistant gram-negative bacterial mutants are a Salmonella sp., and the attenuated stress-resistant gram-negative bacterial mutants comprise one or more nucleic acid molecules encoding one or more therapeutic molecules, prodrug converting enzymes, metabolite degrading enzymes, lytic peptides, DNases or anti-cancer peptides.
In a specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein the bacterial mutants are a Streptococcus sp. In another specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated gram-positive bacterial mutants, wherein the attenuated gram-positive bacterial mutants are a Streptococcus sp., and the attenuated gram-positive bacterial mutants comprise one or more nucleic acid molecules encoding one or more therapeutic molecules, prodrug converting enzymes, metabolite degrading enzyme, lytic peptides, DNases or anti-cancer peptides.
In a specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein the bacterial mutants are a Listeria sp. In another specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein the attenuated gram-positive bacterial mutants are a Listeria sp., and the attenuated gram-positive bacterial mutants comprise one or more nucleic acid molecules encoding one or more therapeutic molecules, prodrug converting enzymes, metabolite degrading enzyme, lytic peptides, DNases or anti-cancer peptides.
The present technology, according to various embodiments, encompasses treatment protocols that provide a better therapeutic effect than current existing anticancer therapies. In particular, the present technology provides methods for prophylaxis or treatment of neoplastic diseases in a subject comprising administering to said subject and one or more bacterial mutants. The present technology also provides methods for the prophylaxis or treatment of neoplastic diseases in a subject comprising administering to said subject one or more bacterial mutants, wherein said bacterial mutants comprise one or more nucleic acid molecules encoding one or more therapeutic molecules together with one or more protease inhibitors.
The methods of the present technology, according to various embodiments, permit lower dosages and/or less frequent dosing of the bacterial mutants to be administered to a subject for prophylaxis or treatment of neoplastic disease to achieve a therapeutically effective amount of one or more therapeutic molecules. In a preferred embodiment, the genetically modified bacteria are used in animals, including humans, dogs, cats, and/or horses for protection or treatment against neoplastic diseases.
Accordingly, when administered to an individual, a live Salmonella, Listeria. Bifidobacterium or Streptococcus bacterial vector or therapeutic, in accordance with the present technology, that is genetically engineered to express one or more anti-neoplastic molecules or molecules against other cells within the neoplastic milieu, optionally in combination with a protease inhibitor, and have improved efficacy due to improved surface display, secretion and/or released of the modified chimeric therapeutic proteins and/or enhanced binding to the target receptor resulting enhanced therapeutic activity against a neoplastic tissue including solid tumors, lymphomas and leukemias.
The genetic construct or bacterium may be provided in a pharmaceutically acceptable dosage form, suitable for administration to a human or animal, without causing significant morbidity. The peptide may act as an antineoplastic agent, and the bacterium may be trophic for diseased or malignant growths. The dosage form may be oral, enteral, parenteral, intravenous, per anus, topical, or inhaled, for example. The peptide may comprise a combination of at least one secretion signal, a linker, and domain Ib.
A pharmaceutically effective dosage form may comprise between about 105 to 1012 live bacteria, within a lyophilized medium for oral administration. In some embodiments, about 109 live bacteria are administered.
The live host bacterium may have antineoplastic activity against lymphoma, or solid tumors.
The peptide may be, for example, a chimeric peptide with the modified cytolethal distending toxin with pertussis toxin S2 or S3, or with pltB:S2 or pltB:S3.
Another object of the technology provides a chimeric protease inhibitor comprising YebF fused to sunflower trypsin inhibitor, adapted to inhibit at least one serine protease. The chimeric protease inhibitor may be formed by a genetically engineered bacteria, wherein the genetically engineered bacteria secretes the YebF fused to sunflower trypsin inhibitor. The chimeric protease inhibitor may be provided in combination with a host bacteria and a genetically engineered construct which encodes the chimeric protease inhibitor, wherein the host bacteria secretes the chimeric protease inhibitor and the chimeric protease inhibitor inhibits at least one serine protease.
The present technology provides, according to various embodiments, live attenuated therapeutic bacterial strains that express one or more therapeutic with improved expression, secretion, surface display and/or release and/or have improved binding and anticancer cell activity that results in improved therapeutic efficacy. In particular, one aspect of the technology relates to live attenuated tumor-targeted bacterial strains that may include Salmonella, Streptococcus or Listeria vectoring novel chimeric anti-tumor toxins to an individual to elicit a therapeutic response against cancer. The types of cancer may generally include solid tumors, carcinomas, leukemias, lymphomas and multiple myelomas. Another aspect of the technology relates to live attenuated tumor-targeted bacterial strains that may include Salmonella, Streptococcus, Clostridium and Listeria that encode anti-neoplastic molecules to an individual to elicit a therapeutic response against cancers including cancer stem cells, immune infiltrating cells and or tumor matrix cells.
For reasons of clarity, the detailed description is divided into the following subsections: targeting ligands; chimeric bacterial toxins; and secreted protease inhibitors.
Targeting Ligands
Targeting ligands have specificity for the target cell and are used to both confer specificity to chimeric proteins, and to direct attachment and/or internalization into the target cell. The ligands are known ligands or may be novel ligands isolated through standard means such as phage display (Barbass III et al., 2004, Phage Display, A Laboratory Manual, Cold Spring Harbor Press) including the use of commercially available kits (Ph.D-7 Phage Display Library Kit, New England Biolabs, Ipswich, Mass.; Li et al., 2006. Molecular addresses of tumors: selection by in vivo phage display. Arch Immunol Ther Exp 54: 177-181). The ligands of various aspects of the present technology are peptides that can be expressed as fusions with other bacterially-expressed proteins. The peptides may be further modified, as for gastrin and bombesin, in being amidated by a peptidylglycine-alpha-amidating monoxygenase or C-terminal amidating enzyme, which is co-expressed in the bacteria that use these peptides using standard molecular genetic techniques. Examples of targeting peptides are shown in Bermudes U.S. Pat. No. 8,524,220 Table 4, incorporated by reference herein. These ligands and their targets include TGF-α (EGFR), HAVDI and INPISGQ and dimeric versions (N-cadherin of prostate), DUP-1 peptide (prostate cancer), laminin-411 binding peptides (brain neovasculature), pertussis toxin S3 subunit (cancer cells), DARPINS (e.g., H10, HER2), affibody against Her2 (Zielenski, R., Lyakhov, I., Jacobs, A., Chertov, O., Kramer-Marek, G., Francella, N., Stephen, A., Fisher, R., Blumenthal, R., and Capala, J. Affitoxin—A Novel Recombinant, HER2-Specific, Anti-Cancer Agent for Targeted Therapy of HER2-Positive Tumors. J Immunother. 2009 October; 32(8):817-825) luteinizing hormone-releasing hormone (LHRH receptor), IL2 (IL2R), EGF and EGF receptor related peptide (EGFR), tissue factor (TfR), IL4 (IL4R), IL134 (IL13R), GM-CSF (GM-CSFR), CAYHRLRRC SEQ ID NO: 029 (lymphoid tissue; AML), A33 antigen binding peptide (A33) CLTA-4/CD152 melanoma, CD19 binding peptides/Bpep (alpha(v) beta(6) integrin (αvβ6), non-Hodgkin lymphoma, chronic lymphocytic leukemia (CLL) and acute lymphocytic leukemia (ALL)), CD20 binding peptides (CD20, B-cell malignancies), CD22 binding peptides (B lymphocytes, hairy cell leukemia), CD25 binding peptides (chemotherapy-resistant human leukemia stem cells), TRU-015 (CD-20), CD30 binding peptides (CD-30 Hodgkin's lymphoma), CD32 binding peptides (chemotherapy resistant human leukemia stem cells), CD33 binding peptides (CD-33 AML myleodysplastic cells MDS)), CD37 binding peptides (leukemia and lymphoma), CD40 binding peptides (CD40 multiple myeloma, non-Hodgkin lymphoma, chronic lymphocytic leukemia (CLL), Hodgkin lymphoma and acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma, refractory non-Hodgkin lymphoma, including follicular lymphoma), CD52 (CLL), CD55 (CD55R), CD70 (hematological malignancies, non-Hodgkin's lymphoma), CD123 binding peptides (AML), RGD peptides (tumor cells and tumor endothelium), nanobodies derived from camels and llamas (camelids), including humanized nanobodies and VHH recognition domains (cancer), bombesin (gastrin releasing peptide receptor), gastrin releasing peptide (gastrin releasing peptide receptor), somatostatin octapeptide RC-121 (colon cancer), vasoactive intestinal peptide (tumor cell membranes), PTHrP (parathyroid hormone receptor G-protein coupled receptor), mesothelin binding peptides (mesothelin), CA125/MUC16 (mesothelin), heat stable enterotoxin (HST) (guanylyl cyclase C), GM-CSF (AML), vitronectin (Alfa(V)Beta(3) integrin), gastrin (gastrin receptor), CQTIDGKKYYFN SEQ ID NO: 030 peptide from Clostridium, affibody against HER3, DARPIN against HER2, TGFα, EGF, EGFR-binding peptides and other, non-limiting, peptides. In preferred embodiments, the peptides are affibody against HER2, H10 DARPIN against HER2, TGFα, EGF, EGFR-binding peptides.
Chimeric Bacterial Toxins
Chimeric toxins are toxins that may contain combinations of elements including targeting peptides, flexible linkers, disulfide bonding, lytic peptides, nuclear localization signals, blocking peptides, protease cleavage (deactivation or activation) sites, N- or C-terminal secretion signals, autotransporter constructs, used to adapt the proteins to be expressed, secreted, surface displayed and/or released by bacteria to provide therapeutic molecules that are effective in treating neoplastic cells, stromal cells, neoplastic stem cells as well as immune infiltrating cells. Targeting to a particular cell type uses the appropriate ligand described above or from other known sources. Toxin activity is determined using standard methods known to those skilled in the art such as Aktories (ed) 1997 (Bacterial Toxins, Tools In Cell Biology and Pharmacology, Laboratory Companion, Chapman & Hall).
Chimeric Cytolethal Distending Toxins.
Cytolethal distending toxins (cldt) including those cldts from Haemophilus, Aggregatibacter, Salmonella, Escherichia, Shigella, Campylobacter, Helicobacter, Hahella and Yersinia, typhoid toxins (pertussis like toxin) (pltAB), pertussis toxin, cldt:plt hybrids are three component toxins of these bacteria. Cldt is an endonuclease toxin and has a nuclear localization signal on the B subunit. Chimeric toxins are provided that utilize N-terminal or C-terminal fusions to apoptin, a canary virus protein that has a tumor-specific nuclear localization signal, and a normal (non-transformed) cell nuclear export signal.
Overall improvement is defined as an increase in effect, such as the ability to kill a neoplastic cells in vitro by the bacteria, or the selective ability inhibit or reduce the volume or cell number of a solid tumor, carcinoma, lymphoma or leukemia in vivo following administration with the bacteria expressing a therapeutic molecule, with and without the protease inhibitor. The effect of the protein therapeutic activity is determined using standard techniques and assays known to those skilled in the art. The contribution of the therapeutic protein and protease inhibitors is determined individually and in combination. Additivity, synergy or antagonism may be determined using the median effect analysis (Chou and Talaly 1981 Eur. J. Biochem. 115: 207-216) or other standard methods.
In order to more fully illustrate the technology, the following examples are provided.
A Salmonella Expression Vector.
Inducible expression vectors for E. coli and Salmonella, such as arabinose inducible expression vectors, are widely available and known to those skilled in the art. By way of example, an expression vector typically contains a promoter which functions to generate an mRNA from the DNA, such as an inducible arabinose promoter with a functional ribosomal binding site (RBS) an initiation codon (ATG) and suitable cloning sites for operable insertion of the functional DNA encoding the effector proteins described below into the vector, followed by a transcriptional termination site, plasmid origin of replication, and an antibiotic resistance factor that allows selection for the plasmid. Vectors that lack antibiotic resistance such as asd(−) balanced lethal vectors (Galan et al., 1990 cloning and characterization of the asd gene of Salmonella Typhimurium: use in stable maintenance of recombinant Salmonella vaccine strains, Gene 94: 29-35) may also be used, or insertion into the chromosome.
Cytolethal distending toxin of Salmonella with pltB replaced by Bordetella pertussis S2 or S3 proteins, or by pltB:S2 or pltB:S3 hybrids, or E. coli subtilase hybrids.
The three protein artificial operon, with or without C- or N-terminal fusions containing apoptin, may be further modified by replacing the pltB with pertussis S2 or S3 subunits, increasing specificity for tumor-cells and/or macrophage/monocytes that would eliminate the bacteria.
The pAES40 YebF sequence is:
Combinations of Tumor-Targeted Salmonella with a tumor-penetrating peptide as a YebF fusion.
Treatment with tumor targeted Salmonella may be enhanced with combinations including bacteria that express one or more tumor-penetrating peptides. Methods of expression on plasmids or inserted into the chromosome are described above.
A fusion of YebF using a commercially available yebF gene (pAES40; Athena Enzyme Systems), wherein a trypsin cleavage site of leucine and lysine amino acids (in bold) that results in release of the peptide during secretion/release is followed by the sequence of the tumor-penetrating peptide:
Combinations of Tumor-Targeted Salmonella with a tumor-penetrating peptide as a Pseudomonas ice nucleation protein fusion.
Treatment with tumor targeted Salmonella may be enhanced with combinations including expression of a tumor-penetrating peptides. Methods of expression on plasmids or inserted into the chromosome are described above.
A fusion with the Pseudomonas ice nucleation protein (INP) methods known to those skilled in the art, wherein the N- and C-terminus of INP with an internal deletion consisting of the first 308 amino acids is followed by the mature sequence of the tumor-penetrating peptide is inserted in-frame tor result in the amino acid sequence:
While the invention is shown by way of various examples and explanations, it should be understood that this specification and the drawings are intended to encompass the various combinations, sub-combinations, and permutations of the various features disclosed, and not limited by the particular combinations and sequences presented by way of example.
The present application is a non-provisional of, and claims benefit of priority from U.S. Provisional Patent Application Ser. No. 62/431,208, filed Dec. 7, 2016, the entirety of which is expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4436727 | Ribi | Mar 1984 | A |
4703008 | Lin | Oct 1987 | A |
4906567 | Connelly | Mar 1990 | A |
5021234 | Ehrenfeld | Jun 1991 | A |
D320325 | Barfield | Oct 1991 | S |
5057417 | Hammonds et al. | Oct 1991 | A |
5087569 | Gabay et al. | Feb 1992 | A |
5098833 | Lasky et al. | Mar 1992 | A |
5116964 | Capon et al. | May 1992 | A |
5126257 | Gabay et al. | Jun 1992 | A |
5143830 | Holland et al. | Sep 1992 | A |
5202422 | Hiatt et al. | Apr 1993 | A |
5223409 | Ladner et al. | Jun 1993 | A |
5238839 | Cantor et al. | Aug 1993 | A |
5250515 | Fuchs et al. | Oct 1993 | A |
5278049 | Baker et al. | Jan 1994 | A |
5281530 | Sick et al. | Jan 1994 | A |
5290914 | Wilcox et al. | Mar 1994 | A |
5316933 | Yoshimatsu et al. | May 1994 | A |
5318900 | Habuka et al. | Jun 1994 | A |
5328985 | Sano et al. | Jul 1994 | A |
5338724 | Gabay et al. | Aug 1994 | A |
5344762 | Karapetian | Sep 1994 | A |
5354675 | Iida et al. | Oct 1994 | A |
5356795 | Leonard et al. | Oct 1994 | A |
5356804 | Desnick et al. | Oct 1994 | A |
5376567 | McCormick et al. | Dec 1994 | A |
5382524 | Desnick et al. | Jan 1995 | A |
5387676 | Zavada et al. | Feb 1995 | A |
5387744 | Curtiss, III et al. | Feb 1995 | A |
5389368 | Gurtiss, III | Feb 1995 | A |
5399490 | Balganesh et al. | Mar 1995 | A |
5403484 | Ladner et al. | Apr 1995 | A |
5424065 | Curtiss, III et al. | Jun 1995 | A |
5439808 | Blake et al. | Aug 1995 | A |
5455165 | Capon et al. | Oct 1995 | A |
5460961 | Deby et al. | Oct 1995 | A |
5466463 | Ford | Nov 1995 | A |
5466672 | Kushnaryov et al. | Nov 1995 | A |
5468485 | Curtiss, III | Nov 1995 | A |
5470719 | Meng et al. | Nov 1995 | A |
5491075 | Desnick et al. | Feb 1996 | A |
5492702 | Domingues | Feb 1996 | A |
5495001 | McGrogan et al. | Feb 1996 | A |
5506139 | Loosmore et al. | Apr 1996 | A |
5508192 | Georgiou et al. | Apr 1996 | A |
5514582 | Capon et al. | May 1996 | A |
5525502 | Thireos et al. | Jun 1996 | A |
5543312 | Mellors et al. | Aug 1996 | A |
5545553 | Gotschlich | Aug 1996 | A |
5569597 | Grimsley et al. | Oct 1996 | A |
5571544 | Domingues | Nov 1996 | A |
5571698 | Ladner et al. | Nov 1996 | A |
5583010 | Baumbach et al. | Dec 1996 | A |
5585232 | Farr | Dec 1996 | A |
5585269 | Earp, III et al. | Dec 1996 | A |
5589337 | Farr | Dec 1996 | A |
5591641 | Thorner et al. | Jan 1997 | A |
5593882 | Erbe et al. | Jan 1997 | A |
5602030 | Ingrahm et al. | Feb 1997 | A |
5604115 | Sladek et al. | Feb 1997 | A |
5604201 | Thomas et al. | Feb 1997 | A |
5624832 | Fukuda et al. | Apr 1997 | A |
5631150 | Harkki et al. | May 1997 | A |
5631156 | Xiong et al. | May 1997 | A |
5631228 | Oppenheim et al. | May 1997 | A |
5635484 | Ayres et al. | Jun 1997 | A |
5651965 | Payne | Jul 1997 | A |
5656436 | Loosmore et al. | Aug 1997 | A |
5665353 | Loosmore et al. | Sep 1997 | A |
5665357 | Rose et al. | Sep 1997 | A |
5683868 | LaRossa et al. | Nov 1997 | A |
5705151 | Dow et al. | Jan 1998 | A |
5712369 | Old et al. | Jan 1998 | A |
5726037 | Bodary et al. | Mar 1998 | A |
5731163 | Vandyk et al. | Mar 1998 | A |
5733760 | Lu et al. | Mar 1998 | A |
5747287 | Blake et al. | May 1998 | A |
5747326 | Gerardy-Schahn et al. | May 1998 | A |
5747659 | Fioretti et al. | May 1998 | A |
5767241 | McEver | Jun 1998 | A |
5770420 | Lowe et al. | Jun 1998 | A |
5776755 | Alitalo et al. | Jul 1998 | A |
5783431 | Peterson et al. | Jul 1998 | A |
5786179 | Kousoulas et al. | Jul 1998 | A |
5786186 | Lancashire et al. | Jul 1998 | A |
5824485 | Thompson et al. | Oct 1998 | A |
5824502 | Honjo et al. | Oct 1998 | A |
5824509 | Aggarwal et al. | Oct 1998 | A |
5824538 | Branstrom et al. | Oct 1998 | A |
5830702 | Portnoy et al. | Nov 1998 | A |
5837488 | Garfinkel et al. | Nov 1998 | A |
5837500 | Ladner et al. | Nov 1998 | A |
5843707 | Larsen et al. | Dec 1998 | A |
5849702 | Garfinkel et al. | Dec 1998 | A |
5863758 | Oppermann et al. | Jan 1999 | A |
5869302 | Loosmore et al. | Feb 1999 | A |
5877159 | Powell et al. | Mar 1999 | A |
5879686 | Blake et al. | Mar 1999 | A |
5902742 | Petter et al. | May 1999 | A |
5912141 | Brojatsch et al. | Jun 1999 | A |
5912230 | Oppenheim et al. | Jun 1999 | A |
5925521 | Bandman et al. | Jul 1999 | A |
5928892 | Hourcade et al. | Jul 1999 | A |
5935573 | Loosmore et al. | Aug 1999 | A |
5939297 | Loosmore et al. | Aug 1999 | A |
5945102 | de Faire et al. | Aug 1999 | A |
5945322 | Gotschlich | Aug 1999 | A |
5955347 | Lowe | Sep 1999 | A |
5958406 | de Faire et al. | Sep 1999 | A |
5962430 | Loosmore et al. | Oct 1999 | A |
5965382 | Koths et al. | Oct 1999 | A |
5965385 | Read et al. | Oct 1999 | A |
5965415 | Radman et al. | Oct 1999 | A |
5976852 | Cheng et al. | Nov 1999 | A |
5977304 | Read et al. | Nov 1999 | A |
5981503 | Loosmore et al. | Nov 1999 | A |
5989868 | Harrison et al. | Nov 1999 | A |
5993827 | Sim et al. | Nov 1999 | A |
5994625 | Melchers et al. | Nov 1999 | A |
5997881 | Powell et al. | Dec 1999 | A |
6004562 | Campagnari | Dec 1999 | A |
6005089 | Lanza et al. | Dec 1999 | A |
6017743 | Tsuji et al. | Jan 2000 | A |
6018022 | Read et al. | Jan 2000 | A |
6020183 | Loosmore et al. | Feb 2000 | A |
6022729 | Steinbuchel et al. | Feb 2000 | A |
6022855 | Thomas et al. | Feb 2000 | A |
6025183 | Soreq et al. | Feb 2000 | A |
6025342 | Loosmore et al. | Feb 2000 | A |
6030612 | de Faire et al. | Feb 2000 | A |
6030624 | Russell et al. | Feb 2000 | A |
6030780 | Vinkemeier et al. | Feb 2000 | A |
6033663 | Ketcham et al. | Mar 2000 | A |
6033890 | Jakobovits et al. | Mar 2000 | A |
6037123 | Benton et al. | Mar 2000 | A |
6037159 | Uchimura et al. | Mar 2000 | A |
6037526 | Grimsley et al. | Mar 2000 | A |
6040156 | Kawasaki et al. | Mar 2000 | A |
6051237 | Paterson | Apr 2000 | A |
6054309 | Hirabayashi et al. | Apr 2000 | A |
6054312 | Larocca et al. | Apr 2000 | A |
6069127 | Koths et al. | May 2000 | A |
6074840 | Bonadio et al. | Jun 2000 | A |
6080849 | Bermudes et al. | Jun 2000 | A |
6083688 | Lanza et al. | Jul 2000 | A |
6090567 | Jakobovits et al. | Jul 2000 | A |
6090582 | Kikly et al. | Jul 2000 | A |
6093539 | Maddon et al. | Jul 2000 | A |
6096529 | Gilbert et al. | Aug 2000 | A |
6110899 | Lonetto | Aug 2000 | A |
6111089 | Fukuda | Aug 2000 | A |
6114125 | Loosmore et al. | Sep 2000 | A |
6117651 | Schultz et al. | Sep 2000 | A |
6117977 | Lasky et al. | Sep 2000 | A |
6124446 | Hillman et al. | Sep 2000 | A |
6143551 | Goebel | Nov 2000 | A |
6146845 | Kikly et al. | Nov 2000 | A |
6146849 | Pierce et al. | Nov 2000 | A |
6147057 | Loosmore et al. | Nov 2000 | A |
6150170 | Powell et al. | Nov 2000 | A |
6153580 | Loosmore et al. | Nov 2000 | A |
6166290 | Rea et al. | Dec 2000 | A |
6177083 | Lubitz | Jan 2001 | B1 |
6187541 | Benton et al. | Feb 2001 | B1 |
6190657 | Pawelek et al. | Feb 2001 | B1 |
6200779 | Lonetto | Mar 2001 | B1 |
6207156 | Kuchroo et al. | Mar 2001 | B1 |
6207417 | Zsebo et al. | Mar 2001 | B1 |
6207427 | Hashimoto et al. | Mar 2001 | B1 |
6207648 | Waxman et al. | Mar 2001 | B1 |
6218148 | Zsebo et al. | Apr 2001 | B1 |
6228588 | Benton et al. | May 2001 | B1 |
6232110 | Pallas et al. | May 2001 | B1 |
6238914 | Boyce | May 2001 | B1 |
6242210 | Bjorck et al. | Jun 2001 | B1 |
6242211 | Peterson et al. | Jun 2001 | B1 |
6245892 | Oaks et al. | Jun 2001 | B1 |
6248329 | Chandrashekar et al. | Jun 2001 | B1 |
6251406 | Haefliger et al. | Jun 2001 | B1 |
6261800 | Nikolics et al. | Jul 2001 | B1 |
6268193 | Lowe | Jul 2001 | B1 |
6271011 | Lee et al. | Aug 2001 | B1 |
6271368 | Lentzen et al. | Aug 2001 | B1 |
6274339 | Moore et al. | Aug 2001 | B1 |
6277379 | Oaks et al. | Aug 2001 | B1 |
6277574 | Walker et al. | Aug 2001 | B1 |
6280989 | Kapitonov et al. | Aug 2001 | B1 |
6284493 | Roth | Sep 2001 | B1 |
6302685 | Lobel et al. | Oct 2001 | B1 |
6303571 | Lonetto | Oct 2001 | B1 |
6310046 | Duffy et al. | Oct 2001 | B1 |
6312907 | Guo et al. | Nov 2001 | B1 |
6316609 | Dillon et al. | Nov 2001 | B1 |
6329002 | Kim et al. | Dec 2001 | B1 |
6331413 | Adler et al. | Dec 2001 | B1 |
6333182 | Coleman et al. | Dec 2001 | B1 |
6338953 | Boyce et al. | Jan 2002 | B1 |
6338955 | Oguri et al. | Jan 2002 | B2 |
6342382 | Gotschlich | Jan 2002 | B1 |
6348344 | Ayal-Hershkovitz et al. | Feb 2002 | B1 |
6355790 | Rosenblatt et al. | Mar 2002 | B1 |
6358724 | Wong-Madden et al. | Mar 2002 | B1 |
6365381 | Hashimoto et al. | Apr 2002 | B2 |
6375947 | Bolen et al. | Apr 2002 | B1 |
6376234 | Grimsley et al. | Apr 2002 | B1 |
6379913 | Bandman et al. | Apr 2002 | B1 |
6383496 | Curtiss, III et al. | May 2002 | B1 |
6387648 | Levi et al. | May 2002 | B1 |
6387702 | Stemmer | May 2002 | B1 |
6399326 | Chiang et al. | Jun 2002 | B1 |
6399336 | Paulson et al. | Jun 2002 | B1 |
6410012 | Sizemore et al. | Jun 2002 | B1 |
6416988 | Conklin et al. | Jul 2002 | B1 |
6420135 | Kunsch et al. | Jul 2002 | B1 |
6420149 | Fukuda et al. | Jul 2002 | B1 |
6420527 | Bolen et al. | Jul 2002 | B1 |
6423525 | Landry | Jul 2002 | B1 |
6428999 | Ito et al. | Aug 2002 | B1 |
6436687 | Yu et al. | Aug 2002 | B1 |
6447777 | Terman et al. | Sep 2002 | B1 |
6447784 | Bermudes et al. | Sep 2002 | B1 |
6455288 | Jakobovits et al. | Sep 2002 | B1 |
6458573 | Landry | Oct 2002 | B1 |
6472518 | Ribot et al. | Oct 2002 | B1 |
6475482 | Bermudes et al. | Nov 2002 | B1 |
6475763 | Ayal-Hershkovitz et al. | Nov 2002 | B1 |
6482647 | Stemmer | Nov 2002 | B1 |
6492152 | Canfield et al. | Dec 2002 | B1 |
6500419 | Hone et al. | Dec 2002 | B1 |
6503744 | Gilbert et al. | Jan 2003 | B1 |
6506550 | Fulton et al. | Jan 2003 | B1 |
6514724 | McMahon et al. | Feb 2003 | B1 |
6521439 | Folkman et al. | Feb 2003 | B2 |
6524792 | Renner et al. | Feb 2003 | B1 |
6524820 | Pierce et al. | Feb 2003 | B1 |
6531306 | Hockensmith et al. | Mar 2003 | B1 |
6534311 | Stewart et al. | Mar 2003 | B2 |
6537558 | Kaniga | Mar 2003 | B2 |
6548287 | Powell et al. | Apr 2003 | B1 |
6551795 | Rubenfield et al. | Apr 2003 | B1 |
6555343 | DeSauvage et al. | Apr 2003 | B1 |
6558953 | Gonsalves et al. | May 2003 | B1 |
6570000 | Maddon et al. | May 2003 | B1 |
6573082 | Choi et al. | Jun 2003 | B1 |
6582948 | Bolen et al. | Jun 2003 | B1 |
6582950 | Smith et al. | Jun 2003 | B1 |
6585975 | Kleanthous et al. | Jul 2003 | B1 |
6605286 | Steidler et al. | Aug 2003 | B2 |
6605592 | Ni et al. | Aug 2003 | B2 |
6605697 | Kwon et al. | Aug 2003 | B1 |
6607897 | Vogel et al. | Aug 2003 | B2 |
6630303 | Benton et al. | Oct 2003 | B1 |
6632935 | Shigenobu et al. | Oct 2003 | B2 |
6635246 | Barrett et al. | Oct 2003 | B1 |
6635468 | Ashkenazi et al. | Oct 2003 | B2 |
6638718 | Benton et al. | Oct 2003 | B1 |
6638912 | Bhatnagar et al. | Oct 2003 | B2 |
6642041 | Chen et al. | Nov 2003 | B2 |
6646113 | Dreyfuss et al. | Nov 2003 | B1 |
6673915 | Luster et al. | Jan 2004 | B1 |
6680187 | Moeckel et al. | Jan 2004 | B2 |
6680374 | Oaks et al. | Jan 2004 | B2 |
6682729 | Powell et al. | Jan 2004 | B1 |
6682910 | Powell | Jan 2004 | B2 |
6685935 | Pawelek et al. | Feb 2004 | B1 |
6689586 | Moeckel et al. | Feb 2004 | B2 |
6689604 | Gilbert et al. | Feb 2004 | B1 |
6693183 | Natsuka et al. | Feb 2004 | B2 |
6696411 | MacLeod | Feb 2004 | B1 |
6699705 | Gilbert et al. | Mar 2004 | B2 |
6703223 | Bathe et al. | Mar 2004 | B2 |
6703233 | Galen | Mar 2004 | B1 |
6709656 | Boren et al. | Mar 2004 | B1 |
6709830 | Witte et al. | Mar 2004 | B2 |
6709834 | Gilbert et al. | Mar 2004 | B2 |
6713277 | Moore et al. | Mar 2004 | B1 |
6716582 | Gonye et al. | Apr 2004 | B2 |
6720410 | Cerny et al. | Apr 2004 | B2 |
6723540 | Harkki et al. | Apr 2004 | B1 |
6727086 | Bathe et al. | Apr 2004 | B2 |
6734002 | Bathe et al. | May 2004 | B2 |
6743893 | Engler et al. | Jun 2004 | B2 |
6746671 | Steidler et al. | Jun 2004 | B2 |
6746854 | Bathe et al. | Jun 2004 | B2 |
6753164 | Ni et al. | Jun 2004 | B2 |
6759215 | Zsebo et al. | Jul 2004 | B1 |
6759224 | Wick et al. | Jul 2004 | B2 |
6759230 | Bulla, Jr. et al. | Jul 2004 | B1 |
6770466 | Shi et al. | Aug 2004 | B2 |
6770632 | Aghi et al. | Aug 2004 | B1 |
6777206 | Wick et al. | Aug 2004 | B2 |
6780405 | Curtiss, III et al. | Aug 2004 | B1 |
6780624 | Gotschlich | Aug 2004 | B2 |
6783966 | Kojima et al. | Aug 2004 | B1 |
6783967 | Moeckel et al. | Aug 2004 | B2 |
6783971 | Coleman et al. | Aug 2004 | B2 |
6784164 | Masure et al. | Aug 2004 | B2 |
6787643 | Dillon et al. | Sep 2004 | B2 |
6797509 | Dunican et al. | Sep 2004 | B1 |
6803192 | Chen | Oct 2004 | B1 |
6812006 | Moeckel et al. | Nov 2004 | B2 |
6818449 | Fong et al. | Nov 2004 | B2 |
6822071 | Stephens et al. | Nov 2004 | B1 |
6822085 | Farwick et al. | Nov 2004 | B2 |
6825019 | Gilbert et al. | Nov 2004 | B2 |
6825029 | Dunican et al. | Nov 2004 | B2 |
6825030 | Mockel et al. | Nov 2004 | B2 |
6828121 | Chen | Dec 2004 | B2 |
6828146 | Desnoyers et al. | Dec 2004 | B2 |
6828419 | Adler et al. | Dec 2004 | B2 |
6831060 | DeSauvage et al. | Dec 2004 | B2 |
6833130 | Paton et al. | Dec 2004 | B1 |
6833253 | Choi | Dec 2004 | B2 |
6833255 | Stewart et al. | Dec 2004 | B1 |
6838267 | Moeckel et al. | Jan 2005 | B2 |
6841535 | Divita et al. | Jan 2005 | B2 |
6841718 | Alberte et al. | Jan 2005 | B2 |
6844176 | Bathe et al. | Jan 2005 | B1 |
6844178 | Bolen et al. | Jan 2005 | B2 |
6846667 | Crooke et al. | Jan 2005 | B1 |
6858407 | Feder et al. | Feb 2005 | B2 |
6858415 | Coleman et al. | Feb 2005 | B2 |
6861231 | Shao | Mar 2005 | B2 |
6863894 | Bermudes et al. | Mar 2005 | B2 |
6872526 | Short et al. | Mar 2005 | B2 |
6875586 | Moeckel et al. | Apr 2005 | B2 |
6887663 | Choi et al. | May 2005 | B1 |
6890744 | Bathe et al. | May 2005 | B2 |
6902916 | Moeckel et al. | Jun 2005 | B2 |
6902932 | Altman et al. | Jun 2005 | B2 |
6905867 | Gilbert et al. | Jun 2005 | B2 |
6911337 | Gilbert et al. | Jun 2005 | B2 |
6913906 | Bolen et al. | Jul 2005 | B2 |
6913908 | Mockel et al. | Jul 2005 | B2 |
6913919 | Botstein et al. | Jul 2005 | B2 |
6916636 | Marx et al. | Jul 2005 | B2 |
6916648 | Goddard et al. | Jul 2005 | B2 |
6916918 | Yu et al. | Jul 2005 | B2 |
6921651 | Farwick et al. | Jul 2005 | B2 |
6921659 | Joly | Jul 2005 | B2 |
6923972 | Bermudes et al. | Aug 2005 | B2 |
6924134 | Wick et al. | Aug 2005 | B2 |
6927052 | Bathe et al. | Aug 2005 | B2 |
6929930 | Choi et al. | Aug 2005 | B2 |
6936448 | Holmes et al. | Aug 2005 | B2 |
6939692 | Bathe et al. | Sep 2005 | B2 |
6939694 | Mockel et al. | Sep 2005 | B2 |
6939695 | Moeckel et al. | Sep 2005 | B2 |
6943001 | Zhao et al. | Sep 2005 | B2 |
6943241 | Isogai et al. | Sep 2005 | B2 |
6946262 | Ferrara et al. | Sep 2005 | B2 |
6946271 | Farwick et al. | Sep 2005 | B2 |
6949372 | Betenbaugh et al. | Sep 2005 | B2 |
6951737 | Desnoyers et al. | Oct 2005 | B2 |
6951738 | Ni et al. | Oct 2005 | B2 |
6955953 | Yamazaki et al. | Oct 2005 | B2 |
6962696 | Bermudes et al. | Nov 2005 | B1 |
6962800 | Kiy et al. | Nov 2005 | B2 |
6972185 | Desnoyers et al. | Dec 2005 | B2 |
6972186 | Desnoyers et al. | Dec 2005 | B2 |
6974689 | Ashkenazi et al. | Dec 2005 | B1 |
6974696 | Botstein et al. | Dec 2005 | B2 |
6974893 | Shanklin et al. | Dec 2005 | B2 |
6979538 | Ladner et al. | Dec 2005 | B2 |
6979556 | Simmons et al. | Dec 2005 | B2 |
6979733 | Zhao et al. | Dec 2005 | B2 |
6987176 | Guerry et al. | Jan 2006 | B1 |
6995000 | Bathe et al. | Feb 2006 | B2 |
6995002 | Molenaar et al. | Feb 2006 | B2 |
7001884 | Komiyama et al. | Feb 2006 | B2 |
7015027 | Redshaw | Mar 2006 | B1 |
7018811 | Botstein et al. | Mar 2006 | B2 |
7019124 | Desnoyers et al. | Mar 2006 | B2 |
7022498 | Desnoyers et al. | Apr 2006 | B2 |
7026158 | Farwick et al. | Apr 2006 | B2 |
7026449 | Baker et al. | Apr 2006 | B2 |
7029875 | Desnoyers et al. | Apr 2006 | B2 |
7029904 | Farwick et al. | Apr 2006 | B2 |
7033785 | Desnoyers et al. | Apr 2006 | B2 |
7033786 | Baker et al. | Apr 2006 | B2 |
7033825 | Goddard et al. | Apr 2006 | B2 |
7033991 | Lindberg et al. | Apr 2006 | B2 |
7034136 | Goddard et al. | Apr 2006 | B2 |
7037679 | Desnoyers et al. | May 2006 | B2 |
7037689 | Bathe et al. | May 2006 | B2 |
7037710 | Goddard et al. | May 2006 | B2 |
7038034 | Farwick et al. | May 2006 | B2 |
7041441 | Steven et al. | May 2006 | B1 |
7041814 | Weinstock et al. | May 2006 | B1 |
7045122 | Nuijten et al. | May 2006 | B2 |
7049096 | Feder et al. | May 2006 | B2 |
7049106 | Farwick et al. | May 2006 | B2 |
7052889 | Jenuwein et al. | May 2006 | B2 |
7056510 | Choi et al. | Jun 2006 | B1 |
7056700 | Galen | Jun 2006 | B2 |
7056721 | Dunn-Coleman et al. | Jun 2006 | B2 |
7056736 | Ashkenazi et al. | Jun 2006 | B2 |
7056737 | Feder et al. | Jun 2006 | B2 |
7060475 | Usuda et al. | Jun 2006 | B2 |
7060479 | Edwards et al. | Jun 2006 | B2 |
7060812 | Desnoyers et al. | Jun 2006 | B2 |
7067288 | Molenaar et al. | Jun 2006 | B2 |
7067306 | Singhvi et al. | Jun 2006 | B2 |
7070979 | Botstein et al. | Jul 2006 | B2 |
7074589 | Ullrich et al. | Jul 2006 | B1 |
7074592 | Ashkenazi et al. | Jul 2006 | B2 |
7078185 | Farnet et al. | Jul 2006 | B2 |
7078186 | Ni et al. | Jul 2006 | B2 |
7078204 | Yokoi et al. | Jul 2006 | B2 |
7078207 | Gilbert et al. | Jul 2006 | B2 |
7078502 | Moeckel et al. | Jul 2006 | B2 |
7083791 | Sleeman et al. | Aug 2006 | B2 |
7083794 | Curtiss, III et al. | Aug 2006 | B2 |
7083942 | Bathe et al. | Aug 2006 | B2 |
7083946 | Baker et al. | Aug 2006 | B2 |
7083978 | Desnoyers et al. | Aug 2006 | B2 |
7084105 | Chakrabarty et al. | Aug 2006 | B2 |
7087404 | Desnoyers et al. | Aug 2006 | B2 |
7087738 | Botstein et al. | Aug 2006 | B2 |
7091315 | Ruben et al. | Aug 2006 | B1 |
7094563 | Wong-Madden et al. | Aug 2006 | B2 |
7094567 | Ashkenazi et al. | Aug 2006 | B2 |
7094572 | Ramanathan et al. | Aug 2006 | B2 |
7101690 | Moeckel et al. | Sep 2006 | B2 |
7105302 | Bathe et al. | Sep 2006 | B2 |
7105321 | Moeckel et al. | Sep 2006 | B2 |
7109033 | Harper et al. | Sep 2006 | B2 |
7109315 | Bryan et al. | Sep 2006 | B2 |
7115402 | Feder et al. | Oct 2006 | B2 |
7118879 | Ladner et al. | Oct 2006 | B2 |
7119193 | Gottesman et al. | Oct 2006 | B2 |
7122185 | Olson et al. | Oct 2006 | B2 |
7122358 | Feder et al. | Oct 2006 | B2 |
7122367 | Milcamps et al. | Oct 2006 | B2 |
7122375 | Goddard et al. | Oct 2006 | B2 |
7125548 | Smith | Oct 2006 | B2 |
7125718 | Powell et al. | Oct 2006 | B2 |
7129066 | Farwick et al. | Oct 2006 | B2 |
7129085 | Feder et al. | Oct 2006 | B2 |
7132283 | Fong et al. | Nov 2006 | B2 |
7135313 | Bathe et al. | Nov 2006 | B2 |
7138252 | Bachmann et al. | Nov 2006 | B2 |
7138258 | Gilbert et al. | Nov 2006 | B2 |
7138259 | Beavo et al. | Nov 2006 | B2 |
7141418 | Kunsch et al. | Nov 2006 | B2 |
7144724 | Wick et al. | Dec 2006 | B2 |
7153678 | Jackson et al. | Dec 2006 | B2 |
7160703 | Moeckel et al. | Jan 2007 | B2 |
7160711 | Bathe et al. | Jan 2007 | B2 |
7163797 | Ruben et al. | Jan 2007 | B2 |
7166702 | McDonald et al. | Jan 2007 | B1 |
7169565 | Ruben et al. | Jan 2007 | B2 |
7169912 | Desnoyers et al. | Jan 2007 | B2 |
7173105 | Moeckel et al. | Feb 2007 | B2 |
7183379 | Feder et al. | Feb 2007 | B2 |
7186564 | Chen et al. | Mar 2007 | B2 |
7189529 | Ashkenazi et al. | Mar 2007 | B2 |
7189530 | Botstein et al. | Mar 2007 | B2 |
7189539 | Ramanathan et al. | Mar 2007 | B2 |
7189836 | Gilbert et al. | Mar 2007 | B2 |
7192933 | Boyce | Mar 2007 | B1 |
7195754 | Glatkowski et al. | Mar 2007 | B1 |
7195757 | Curtiss, III et al. | Mar 2007 | B2 |
7198912 | Ramanathan et al. | Apr 2007 | B2 |
7202056 | Lee et al. | Apr 2007 | B2 |
7202059 | Habermann et al. | Apr 2007 | B2 |
7202061 | Farwick et al. | Apr 2007 | B2 |
7202353 | Gilbert et al. | Apr 2007 | B2 |
7205144 | Mockel et al. | Apr 2007 | B2 |
7208293 | Ladner et al. | Apr 2007 | B2 |
7208304 | Gilbert et al. | Apr 2007 | B2 |
7208312 | Desnoyers et al. | Apr 2007 | B1 |
7208313 | McCart et al. | Apr 2007 | B2 |
7211657 | Gilbert et al. | May 2007 | B2 |
7214526 | Bathe et al. | May 2007 | B2 |
7214792 | Bulla et al. | May 2007 | B2 |
7217548 | Yoshida et al. | May 2007 | B2 |
7217549 | Gilbert et al. | May 2007 | B2 |
7217809 | Schultz et al. | May 2007 | B2 |
7220555 | Paulson et al. | May 2007 | B2 |
7220848 | Gilbert et al. | May 2007 | B2 |
7223557 | Lee et al. | May 2007 | B2 |
7223586 | Ferrara et al. | May 2007 | B2 |
7226761 | Miasnikov et al. | Jun 2007 | B2 |
7226763 | Bathe et al. | Jun 2007 | B2 |
7226791 | Carman et al. | Jun 2007 | B2 |
7229791 | Bathe et al. | Jun 2007 | B2 |
7229802 | Bathe et al. | Jun 2007 | B2 |
7232672 | Weiner et al. | Jun 2007 | B2 |
7235234 | Branstrom et al. | Jun 2007 | B1 |
7238509 | Gilbert et al. | Jul 2007 | B2 |
7244601 | Gilbert et al. | Jul 2007 | B2 |
7244833 | Yu et al. | Jul 2007 | B2 |
7247296 | Redshaw | Jul 2007 | B2 |
7247717 | Chen et al. | Jul 2007 | B2 |
7252977 | Bathe et al. | Aug 2007 | B2 |
7256267 | Chen et al. | Aug 2007 | B2 |
7258863 | Oaks et al. | Aug 2007 | B2 |
7259296 | Schmulling et al. | Aug 2007 | B2 |
7262039 | Narimatsu et al. | Aug 2007 | B1 |
7262040 | Schultz et al. | Aug 2007 | B2 |
7270815 | Sasisekharan et al. | Sep 2007 | B2 |
7270984 | Pompejus et al. | Sep 2007 | B1 |
7271243 | Edwards et al. | Sep 2007 | B2 |
7273706 | Feder et al. | Sep 2007 | B2 |
7276354 | Feder et al. | Oct 2007 | B2 |
7279310 | Narimatsu et al. | Oct 2007 | B2 |
7291491 | Fukuda et al. | Nov 2007 | B2 |
7297340 | Apicella | Nov 2007 | B2 |
7303905 | Breves et al. | Dec 2007 | B2 |
7306932 | Bathe et al. | Dec 2007 | B2 |
7307159 | DeAngelis | Dec 2007 | B2 |
7309600 | Apicella et al. | Dec 2007 | B2 |
7318927 | Perez et al. | Jan 2008 | B2 |
7318928 | Wu et al. | Jan 2008 | B2 |
7320887 | Kottwitz et al. | Jan 2008 | B2 |
7326546 | Matsuno et al. | Feb 2008 | B2 |
7326557 | San et al. | Feb 2008 | B2 |
7332304 | Deng et al. | Feb 2008 | B2 |
7332310 | Nakagawa et al. | Feb 2008 | B2 |
7332316 | Schmulling et al. | Feb 2008 | B2 |
7335361 | Liao et al. | Feb 2008 | B2 |
7338790 | Thierbach et al. | Mar 2008 | B2 |
7338799 | Blakely et al. | Mar 2008 | B2 |
7344710 | Dang et al. | Mar 2008 | B2 |
7344882 | Lee et al. | Mar 2008 | B2 |
7345148 | Feder et al. | Mar 2008 | B2 |
7348161 | Gay et al. | Mar 2008 | B2 |
7351568 | Dunn-Coleman et al. | Apr 2008 | B2 |
7354592 | Bermudes et al. | Apr 2008 | B2 |
7358074 | Jackson et al. | Apr 2008 | B2 |
7358084 | Kolkman | Apr 2008 | B2 |
7364787 | Ito et al. | Apr 2008 | B2 |
7365159 | O'Reilly et al. | Apr 2008 | B2 |
7368108 | DeFrees et al. | May 2008 | B2 |
7368284 | Koike | May 2008 | B2 |
7371559 | Boone et al. | May 2008 | B2 |
7371838 | Gilbert et al. | May 2008 | B2 |
7378258 | Doucette-Stamm et al. | May 2008 | B2 |
7378514 | Doucette-Stamm et al. | May 2008 | B2 |
7381544 | Gilbert et al. | Jun 2008 | B2 |
7390633 | Liu et al. | Jun 2008 | B2 |
7390646 | Andino-Pavlovsky et al. | Jun 2008 | B2 |
7393525 | Powell et al. | Jul 2008 | B2 |
7393675 | Pompejus et al. | Jul 2008 | B2 |
7396824 | Sasisekharan et al. | Jul 2008 | B2 |
7404963 | Sotomayor et al. | Jul 2008 | B2 |
7405081 | Pan | Jul 2008 | B2 |
7405235 | Levy et al. | Jul 2008 | B2 |
7407787 | Barrangou et al. | Aug 2008 | B2 |
7410791 | Singhvi et al. | Aug 2008 | B2 |
7413877 | Collier et al. | Aug 2008 | B2 |
7414119 | Greenberg et al. | Aug 2008 | B2 |
7416863 | Moeckel et al. | Aug 2008 | B2 |
7420030 | Arap et al. | Sep 2008 | B2 |
7429474 | Sasisekharan et al. | Sep 2008 | B2 |
7432085 | Hara et al. | Oct 2008 | B2 |
7435808 | Wu et al. | Oct 2008 | B2 |
7442523 | Doucette-Stamm et al. | Oct 2008 | B2 |
7452531 | Bermudes et al. | Nov 2008 | B2 |
7459309 | Dreyfuss et al. | Dec 2008 | B2 |
7462482 | Malik et al. | Dec 2008 | B2 |
7470667 | Luo et al. | Dec 2008 | B2 |
7485439 | Folkman et al. | Feb 2009 | B2 |
7491529 | Goddard et al. | Feb 2009 | B2 |
7494798 | Berka et al. | Feb 2009 | B2 |
7494801 | Yazaki et al. | Feb 2009 | B2 |
7504242 | Dunican et al. | Mar 2009 | B2 |
7504247 | Sasisekharan et al. | Mar 2009 | B2 |
7510859 | Wieland et al. | Mar 2009 | B2 |
7514089 | Bermudes et al. | Apr 2009 | B2 |
7514538 | Goddard et al. | Apr 2009 | B2 |
7524657 | Bathe et al. | Apr 2009 | B2 |
7544486 | Ting et al. | Jun 2009 | B2 |
7563602 | Thierbach et al. | Jul 2009 | B2 |
7569226 | Weber et al. | Aug 2009 | B2 |
7569376 | Bayer et al. | Aug 2009 | B2 |
7569384 | Rosen et al. | Aug 2009 | B2 |
7569386 | DeAngelis | Aug 2009 | B2 |
7569547 | Lindberg et al. | Aug 2009 | B2 |
7572618 | Mintier et al. | Aug 2009 | B2 |
7582445 | Anan et al. | Sep 2009 | B2 |
7585650 | Bathe et al. | Sep 2009 | B2 |
7588767 | Szalay et al. | Sep 2009 | B2 |
7588771 | Szalay et al. | Sep 2009 | B2 |
7595054 | Liao et al. | Sep 2009 | B2 |
7598067 | Beavo et al. | Oct 2009 | B2 |
7611712 | Karp | Nov 2009 | B2 |
7611883 | Cranenburgh | Nov 2009 | B2 |
7615223 | Thorpe et al. | Nov 2009 | B2 |
7618798 | Bathe et al. | Nov 2009 | B2 |
7622564 | Ge et al. | Nov 2009 | B2 |
7626000 | Doucette-Stamm et al. | Dec 2009 | B2 |
7629150 | Narimatsu et al. | Dec 2009 | B2 |
7635598 | Cook et al. | Dec 2009 | B2 |
7635682 | Denmeade et al. | Dec 2009 | B2 |
7635765 | Farnet et al. | Dec 2009 | B2 |
7638282 | Bakaletz et al. | Dec 2009 | B2 |
7645577 | Adderson et al. | Jan 2010 | B2 |
7655770 | Cheikh et al. | Feb 2010 | B1 |
7655774 | Mullins et al. | Feb 2010 | B2 |
7655781 | Shemesh et al. | Feb 2010 | B2 |
7662398 | Szalay et al. | Feb 2010 | B2 |
7666419 | Olson et al. | Feb 2010 | B2 |
7666627 | Gal et al. | Feb 2010 | B2 |
7667018 | Jakobovits et al. | Feb 2010 | B2 |
7670835 | Smith | Mar 2010 | B2 |
7687474 | Matin et al. | Mar 2010 | B2 |
7691383 | Chakrabarty et al. | Apr 2010 | B2 |
7691599 | Rubin | Apr 2010 | B2 |
7693664 | Takami et al. | Apr 2010 | B2 |
7695711 | Myette et al. | Apr 2010 | B2 |
7696173 | Collier et al. | Apr 2010 | B2 |
7700104 | Hensel et al. | Apr 2010 | B2 |
7700313 | Schischka et al. | Apr 2010 | B2 |
7700317 | Ambrose et al. | Apr 2010 | B2 |
7700349 | Romaine et al. | Apr 2010 | B2 |
7700830 | Corbin et al. | Apr 2010 | B2 |
7705195 | French et al. | Apr 2010 | B2 |
7718180 | Karp | May 2010 | B2 |
7718618 | Gallo et al. | May 2010 | B2 |
7722867 | Umana et al. | May 2010 | B2 |
7723472 | Szoka et al. | May 2010 | B2 |
7727741 | Umana et al. | Jun 2010 | B2 |
7734420 | Palsson et al. | Jun 2010 | B2 |
7736898 | Fulton et al. | Jun 2010 | B1 |
7740835 | Fujimori et al. | Jun 2010 | B2 |
7741091 | DeAngelis et al. | Jun 2010 | B2 |
7749518 | Masignani et al. | Jul 2010 | B2 |
7749746 | Raitano et al. | Jul 2010 | B2 |
7754221 | Szalay et al. | Jul 2010 | B2 |
7754446 | Bathe et al. | Jul 2010 | B2 |
7758855 | Kopecko et al. | Jul 2010 | B2 |
7763250 | Rosenthal et al. | Jul 2010 | B2 |
7763420 | Stritzker et al. | Jul 2010 | B2 |
7771981 | DeAngelis | Aug 2010 | B2 |
7776323 | Smith | Aug 2010 | B2 |
7776823 | Gallo et al. | Aug 2010 | B2 |
7785779 | Kroger et al. | Aug 2010 | B2 |
7785840 | Bathe et al. | Aug 2010 | B2 |
7785861 | Devroe et al. | Aug 2010 | B2 |
7786288 | Karp | Aug 2010 | B2 |
7790177 | Karp | Sep 2010 | B2 |
7790860 | Thorpe et al. | Sep 2010 | B2 |
7803531 | Fulton et al. | Sep 2010 | B2 |
7803604 | Breves et al. | Sep 2010 | B2 |
7803918 | van der Hoek | Sep 2010 | B2 |
7803923 | Han et al. | Sep 2010 | B2 |
7807434 | Dunn-Coleman et al. | Oct 2010 | B2 |
7807441 | Steinaa et al. | Oct 2010 | B2 |
7811799 | Dunn-Coleman et al. | Oct 2010 | B2 |
7816086 | Bakaletz et al. | Oct 2010 | B2 |
7820184 | Stritzker et al. | Oct 2010 | B2 |
7824894 | Barrangou et al. | Nov 2010 | B2 |
7824895 | Short et al. | Nov 2010 | B2 |
7834164 | Sullivan et al. | Nov 2010 | B2 |
7834166 | Doucette-Stamm et al. | Nov 2010 | B2 |
7842290 | Holden | Nov 2010 | B2 |
7842492 | Myette et al. | Nov 2010 | B2 |
7846678 | Pepe et al. | Dec 2010 | B2 |
7846706 | Mintier et al. | Dec 2010 | B2 |
7847079 | Rosen et al. | Dec 2010 | B2 |
7850970 | Shapiro | Dec 2010 | B2 |
7863032 | Berka et al. | Jan 2011 | B2 |
7867484 | Samulski et al. | Jan 2011 | B2 |
7867732 | Hori et al. | Jan 2011 | B2 |
7869957 | Palsson et al. | Jan 2011 | B2 |
7887794 | Luquet et al. | Feb 2011 | B2 |
7887816 | Feldman et al. | Feb 2011 | B2 |
7888321 | Cooper et al. | Feb 2011 | B2 |
7892803 | Tanner et al. | Feb 2011 | B2 |
7892825 | Barr et al. | Feb 2011 | B2 |
7893007 | Ladner et al. | Feb 2011 | B2 |
7893230 | Doucette-Stamm et al. | Feb 2011 | B2 |
7893231 | Bathe et al. | Feb 2011 | B2 |
7893238 | Doucette-Stamm et al. | Feb 2011 | B2 |
7901913 | Dunican et al. | Mar 2011 | B2 |
7910715 | Bathe et al. | Mar 2011 | B2 |
7915218 | Capecchi et al. | Mar 2011 | B2 |
7915394 | Schischka et al. | Mar 2011 | B2 |
7923221 | Cabilly et al. | Apr 2011 | B1 |
7939319 | Polack et al. | May 2011 | B2 |
7943754 | Bentwich et al. | May 2011 | B2 |
7947822 | Nabel et al. | May 2011 | B2 |
7951557 | Shaaltiel et al. | May 2011 | B2 |
7951560 | Myette et al. | May 2011 | B2 |
7955600 | Hensel et al. | Jun 2011 | B2 |
7964362 | Lee et al. | Jun 2011 | B2 |
7968684 | Ghayur et al. | Jun 2011 | B2 |
7968699 | Haefner et al. | Jun 2011 | B2 |
7977080 | Gramatikova et al. | Jul 2011 | B2 |
7977084 | Sun et al. | Jul 2011 | B2 |
7981659 | Kadoya et al. | Jul 2011 | B2 |
7989202 | Mach et al. | Aug 2011 | B1 |
7993905 | Singhvi et al. | Aug 2011 | B2 |
7998461 | Forbes et al. | Aug 2011 | B2 |
8008047 | Iyo et al. | Aug 2011 | B2 |
8008283 | Hochman et al. | Aug 2011 | B2 |
8012733 | Dijk et al. | Sep 2011 | B2 |
8021662 | Szalay et al. | Sep 2011 | B2 |
8021859 | Steward et al. | Sep 2011 | B2 |
8026386 | Burk et al. | Sep 2011 | B2 |
8029789 | Jung et al. | Oct 2011 | B2 |
8030023 | Adams et al. | Oct 2011 | B2 |
8030447 | Motin et al. | Oct 2011 | B2 |
8030542 | Corbin et al. | Oct 2011 | B2 |
8043839 | Weiner et al. | Oct 2011 | B2 |
8044191 | Kroger et al. | Oct 2011 | B2 |
8048646 | Ting et al. | Nov 2011 | B2 |
8048651 | Zelder et al. | Nov 2011 | B2 |
8062885 | Mach et al. | Nov 2011 | B2 |
8066987 | Moore et al. | Nov 2011 | B2 |
8067179 | Georgiou et al. | Nov 2011 | B2 |
8067377 | Arap et al. | Nov 2011 | B2 |
8067530 | O'Keefe et al. | Nov 2011 | B2 |
8071365 | Kroger et al. | Dec 2011 | B2 |
8080395 | Bathe et al. | Dec 2011 | B2 |
8088620 | Bestel-Corre et al. | Jan 2012 | B2 |
8093032 | Kumar et al. | Jan 2012 | B2 |
8093037 | Picataggio et al. | Jan 2012 | B2 |
8097436 | Umana et al. | Jan 2012 | B2 |
8097440 | Buelter et al. | Jan 2012 | B1 |
8101168 | Hassan et al. | Jan 2012 | B2 |
8101349 | Garcia et al. | Jan 2012 | B2 |
8101396 | Sabbadini et al. | Jan 2012 | B2 |
8101826 | Romano | Jan 2012 | B2 |
8105603 | Kelley et al. | Jan 2012 | B2 |
8105804 | Mintier et al. | Jan 2012 | B2 |
8114974 | Picataggio et al. | Feb 2012 | B2 |
8119354 | Katanaev | Feb 2012 | B2 |
8119372 | Bathe et al. | Feb 2012 | B2 |
8119377 | Yi et al. | Feb 2012 | B2 |
8124098 | Masignani et al. | Feb 2012 | B2 |
8124381 | Deng et al. | Feb 2012 | B2 |
8124729 | Feder et al. | Feb 2012 | B2 |
8128922 | Wu et al. | Mar 2012 | B2 |
8128940 | Steward et al. | Mar 2012 | B2 |
8129166 | Sabbadini et al. | Mar 2012 | B2 |
8133493 | Curtiss, III | Mar 2012 | B2 |
8137904 | Szalay et al. | Mar 2012 | B2 |
8137928 | Schwartz et al. | Mar 2012 | B2 |
8153404 | Bathe et al. | Apr 2012 | B2 |
8153414 | Caplan et al. | Apr 2012 | B2 |
8163532 | Zelder et al. | Apr 2012 | B2 |
8168417 | Berka et al. | May 2012 | B2 |
8173397 | Gal et al. | May 2012 | B2 |
8178319 | Pahlsson et al. | May 2012 | B2 |
8178339 | Campbell et al. | May 2012 | B2 |
8183354 | DeVico et al. | May 2012 | B2 |
8198045 | DeFrees et al. | Jun 2012 | B2 |
8198430 | Prior et al. | Jun 2012 | B2 |
8202706 | Bathe et al. | Jun 2012 | B2 |
8206700 | Horwitz et al. | Jun 2012 | B2 |
8221769 | Szalay et al. | Jul 2012 | B2 |
8227217 | Liu et al. | Jul 2012 | B2 |
8227230 | Shaaltiel et al. | Jul 2012 | B2 |
8227236 | Picataggio et al. | Jul 2012 | B2 |
8231878 | Colonna et al. | Jul 2012 | B2 |
8236315 | Lazarides et al. | Aug 2012 | B2 |
8236494 | Bakaletz et al. | Aug 2012 | B2 |
8236531 | Asahara et al. | Aug 2012 | B2 |
8241623 | Bermudes | Aug 2012 | B1 |
8244484 | Lee et al. | Aug 2012 | B2 |
8246945 | Caplan et al. | Aug 2012 | B2 |
8247225 | Kopecko et al. | Aug 2012 | B2 |
8252579 | Meynial-Salles et al. | Aug 2012 | B2 |
8257949 | Wakarchuk et al. | Sep 2012 | B2 |
8278065 | Nicolaides et al. | Oct 2012 | B2 |
8282919 | Eisenstark et al. | Oct 2012 | B2 |
8283114 | Bakaletz et al. | Oct 2012 | B2 |
8283152 | Kim et al. | Oct 2012 | B2 |
8283319 | Schulte et al. | Oct 2012 | B2 |
8293514 | Bathe et al. | Oct 2012 | B2 |
8298791 | Matsuno et al. | Oct 2012 | B2 |
8298807 | Soucaille et al. | Oct 2012 | B2 |
8323959 | Szalay et al. | Dec 2012 | B2 |
8323961 | Nabel et al. | Dec 2012 | B2 |
8324362 | Chen et al. | Dec 2012 | B2 |
8329886 | Bardroff et al. | Dec 2012 | B2 |
8343509 | Stritzker et al. | Jan 2013 | B2 |
8343752 | Picataggio et al. | Jan 2013 | B2 |
8349570 | Pepe et al. | Jan 2013 | B2 |
8354264 | Mintier et al. | Jan 2013 | B2 |
8357486 | Stritzker et al. | Jan 2013 | B2 |
8367621 | Ruoslahti et al. | Feb 2013 | B2 |
8372601 | Metcalf et al. | Feb 2013 | B2 |
8372620 | Sibbesen et al. | Feb 2013 | B2 |
8372625 | Walsh et al. | Feb 2013 | B2 |
8383388 | Oyhenart et al. | Feb 2013 | B2 |
8394607 | Ebens, Jr. et al. | Mar 2013 | B2 |
8394610 | Gulevich et al. | Mar 2013 | B2 |
8409563 | Asahara et al. | Apr 2013 | B2 |
8409825 | Chiba et al. | Apr 2013 | B2 |
8415118 | Huang et al. | Apr 2013 | B2 |
8420350 | Nakamura et al. | Apr 2013 | B2 |
8426187 | Georgiou et al. | Apr 2013 | B2 |
8426571 | Raitano et al. | Apr 2013 | B2 |
8431373 | Yi et al. | Apr 2013 | B2 |
8435506 | Hassan et al. | May 2013 | B2 |
8436031 | Kim | May 2013 | B2 |
8440207 | Bermudes | May 2013 | B2 |
8445227 | Bobrowicz et al. | May 2013 | B2 |
8445241 | Dunican et al. | May 2013 | B2 |
8445254 | Curtiss, III et al. | May 2013 | B2 |
8445650 | Simpson et al. | May 2013 | B2 |
8449876 | Shaaltiel et al. | May 2013 | B2 |
8455683 | Burk et al. | Jun 2013 | B2 |
8465755 | Curtiss, III et al. | Jun 2013 | B2 |
8475807 | Perez | Jul 2013 | B2 |
8501190 | Prescott et al. | Aug 2013 | B2 |
8506947 | McCart et al. | Aug 2013 | B2 |
8507227 | Samain | Aug 2013 | B2 |
8507235 | Chotani et al. | Aug 2013 | B2 |
8507249 | Finlay et al. | Aug 2013 | B2 |
8507250 | Liu et al. | Aug 2013 | B2 |
8513396 | Boone et al. | Aug 2013 | B2 |
8513493 | Baum et al. | Aug 2013 | B2 |
8518417 | Steward et al. | Aug 2013 | B1 |
8524220 | Bermudes | Sep 2013 | B1 |
8524484 | Sabbadini et al. | Sep 2013 | B2 |
8535909 | Woldike et al. | Sep 2013 | B2 |
8540992 | Naso et al. | Sep 2013 | B2 |
8541201 | Min et al. | Sep 2013 | B2 |
8551471 | Filutowicz et al. | Oct 2013 | B2 |
8568707 | Szalay et al. | Oct 2013 | B2 |
8569016 | Obayashi et al. | Oct 2013 | B2 |
8575316 | Hiruma et al. | Nov 2013 | B2 |
8586022 | Szalay et al. | Nov 2013 | B2 |
8586332 | Samain et al. | Nov 2013 | B2 |
8591862 | Brahmbhatt et al. | Nov 2013 | B2 |
8592187 | Bathe et al. | Nov 2013 | B2 |
8603824 | Ramseier et al. | Dec 2013 | B2 |
8604004 | Kahne et al. | Dec 2013 | B2 |
8604178 | Bottje et al. | Dec 2013 | B2 |
8606553 | Palsson | Dec 2013 | B2 |
8609358 | Sebastian et al. | Dec 2013 | B2 |
8623350 | Bermudes | Jan 2014 | B1 |
8623622 | Srienc et al. | Jan 2014 | B2 |
8623999 | Steward et al. | Jan 2014 | B2 |
8628782 | Berkower | Jan 2014 | B2 |
8628917 | Bakaletz et al. | Jan 2014 | B2 |
8632995 | Sun et al. | Jan 2014 | B2 |
8633305 | Shapiro | Jan 2014 | B2 |
8635031 | Palsson | Jan 2014 | B2 |
8637295 | Claes et al. | Jan 2014 | B1 |
8642257 | Szalay et al. | Feb 2014 | B2 |
8642292 | Sandig et al. | Feb 2014 | B2 |
8647642 | Bermudes | Feb 2014 | B2 |
8652773 | Bakaletz et al. | Feb 2014 | B2 |
8652808 | Jennewein et al. | Feb 2014 | B2 |
8652838 | Shen et al. | Feb 2014 | B2 |
8663634 | Koenig et al. | Mar 2014 | B2 |
8663962 | Zhang et al. | Mar 2014 | B2 |
8673601 | Burgard et al. | Mar 2014 | B2 |
8674062 | Dunn-Coleman et al. | Mar 2014 | B2 |
8674083 | Presta | Mar 2014 | B2 |
8680236 | Luft et al. | Mar 2014 | B2 |
8685392 | Helmerhorst et al. | Apr 2014 | B2 |
8685718 | Wisniewski et al. | Apr 2014 | B2 |
8685939 | Wei et al. | Apr 2014 | B2 |
8686218 | Romaine et al. | Apr 2014 | B2 |
8697398 | Doherty et al. | Apr 2014 | B2 |
8697414 | Steward et al. | Apr 2014 | B2 |
8703153 | Telfer et al. | Apr 2014 | B2 |
8703471 | Aebi et al. | Apr 2014 | B2 |
8709813 | Kopecko et al. | Apr 2014 | B2 |
8715641 | Filutowicz et al. | May 2014 | B2 |
8716450 | Ghayur et al. | May 2014 | B2 |
8722584 | Delisa et al. | May 2014 | B2 |
8722618 | Jacobs et al. | May 2014 | B2 |
8722668 | Hochman | May 2014 | B2 |
8722855 | Ghayur et al. | May 2014 | B2 |
8722869 | Fang et al. | May 2014 | B2 |
8728795 | Kroger et al. | May 2014 | B2 |
8728798 | Picataggio et al. | May 2014 | B2 |
8734779 | Hamaji et al. | May 2014 | B2 |
8734814 | Datta et al. | May 2014 | B2 |
8735159 | Zelder et al. | May 2014 | B2 |
8735546 | Ghayur et al. | May 2014 | B2 |
8741313 | Sable et al. | Jun 2014 | B2 |
8741608 | Claes et al. | Jun 2014 | B2 |
8741620 | Shaaltiel et al. | Jun 2014 | B2 |
8741623 | Zelder et al. | Jun 2014 | B2 |
8748373 | Chai et al. | Jun 2014 | B2 |
8753604 | Ruoslahti et al. | Jun 2014 | B2 |
8758741 | Takagi et al. | Jun 2014 | B2 |
8758764 | Masignani et al. | Jun 2014 | B2 |
8758771 | Finlay et al. | Jun 2014 | B2 |
8759086 | Mach et al. | Jun 2014 | B2 |
8759494 | Bachmann et al. | Jun 2014 | B2 |
8765407 | Iyo et al. | Jul 2014 | B2 |
8771669 | Bermudes | Jul 2014 | B1 |
8771671 | Spencer et al. | Jul 2014 | B2 |
8771991 | Gilbert et al. | Jul 2014 | B2 |
8778652 | Subbian et al. | Jul 2014 | B2 |
8784836 | Szalay et al. | Jul 2014 | B2 |
8790641 | Shaaltiel et al. | Jul 2014 | B2 |
8791237 | Paterson et al. | Jul 2014 | B2 |
8795730 | Vachon | Aug 2014 | B2 |
8809027 | Lynch et al. | Aug 2014 | B1 |
8815251 | Caplan et al. | Aug 2014 | B2 |
8815558 | Frost et al. | Aug 2014 | B2 |
RE45170 | Smith | Sep 2014 | E |
8821893 | Dattwyler et al. | Sep 2014 | B2 |
8822194 | Zhao et al. | Sep 2014 | B2 |
8822645 | Ghayur et al. | Sep 2014 | B2 |
8822664 | Cicortas Gunnarsson et al. | Sep 2014 | B2 |
8828681 | Bell, III et al. | Sep 2014 | B2 |
8835107 | Van Der Hoek | Sep 2014 | B2 |
8835162 | Kwon et al. | Sep 2014 | B2 |
8846363 | Myette et al. | Sep 2014 | B2 |
8852890 | Cervin et al. | Oct 2014 | B2 |
8853154 | Cload et al. | Oct 2014 | B2 |
8853362 | Tissot et al. | Oct 2014 | B2 |
8865442 | Chotani et al. | Oct 2014 | B2 |
8871491 | Wacker et al. | Oct 2014 | B2 |
8883464 | Lynch et al. | Nov 2014 | B2 |
8889121 | Curtiss, III et al. | Nov 2014 | B2 |
8889383 | Beck et al. | Nov 2014 | B2 |
8895277 | Beatty et al. | Nov 2014 | B2 |
8906653 | Volkert et al. | Dec 2014 | B2 |
8906662 | Nataro et al. | Dec 2014 | B2 |
8907071 | Sullivan et al. | Dec 2014 | B2 |
8912313 | Reth et al. | Dec 2014 | B2 |
8920798 | Han et al. | Dec 2014 | B2 |
8920809 | Dirienzo | Dec 2014 | B2 |
8926993 | Dubensky, Jr. et al. | Jan 2015 | B2 |
8932598 | Song et al. | Jan 2015 | B2 |
8951759 | Claes et al. | Feb 2015 | B2 |
8951992 | Nathan et al. | Feb 2015 | B2 |
8956849 | Bottje et al. | Feb 2015 | B2 |
8956859 | Bermudes | Feb 2015 | B1 |
8961990 | Hargis et al. | Feb 2015 | B2 |
8962275 | Liang et al. | Feb 2015 | B2 |
8962816 | Ertl et al. | Feb 2015 | B2 |
8969538 | Rosen et al. | Mar 2015 | B2 |
8969542 | Buyse et al. | Mar 2015 | B2 |
8975040 | Naso et al. | Mar 2015 | B2 |
8975051 | McAuliffe et al. | Mar 2015 | B2 |
8981061 | Colonna et al. | Mar 2015 | B2 |
8993265 | Cload et al. | Mar 2015 | B2 |
8993297 | Ronin et al. | Mar 2015 | B2 |
8993305 | Beck et al. | Mar 2015 | B2 |
8999949 | Spencer et al. | Apr 2015 | B2 |
9005949 | Oxvig et al. | Apr 2015 | B2 |
9012152 | Engelberg-Kulka et al. | Apr 2015 | B2 |
9012186 | Cann et al. | Apr 2015 | B2 |
9012226 | Williams | Apr 2015 | B2 |
9017966 | Williams et al. | Apr 2015 | B2 |
9017986 | Sabbadini et al. | Apr 2015 | B2 |
9023635 | Bayer et al. | May 2015 | B2 |
9029104 | Samsonova et al. | May 2015 | B2 |
9029136 | Heidtman et al. | May 2015 | B2 |
9029508 | Ghayur et al. | May 2015 | B2 |
9034642 | Bakaletz et al. | May 2015 | B2 |
9037445 | Oltvai et al. | May 2015 | B2 |
9040059 | Curtiss, III et al. | May 2015 | B2 |
9045742 | Curtiss, III et al. | Jun 2015 | B2 |
9045745 | Subbian et al. | Jun 2015 | B2 |
9045762 | Reth et al. | Jun 2015 | B2 |
9050285 | Curtiss, III et al. | Jun 2015 | B2 |
9051565 | Delisa et al. | Jun 2015 | B2 |
9051588 | Soucaille et al. | Jun 2015 | B2 |
9062297 | Curtiss, III et al. | Jun 2015 | B2 |
9068187 | Bermudes | Jun 2015 | B1 |
9074229 | Reth et al. | Jul 2015 | B2 |
9085765 | Campbell et al. | Jul 2015 | B2 |
9090889 | Nunn, Jr. et al. | Jul 2015 | B2 |
9102729 | Masignani et al. | Aug 2015 | B2 |
9102958 | Botes et al. | Aug 2015 | B2 |
9102960 | Botes et al. | Aug 2015 | B2 |
9109229 | Ramseier et al. | Aug 2015 | B2 |
9121038 | Beck et al. | Sep 2015 | B2 |
9125854 | Bottje et al. | Sep 2015 | B2 |
9125855 | Pasmans et al. | Sep 2015 | B2 |
9150827 | Wendisch et al. | Oct 2015 | B2 |
9150868 | Tokuda et al. | Oct 2015 | B2 |
9150885 | Shibamoto | Oct 2015 | B2 |
9161974 | Dubensky et al. | Oct 2015 | B2 |
9163219 | Curtiss, III et al. | Oct 2015 | B2 |
9163263 | Beck et al. | Oct 2015 | B2 |
9169468 | Zhang et al. | Oct 2015 | B2 |
9169502 | Wittmann et al. | Oct 2015 | B2 |
9187523 | Motin et al. | Nov 2015 | B2 |
9187762 | Albert et al. | Nov 2015 | B2 |
9198960 | Dubensky, Jr. et al. | Dec 2015 | B2 |
9200251 | Bermudes | Dec 2015 | B1 |
9200289 | Bermudes | Dec 2015 | B1 |
9206456 | Lenormand | Dec 2015 | B2 |
9226957 | Bottje et al. | Jan 2016 | B2 |
9248177 | Tang et al. | Feb 2016 | B2 |
9249430 | Marliere | Feb 2016 | B2 |
9260729 | Sun et al. | Feb 2016 | B2 |
9267156 | Amano et al. | Feb 2016 | B2 |
9297015 | Curtiss, III et al. | Mar 2016 | B2 |
9303264 | Curtiss et al. | Apr 2016 | B2 |
9315817 | Bermudes | Apr 2016 | B2 |
9315831 | Blake et al. | Apr 2016 | B2 |
9328148 | Joens et al. | May 2016 | B2 |
9334313 | Masignani et al. | May 2016 | B2 |
9334508 | Pearlman et al. | May 2016 | B2 |
9340793 | Muramatsu et al. | May 2016 | B2 |
9365625 | Bermudes | Jun 2016 | B1 |
9365874 | Burk et al. | Jun 2016 | B2 |
9388417 | Lee et al. | Jul 2016 | B2 |
9388419 | Lynch et al. | Jul 2016 | B2 |
9388431 | McAuliffe et al. | Jul 2016 | B2 |
9399058 | Prescott et al. | Jul 2016 | B2 |
9421252 | Bermudes | Aug 2016 | B2 |
9422578 | Pearlman et al. | Aug 2016 | B2 |
9422580 | Pearlman et al. | Aug 2016 | B2 |
9428778 | Lynch et al. | Aug 2016 | B2 |
9434966 | Picataggio et al. | Sep 2016 | B2 |
9441251 | Lee et al. | Sep 2016 | B2 |
9449144 | Oltvai et al. | Sep 2016 | B2 |
9452205 | Pascual et al. | Sep 2016 | B2 |
9486513 | Bermudes | Nov 2016 | B1 |
9593339 | Bermudes | Mar 2017 | B1 |
9597379 | Bermudes | Mar 2017 | B1 |
9616114 | Bermudes | Apr 2017 | B1 |
9657085 | Bermudes | May 2017 | B1 |
9737592 | Bermudes et al. | Aug 2017 | B1 |
9739773 | Bermudes | Aug 2017 | B1 |
9758551 | Wu et al. | Sep 2017 | B2 |
9878023 | Bermudes | Jan 2018 | B1 |
20010006642 | Steidler et al. | Jul 2001 | A1 |
20010009957 | Oaks et al. | Jul 2001 | A1 |
20010029024 | Kodadek | Oct 2001 | A1 |
20010029043 | Haefliger et al. | Oct 2001 | A1 |
20010041333 | Short et al. | Nov 2001 | A1 |
20010046498 | Ruoslahti et al. | Nov 2001 | A1 |
20020006645 | Hashimoto et al. | Jan 2002 | A1 |
20020012939 | Palsson | Jan 2002 | A1 |
20020015940 | Rao et al. | Feb 2002 | A1 |
20020016982 | Peter et al. | Feb 2002 | A1 |
20020026655 | Bermudes et al. | Feb 2002 | A1 |
20020031809 | Moeckel et al. | Mar 2002 | A1 |
20020031810 | Moeckel et al. | Mar 2002 | A1 |
20020032323 | Kunsch et al. | Mar 2002 | A1 |
20020037568 | Molenaar et al. | Mar 2002 | A1 |
20020039766 | Bathe et al. | Apr 2002 | A1 |
20020042105 | Bathe et al. | Apr 2002 | A1 |
20020042382 | Duffy et al. | Apr 2002 | A1 |
20020045224 | Mockel et al. | Apr 2002 | A1 |
20020048795 | Farwick et al. | Apr 2002 | A1 |
20020051993 | Farwick et al. | May 2002 | A1 |
20020052486 | Bathe et al. | May 2002 | A1 |
20020055114 | Bathe et al. | May 2002 | A1 |
20020055115 | Farwick et al. | May 2002 | A1 |
20020055152 | Farwick et al. | May 2002 | A1 |
20020058277 | Bathe et al. | May 2002 | A1 |
20020061545 | Choi et al. | May 2002 | A1 |
20020064839 | Marx et al. | May 2002 | A1 |
20020068336 | Moeckel et al. | Jun 2002 | A1 |
20020072104 | Landry | Jun 2002 | A1 |
20020081672 | Mockel et al. | Jun 2002 | A1 |
20020081674 | Moeckel et al. | Jun 2002 | A1 |
20020086372 | Mockel et al. | Jul 2002 | A1 |
20020086373 | Farwick et al. | Jul 2002 | A1 |
20020086374 | Farwick et al. | Jul 2002 | A1 |
20020086404 | Moeckel et al. | Jul 2002 | A1 |
20020090685 | Bathe et al. | Jul 2002 | A1 |
20020098554 | Wick et al. | Jul 2002 | A1 |
20020102242 | Briles et al. | Aug 2002 | A1 |
20020102663 | Farwick et al. | Aug 2002 | A1 |
20020102668 | Farwick et al. | Aug 2002 | A1 |
20020102669 | Farwick et al. | Aug 2002 | A1 |
20020103338 | Choi | Aug 2002 | A1 |
20020103356 | Mockel et al. | Aug 2002 | A1 |
20020103357 | Bathe et al. | Aug 2002 | A1 |
20020106380 | Hung et al. | Aug 2002 | A1 |
20020106672 | Farwick et al. | Aug 2002 | A1 |
20020106749 | Farwick et al. | Aug 2002 | A1 |
20020106750 | Farwick et al. | Aug 2002 | A1 |
20020106751 | Farwick et al. | Aug 2002 | A1 |
20020106755 | Bathe et al. | Aug 2002 | A1 |
20020106756 | Bathe et al. | Aug 2002 | A1 |
20020106757 | Farwick et al. | Aug 2002 | A1 |
20020106758 | Farwick et al. | Aug 2002 | A1 |
20020106759 | Farwick et al. | Aug 2002 | A1 |
20020106760 | Bathe et al. | Aug 2002 | A1 |
20020107374 | Pallas et al. | Aug 2002 | A1 |
20020107377 | Farwick et al. | Aug 2002 | A1 |
20020107379 | Marx et al. | Aug 2002 | A1 |
20020110879 | Bathe et al. | Aug 2002 | A1 |
20020111468 | Bathe et al. | Aug 2002 | A1 |
20020115159 | Farwick et al. | Aug 2002 | A1 |
20020115160 | Farwick et al. | Aug 2002 | A1 |
20020115161 | Farwick et al. | Aug 2002 | A1 |
20020115162 | Farwick et al. | Aug 2002 | A1 |
20020119537 | Moeckel et al. | Aug 2002 | A1 |
20020119549 | Moeckel et al. | Aug 2002 | A1 |
20020120116 | Kunsch et al. | Aug 2002 | A1 |
20020123053 | Luo et al. | Sep 2002 | A1 |
20020127661 | Farwick et al. | Sep 2002 | A1 |
20020127687 | Shigenobu et al. | Sep 2002 | A1 |
20020127702 | Bernstein et al. | Sep 2002 | A1 |
20020132323 | Moeckel et al. | Sep 2002 | A1 |
20020137065 | Farwick et al. | Sep 2002 | A1 |
20020137073 | Bathe et al. | Sep 2002 | A1 |
20020142404 | Farwick et al. | Oct 2002 | A1 |
20020146430 | Galen | Oct 2002 | A1 |
20020146782 | Bathe et al. | Oct 2002 | A1 |
20020150881 | Ladner et al. | Oct 2002 | A1 |
20020151001 | Moeckel et al. | Oct 2002 | A1 |
20020151063 | Lasham et al. | Oct 2002 | A1 |
20020151700 | Farwick et al. | Oct 2002 | A1 |
20020155519 | Lindner et al. | Oct 2002 | A1 |
20020155554 | Bathe et al. | Oct 2002 | A1 |
20020155557 | Moeckel et al. | Oct 2002 | A1 |
20020168732 | Moeckel et al. | Nov 2002 | A1 |
20020176848 | Sizemore et al. | Nov 2002 | A1 |
20020177551 | Terman | Nov 2002 | A1 |
20020182689 | Bathe et al. | Dec 2002 | A1 |
20020192674 | Hermann et al. | Dec 2002 | A1 |
20020197276 | Oaks et al. | Dec 2002 | A1 |
20020197605 | Nakagawa et al. | Dec 2002 | A1 |
20030008839 | van Rooij et al. | Jan 2003 | A1 |
20030009015 | Ulrich et al. | Jan 2003 | A1 |
20030022835 | Watson et al. | Jan 2003 | A1 |
20030031628 | Zhao et al. | Feb 2003 | A1 |
20030031681 | McCart et al. | Feb 2003 | A1 |
20030031683 | Curtiss et al. | Feb 2003 | A1 |
20030036644 | Ulrich | Feb 2003 | A1 |
20030044943 | Farwick et al. | Mar 2003 | A1 |
20030045492 | Tang et al. | Mar 2003 | A1 |
20030049648 | Choi | Mar 2003 | A1 |
20030059400 | Szalay | Mar 2003 | A1 |
20030059792 | Palsson et al. | Mar 2003 | A1 |
20030059923 | Feder et al. | Mar 2003 | A1 |
20030068328 | Vladoianu et al. | Apr 2003 | A1 |
20030068611 | Larossa et al. | Apr 2003 | A1 |
20030068791 | Miasnikov et al. | Apr 2003 | A1 |
20030073217 | Barr et al. | Apr 2003 | A1 |
20030077677 | Short et al. | Apr 2003 | A1 |
20030082219 | Warren et al. | May 2003 | A1 |
20030087827 | Lindberg et al. | May 2003 | A1 |
20030092026 | Rey et al. | May 2003 | A1 |
20030092066 | Vinkemeier et al. | May 2003 | A1 |
20030092137 | Farwick et al. | May 2003 | A1 |
20030092139 | Wolf et al. | May 2003 | A1 |
20030092164 | Gross et al. | May 2003 | A1 |
20030100054 | Bathe et al. | May 2003 | A1 |
20030100071 | Apicella et al. | May 2003 | A1 |
20030100080 | Farwick et al. | May 2003 | A1 |
20030100099 | Moeckel et al. | May 2003 | A1 |
20030100108 | Altman et al. | May 2003 | A1 |
20030100488 | Boyle | May 2003 | A1 |
20030103958 | Short et al. | Jun 2003 | A1 |
20030106096 | Barry | Jun 2003 | A1 |
20030109014 | Burke et al. | Jun 2003 | A1 |
20030109026 | Bermudes et al. | Jun 2003 | A1 |
20030113293 | Bermudes et al. | Jun 2003 | A1 |
20030113343 | Tuomanen et al. | Jun 2003 | A1 |
20030113717 | Ladner et al. | Jun 2003 | A1 |
20030113879 | Farwick et al. | Jun 2003 | A1 |
20030115630 | Romano | Jun 2003 | A1 |
20030119154 | Dunican et al. | Jun 2003 | A1 |
20030124561 | Mach et al. | Jul 2003 | A1 |
20030125278 | Tang et al. | Jul 2003 | A1 |
20030129193 | Thorpe et al. | Jul 2003 | A1 |
20030131372 | Copenhaver et al. | Jul 2003 | A1 |
20030131376 | Okubara et al. | Jul 2003 | A1 |
20030138917 | Dunican et al. | Jul 2003 | A1 |
20030143558 | Mitchell et al. | Jul 2003 | A1 |
20030143676 | Strachan et al. | Jul 2003 | A1 |
20030144490 | Edwards et al. | Jul 2003 | A1 |
20030153527 | Powell et al. | Aug 2003 | A1 |
20030157113 | Terman | Aug 2003 | A1 |
20030157551 | Bathe et al. | Aug 2003 | A1 |
20030157666 | Farwick et al. | Aug 2003 | A1 |
20030165875 | Colonna et al. | Sep 2003 | A1 |
20030166140 | Chen et al. | Sep 2003 | A1 |
20030166541 | Ruben et al. | Sep 2003 | A1 |
20030166884 | Moeckel et al. | Sep 2003 | A1 |
20030170211 | Goudsmit et al. | Sep 2003 | A1 |
20030170276 | Bermudes et al. | Sep 2003 | A1 |
20030170780 | Moeckel et al. | Sep 2003 | A1 |
20030175911 | Hans et al. | Sep 2003 | A1 |
20030186416 | Pallas et al. | Oct 2003 | A1 |
20030188336 | Corbin et al. | Oct 2003 | A1 |
20030194798 | Surber et al. | Oct 2003 | A1 |
20030198991 | Moeckel et al. | Oct 2003 | A1 |
20030199045 | Burke et al. | Oct 2003 | A1 |
20030203377 | Milne Edwards et al. | Oct 2003 | A1 |
20030207271 | Holwitt et al. | Nov 2003 | A1 |
20030211476 | O'Mahony et al. | Nov 2003 | A1 |
20030211599 | Sabbadini et al. | Nov 2003 | A1 |
20030219722 | Ladner et al. | Nov 2003 | A1 |
20030219736 | Gonye et al. | Nov 2003 | A1 |
20030219881 | Brigitte et al. | Nov 2003 | A1 |
20030219886 | Ladner et al. | Nov 2003 | A1 |
20030224363 | Park et al. | Dec 2003 | A1 |
20030228678 | Bathe et al. | Dec 2003 | A1 |
20030229065 | Levy et al. | Dec 2003 | A1 |
20040005539 | Ladner et al. | Jan 2004 | A1 |
20040005695 | Miksch et al. | Jan 2004 | A1 |
20040005700 | Surber et al. | Jan 2004 | A1 |
20040009485 | Gonye et al. | Jan 2004 | A1 |
20040009490 | Glenn et al. | Jan 2004 | A1 |
20040009578 | Bathe et al. | Jan 2004 | A1 |
20040009936 | Tang et al. | Jan 2004 | A1 |
20040013658 | Fulton et al. | Jan 2004 | A1 |
20040014177 | Navran, Jr. et al. | Jan 2004 | A1 |
20040022805 | Narum et al. | Feb 2004 | A1 |
20040023205 | Ladner et al. | Feb 2004 | A1 |
20040023266 | Vivekananda et al. | Feb 2004 | A1 |
20040023282 | Luo et al. | Feb 2004 | A1 |
20040033549 | Greenberg et al. | Feb 2004 | A1 |
20040038307 | Lee et al. | Feb 2004 | A1 |
20040038372 | Bathe et al. | Feb 2004 | A1 |
20040043458 | Bathe et al. | Mar 2004 | A1 |
20040052802 | Nuijten et al. | Mar 2004 | A1 |
20040054142 | Cassart et al. | Mar 2004 | A1 |
20040058849 | Sleeman et al. | Mar 2004 | A1 |
20040063181 | Duncan et al. | Apr 2004 | A1 |
20040067561 | Bathe et al. | Apr 2004 | A1 |
20040067562 | Bathe et al. | Apr 2004 | A1 |
20040071729 | Adderson et al. | Apr 2004 | A1 |
20040072218 | Quan Pan | Apr 2004 | A1 |
20040072723 | Palsson et al. | Apr 2004 | A1 |
20040073008 | Perez et al. | Apr 2004 | A1 |
20040077540 | Quay | Apr 2004 | A1 |
20040082002 | Choi | Apr 2004 | A1 |
20040091505 | Abad et al. | May 2004 | A1 |
20040091969 | Agarwal et al. | May 2004 | A1 |
20040091976 | Deng et al. | May 2004 | A1 |
20040096426 | Chen et al. | May 2004 | A1 |
20040101531 | Curtiss et al. | May 2004 | A1 |
20040101932 | Naleway et al. | May 2004 | A1 |
20040106185 | Ranganathan | Jun 2004 | A1 |
20040106553 | Alekshun et al. | Jun 2004 | A1 |
20040110939 | Milne Edwards et al. | Jun 2004 | A1 |
20040115174 | Gilboa et al. | Jun 2004 | A1 |
20040115788 | Zheng et al. | Jun 2004 | A1 |
20040133930 | Cooper et al. | Jul 2004 | A1 |
20040142373 | Gonye et al. | Jul 2004 | A1 |
20040142454 | Molenaar et al. | Jul 2004 | A1 |
20040146922 | Gonye et al. | Jul 2004 | A1 |
20040170987 | Usuda et al. | Sep 2004 | A1 |
20040171123 | Rosen et al. | Sep 2004 | A1 |
20040171130 | Yokoi et al. | Sep 2004 | A1 |
20040180359 | Moeckel et al. | Sep 2004 | A1 |
20040180371 | Clayman et al. | Sep 2004 | A1 |
20040180380 | Lee et al. | Sep 2004 | A1 |
20040191787 | Tanner et al. | Sep 2004 | A1 |
20040202648 | Cabezon et al. | Oct 2004 | A1 |
20040202663 | Hu et al. | Oct 2004 | A1 |
20040208897 | Curtiss et al. | Oct 2004 | A1 |
20040209285 | Moeckel et al. | Oct 2004 | A1 |
20040210398 | Palsson et al. | Oct 2004 | A1 |
20040214219 | Dunican et al. | Oct 2004 | A1 |
20040214783 | Terman | Oct 2004 | A1 |
20040219169 | Bermudes et al. | Nov 2004 | A1 |
20040229243 | Levy | Nov 2004 | A1 |
20040229255 | Hermann et al. | Nov 2004 | A1 |
20040229338 | King | Nov 2004 | A1 |
20040234455 | Szalay | Nov 2004 | A1 |
20040234956 | Kabat et al. | Nov 2004 | A1 |
20040234998 | Sibbesen et al. | Nov 2004 | A1 |
20040247611 | Bargatze et al. | Dec 2004 | A1 |
20040247617 | Liao et al. | Dec 2004 | A1 |
20040253628 | Bathe et al. | Dec 2004 | A1 |
20040258688 | Hawiger et al. | Dec 2004 | A1 |
20040266003 | Powell et al. | Dec 2004 | A1 |
20040266674 | Mills et al. | Dec 2004 | A1 |
20050003400 | Boyle | Jan 2005 | A1 |
20050003423 | Moeckel et al. | Jan 2005 | A1 |
20050008618 | Kaufman et al. | Jan 2005 | A1 |
20050008649 | Shin et al. | Jan 2005 | A1 |
20050009750 | Sleeman et al. | Jan 2005 | A1 |
20050013822 | Oaks et al. | Jan 2005 | A1 |
20050019335 | Lowery et al. | Jan 2005 | A1 |
20050026866 | Pawelek | Feb 2005 | A1 |
20050031643 | Szalay et al. | Feb 2005 | A1 |
20050032157 | Gal et al. | Feb 2005 | A1 |
20050032179 | Moeckel et al. | Feb 2005 | A1 |
20050036987 | Pawelek et al. | Feb 2005 | A1 |
20050042216 | Frantz et al. | Feb 2005 | A1 |
20050042229 | Yang et al. | Feb 2005 | A1 |
20050043526 | Bathe et al. | Feb 2005 | A1 |
20050053958 | Roth et al. | Mar 2005 | A1 |
20050055746 | Michaud et al. | Mar 2005 | A1 |
20050059122 | Shen | Mar 2005 | A1 |
20050063994 | Caplan et al. | Mar 2005 | A1 |
20050064526 | Ulrich et al. | Mar 2005 | A1 |
20050064527 | Levy et al. | Mar 2005 | A1 |
20050064562 | Farwick et al. | Mar 2005 | A1 |
20050069491 | Szalay et al. | Mar 2005 | A1 |
20050069532 | Weinrauch et al. | Mar 2005 | A1 |
20050069894 | Gottesman et al. | Mar 2005 | A1 |
20050069911 | Lee et al. | Mar 2005 | A1 |
20050070005 | Keller | Mar 2005 | A1 |
20050070007 | Romaine et al. | Mar 2005 | A1 |
20050074463 | Autran et al. | Apr 2005 | A1 |
20050074802 | Rey et al. | Apr 2005 | A1 |
20050079573 | Sibbesen | Apr 2005 | A1 |
20050079588 | Sindelar et al. | Apr 2005 | A1 |
20050084972 | Barr et al. | Apr 2005 | A1 |
20050089552 | Altman et al. | Apr 2005 | A1 |
20050089976 | Moeckel et al. | Apr 2005 | A1 |
20050089986 | Bathe et al. | Apr 2005 | A1 |
20050106151 | Shapiro | May 2005 | A1 |
20050106597 | Choi | May 2005 | A1 |
20050112139 | Karp | May 2005 | A1 |
20050112140 | Karp | May 2005 | A1 |
20050112141 | Terman | May 2005 | A1 |
20050112642 | Sleeman et al. | May 2005 | A1 |
20050112664 | Mockel et al. | May 2005 | A1 |
20050112730 | Dunican et al. | May 2005 | A1 |
20050112732 | Bathe et al. | May 2005 | A1 |
20050112733 | Burke et al. | May 2005 | A1 |
20050112751 | Fang et al. | May 2005 | A1 |
20050118193 | Andino-Pavlovsky et al. | Jun 2005 | A1 |
20050124678 | Levy et al. | Jun 2005 | A1 |
20050130264 | Moeckel et al. | Jun 2005 | A1 |
20050130277 | Bathe et al. | Jun 2005 | A1 |
20050136404 | Doucette-Stamm et al. | Jun 2005 | A1 |
20050147590 | Sabbadini et al. | Jul 2005 | A1 |
20050148504 | Katunuma et al. | Jul 2005 | A1 |
20050158295 | Swiercz et al. | Jul 2005 | A1 |
20050166274 | French et al. | Jul 2005 | A1 |
20050180963 | Adams et al. | Aug 2005 | A1 |
20050180985 | Vladoianu et al. | Aug 2005 | A9 |
20050181439 | Choi et al. | Aug 2005 | A1 |
20050181464 | Edwards et al. | Aug 2005 | A1 |
20050181488 | Akhverdian et al. | Aug 2005 | A1 |
20050191684 | Zimenkov et al. | Sep 2005 | A1 |
20050202409 | Takami et al. | Sep 2005 | A1 |
20050202535 | Collier et al. | Sep 2005 | A1 |
20050203007 | Komiyama et al. | Sep 2005 | A1 |
20050208033 | Luquet et al. | Sep 2005 | A1 |
20050214317 | Karp | Sep 2005 | A1 |
20050214318 | Karp | Sep 2005 | A1 |
20050221439 | Bakaletz et al. | Oct 2005 | A1 |
20050221450 | Mockel et al. | Oct 2005 | A1 |
20050221454 | Bathe | Oct 2005 | A1 |
20050227917 | Williams et al. | Oct 2005 | A1 |
20050233424 | Farwick et al. | Oct 2005 | A1 |
20050241015 | Mach et al. | Oct 2005 | A1 |
20050241016 | Mach et al. | Oct 2005 | A1 |
20050249706 | Bermudes et al. | Nov 2005 | A1 |
20050249748 | Dubensky, Jr. et al. | Nov 2005 | A1 |
20050250196 | Paton et al. | Nov 2005 | A1 |
20050251885 | Michaud et al. | Nov 2005 | A1 |
20050255088 | Bermudes et al. | Nov 2005 | A1 |
20050255566 | Bathe et al. | Nov 2005 | A1 |
20050257282 | Mach et al. | Nov 2005 | A1 |
20050260225 | Goldberg et al. | Nov 2005 | A1 |
20050260670 | Colonna et al. | Nov 2005 | A1 |
20050266536 | Wolf et al. | Dec 2005 | A1 |
20050266560 | Preuss et al. | Dec 2005 | A1 |
20050267103 | Hochman | Dec 2005 | A1 |
20050268359 | Mach et al. | Dec 2005 | A1 |
20050273882 | Romano | Dec 2005 | A1 |
20050281828 | Bowdish et al. | Dec 2005 | A1 |
20050282259 | Moeckel et al. | Dec 2005 | A1 |
20050287639 | Kwon et al. | Dec 2005 | A1 |
20060008465 | Steinaa et al. | Jan 2006 | A1 |
20060009633 | Edwards et al. | Jan 2006 | A9 |
20060014212 | Benkovic et al. | Jan 2006 | A1 |
20060014259 | Burke et al. | Jan 2006 | A9 |
20060019356 | Usuda et al. | Jan 2006 | A1 |
20060019357 | Moeckel et al. | Jan 2006 | A1 |
20060024668 | Hoek | Feb 2006 | A1 |
20060025387 | Hochman | Feb 2006 | A1 |
20060030010 | Usuda et al. | Feb 2006 | A1 |
20060035270 | Lee et al. | Feb 2006 | A1 |
20060035320 | Tissot et al. | Feb 2006 | A1 |
20060035371 | Zheng et al. | Feb 2006 | A1 |
20060035813 | Sternberg et al. | Feb 2006 | A1 |
20060040317 | Wick et al. | Feb 2006 | A1 |
20060051370 | Szalay et al. | Mar 2006 | A1 |
20060051839 | Robinson et al. | Mar 2006 | A1 |
20060057152 | Marshall | Mar 2006 | A1 |
20060073168 | Stephens et al. | Apr 2006 | A1 |
20060083716 | Kaufman et al. | Apr 2006 | A1 |
20060084113 | Ladner et al. | Apr 2006 | A1 |
20060088910 | Nguyen | Apr 2006 | A1 |
20060089350 | Hochman et al. | Apr 2006 | A1 |
20060094672 | Pasqualini et al. | May 2006 | A1 |
20060104955 | Redshaw | May 2006 | A1 |
20060110747 | Ramseier et al. | May 2006 | A1 |
20060115483 | Sleeman et al. | Jun 2006 | A1 |
20060127408 | Young et al. | Jun 2006 | A1 |
20060134761 | Moeckel et al. | Jun 2006 | A1 |
20060140975 | Curtiss et al. | Jun 2006 | A1 |
20060156440 | Michaud et al. | Jul 2006 | A1 |
20060160152 | Vinkemeier et al. | Jul 2006 | A1 |
20060160799 | Alekshun et al. | Jul 2006 | A1 |
20060166338 | Bathe et al. | Jul 2006 | A1 |
20060167229 | Wong et al. | Jul 2006 | A1 |
20060174357 | Velander et al. | Aug 2006 | A1 |
20060177912 | Farwick et al. | Aug 2006 | A1 |
20060182685 | Bishai et al. | Aug 2006 | A1 |
20060182762 | Maas et al. | Aug 2006 | A1 |
20060223142 | Edwards et al. | Oct 2006 | A1 |
20060228712 | Nakagawa et al. | Oct 2006 | A1 |
20060229336 | Kazmierski et al. | Oct 2006 | A1 |
20060233829 | Curtiss | Oct 2006 | A1 |
20060234331 | Yazaki et al. | Oct 2006 | A1 |
20060234358 | Anderlei et al. | Oct 2006 | A1 |
20060234943 | Wong | Oct 2006 | A1 |
20060239968 | Arap et al. | Oct 2006 | A1 |
20060241050 | Cameron et al. | Oct 2006 | A1 |
20060246554 | Thierbach et al. | Nov 2006 | A1 |
20060269540 | Robert et al. | Nov 2006 | A1 |
20060269561 | Paterson et al. | Nov 2006 | A1 |
20060270043 | Blattner et al. | Nov 2006 | A1 |
20060275823 | Kodadek | Dec 2006 | A1 |
20060275874 | Matsuno et al. | Dec 2006 | A1 |
20060275897 | Nabel et al. | Dec 2006 | A1 |
20060281908 | Callen | Dec 2006 | A1 |
20060286639 | Edwards et al. | Dec 2006 | A1 |
20070004666 | Lasham et al. | Jan 2007 | A1 |
20070009489 | Bermudes et al. | Jan 2007 | A1 |
20070009900 | Doucette-Stamm et al. | Jan 2007 | A1 |
20070009901 | Doucette-Stamm et al. | Jan 2007 | A1 |
20070009902 | Doucette-Stamm et al. | Jan 2007 | A1 |
20070009903 | Doucette-Stamm et al. | Jan 2007 | A1 |
20070009904 | Doucette-Stamm et al. | Jan 2007 | A1 |
20070009905 | Doucette-Stamm et al. | Jan 2007 | A1 |
20070009906 | Doucette-Stamm et al. | Jan 2007 | A1 |
20070009932 | Stephanopoulos et al. | Jan 2007 | A1 |
20070015271 | Rosen et al. | Jan 2007 | A1 |
20070020327 | Fikes et al. | Jan 2007 | A1 |
20070025981 | Szalay et al. | Feb 2007 | A1 |
20070026507 | Olivo et al. | Feb 2007 | A1 |
20070028324 | Corbin et al. | Feb 2007 | A1 |
20070031382 | Powell et al. | Feb 2007 | A1 |
20070031852 | Doucette-Stamm et al. | Feb 2007 | A1 |
20070032639 | Gottesman et al. | Feb 2007 | A1 |
20070037744 | Gallo et al. | Feb 2007 | A1 |
20070038419 | Usuda et al. | Feb 2007 | A1 |
20070041997 | Finlay et al. | Feb 2007 | A1 |
20070059709 | Benton et al. | Mar 2007 | A1 |
20070059799 | Sette et al. | Mar 2007 | A1 |
20070059801 | Doucette-Stamm et al. | Mar 2007 | A1 |
20070059802 | Doucette-Stamm et al. | Mar 2007 | A1 |
20070059807 | Wisniewski et al. | Mar 2007 | A1 |
20070065820 | Jiang et al. | Mar 2007 | A1 |
20070065908 | Gallo et al. | Mar 2007 | A1 |
20070071675 | Wu et al. | Mar 2007 | A1 |
20070071773 | Hanski et al. | Mar 2007 | A1 |
20070072279 | Meynial-Salles et al. | Mar 2007 | A1 |
20070087403 | Bestel-Corre et al. | Apr 2007 | A1 |
20070092951 | Bathe et al. | Apr 2007 | A1 |
20070104689 | Gillies et al. | May 2007 | A1 |
20070110721 | Cranenburgh | May 2007 | A1 |
20070110752 | Murison et al. | May 2007 | A1 |
20070111291 | Bathe et al. | May 2007 | A1 |
20070116671 | Prakash et al. | May 2007 | A1 |
20070116725 | Vladoianu et al. | May 2007 | A1 |
20070122832 | Mockel et al. | May 2007 | A1 |
20070122881 | Surber | May 2007 | A1 |
20070134264 | Marshall | Jun 2007 | A1 |
20070134768 | Zelder et al. | Jun 2007 | A1 |
20070141680 | Bathe et al. | Jun 2007 | A1 |
20070143871 | French et al. | Jun 2007 | A1 |
20070154458 | McCart et al. | Jul 2007 | A1 |
20070154986 | Kunsch et al. | Jul 2007 | A1 |
20070178116 | Adderson et al. | Aug 2007 | A1 |
20070178492 | Gross et al. | Aug 2007 | A1 |
20070178505 | Fischer et al. | Aug 2007 | A1 |
20070184517 | Schultz et al. | Aug 2007 | A1 |
20070184528 | Pierce et al. | Aug 2007 | A1 |
20070184543 | Pierce et al. | Aug 2007 | A1 |
20070191262 | Racila et al. | Aug 2007 | A1 |
20070192905 | Piller et al. | Aug 2007 | A1 |
20070202572 | Szalay et al. | Aug 2007 | A1 |
20070202578 | Samain et al. | Aug 2007 | A1 |
20070202591 | Ulrich | Aug 2007 | A1 |
20070212311 | Burne et al. | Sep 2007 | A1 |
20070212711 | Choi et al. | Sep 2007 | A1 |
20070212727 | Szalay et al. | Sep 2007 | A1 |
20070224666 | Bathe et al. | Sep 2007 | A1 |
20070231820 | Weiner et al. | Oct 2007 | A1 |
20070231867 | Choi et al. | Oct 2007 | A1 |
20070243303 | Dan Hengst et al. | Oct 2007 | A1 |
20070243616 | Church et al. | Oct 2007 | A1 |
20070244047 | Rosen et al. | Oct 2007 | A1 |
20070254329 | Rubin | Nov 2007 | A1 |
20070254846 | Wong et al. | Nov 2007 | A1 |
20070254850 | Lieberman et al. | Nov 2007 | A1 |
20070258889 | Douglas et al. | Nov 2007 | A1 |
20070259408 | Bathe et al. | Nov 2007 | A1 |
20070259417 | Ladner et al. | Nov 2007 | A1 |
20070264689 | Gross et al. | Nov 2007 | A1 |
20070269369 | Gegg et al. | Nov 2007 | A1 |
20070269871 | Zelder et al. | Nov 2007 | A1 |
20070275423 | Sebastian et al. | Nov 2007 | A1 |
20070281342 | DeAngelis | Dec 2007 | A1 |
20070287171 | Inouye | Dec 2007 | A1 |
20070298012 | King et al. | Dec 2007 | A1 |
20070299008 | Rummel | Dec 2007 | A1 |
20080004206 | Rosen et al. | Jan 2008 | A1 |
20080009041 | Mizoguchi et al. | Jan 2008 | A1 |
20080009446 | Yu et al. | Jan 2008 | A1 |
20080014618 | Bathe et al. | Jan 2008 | A1 |
20080019994 | Brunham et al. | Jan 2008 | A1 |
20080031877 | Covacci et al. | Feb 2008 | A1 |
20080032374 | Zelder et al. | Feb 2008 | A1 |
20080038296 | Brahmbhatt et al. | Feb 2008 | A1 |
20080038779 | Miasnikov et al. | Feb 2008 | A1 |
20080038787 | Zelder et al. | Feb 2008 | A1 |
20080050774 | Berka et al. | Feb 2008 | A1 |
20080050786 | Bathe et al. | Feb 2008 | A1 |
20080063666 | Allende | Mar 2008 | A1 |
20080064062 | Leonhartsberger et al. | Mar 2008 | A1 |
20080070255 | Tanner et al. | Mar 2008 | A1 |
20080070840 | Min et al. | Mar 2008 | A1 |
20080076157 | Leonhartsberger et al. | Mar 2008 | A1 |
20080089862 | Benhar et al. | Apr 2008 | A1 |
20080090770 | Belmares et al. | Apr 2008 | A1 |
20080095806 | Bathurst et al. | Apr 2008 | A1 |
20080102115 | Oyhenart et al. | May 2008 | A1 |
20080118948 | Kroger et al. | May 2008 | A1 |
20080124355 | Bermudes | May 2008 | A1 |
20080131903 | Thierbach et al. | Jun 2008 | A1 |
20080131927 | Schischka et al. | Jun 2008 | A1 |
20080160585 | Zelder et al. | Jul 2008 | A1 |
20080166757 | Bron et al. | Jul 2008 | A1 |
20080166764 | Schloesser et al. | Jul 2008 | A1 |
20080166775 | Kroger et al. | Jul 2008 | A1 |
20080171014 | Wu et al. | Jul 2008 | A1 |
20080176295 | Zelder et al. | Jul 2008 | A1 |
20080181892 | Ledbetter et al. | Jul 2008 | A1 |
20080182295 | Patkar et al. | Jul 2008 | A1 |
20080187520 | Polack et al. | Aug 2008 | A1 |
20080193470 | Masignani et al. | Aug 2008 | A1 |
20080193974 | Coleman et al. | Aug 2008 | A1 |
20080194481 | Rosen et al. | Aug 2008 | A1 |
20080199926 | Burgard et al. | Aug 2008 | A1 |
20080206271 | Liao et al. | Aug 2008 | A1 |
20080206284 | Williams et al. | Aug 2008 | A1 |
20080206814 | Lee et al. | Aug 2008 | A1 |
20080206818 | Wich et al. | Aug 2008 | A1 |
20080213316 | Tarasenko | Sep 2008 | A1 |
20080214469 | Lam et al. | Sep 2008 | A1 |
20080227704 | Kamens | Sep 2008 | A1 |
20080233623 | Chang et al. | Sep 2008 | A1 |
20080242620 | Wong et al. | Oct 2008 | A1 |
20080249013 | Cabezon et al. | Oct 2008 | A1 |
20080254511 | Dassler et al. | Oct 2008 | A1 |
20080260769 | Capecchi et al. | Oct 2008 | A1 |
20080261269 | Bathe et al. | Oct 2008 | A1 |
20080261869 | Shapiro | Oct 2008 | A1 |
20080267966 | Masignani et al. | Oct 2008 | A1 |
20080268502 | Haefner et al. | Oct 2008 | A1 |
20080269070 | Ramseier et al. | Oct 2008 | A1 |
20080270096 | Palsson | Oct 2008 | A1 |
20080274155 | Barton et al. | Nov 2008 | A1 |
20080274265 | Bathe et al. | Nov 2008 | A1 |
20080274516 | Kroger et al. | Nov 2008 | A1 |
20080280346 | de Lorenzo Prieto et al. | Nov 2008 | A1 |
20080280354 | Perez et al. | Nov 2008 | A1 |
20080286290 | Furusako et al. | Nov 2008 | A1 |
20080286306 | Nabel et al. | Nov 2008 | A1 |
20080286841 | Kroger et al. | Nov 2008 | A1 |
20080288264 | Mach et al. | Nov 2008 | A1 |
20080293100 | Wendisch et al. | Nov 2008 | A1 |
20080305119 | Dewhurst et al. | Dec 2008 | A1 |
20080305533 | Yi et al. | Dec 2008 | A1 |
20080311081 | Fruehauf et al. | Dec 2008 | A1 |
20080311125 | O'Keefe et al. | Dec 2008 | A1 |
20080317731 | Gramatikova et al. | Dec 2008 | A1 |
20080318286 | Choi et al. | Dec 2008 | A1 |
20090004705 | Kroger et al. | Jan 2009 | A1 |
20090004744 | Surber et al. | Jan 2009 | A1 |
20090004745 | Choi et al. | Jan 2009 | A1 |
20090010956 | Rikihisa | Jan 2009 | A1 |
20090011490 | Sabbadini et al. | Jan 2009 | A1 |
20090011974 | Bocharov et al. | Jan 2009 | A1 |
20090011995 | Lee et al. | Jan 2009 | A1 |
20090019609 | Romano | Jan 2009 | A1 |
20090023157 | Lee et al. | Jan 2009 | A1 |
20090023182 | Schilling | Jan 2009 | A1 |
20090028890 | Karp | Jan 2009 | A1 |
20090029425 | Zelder et al. | Jan 2009 | A1 |
20090035827 | Stephens et al. | Feb 2009 | A1 |
20090042248 | Gal et al. | Feb 2009 | A1 |
20090042278 | Barr et al. | Feb 2009 | A1 |
20090042785 | Matschiner et al. | Feb 2009 | A1 |
20090053186 | Hu et al. | Feb 2009 | A1 |
20090053794 | Bathe et al. | Feb 2009 | A1 |
20090054323 | Gliner et al. | Feb 2009 | A1 |
20090061445 | Oltvai et al. | Mar 2009 | A1 |
20090062139 | Short et al. | Mar 2009 | A1 |
20090068226 | Ulrich et al. | Mar 2009 | A1 |
20090069241 | Barnstable et al. | Mar 2009 | A1 |
20090069248 | Motin et al. | Mar 2009 | A1 |
20090075333 | Campbell et al. | Mar 2009 | A1 |
20090081193 | Sasisekharan et al. | Mar 2009 | A1 |
20090081199 | Colonna et al. | Mar 2009 | A1 |
20090081673 | Shen et al. | Mar 2009 | A1 |
20090092632 | Lee | Apr 2009 | A1 |
20090098049 | Dowdy et al. | Apr 2009 | A1 |
20090111160 | Collier et al. | Apr 2009 | A1 |
20090117047 | Szalay et al. | May 2009 | A1 |
20090117048 | Szalay et al. | May 2009 | A1 |
20090117049 | Szalay et al. | May 2009 | A1 |
20090123382 | Szalay et al. | May 2009 | A1 |
20090123426 | Li et al. | May 2009 | A1 |
20090123921 | Georgiou et al. | May 2009 | A1 |
20090130709 | Hamilton | May 2009 | A1 |
20090131401 | Levy et al. | May 2009 | A1 |
20090136542 | Karp | May 2009 | A1 |
20090142343 | Fuh et al. | Jun 2009 | A1 |
20090155238 | Weiner et al. | Jun 2009 | A1 |
20090155866 | Burk et al. | Jun 2009 | A1 |
20090162356 | Lookeren Campagne | Jun 2009 | A1 |
20090169517 | Bermudes et al. | Jul 2009 | A1 |
20090169566 | Rawlin et al. | Jul 2009 | A1 |
20090170155 | Johnson et al. | Jul 2009 | A1 |
20090170170 | Choi et al. | Jul 2009 | A1 |
20090170812 | Alekshun et al. | Jul 2009 | A1 |
20090175829 | Forbes et al. | Jul 2009 | A1 |
20090175897 | Tang et al. | Jul 2009 | A1 |
20090180955 | Stritzker et al. | Jul 2009 | A1 |
20090186377 | Johnson et al. | Jul 2009 | A1 |
20090186384 | Matsuno et al. | Jul 2009 | A1 |
20090191599 | Devroe et al. | Jul 2009 | A1 |
20090203070 | Devroe et al. | Aug 2009 | A1 |
20090203103 | Pierce et al. | Aug 2009 | A1 |
20090208534 | Xu et al. | Aug 2009 | A1 |
20090209749 | Mach et al. | Aug 2009 | A1 |
20090214506 | Hardy et al. | Aug 2009 | A1 |
20090215130 | Iyo et al. | Aug 2009 | A1 |
20090215133 | Bathe et al. | Aug 2009 | A1 |
20090215754 | Hochman et al. | Aug 2009 | A1 |
20090217396 | Kyrkaniders et al. | Aug 2009 | A1 |
20090220480 | Gray et al. | Sep 2009 | A1 |
20090220540 | Marshall | Sep 2009 | A1 |
20090221055 | Kadoya et al. | Sep 2009 | A1 |
20090226372 | Ruoslahti et al. | Sep 2009 | A1 |
20090226919 | Gulevich et al. | Sep 2009 | A1 |
20090232801 | Hillen et al. | Sep 2009 | A1 |
20090232804 | Lazarides et al. | Sep 2009 | A1 |
20090234101 | Ladner et al. | Sep 2009 | A1 |
20090238789 | Guyon et al. | Sep 2009 | A1 |
20090239797 | Cooper et al. | Sep 2009 | A1 |
20090240073 | Barry | Sep 2009 | A1 |
20090246220 | Ertl et al. | Oct 2009 | A1 |
20090246832 | Wakarchuk et al. | Oct 2009 | A1 |
20090246836 | Kroger et al. | Oct 2009 | A1 |
20090246838 | Zelder et al. | Oct 2009 | A1 |
20090253164 | Unrean et al. | Oct 2009 | A1 |
20090258401 | Iyo et al. | Oct 2009 | A1 |
20090258935 | Zheng et al. | Oct 2009 | A1 |
20090271894 | Benfey et al. | Oct 2009 | A1 |
20090275097 | Sun et al. | Nov 2009 | A1 |
20090275104 | Berka et al. | Nov 2009 | A1 |
20090280542 | Bathe et al. | Nov 2009 | A1 |
20090294288 | May et al. | Dec 2009 | A1 |
20090297560 | Dattwyler et al. | Dec 2009 | A1 |
20090298136 | Zelder et al. | Dec 2009 | A1 |
20090300779 | Zhao et al. | Dec 2009 | A1 |
20090304693 | Ghayur et al. | Dec 2009 | A1 |
20090305296 | Bengtsson et al. | Dec 2009 | A1 |
20090311253 | Ghayur et al. | Dec 2009 | A1 |
20090311744 | DeFrees et al. | Dec 2009 | A1 |
20090311756 | Zelder et al. | Dec 2009 | A1 |
20090317404 | Markham | Dec 2009 | A1 |
20090317418 | Catanzaro et al. | Dec 2009 | A1 |
20090324576 | Padmanabhan et al. | Dec 2009 | A1 |
20090324651 | Old et al. | Dec 2009 | A1 |
20090325242 | Bathe et al. | Dec 2009 | A1 |
20090325298 | Kernodle | Dec 2009 | A1 |
20090325866 | Kim et al. | Dec 2009 | A1 |
20100003727 | Zelder et al. | Jan 2010 | A1 |
20100008851 | Nicolaides et al. | Jan 2010 | A1 |
20100008946 | Szalay et al. | Jan 2010 | A1 |
20100011456 | Mathur et al. | Jan 2010 | A1 |
20100015672 | Takagi et al. | Jan 2010 | A1 |
20100015674 | Zelder et al. | Jan 2010 | A1 |
20100021978 | Burk et al. | Jan 2010 | A1 |
20100022584 | Kenyon et al. | Jan 2010 | A1 |
20100028340 | Mueller et al. | Feb 2010 | A1 |
20100034822 | Masignani et al. | Feb 2010 | A1 |
20100040537 | Gu et al. | Feb 2010 | A1 |
20100040640 | Lanar et al. | Feb 2010 | A1 |
20100041107 | Herold et al. | Feb 2010 | A1 |
20100047239 | Wu et al. | Feb 2010 | A1 |
20100047245 | Lacy et al. | Feb 2010 | A1 |
20100062016 | Szalay et al. | Mar 2010 | A1 |
20100062438 | Danchin | Mar 2010 | A1 |
20100062535 | Kroger et al. | Mar 2010 | A1 |
20100064393 | Berka et al. | Mar 2010 | A1 |
20100068173 | Yu et al. | Mar 2010 | A1 |
20100074900 | Ghayur et al. | Mar 2010 | A1 |
20100074933 | Prakash et al. | Mar 2010 | A1 |
20100080815 | Zavada et al. | Apr 2010 | A1 |
20100086546 | Lee et al. | Apr 2010 | A1 |
20100092438 | Fruehauf et al. | Apr 2010 | A1 |
20100095398 | Meana et al. | Apr 2010 | A1 |
20100104607 | Engelberg-Kulka et al. | Apr 2010 | A1 |
20100105106 | Ronin et al. | Apr 2010 | A1 |
20100111998 | Nabel et al. | May 2010 | A1 |
20100112670 | Giacalone et al. | May 2010 | A1 |
20100119550 | Gomi et al. | May 2010 | A1 |
20100119588 | Sato et al. | May 2010 | A1 |
20100120105 | Anthony et al. | May 2010 | A1 |
20100124558 | Curtiss, III et al. | May 2010 | A1 |
20100135961 | Bermudes | Jun 2010 | A1 |
20100135973 | Eisenstark et al. | Jun 2010 | A1 |
20100136027 | Kim | Jun 2010 | A1 |
20100136048 | Bermudes | Jun 2010 | A1 |
20100136657 | Jokinen et al. | Jun 2010 | A1 |
20100137162 | Retailack et al. | Jun 2010 | A1 |
20100137192 | Shapiro | Jun 2010 | A1 |
20100143997 | Boelter et al. | Jun 2010 | A1 |
20100150965 | Kopecko et al. | Jun 2010 | A1 |
20100158952 | Goletz | Jun 2010 | A1 |
20100159523 | Bathe et al. | Jun 2010 | A1 |
20100160612 | Skerra et al. | Jun 2010 | A1 |
20100166802 | Caplan et al. | Jul 2010 | A1 |
20100169988 | Kohli et al. | Jul 2010 | A1 |
20100172976 | Satishchandran et al. | Jul 2010 | A1 |
20100183516 | Ribbert et al. | Jul 2010 | A1 |
20100184157 | Williams et al. | Jul 2010 | A1 |
20100184613 | Lee et al. | Jul 2010 | A1 |
20100189686 | Rosen et al. | Jul 2010 | A1 |
20100189691 | Fruehauf et al. | Jul 2010 | A1 |
20100189740 | Michon et al. | Jul 2010 | A1 |
20100189774 | Lenormand | Jul 2010 | A1 |
20100196315 | Lacy et al. | Aug 2010 | A1 |
20100196959 | Schischka et al. | Aug 2010 | A1 |
20100209405 | Altman et al. | Aug 2010 | A1 |
20100215679 | Horwitz et al. | Aug 2010 | A1 |
20100215682 | Berkower | Aug 2010 | A1 |
20100216720 | Brophy et al. | Aug 2010 | A1 |
20100221179 | Hsieh et al. | Sep 2010 | A1 |
20100221779 | Short et al. | Sep 2010 | A1 |
20100227850 | Alekshun et al. | Sep 2010 | A1 |
20100233079 | Jakob et al. | Sep 2010 | A1 |
20100233195 | Delisa et al. | Sep 2010 | A1 |
20100233814 | Williams | Sep 2010 | A1 |
20100239546 | Fruehauf et al. | Sep 2010 | A1 |
20100247544 | Vachon | Sep 2010 | A1 |
20100247560 | Simpson et al. | Sep 2010 | A1 |
20100249026 | Rosen et al. | Sep 2010 | A1 |
20100255022 | Prescott et al. | Oct 2010 | A1 |
20100255036 | Hassan et al. | Oct 2010 | A1 |
20100255544 | Bathe et al. | Oct 2010 | A1 |
20100255553 | Srienc et al. | Oct 2010 | A1 |
20100260668 | Ghayur et al. | Oct 2010 | A1 |
20100261201 | Katanaev | Oct 2010 | A1 |
20100261257 | Bathe et al. | Oct 2010 | A1 |
20100272750 | Buyse et al. | Oct 2010 | A1 |
20100278819 | Bossuyt et al. | Nov 2010 | A1 |
20100279923 | Schulte et al. | Nov 2010 | A1 |
20100281577 | Mulet Salort et al. | Nov 2010 | A1 |
20100285547 | Soucaille et al. | Nov 2010 | A1 |
20100285564 | Skerra et al. | Nov 2010 | A1 |
20100286060 | Gliner et al. | Nov 2010 | A1 |
20100286251 | Rubin | Nov 2010 | A1 |
20100290996 | Nickerson et al. | Nov 2010 | A1 |
20100291033 | Rosen et al. | Nov 2010 | A1 |
20100291088 | Ghayur et al. | Nov 2010 | A1 |
20100292091 | Levy | Nov 2010 | A1 |
20100292429 | Volkert et al. | Nov 2010 | A1 |
20100303822 | Masignani et al. | Dec 2010 | A1 |
20100305306 | Colonna et al. | Dec 2010 | A1 |
20100310560 | Colonna et al. | Dec 2010 | A1 |
20100310593 | Brazer et al. | Dec 2010 | A1 |
20100311147 | Bathe et al. | Dec 2010 | A1 |
20100317007 | Palsson et al. | Dec 2010 | A1 |
20100319087 | Corbin et al. | Dec 2010 | A1 |
20100333235 | Mach et al. | Dec 2010 | A1 |
20110003963 | Zelder et al. | Jan 2011 | A1 |
20110008392 | Buck et al. | Jan 2011 | A1 |
20110008828 | Kwon et al. | Jan 2011 | A1 |
20110014666 | Voelker et al. | Jan 2011 | A1 |
20110014672 | Chotani et al. | Jan 2011 | A1 |
20110014701 | Ghosh | Jan 2011 | A1 |
20110021416 | Shapiro | Jan 2011 | A1 |
20110027309 | Bottje et al. | Feb 2011 | A1 |
20110027349 | Sable et al. | Feb 2011 | A1 |
20110028397 | Tozser et al. | Feb 2011 | A1 |
20110033501 | Curtiss, III et al. | Feb 2011 | A1 |
20110038865 | Shin et al. | Feb 2011 | A1 |
20110038917 | Kappers et al. | Feb 2011 | A1 |
20110039313 | Verseck et al. | Feb 2011 | A1 |
20110044980 | Ghayur et al. | Feb 2011 | A1 |
20110045587 | Sullivan et al. | Feb 2011 | A1 |
20110053253 | Kim et al. | Mar 2011 | A1 |
20110065091 | Van Der Hoek | Mar 2011 | A1 |
20110086407 | Berka et al. | Apr 2011 | A1 |
20110091372 | Ghayur et al. | Apr 2011 | A1 |
20110091463 | Ghayur et al. | Apr 2011 | A1 |
20110091493 | Moahamadzadeh et al. | Apr 2011 | A1 |
20110093965 | O'Donoghue et al. | Apr 2011 | A1 |
20110104146 | Faraday | May 2011 | A1 |
20110104163 | Dimitrov et al. | May 2011 | A1 |
20110104196 | Karp | May 2011 | A1 |
20110104240 | Jones et al. | May 2011 | A1 |
20110106000 | Jones et al. | May 2011 | A1 |
20110111015 | Bottje et al. | May 2011 | A1 |
20110111458 | Masuda et al. | May 2011 | A1 |
20110111481 | Li | May 2011 | A1 |
20110111496 | Li | May 2011 | A1 |
20110117079 | Benatuil et al. | May 2011 | A1 |
20110117611 | Dunican et al. | May 2011 | A1 |
20110117617 | Liu et al. | May 2011 | A1 |
20110124073 | Devroe et al. | May 2011 | A1 |
20110125118 | Lynch | May 2011 | A1 |
20110135646 | Bakaletz et al. | Jun 2011 | A1 |
20110136759 | Kahne et al. | Jun 2011 | A1 |
20110142761 | Wu et al. | Jun 2011 | A1 |
20110152176 | Horswill | Jun 2011 | A1 |
20110159026 | Bottje et al. | Jun 2011 | A1 |
20110165063 | Hsieh et al. | Jul 2011 | A1 |
20110165066 | Wu et al. | Jul 2011 | A1 |
20110165660 | Picataggio et al. | Jul 2011 | A1 |
20110165661 | Picataggio et al. | Jul 2011 | A1 |
20110165680 | Blattner et al. | Jul 2011 | A1 |
20110166336 | Gottesman et al. | Jul 2011 | A1 |
20110171695 | Bathe et al. | Jul 2011 | A1 |
20110189773 | Altman et al. | Aug 2011 | A1 |
20110189774 | Mach et al. | Aug 2011 | A1 |
20110190234 | Nathan et al. | Aug 2011 | A1 |
20110195090 | Dimitrov | Aug 2011 | A1 |
20110195423 | Selinfreund et al. | Aug 2011 | A1 |
20110201070 | Soucaille et al. | Aug 2011 | A1 |
20110201109 | Zwaka et al. | Aug 2011 | A1 |
20110206616 | Ichtchenko et al. | Aug 2011 | A1 |
20110207183 | Herold et al. | Aug 2011 | A1 |
20110207187 | Tokuda et al. | Aug 2011 | A1 |
20110212094 | Ghayur et al. | Sep 2011 | A1 |
20110217237 | Chen et al. | Sep 2011 | A1 |
20110223241 | Tardi et al. | Sep 2011 | A1 |
20110224416 | Picataggio et al. | Sep 2011 | A1 |
20110225663 | Von Schaewen et al. | Sep 2011 | A1 |
20110229959 | Picataggio et al. | Sep 2011 | A1 |
20110230523 | Levy et al. | Sep 2011 | A1 |
20110243980 | Feldman et al. | Oct 2011 | A1 |
20110243992 | Kernodle | Oct 2011 | A1 |
20110244529 | Claes et al. | Oct 2011 | A1 |
20110244575 | Lipscomb et al. | Oct 2011 | A1 |
20110251095 | Levy | Oct 2011 | A1 |
20110257080 | Chai et al. | Oct 2011 | A1 |
20110262347 | Ruoslahti et al. | Oct 2011 | A1 |
20110262474 | Du et al. | Oct 2011 | A1 |
20110262980 | Soucaille et al. | Oct 2011 | A1 |
20110268661 | Markiv et al. | Nov 2011 | A1 |
20110268760 | Telfer et al. | Nov 2011 | A1 |
20110269201 | Gray et al. | Nov 2011 | A1 |
20110274719 | Marshall | Nov 2011 | A1 |
20110274721 | Nabel et al. | Nov 2011 | A1 |
20110275122 | Min et al. | Nov 2011 | A1 |
20110275585 | Brahmbhatt et al. | Nov 2011 | A1 |
20110277180 | Romano | Nov 2011 | A1 |
20110280800 | Wu et al. | Nov 2011 | A1 |
20110280830 | Rosen et al. | Nov 2011 | A9 |
20110281330 | Sabbadini et al. | Nov 2011 | A1 |
20110286916 | Aste-Amezaga et al. | Nov 2011 | A1 |
20110287037 | Gentschev et al. | Nov 2011 | A1 |
20110293608 | Jaffee et al. | Dec 2011 | A1 |
20110294170 | Subbian et al. | Dec 2011 | A1 |
20110300176 | Szalay et al. | Dec 2011 | A1 |
20110305724 | Paterson et al. | Dec 2011 | A1 |
20110306611 | Alekshun et al. | Dec 2011 | A1 |
20110318308 | Ragolia | Dec 2011 | A1 |
20110318316 | Wong et al. | Dec 2011 | A1 |
20110318317 | Wong et al. | Dec 2011 | A1 |
20110318349 | Ghayur et al. | Dec 2011 | A1 |
20120009194 | Ferrone et al. | Jan 2012 | A1 |
20120009196 | Muerhoff et al. | Jan 2012 | A1 |
20120009205 | Gegg et al. | Jan 2012 | A1 |
20120009627 | Deng et al. | Jan 2012 | A1 |
20120014941 | Wu et al. | Jan 2012 | A1 |
20120014957 | Ghayur et al. | Jan 2012 | A1 |
20120020883 | Stritzker et al. | Jan 2012 | A1 |
20120021517 | Jin et al. | Jan 2012 | A1 |
20120021985 | Rosen et al. | Jan 2012 | A1 |
20120027785 | Dirienzo | Feb 2012 | A1 |
20120028324 | Buelter et al. | Feb 2012 | A1 |
20120034160 | Ghayur et al. | Feb 2012 | A1 |
20120040414 | Knight | Feb 2012 | A1 |
20120040426 | Sun et al. | Feb 2012 | A1 |
20120042413 | Albert et al. | Feb 2012 | A1 |
20120045474 | Motin et al. | Feb 2012 | A1 |
20120058532 | Buelter et al. | Mar 2012 | A1 |
20120064062 | Goguen et al. | Mar 2012 | A1 |
20120064568 | Hamilton | Mar 2012 | A1 |
20120064572 | Finlay et al. | Mar 2012 | A1 |
20120070870 | Way et al. | Mar 2012 | A1 |
20120070881 | Berka et al. | Mar 2012 | A1 |
20120071545 | Shapiro | Mar 2012 | A1 |
20120076758 | Diamond et al. | Mar 2012 | A1 |
20120076803 | Brophy et al. | Mar 2012 | A1 |
20120077237 | Picataggio et al. | Mar 2012 | A1 |
20120077252 | Picataggio et al. | Mar 2012 | A1 |
20120083587 | Gallo et al. | Apr 2012 | A1 |
20120087858 | Ghayur et al. | Apr 2012 | A1 |
20120087946 | Curtiss, III et al. | Apr 2012 | A1 |
20120088314 | Katanaev | Apr 2012 | A1 |
20120093773 | Li et al. | Apr 2012 | A1 |
20120093805 | Kubota | Apr 2012 | A1 |
20120093868 | Masignani et al. | Apr 2012 | A1 |
20120094341 | Burk et al. | Apr 2012 | A1 |
20120094906 | Guyon et al. | Apr 2012 | A1 |
20120100140 | Reyes et al. | Apr 2012 | A1 |
20120100581 | Gramatikova et al. | Apr 2012 | A1 |
20120107360 | Le Butt et al. | May 2012 | A1 |
20120108521 | Eggink et al. | May 2012 | A1 |
20120108640 | Hochman et al. | May 2012 | A1 |
20120114652 | Elvin et al. | May 2012 | A1 |
20120121637 | Granoff et al. | May 2012 | A1 |
20120122762 | Ruben et al. | May 2012 | A1 |
20120122962 | Han et al. | May 2012 | A1 |
20120128594 | Choy et al. | May 2012 | A1 |
20120128624 | Yu et al. | May 2012 | A1 |
20120128718 | Hassan et al. | May 2012 | A1 |
20120135503 | Sabbadini et al. | May 2012 | A1 |
20120141415 | Ballance et al. | Jun 2012 | A1 |
20120142079 | Sabbadini et al. | Jun 2012 | A1 |
20120142080 | Bermudes | Jun 2012 | A1 |
20120142623 | Lagunoff et al. | Jun 2012 | A1 |
20120144509 | Benghezal et al. | Jun 2012 | A1 |
20120148601 | Ulrich et al. | Jun 2012 | A1 |
20120148615 | Masignani et al. | Jun 2012 | A1 |
20120149095 | Kopecko et al. | Jun 2012 | A1 |
20120164687 | Bereta et al. | Jun 2012 | A1 |
20120164703 | Yi et al. | Jun 2012 | A1 |
20120171234 | Wong et al. | Jul 2012 | A1 |
20120177682 | Marshall | Jul 2012 | A1 |
20120184007 | Picataggio et al. | Jul 2012 | A1 |
20120184020 | Picataggio et al. | Jul 2012 | A1 |
20120189541 | Wu | Jul 2012 | A1 |
20120189572 | Wei et al. | Jul 2012 | A1 |
20120190089 | Buelter et al. | Jul 2012 | A1 |
20120195900 | Ghayur et al. | Aug 2012 | A1 |
20120195922 | Lee | Aug 2012 | A1 |
20120208181 | Merighi et al. | Aug 2012 | A1 |
20120210467 | Barton et al. | Aug 2012 | A1 |
20120213767 | Wei et al. | Aug 2012 | A1 |
20120219545 | Ayuso et al. | Aug 2012 | A1 |
20120225454 | Benghezal et al. | Sep 2012 | A1 |
20120230976 | Helmerhorst et al. | Sep 2012 | A1 |
20120232012 | Popel et al. | Sep 2012 | A1 |
20120237491 | Padmanabhan et al. | Sep 2012 | A1 |
20120244600 | Jin | Sep 2012 | A1 |
20120244621 | Weiss et al. | Sep 2012 | A1 |
20120252074 | Zhang et al. | Oct 2012 | A1 |
20120252099 | Sabbadini et al. | Oct 2012 | A1 |
20120253009 | Walker | Oct 2012 | A1 |
20120258108 | Ghayur et al. | Oct 2012 | A1 |
20120258521 | Liu et al. | Oct 2012 | A1 |
20120263722 | Ghayur et al. | Oct 2012 | A1 |
20120264686 | Guyon et al. | Oct 2012 | A9 |
20120264902 | Lipscomb et al. | Oct 2012 | A1 |
20120266328 | Gray et al. | Oct 2012 | A1 |
20120266329 | Mathur et al. | Oct 2012 | A1 |
20120271036 | Smith et al. | Oct 2012 | A1 |
20120275996 | Hsieh | Nov 2012 | A1 |
20120276010 | Szalay et al. | Nov 2012 | A1 |
20120276132 | Feng et al. | Nov 2012 | A1 |
20120276587 | Beck et al. | Nov 2012 | A1 |
20120276603 | Beck et al. | Nov 2012 | A1 |
20120277143 | Jacobs et al. | Nov 2012 | A1 |
20120282700 | Lunder et al. | Nov 2012 | A1 |
20120282701 | Kopecko et al. | Nov 2012 | A1 |
20120288901 | Zelder et al. | Nov 2012 | A1 |
20120301493 | Nunez et al. | Nov 2012 | A1 |
20120301497 | Yadava et al. | Nov 2012 | A1 |
20120308484 | Szalay et al. | Dec 2012 | A1 |
20120308575 | Guo et al. | Dec 2012 | A1 |
20120308594 | Sablon et al. | Dec 2012 | A1 |
20120329150 | Duke et al. | Dec 2012 | A1 |
20130004416 | Wu et al. | Jan 2013 | A1 |
20130004537 | Curtiss et al. | Jan 2013 | A1 |
20130004998 | Subbian et al. | Jan 2013 | A1 |
20130004999 | Reth et al. | Jan 2013 | A1 |
20130011409 | Shipp et al. | Jan 2013 | A1 |
20130011874 | Campbell et al. | Jan 2013 | A1 |
20130017173 | Nataro et al. | Jan 2013 | A1 |
20130022539 | Pilkington et al. | Jan 2013 | A1 |
20130022578 | Newman et al. | Jan 2013 | A1 |
20130023472 | Bristow | Jan 2013 | A1 |
20130028901 | Colonna et al. | Jan 2013 | A1 |
20130028924 | Ertl et al. | Jan 2013 | A1 |
20130045184 | Teitelbaum | Feb 2013 | A1 |
20130052227 | Gerke et al. | Feb 2013 | A1 |
20130059318 | Kaneko et al. | Mar 2013 | A1 |
20130065274 | Gerngross et al. | Mar 2013 | A1 |
20130066035 | Burgard et al. | Mar 2013 | A1 |
20130071893 | Lynch et al. | Mar 2013 | A1 |
20130078254 | Bakaletz et al. | Mar 2013 | A1 |
20130078275 | Tao | Mar 2013 | A1 |
20130084304 | Hargis et al. | Apr 2013 | A1 |
20130089906 | Beck et al. | Apr 2013 | A1 |
20130095566 | Oltvai et al. | Apr 2013 | A1 |
20130101577 | Wei et al. | Apr 2013 | A9 |
20130102017 | Pfaendler et al. | Apr 2013 | A1 |
20130122043 | Guimaraes et al. | May 2013 | A1 |
20130122541 | Lynch et al. | May 2013 | A1 |
20130122553 | Maertens et al. | May 2013 | A1 |
20130122565 | Pierce et al. | May 2013 | A1 |
20130129713 | Rescigno et al. | May 2013 | A1 |
20130129737 | Adderson et al. | May 2013 | A1 |
20130129761 | Garcia-Sastre et al. | May 2013 | A1 |
20130130292 | Szalay et al. | May 2013 | A1 |
20130142937 | Bathe et al. | Jun 2013 | A1 |
20130149313 | Gu et al. | Jun 2013 | A1 |
20130150559 | Colonna et al. | Jun 2013 | A1 |
20130164307 | Markham | Jun 2013 | A1 |
20130164317 | Yousef et al. | Jun 2013 | A1 |
20130164329 | Rossomando et al. | Jun 2013 | A1 |
20130164380 | Durum et al. | Jun 2013 | A1 |
20130164808 | Mcauliffe et al. | Jun 2013 | A1 |
20130164809 | Chotani et al. | Jun 2013 | A1 |
20130171096 | Hsieh et al. | Jul 2013 | A1 |
20130171109 | Helmerhorst et al. | Jul 2013 | A1 |
20130171182 | Whelan et al. | Jul 2013 | A1 |
20130171190 | Curtiss, III et al. | Jul 2013 | A1 |
20130177555 | Wilkinson et al. | Jul 2013 | A1 |
20130183728 | Botes et al. | Jul 2013 | A1 |
20130189753 | Pearlman et al. | Jul 2013 | A1 |
20130190241 | Wong et al. | Jul 2013 | A1 |
20130190255 | Wong et al. | Jul 2013 | A1 |
20130196432 | Poehlmann et al. | Aug 2013 | A1 |
20130197194 | Kaplan et al. | Aug 2013 | A1 |
20130197203 | Michon et al. | Aug 2013 | A1 |
20130202557 | Li et al. | Aug 2013 | A1 |
20130202623 | Chomont et al. | Aug 2013 | A1 |
20130203130 | Wittmann et al. | Aug 2013 | A1 |
20130203164 | Rosen et al. | Aug 2013 | A1 |
20130205416 | Nash et al. | Aug 2013 | A1 |
20130209405 | Curtiss et al. | Aug 2013 | A1 |
20130209407 | Hamer | Aug 2013 | A1 |
20130209499 | Garcia-Sastre et al. | Aug 2013 | A1 |
20130210073 | Kwon et al. | Aug 2013 | A1 |
20130210077 | Brzezinski et al. | Aug 2013 | A1 |
20130210121 | Giacalone et al. | Aug 2013 | A1 |
20130210149 | Li | Aug 2013 | A1 |
20130210747 | Hamm-Alvarez et al. | Aug 2013 | A1 |
20130211170 | Amano et al. | Aug 2013 | A1 |
20130216555 | Nitsch et al. | Aug 2013 | A1 |
20130216568 | Maione et al. | Aug 2013 | A1 |
20130217068 | Parkot et al. | Aug 2013 | A1 |
20130217145 | Yoshimura et al. | Aug 2013 | A1 |
20130224804 | Knight | Aug 2013 | A1 |
20130227741 | Gray et al. | Aug 2013 | A1 |
20130243747 | Fima et al. | Sep 2013 | A1 |
20130266585 | Nitsch et al. | Oct 2013 | A1 |
20130269057 | Fosu-Nyarko et al. | Oct 2013 | A1 |
20130273613 | Devroe et al. | Oct 2013 | A1 |
20130274187 | Mogelsvang et al. | Oct 2013 | A1 |
20130276168 | Romaine et al. | Oct 2013 | A1 |
20130280774 | Blake et al. | Oct 2013 | A1 |
20130287810 | Mohamadzadeh et al. | Oct 2013 | A1 |
20130295054 | Huang et al. | Nov 2013 | A1 |
20130295072 | Fima et al. | Nov 2013 | A1 |
20130295127 | Prescott et al. | Nov 2013 | A1 |
20130295616 | Muramatsu et al. | Nov 2013 | A1 |
20130310458 | Eggeling et al. | Nov 2013 | A1 |
20130316397 | Airen et al. | Nov 2013 | A1 |
20130316426 | Burk et al. | Nov 2013 | A1 |
20130318640 | Oldenburg et al. | Nov 2013 | A1 |
20130323801 | Chilton et al. | Dec 2013 | A1 |
20130330350 | Dimasi | Dec 2013 | A1 |
20130330709 | Beatty et al. | Dec 2013 | A1 |
20130330796 | Beck et al. | Dec 2013 | A1 |
20130330824 | Li | Dec 2013 | A1 |
20130337516 | Herrema | Dec 2013 | A1 |
20130337545 | Sabbadini et al. | Dec 2013 | A1 |
20130344033 | Vergnolle et al. | Dec 2013 | A1 |
20130345114 | Williams et al. | Dec 2013 | A1 |
20140004598 | Picataggio et al. | Jan 2014 | A1 |
20140005108 | Bristow | Jan 2014 | A1 |
20140010811 | Ferrone et al. | Jan 2014 | A1 |
20140010829 | Bigner et al. | Jan 2014 | A1 |
20140017765 | Subbian et al. | Jan 2014 | A1 |
20140024050 | Yoshimura et al. | Jan 2014 | A1 |
20140024820 | Parkot et al. | Jan 2014 | A1 |
20140031541 | Heidtman et al. | Jan 2014 | A1 |
20140044748 | Lee | Feb 2014 | A1 |
20140045231 | Lynch et al. | Feb 2014 | A1 |
20140045261 | Wang et al. | Feb 2014 | A1 |
20140050693 | Skerra et al. | Feb 2014 | A1 |
20140051132 | Samsonova et al. | Feb 2014 | A1 |
20140051136 | Liao et al. | Feb 2014 | A1 |
20140056841 | Vachon | Feb 2014 | A1 |
20140057940 | Mankowski et al. | Feb 2014 | A1 |
20140072595 | Benghezal et al. | Mar 2014 | A1 |
20140073683 | Han et al. | Mar 2014 | A1 |
20140079701 | Miller et al. | Mar 2014 | A1 |
20140080201 | Merighi et al. | Mar 2014 | A1 |
20140086950 | Pascual et al. | Mar 2014 | A1 |
20140093521 | Benatuil et al. | Apr 2014 | A1 |
20140093528 | Berkower | Apr 2014 | A1 |
20140093534 | Bottje et al. | Apr 2014 | A1 |
20140093540 | Wright et al. | Apr 2014 | A1 |
20140093885 | Hua et al. | Apr 2014 | A1 |
20140093925 | Guettler et al. | Apr 2014 | A1 |
20140094404 | Villaverde Corrales et al. | Apr 2014 | A1 |
20140099670 | Kostenuik et al. | Apr 2014 | A1 |
20140099671 | Wu et al. | Apr 2014 | A1 |
20140105863 | Vanden-Broucke et al. | Apr 2014 | A1 |
20140112951 | Tang et al. | Apr 2014 | A1 |
20140113376 | Sorek et al. | Apr 2014 | A1 |
20140127216 | Balraj et al. | May 2014 | A1 |
20140127221 | Bakaletz et al. | May 2014 | A1 |
20140127765 | Osterhout et al. | May 2014 | A1 |
20140127780 | Zhang et al. | May 2014 | A1 |
20140134171 | Ghayur et al. | May 2014 | A1 |
20140134682 | Wittmann et al. | May 2014 | A1 |
20140134690 | Yan et al. | May 2014 | A1 |
20140141482 | Pearlman et al. | May 2014 | A1 |
20140148582 | Gallo et al. | May 2014 | A1 |
20140150134 | Li et al. | May 2014 | A1 |
20140154250 | Thompson et al. | Jun 2014 | A1 |
20140154252 | Thompson et al. | Jun 2014 | A1 |
20140154256 | Wu et al. | Jun 2014 | A1 |
20140154762 | Duehring et al. | Jun 2014 | A1 |
20140155343 | Brahmbhatt et al. | Jun 2014 | A1 |
20140155581 | Gao et al. | Jun 2014 | A1 |
20140161767 | Leuschner et al. | Jun 2014 | A1 |
20140161800 | Blankenship et al. | Jun 2014 | A1 |
20140162279 | Ramseier et al. | Jun 2014 | A1 |
20140162337 | Chotani et al. | Jun 2014 | A1 |
20140162952 | Katagiri et al. | Jun 2014 | A1 |
20140173774 | Pareddy et al. | Jun 2014 | A1 |
20140173780 | Pareddy et al. | Jun 2014 | A1 |
20140178341 | Zhao et al. | Jun 2014 | A1 |
20140186377 | Gu et al. | Jul 2014 | A1 |
20140186401 | Diamond et al. | Jul 2014 | A1 |
20140186884 | Nunn, Jr. et al. | Jul 2014 | A1 |
20140186902 | Botes et al. | Jul 2014 | A1 |
20140186904 | Botes et al. | Jul 2014 | A1 |
20140186913 | Botes et al. | Jul 2014 | A1 |
20140187491 | Wilmen et al. | Jul 2014 | A1 |
20140189896 | Zhang et al. | Jul 2014 | A1 |
20140193861 | Botes et al. | Jul 2014 | A1 |
20140193865 | Botes et al. | Jul 2014 | A1 |
20140194346 | Aebi et al. | Jul 2014 | A1 |
20140199306 | Ghosh et al. | Jul 2014 | A1 |
20140199737 | Botes et al. | Jul 2014 | A1 |
20140199742 | Shibamoto | Jul 2014 | A1 |
20140205538 | Wei et al. | Jul 2014 | A1 |
20140206064 | Bayer et al. | Jul 2014 | A1 |
20140206068 | Claes et al. | Jul 2014 | A1 |
20140206599 | Baumann et al. | Jul 2014 | A1 |
20140212396 | Newman | Jul 2014 | A1 |
20140212454 | Pasmans et al. | Jul 2014 | A1 |
20140212925 | Wu et al. | Jul 2014 | A1 |
20140219912 | Ghayur et al. | Aug 2014 | A1 |
20140220019 | Ghayur et al. | Aug 2014 | A1 |
20140220661 | Bermudes | Aug 2014 | A1 |
20140227286 | Jaffee et al. | Aug 2014 | A1 |
20140227291 | Barghorn et al. | Aug 2014 | A1 |
20140227294 | Anderson et al. | Aug 2014 | A1 |
20140227750 | Picataggio et al. | Aug 2014 | A1 |
20140234208 | Ghayur et al. | Aug 2014 | A1 |
20140234310 | Shapiro | Aug 2014 | A1 |
20140234363 | Masignani et al. | Aug 2014 | A1 |
20140242674 | Subbian et al. | Aug 2014 | A1 |
20140242704 | Zelder et al. | Aug 2014 | A1 |
20140248309 | Kopecko et al. | Sep 2014 | A1 |
20140248669 | Marliere | Sep 2014 | A1 |
20140248673 | Botes et al. | Sep 2014 | A1 |
20140255345 | Grabstein et al. | Sep 2014 | A1 |
20140256922 | David et al. | Sep 2014 | A1 |
20140256960 | Takagi et al. | Sep 2014 | A1 |
20140271640 | Bowdish et al. | Sep 2014 | A1 |
20140273164 | Liao et al. | Sep 2014 | A1 |
20140273165 | Liao et al. | Sep 2014 | A1 |
20140287419 | Althoff et al. | Sep 2014 | A1 |
20140289906 | Althoff et al. | Sep 2014 | A1 |
20140294891 | Szalay et al. | Oct 2014 | A1 |
20140296480 | Sanchez Garcia et al. | Oct 2014 | A1 |
20140298499 | Gray et al. | Oct 2014 | A1 |
20140302078 | Masignani et al. | Oct 2014 | A1 |
20140302094 | Titball et al. | Oct 2014 | A1 |
20140308286 | Ghayur et al. | Oct 2014 | A1 |
20140322779 | Burgard et al. | Oct 2014 | A1 |
20140322790 | Sebastian et al. | Oct 2014 | A1 |
20140328794 | Rosen et al. | Nov 2014 | A1 |
20140328849 | Reif et al. | Nov 2014 | A1 |
20140328875 | Garcia-Sastre et al. | Nov 2014 | A1 |
20140330032 | Lynch et al. | Nov 2014 | A1 |
20140335014 | Ghayur et al. | Nov 2014 | A1 |
20140335087 | Buechler et al. | Nov 2014 | A1 |
20140335564 | Hsieh et al. | Nov 2014 | A1 |
20140341943 | Rikihisa | Nov 2014 | A1 |
20140342405 | Rosen et al. | Nov 2014 | A1 |
20140342451 | Kwon et al. | Nov 2014 | A1 |
20140343267 | Hsieh et al. | Nov 2014 | A1 |
20140348817 | Jiang et al. | Nov 2014 | A1 |
20140356389 | Masignani et al. | Dec 2014 | A1 |
20140356916 | Wittmann et al. | Dec 2014 | A1 |
20140363847 | Fujii et al. | Dec 2014 | A1 |
20140369986 | Padmanabhan et al. | Dec 2014 | A1 |
20140370036 | Shapiro | Dec 2014 | A1 |
20140371194 | Seed et al. | Dec 2014 | A1 |
20140377752 | Lee et al. | Dec 2014 | A1 |
20140377858 | Wu et al. | Dec 2014 | A1 |
20140377860 | Wu et al. | Dec 2014 | A1 |
20140378372 | Mogelsvang et al. | Dec 2014 | A1 |
20150004665 | Chotani et al. | Jan 2015 | A1 |
20150004705 | Lu et al. | Jan 2015 | A1 |
20150010592 | Wacker et al. | Jan 2015 | A1 |
20150017095 | Ghayur et al. | Jan 2015 | A1 |
20150017138 | Fruehauf et al. | Jan 2015 | A1 |
20150017204 | Bermudes | Jan 2015 | A1 |
20150018522 | Qasba et al. | Jan 2015 | A1 |
20150030573 | Fruehauf et al. | Jan 2015 | A1 |
20150030584 | Rummel | Jan 2015 | A1 |
20150030624 | Armstrong et al. | Jan 2015 | A1 |
20150031658 | Seed et al. | Jan 2015 | A1 |
20150037860 | Botes et al. | Feb 2015 | A1 |
20150037861 | Beck et al. | Feb 2015 | A1 |
20150044243 | Wisniewski et al. | Feb 2015 | A1 |
20150044256 | Dattwyler et al. | Feb 2015 | A1 |
20150044722 | Tremblay et al. | Feb 2015 | A1 |
20150044755 | Yocum et al. | Feb 2015 | A1 |
20150045535 | Berka et al. | Feb 2015 | A1 |
20150050215 | Novak et al. | Feb 2015 | A1 |
20150050308 | van der Hoek | Feb 2015 | A1 |
20150056232 | Curtiss | Feb 2015 | A1 |
20150056651 | Lynch et al. | Feb 2015 | A1 |
20150056666 | Reth et al. | Feb 2015 | A1 |
20150056684 | Lipscomb et al. | Feb 2015 | A1 |
20150057191 | Tissot et al. | Feb 2015 | A1 |
20150071904 | Collins et al. | Mar 2015 | A1 |
20150071957 | Kelly et al. | Mar 2015 | A1 |
20150072384 | Lynch et al. | Mar 2015 | A1 |
20150079063 | Fima et al. | Mar 2015 | A1 |
20150079654 | Botes et al. | Mar 2015 | A1 |
20150087035 | Picataggio et al. | Mar 2015 | A1 |
20150093358 | Fares et al. | Apr 2015 | A1 |
20150093387 | Wu et al. | Apr 2015 | A1 |
20150098900 | Ebens et al. | Apr 2015 | A1 |
20150099707 | Pastan et al. | Apr 2015 | A1 |
20150104452 | Ghayur et al. | Apr 2015 | A1 |
20150104514 | Kaplan et al. | Apr 2015 | A1 |
20150110720 | Markiv et al. | Apr 2015 | A1 |
20150110836 | Glanville | Apr 2015 | A1 |
20150111262 | Botes et al. | Apr 2015 | A1 |
20150112652 | Palsson | Apr 2015 | A1 |
20150119354 | Kahne et al. | Apr 2015 | A1 |
20150125849 | Yeh et al. | May 2015 | A1 |
20150126445 | Fares et al. | May 2015 | A1 |
20150132218 | Asundi et al. | May 2015 | A1 |
20150132330 | Garcia-Sastre et al. | May 2015 | A1 |
20150132368 | Muro Galindo et al. | May 2015 | A1 |
20150133375 | Mogelsvang et al. | May 2015 | A1 |
20150139940 | Bermudez Humaran et al. | May 2015 | A1 |
20150140614 | Reth et al. | May 2015 | A1 |
20150141331 | Fares et al. | May 2015 | A1 |
20150141622 | Alitalo et al. | May 2015 | A1 |
20150147343 | Nitsch et al. | May 2015 | A1 |
20150148291 | Fima et al. | May 2015 | A1 |
20150150959 | Watnick | Jun 2015 | A1 |
20150152161 | Reiter et al. | Jun 2015 | A1 |
20150153358 | Ayuso et al. | Jun 2015 | A1 |
20150166594 | Kahne et al. | Jun 2015 | A1 |
20150166661 | Chen et al. | Jun 2015 | A1 |
20150166975 | Prakash et al. | Jun 2015 | A1 |
20150183867 | Ghayur et al. | Jul 2015 | A1 |
20150184220 | Sebastian et al. | Jul 2015 | A1 |
20150190496 | Hargis et al. | Jul 2015 | A1 |
20150191691 | Bisanz et al. | Jul 2015 | A1 |
20150197748 | Liu et al. | Jul 2015 | A1 |
20150197775 | Iida et al. | Jul 2015 | A1 |
20150202284 | Dimitrov | Jul 2015 | A1 |
20150203578 | Bebbington et al. | Jul 2015 | A1 |
20150203835 | Nunn, Jr. et al. | Jul 2015 | A1 |
20150203854 | Williams et al. | Jul 2015 | A1 |
20150211031 | Lee et al. | Jul 2015 | A1 |
20150216954 | Bottje et al. | Aug 2015 | A1 |
20150216965 | Diamond et al. | Aug 2015 | A1 |
20150218231 | Bakaletz et al. | Aug 2015 | A1 |
20150218254 | Sabbadini et al. | Aug 2015 | A1 |
20150218261 | Barghorn et al. | Aug 2015 | A1 |
20150218544 | Jiang et al. | Aug 2015 | A9 |
20150218590 | Mcauliffe et al. | Aug 2015 | A1 |
20150225692 | Bhatia et al. | Aug 2015 | A1 |
20150225732 | Williams et al. | Aug 2015 | A1 |
20150225744 | Beck et al. | Aug 2015 | A1 |
20150231207 | Kaspar | Aug 2015 | A1 |
20150232550 | Ghayur et al. | Aug 2015 | A1 |
20150232557 | Tan et al. | Aug 2015 | A1 |
20150232861 | Delisa et al. | Aug 2015 | A1 |
20150232903 | Hlidesaki et al. | Aug 2015 | A1 |
20150240226 | Mathur et al. | Aug 2015 | A1 |
20150246137 | Guo et al. | Sep 2015 | A1 |
20150247172 | Herrema | Sep 2015 | A1 |
20150252097 | Camphausen et al. | Sep 2015 | A1 |
20150258209 | Benz et al. | Sep 2015 | A1 |
20150259389 | Berka et al. | Sep 2015 | A9 |
20150259418 | Barth et al. | Sep 2015 | A1 |
20150266939 | Vogan et al. | Sep 2015 | A1 |
20150266977 | Hsieh et al. | Sep 2015 | A1 |
20150267211 | Botes et al. | Sep 2015 | A1 |
20150273045 | Kolander et al. | Oct 2015 | A1 |
20150273048 | Kang et al. | Oct 2015 | A1 |
20150275241 | Herrema | Oct 2015 | A1 |
20150275242 | Osterhout et al. | Oct 2015 | A1 |
20150284467 | Lipp et al. | Oct 2015 | A1 |
20150284760 | Schendzielorz et al. | Oct 2015 | A1 |
20150291667 | Dirtenzo | Oct 2015 | A1 |
20150307560 | DeLisa et al. | Oct 2015 | A1 |
20150307576 | Bowdish et al. | Oct 2015 | A1 |
20150307854 | Botes et al. | Oct 2015 | A1 |
20150315283 | Ghayur et al. | Nov 2015 | A1 |
20150329619 | Rosen et al. | Nov 2015 | A1 |
20150329644 | Shi et al. | Nov 2015 | A1 |
20150329882 | Lee et al. | Nov 2015 | A1 |
20150335729 | Garcia-Sastre et al. | Nov 2015 | A1 |
20150337053 | McCarthy et al. | Nov 2015 | A1 |
20150337320 | Devroe et al. | Nov 2015 | A1 |
20150337321 | Mach et al. | Nov 2015 | A1 |
20150337340 | Alvizo et al. | Nov 2015 | A1 |
20150344529 | Yonemura et al. | Dec 2015 | A1 |
20150344838 | Campbell et al. | Dec 2015 | A1 |
20150344862 | Schellenberger et al. | Dec 2015 | A1 |
20150344894 | Giacalone et al. | Dec 2015 | A1 |
20150344916 | Lynch et al. | Dec 2015 | A1 |
20150351390 | Castle et al. | Dec 2015 | A1 |
20150353911 | Salas et al. | Dec 2015 | A1 |
20150355172 | Kraus et al. | Dec 2015 | A1 |
20150361141 | Buttigieg et al. | Dec 2015 | A1 |
20150361458 | Botes et al. | Dec 2015 | A1 |
20150361459 | Botes et al. | Dec 2015 | A1 |
20150361460 | Botes et al. | Dec 2015 | A1 |
20150361462 | Botes et al. | Dec 2015 | A1 |
20150361463 | Botes et al. | Dec 2015 | A1 |
20150361464 | Botes et al. | Dec 2015 | A1 |
20150361465 | Botes et al. | Dec 2015 | A1 |
20150361466 | Botes et al. | Dec 2015 | A1 |
20150361467 | Botes et al. | Dec 2015 | A1 |
20150361468 | Botes et al. | Dec 2015 | A1 |
20150366889 | Brynildsen et al. | Dec 2015 | A1 |
20150368630 | Fima et al. | Dec 2015 | A9 |
20160002672 | Beck et al. | Jan 2016 | A1 |
20160010132 | Subbian et al. | Jan 2016 | A1 |
20160017310 | Nunn, Jr. et al. | Jan 2016 | A1 |
20160017339 | Liao et al. | Jan 2016 | A1 |
20160024157 | Masignani et al. | Jan 2016 | A1 |
20160032323 | Beck et al. | Feb 2016 | A1 |
20160038581 | Bielke et al. | Feb 2016 | A1 |
20160040139 | Zhang et al. | Feb 2016 | A1 |
20160046675 | Kwong et al. | Feb 2016 | A1 |
20160060635 | Liao et al. | Mar 2016 | A1 |
20160060663 | Grammann et al. | Mar 2016 | A1 |
20160068831 | Beck et al. | Mar 2016 | A1 |
20160068882 | Zhang et al. | Mar 2016 | A1 |
20160097064 | Zhang et al. | Apr 2016 | A1 |
20160101168 | Husseiny Elsayed et al. | Apr 2016 | A1 |
20160114025 | Bottje et al. | Apr 2016 | A1 |
20160130618 | Hara et al. | May 2016 | A1 |
20160138052 | Mordaka | May 2016 | A1 |
20160145657 | Botes et al. | May 2016 | A1 |
20160152957 | Botes et al. | Jun 2016 | A1 |
20160153012 | Marliere | Jun 2016 | A1 |
20160160245 | Yocum et al. | Jun 2016 | A1 |
20160160255 | Botes et al. | Jun 2016 | A1 |
20160168610 | Conradie et al. | Jun 2016 | A1 |
20160199328 | Collins et al. | Jul 2016 | A1 |
20160201097 | Botes et al. | Jul 2016 | A1 |
20160222393 | Bermudes | Aug 2016 | A1 |
20160222420 | Botes et al. | Aug 2016 | A1 |
20160222425 | Botes et al. | Aug 2016 | A1 |
20160244489 | Masignani et al. | Aug 2016 | A1 |
20160244769 | Xia et al. | Aug 2016 | A1 |
20160251633 | Muramatsu et al. | Sep 2016 | A1 |
20160257975 | Lynch et al. | Sep 2016 | A1 |
20160272950 | Corthals et al. | Sep 2016 | A1 |
20160289278 | Bakaletz et al. | Oct 2016 | A1 |
20160289632 | Gerke et al. | Oct 2016 | A1 |
20160289776 | Eggeling et al. | Oct 2016 | A1 |
20170051260 | Bermudes | Feb 2017 | A1 |
20170157239 | Bermudes | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
2007216854 | Oct 2007 | AU |
2002225265 | Dec 2007 | AU |
9609016 | Jul 1999 | BR |
9812079 | Sep 2000 | BR |
0014491 | Mar 2004 | BR |
2224075 | Dec 1996 | CA |
2302866 | Mar 1999 | CA |
2386465 | Apr 2001 | CA |
2388045 | Apr 2001 | CA |
2456055 | Feb 2003 | CA |
2652538 | Nov 2007 | CA |
1555268 | Dec 2004 | CN |
1668644 | Sep 2005 | CN |
96196140 | Sep 2005 | CN |
98811030 | Sep 2005 | CN |
00816714 | Nov 2007 | CN |
101132813 | Feb 2008 | CN |
101151272 | Mar 2008 | CN |
101203247 | Jun 2008 | CN |
102317303 | Jan 2012 | CN |
102405053 | Apr 2012 | CN |
103732222 | Apr 2014 | CN |
0285152 | Oct 1988 | EP |
0322237 | Jun 1989 | EP |
0338679 | Oct 1989 | EP |
0357208 | Mar 1990 | EP |
0400958 | Dec 1990 | EP |
0564121 | Oct 1993 | EP |
0833660 | Apr 1998 | EP |
0973911 | Jan 2000 | EP |
1012232 | Jun 2000 | EP |
1068339 | Jan 2001 | EP |
L261369 | Dec 2002 | EP |
L270730 | Jan 2003 | EP |
L402036 | Mar 2004 | EP |
L407052 | Apr 2004 | EP |
1513924 | Mar 2005 | EP |
00195672 | Sep 2005 | EP |
1644048 | Apr 2006 | EP |
1655370 | May 2006 | EP |
1689432 | Dec 2009 | EP |
1786838 | Apr 2010 | EP |
0873363 | Oct 2010 | EP |
2611823 | Jul 2013 | EP |
2143437 | Aug 2013 | EP |
2370107 | Aug 2017 | EP |
1017253 | Jul 2004 | HK |
1033956 | Nov 2006 | HK |
2001514889 | Sep 2001 | JP |
2002524024 | Aug 2002 | JP |
2002535258 | Oct 2002 | JP |
2003520808 | Jul 2003 | JP |
2003530836 | Oct 2003 | JP |
2004520810 | Jul 2004 | JP |
2004536020 | Dec 2004 | JP |
2006500009 | Jan 2006 | JP |
2006510735 | Mar 2006 | JP |
2006516089 | Jun 2006 | JP |
2006516192 | Jun 2006 | JP |
2006517972 | Aug 2006 | JP |
2007526907 | Sep 2007 | JP |
2007530560 | Nov 2007 | JP |
2008500949 | Jan 2008 | JP |
2008137989 | Jun 2008 | JP |
2009017883 | Jan 2009 | JP |
2009269922 | Nov 2009 | JP |
4454152 | Apr 2010 | JP |
2010131015 | Jun 2010 | JP |
2010248255 | Jun 2010 | JP |
4703567 | Jun 2011 | JP |
4981229 | Jul 2012 | JP |
2013022091 | Feb 2013 | JP |
5478285 | Apr 2014 | JP |
5727361 | Jun 2015 | JP |
3482213 | Oct 2016 | JP |
2016533174 | Oct 2016 | JP |
20030029847 | Apr 2003 | KR |
20040014392 | Feb 2004 | KR |
20050004914 | Jan 2005 | KR |
20050042082 | May 2005 | KR |
20050103314 | Oct 2005 | KR |
20060130038 | Dec 2006 | KR |
101092730 | Dec 2011 | KR |
20140089341 | Jul 2014 | KR |
2319709 | Jul 2014 | RU |
201708536 | Mar 2017 | TW |
WO1991000014 | Jan 1991 | WO |
WO1991006317 | May 1991 | WO |
WO1992011361 | Jul 1992 | WO |
WO1992015689 | Sep 1992 | WO |
WO1995002048 | Jan 1995 | WO |
WO1995005832 | Mar 1995 | WO |
WO1995005835 | Mar 1995 | WO |
WO1995009655 | Apr 1995 | WO |
WO1996011277 | Apr 1996 | WO |
WO1996014087 | May 1996 | WO |
WO1996034631 | Nov 1996 | WO |
WO1996038159 | Dec 1996 | WO |
WO1996040238 | Dec 1996 | WO |
WO1996400238 | Dec 1996 | WO |
WO1997008955 | Mar 1997 | WO |
WO1997014782 | Apr 1997 | WO |
WO1997018225 | May 1997 | WO |
WO1997018837 | May 1997 | WO |
WO1997019688 | Jun 1997 | WO |
WO1997025061 | Jul 1997 | WO |
WO1998033923 | Aug 1998 | WO |
WO1998053854 | Dec 1998 | WO |
WO1999010014 | Mar 1999 | WO |
WO1999010485 | Mar 1999 | WO |
WO1999013003 | Mar 1999 | WO |
WO1999013053 | Mar 1999 | WO |
WO1999052563 | Oct 1999 | WO |
WO0004919 | Feb 2000 | WO |
WO2000004919 | Feb 2000 | WO |
WO2000009733 | Feb 2000 | WO |
WO2000022110 | Feb 2000 | WO |
WO0047222 | Aug 2000 | WO |
WO2000047222 | Aug 2000 | WO |
WO2001014579 | Mar 2001 | WO |
WO0125397 | Apr 2001 | WO |
WO2001025397 | Apr 2001 | WO |
WO2001025399 | Apr 2001 | WO |
WO2002020809 | Mar 2002 | WO |
WO2002061113 | Aug 2002 | WO |
WO02067983 | Sep 2002 | WO |
WO02070645 | Sep 2002 | WO |
WO2002067983 | Sep 2002 | WO |
WO2002070645 | Sep 2002 | WO |
WO2002074336 | Sep 2002 | WO |
WO2002083149 | Oct 2002 | WO |
WO2002083214 | Oct 2002 | WO |
WO2002087494 | Nov 2002 | WO |
WO2002832149 | Nov 2002 | WO |
WO03014380 | Feb 2003 | WO |
WO2003014380 | Feb 2003 | WO |
WO2003063593 | Feb 2003 | WO |
WO03018611 | Mar 2003 | WO |
WO2003072125 | Sep 2003 | WO |
WO2003102168 | Dec 2003 | WO |
WO2004016281 | Feb 2004 | WO |
WO2004043232 | May 2004 | WO |
WO2004076484 | Sep 2004 | WO |
WO2004103404 | Dec 2004 | WO |
WO2005005630 | Jan 2005 | WO |
WO2005014618 | Feb 2005 | WO |
WO2005018332 | Mar 2005 | WO |
WO2005054477 | Jun 2005 | WO |
WO2005065418 | Jul 2005 | WO |
WO2005071088 | Aug 2005 | WO |
WO2006010070 | Jan 2006 | WO |
WO2006013441 | Feb 2006 | WO |
WO2006017929 | Feb 2006 | WO |
WO2006048344 | May 2006 | WO |
WO2006073970 | Jul 2006 | WO |
WO2006116545 | Nov 2006 | WO |
WO2007016185 | Feb 2007 | WO |
WO2007048022 | Apr 2007 | WO |
WO2007083193 | Jul 2007 | WO |
WO2008073148 | Jun 2008 | WO |
WO2008089132 | Jul 2008 | WO |
WO2008091375 | Jul 2008 | WO |
WO2008156702 | Dec 2008 | WO |
WO2009006450 | Jan 2009 | WO |
WO2009006453 | Jan 2009 | WO |
WO2009014650 | Jan 2009 | WO |
WO2009021548 | Feb 2009 | WO |
WO2009086116 | Jul 2009 | WO |
WO2009111177 | Sep 2009 | WO |
WO2009126189 | Oct 2009 | WO |
WO2009139985 | Nov 2009 | WO |
WO2009145956 | Dec 2009 | WO |
WO2009150433 | Dec 2009 | WO |
WO2009152480 | Dec 2009 | WO |
WO2010027423 | Mar 2010 | WO |
WO2010036391 | Apr 2010 | WO |
WO2010057009 | May 2010 | WO |
WO2010091294 | Aug 2010 | WO |
WO2011017137 | Feb 2011 | WO |
WO2011086172 | Jul 2011 | WO |
WO2012072806 | Jun 2012 | WO |
WO2012104025 | Aug 2012 | WO |
WO2012150269 | Nov 2012 | WO |
WO2013067185 | May 2013 | WO |
Entry |
---|
Lazar et al. Mol. Cellular Biol. 8: 1247-1252, 1988. |
U.S. Appl. No. 10/087,451, filed Oct. 2, 2018, Bermudes. |
U.S. Appl. No. 10/125,328, filed Nov. 13, 2018, Eizenga et al. |
U.S. Appl. No. 10/188,722, filed Jan. 29, 2019, Bermudes. |
U.S. Appl. No. 10/286,051, filed May 14, 2019, Bermudes. |
U.S. Appl. No. 10/364,435, filed Jul. 30, 2019, Bermudes. |
U.S. Appl. No. 10/449,237, filed Oct. 22, 2019, Bermudes. |
U.S. Appl. No. 10/501,746, filed Dec. 10, 2019, Bermudes. |
Number | Date | Country | |
---|---|---|---|
62431208 | Dec 2016 | US |