Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria

Information

  • Patent Grant
  • 11180535
  • Patent Number
    11,180,535
  • Date Filed
    Thursday, December 7, 2017
    6 years ago
  • Date Issued
    Tuesday, November 23, 2021
    2 years ago
  • Inventors
  • Examiners
    • Devi; Sarvamangala
    Agents
    • Hoffberg & Associates
    • Hoffberg; Steven M.
Abstract
Bacteria with tumor-targeting capability express, surface displayed, secreted and/or released modified chimeric therapeutic proteins with enhanced therapeutic activity against a neoplastic tissue including solid tumors, lymphomas and leukemias. The bacteria may also express, surface display, secrete and/or release a tumor-penetrating peptide. The bacteria may be attenuated, non-pathogenic, low pathogenic or a probiotic. The chimeric proteins may be protease sensitive and may optionally be further accompanied by co-expression of a secreted protease inhibitor as a separate molecule or as a fusion.
Description
BACKGROUND
Field of the Invention

This invention is generally in the field of therapeutic delivery systems including bacteria, and systems and methods for providing chimeric proteins efficiently targeted to cancer cells.


Description of the Prior Art

Citation or identification of any reference herein, or any section of this application shall not be construed as an admission that such reference is available as prior art to the present application. The disclosures of each of these publications and patents are hereby incorporated by reference in their entirety in this application, and shall be treated as if the entirety thereof forms a part of this application.


Tumor-targeted bacteria offer tremendous potential advantages for the treatment of solid tumors, including the targeting from a distant inoculation site and the ability to express therapeutic agents directly within the tumor (Pawelek et al., 1997, Tumor-targeted Salmonella as a novel anticancer agent, Cancer Research 57: 4537-4544; Low et al., 1999, Lipid A mutant salmonella with suppressed virulence and TNF-alpha induction retain tumor-targeting in vivo, Nature Biotechnol. 17: 37-41). However, the primary shortcoming of tumor-targeted bacteria investigated in the human clinical trials (Salmonella strain VNP20009 and its derivative TAPET-CD; Toso et al., 2002, Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma, J. Clin, Oncol. 20: 142-152; Meir et al., 2001, Phase 1 trial of a live, attenuated Salmonella typhimurium (VNP20009) administered by direct Intra-tumoral (IT) injection, Proc Am Soc Clin Oncol 20: abstr 1043); Nemunaitis et al., 2003, Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients, Cancer Gene Therapy 10: 737-744) is that no significant antitumor activity has been observed, even in patients where the bacteria was documented to target the tumor. One method of increasing the ability of the bacteria to kill tumor cells is to engineer the bacteria to express conventional bacterial toxins (e.g., WO 2009/126189, WO 03/014380, WO/2005/018332, WO/2008/073148, US 2003/0059400 U.S. Pat. Nos. 7,452,531, 7,354,592, 6,962,696, 6,923,972, 6,863,894, 6,685,935, 6,475,482, 6,447,784, 6,190,657 and 6,080,849, 8,241,623, 8,524,220 8,771,669, 8,524,220, each of which is expressly incorporated herein by reference).


Use of protein toxins for treatment of various disorders including inflammation, autoimmunity, neurological disorders and cancer has long-suffered from off-target toxicity. Enhancing toxin specificity, which offers the potential to eliminate side effect, has been achieved by several different means, such as attachment of a specific antibodies or peptide ligand (e.g., Pseudomonas exotoxin A (PE-ToxA) antibody conjugate, known as an immunotoxin), or a ligand targeted to a surface molecule of the target cell. Based upon the binding specificity of the attached antibody or ligand moiety for a specific target, enhanced specificity of the target is achieved (Quintero et al., 2016. EGFR-targeted chimeras of Pseudomonas Tox A released into the extracellular milieu by attenuated Salmonella selectively kill tumor cells. Biotechnology and Bioengineering 113: 2698-2711).


Other toxins have been engineered to achieve specificity based upon their sight of activation. For example, proaerolysin requires proteolytic activation to become the cytotoxic protein aerolysin. Substitution of the natural protease cleavage site for a tumor-specific protease cleavage site (e.g., that of the prostate specific antigen (PSA) protease or urokinase) results in a toxin selectively activated within tumors (Denmeade et al. WO 03/018611 and Denmeade et al. U.S. Pat. No. 7,635,682), specifically incorporated by reference herein. Another similar activation system has utilized ubiquitin fusion, coupled with a hydrolysable tumor protease (e.g., PSA) sequence and a toxin (e.g., saporin), as described by Tschrniuk et al. 2005 (Construction of tumor-specific toxins using ubiquitin fusion technique, Molecular Therapy 11: 196-204), also specifically incorporated by reference herein. However, while some specificity is engendered and thus these activated protein types are useful in the present technology as modified herein, in these types of engineered toxins, off-target toxicity can occur. In the case of the Pseudomonas immunotoxin, several dose-limiting toxicities have been identified. Vascular leakage syndrome (VLS) is associated with hypoalbuminemia, edema, weight gain, hypotension and occasional dyspnea, which is suggested to occur by immunotoxin-mediated endothelial cell injury (Baluna et al., 2000, Exp. Cell Res. 258: 417-424), resulting in a dose-limiting toxicity. Renal injury has occurred in some patients treated with immunotoxins, which may be due to micro-aggregates of the immunotoxin (Frankel et al., 2001, Blood 98:722a). Liver damage from immunotoxins is a frequent occurrence that is believed to be multifactorial (Frankel, 2002, Clinical Cancer Research 8: 942-944). To date, antibodies linked to proteinaceous toxins have limited success clinically.


Recently developed approaches to delivery of therapeutic molecules (U.S. Pat. Nos. 8,241,623; 8,524,220; 8,771,669; and 8,524,220) have coupled a protease sensitive therapeutic molecule with co-expression of protease inhibitors, expressly incorporated by reference herein.


Use of secreted proteins in live bacterial vectors has been demonstrated by several authors. Holland et al. (U.S. Pat. No. 5,143,830) have illustrated the use of fusions with the C-terminal portion of the hemolysin A (hlyA) gene, a member of the type I secretion system. When co-expressed in the presence of the hemolysin protein secretion channel (hlyBD) and a functional TolC, heterologous fusions are readily secreted from the bacteria. The type I secretion system that has been utilized most widely, and although it is currently considered the best system available, is thought to have limitations for delivery by attenuated bacteria (Hahn and Specht, 2003, FEMS Immunology and Medical Microbiology, 37: 87-98). Those limitations include the amount of protein secreted and the ability of the protein fused to it to interfere with secretion. Improvements of the type I secretion system have been demonstrated by Sugamata and Shiba (2005 Applied and Environmental Microbiology 71: 656-662) using a modified hlyB, and by Gupta and Lee (2008 Biotechnology and Bioengineering, 101: 967-974) by addition of rare codons to the hlyA gene, each of which is expressly incorporated by reference in their entirety herein. Fusion to the gene ClyA (Galen et al., 2004, Infection and Immunity, 72: 7096-7106 and Type III secretion proteins have also been used. Surface display has been used to export proteins outside of the bacteria. For example, fusion of the Lpp protein amino acids 1-9 with the transmembrane region B3-B7 of OmpA has been used for surface display (Samuelson et al., 2002, Display of proteins on bacteria, J. Biotechnology 96: 129-154, expressly incorporated by reference in its entirety herein). The autotransporter surface display has been described by Berthet et al., WO/2002/070645, expressly incorporated by reference herein. Other heterologous protein secretion systems utilizing the autotransporter family can be modulated to result in either surface display or complete release into the medium (see Henderson et al., 2004, Type V secretion pathway: the autotransporter story, Microbiology and Molecular Biology Reviews 68: 692-744; Jose, 2006 Applied Microbiol. Biotechnol. 69: 607-614; Jose J, Zangen D (2005) Autodisplay of the protease inhibitor aprotinin in Escherichia coli. Biochem Biophys Res Commun 333:1218-1226 and Rutherford and Mourez 2006 Microbial Cell Factories 5: 22). For example, Veiga et al. (2003 Journal of Bacteriology 185: 5585-5590 and Klauser et al., 1990 EMBO Journal 9: 1991-1999) demonstrated hybrid proteins containing the β-autotransporter domain of the immunoglobulin A (IgA) protease of Nisseria gonorrhea. Fusions to flagellar proteins have been demonstrated. The peptide, usually of 15 to 36 amino acids in length, is inserted into the central, hypervariable region of the FliC gene such as that from Salmonella muenchen (Verma et al. 1995 Vaccine 13: 235-24; Wu et al., 1989 Proc. Natl. Acad. Sci. USA 86: 4726-4730; Cuadro et al., 2004 Infect. Immun. 72: 2810-2816; Newton et al., 1995, Res. Microbiol. 146: 203-216, expressly incorporated by reference in their entirety herein). Multihybrid FliC insertions of up to 302 amino acids have also been prepared (Tanskanen et al. 2000, Appl. Env. Microbiol. 66: 4152-4156, expressly incorporated by reference in its entirety herein). Trimerization of antigens can be achieved using the T4 fibritin foldon trimerization sequence (Wei et al. 2008 J. Virology 82: 6200-6208) and VASP tetramerization domains (Kühnel et al., 2004 PNAS 101: 17027-17032), expressly incorporated by reference in their entirety herein. The multimerization domains are used to create, bi-specific, tri-specific, and quatra-specific targeting agents, whereby each individual agent is expressed with a multimerization tag, each of which may have the same or separate targeting peptide, such that following expression, surface display, secretion and/or release, they form multimers with multiple targeting domains. A fusion with the Pseudomonas ice nucleation protein (INP) wherein the N- and C-terminus of INP with an internal deletion consisting of the first 308 amino acids is followed by the mature sequence of the protein to be displayed (Jung et al., 1998, Surface display of Zymomonas mobilis levansucrase by using ice-nucleation protein of Pseudomonas syringae, Nature Biotechnology 16: 576-580; Kim et al., 2000, Bacterial surface display of an enzyme library for selective screening of improved cellulase variants, Applied and Environmental Microbiology 66: 788-793; Part:BBa_K811003 from www.iGEM.org; WO2005005630).


SUMMARY OF THE INVENTION

Modified Therapeutic Molecules


The present technology, according to various embodiments, consists of known and/or novel chimeric proteins, or combinations of proteins, that are expressed, secreted, surface displayed and/or released by bacteria and result in anticancer activity or have direct inhibitory or cytotoxic anti-neoplastic activity, including activity against cancer stem cells and/or cancer mesenchymal stromal cells, and may optionally include the combination with secreted protease inhibitors. The bacterial delivery vector may be attenuated, non-pathogenic, low pathogenic (including wild type), or a probiotic bacterium. The bacteria are introduced either systemically (e.g., parentral, intravenous (IV), intramuscular (IM), intralymphatic (IL), intradermal (ID), subcutaneously (sub-q), local-regionally (e.g., intralesionally, intratumorally (IT), intrapaeritoneally (IP), topically, intrathecally (intrathecal), by inhaler or nasal spray) or to the mucosal system through oral, nasal, pulmonary intravessically, enema or suppository administration where they are able to undergo limited replication, express, surface display, secrete and/or release the anti-cancer inhibitory proteins or a combination thereof, and thereby provide a therapeutic benefit by reducing or eliminating the disease, malignancy and/or neoplasia.


The present technology, according to various embodiments, further consists of modified forms of toxins with improved secretion, surface display and/or release by the bacteria, and/or modifications that improve the overall activity and/or specificity of the toxin. Such toxins may be further co-expressed with protease inhibitors as previously described (See, U.S. Pat. Nos. 8,241,623; 8,524,220; 8,771,669; 8,524,220).


Toxins, therapeutic cytokines and other molecules, homologues or fragments thereof useful in conjunction with the present technology, according to various embodiments, includes small lytic peptides, larger lytic peptides, pore-forming toxins, protein inhibitors, extracellular DNAases (DNase), intracellular DNAases, apoptosis inducing peptides, cytokines, prodrug converting enzymes, metabolite destroying enzymes, ribonucleases, antibody inactivating toxins and other anticancer peptides. In a preferred embodiment, the toxins include those that are naturally secreted, released and/or surface displayed, or heterologously secreted, released and/or surface displayed, and that can be modified uniquely to suit the delivery by a bacterium and may be further engineered to have the tumor, lymphoma, leukemic bone marrow or proximity-selective targeting system described herein, including but not limited to the proteins azurin, carboxyesterase Est55 (a prodrug-converting enzyme from Geobacillus that activates CPT-11 to SN-38), thiaminase (e.g., from Bacillus), methionase (methioninase), asparaginase, tryptophanase, apoptin, Torquetnovirus (TTV) derived apoptosis-inducing protein TAIP and with gyrovirus VP3 bax, bim, p53, BAK, BH3 peptide (BCL2 homology domain 3), cytochrome C, thrombospondin, platlet factor 4 (PF4) peptide, Bacillus sp. cytolysins, Bacillus sp. nheABC toxins, cytolethal distending toxins (cldt) including those cldts from Haemophilus, Aggregatibacter, Salmonella, Escherichia, Shigella, Campylobacter, Helicobacter, Hahella and Yersinia, typhoid toxins (including pertussis like toxins; pltAB), pertussis toxin, cldt:plt hybrids, actAB, cytotoxic nectrotic factor (cnf), dermonecrotic factor (dnf), shiga toxins and shiga-like toxins, bacteriocins, (colicins and microcins; Hen and Jack, Chapter 13 Microcins, in Kastin (ed), 2006, Handbook of Biologically Active Peptides, Academic Press; Nes et al., Chapter 17, The nonlantibiotic heat-stable bacteriocins in gram-positive bacteria, in Kastin (ed), 2006, Handbook of Biologically Active Peptides, Academic Press; Sharma et al., Chapter 18 in Kastin (ed), 2006, Handbook of Biologically Active Peptides, Academic Press) including membrane depolarizing (or pore-forming), DNAases (including colicin DNase, Staphylococcal Nuclease A:OmpA fusions (Takahara et al., 1985 J. Biol. Chem 260: 2670-2674), Serratia marcescens DNase (Clegg and Allen, 1985, FEMS Microbiology Letters 27: 257-262; Vibrio DNase Newland et al., 1985 Infect Immun 47: 691-696) or other bacterial DNase), RNAases, and tRNAases, including but not limited colicin A, colicin D, colicin E5, colicin E492, microcin M24, colE1, colE2, colE3, colE5 colE7, coleE8, colE9, col-Ia, colicin N and colicin B, membrane lytic peptides from Staphalococcus (listed below) and sea anemones, P15 peptide and other TGF-beta mimics, repeat in toxin (RTX) family members (together with the necessary acylation and secretion genes) including Actinobacillus leucotoxins, a leuckotoxin: E. coli HlyA hybrid, E. coli HlyA hemolysin, Bordetella adenylate cyclase toxin, heat stable enterotoxins from E. coli and Vibrio sp. (Dubreuil 2006, Chapter 48, Escherichia coli, Vibrio and Yersinia species heat stable enterotoxins, Alouf and Popoff (eds), 2006, Comprehensive Sourcebook of Bacterial Protein Toxins, Third Edition, Academic Press), autotransporter toxins including but not limited to IgA protease, picU espC, and sat, Staphalococcus protein A, chlostridium enterotoxin, Clostridium difficile toxin A, scorpion chlorotoxin, aerolysin, subtilase, cereolysin, Staphalococcus leukotoxins (e.g. LukF-PV, LukF-R, LukF-I, LukM, HlgB) and the other, to class S (e.g. LukS-PV, LukS-R, LukS-I, HlgA, HlgC). Best known are the toxins produced by S. aureus: γ-haemolysins, HlgA/HlgB and HlgC/HlgB and leukocidin Panton-Valentine, LukS-PV/LukF-PV (Luk-PV, PVL)) TRAIL, fasL, IL-18, CCL-21, human cyokine LIGHT, agglutinins (Maackia amurensis, wheat germ, Datura stramonium, Lycopersicon (tomato) plant lectin, leukoagglutinin (L-PHA, Helix pomatia) saporin, ricin, pertussus toxin, and porB, as well as other toxins and peptides (Kastin (ed), 2006, Handbook of Biologically Active Peptides, Academic Press; Alouf and Popoff (eds), 2006, Comprehensive Sourcebook of Bacterial Protein Toxins, Third Edition, Academic Press; each of which is expressly incorporated by reference in their entirety herein). Metabolite toxins such as the Chromobacterium violacium dipsepeptides (Shigeatsu et al., 1994, FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. II. Structure determination. J Antibiot (Tokyo) 47(3):311-4) or those from Serratia are also of use in the present technology.


The chimeras may be further modified by addition of one or more multimerization domains, such as the T4 foldon trimerization domain (Meier et al., 2004, Journal of Molecular Biology, 344: 1051-1069; Bhardwaj et al., Protein Sci. 2008 17: 1475-1485) or tetramerization domains such as VASP (Kane′ et al., 2004 PNAS 101: 17027-17032). Chimeric toxins may be further modified by the addition of known cell penetrating (ferry) peptide which further improves their entry into target cells. Cell penetrating peptides include those derived from the human immunodifficency virus (HIV) TAT protein amino acids 47-57 (YGRKKRRQRRR SEQ ID NO: 001) and used in fusion proteins (e.g., TAT-apoptin, TAT-bim, TAT-p53), the antennapedia homeodomain (penetraxin), Kaposi fibroblast growth factor (FGF) membrane-translocating sequence (MTS), herpes simplex virus VP22, hexahistidine, hexylysine, hexaarginine or “Chariot” (Active Motif, Carlsbad, Calif.; U.S. Pat. No. 6,841,535). Nuclear localization signals (NLSs) may also be added, including but not limited to that from herpes simplex virus thymidine kinase, the SV40 large T antigen monopartite NLS, or the nucleoplamin bipartite NLS or more preferably, the NLS from apoptin, a tumor associated (tumor-selective) NLS. The tumor-selective nuclear export signal from apoptin may be used alone or together with NLS from apoptin (Heckl et al., 2008, Value of apoptin's 40-amino-acid C-terminal fragment for the differentiation between human tumor and non-tumor cells, Apoptosis 13: 495-508; Backendor et al., 2008, Apoptin: Therapeutic potential of an early sensor of carcinogenic transformation, Ann Rev Pharmacol Toxicol 48: 143-69).


Regarding use of tumor-targeted bacteria expressing wild type cytolethal distending toxin and chimeras including those with apoptin, there have been several earlier descriptions (U.S. Pat. Nos. 6,962,696; 7,452,531; 8,241,623; 8,524,220; 8,623,350; 8,771,669). Cytolethal distending toxins (CLDTs) comprise a family of heterotrimeric holotoxins produced by bacteria that are internalized into mammalian cells and translocated into the nucleus. CLDTs are known to occur in a number of bacterial genera including Haemophilus, Aggregatibacter, Salmonella, Escherichia, Shigella, Campylobacter, Helicobacter, Hahella and Yersinia (Gargi et al., 2012 Bacterial toxin modulation of the eukaryotic cell cycle: are all cytolethal distending toxins created equally? Frontiers in Cellular and Infection Microbiol. 2:124. doi: 10.3389/fcimb.2012.00124), however CLDT does not exist in the VNP20009 strain of Salmonella used in human clinical studies (Toso et al. 2002. Phase I Study of the Intravenous Administration of Attenuated Salmonella typhimurium to Patients With Metastatic Melanoma. J. Clin. Oncol. 20, 142-152; Low et al., 2004, Construction of VNP20009, a novel, genetically stable antibiotic sensitive strain of tumor-targeting Salmonella for parenteral administration in humans. Methods Mol Med 90: 47-60).


Depending upon both the specific CLDT and the mammalian cells type, different effects have been documented. All CLDTs have homology to exonuclease III and several have been directly shown to exhibit DNase activity in vitro (Ewell and Dreyfus 2000 DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest. Mol Microbiol 37, 952-963; Lara-Tejero and Galan, 2000 A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 290, 354-357), which is believed to be the primary effect of the toxin. The DNase activity results in double-stranded DNA breaks that activates the cell's DNA damage response and interrupts the cell cycle at G2M. Non-haematopoetic cells tend to enlarge, hence part of the toxin name distending, and in many cases the cells subsequently undergo apoptosis. In haematopoitic cells apoptosis is more rapidly produced (Jinadasa et al., 2011, Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. Microbiology 157: 1851-1875; Gargi et al., 2012).


Most of the CLDTs are organized in a unidirectional operon of cldtA, cldtB and cldtC genes, where the cldtB encodes the active subcomponent, and cldtA and cldtC encode peptides that are involved in cell binding and translocation. In Salmonella however, the genes exist as a bidirectional operon consisting of cldtB together with a two pertussis like toxin subunits oriented in the opposite direction, pltA and pltB, as well as sty and ttsA, also in opposing directions of each other, that are reported to be required for secretion of the toxin (Hodak and Galan 2013 A Salmonella Typhi homologue of bacteriophage muramidase controls typhoid toxin secretion. EMBO Reports 14: 95-102). However, in the present technology, according to various embodiments, the presence of sty and ttsA are not required for secretion of the active toxin when the operon is reorganized into a unidirectional operon of cldtB, pltB and pltA.


Translocation of E. coli CLDTs to the nucleus, which constitutes the target location for the endonuclease activity, requires the presence of a nuclear localization signal (NLS). In Escherichia coli CLDT-II for example, the NLS is bipartite and located at the C-terminus (McSweeney and Dreyfus, 2004). Nishikubo et al., 2003 identified an NLS occurring in the 48-124 amino acid region in Actinobacillus actinomycetemcomitans.


Apoptins are a family of viral genes that were first discovered in chicken anemia virus. Apoptin is the product of the VP3 gene that is involved in lymphoidal atropy and anemia in infected chickens (Peñaloza et al., 2014 Apoptins: selective anticancer agents, Trends in Molecular Medicine 20: 519-528; Los et al., 2009 Apoptin, a tumor selective killer, Biochimica et Biophysica Acta 1793: 1335-1342). Apoptin was subsequently found to selectively induce apoptosis in cancer cells (Danen-Van Oorschot et al., 1997 Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells. Proc. Natl. Acad. Sci. USA 94: 5843-5847). Apoptin shares similarity with Torquetnovirus (TTV) derived apoptosis-inducing protein TAIP and with gyrovirus VP3. Apoptin consists of several different domains including a leucine rich sequence (LRS) which is involved in binding to the promyelocytic leukemia (PML) protein of nuclei and in apoptin multimerization, an SRC homology 3 (SH3) binding domain with is part of a bipartite nuclear localization signal (NLS), a nuclear export sequence (NES) that promotes egress of apoptin from normal cell nuclei, a set of threonines of which T108 must be phosphorylated for full apoptin activity, the C-terminal portion of the bipartite NLS and an anaphase promoting complex/cyclosome 1 (APC/Cl) binding domain that consists of approximately one third of the C-terminus.


The pertussis toxin from Bordetella species, including B. pertussis, is a multi-subunit (S1, S2, S3, S4 and S5 subunits) that is both secreted and cell-bound. Pawelek (US Patent Application 2005/0026866), expressly incorporated herein by reference in its entirety, has suggested the use of pertussis toxin, and pertussis toxin fusions as anticancer agents. However, Pawelek did not suggest chimeric CLDTs with pertussis toxin S2 or S3 subunits, which are non-covalently bound subunits rather than fusions, nor did he suggest CLDT pertussis PltBs chimeric with S2, S3 or both, neither of which contains the pertussis toxin cytotoxic activity.


The present technology, according to various embodiments, consists of a modified Salmonella CLDT operon and forms of cytolethal distending toxins that are chimeric with the S2 or S3 subunits of pertussis toxin, or both, or PltB:S2 or Plt:S3 chimeras, or both, chimeric with CLDTs. The S2 and/or S3, or PltB:S2 or Plt:S3 chimeras may be co-expressed with the CLDT operon PltB, or may replace the CLDT operon PltB.


The types of cancers or neoplasias to which the present technology is directed include all neoplastic malignancies, including solid tumors such as those of colon, lung, breast, prostate, sarcomas, carcinomas, head and neck tumors, melanoma, as well as hematological, non-solid or diffuse cancers such as leukemia and lymphomas, myelodysplastic cells, plasma cell myeloma, plasmacytomas, and multiple myelomas. Specific types of cancers include acute lymphoblastic leukemia, acute myeloid leukemia, adrenocortical carcinoma adrenocortical carcinoma, adult (primary) liver cancer, adult acute myeloid leukemia, AIDS-related cancers, AIDS-related lymphoma, anal cancer, appendix cancer, astrocytomas, astrocytomas (childhood), basal cell carcinoma, bile duct cancer, bladder cancer, bone cancer, brain stem glioma, brain tumor, breast cancer (female), breast cancer (male), bronchial tumors, Burkitt's lymphoma, carcinoid tumor, carcinoma of unknown primary site, central nervous system atypical teratoid/rhabdoid tumor, central nervous system embryonal tumors, central nervous system lymphoma, central nervous system tumors, cervical cancer, childhood acute myeloma, childhood multiple myeloma/plasma cell neoplasm, chordoma, chronic lymphocytic leukemia, chronic myelogenous leukemia, chronic myeloid leukemia, chronic myeloproliferative disorders, colon cancer, colorectal cancer, craniopharyngioma, cutaneous T-cell lymphoma, embryonal tumors, endometrial cancer, endometrial uterine sarcoma, ependymoblastoma, ependymoma, esophageal cancer, Ewing sarcoma family of tumors, extracranial germ cell tumor, extragonadal germ cell tumor, extrahepatic bile duct cancer, extrahepatic gallbladder cancer, eye cancer, gallbladder cancer, gastric (stomach) cancer, gastrointestinal carcinoma, gastrointestinal carcinoid tumor, gastrointestinal stromal cell tumor, gastrointestinal stromal tumor (gist), germ cell tumor, glioma, hairy cell leukemia, head and neck cancer, hepatocellular (liver) cancer, histiocytosis, Hodgkin lymphoma, hypopharyngeal cancer, intraocular (eye) melanoma, intraocular melanoma, islet cell tumors, Kaposi sarcoma, kidney (renal cell) cancer, kidney cancer, Langerhans cell, Langerhans cell histiocytosis, laryngeal cancer, leukemia, lip and oral cavity cancer, lip and oropharyngeal cancer, liver cancer (metastatic), lung cancer (primary), macroglobulinemia, medulloblastoma, medulloepithelioma, melanoma, Merkel cell carcinoma, mesothelioma, metastatic squamous neck cancer with occult primary, metastatic stomach (gastric) cancer, mouth cancer, multiple endocrine neoplasia syndrome, multiple myeloproliferative disorders, mycosis fungoides, myelodysplastic syndromes, myelodysplastic/myeloproliferative diseases, myelogenous leukemia, nasal cavity and paranasal sinus cancer, nasopharyngeal cancer, nervous system atypical teratoid/rhabdoid tumor, neuroblastoma, non-Hodgkin lymphoma, non-small cell lung cancer, oral cancer, oral cavity cancer, osteosarcoma and malignant fibrous histiocytoma, osteosarcoma and malignant fibrous histiocytoma of bone, ovarian cancer, ovarian epithelial cancer, ovarian germ cell tumor, ovarian gestational trophoblastic tumor, ovarian low malignant potential tumor, pancreatic cancer, papillomatosis, paranasal sinus and nasal cavity cancer, parathyroid cancer, penile cancer, pharyngeal cancer, pineal parenchymal tumors, pineal parenchymal tumors of intermediate differentiation, pineoblastoma and supratentorial primitive neuroectodermal tumors, pituitary tumor, plasma cell neoplasm/multiple myeloma, pleuropulmonary blastoma, primary central nervous system lymphoma, primary cervical cancer, primary hepatocellular (liver) cancer, prostate cancer, rectal cancer, renal cell (kidney) cancer, renal pelvis and ureter, respiratory tract carcinoma involving the nut gene on chromosome 15, retinoblastoma, rhabdomyosarcoma, salivary gland cancer, sarcoma, skin cancer (Basal cell carcinoma), Sézary syndrome, skin cancer (nonmelanoma), skin carcinoma, small cell lung cancer, small cell lymphoma, small intestine cancer, soft tissue sarcoma, spinal cord tumors, squamous cell carcinoma, squamous neck cancer with occult primary, stomach (gastric) cancer, supratentorial primitive neuroectodermal tumors and pineoblastoma, T-cell lymphoma, teratoid/rhabdoid tumor (childhood), testicular cancer, throat cancer, thymoma and thymic carcinoma, thyroid cancer, transitional cell cancer, transitional cell cancer of the renal pelvis and ureter, trophoblastic tumor (gestational), unknown primary site, ureter and renal pelvis, urethral cancer, uterine cancer, uterine sarcoma, vaginal cancer, vulvar cancer, Waldenström macroglobulinemia, Waldenström malignant fibrous histiocytoma of bone and osteosarcoma, and Wilms tumor.


The therapeutic agent can be a chimera consisting of a peptide or protein, toxin, chimeric toxin, cytokine, antibody, bispecific antibody including single chain antibodies, camel antibodies and nanobodies chemokine, prodrug converting enzyme or metabolite-degrading enzyme such as thiaminase, methionase (methioninase, L-methionine γ-lyase) or asparaginase. In a preferred embodiment the therapeutic agent is a toxin, or modified toxin.


The chimeric proteins may have one or more additional features or protein domains known to those skilled in the art which are designed to be active or catalytic domains that result in the death of the cell, allow or facilitate them being secreted or released by autolytic peptides such as those associated with colicins or bacteriophage release peptides have targeting peptides that direct them to the target cells, and protease cleavage sites for activation (e.g., release from parent peptide), and thioredoxin or glutathione S-transferase (GST) fusions that improve solubility.


The present technology also provides in accordance with some embodiments, unique chimeric modifications of the above listed toxins that contain specific combinations of components resulting in secretion by selective anti-tumor activity. The technology also provides extracellular protease sensitivity (deactivation) that may include the addition of protease cleavage sites and may be co-expressed with a protease inhibitor. The chimeric proteins may have one or more additional features or protein domains known to those skilled in the art which are designed to 1) be active or catalytic domains that result in the death of the cell or make them susceptible to other known anticancer agents, 2) allow or facilitate them being secreted or released by autolytic peptides such as colicin release peptides, 3) membrane protein transduction (ferry) peptides, 4) autotransporter domains, 5) have targeting peptides that direct them to the target cells, and 6) protease cleavage sites for activation (e.g., release from parent peptide). However, the specific organization and combination of these domains is unique and specific to the technology.


Small lytic peptides (less than 50 amino acids) are used to construct chimeric proteins for more than one purpose. The chimeric proteins containing lytic peptides may be directly cytotoxic for the cancer cells, and/or other cells of the tumor including the tumor matrix cells and immune cells which may diminish the effects of the bacteria by eliminating them. Furthermore, the lytic peptides are useful in chimeric proteins for affecting release from the endosome. Small lytic peptides have been used in the experimental treatment of cancer. However, it is evident that most, if not all, of the commonly used antitumor small lytic peptides have strong antibacterial activity, and thus are not compatible with delivery by a bacterium (see Table 1 of Leschner and Hansel, 2004 Current Pharmaceutical Design 10: 2299-2310, the entirety of which is expressly incorporated herein by reference). Small lytic peptides useful in the technology, according to various embodiments, are those derived from Staphylococcus aureus, S. epidermidis and related species, including the phenol-soluble modulin (PSM) peptides and delta-lysin (Wang et al., 2007 Nature Medicine 13: 1510-1514, expressly incorporated herein by reference). Larger lytic peptides that may be used includes the actinoporins from sea anemones or other coelenterates, such as SrcI, FraC equinatoxin-II and sticholysin-II (Anderluh and Macek 2002, Toxicon 40: 111-124). The selection of the lytic peptide depends upon the primary purpose of the construct, which may be used in combination with other constructs providing other anticancer features. Construct designed to be directly cytotoxic to cells employ the more cytotoxic peptides, particularly PSM-α-3 and actinoporins. Constructs which are designed to use the lytic peptide to affect escape from the endosome use the peptides with the lower level of cytotoxicity, such as PSM-alpha-1, PSM-α-2 or delta-lysin.


Promoters, i.e., genetic regulatory elements that control the expression of the genes encoding the therapeutic molecules described above that are useful in the present technology, according to various embodiments, include constitutive and inducible promoters. A preferred constitutive promoter is that from the vector pTrc99a (Promega). Preferred inducible promoters include the tetracycline inducible promoter (TET promoter), SOS-response promoters responsive to DNA damaging agents such as mitomycin, alkylating agents, X-rays and ultraviolet (UV) light such as the recA promoter, colicin promoters, sulA promoters and hypoxic-inducible promoters including but not limited to the PepT promoter (Bermudes et al., WO 01/25397), the arabinose inducible promoter (AraBAD) (Lossner et al., 2007, Cell Microbiol. 9: 1529-1537; WO/2006/048344) the salicylate (aspirin) derivatives inducible promoter (Royo et al., 2007, Nature Methods 4: 937-942; WO/2005/054477), a tumor-specific promoter (Arrach et al., 2008, Cancer Research 68: 4827-4832; WO/2009/152480) or a quorum-sensing (autoinduction) promoter Anerson et al., 2006 Environmentally controlled invasion of cancer cells by engineered bacteria, J. Mol. Biol. 355: 619-627.


A single promoter may be used to drive the expression of more than one gene, such as a protease sensitive toxin and a protease inhibitor. The genes may be part of a single synthetic operon (polycistronic), or may be separate, monocystronic constructs, with separate individual promoters of the same type used to drive the expression of their respective genes. The promoters may also be of different types, with different genes expressed by different constitutive or inducible promoters. Use of two separate inducible promoter for more than one cytotoxin or other effector type peptide allows, when sufficient X-ray, tetracycline, arabinose or salicylic acid is administered following administration of the bacterial vector, their expression to occur simultaneously, sequentially, or alternatingly (i.e., repeated).


OBJECTS OF THE INVENTION

The present technology provides, according to one embodiment, live attenuated therapeutic bacterial strains that express one or more therapeutic molecules. The technology, according to various embodiments, relates specifically to certain modified forms of chimeric toxins especially suitable for expression by tumor-targeted bacteria. In a preferred embodiment, the modified toxin is derived from cytolethal distending toxin. In a more preferred embodiment, the cytolethal distending toxin is derived from Salmonella paratyphi A, Salmonella typhi or Salmonella bongori. In particular, the technology, according to various embodiments, relates to live attenuated tumor-targeted bacterial strains that may include Salmonella sp., group B Streptococcus Bifidobacterium sp. or Listeria vectoring chimeric anti-tumor toxins to an individual to elicit a therapeutic response against cancer. Another aspect of the technology relates to live attenuated tumor-targeted bacterial strains that may include Salmonella, group B Streptococcus Bifidobacterium sp. or Listeria vectoring chimeric anti-tumor toxin molecules to an individual to elicit a therapeutic response against cancer including cancer stem cells. The toxins may also be targeted to tumor matrix cells, and/or immune cells. In another embodiment of the technology, Salmonella strains including Salmonella paratyphi A, Salmonella typhi or Salmonella bongori which contain endogenous cytolethal distending toxins may, when suitably attenuated, be used as vectors for delivery of cytolethal distending toxin. In order to achieve inducible control, the endogenous reporter is replaced with an inducible promoter by homologous recombination. In another embodiment, a chimeric secreted protease inhibitor is used alone or in combination with the chimeric toxins.


Whereas the prior strains of Salmonella studied in human clinical trials used either no heterologous antitumor protein (i.e., VNP20009) or an antitumor protein located within the cytoplasm of the bacterium (i.e., cytosine deaminase expressed by TAPET-CD), or secreted proteins (Bermudes et al., WO 2001/025397) the technology, according to various embodiments, provides, according to some embodiments, methods and compositions comprising bacterial vectors that express, secrete, surface display and/or release protease inhibitors that protect co-expressed protease sensitive antitumor molecules that are also secreted, surface displayed and/or released into the tumor, lymphoma-containing lymph node, leukemic bone lumen, or proximally or topically on a carcinoma or precancerous lesion for the treatment of the neoplasia.


The primary characteristic of the bacteria of the technology, according to various embodiments, is the enhanced effect of the effector molecule such as a toxin, lytic peptide etc. relative to the parental strain of bacteria. In one embodiment, the percent increase in effect is approximately 2% to approximately 95%, approximately 2% to approximately 75%, approximately 2% to approximately 50%, approximately 2% to about 40%, approximately 2% to about 30%, approximately 2% to about 25%, approximately 2% to about 20% or about 2% to approximately 10% greater than the parental strain of bacteria without expressing one or more protease inhibitors under the same conditions. A second characteristic of the bacteria of the technology, according to various embodiments, is that they carry novel chimeric proteins that improve their function compared to other chimeric protein expression systems. In one embodiment, the percent improvement is approximately 2% to approximately 95%, approximately 2% to approximately 75%, approximately 2% to approximately 50%, approximately 2% to about 40%, approximately 2% to about 30%, approximately 2% to about 25%, approximately 2% to about 20% or about 2% to approximately 10% that of another expression system under the same conditions.


The bacteria according to a preferred embodiment of the present technology, according to various embodiments, include those modified to have little or no ability to undergo bacterial conjugation, limiting incoming and outgoing exchange of genetic material, whereas the prior art fails to limit exchange of genetic material. In addition, certain of the therapeutic molecules have co-transmission requirements (e.g., colicin proteins and colicin immunity) that are distal (i.e., genetically dissected and separated) to the therapeutic molecule location further limiting known forms of genetic exchange.


Aspects of the present technology also provide novel chimeric bacterial toxins particularly suited for expression by gram-negative bacteria. The toxins may have added targeting ligands that render them selectively cytotoxic for tumor cells, tumor stem cells and/or matrix and tumor-infiltrating immune cells. The technology also provides means to determine optimal toxin combinations which are preferably additive or more preferably synergistic. The technology also provides means to determine the optimal combination of protein toxin with conventional cancer chemotherapeutics, liposomal agents or biologics, including immunosuppressive anti-complement agents (e.g., anti-C5B). Accordingly, administration to an individual, of a live Salmonella bacterial vector, in accordance with an aspect of the present technology, that is genetically engineered to express one or more protease inhibitors as described herein co-expressed with one or more cytotoxic proteins has the ability to establish a population in the tumor, kill tumor cells, tumor stem cells as well as tumor matrix and immune infiltrating cells, resulting in a therapeutic benefit.


A preferred composition will contain, for example, a sufficient amount of live bacteria expressing the targeted cytotoxin(s) or effector proteins/peptides to produce a therapeutic response in the patient. Accordingly, the attenuated Salmonella strains described herein are both safe and useful as live bacterial vectors that can be systemically or orally administered to an individual to provide therapeutic benefit for the treatment of cancer.


Although not wishing to be bound by any particular mechanism, an effective antitumor response in humans by administration of genetically engineered, attenuated strains of Salmonella strains as described herein may be due to the ability of such mutant strains to persist within the tumor, lymphoma or leukemic bone marrow and to supply their own nutrient needs by killing tumor cells, tumor matrix and or immune infiltrating cells and further expanding the zone of the tumor that they occupy. Bacterial strains useful in accordance with a preferred aspect of the technology may carry the ability to produce a therapeutic molecule expressing plasmid or chromosomally integrated cassette that encodes and directs expression of one or more therapeutic molecules together with optionally one or more protease inhibitors, as described herein. The protease inhibitors serve to prevent the destruction of the therapeutic molecule while within the tumor. The protease inhibitor may also have an anticlotting effect, wherein a blood clot may prevent spread of the bacteria throughout the tumor. The protease inhibitor may also have direct or indirect anticancer effects through the inhibition of proteases that participate in the spread of cancerous cells. If the cytotoxin and protease inhibitor diffuse outside of the tumor, lymph node, bone lumen, proximity to a carcinoma or other neoplasia-localized distribution, they fall below the protease inhibitory concentration, no longer inhibit proteolysis of the cytotoxins or effector genes, and are then inactivated. Thus the protease inhibitor system both increases activity and provides tumor specificity.


Novel modifications of the bacteria to express and surface display, secrete and/or release peptides that have the effect of enhancing tumor penetration are also encompassed. Tumor and lymphatic vessel targeting includes peptides previously described (Teesalu et al, 2013, Tumor-penetrating peptides, Frontiers in Oncology 2013/Vol. 3/Article 216/1-8; Sugahara et al. 2010, Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs, Science 328: 1031-1035; U.S. Pat. No. 8,367,621 Ruoslahti et al., Methods and compositions related to internalizing RGD peptides; U.S. Pat. No. 8,753,604 Ruoslahti et al., Methods and compositions for synaphically-targeted treatment for cancer; United States Patent Application 20090226372, Ruoslahti et al, Methods aAnd Compositions Related To Peptides And Proteins With C-Terminal Elements; United States Patent Application 20110262347, Ruoslahti et al., Methods And Compositions For Enhanced Delivery Of Compounds) which includes lymphatic vessels and hypoxic portions of tumors targeting peptid, LyP-1CGNKRTRGC SEQ ID NO: 002, as well as tripartate peptides containing a vacular homing motif (e.g.. RGD). a CendR paptide (e.g.. R/KXXR/K SEQ ID NO: 003) and a protcasc recognition site (e.g., K) such as the peptide CRGDKGPDC SEQ ID NO: 004 or other variants including but not limited to CR/KGDR/KGPDC SEQ ID NO: 005. Such peptides first bind through the RGD motif to alpha-v integrins that are over expressed on tumor endothelial cells, followed by proteolytic cleavage leaving the CendR peptide R/KXXR/K SEQ ID NO: 003. Other preferred peptides include CRGDRGPDC (SEQ ID NO: 006) and CRGDKGPEC (SEQ ID NO: 007). Other examples of this class of peptides include CRGDRGFEC SEQ ID NO: 008, RGD (R/K/H) SEQ ID NO: 009), CRGD (R/K/H) GP (D/H) C SEQ ID NO: 010, CRGD (R/K/H) GP (D/E/H) C SEQ ID NO: 011, CRGD (R/K/H) G (P/V) (D/E/H) C SEQ ID NO: 012. CRGDHGPDC SEQ ID NO: 013, CRGDHGPEC SEQ ID NO: 014, CRGDHGPHC SEQ ID NO: 015. CRGDHGVDC SEQ ID NO: 016, CRGDHGVEC SEQ ID NO: 017, CRGDHGVHC SEQ ID NO: 018. CRGDKGPHC SEQ ID NO: 019, CRGDKGVDC SEQ ID NO: 020, CRGDKGVEC SEQ ID NO: 021, CRGDKGVHC SEQ ID NO: 022, CRGDRGPEC SEQ ID NO: 023, CRGDRGPHC SEQ ID NO: 024, CRGDRGVDC SEQ ID NO: 025, CRGDRGVEC SEQ ID NO: 026. or CRGDRGVHC SEQ ID NO: 027. Alternatively, peptides that bind other receptors such as aminopeptidase N (e.g., and CRNGRGPDC SEQ ID NO: 028) may be used. These peptides may be secreted, released or surface displayed by tumor-targeting bacteria, and thereby penetrate tumors more efficiently.


The serovars of S. enterica that may be used as the attenuated bacterium of the live compositions described in accordance with various embodiments herein include, without limitation, Salmonella enterica serovar Typhimurium (“S. typhimurium”), Salmonella montevideo, Salmonella enterica serovar Typhi (“S. typhi”), Salmonella enterica serovar Paratyphi A (“S. paratyphi A”), Salmonella enterica serovar Paratyphi B (“S. paratyphi B”), Salmonella enterica serovar Paratyphi C (“S. paratyphi C”), Salmonella enterica serovar Hadar (“S. hadar”), Salmonella enterica serovar Enteriditis (“S. enteriditis”), Salmonella enterica serovar Kentucky (“S. kentucky”), Salmonella enterica serovar Infantis (“S. infantis”), Salmonella enterica serovar Pullorurn (“S. pullorum”), Salmonella enterica serovar Gallinarum (“S. gallinarum”), Salmonella enterica serovar Muenchen (“S. muenchen”), Salmonella enterica serovar Anaturn (“S. anatum”), Salmonella enterica serovar Dublin (“S. dublin”), Salmonella enterica serovar Derby (“S. derby”), Salmonella enterica serovar Choleraesuis var. Kunzendorf (“S. cholerae kunzendorf), and Salmonella enterica serovar Minnesota (S. minnesota). A preferred serotype for the treatment of bone marrow related diseases is S. dublin. In another embodiment of the technology, Salmonella strains including Salmonella paratyphi A, Salmonella typhi or Salmonella bongori which contain endogenous cytolethal distending toxins, may, when suitably attenuated, be used as vectors for delivery of cytolethal distending toxin. In order to achieve inducible control, the endogenous reporter is replaced with an inducible promoter by homologous recombination.


By way of example, live bacteria in accordance with aspects of the technology include known strains of S. enterica serovar Typhimurium (S. typhimurium) and S. enterica serovar Typhi (S. typhi) which are further modified as provided by the technology to form vectors for the prevention and/or treatment of neoplasia. Such Strains include Ty21a, CMV906, CMV908, CMV906-htr, CMV908-htr, Ty800, aroA−/serC−, HOLAVAX, M01ZH09, VNP20009. These strains contain defined mutations within specific serotypes of bacteria. The technology also includes the use of these same mutational combinations contained within alternate serotypes or strains in order to avoid immune reactions which may occur in subsequent administrations. In a preferred embodiment, S. typhimurium, S. montevideo, and S. typhi which have non-overlapping O-antigen presentation (e.g., S. typhimurium is O-1, 4, 5, 12 and S. typhi is Vi, S. montevideo is O-6, 7) may be used. Thus, for example, S. typhimurium is a suitable serotype for a first injection and another serotype such as S. typhi or S. montevideo are used for a second injection and third injections. Likewise, the flagellar antigens are also selected for non-overlapping antigenicity between different injections. The flagellar antigen may be H1 or H2 or no flagellar antigen, which, when combined with the three different O-antigen serotypes, provides three completely different antigenic profiles.


Novel strains of Salmonella are also encompassed that are, for example, attenuated in virulence by mutations in a variety of metabolic and structural genes. The technology therefore may provide a live composition for treating cancer comprising a live attenuated bacterium that is a serovar of Salmonella enterica comprising an attenuating mutation in a genetic locus of the chromosome of said bacterium that attenuates virulence of said bacterium and wherein said attenuating mutation is a combinations of other known attenuating mutations. Other attenuating mutation useful in the Salmonella bacterial strains described herein may be in a genetic locus selected from the group consisting of phoP, phoQ, edt, cya, crp, poxA, rpoS, htrA, nuoG, pmi, pabA, pts, damA, met, cys, pur, purA, purB, purI, purF, leu, ilv, arg, lys, zwf, aroA, aroB, aroC, aroD, serC, gua, cadA, rfc, rjb, rfa, ompR, msbB, pfkAB, crr, glk, ptsG, ptsHI, manXYZ and combinations thereof. The strain may also contain a mutation known as “Suwwan”, which is an approximately 100 kB deletion between two IS200 elements. The strain may also carry a defective thioredoxin gene (trxA−; which may be used in combination with a TrxA fusion), a defective glutathione oxidoreductase (gor−) and optionally, overexpress a protein disulfide bond isomerase (DsbA). The strain may also be engineered to express invasion and/or escape genes tlyA, tlyC patI and pld from Rickettsia, whereby the bacteria exhibit enhanced invasion and/or escape from the phagolysosome (Witworth et al., 2005, Infect. Immun. 73:6668-6673), thereby enhancing the activity of the effector genes described below. The strain may also be engineered to be deleted in an avirulence (anti-virulence) gene, such as zirTS, grvA and/or pcgL, or express the E. coli lac repressor, which is also an avirulence gene in order to compensate for over-attenuation. The strain may also express SlyA, a known transcriptional activator. In a preferred embodiment, the Salmonella strains are msbB mutants (msbB−). In a more preferred embodiment, the strains are msbB− and Suwwan. In a more preferred embodiment the strains are msbB−, Suwwan and zwf−. Zwf has recently been shown to provide resistance to CO2, acidic pH and osmolarity (Karsten et al., 2009, BMC Microbiology Aug. 18; 9:170). Use of the msbB zwf genetic combination is also particularly preferred for use in combination with administered carbogen (an oxygen carbon dioxide mixture that may enhance delivery of therapeutic agents to a tumor). In a more preferred embodiment, the strains are msbB−, Suwwan, zwf− and trxA−. In a most preferred embodiment, the strains are msbB−, Suwwan, zwf−, trxA− and gor−.


The technology also encompasses according to a preferred embodiment, gram-positive bacteria. Preferred bacteria of the technology are group B Streptococcus including S. agalaciae, Bifidobacterium sp, and Listeria species including L. monocytogenes. It is known to those skilled in the art that minor variations in molecular biology techniques such as use of gram-positive origins of replication, gram-positive signal sequences gram-positive promoters (e.g., Lactococcus expression, Mohamadzadeh et al., PNAS Mar. 17, 2009 vol. 106 no. 11 4331-4336; Geertsma and Poolman, 2007, High-throughput cloning and expression in recalcitrant bacteria, Nature Methods 4: 705-707; Prudhomme et al., 2006, Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae, Science 313: 89-92; WO/2009/139985 Methods and materials for gastrointestinal delivery of a pathogen toxin binding agent; van Asseldonk, M et al. 1990, Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363 Gene 95, 15-160; Kim et al., J Appl Microbiol. 2008 June; 104(6):1636-43. Epub 2008 Feb. 19. Display of heterologous proteins on the surface of Lactococcus lactis using the H and W domain of PrtB from Lactobacillus delburueckii subsp. bulgaricus as an anchoring matrix; Lee et al., 1999, Characterization of Enterococcus faecalis alkaline phosphatase and use in identifying Streptococcus agalactiae secreted proteins, J. Bacteriol 181(18):5790-9.) are required and substituted as needed.


Mutational backgrounds of Listeria vectors include those previously isolated, including the delta-actA strain 142 (Wallecha et al., 2009, Construction and characterization of an attenuated Listeria monocytogenes strain for clinical use in cancer immunotherapy, Clin Vaccine Immunol 16: 96-103), the double D-alanine (D-ala) strain described by Jiang et al., 2007, Vaccine 16: 7470-7479, Yoshimura et al., 2006, Cancer Research 66: 1096-1104, Lenz et al., 2008, Clinical and Vaccine Immunology 15: 1414-1419, Roberts et al., 2005, Definition of genetically distinct attenuation mechanisms in naturally virulent Listeria moncyogenes by comparative cell culture and molecular characterization, Appl. Environ. Microbiol 71: 3900-3910, the actA, prfA strain by Yan et al., Infect Immun 76: 3439-3450, and those described by Portnoy et al., EP1513924 and Portnoy et al., WO/2003/102168.


Mutational backgrounds of the group B Streptococcus, S. agalactiae, include wild type (no mutations), of any of the nine serotypes that depend on the immunologic reactivity of the polysaccharide capsule and among nine serotypes, preferably types Ia, Ib, II, III, and V capable of being invasive in humans. The strain may be deleted in the beta-hemolysin/cytolysin (beta-H/C), including any member of the cly operon, preferably the clyE gene, or the CspA protease associated with virulence (Shelver and Bryan, 2008, J Bacteriol. 136: 129-134), or the hyaluronate lyse C5a peptidase CAMP factor, oligopeptidase (Liu and Nizet 2004, Frontiers in Biosci 9: 1794-1802; Doran and Nizet 2004, Mol Microbiol 54: 23-31; Herbert et al., 2004, Curr Opin Infect Dis 17: 225-229). The strains may further have mutations in metabolic genes pur, purA, aroA, aroB, aroC, aroD, pgi (glucose-6-phosphate isomerase), fructose-1,6-bisphosphatase, ptsH, ptsI, and/or one or more amino acid transporters and/or amino acid permeases. In a preferred embodiment, the strain is clyE deficient.


Other bacterial strains are also encompassed, including non-pathogenic bacteria of the gut such as E. coli strains, Bacteroides, Bifidobacterium and Bacillus, attenuated pathogenic strains of E. coli including enteropathogenic and uropathogenic isolates, Enterococcus sp. and Serratia sp. as well as attenuated Shigella sp., Yersinia sp., Streptococcus sp. and Listeria sp.


Bacteria of low pathogenic potential to humans such as Clostridium spp. and attenuated Clostridium spp., Proteus mirabilis, insect pathogenic Xenorhabdus sp., Photorhabdus sp. and human wound Photorhabdus (Xenorhabdus) are also encompassed. Probiotic strains of bacteria are also encompassed, including Lactobacillus sp., Lactococcus sp., Leuconostoc sp., Pediococcus sp., Streptococcus sp., Streptococcus agalactiae, Lactococcus sp., Bacillus sp., Bacillus natto, Bifidobacterium sp., Bacteroides sp., and Escherichia coli such as the 1917 Nissel strain.


The technology also provides, according to one embodiment, a process for preparing genetically stable therapeutic bacterial strains comprising genetically engineering the therapeutic genes of interest into a bacterially codon optimized expression sequence within a bacterial plasmid expression vector, endogenous virulence (VIR) plasmid (of Salmonella sp.), or chromosomal localization expression vector for any of the deleted genes or IS200 genes, defective phage or intergenic regions within the strain and further containing engineered restriction endonuclease sites such that the bacterially codon optimized expression gene contains subcomponents which are easily and rapidly exchangeable, and the bacterial strains so produced. Administration of the strain to the patient is therapeutic for the treatment of cancer.


The present technology provides, for example, and without limitation, live bacterial compositions that are genetically engineered to express one or more protease inhibitors combined with antitumor effector molecules for the treatment of cancers or neoplasias.


According to various embodiments, the technology provides pharmaceutical compositions comprising pharmaceutically acceptable carriers and one or more bacterial mutants. The technology also provides pharmaceutical compositions comprising pharmaceutically acceptable carriers and one or more bacterial mutants comprising nucleotide sequences encoding one or more therapeutic molecules. The pharmaceutical compositions of the technology may be used in accordance with the methods of the technology for the prophylaxis or treatment of neoplastic disease. Preferably, the bacterial mutants are attenuated by introducing one or more mutations in one or more genes in the lipopolysaccharide (LPS) biosynthetic pathway (for gram-negative bacteria), and optionally one or more mutations to auxotrophy for one or more nutrients or metabolites.


In one embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes. In another embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules where the therapeutic molecule is chimeric toxin.


In one embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes. In another embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules where the therapeutic molecule is a molecule with direct anti-cancer lytic capability.


In one embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes. In another embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules where the therapeutic molecule has direct anti-cancer cytotoxic or inhibitory ability.


In one embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes. In another embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules where the therapeutic molecule has direct anti-cellular activity against other cells of a tumor, including neutrophils, macrophages, T-cells, stromal cells, endothelial cells (tumor vasculature) and/or cancer stem cells.


In one embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes. In another embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules co-expressed with a protease inhibitor.


In a specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein the bacterial mutants are a Salmonella sp. In another specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated stress-resistant gram-negative bacterial mutants, wherein the attenuated stress-resistant gram-negative bacterial mutants are a Salmonella sp., and the attenuated stress-resistant gram-negative bacterial mutants comprise one or more nucleic acid molecules encoding one or more therapeutic molecules, prodrug converting enzymes, metabolite degrading enzymes, lytic peptides, DNases or anti-cancer peptides.


In a specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein the bacterial mutants are a Streptococcus sp. In another specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated gram-positive bacterial mutants, wherein the attenuated gram-positive bacterial mutants are a Streptococcus sp., and the attenuated gram-positive bacterial mutants comprise one or more nucleic acid molecules encoding one or more therapeutic molecules, prodrug converting enzymes, metabolite degrading enzyme, lytic peptides, DNases or anti-cancer peptides.


In a specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein the bacterial mutants are a Listeria sp. In another specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein the attenuated gram-positive bacterial mutants are a Listeria sp., and the attenuated gram-positive bacterial mutants comprise one or more nucleic acid molecules encoding one or more therapeutic molecules, prodrug converting enzymes, metabolite degrading enzyme, lytic peptides, DNases or anti-cancer peptides.


The present technology, according to various embodiments, encompasses treatment protocols that provide a better therapeutic effect than current existing anticancer therapies. In particular, the present technology provides methods for prophylaxis or treatment of neoplastic diseases in a subject comprising administering to said subject and one or more bacterial mutants. The present technology also provides methods for the prophylaxis or treatment of neoplastic diseases in a subject comprising administering to said subject one or more bacterial mutants, wherein said bacterial mutants comprise one or more nucleic acid molecules encoding one or more therapeutic molecules together with one or more protease inhibitors.


The methods of the present technology, according to various embodiments, permit lower dosages and/or less frequent dosing of the bacterial mutants to be administered to a subject for prophylaxis or treatment of neoplastic disease to achieve a therapeutically effective amount of one or more therapeutic molecules. In a preferred embodiment, the genetically modified bacteria are used in animals, including humans, dogs, cats, and/or horses for protection or treatment against neoplastic diseases.


Accordingly, when administered to an individual, a live Salmonella, Listeria. Bifidobacterium or Streptococcus bacterial vector or therapeutic, in accordance with the present technology, that is genetically engineered to express one or more anti-neoplastic molecules or molecules against other cells within the neoplastic milieu, optionally in combination with a protease inhibitor, and have improved efficacy due to improved surface display, secretion and/or released of the modified chimeric therapeutic proteins and/or enhanced binding to the target receptor resulting enhanced therapeutic activity against a neoplastic tissue including solid tumors, lymphomas and leukemias.


The genetic construct or bacterium may be provided in a pharmaceutically acceptable dosage form, suitable for administration to a human or animal, without causing significant morbidity. The peptide may act as an antineoplastic agent, and the bacterium may be trophic for diseased or malignant growths. The dosage form may be oral, enteral, parenteral, intravenous, per anus, topical, or inhaled, for example. The peptide may comprise a combination of at least one secretion signal, a linker, and domain Ib.


A pharmaceutically effective dosage form may comprise between about 105 to 1012 live bacteria, within a lyophilized medium for oral administration. In some embodiments, about 109 live bacteria are administered.


The live host bacterium may have antineoplastic activity against lymphoma, or solid tumors.


The peptide may be, for example, a chimeric peptide with the modified cytolethal distending toxin with pertussis toxin S2 or S3, or with pltB:S2 or pltB:S3.


Another object of the technology provides a chimeric protease inhibitor comprising YebF fused to sunflower trypsin inhibitor, adapted to inhibit at least one serine protease. The chimeric protease inhibitor may be formed by a genetically engineered bacteria, wherein the genetically engineered bacteria secretes the YebF fused to sunflower trypsin inhibitor. The chimeric protease inhibitor may be provided in combination with a host bacteria and a genetically engineered construct which encodes the chimeric protease inhibitor, wherein the host bacteria secretes the chimeric protease inhibitor and the chimeric protease inhibitor inhibits at least one serine protease.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a genetically engineered bacteria expressing surface displays of one or more tumor penetrating peptides.



FIG. 2 shows a genetically engineered bacteria secreting one or more tumor penetrating peptides as a YebF fusion.



FIG. 3 shows a genetically engineered bacteria secreting one or more tumor penetrating peptides as a YebF fusion where the tumor penetrating peptide is cleaved, following a cleavage signal.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present technology provides, according to various embodiments, live attenuated therapeutic bacterial strains that express one or more therapeutic with improved expression, secretion, surface display and/or release and/or have improved binding and anticancer cell activity that results in improved therapeutic efficacy. In particular, one aspect of the technology relates to live attenuated tumor-targeted bacterial strains that may include Salmonella, Streptococcus or Listeria vectoring novel chimeric anti-tumor toxins to an individual to elicit a therapeutic response against cancer. The types of cancer may generally include solid tumors, carcinomas, leukemias, lymphomas and multiple myelomas. Another aspect of the technology relates to live attenuated tumor-targeted bacterial strains that may include Salmonella, Streptococcus, Clostridium and Listeria that encode anti-neoplastic molecules to an individual to elicit a therapeutic response against cancers including cancer stem cells, immune infiltrating cells and or tumor matrix cells.


For reasons of clarity, the detailed description is divided into the following subsections: targeting ligands; chimeric bacterial toxins; and secreted protease inhibitors.


Targeting Ligands


Targeting ligands have specificity for the target cell and are used to both confer specificity to chimeric proteins, and to direct attachment and/or internalization into the target cell. The ligands are known ligands or may be novel ligands isolated through standard means such as phage display (Barbass III et al., 2004, Phage Display, A Laboratory Manual, Cold Spring Harbor Press) including the use of commercially available kits (Ph.D-7 Phage Display Library Kit, New England Biolabs, Ipswich, Mass.; Li et al., 2006. Molecular addresses of tumors: selection by in vivo phage display. Arch Immunol Ther Exp 54: 177-181). The ligands of various aspects of the present technology are peptides that can be expressed as fusions with other bacterially-expressed proteins. The peptides may be further modified, as for gastrin and bombesin, in being amidated by a peptidylglycine-alpha-amidating monoxygenase or C-terminal amidating enzyme, which is co-expressed in the bacteria that use these peptides using standard molecular genetic techniques. Examples of targeting peptides are shown in Bermudes U.S. Pat. No. 8,524,220 Table 4, incorporated by reference herein. These ligands and their targets include TGF-α (EGFR), HAVDI and INPISGQ and dimeric versions (N-cadherin of prostate), DUP-1 peptide (prostate cancer), laminin-411 binding peptides (brain neovasculature), pertussis toxin S3 subunit (cancer cells), DARPINS (e.g., H10, HER2), affibody against Her2 (Zielenski, R., Lyakhov, I., Jacobs, A., Chertov, O., Kramer-Marek, G., Francella, N., Stephen, A., Fisher, R., Blumenthal, R., and Capala, J. Affitoxin—A Novel Recombinant, HER2-Specific, Anti-Cancer Agent for Targeted Therapy of HER2-Positive Tumors. J Immunother. 2009 October; 32(8):817-825) luteinizing hormone-releasing hormone (LHRH receptor), IL2 (IL2R), EGF and EGF receptor related peptide (EGFR), tissue factor (TfR), IL4 (IL4R), IL134 (IL13R), GM-CSF (GM-CSFR), CAYHRLRRC SEQ ID NO: 029 (lymphoid tissue; AML), A33 antigen binding peptide (A33) CLTA-4/CD152 melanoma, CD19 binding peptides/Bpep (alpha(v) beta(6) integrin (αvβ6), non-Hodgkin lymphoma, chronic lymphocytic leukemia (CLL) and acute lymphocytic leukemia (ALL)), CD20 binding peptides (CD20, B-cell malignancies), CD22 binding peptides (B lymphocytes, hairy cell leukemia), CD25 binding peptides (chemotherapy-resistant human leukemia stem cells), TRU-015 (CD-20), CD30 binding peptides (CD-30 Hodgkin's lymphoma), CD32 binding peptides (chemotherapy resistant human leukemia stem cells), CD33 binding peptides (CD-33 AML myleodysplastic cells MDS)), CD37 binding peptides (leukemia and lymphoma), CD40 binding peptides (CD40 multiple myeloma, non-Hodgkin lymphoma, chronic lymphocytic leukemia (CLL), Hodgkin lymphoma and acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma, refractory non-Hodgkin lymphoma, including follicular lymphoma), CD52 (CLL), CD55 (CD55R), CD70 (hematological malignancies, non-Hodgkin's lymphoma), CD123 binding peptides (AML), RGD peptides (tumor cells and tumor endothelium), nanobodies derived from camels and llamas (camelids), including humanized nanobodies and VHH recognition domains (cancer), bombesin (gastrin releasing peptide receptor), gastrin releasing peptide (gastrin releasing peptide receptor), somatostatin octapeptide RC-121 (colon cancer), vasoactive intestinal peptide (tumor cell membranes), PTHrP (parathyroid hormone receptor G-protein coupled receptor), mesothelin binding peptides (mesothelin), CA125/MUC16 (mesothelin), heat stable enterotoxin (HST) (guanylyl cyclase C), GM-CSF (AML), vitronectin (Alfa(V)Beta(3) integrin), gastrin (gastrin receptor), CQTIDGKKYYFN SEQ ID NO: 030 peptide from Clostridium, affibody against HER3, DARPIN against HER2, TGFα, EGF, EGFR-binding peptides and other, non-limiting, peptides. In preferred embodiments, the peptides are affibody against HER2, H10 DARPIN against HER2, TGFα, EGF, EGFR-binding peptides.


Chimeric Bacterial Toxins


Chimeric toxins are toxins that may contain combinations of elements including targeting peptides, flexible linkers, disulfide bonding, lytic peptides, nuclear localization signals, blocking peptides, protease cleavage (deactivation or activation) sites, N- or C-terminal secretion signals, autotransporter constructs, used to adapt the proteins to be expressed, secreted, surface displayed and/or released by bacteria to provide therapeutic molecules that are effective in treating neoplastic cells, stromal cells, neoplastic stem cells as well as immune infiltrating cells. Targeting to a particular cell type uses the appropriate ligand described above or from other known sources. Toxin activity is determined using standard methods known to those skilled in the art such as Aktories (ed) 1997 (Bacterial Toxins, Tools In Cell Biology and Pharmacology, Laboratory Companion, Chapman & Hall).


Chimeric Cytolethal Distending Toxins.


Cytolethal distending toxins (cldt) including those cldts from Haemophilus, Aggregatibacter, Salmonella, Escherichia, Shigella, Campylobacter, Helicobacter, Hahella and Yersinia, typhoid toxins (pertussis like toxin) (pltAB), pertussis toxin, cldt:plt hybrids are three component toxins of these bacteria. Cldt is an endonuclease toxin and has a nuclear localization signal on the B subunit. Chimeric toxins are provided that utilize N-terminal or C-terminal fusions to apoptin, a canary virus protein that has a tumor-specific nuclear localization signal, and a normal (non-transformed) cell nuclear export signal.


Overall improvement is defined as an increase in effect, such as the ability to kill a neoplastic cells in vitro by the bacteria, or the selective ability inhibit or reduce the volume or cell number of a solid tumor, carcinoma, lymphoma or leukemia in vivo following administration with the bacteria expressing a therapeutic molecule, with and without the protease inhibitor. The effect of the protein therapeutic activity is determined using standard techniques and assays known to those skilled in the art. The contribution of the therapeutic protein and protease inhibitors is determined individually and in combination. Additivity, synergy or antagonism may be determined using the median effect analysis (Chou and Talaly 1981 Eur. J. Biochem. 115: 207-216) or other standard methods.



FIGS. 1-3 show genetically engineered bacteria expressing various forms of a tumor-penetrating peptide and/or release. FIG. 1 shows a genetically engineered bacterium containing the DNA construct for expression of the Pseudomonas ice nucleation surface display protein fused to a tumor penetrating peptide resulting in surface display of the tumor-penetrating peptide. FIG. 2 shows a genetically engineered bacterium containing the DNA construct for expression of the E. coli YebF secretion fusion protein fused to a tumor penetrating peptide resulting in secretion of the tumor-penetrating peptide:YebF fusion. FIG. 3 shows a genetically engineered bacterium containing the DNA construct for expression of the E. coli YebF secretion fusion protein fused to a tumor penetrating peptide with an intervening trypsin site “LK” resulting in cleavage and secretion of the tumor-penetrating peptide and YebF.


EXAMPLES

In order to more fully illustrate the technology, the following examples are provided.


Example 1

A Salmonella Expression Vector.


Inducible expression vectors for E. coli and Salmonella, such as arabinose inducible expression vectors, are widely available and known to those skilled in the art. By way of example, an expression vector typically contains a promoter which functions to generate an mRNA from the DNA, such as an inducible arabinose promoter with a functional ribosomal binding site (RBS) an initiation codon (ATG) and suitable cloning sites for operable insertion of the functional DNA encoding the effector proteins described below into the vector, followed by a transcriptional termination site, plasmid origin of replication, and an antibiotic resistance factor that allows selection for the plasmid. Vectors that lack antibiotic resistance such as asd(−) balanced lethal vectors (Galan et al., 1990 cloning and characterization of the asd gene of Salmonella Typhimurium: use in stable maintenance of recombinant Salmonella vaccine strains, Gene 94: 29-35) may also be used, or insertion into the chromosome.


Example 2

Cytolethal distending toxin of Salmonella with pltB replaced by Bordetella pertussis S2 or S3 proteins, or by pltB:S2 or pltB:S3 hybrids, or E. coli subtilase hybrids.


The three protein artificial operon, with or without C- or N-terminal fusions containing apoptin, may be further modified by replacing the pltB with pertussis S2 or S3 subunits, increasing specificity for tumor-cells and/or macrophage/monocytes that would eliminate the bacteria.









SEQ ID NO: 031


A pltB:S2 hybrid is (where pltB is in uppercase):





mpidrktichllsvlplallgshvarastpgivippqeqitqhgspygrc





anktraltvaelrgsgdlqeylrhvtrgwsifalydgtylggeyggvikd





gtpggafdlkttfcimttrntgqpatdhyysnvtatrllsstnsrlcavf





vrsgqpvigACAVSKQSIWAPSFKELLDQARYFYSTGQSVRIHVQKNIWT





YPLFVNTFSANALVGLSSCSATQCFGPK







The pAES40 YebF sequence is:









SEQ ID NO. 36


MAKKRGAFLGLLLVSACASVFAANNETSKSVTFPKCEDLDAAGIAASVKR





DYQQNRVARWADDQKIVGQADPVAWVSLQDIQGKDDKWSVPLAVRGKSAD





IHYQVSVDCKAGMAEYQRR.













SEQ ID NO: 032


A pltB-S3 hybrid is (where pltB is in uppercase):


mlinnkkllhhilpilvlallgmrtaciavapgivippkalftqqggaygr





cpngtraltvaelrgnaelqtylrclitpgwsiyglydgtylgqayggiik





dappgagfiyretfcittiyktgcmaadhyyskvtatrllastnsrlcav





fyrdgqsvigACAVSKQSIWAPSFKELLDQARYFYSTGQSVRIHVQKNIWT





YPLFVNTFSANALVGLSSCSATQCFGPK






Example 3

Combinations of Tumor-Targeted Salmonella with a tumor-penetrating peptide as a YebF fusion.


Treatment with tumor targeted Salmonella may be enhanced with combinations including bacteria that express one or more tumor-penetrating peptides. Methods of expression on plasmids or inserted into the chromosome are described above.


A fusion of YebF using a commercially available yebF gene (pAES40; Athena Enzyme Systems), wherein a trypsin cleavage site of leucine and lysine amino acids (in bold) that results in release of the peptide during secretion/release is followed by the sequence of the tumor-penetrating peptide:









SEQ ID NO: 033


MAKKRGAFLGLLLVSACASVFAANNETSKSVTFPKCEDLDAAGIAASVKR





DYQQNRVARWADDQKIVGQADPVAWVSLQDIQGKDDKWSVPLAVRGKSAD





IHYQVSVDCKAGMAEYQRRLEDDDDKGTLKCRGDKGPDC













SEQ ID NO: 034


Alternatively, the sequence may lack the 


trypsin site and remain as a YebF fusion:


MAKKRGAFLGLLLVSACASVFAANNETSKSVTFPKCEDLDAAGIAASVKR





DYQQNRVARWADDQKIVGQADPVAWVSLQDIQGKDDKWSVPLAVRGKSAD





IHYQVSVDCKAGMAEYQRRLEDDDDKGTCRGDKGPDC






Example 4

Combinations of Tumor-Targeted Salmonella with a tumor-penetrating peptide as a Pseudomonas ice nucleation protein fusion.


Treatment with tumor targeted Salmonella may be enhanced with combinations including expression of a tumor-penetrating peptides. Methods of expression on plasmids or inserted into the chromosome are described above.


A fusion with the Pseudomonas ice nucleation protein (INP) methods known to those skilled in the art, wherein the N- and C-terminus of INP with an internal deletion consisting of the first 308 amino acids is followed by the mature sequence of the tumor-penetrating peptide is inserted in-frame tor result in the amino acid sequence:









SEQ ID NO: 035


MTLDKALVLRTCANNMADHCGLIWPASGTVESRYWQSTRRHENGLVGLLW





GAGTSAFLVHADARWIVCEVAVADIISLEEPGMVKFPRAEVVHVGDRIS





ASHFISARQADPASTSTSTSTSTLTPMPTAIPTPMPAVASVTLPVAEQAR





HEVFDVASVSAAAAPVNTLPVTTPQNLQTATYGSTLSGDNHSRLIAGYGS





NETAGNHSDLIGGHDCTLMAGDQSRLTAGKNSVLTAGARSKLIGSEGSTL





SAGEDSTLIFRLWDGKRYRQLVARTGENGVEADIPYYVNEDDDVDKPDE





DDDWIEVKCRGDKGPDC






While the invention is shown by way of various examples and explanations, it should be understood that this specification and the drawings are intended to encompass the various combinations, sub-combinations, and permutations of the various features disclosed, and not limited by the particular combinations and sequences presented by way of example.

Claims
  • 1. A genetic construct configured to cause a live genetically engineered host bacterium containing the genetic construct to express and at least one of surface display, secrete, and release, a chimeric peptide comprising a YebF sequence fused to a tumor-penetrating peptide sequence adapted to enhance the penetration of the live genetically engineered host bacterium into a tumor, wherein the YebF sequence fused to the tumor-penetrating peptide sequence comprises the amino acid sequence of SEQ ID NO: 33 or SEQ ID NO: 34.
  • 2. The genetic construct according to claim 1, wherein the genetic construct is contained within the live genetically engineered host bacterium.
  • 3. The genetic construct according to claim 2, wherein the live genetically engineered host bacterium is contained in a pharmaceutically acceptable dosage form.
  • 4. The genetic construct according to claim 3, wherein the pharmaceutically acceptable dosage form containing the live genetically engineered host bacterium is adapted to cause colonization of a region of a human or an animal after administration of the pharmaceutically acceptable dosage form and expression of the chimeric peptide within the colonized region.
  • 5. The genetic construct according to claim 3, wherein the pharmaceutically acceptable dosage form is adapted for administration to a human or animal.
  • 6. The genetic construct according to claim 4, wherein the pharmaceutically acceptable dosage form comprises between about 105 to 1012 of the live genetically engineered host bacterium.
  • 7. The genetic construct according to claim 4, wherein the pharmaceutically acceptable dosage form is adapted for oral administration.
  • 8. The genetic construct according to claim 4, wherein the YebF sequence is fused to sunflower trypsin inhibitor.
  • 9. The genetic construct according to claim 1, wherein the chimeric peptide comprises the amino acid sequence of SEQ ID NO: 33.
  • 10. The genetic construct according to claim 1, wherein the chimeric peptide comprises the amino acid sequence of SEQ ID NO: 34.
  • 11. The genetic construct according to claim 1, wherein the chimeric peptide comprises further comprises a secretion signal.
  • 12. A live genetically engineered host bacterium comprising the genetic construct of claim 1, wherein the live genetically engineered host bacterium expresses and at least one of surface displays, secretes, and releases the chimeric peptide.
  • 13. The live genetically engineered host bacterium according to claim 12, wherein the live genetically engineered host bacterium is contained in a pharmaceutically acceptable dosage form.
  • 14. The live genetically engineered host bacterium according to claim 13, wherein the pharmaceutically acceptable dosage form is adapted for administration to a human or an animal to cause colonization of a region of the human or the animal and expression of the chimeric peptide within the colonized region.
  • 15. The live genetically engineered host bacterium according to claim 14, wherein the YebF sequence is fused to sunflower trypsin inhibitor.
  • 16. The live genetically engineered host bacterium according to claim 12, wherein the chimeric peptide comprises the amino acid sequence of SEQ ID NO: 33.
  • 17. The live genetically engineered host bacterium according to claim 12, wherein the chimeric peptide comprises the amino acid sequence of SEQ ID NO: 34.
  • 18. The live genetically engineered host bacterium according to claim 12, wherein the genetically engineered host bacterium surface displays the chimeric peptide.
  • 19. The live genetically engineered host bacterium according to claim 12, wherein the genetically engineered host bacterium secretes the chimeric peptide.
  • 20. The live genetically engineered host bacterium according to claim 12, wherein the genetically engineered host bacterium releases the chimeric peptide.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a non-provisional of, and claims benefit of priority from U.S. Provisional Patent Application Ser. No. 62/431,208, filed Dec. 7, 2016, the entirety of which is expressly incorporated herein by reference.

US Referenced Citations (2376)
Number Name Date Kind
4436727 Ribi Mar 1984 A
4703008 Lin Oct 1987 A
4906567 Connelly Mar 1990 A
5021234 Ehrenfeld Jun 1991 A
D320325 Barfield Oct 1991 S
5057417 Hammonds et al. Oct 1991 A
5087569 Gabay et al. Feb 1992 A
5098833 Lasky et al. Mar 1992 A
5116964 Capon et al. May 1992 A
5126257 Gabay et al. Jun 1992 A
5143830 Holland et al. Sep 1992 A
5202422 Hiatt et al. Apr 1993 A
5223409 Ladner et al. Jun 1993 A
5238839 Cantor et al. Aug 1993 A
5250515 Fuchs et al. Oct 1993 A
5278049 Baker et al. Jan 1994 A
5281530 Sick et al. Jan 1994 A
5290914 Wilcox et al. Mar 1994 A
5316933 Yoshimatsu et al. May 1994 A
5318900 Habuka et al. Jun 1994 A
5328985 Sano et al. Jul 1994 A
5338724 Gabay et al. Aug 1994 A
5344762 Karapetian Sep 1994 A
5354675 Iida et al. Oct 1994 A
5356795 Leonard et al. Oct 1994 A
5356804 Desnick et al. Oct 1994 A
5376567 McCormick et al. Dec 1994 A
5382524 Desnick et al. Jan 1995 A
5387676 Zavada et al. Feb 1995 A
5387744 Curtiss, III et al. Feb 1995 A
5389368 Gurtiss, III Feb 1995 A
5399490 Balganesh et al. Mar 1995 A
5403484 Ladner et al. Apr 1995 A
5424065 Curtiss, III et al. Jun 1995 A
5439808 Blake et al. Aug 1995 A
5455165 Capon et al. Oct 1995 A
5460961 Deby et al. Oct 1995 A
5466463 Ford Nov 1995 A
5466672 Kushnaryov et al. Nov 1995 A
5468485 Curtiss, III Nov 1995 A
5470719 Meng et al. Nov 1995 A
5491075 Desnick et al. Feb 1996 A
5492702 Domingues Feb 1996 A
5495001 McGrogan et al. Feb 1996 A
5506139 Loosmore et al. Apr 1996 A
5508192 Georgiou et al. Apr 1996 A
5514582 Capon et al. May 1996 A
5525502 Thireos et al. Jun 1996 A
5543312 Mellors et al. Aug 1996 A
5545553 Gotschlich Aug 1996 A
5569597 Grimsley et al. Oct 1996 A
5571544 Domingues Nov 1996 A
5571698 Ladner et al. Nov 1996 A
5583010 Baumbach et al. Dec 1996 A
5585232 Farr Dec 1996 A
5585269 Earp, III et al. Dec 1996 A
5589337 Farr Dec 1996 A
5591641 Thorner et al. Jan 1997 A
5593882 Erbe et al. Jan 1997 A
5602030 Ingrahm et al. Feb 1997 A
5604115 Sladek et al. Feb 1997 A
5604201 Thomas et al. Feb 1997 A
5624832 Fukuda et al. Apr 1997 A
5631150 Harkki et al. May 1997 A
5631156 Xiong et al. May 1997 A
5631228 Oppenheim et al. May 1997 A
5635484 Ayres et al. Jun 1997 A
5651965 Payne Jul 1997 A
5656436 Loosmore et al. Aug 1997 A
5665353 Loosmore et al. Sep 1997 A
5665357 Rose et al. Sep 1997 A
5683868 LaRossa et al. Nov 1997 A
5705151 Dow et al. Jan 1998 A
5712369 Old et al. Jan 1998 A
5726037 Bodary et al. Mar 1998 A
5731163 Vandyk et al. Mar 1998 A
5733760 Lu et al. Mar 1998 A
5747287 Blake et al. May 1998 A
5747326 Gerardy-Schahn et al. May 1998 A
5747659 Fioretti et al. May 1998 A
5767241 McEver Jun 1998 A
5770420 Lowe et al. Jun 1998 A
5776755 Alitalo et al. Jul 1998 A
5783431 Peterson et al. Jul 1998 A
5786179 Kousoulas et al. Jul 1998 A
5786186 Lancashire et al. Jul 1998 A
5824485 Thompson et al. Oct 1998 A
5824502 Honjo et al. Oct 1998 A
5824509 Aggarwal et al. Oct 1998 A
5824538 Branstrom et al. Oct 1998 A
5830702 Portnoy et al. Nov 1998 A
5837488 Garfinkel et al. Nov 1998 A
5837500 Ladner et al. Nov 1998 A
5843707 Larsen et al. Dec 1998 A
5849702 Garfinkel et al. Dec 1998 A
5863758 Oppermann et al. Jan 1999 A
5869302 Loosmore et al. Feb 1999 A
5877159 Powell et al. Mar 1999 A
5879686 Blake et al. Mar 1999 A
5902742 Petter et al. May 1999 A
5912141 Brojatsch et al. Jun 1999 A
5912230 Oppenheim et al. Jun 1999 A
5925521 Bandman et al. Jul 1999 A
5928892 Hourcade et al. Jul 1999 A
5935573 Loosmore et al. Aug 1999 A
5939297 Loosmore et al. Aug 1999 A
5945102 de Faire et al. Aug 1999 A
5945322 Gotschlich Aug 1999 A
5955347 Lowe Sep 1999 A
5958406 de Faire et al. Sep 1999 A
5962430 Loosmore et al. Oct 1999 A
5965382 Koths et al. Oct 1999 A
5965385 Read et al. Oct 1999 A
5965415 Radman et al. Oct 1999 A
5976852 Cheng et al. Nov 1999 A
5977304 Read et al. Nov 1999 A
5981503 Loosmore et al. Nov 1999 A
5989868 Harrison et al. Nov 1999 A
5993827 Sim et al. Nov 1999 A
5994625 Melchers et al. Nov 1999 A
5997881 Powell et al. Dec 1999 A
6004562 Campagnari Dec 1999 A
6005089 Lanza et al. Dec 1999 A
6017743 Tsuji et al. Jan 2000 A
6018022 Read et al. Jan 2000 A
6020183 Loosmore et al. Feb 2000 A
6022729 Steinbuchel et al. Feb 2000 A
6022855 Thomas et al. Feb 2000 A
6025183 Soreq et al. Feb 2000 A
6025342 Loosmore et al. Feb 2000 A
6030612 de Faire et al. Feb 2000 A
6030624 Russell et al. Feb 2000 A
6030780 Vinkemeier et al. Feb 2000 A
6033663 Ketcham et al. Mar 2000 A
6033890 Jakobovits et al. Mar 2000 A
6037123 Benton et al. Mar 2000 A
6037159 Uchimura et al. Mar 2000 A
6037526 Grimsley et al. Mar 2000 A
6040156 Kawasaki et al. Mar 2000 A
6051237 Paterson Apr 2000 A
6054309 Hirabayashi et al. Apr 2000 A
6054312 Larocca et al. Apr 2000 A
6069127 Koths et al. May 2000 A
6074840 Bonadio et al. Jun 2000 A
6080849 Bermudes et al. Jun 2000 A
6083688 Lanza et al. Jul 2000 A
6090567 Jakobovits et al. Jul 2000 A
6090582 Kikly et al. Jul 2000 A
6093539 Maddon et al. Jul 2000 A
6096529 Gilbert et al. Aug 2000 A
6110899 Lonetto Aug 2000 A
6111089 Fukuda Aug 2000 A
6114125 Loosmore et al. Sep 2000 A
6117651 Schultz et al. Sep 2000 A
6117977 Lasky et al. Sep 2000 A
6124446 Hillman et al. Sep 2000 A
6143551 Goebel Nov 2000 A
6146845 Kikly et al. Nov 2000 A
6146849 Pierce et al. Nov 2000 A
6147057 Loosmore et al. Nov 2000 A
6150170 Powell et al. Nov 2000 A
6153580 Loosmore et al. Nov 2000 A
6166290 Rea et al. Dec 2000 A
6177083 Lubitz Jan 2001 B1
6187541 Benton et al. Feb 2001 B1
6190657 Pawelek et al. Feb 2001 B1
6200779 Lonetto Mar 2001 B1
6207156 Kuchroo et al. Mar 2001 B1
6207417 Zsebo et al. Mar 2001 B1
6207427 Hashimoto et al. Mar 2001 B1
6207648 Waxman et al. Mar 2001 B1
6218148 Zsebo et al. Apr 2001 B1
6228588 Benton et al. May 2001 B1
6232110 Pallas et al. May 2001 B1
6238914 Boyce May 2001 B1
6242210 Bjorck et al. Jun 2001 B1
6242211 Peterson et al. Jun 2001 B1
6245892 Oaks et al. Jun 2001 B1
6248329 Chandrashekar et al. Jun 2001 B1
6251406 Haefliger et al. Jun 2001 B1
6261800 Nikolics et al. Jul 2001 B1
6268193 Lowe Jul 2001 B1
6271011 Lee et al. Aug 2001 B1
6271368 Lentzen et al. Aug 2001 B1
6274339 Moore et al. Aug 2001 B1
6277379 Oaks et al. Aug 2001 B1
6277574 Walker et al. Aug 2001 B1
6280989 Kapitonov et al. Aug 2001 B1
6284493 Roth Sep 2001 B1
6302685 Lobel et al. Oct 2001 B1
6303571 Lonetto Oct 2001 B1
6310046 Duffy et al. Oct 2001 B1
6312907 Guo et al. Nov 2001 B1
6316609 Dillon et al. Nov 2001 B1
6329002 Kim et al. Dec 2001 B1
6331413 Adler et al. Dec 2001 B1
6333182 Coleman et al. Dec 2001 B1
6338953 Boyce et al. Jan 2002 B1
6338955 Oguri et al. Jan 2002 B2
6342382 Gotschlich Jan 2002 B1
6348344 Ayal-Hershkovitz et al. Feb 2002 B1
6355790 Rosenblatt et al. Mar 2002 B1
6358724 Wong-Madden et al. Mar 2002 B1
6365381 Hashimoto et al. Apr 2002 B2
6375947 Bolen et al. Apr 2002 B1
6376234 Grimsley et al. Apr 2002 B1
6379913 Bandman et al. Apr 2002 B1
6383496 Curtiss, III et al. May 2002 B1
6387648 Levi et al. May 2002 B1
6387702 Stemmer May 2002 B1
6399326 Chiang et al. Jun 2002 B1
6399336 Paulson et al. Jun 2002 B1
6410012 Sizemore et al. Jun 2002 B1
6416988 Conklin et al. Jul 2002 B1
6420135 Kunsch et al. Jul 2002 B1
6420149 Fukuda et al. Jul 2002 B1
6420527 Bolen et al. Jul 2002 B1
6423525 Landry Jul 2002 B1
6428999 Ito et al. Aug 2002 B1
6436687 Yu et al. Aug 2002 B1
6447777 Terman et al. Sep 2002 B1
6447784 Bermudes et al. Sep 2002 B1
6455288 Jakobovits et al. Sep 2002 B1
6458573 Landry Oct 2002 B1
6472518 Ribot et al. Oct 2002 B1
6475482 Bermudes et al. Nov 2002 B1
6475763 Ayal-Hershkovitz et al. Nov 2002 B1
6482647 Stemmer Nov 2002 B1
6492152 Canfield et al. Dec 2002 B1
6500419 Hone et al. Dec 2002 B1
6503744 Gilbert et al. Jan 2003 B1
6506550 Fulton et al. Jan 2003 B1
6514724 McMahon et al. Feb 2003 B1
6521439 Folkman et al. Feb 2003 B2
6524792 Renner et al. Feb 2003 B1
6524820 Pierce et al. Feb 2003 B1
6531306 Hockensmith et al. Mar 2003 B1
6534311 Stewart et al. Mar 2003 B2
6537558 Kaniga Mar 2003 B2
6548287 Powell et al. Apr 2003 B1
6551795 Rubenfield et al. Apr 2003 B1
6555343 DeSauvage et al. Apr 2003 B1
6558953 Gonsalves et al. May 2003 B1
6570000 Maddon et al. May 2003 B1
6573082 Choi et al. Jun 2003 B1
6582948 Bolen et al. Jun 2003 B1
6582950 Smith et al. Jun 2003 B1
6585975 Kleanthous et al. Jul 2003 B1
6605286 Steidler et al. Aug 2003 B2
6605592 Ni et al. Aug 2003 B2
6605697 Kwon et al. Aug 2003 B1
6607897 Vogel et al. Aug 2003 B2
6630303 Benton et al. Oct 2003 B1
6632935 Shigenobu et al. Oct 2003 B2
6635246 Barrett et al. Oct 2003 B1
6635468 Ashkenazi et al. Oct 2003 B2
6638718 Benton et al. Oct 2003 B1
6638912 Bhatnagar et al. Oct 2003 B2
6642041 Chen et al. Nov 2003 B2
6646113 Dreyfuss et al. Nov 2003 B1
6673915 Luster et al. Jan 2004 B1
6680187 Moeckel et al. Jan 2004 B2
6680374 Oaks et al. Jan 2004 B2
6682729 Powell et al. Jan 2004 B1
6682910 Powell Jan 2004 B2
6685935 Pawelek et al. Feb 2004 B1
6689586 Moeckel et al. Feb 2004 B2
6689604 Gilbert et al. Feb 2004 B1
6693183 Natsuka et al. Feb 2004 B2
6696411 MacLeod Feb 2004 B1
6699705 Gilbert et al. Mar 2004 B2
6703223 Bathe et al. Mar 2004 B2
6703233 Galen Mar 2004 B1
6709656 Boren et al. Mar 2004 B1
6709830 Witte et al. Mar 2004 B2
6709834 Gilbert et al. Mar 2004 B2
6713277 Moore et al. Mar 2004 B1
6716582 Gonye et al. Apr 2004 B2
6720410 Cerny et al. Apr 2004 B2
6723540 Harkki et al. Apr 2004 B1
6727086 Bathe et al. Apr 2004 B2
6734002 Bathe et al. May 2004 B2
6743893 Engler et al. Jun 2004 B2
6746671 Steidler et al. Jun 2004 B2
6746854 Bathe et al. Jun 2004 B2
6753164 Ni et al. Jun 2004 B2
6759215 Zsebo et al. Jul 2004 B1
6759224 Wick et al. Jul 2004 B2
6759230 Bulla, Jr. et al. Jul 2004 B1
6770466 Shi et al. Aug 2004 B2
6770632 Aghi et al. Aug 2004 B1
6777206 Wick et al. Aug 2004 B2
6780405 Curtiss, III et al. Aug 2004 B1
6780624 Gotschlich Aug 2004 B2
6783966 Kojima et al. Aug 2004 B1
6783967 Moeckel et al. Aug 2004 B2
6783971 Coleman et al. Aug 2004 B2
6784164 Masure et al. Aug 2004 B2
6787643 Dillon et al. Sep 2004 B2
6797509 Dunican et al. Sep 2004 B1
6803192 Chen Oct 2004 B1
6812006 Moeckel et al. Nov 2004 B2
6818449 Fong et al. Nov 2004 B2
6822071 Stephens et al. Nov 2004 B1
6822085 Farwick et al. Nov 2004 B2
6825019 Gilbert et al. Nov 2004 B2
6825029 Dunican et al. Nov 2004 B2
6825030 Mockel et al. Nov 2004 B2
6828121 Chen Dec 2004 B2
6828146 Desnoyers et al. Dec 2004 B2
6828419 Adler et al. Dec 2004 B2
6831060 DeSauvage et al. Dec 2004 B2
6833130 Paton et al. Dec 2004 B1
6833253 Choi Dec 2004 B2
6833255 Stewart et al. Dec 2004 B1
6838267 Moeckel et al. Jan 2005 B2
6841535 Divita et al. Jan 2005 B2
6841718 Alberte et al. Jan 2005 B2
6844176 Bathe et al. Jan 2005 B1
6844178 Bolen et al. Jan 2005 B2
6846667 Crooke et al. Jan 2005 B1
6858407 Feder et al. Feb 2005 B2
6858415 Coleman et al. Feb 2005 B2
6861231 Shao Mar 2005 B2
6863894 Bermudes et al. Mar 2005 B2
6872526 Short et al. Mar 2005 B2
6875586 Moeckel et al. Apr 2005 B2
6887663 Choi et al. May 2005 B1
6890744 Bathe et al. May 2005 B2
6902916 Moeckel et al. Jun 2005 B2
6902932 Altman et al. Jun 2005 B2
6905867 Gilbert et al. Jun 2005 B2
6911337 Gilbert et al. Jun 2005 B2
6913906 Bolen et al. Jul 2005 B2
6913908 Mockel et al. Jul 2005 B2
6913919 Botstein et al. Jul 2005 B2
6916636 Marx et al. Jul 2005 B2
6916648 Goddard et al. Jul 2005 B2
6916918 Yu et al. Jul 2005 B2
6921651 Farwick et al. Jul 2005 B2
6921659 Joly Jul 2005 B2
6923972 Bermudes et al. Aug 2005 B2
6924134 Wick et al. Aug 2005 B2
6927052 Bathe et al. Aug 2005 B2
6929930 Choi et al. Aug 2005 B2
6936448 Holmes et al. Aug 2005 B2
6939692 Bathe et al. Sep 2005 B2
6939694 Mockel et al. Sep 2005 B2
6939695 Moeckel et al. Sep 2005 B2
6943001 Zhao et al. Sep 2005 B2
6943241 Isogai et al. Sep 2005 B2
6946262 Ferrara et al. Sep 2005 B2
6946271 Farwick et al. Sep 2005 B2
6949372 Betenbaugh et al. Sep 2005 B2
6951737 Desnoyers et al. Oct 2005 B2
6951738 Ni et al. Oct 2005 B2
6955953 Yamazaki et al. Oct 2005 B2
6962696 Bermudes et al. Nov 2005 B1
6962800 Kiy et al. Nov 2005 B2
6972185 Desnoyers et al. Dec 2005 B2
6972186 Desnoyers et al. Dec 2005 B2
6974689 Ashkenazi et al. Dec 2005 B1
6974696 Botstein et al. Dec 2005 B2
6974893 Shanklin et al. Dec 2005 B2
6979538 Ladner et al. Dec 2005 B2
6979556 Simmons et al. Dec 2005 B2
6979733 Zhao et al. Dec 2005 B2
6987176 Guerry et al. Jan 2006 B1
6995000 Bathe et al. Feb 2006 B2
6995002 Molenaar et al. Feb 2006 B2
7001884 Komiyama et al. Feb 2006 B2
7015027 Redshaw Mar 2006 B1
7018811 Botstein et al. Mar 2006 B2
7019124 Desnoyers et al. Mar 2006 B2
7022498 Desnoyers et al. Apr 2006 B2
7026158 Farwick et al. Apr 2006 B2
7026449 Baker et al. Apr 2006 B2
7029875 Desnoyers et al. Apr 2006 B2
7029904 Farwick et al. Apr 2006 B2
7033785 Desnoyers et al. Apr 2006 B2
7033786 Baker et al. Apr 2006 B2
7033825 Goddard et al. Apr 2006 B2
7033991 Lindberg et al. Apr 2006 B2
7034136 Goddard et al. Apr 2006 B2
7037679 Desnoyers et al. May 2006 B2
7037689 Bathe et al. May 2006 B2
7037710 Goddard et al. May 2006 B2
7038034 Farwick et al. May 2006 B2
7041441 Steven et al. May 2006 B1
7041814 Weinstock et al. May 2006 B1
7045122 Nuijten et al. May 2006 B2
7049096 Feder et al. May 2006 B2
7049106 Farwick et al. May 2006 B2
7052889 Jenuwein et al. May 2006 B2
7056510 Choi et al. Jun 2006 B1
7056700 Galen Jun 2006 B2
7056721 Dunn-Coleman et al. Jun 2006 B2
7056736 Ashkenazi et al. Jun 2006 B2
7056737 Feder et al. Jun 2006 B2
7060475 Usuda et al. Jun 2006 B2
7060479 Edwards et al. Jun 2006 B2
7060812 Desnoyers et al. Jun 2006 B2
7067288 Molenaar et al. Jun 2006 B2
7067306 Singhvi et al. Jun 2006 B2
7070979 Botstein et al. Jul 2006 B2
7074589 Ullrich et al. Jul 2006 B1
7074592 Ashkenazi et al. Jul 2006 B2
7078185 Farnet et al. Jul 2006 B2
7078186 Ni et al. Jul 2006 B2
7078204 Yokoi et al. Jul 2006 B2
7078207 Gilbert et al. Jul 2006 B2
7078502 Moeckel et al. Jul 2006 B2
7083791 Sleeman et al. Aug 2006 B2
7083794 Curtiss, III et al. Aug 2006 B2
7083942 Bathe et al. Aug 2006 B2
7083946 Baker et al. Aug 2006 B2
7083978 Desnoyers et al. Aug 2006 B2
7084105 Chakrabarty et al. Aug 2006 B2
7087404 Desnoyers et al. Aug 2006 B2
7087738 Botstein et al. Aug 2006 B2
7091315 Ruben et al. Aug 2006 B1
7094563 Wong-Madden et al. Aug 2006 B2
7094567 Ashkenazi et al. Aug 2006 B2
7094572 Ramanathan et al. Aug 2006 B2
7101690 Moeckel et al. Sep 2006 B2
7105302 Bathe et al. Sep 2006 B2
7105321 Moeckel et al. Sep 2006 B2
7109033 Harper et al. Sep 2006 B2
7109315 Bryan et al. Sep 2006 B2
7115402 Feder et al. Oct 2006 B2
7118879 Ladner et al. Oct 2006 B2
7119193 Gottesman et al. Oct 2006 B2
7122185 Olson et al. Oct 2006 B2
7122358 Feder et al. Oct 2006 B2
7122367 Milcamps et al. Oct 2006 B2
7122375 Goddard et al. Oct 2006 B2
7125548 Smith Oct 2006 B2
7125718 Powell et al. Oct 2006 B2
7129066 Farwick et al. Oct 2006 B2
7129085 Feder et al. Oct 2006 B2
7132283 Fong et al. Nov 2006 B2
7135313 Bathe et al. Nov 2006 B2
7138252 Bachmann et al. Nov 2006 B2
7138258 Gilbert et al. Nov 2006 B2
7138259 Beavo et al. Nov 2006 B2
7141418 Kunsch et al. Nov 2006 B2
7144724 Wick et al. Dec 2006 B2
7153678 Jackson et al. Dec 2006 B2
7160703 Moeckel et al. Jan 2007 B2
7160711 Bathe et al. Jan 2007 B2
7163797 Ruben et al. Jan 2007 B2
7166702 McDonald et al. Jan 2007 B1
7169565 Ruben et al. Jan 2007 B2
7169912 Desnoyers et al. Jan 2007 B2
7173105 Moeckel et al. Feb 2007 B2
7183379 Feder et al. Feb 2007 B2
7186564 Chen et al. Mar 2007 B2
7189529 Ashkenazi et al. Mar 2007 B2
7189530 Botstein et al. Mar 2007 B2
7189539 Ramanathan et al. Mar 2007 B2
7189836 Gilbert et al. Mar 2007 B2
7192933 Boyce Mar 2007 B1
7195754 Glatkowski et al. Mar 2007 B1
7195757 Curtiss, III et al. Mar 2007 B2
7198912 Ramanathan et al. Apr 2007 B2
7202056 Lee et al. Apr 2007 B2
7202059 Habermann et al. Apr 2007 B2
7202061 Farwick et al. Apr 2007 B2
7202353 Gilbert et al. Apr 2007 B2
7205144 Mockel et al. Apr 2007 B2
7208293 Ladner et al. Apr 2007 B2
7208304 Gilbert et al. Apr 2007 B2
7208312 Desnoyers et al. Apr 2007 B1
7208313 McCart et al. Apr 2007 B2
7211657 Gilbert et al. May 2007 B2
7214526 Bathe et al. May 2007 B2
7214792 Bulla et al. May 2007 B2
7217548 Yoshida et al. May 2007 B2
7217549 Gilbert et al. May 2007 B2
7217809 Schultz et al. May 2007 B2
7220555 Paulson et al. May 2007 B2
7220848 Gilbert et al. May 2007 B2
7223557 Lee et al. May 2007 B2
7223586 Ferrara et al. May 2007 B2
7226761 Miasnikov et al. Jun 2007 B2
7226763 Bathe et al. Jun 2007 B2
7226791 Carman et al. Jun 2007 B2
7229791 Bathe et al. Jun 2007 B2
7229802 Bathe et al. Jun 2007 B2
7232672 Weiner et al. Jun 2007 B2
7235234 Branstrom et al. Jun 2007 B1
7238509 Gilbert et al. Jul 2007 B2
7244601 Gilbert et al. Jul 2007 B2
7244833 Yu et al. Jul 2007 B2
7247296 Redshaw Jul 2007 B2
7247717 Chen et al. Jul 2007 B2
7252977 Bathe et al. Aug 2007 B2
7256267 Chen et al. Aug 2007 B2
7258863 Oaks et al. Aug 2007 B2
7259296 Schmulling et al. Aug 2007 B2
7262039 Narimatsu et al. Aug 2007 B1
7262040 Schultz et al. Aug 2007 B2
7270815 Sasisekharan et al. Sep 2007 B2
7270984 Pompejus et al. Sep 2007 B1
7271243 Edwards et al. Sep 2007 B2
7273706 Feder et al. Sep 2007 B2
7276354 Feder et al. Oct 2007 B2
7279310 Narimatsu et al. Oct 2007 B2
7291491 Fukuda et al. Nov 2007 B2
7297340 Apicella Nov 2007 B2
7303905 Breves et al. Dec 2007 B2
7306932 Bathe et al. Dec 2007 B2
7307159 DeAngelis Dec 2007 B2
7309600 Apicella et al. Dec 2007 B2
7318927 Perez et al. Jan 2008 B2
7318928 Wu et al. Jan 2008 B2
7320887 Kottwitz et al. Jan 2008 B2
7326546 Matsuno et al. Feb 2008 B2
7326557 San et al. Feb 2008 B2
7332304 Deng et al. Feb 2008 B2
7332310 Nakagawa et al. Feb 2008 B2
7332316 Schmulling et al. Feb 2008 B2
7335361 Liao et al. Feb 2008 B2
7338790 Thierbach et al. Mar 2008 B2
7338799 Blakely et al. Mar 2008 B2
7344710 Dang et al. Mar 2008 B2
7344882 Lee et al. Mar 2008 B2
7345148 Feder et al. Mar 2008 B2
7348161 Gay et al. Mar 2008 B2
7351568 Dunn-Coleman et al. Apr 2008 B2
7354592 Bermudes et al. Apr 2008 B2
7358074 Jackson et al. Apr 2008 B2
7358084 Kolkman Apr 2008 B2
7364787 Ito et al. Apr 2008 B2
7365159 O'Reilly et al. Apr 2008 B2
7368108 DeFrees et al. May 2008 B2
7368284 Koike May 2008 B2
7371559 Boone et al. May 2008 B2
7371838 Gilbert et al. May 2008 B2
7378258 Doucette-Stamm et al. May 2008 B2
7378514 Doucette-Stamm et al. May 2008 B2
7381544 Gilbert et al. Jun 2008 B2
7390633 Liu et al. Jun 2008 B2
7390646 Andino-Pavlovsky et al. Jun 2008 B2
7393525 Powell et al. Jul 2008 B2
7393675 Pompejus et al. Jul 2008 B2
7396824 Sasisekharan et al. Jul 2008 B2
7404963 Sotomayor et al. Jul 2008 B2
7405081 Pan Jul 2008 B2
7405235 Levy et al. Jul 2008 B2
7407787 Barrangou et al. Aug 2008 B2
7410791 Singhvi et al. Aug 2008 B2
7413877 Collier et al. Aug 2008 B2
7414119 Greenberg et al. Aug 2008 B2
7416863 Moeckel et al. Aug 2008 B2
7420030 Arap et al. Sep 2008 B2
7429474 Sasisekharan et al. Sep 2008 B2
7432085 Hara et al. Oct 2008 B2
7435808 Wu et al. Oct 2008 B2
7442523 Doucette-Stamm et al. Oct 2008 B2
7452531 Bermudes et al. Nov 2008 B2
7459309 Dreyfuss et al. Dec 2008 B2
7462482 Malik et al. Dec 2008 B2
7470667 Luo et al. Dec 2008 B2
7485439 Folkman et al. Feb 2009 B2
7491529 Goddard et al. Feb 2009 B2
7494798 Berka et al. Feb 2009 B2
7494801 Yazaki et al. Feb 2009 B2
7504242 Dunican et al. Mar 2009 B2
7504247 Sasisekharan et al. Mar 2009 B2
7510859 Wieland et al. Mar 2009 B2
7514089 Bermudes et al. Apr 2009 B2
7514538 Goddard et al. Apr 2009 B2
7524657 Bathe et al. Apr 2009 B2
7544486 Ting et al. Jun 2009 B2
7563602 Thierbach et al. Jul 2009 B2
7569226 Weber et al. Aug 2009 B2
7569376 Bayer et al. Aug 2009 B2
7569384 Rosen et al. Aug 2009 B2
7569386 DeAngelis Aug 2009 B2
7569547 Lindberg et al. Aug 2009 B2
7572618 Mintier et al. Aug 2009 B2
7582445 Anan et al. Sep 2009 B2
7585650 Bathe et al. Sep 2009 B2
7588767 Szalay et al. Sep 2009 B2
7588771 Szalay et al. Sep 2009 B2
7595054 Liao et al. Sep 2009 B2
7598067 Beavo et al. Oct 2009 B2
7611712 Karp Nov 2009 B2
7611883 Cranenburgh Nov 2009 B2
7615223 Thorpe et al. Nov 2009 B2
7618798 Bathe et al. Nov 2009 B2
7622564 Ge et al. Nov 2009 B2
7626000 Doucette-Stamm et al. Dec 2009 B2
7629150 Narimatsu et al. Dec 2009 B2
7635598 Cook et al. Dec 2009 B2
7635682 Denmeade et al. Dec 2009 B2
7635765 Farnet et al. Dec 2009 B2
7638282 Bakaletz et al. Dec 2009 B2
7645577 Adderson et al. Jan 2010 B2
7655770 Cheikh et al. Feb 2010 B1
7655774 Mullins et al. Feb 2010 B2
7655781 Shemesh et al. Feb 2010 B2
7662398 Szalay et al. Feb 2010 B2
7666419 Olson et al. Feb 2010 B2
7666627 Gal et al. Feb 2010 B2
7667018 Jakobovits et al. Feb 2010 B2
7670835 Smith Mar 2010 B2
7687474 Matin et al. Mar 2010 B2
7691383 Chakrabarty et al. Apr 2010 B2
7691599 Rubin Apr 2010 B2
7693664 Takami et al. Apr 2010 B2
7695711 Myette et al. Apr 2010 B2
7696173 Collier et al. Apr 2010 B2
7700104 Hensel et al. Apr 2010 B2
7700313 Schischka et al. Apr 2010 B2
7700317 Ambrose et al. Apr 2010 B2
7700349 Romaine et al. Apr 2010 B2
7700830 Corbin et al. Apr 2010 B2
7705195 French et al. Apr 2010 B2
7718180 Karp May 2010 B2
7718618 Gallo et al. May 2010 B2
7722867 Umana et al. May 2010 B2
7723472 Szoka et al. May 2010 B2
7727741 Umana et al. Jun 2010 B2
7734420 Palsson et al. Jun 2010 B2
7736898 Fulton et al. Jun 2010 B1
7740835 Fujimori et al. Jun 2010 B2
7741091 DeAngelis et al. Jun 2010 B2
7749518 Masignani et al. Jul 2010 B2
7749746 Raitano et al. Jul 2010 B2
7754221 Szalay et al. Jul 2010 B2
7754446 Bathe et al. Jul 2010 B2
7758855 Kopecko et al. Jul 2010 B2
7763250 Rosenthal et al. Jul 2010 B2
7763420 Stritzker et al. Jul 2010 B2
7771981 DeAngelis Aug 2010 B2
7776323 Smith Aug 2010 B2
7776823 Gallo et al. Aug 2010 B2
7785779 Kroger et al. Aug 2010 B2
7785840 Bathe et al. Aug 2010 B2
7785861 Devroe et al. Aug 2010 B2
7786288 Karp Aug 2010 B2
7790177 Karp Sep 2010 B2
7790860 Thorpe et al. Sep 2010 B2
7803531 Fulton et al. Sep 2010 B2
7803604 Breves et al. Sep 2010 B2
7803918 van der Hoek Sep 2010 B2
7803923 Han et al. Sep 2010 B2
7807434 Dunn-Coleman et al. Oct 2010 B2
7807441 Steinaa et al. Oct 2010 B2
7811799 Dunn-Coleman et al. Oct 2010 B2
7816086 Bakaletz et al. Oct 2010 B2
7820184 Stritzker et al. Oct 2010 B2
7824894 Barrangou et al. Nov 2010 B2
7824895 Short et al. Nov 2010 B2
7834164 Sullivan et al. Nov 2010 B2
7834166 Doucette-Stamm et al. Nov 2010 B2
7842290 Holden Nov 2010 B2
7842492 Myette et al. Nov 2010 B2
7846678 Pepe et al. Dec 2010 B2
7846706 Mintier et al. Dec 2010 B2
7847079 Rosen et al. Dec 2010 B2
7850970 Shapiro Dec 2010 B2
7863032 Berka et al. Jan 2011 B2
7867484 Samulski et al. Jan 2011 B2
7867732 Hori et al. Jan 2011 B2
7869957 Palsson et al. Jan 2011 B2
7887794 Luquet et al. Feb 2011 B2
7887816 Feldman et al. Feb 2011 B2
7888321 Cooper et al. Feb 2011 B2
7892803 Tanner et al. Feb 2011 B2
7892825 Barr et al. Feb 2011 B2
7893007 Ladner et al. Feb 2011 B2
7893230 Doucette-Stamm et al. Feb 2011 B2
7893231 Bathe et al. Feb 2011 B2
7893238 Doucette-Stamm et al. Feb 2011 B2
7901913 Dunican et al. Mar 2011 B2
7910715 Bathe et al. Mar 2011 B2
7915218 Capecchi et al. Mar 2011 B2
7915394 Schischka et al. Mar 2011 B2
7923221 Cabilly et al. Apr 2011 B1
7939319 Polack et al. May 2011 B2
7943754 Bentwich et al. May 2011 B2
7947822 Nabel et al. May 2011 B2
7951557 Shaaltiel et al. May 2011 B2
7951560 Myette et al. May 2011 B2
7955600 Hensel et al. Jun 2011 B2
7964362 Lee et al. Jun 2011 B2
7968684 Ghayur et al. Jun 2011 B2
7968699 Haefner et al. Jun 2011 B2
7977080 Gramatikova et al. Jul 2011 B2
7977084 Sun et al. Jul 2011 B2
7981659 Kadoya et al. Jul 2011 B2
7989202 Mach et al. Aug 2011 B1
7993905 Singhvi et al. Aug 2011 B2
7998461 Forbes et al. Aug 2011 B2
8008047 Iyo et al. Aug 2011 B2
8008283 Hochman et al. Aug 2011 B2
8012733 Dijk et al. Sep 2011 B2
8021662 Szalay et al. Sep 2011 B2
8021859 Steward et al. Sep 2011 B2
8026386 Burk et al. Sep 2011 B2
8029789 Jung et al. Oct 2011 B2
8030023 Adams et al. Oct 2011 B2
8030447 Motin et al. Oct 2011 B2
8030542 Corbin et al. Oct 2011 B2
8043839 Weiner et al. Oct 2011 B2
8044191 Kroger et al. Oct 2011 B2
8048646 Ting et al. Nov 2011 B2
8048651 Zelder et al. Nov 2011 B2
8062885 Mach et al. Nov 2011 B2
8066987 Moore et al. Nov 2011 B2
8067179 Georgiou et al. Nov 2011 B2
8067377 Arap et al. Nov 2011 B2
8067530 O'Keefe et al. Nov 2011 B2
8071365 Kroger et al. Dec 2011 B2
8080395 Bathe et al. Dec 2011 B2
8088620 Bestel-Corre et al. Jan 2012 B2
8093032 Kumar et al. Jan 2012 B2
8093037 Picataggio et al. Jan 2012 B2
8097436 Umana et al. Jan 2012 B2
8097440 Buelter et al. Jan 2012 B1
8101168 Hassan et al. Jan 2012 B2
8101349 Garcia et al. Jan 2012 B2
8101396 Sabbadini et al. Jan 2012 B2
8101826 Romano Jan 2012 B2
8105603 Kelley et al. Jan 2012 B2
8105804 Mintier et al. Jan 2012 B2
8114974 Picataggio et al. Feb 2012 B2
8119354 Katanaev Feb 2012 B2
8119372 Bathe et al. Feb 2012 B2
8119377 Yi et al. Feb 2012 B2
8124098 Masignani et al. Feb 2012 B2
8124381 Deng et al. Feb 2012 B2
8124729 Feder et al. Feb 2012 B2
8128922 Wu et al. Mar 2012 B2
8128940 Steward et al. Mar 2012 B2
8129166 Sabbadini et al. Mar 2012 B2
8133493 Curtiss, III Mar 2012 B2
8137904 Szalay et al. Mar 2012 B2
8137928 Schwartz et al. Mar 2012 B2
8153404 Bathe et al. Apr 2012 B2
8153414 Caplan et al. Apr 2012 B2
8163532 Zelder et al. Apr 2012 B2
8168417 Berka et al. May 2012 B2
8173397 Gal et al. May 2012 B2
8178319 Pahlsson et al. May 2012 B2
8178339 Campbell et al. May 2012 B2
8183354 DeVico et al. May 2012 B2
8198045 DeFrees et al. Jun 2012 B2
8198430 Prior et al. Jun 2012 B2
8202706 Bathe et al. Jun 2012 B2
8206700 Horwitz et al. Jun 2012 B2
8221769 Szalay et al. Jul 2012 B2
8227217 Liu et al. Jul 2012 B2
8227230 Shaaltiel et al. Jul 2012 B2
8227236 Picataggio et al. Jul 2012 B2
8231878 Colonna et al. Jul 2012 B2
8236315 Lazarides et al. Aug 2012 B2
8236494 Bakaletz et al. Aug 2012 B2
8236531 Asahara et al. Aug 2012 B2
8241623 Bermudes Aug 2012 B1
8244484 Lee et al. Aug 2012 B2
8246945 Caplan et al. Aug 2012 B2
8247225 Kopecko et al. Aug 2012 B2
8252579 Meynial-Salles et al. Aug 2012 B2
8257949 Wakarchuk et al. Sep 2012 B2
8278065 Nicolaides et al. Oct 2012 B2
8282919 Eisenstark et al. Oct 2012 B2
8283114 Bakaletz et al. Oct 2012 B2
8283152 Kim et al. Oct 2012 B2
8283319 Schulte et al. Oct 2012 B2
8293514 Bathe et al. Oct 2012 B2
8298791 Matsuno et al. Oct 2012 B2
8298807 Soucaille et al. Oct 2012 B2
8323959 Szalay et al. Dec 2012 B2
8323961 Nabel et al. Dec 2012 B2
8324362 Chen et al. Dec 2012 B2
8329886 Bardroff et al. Dec 2012 B2
8343509 Stritzker et al. Jan 2013 B2
8343752 Picataggio et al. Jan 2013 B2
8349570 Pepe et al. Jan 2013 B2
8354264 Mintier et al. Jan 2013 B2
8357486 Stritzker et al. Jan 2013 B2
8367621 Ruoslahti et al. Feb 2013 B2
8372601 Metcalf et al. Feb 2013 B2
8372620 Sibbesen et al. Feb 2013 B2
8372625 Walsh et al. Feb 2013 B2
8383388 Oyhenart et al. Feb 2013 B2
8394607 Ebens, Jr. et al. Mar 2013 B2
8394610 Gulevich et al. Mar 2013 B2
8409563 Asahara et al. Apr 2013 B2
8409825 Chiba et al. Apr 2013 B2
8415118 Huang et al. Apr 2013 B2
8420350 Nakamura et al. Apr 2013 B2
8426187 Georgiou et al. Apr 2013 B2
8426571 Raitano et al. Apr 2013 B2
8431373 Yi et al. Apr 2013 B2
8435506 Hassan et al. May 2013 B2
8436031 Kim May 2013 B2
8440207 Bermudes May 2013 B2
8445227 Bobrowicz et al. May 2013 B2
8445241 Dunican et al. May 2013 B2
8445254 Curtiss, III et al. May 2013 B2
8445650 Simpson et al. May 2013 B2
8449876 Shaaltiel et al. May 2013 B2
8455683 Burk et al. Jun 2013 B2
8465755 Curtiss, III et al. Jun 2013 B2
8475807 Perez Jul 2013 B2
8501190 Prescott et al. Aug 2013 B2
8506947 McCart et al. Aug 2013 B2
8507227 Samain Aug 2013 B2
8507235 Chotani et al. Aug 2013 B2
8507249 Finlay et al. Aug 2013 B2
8507250 Liu et al. Aug 2013 B2
8513396 Boone et al. Aug 2013 B2
8513493 Baum et al. Aug 2013 B2
8518417 Steward et al. Aug 2013 B1
8524220 Bermudes Sep 2013 B1
8524484 Sabbadini et al. Sep 2013 B2
8535909 Woldike et al. Sep 2013 B2
8540992 Naso et al. Sep 2013 B2
8541201 Min et al. Sep 2013 B2
8551471 Filutowicz et al. Oct 2013 B2
8568707 Szalay et al. Oct 2013 B2
8569016 Obayashi et al. Oct 2013 B2
8575316 Hiruma et al. Nov 2013 B2
8586022 Szalay et al. Nov 2013 B2
8586332 Samain et al. Nov 2013 B2
8591862 Brahmbhatt et al. Nov 2013 B2
8592187 Bathe et al. Nov 2013 B2
8603824 Ramseier et al. Dec 2013 B2
8604004 Kahne et al. Dec 2013 B2
8604178 Bottje et al. Dec 2013 B2
8606553 Palsson Dec 2013 B2
8609358 Sebastian et al. Dec 2013 B2
8623350 Bermudes Jan 2014 B1
8623622 Srienc et al. Jan 2014 B2
8623999 Steward et al. Jan 2014 B2
8628782 Berkower Jan 2014 B2
8628917 Bakaletz et al. Jan 2014 B2
8632995 Sun et al. Jan 2014 B2
8633305 Shapiro Jan 2014 B2
8635031 Palsson Jan 2014 B2
8637295 Claes et al. Jan 2014 B1
8642257 Szalay et al. Feb 2014 B2
8642292 Sandig et al. Feb 2014 B2
8647642 Bermudes Feb 2014 B2
8652773 Bakaletz et al. Feb 2014 B2
8652808 Jennewein et al. Feb 2014 B2
8652838 Shen et al. Feb 2014 B2
8663634 Koenig et al. Mar 2014 B2
8663962 Zhang et al. Mar 2014 B2
8673601 Burgard et al. Mar 2014 B2
8674062 Dunn-Coleman et al. Mar 2014 B2
8674083 Presta Mar 2014 B2
8680236 Luft et al. Mar 2014 B2
8685392 Helmerhorst et al. Apr 2014 B2
8685718 Wisniewski et al. Apr 2014 B2
8685939 Wei et al. Apr 2014 B2
8686218 Romaine et al. Apr 2014 B2
8697398 Doherty et al. Apr 2014 B2
8697414 Steward et al. Apr 2014 B2
8703153 Telfer et al. Apr 2014 B2
8703471 Aebi et al. Apr 2014 B2
8709813 Kopecko et al. Apr 2014 B2
8715641 Filutowicz et al. May 2014 B2
8716450 Ghayur et al. May 2014 B2
8722584 Delisa et al. May 2014 B2
8722618 Jacobs et al. May 2014 B2
8722668 Hochman May 2014 B2
8722855 Ghayur et al. May 2014 B2
8722869 Fang et al. May 2014 B2
8728795 Kroger et al. May 2014 B2
8728798 Picataggio et al. May 2014 B2
8734779 Hamaji et al. May 2014 B2
8734814 Datta et al. May 2014 B2
8735159 Zelder et al. May 2014 B2
8735546 Ghayur et al. May 2014 B2
8741313 Sable et al. Jun 2014 B2
8741608 Claes et al. Jun 2014 B2
8741620 Shaaltiel et al. Jun 2014 B2
8741623 Zelder et al. Jun 2014 B2
8748373 Chai et al. Jun 2014 B2
8753604 Ruoslahti et al. Jun 2014 B2
8758741 Takagi et al. Jun 2014 B2
8758764 Masignani et al. Jun 2014 B2
8758771 Finlay et al. Jun 2014 B2
8759086 Mach et al. Jun 2014 B2
8759494 Bachmann et al. Jun 2014 B2
8765407 Iyo et al. Jul 2014 B2
8771669 Bermudes Jul 2014 B1
8771671 Spencer et al. Jul 2014 B2
8771991 Gilbert et al. Jul 2014 B2
8778652 Subbian et al. Jul 2014 B2
8784836 Szalay et al. Jul 2014 B2
8790641 Shaaltiel et al. Jul 2014 B2
8791237 Paterson et al. Jul 2014 B2
8795730 Vachon Aug 2014 B2
8809027 Lynch et al. Aug 2014 B1
8815251 Caplan et al. Aug 2014 B2
8815558 Frost et al. Aug 2014 B2
RE45170 Smith Sep 2014 E
8821893 Dattwyler et al. Sep 2014 B2
8822194 Zhao et al. Sep 2014 B2
8822645 Ghayur et al. Sep 2014 B2
8822664 Cicortas Gunnarsson et al. Sep 2014 B2
8828681 Bell, III et al. Sep 2014 B2
8835107 Van Der Hoek Sep 2014 B2
8835162 Kwon et al. Sep 2014 B2
8846363 Myette et al. Sep 2014 B2
8852890 Cervin et al. Oct 2014 B2
8853154 Cload et al. Oct 2014 B2
8853362 Tissot et al. Oct 2014 B2
8865442 Chotani et al. Oct 2014 B2
8871491 Wacker et al. Oct 2014 B2
8883464 Lynch et al. Nov 2014 B2
8889121 Curtiss, III et al. Nov 2014 B2
8889383 Beck et al. Nov 2014 B2
8895277 Beatty et al. Nov 2014 B2
8906653 Volkert et al. Dec 2014 B2
8906662 Nataro et al. Dec 2014 B2
8907071 Sullivan et al. Dec 2014 B2
8912313 Reth et al. Dec 2014 B2
8920798 Han et al. Dec 2014 B2
8920809 Dirienzo Dec 2014 B2
8926993 Dubensky, Jr. et al. Jan 2015 B2
8932598 Song et al. Jan 2015 B2
8951759 Claes et al. Feb 2015 B2
8951992 Nathan et al. Feb 2015 B2
8956849 Bottje et al. Feb 2015 B2
8956859 Bermudes Feb 2015 B1
8961990 Hargis et al. Feb 2015 B2
8962275 Liang et al. Feb 2015 B2
8962816 Ertl et al. Feb 2015 B2
8969538 Rosen et al. Mar 2015 B2
8969542 Buyse et al. Mar 2015 B2
8975040 Naso et al. Mar 2015 B2
8975051 McAuliffe et al. Mar 2015 B2
8981061 Colonna et al. Mar 2015 B2
8993265 Cload et al. Mar 2015 B2
8993297 Ronin et al. Mar 2015 B2
8993305 Beck et al. Mar 2015 B2
8999949 Spencer et al. Apr 2015 B2
9005949 Oxvig et al. Apr 2015 B2
9012152 Engelberg-Kulka et al. Apr 2015 B2
9012186 Cann et al. Apr 2015 B2
9012226 Williams Apr 2015 B2
9017966 Williams et al. Apr 2015 B2
9017986 Sabbadini et al. Apr 2015 B2
9023635 Bayer et al. May 2015 B2
9029104 Samsonova et al. May 2015 B2
9029136 Heidtman et al. May 2015 B2
9029508 Ghayur et al. May 2015 B2
9034642 Bakaletz et al. May 2015 B2
9037445 Oltvai et al. May 2015 B2
9040059 Curtiss, III et al. May 2015 B2
9045742 Curtiss, III et al. Jun 2015 B2
9045745 Subbian et al. Jun 2015 B2
9045762 Reth et al. Jun 2015 B2
9050285 Curtiss, III et al. Jun 2015 B2
9051565 Delisa et al. Jun 2015 B2
9051588 Soucaille et al. Jun 2015 B2
9062297 Curtiss, III et al. Jun 2015 B2
9068187 Bermudes Jun 2015 B1
9074229 Reth et al. Jul 2015 B2
9085765 Campbell et al. Jul 2015 B2
9090889 Nunn, Jr. et al. Jul 2015 B2
9102729 Masignani et al. Aug 2015 B2
9102958 Botes et al. Aug 2015 B2
9102960 Botes et al. Aug 2015 B2
9109229 Ramseier et al. Aug 2015 B2
9121038 Beck et al. Sep 2015 B2
9125854 Bottje et al. Sep 2015 B2
9125855 Pasmans et al. Sep 2015 B2
9150827 Wendisch et al. Oct 2015 B2
9150868 Tokuda et al. Oct 2015 B2
9150885 Shibamoto Oct 2015 B2
9161974 Dubensky et al. Oct 2015 B2
9163219 Curtiss, III et al. Oct 2015 B2
9163263 Beck et al. Oct 2015 B2
9169468 Zhang et al. Oct 2015 B2
9169502 Wittmann et al. Oct 2015 B2
9187523 Motin et al. Nov 2015 B2
9187762 Albert et al. Nov 2015 B2
9198960 Dubensky, Jr. et al. Dec 2015 B2
9200251 Bermudes Dec 2015 B1
9200289 Bermudes Dec 2015 B1
9206456 Lenormand Dec 2015 B2
9226957 Bottje et al. Jan 2016 B2
9248177 Tang et al. Feb 2016 B2
9249430 Marliere Feb 2016 B2
9260729 Sun et al. Feb 2016 B2
9267156 Amano et al. Feb 2016 B2
9297015 Curtiss, III et al. Mar 2016 B2
9303264 Curtiss et al. Apr 2016 B2
9315817 Bermudes Apr 2016 B2
9315831 Blake et al. Apr 2016 B2
9328148 Joens et al. May 2016 B2
9334313 Masignani et al. May 2016 B2
9334508 Pearlman et al. May 2016 B2
9340793 Muramatsu et al. May 2016 B2
9365625 Bermudes Jun 2016 B1
9365874 Burk et al. Jun 2016 B2
9388417 Lee et al. Jul 2016 B2
9388419 Lynch et al. Jul 2016 B2
9388431 McAuliffe et al. Jul 2016 B2
9399058 Prescott et al. Jul 2016 B2
9421252 Bermudes Aug 2016 B2
9422578 Pearlman et al. Aug 2016 B2
9422580 Pearlman et al. Aug 2016 B2
9428778 Lynch et al. Aug 2016 B2
9434966 Picataggio et al. Sep 2016 B2
9441251 Lee et al. Sep 2016 B2
9449144 Oltvai et al. Sep 2016 B2
9452205 Pascual et al. Sep 2016 B2
9486513 Bermudes Nov 2016 B1
9593339 Bermudes Mar 2017 B1
9597379 Bermudes Mar 2017 B1
9616114 Bermudes Apr 2017 B1
9657085 Bermudes May 2017 B1
9737592 Bermudes et al. Aug 2017 B1
9739773 Bermudes Aug 2017 B1
9758551 Wu et al. Sep 2017 B2
9878023 Bermudes Jan 2018 B1
20010006642 Steidler et al. Jul 2001 A1
20010009957 Oaks et al. Jul 2001 A1
20010029024 Kodadek Oct 2001 A1
20010029043 Haefliger et al. Oct 2001 A1
20010041333 Short et al. Nov 2001 A1
20010046498 Ruoslahti et al. Nov 2001 A1
20020006645 Hashimoto et al. Jan 2002 A1
20020012939 Palsson Jan 2002 A1
20020015940 Rao et al. Feb 2002 A1
20020016982 Peter et al. Feb 2002 A1
20020026655 Bermudes et al. Feb 2002 A1
20020031809 Moeckel et al. Mar 2002 A1
20020031810 Moeckel et al. Mar 2002 A1
20020032323 Kunsch et al. Mar 2002 A1
20020037568 Molenaar et al. Mar 2002 A1
20020039766 Bathe et al. Apr 2002 A1
20020042105 Bathe et al. Apr 2002 A1
20020042382 Duffy et al. Apr 2002 A1
20020045224 Mockel et al. Apr 2002 A1
20020048795 Farwick et al. Apr 2002 A1
20020051993 Farwick et al. May 2002 A1
20020052486 Bathe et al. May 2002 A1
20020055114 Bathe et al. May 2002 A1
20020055115 Farwick et al. May 2002 A1
20020055152 Farwick et al. May 2002 A1
20020058277 Bathe et al. May 2002 A1
20020061545 Choi et al. May 2002 A1
20020064839 Marx et al. May 2002 A1
20020068336 Moeckel et al. Jun 2002 A1
20020072104 Landry Jun 2002 A1
20020081672 Mockel et al. Jun 2002 A1
20020081674 Moeckel et al. Jun 2002 A1
20020086372 Mockel et al. Jul 2002 A1
20020086373 Farwick et al. Jul 2002 A1
20020086374 Farwick et al. Jul 2002 A1
20020086404 Moeckel et al. Jul 2002 A1
20020090685 Bathe et al. Jul 2002 A1
20020098554 Wick et al. Jul 2002 A1
20020102242 Briles et al. Aug 2002 A1
20020102663 Farwick et al. Aug 2002 A1
20020102668 Farwick et al. Aug 2002 A1
20020102669 Farwick et al. Aug 2002 A1
20020103338 Choi Aug 2002 A1
20020103356 Mockel et al. Aug 2002 A1
20020103357 Bathe et al. Aug 2002 A1
20020106380 Hung et al. Aug 2002 A1
20020106672 Farwick et al. Aug 2002 A1
20020106749 Farwick et al. Aug 2002 A1
20020106750 Farwick et al. Aug 2002 A1
20020106751 Farwick et al. Aug 2002 A1
20020106755 Bathe et al. Aug 2002 A1
20020106756 Bathe et al. Aug 2002 A1
20020106757 Farwick et al. Aug 2002 A1
20020106758 Farwick et al. Aug 2002 A1
20020106759 Farwick et al. Aug 2002 A1
20020106760 Bathe et al. Aug 2002 A1
20020107374 Pallas et al. Aug 2002 A1
20020107377 Farwick et al. Aug 2002 A1
20020107379 Marx et al. Aug 2002 A1
20020110879 Bathe et al. Aug 2002 A1
20020111468 Bathe et al. Aug 2002 A1
20020115159 Farwick et al. Aug 2002 A1
20020115160 Farwick et al. Aug 2002 A1
20020115161 Farwick et al. Aug 2002 A1
20020115162 Farwick et al. Aug 2002 A1
20020119537 Moeckel et al. Aug 2002 A1
20020119549 Moeckel et al. Aug 2002 A1
20020120116 Kunsch et al. Aug 2002 A1
20020123053 Luo et al. Sep 2002 A1
20020127661 Farwick et al. Sep 2002 A1
20020127687 Shigenobu et al. Sep 2002 A1
20020127702 Bernstein et al. Sep 2002 A1
20020132323 Moeckel et al. Sep 2002 A1
20020137065 Farwick et al. Sep 2002 A1
20020137073 Bathe et al. Sep 2002 A1
20020142404 Farwick et al. Oct 2002 A1
20020146430 Galen Oct 2002 A1
20020146782 Bathe et al. Oct 2002 A1
20020150881 Ladner et al. Oct 2002 A1
20020151001 Moeckel et al. Oct 2002 A1
20020151063 Lasham et al. Oct 2002 A1
20020151700 Farwick et al. Oct 2002 A1
20020155519 Lindner et al. Oct 2002 A1
20020155554 Bathe et al. Oct 2002 A1
20020155557 Moeckel et al. Oct 2002 A1
20020168732 Moeckel et al. Nov 2002 A1
20020176848 Sizemore et al. Nov 2002 A1
20020177551 Terman Nov 2002 A1
20020182689 Bathe et al. Dec 2002 A1
20020192674 Hermann et al. Dec 2002 A1
20020197276 Oaks et al. Dec 2002 A1
20020197605 Nakagawa et al. Dec 2002 A1
20030008839 van Rooij et al. Jan 2003 A1
20030009015 Ulrich et al. Jan 2003 A1
20030022835 Watson et al. Jan 2003 A1
20030031628 Zhao et al. Feb 2003 A1
20030031681 McCart et al. Feb 2003 A1
20030031683 Curtiss et al. Feb 2003 A1
20030036644 Ulrich Feb 2003 A1
20030044943 Farwick et al. Mar 2003 A1
20030045492 Tang et al. Mar 2003 A1
20030049648 Choi Mar 2003 A1
20030059400 Szalay Mar 2003 A1
20030059792 Palsson et al. Mar 2003 A1
20030059923 Feder et al. Mar 2003 A1
20030068328 Vladoianu et al. Apr 2003 A1
20030068611 Larossa et al. Apr 2003 A1
20030068791 Miasnikov et al. Apr 2003 A1
20030073217 Barr et al. Apr 2003 A1
20030077677 Short et al. Apr 2003 A1
20030082219 Warren et al. May 2003 A1
20030087827 Lindberg et al. May 2003 A1
20030092026 Rey et al. May 2003 A1
20030092066 Vinkemeier et al. May 2003 A1
20030092137 Farwick et al. May 2003 A1
20030092139 Wolf et al. May 2003 A1
20030092164 Gross et al. May 2003 A1
20030100054 Bathe et al. May 2003 A1
20030100071 Apicella et al. May 2003 A1
20030100080 Farwick et al. May 2003 A1
20030100099 Moeckel et al. May 2003 A1
20030100108 Altman et al. May 2003 A1
20030100488 Boyle May 2003 A1
20030103958 Short et al. Jun 2003 A1
20030106096 Barry Jun 2003 A1
20030109014 Burke et al. Jun 2003 A1
20030109026 Bermudes et al. Jun 2003 A1
20030113293 Bermudes et al. Jun 2003 A1
20030113343 Tuomanen et al. Jun 2003 A1
20030113717 Ladner et al. Jun 2003 A1
20030113879 Farwick et al. Jun 2003 A1
20030115630 Romano Jun 2003 A1
20030119154 Dunican et al. Jun 2003 A1
20030124561 Mach et al. Jul 2003 A1
20030125278 Tang et al. Jul 2003 A1
20030129193 Thorpe et al. Jul 2003 A1
20030131372 Copenhaver et al. Jul 2003 A1
20030131376 Okubara et al. Jul 2003 A1
20030138917 Dunican et al. Jul 2003 A1
20030143558 Mitchell et al. Jul 2003 A1
20030143676 Strachan et al. Jul 2003 A1
20030144490 Edwards et al. Jul 2003 A1
20030153527 Powell et al. Aug 2003 A1
20030157113 Terman Aug 2003 A1
20030157551 Bathe et al. Aug 2003 A1
20030157666 Farwick et al. Aug 2003 A1
20030165875 Colonna et al. Sep 2003 A1
20030166140 Chen et al. Sep 2003 A1
20030166541 Ruben et al. Sep 2003 A1
20030166884 Moeckel et al. Sep 2003 A1
20030170211 Goudsmit et al. Sep 2003 A1
20030170276 Bermudes et al. Sep 2003 A1
20030170780 Moeckel et al. Sep 2003 A1
20030175911 Hans et al. Sep 2003 A1
20030186416 Pallas et al. Oct 2003 A1
20030188336 Corbin et al. Oct 2003 A1
20030194798 Surber et al. Oct 2003 A1
20030198991 Moeckel et al. Oct 2003 A1
20030199045 Burke et al. Oct 2003 A1
20030203377 Milne Edwards et al. Oct 2003 A1
20030207271 Holwitt et al. Nov 2003 A1
20030211476 O'Mahony et al. Nov 2003 A1
20030211599 Sabbadini et al. Nov 2003 A1
20030219722 Ladner et al. Nov 2003 A1
20030219736 Gonye et al. Nov 2003 A1
20030219881 Brigitte et al. Nov 2003 A1
20030219886 Ladner et al. Nov 2003 A1
20030224363 Park et al. Dec 2003 A1
20030228678 Bathe et al. Dec 2003 A1
20030229065 Levy et al. Dec 2003 A1
20040005539 Ladner et al. Jan 2004 A1
20040005695 Miksch et al. Jan 2004 A1
20040005700 Surber et al. Jan 2004 A1
20040009485 Gonye et al. Jan 2004 A1
20040009490 Glenn et al. Jan 2004 A1
20040009578 Bathe et al. Jan 2004 A1
20040009936 Tang et al. Jan 2004 A1
20040013658 Fulton et al. Jan 2004 A1
20040014177 Navran, Jr. et al. Jan 2004 A1
20040022805 Narum et al. Feb 2004 A1
20040023205 Ladner et al. Feb 2004 A1
20040023266 Vivekananda et al. Feb 2004 A1
20040023282 Luo et al. Feb 2004 A1
20040033549 Greenberg et al. Feb 2004 A1
20040038307 Lee et al. Feb 2004 A1
20040038372 Bathe et al. Feb 2004 A1
20040043458 Bathe et al. Mar 2004 A1
20040052802 Nuijten et al. Mar 2004 A1
20040054142 Cassart et al. Mar 2004 A1
20040058849 Sleeman et al. Mar 2004 A1
20040063181 Duncan et al. Apr 2004 A1
20040067561 Bathe et al. Apr 2004 A1
20040067562 Bathe et al. Apr 2004 A1
20040071729 Adderson et al. Apr 2004 A1
20040072218 Quan Pan Apr 2004 A1
20040072723 Palsson et al. Apr 2004 A1
20040073008 Perez et al. Apr 2004 A1
20040077540 Quay Apr 2004 A1
20040082002 Choi Apr 2004 A1
20040091505 Abad et al. May 2004 A1
20040091969 Agarwal et al. May 2004 A1
20040091976 Deng et al. May 2004 A1
20040096426 Chen et al. May 2004 A1
20040101531 Curtiss et al. May 2004 A1
20040101932 Naleway et al. May 2004 A1
20040106185 Ranganathan Jun 2004 A1
20040106553 Alekshun et al. Jun 2004 A1
20040110939 Milne Edwards et al. Jun 2004 A1
20040115174 Gilboa et al. Jun 2004 A1
20040115788 Zheng et al. Jun 2004 A1
20040133930 Cooper et al. Jul 2004 A1
20040142373 Gonye et al. Jul 2004 A1
20040142454 Molenaar et al. Jul 2004 A1
20040146922 Gonye et al. Jul 2004 A1
20040170987 Usuda et al. Sep 2004 A1
20040171123 Rosen et al. Sep 2004 A1
20040171130 Yokoi et al. Sep 2004 A1
20040180359 Moeckel et al. Sep 2004 A1
20040180371 Clayman et al. Sep 2004 A1
20040180380 Lee et al. Sep 2004 A1
20040191787 Tanner et al. Sep 2004 A1
20040202648 Cabezon et al. Oct 2004 A1
20040202663 Hu et al. Oct 2004 A1
20040208897 Curtiss et al. Oct 2004 A1
20040209285 Moeckel et al. Oct 2004 A1
20040210398 Palsson et al. Oct 2004 A1
20040214219 Dunican et al. Oct 2004 A1
20040214783 Terman Oct 2004 A1
20040219169 Bermudes et al. Nov 2004 A1
20040229243 Levy Nov 2004 A1
20040229255 Hermann et al. Nov 2004 A1
20040229338 King Nov 2004 A1
20040234455 Szalay Nov 2004 A1
20040234956 Kabat et al. Nov 2004 A1
20040234998 Sibbesen et al. Nov 2004 A1
20040247611 Bargatze et al. Dec 2004 A1
20040247617 Liao et al. Dec 2004 A1
20040253628 Bathe et al. Dec 2004 A1
20040258688 Hawiger et al. Dec 2004 A1
20040266003 Powell et al. Dec 2004 A1
20040266674 Mills et al. Dec 2004 A1
20050003400 Boyle Jan 2005 A1
20050003423 Moeckel et al. Jan 2005 A1
20050008618 Kaufman et al. Jan 2005 A1
20050008649 Shin et al. Jan 2005 A1
20050009750 Sleeman et al. Jan 2005 A1
20050013822 Oaks et al. Jan 2005 A1
20050019335 Lowery et al. Jan 2005 A1
20050026866 Pawelek Feb 2005 A1
20050031643 Szalay et al. Feb 2005 A1
20050032157 Gal et al. Feb 2005 A1
20050032179 Moeckel et al. Feb 2005 A1
20050036987 Pawelek et al. Feb 2005 A1
20050042216 Frantz et al. Feb 2005 A1
20050042229 Yang et al. Feb 2005 A1
20050043526 Bathe et al. Feb 2005 A1
20050053958 Roth et al. Mar 2005 A1
20050055746 Michaud et al. Mar 2005 A1
20050059122 Shen Mar 2005 A1
20050063994 Caplan et al. Mar 2005 A1
20050064526 Ulrich et al. Mar 2005 A1
20050064527 Levy et al. Mar 2005 A1
20050064562 Farwick et al. Mar 2005 A1
20050069491 Szalay et al. Mar 2005 A1
20050069532 Weinrauch et al. Mar 2005 A1
20050069894 Gottesman et al. Mar 2005 A1
20050069911 Lee et al. Mar 2005 A1
20050070005 Keller Mar 2005 A1
20050070007 Romaine et al. Mar 2005 A1
20050074463 Autran et al. Apr 2005 A1
20050074802 Rey et al. Apr 2005 A1
20050079573 Sibbesen Apr 2005 A1
20050079588 Sindelar et al. Apr 2005 A1
20050084972 Barr et al. Apr 2005 A1
20050089552 Altman et al. Apr 2005 A1
20050089976 Moeckel et al. Apr 2005 A1
20050089986 Bathe et al. Apr 2005 A1
20050106151 Shapiro May 2005 A1
20050106597 Choi May 2005 A1
20050112139 Karp May 2005 A1
20050112140 Karp May 2005 A1
20050112141 Terman May 2005 A1
20050112642 Sleeman et al. May 2005 A1
20050112664 Mockel et al. May 2005 A1
20050112730 Dunican et al. May 2005 A1
20050112732 Bathe et al. May 2005 A1
20050112733 Burke et al. May 2005 A1
20050112751 Fang et al. May 2005 A1
20050118193 Andino-Pavlovsky et al. Jun 2005 A1
20050124678 Levy et al. Jun 2005 A1
20050130264 Moeckel et al. Jun 2005 A1
20050130277 Bathe et al. Jun 2005 A1
20050136404 Doucette-Stamm et al. Jun 2005 A1
20050147590 Sabbadini et al. Jul 2005 A1
20050148504 Katunuma et al. Jul 2005 A1
20050158295 Swiercz et al. Jul 2005 A1
20050166274 French et al. Jul 2005 A1
20050180963 Adams et al. Aug 2005 A1
20050180985 Vladoianu et al. Aug 2005 A9
20050181439 Choi et al. Aug 2005 A1
20050181464 Edwards et al. Aug 2005 A1
20050181488 Akhverdian et al. Aug 2005 A1
20050191684 Zimenkov et al. Sep 2005 A1
20050202409 Takami et al. Sep 2005 A1
20050202535 Collier et al. Sep 2005 A1
20050203007 Komiyama et al. Sep 2005 A1
20050208033 Luquet et al. Sep 2005 A1
20050214317 Karp Sep 2005 A1
20050214318 Karp Sep 2005 A1
20050221439 Bakaletz et al. Oct 2005 A1
20050221450 Mockel et al. Oct 2005 A1
20050221454 Bathe Oct 2005 A1
20050227917 Williams et al. Oct 2005 A1
20050233424 Farwick et al. Oct 2005 A1
20050241015 Mach et al. Oct 2005 A1
20050241016 Mach et al. Oct 2005 A1
20050249706 Bermudes et al. Nov 2005 A1
20050249748 Dubensky, Jr. et al. Nov 2005 A1
20050250196 Paton et al. Nov 2005 A1
20050251885 Michaud et al. Nov 2005 A1
20050255088 Bermudes et al. Nov 2005 A1
20050255566 Bathe et al. Nov 2005 A1
20050257282 Mach et al. Nov 2005 A1
20050260225 Goldberg et al. Nov 2005 A1
20050260670 Colonna et al. Nov 2005 A1
20050266536 Wolf et al. Dec 2005 A1
20050266560 Preuss et al. Dec 2005 A1
20050267103 Hochman Dec 2005 A1
20050268359 Mach et al. Dec 2005 A1
20050273882 Romano Dec 2005 A1
20050281828 Bowdish et al. Dec 2005 A1
20050282259 Moeckel et al. Dec 2005 A1
20050287639 Kwon et al. Dec 2005 A1
20060008465 Steinaa et al. Jan 2006 A1
20060009633 Edwards et al. Jan 2006 A9
20060014212 Benkovic et al. Jan 2006 A1
20060014259 Burke et al. Jan 2006 A9
20060019356 Usuda et al. Jan 2006 A1
20060019357 Moeckel et al. Jan 2006 A1
20060024668 Hoek Feb 2006 A1
20060025387 Hochman Feb 2006 A1
20060030010 Usuda et al. Feb 2006 A1
20060035270 Lee et al. Feb 2006 A1
20060035320 Tissot et al. Feb 2006 A1
20060035371 Zheng et al. Feb 2006 A1
20060035813 Sternberg et al. Feb 2006 A1
20060040317 Wick et al. Feb 2006 A1
20060051370 Szalay et al. Mar 2006 A1
20060051839 Robinson et al. Mar 2006 A1
20060057152 Marshall Mar 2006 A1
20060073168 Stephens et al. Apr 2006 A1
20060083716 Kaufman et al. Apr 2006 A1
20060084113 Ladner et al. Apr 2006 A1
20060088910 Nguyen Apr 2006 A1
20060089350 Hochman et al. Apr 2006 A1
20060094672 Pasqualini et al. May 2006 A1
20060104955 Redshaw May 2006 A1
20060110747 Ramseier et al. May 2006 A1
20060115483 Sleeman et al. Jun 2006 A1
20060127408 Young et al. Jun 2006 A1
20060134761 Moeckel et al. Jun 2006 A1
20060140975 Curtiss et al. Jun 2006 A1
20060156440 Michaud et al. Jul 2006 A1
20060160152 Vinkemeier et al. Jul 2006 A1
20060160799 Alekshun et al. Jul 2006 A1
20060166338 Bathe et al. Jul 2006 A1
20060167229 Wong et al. Jul 2006 A1
20060174357 Velander et al. Aug 2006 A1
20060177912 Farwick et al. Aug 2006 A1
20060182685 Bishai et al. Aug 2006 A1
20060182762 Maas et al. Aug 2006 A1
20060223142 Edwards et al. Oct 2006 A1
20060228712 Nakagawa et al. Oct 2006 A1
20060229336 Kazmierski et al. Oct 2006 A1
20060233829 Curtiss Oct 2006 A1
20060234331 Yazaki et al. Oct 2006 A1
20060234358 Anderlei et al. Oct 2006 A1
20060234943 Wong Oct 2006 A1
20060239968 Arap et al. Oct 2006 A1
20060241050 Cameron et al. Oct 2006 A1
20060246554 Thierbach et al. Nov 2006 A1
20060269540 Robert et al. Nov 2006 A1
20060269561 Paterson et al. Nov 2006 A1
20060270043 Blattner et al. Nov 2006 A1
20060275823 Kodadek Dec 2006 A1
20060275874 Matsuno et al. Dec 2006 A1
20060275897 Nabel et al. Dec 2006 A1
20060281908 Callen Dec 2006 A1
20060286639 Edwards et al. Dec 2006 A1
20070004666 Lasham et al. Jan 2007 A1
20070009489 Bermudes et al. Jan 2007 A1
20070009900 Doucette-Stamm et al. Jan 2007 A1
20070009901 Doucette-Stamm et al. Jan 2007 A1
20070009902 Doucette-Stamm et al. Jan 2007 A1
20070009903 Doucette-Stamm et al. Jan 2007 A1
20070009904 Doucette-Stamm et al. Jan 2007 A1
20070009905 Doucette-Stamm et al. Jan 2007 A1
20070009906 Doucette-Stamm et al. Jan 2007 A1
20070009932 Stephanopoulos et al. Jan 2007 A1
20070015271 Rosen et al. Jan 2007 A1
20070020327 Fikes et al. Jan 2007 A1
20070025981 Szalay et al. Feb 2007 A1
20070026507 Olivo et al. Feb 2007 A1
20070028324 Corbin et al. Feb 2007 A1
20070031382 Powell et al. Feb 2007 A1
20070031852 Doucette-Stamm et al. Feb 2007 A1
20070032639 Gottesman et al. Feb 2007 A1
20070037744 Gallo et al. Feb 2007 A1
20070038419 Usuda et al. Feb 2007 A1
20070041997 Finlay et al. Feb 2007 A1
20070059709 Benton et al. Mar 2007 A1
20070059799 Sette et al. Mar 2007 A1
20070059801 Doucette-Stamm et al. Mar 2007 A1
20070059802 Doucette-Stamm et al. Mar 2007 A1
20070059807 Wisniewski et al. Mar 2007 A1
20070065820 Jiang et al. Mar 2007 A1
20070065908 Gallo et al. Mar 2007 A1
20070071675 Wu et al. Mar 2007 A1
20070071773 Hanski et al. Mar 2007 A1
20070072279 Meynial-Salles et al. Mar 2007 A1
20070087403 Bestel-Corre et al. Apr 2007 A1
20070092951 Bathe et al. Apr 2007 A1
20070104689 Gillies et al. May 2007 A1
20070110721 Cranenburgh May 2007 A1
20070110752 Murison et al. May 2007 A1
20070111291 Bathe et al. May 2007 A1
20070116671 Prakash et al. May 2007 A1
20070116725 Vladoianu et al. May 2007 A1
20070122832 Mockel et al. May 2007 A1
20070122881 Surber May 2007 A1
20070134264 Marshall Jun 2007 A1
20070134768 Zelder et al. Jun 2007 A1
20070141680 Bathe et al. Jun 2007 A1
20070143871 French et al. Jun 2007 A1
20070154458 McCart et al. Jul 2007 A1
20070154986 Kunsch et al. Jul 2007 A1
20070178116 Adderson et al. Aug 2007 A1
20070178492 Gross et al. Aug 2007 A1
20070178505 Fischer et al. Aug 2007 A1
20070184517 Schultz et al. Aug 2007 A1
20070184528 Pierce et al. Aug 2007 A1
20070184543 Pierce et al. Aug 2007 A1
20070191262 Racila et al. Aug 2007 A1
20070192905 Piller et al. Aug 2007 A1
20070202572 Szalay et al. Aug 2007 A1
20070202578 Samain et al. Aug 2007 A1
20070202591 Ulrich Aug 2007 A1
20070212311 Burne et al. Sep 2007 A1
20070212711 Choi et al. Sep 2007 A1
20070212727 Szalay et al. Sep 2007 A1
20070224666 Bathe et al. Sep 2007 A1
20070231820 Weiner et al. Oct 2007 A1
20070231867 Choi et al. Oct 2007 A1
20070243303 Dan Hengst et al. Oct 2007 A1
20070243616 Church et al. Oct 2007 A1
20070244047 Rosen et al. Oct 2007 A1
20070254329 Rubin Nov 2007 A1
20070254846 Wong et al. Nov 2007 A1
20070254850 Lieberman et al. Nov 2007 A1
20070258889 Douglas et al. Nov 2007 A1
20070259408 Bathe et al. Nov 2007 A1
20070259417 Ladner et al. Nov 2007 A1
20070264689 Gross et al. Nov 2007 A1
20070269369 Gegg et al. Nov 2007 A1
20070269871 Zelder et al. Nov 2007 A1
20070275423 Sebastian et al. Nov 2007 A1
20070281342 DeAngelis Dec 2007 A1
20070287171 Inouye Dec 2007 A1
20070298012 King et al. Dec 2007 A1
20070299008 Rummel Dec 2007 A1
20080004206 Rosen et al. Jan 2008 A1
20080009041 Mizoguchi et al. Jan 2008 A1
20080009446 Yu et al. Jan 2008 A1
20080014618 Bathe et al. Jan 2008 A1
20080019994 Brunham et al. Jan 2008 A1
20080031877 Covacci et al. Feb 2008 A1
20080032374 Zelder et al. Feb 2008 A1
20080038296 Brahmbhatt et al. Feb 2008 A1
20080038779 Miasnikov et al. Feb 2008 A1
20080038787 Zelder et al. Feb 2008 A1
20080050774 Berka et al. Feb 2008 A1
20080050786 Bathe et al. Feb 2008 A1
20080063666 Allende Mar 2008 A1
20080064062 Leonhartsberger et al. Mar 2008 A1
20080070255 Tanner et al. Mar 2008 A1
20080070840 Min et al. Mar 2008 A1
20080076157 Leonhartsberger et al. Mar 2008 A1
20080089862 Benhar et al. Apr 2008 A1
20080090770 Belmares et al. Apr 2008 A1
20080095806 Bathurst et al. Apr 2008 A1
20080102115 Oyhenart et al. May 2008 A1
20080118948 Kroger et al. May 2008 A1
20080124355 Bermudes May 2008 A1
20080131903 Thierbach et al. Jun 2008 A1
20080131927 Schischka et al. Jun 2008 A1
20080160585 Zelder et al. Jul 2008 A1
20080166757 Bron et al. Jul 2008 A1
20080166764 Schloesser et al. Jul 2008 A1
20080166775 Kroger et al. Jul 2008 A1
20080171014 Wu et al. Jul 2008 A1
20080176295 Zelder et al. Jul 2008 A1
20080181892 Ledbetter et al. Jul 2008 A1
20080182295 Patkar et al. Jul 2008 A1
20080187520 Polack et al. Aug 2008 A1
20080193470 Masignani et al. Aug 2008 A1
20080193974 Coleman et al. Aug 2008 A1
20080194481 Rosen et al. Aug 2008 A1
20080199926 Burgard et al. Aug 2008 A1
20080206271 Liao et al. Aug 2008 A1
20080206284 Williams et al. Aug 2008 A1
20080206814 Lee et al. Aug 2008 A1
20080206818 Wich et al. Aug 2008 A1
20080213316 Tarasenko Sep 2008 A1
20080214469 Lam et al. Sep 2008 A1
20080227704 Kamens Sep 2008 A1
20080233623 Chang et al. Sep 2008 A1
20080242620 Wong et al. Oct 2008 A1
20080249013 Cabezon et al. Oct 2008 A1
20080254511 Dassler et al. Oct 2008 A1
20080260769 Capecchi et al. Oct 2008 A1
20080261269 Bathe et al. Oct 2008 A1
20080261869 Shapiro Oct 2008 A1
20080267966 Masignani et al. Oct 2008 A1
20080268502 Haefner et al. Oct 2008 A1
20080269070 Ramseier et al. Oct 2008 A1
20080270096 Palsson Oct 2008 A1
20080274155 Barton et al. Nov 2008 A1
20080274265 Bathe et al. Nov 2008 A1
20080274516 Kroger et al. Nov 2008 A1
20080280346 de Lorenzo Prieto et al. Nov 2008 A1
20080280354 Perez et al. Nov 2008 A1
20080286290 Furusako et al. Nov 2008 A1
20080286306 Nabel et al. Nov 2008 A1
20080286841 Kroger et al. Nov 2008 A1
20080288264 Mach et al. Nov 2008 A1
20080293100 Wendisch et al. Nov 2008 A1
20080305119 Dewhurst et al. Dec 2008 A1
20080305533 Yi et al. Dec 2008 A1
20080311081 Fruehauf et al. Dec 2008 A1
20080311125 O'Keefe et al. Dec 2008 A1
20080317731 Gramatikova et al. Dec 2008 A1
20080318286 Choi et al. Dec 2008 A1
20090004705 Kroger et al. Jan 2009 A1
20090004744 Surber et al. Jan 2009 A1
20090004745 Choi et al. Jan 2009 A1
20090010956 Rikihisa Jan 2009 A1
20090011490 Sabbadini et al. Jan 2009 A1
20090011974 Bocharov et al. Jan 2009 A1
20090011995 Lee et al. Jan 2009 A1
20090019609 Romano Jan 2009 A1
20090023157 Lee et al. Jan 2009 A1
20090023182 Schilling Jan 2009 A1
20090028890 Karp Jan 2009 A1
20090029425 Zelder et al. Jan 2009 A1
20090035827 Stephens et al. Feb 2009 A1
20090042248 Gal et al. Feb 2009 A1
20090042278 Barr et al. Feb 2009 A1
20090042785 Matschiner et al. Feb 2009 A1
20090053186 Hu et al. Feb 2009 A1
20090053794 Bathe et al. Feb 2009 A1
20090054323 Gliner et al. Feb 2009 A1
20090061445 Oltvai et al. Mar 2009 A1
20090062139 Short et al. Mar 2009 A1
20090068226 Ulrich et al. Mar 2009 A1
20090069241 Barnstable et al. Mar 2009 A1
20090069248 Motin et al. Mar 2009 A1
20090075333 Campbell et al. Mar 2009 A1
20090081193 Sasisekharan et al. Mar 2009 A1
20090081199 Colonna et al. Mar 2009 A1
20090081673 Shen et al. Mar 2009 A1
20090092632 Lee Apr 2009 A1
20090098049 Dowdy et al. Apr 2009 A1
20090111160 Collier et al. Apr 2009 A1
20090117047 Szalay et al. May 2009 A1
20090117048 Szalay et al. May 2009 A1
20090117049 Szalay et al. May 2009 A1
20090123382 Szalay et al. May 2009 A1
20090123426 Li et al. May 2009 A1
20090123921 Georgiou et al. May 2009 A1
20090130709 Hamilton May 2009 A1
20090131401 Levy et al. May 2009 A1
20090136542 Karp May 2009 A1
20090142343 Fuh et al. Jun 2009 A1
20090155238 Weiner et al. Jun 2009 A1
20090155866 Burk et al. Jun 2009 A1
20090162356 Lookeren Campagne Jun 2009 A1
20090169517 Bermudes et al. Jul 2009 A1
20090169566 Rawlin et al. Jul 2009 A1
20090170155 Johnson et al. Jul 2009 A1
20090170170 Choi et al. Jul 2009 A1
20090170812 Alekshun et al. Jul 2009 A1
20090175829 Forbes et al. Jul 2009 A1
20090175897 Tang et al. Jul 2009 A1
20090180955 Stritzker et al. Jul 2009 A1
20090186377 Johnson et al. Jul 2009 A1
20090186384 Matsuno et al. Jul 2009 A1
20090191599 Devroe et al. Jul 2009 A1
20090203070 Devroe et al. Aug 2009 A1
20090203103 Pierce et al. Aug 2009 A1
20090208534 Xu et al. Aug 2009 A1
20090209749 Mach et al. Aug 2009 A1
20090214506 Hardy et al. Aug 2009 A1
20090215130 Iyo et al. Aug 2009 A1
20090215133 Bathe et al. Aug 2009 A1
20090215754 Hochman et al. Aug 2009 A1
20090217396 Kyrkaniders et al. Aug 2009 A1
20090220480 Gray et al. Sep 2009 A1
20090220540 Marshall Sep 2009 A1
20090221055 Kadoya et al. Sep 2009 A1
20090226372 Ruoslahti et al. Sep 2009 A1
20090226919 Gulevich et al. Sep 2009 A1
20090232801 Hillen et al. Sep 2009 A1
20090232804 Lazarides et al. Sep 2009 A1
20090234101 Ladner et al. Sep 2009 A1
20090238789 Guyon et al. Sep 2009 A1
20090239797 Cooper et al. Sep 2009 A1
20090240073 Barry Sep 2009 A1
20090246220 Ertl et al. Oct 2009 A1
20090246832 Wakarchuk et al. Oct 2009 A1
20090246836 Kroger et al. Oct 2009 A1
20090246838 Zelder et al. Oct 2009 A1
20090253164 Unrean et al. Oct 2009 A1
20090258401 Iyo et al. Oct 2009 A1
20090258935 Zheng et al. Oct 2009 A1
20090271894 Benfey et al. Oct 2009 A1
20090275097 Sun et al. Nov 2009 A1
20090275104 Berka et al. Nov 2009 A1
20090280542 Bathe et al. Nov 2009 A1
20090294288 May et al. Dec 2009 A1
20090297560 Dattwyler et al. Dec 2009 A1
20090298136 Zelder et al. Dec 2009 A1
20090300779 Zhao et al. Dec 2009 A1
20090304693 Ghayur et al. Dec 2009 A1
20090305296 Bengtsson et al. Dec 2009 A1
20090311253 Ghayur et al. Dec 2009 A1
20090311744 DeFrees et al. Dec 2009 A1
20090311756 Zelder et al. Dec 2009 A1
20090317404 Markham Dec 2009 A1
20090317418 Catanzaro et al. Dec 2009 A1
20090324576 Padmanabhan et al. Dec 2009 A1
20090324651 Old et al. Dec 2009 A1
20090325242 Bathe et al. Dec 2009 A1
20090325298 Kernodle Dec 2009 A1
20090325866 Kim et al. Dec 2009 A1
20100003727 Zelder et al. Jan 2010 A1
20100008851 Nicolaides et al. Jan 2010 A1
20100008946 Szalay et al. Jan 2010 A1
20100011456 Mathur et al. Jan 2010 A1
20100015672 Takagi et al. Jan 2010 A1
20100015674 Zelder et al. Jan 2010 A1
20100021978 Burk et al. Jan 2010 A1
20100022584 Kenyon et al. Jan 2010 A1
20100028340 Mueller et al. Feb 2010 A1
20100034822 Masignani et al. Feb 2010 A1
20100040537 Gu et al. Feb 2010 A1
20100040640 Lanar et al. Feb 2010 A1
20100041107 Herold et al. Feb 2010 A1
20100047239 Wu et al. Feb 2010 A1
20100047245 Lacy et al. Feb 2010 A1
20100062016 Szalay et al. Mar 2010 A1
20100062438 Danchin Mar 2010 A1
20100062535 Kroger et al. Mar 2010 A1
20100064393 Berka et al. Mar 2010 A1
20100068173 Yu et al. Mar 2010 A1
20100074900 Ghayur et al. Mar 2010 A1
20100074933 Prakash et al. Mar 2010 A1
20100080815 Zavada et al. Apr 2010 A1
20100086546 Lee et al. Apr 2010 A1
20100092438 Fruehauf et al. Apr 2010 A1
20100095398 Meana et al. Apr 2010 A1
20100104607 Engelberg-Kulka et al. Apr 2010 A1
20100105106 Ronin et al. Apr 2010 A1
20100111998 Nabel et al. May 2010 A1
20100112670 Giacalone et al. May 2010 A1
20100119550 Gomi et al. May 2010 A1
20100119588 Sato et al. May 2010 A1
20100120105 Anthony et al. May 2010 A1
20100124558 Curtiss, III et al. May 2010 A1
20100135961 Bermudes Jun 2010 A1
20100135973 Eisenstark et al. Jun 2010 A1
20100136027 Kim Jun 2010 A1
20100136048 Bermudes Jun 2010 A1
20100136657 Jokinen et al. Jun 2010 A1
20100137162 Retailack et al. Jun 2010 A1
20100137192 Shapiro Jun 2010 A1
20100143997 Boelter et al. Jun 2010 A1
20100150965 Kopecko et al. Jun 2010 A1
20100158952 Goletz Jun 2010 A1
20100159523 Bathe et al. Jun 2010 A1
20100160612 Skerra et al. Jun 2010 A1
20100166802 Caplan et al. Jul 2010 A1
20100169988 Kohli et al. Jul 2010 A1
20100172976 Satishchandran et al. Jul 2010 A1
20100183516 Ribbert et al. Jul 2010 A1
20100184157 Williams et al. Jul 2010 A1
20100184613 Lee et al. Jul 2010 A1
20100189686 Rosen et al. Jul 2010 A1
20100189691 Fruehauf et al. Jul 2010 A1
20100189740 Michon et al. Jul 2010 A1
20100189774 Lenormand Jul 2010 A1
20100196315 Lacy et al. Aug 2010 A1
20100196959 Schischka et al. Aug 2010 A1
20100209405 Altman et al. Aug 2010 A1
20100215679 Horwitz et al. Aug 2010 A1
20100215682 Berkower Aug 2010 A1
20100216720 Brophy et al. Aug 2010 A1
20100221179 Hsieh et al. Sep 2010 A1
20100221779 Short et al. Sep 2010 A1
20100227850 Alekshun et al. Sep 2010 A1
20100233079 Jakob et al. Sep 2010 A1
20100233195 Delisa et al. Sep 2010 A1
20100233814 Williams Sep 2010 A1
20100239546 Fruehauf et al. Sep 2010 A1
20100247544 Vachon Sep 2010 A1
20100247560 Simpson et al. Sep 2010 A1
20100249026 Rosen et al. Sep 2010 A1
20100255022 Prescott et al. Oct 2010 A1
20100255036 Hassan et al. Oct 2010 A1
20100255544 Bathe et al. Oct 2010 A1
20100255553 Srienc et al. Oct 2010 A1
20100260668 Ghayur et al. Oct 2010 A1
20100261201 Katanaev Oct 2010 A1
20100261257 Bathe et al. Oct 2010 A1
20100272750 Buyse et al. Oct 2010 A1
20100278819 Bossuyt et al. Nov 2010 A1
20100279923 Schulte et al. Nov 2010 A1
20100281577 Mulet Salort et al. Nov 2010 A1
20100285547 Soucaille et al. Nov 2010 A1
20100285564 Skerra et al. Nov 2010 A1
20100286060 Gliner et al. Nov 2010 A1
20100286251 Rubin Nov 2010 A1
20100290996 Nickerson et al. Nov 2010 A1
20100291033 Rosen et al. Nov 2010 A1
20100291088 Ghayur et al. Nov 2010 A1
20100292091 Levy Nov 2010 A1
20100292429 Volkert et al. Nov 2010 A1
20100303822 Masignani et al. Dec 2010 A1
20100305306 Colonna et al. Dec 2010 A1
20100310560 Colonna et al. Dec 2010 A1
20100310593 Brazer et al. Dec 2010 A1
20100311147 Bathe et al. Dec 2010 A1
20100317007 Palsson et al. Dec 2010 A1
20100319087 Corbin et al. Dec 2010 A1
20100333235 Mach et al. Dec 2010 A1
20110003963 Zelder et al. Jan 2011 A1
20110008392 Buck et al. Jan 2011 A1
20110008828 Kwon et al. Jan 2011 A1
20110014666 Voelker et al. Jan 2011 A1
20110014672 Chotani et al. Jan 2011 A1
20110014701 Ghosh Jan 2011 A1
20110021416 Shapiro Jan 2011 A1
20110027309 Bottje et al. Feb 2011 A1
20110027349 Sable et al. Feb 2011 A1
20110028397 Tozser et al. Feb 2011 A1
20110033501 Curtiss, III et al. Feb 2011 A1
20110038865 Shin et al. Feb 2011 A1
20110038917 Kappers et al. Feb 2011 A1
20110039313 Verseck et al. Feb 2011 A1
20110044980 Ghayur et al. Feb 2011 A1
20110045587 Sullivan et al. Feb 2011 A1
20110053253 Kim et al. Mar 2011 A1
20110065091 Van Der Hoek Mar 2011 A1
20110086407 Berka et al. Apr 2011 A1
20110091372 Ghayur et al. Apr 2011 A1
20110091463 Ghayur et al. Apr 2011 A1
20110091493 Moahamadzadeh et al. Apr 2011 A1
20110093965 O'Donoghue et al. Apr 2011 A1
20110104146 Faraday May 2011 A1
20110104163 Dimitrov et al. May 2011 A1
20110104196 Karp May 2011 A1
20110104240 Jones et al. May 2011 A1
20110106000 Jones et al. May 2011 A1
20110111015 Bottje et al. May 2011 A1
20110111458 Masuda et al. May 2011 A1
20110111481 Li May 2011 A1
20110111496 Li May 2011 A1
20110117079 Benatuil et al. May 2011 A1
20110117611 Dunican et al. May 2011 A1
20110117617 Liu et al. May 2011 A1
20110124073 Devroe et al. May 2011 A1
20110125118 Lynch May 2011 A1
20110135646 Bakaletz et al. Jun 2011 A1
20110136759 Kahne et al. Jun 2011 A1
20110142761 Wu et al. Jun 2011 A1
20110152176 Horswill Jun 2011 A1
20110159026 Bottje et al. Jun 2011 A1
20110165063 Hsieh et al. Jul 2011 A1
20110165066 Wu et al. Jul 2011 A1
20110165660 Picataggio et al. Jul 2011 A1
20110165661 Picataggio et al. Jul 2011 A1
20110165680 Blattner et al. Jul 2011 A1
20110166336 Gottesman et al. Jul 2011 A1
20110171695 Bathe et al. Jul 2011 A1
20110189773 Altman et al. Aug 2011 A1
20110189774 Mach et al. Aug 2011 A1
20110190234 Nathan et al. Aug 2011 A1
20110195090 Dimitrov Aug 2011 A1
20110195423 Selinfreund et al. Aug 2011 A1
20110201070 Soucaille et al. Aug 2011 A1
20110201109 Zwaka et al. Aug 2011 A1
20110206616 Ichtchenko et al. Aug 2011 A1
20110207183 Herold et al. Aug 2011 A1
20110207187 Tokuda et al. Aug 2011 A1
20110212094 Ghayur et al. Sep 2011 A1
20110217237 Chen et al. Sep 2011 A1
20110223241 Tardi et al. Sep 2011 A1
20110224416 Picataggio et al. Sep 2011 A1
20110225663 Von Schaewen et al. Sep 2011 A1
20110229959 Picataggio et al. Sep 2011 A1
20110230523 Levy et al. Sep 2011 A1
20110243980 Feldman et al. Oct 2011 A1
20110243992 Kernodle Oct 2011 A1
20110244529 Claes et al. Oct 2011 A1
20110244575 Lipscomb et al. Oct 2011 A1
20110251095 Levy Oct 2011 A1
20110257080 Chai et al. Oct 2011 A1
20110262347 Ruoslahti et al. Oct 2011 A1
20110262474 Du et al. Oct 2011 A1
20110262980 Soucaille et al. Oct 2011 A1
20110268661 Markiv et al. Nov 2011 A1
20110268760 Telfer et al. Nov 2011 A1
20110269201 Gray et al. Nov 2011 A1
20110274719 Marshall Nov 2011 A1
20110274721 Nabel et al. Nov 2011 A1
20110275122 Min et al. Nov 2011 A1
20110275585 Brahmbhatt et al. Nov 2011 A1
20110277180 Romano Nov 2011 A1
20110280800 Wu et al. Nov 2011 A1
20110280830 Rosen et al. Nov 2011 A9
20110281330 Sabbadini et al. Nov 2011 A1
20110286916 Aste-Amezaga et al. Nov 2011 A1
20110287037 Gentschev et al. Nov 2011 A1
20110293608 Jaffee et al. Dec 2011 A1
20110294170 Subbian et al. Dec 2011 A1
20110300176 Szalay et al. Dec 2011 A1
20110305724 Paterson et al. Dec 2011 A1
20110306611 Alekshun et al. Dec 2011 A1
20110318308 Ragolia Dec 2011 A1
20110318316 Wong et al. Dec 2011 A1
20110318317 Wong et al. Dec 2011 A1
20110318349 Ghayur et al. Dec 2011 A1
20120009194 Ferrone et al. Jan 2012 A1
20120009196 Muerhoff et al. Jan 2012 A1
20120009205 Gegg et al. Jan 2012 A1
20120009627 Deng et al. Jan 2012 A1
20120014941 Wu et al. Jan 2012 A1
20120014957 Ghayur et al. Jan 2012 A1
20120020883 Stritzker et al. Jan 2012 A1
20120021517 Jin et al. Jan 2012 A1
20120021985 Rosen et al. Jan 2012 A1
20120027785 Dirienzo Feb 2012 A1
20120028324 Buelter et al. Feb 2012 A1
20120034160 Ghayur et al. Feb 2012 A1
20120040414 Knight Feb 2012 A1
20120040426 Sun et al. Feb 2012 A1
20120042413 Albert et al. Feb 2012 A1
20120045474 Motin et al. Feb 2012 A1
20120058532 Buelter et al. Mar 2012 A1
20120064062 Goguen et al. Mar 2012 A1
20120064568 Hamilton Mar 2012 A1
20120064572 Finlay et al. Mar 2012 A1
20120070870 Way et al. Mar 2012 A1
20120070881 Berka et al. Mar 2012 A1
20120071545 Shapiro Mar 2012 A1
20120076758 Diamond et al. Mar 2012 A1
20120076803 Brophy et al. Mar 2012 A1
20120077237 Picataggio et al. Mar 2012 A1
20120077252 Picataggio et al. Mar 2012 A1
20120083587 Gallo et al. Apr 2012 A1
20120087858 Ghayur et al. Apr 2012 A1
20120087946 Curtiss, III et al. Apr 2012 A1
20120088314 Katanaev Apr 2012 A1
20120093773 Li et al. Apr 2012 A1
20120093805 Kubota Apr 2012 A1
20120093868 Masignani et al. Apr 2012 A1
20120094341 Burk et al. Apr 2012 A1
20120094906 Guyon et al. Apr 2012 A1
20120100140 Reyes et al. Apr 2012 A1
20120100581 Gramatikova et al. Apr 2012 A1
20120107360 Le Butt et al. May 2012 A1
20120108521 Eggink et al. May 2012 A1
20120108640 Hochman et al. May 2012 A1
20120114652 Elvin et al. May 2012 A1
20120121637 Granoff et al. May 2012 A1
20120122762 Ruben et al. May 2012 A1
20120122962 Han et al. May 2012 A1
20120128594 Choy et al. May 2012 A1
20120128624 Yu et al. May 2012 A1
20120128718 Hassan et al. May 2012 A1
20120135503 Sabbadini et al. May 2012 A1
20120141415 Ballance et al. Jun 2012 A1
20120142079 Sabbadini et al. Jun 2012 A1
20120142080 Bermudes Jun 2012 A1
20120142623 Lagunoff et al. Jun 2012 A1
20120144509 Benghezal et al. Jun 2012 A1
20120148601 Ulrich et al. Jun 2012 A1
20120148615 Masignani et al. Jun 2012 A1
20120149095 Kopecko et al. Jun 2012 A1
20120164687 Bereta et al. Jun 2012 A1
20120164703 Yi et al. Jun 2012 A1
20120171234 Wong et al. Jul 2012 A1
20120177682 Marshall Jul 2012 A1
20120184007 Picataggio et al. Jul 2012 A1
20120184020 Picataggio et al. Jul 2012 A1
20120189541 Wu Jul 2012 A1
20120189572 Wei et al. Jul 2012 A1
20120190089 Buelter et al. Jul 2012 A1
20120195900 Ghayur et al. Aug 2012 A1
20120195922 Lee Aug 2012 A1
20120208181 Merighi et al. Aug 2012 A1
20120210467 Barton et al. Aug 2012 A1
20120213767 Wei et al. Aug 2012 A1
20120219545 Ayuso et al. Aug 2012 A1
20120225454 Benghezal et al. Sep 2012 A1
20120230976 Helmerhorst et al. Sep 2012 A1
20120232012 Popel et al. Sep 2012 A1
20120237491 Padmanabhan et al. Sep 2012 A1
20120244600 Jin Sep 2012 A1
20120244621 Weiss et al. Sep 2012 A1
20120252074 Zhang et al. Oct 2012 A1
20120252099 Sabbadini et al. Oct 2012 A1
20120253009 Walker Oct 2012 A1
20120258108 Ghayur et al. Oct 2012 A1
20120258521 Liu et al. Oct 2012 A1
20120263722 Ghayur et al. Oct 2012 A1
20120264686 Guyon et al. Oct 2012 A9
20120264902 Lipscomb et al. Oct 2012 A1
20120266328 Gray et al. Oct 2012 A1
20120266329 Mathur et al. Oct 2012 A1
20120271036 Smith et al. Oct 2012 A1
20120275996 Hsieh Nov 2012 A1
20120276010 Szalay et al. Nov 2012 A1
20120276132 Feng et al. Nov 2012 A1
20120276587 Beck et al. Nov 2012 A1
20120276603 Beck et al. Nov 2012 A1
20120277143 Jacobs et al. Nov 2012 A1
20120282700 Lunder et al. Nov 2012 A1
20120282701 Kopecko et al. Nov 2012 A1
20120288901 Zelder et al. Nov 2012 A1
20120301493 Nunez et al. Nov 2012 A1
20120301497 Yadava et al. Nov 2012 A1
20120308484 Szalay et al. Dec 2012 A1
20120308575 Guo et al. Dec 2012 A1
20120308594 Sablon et al. Dec 2012 A1
20120329150 Duke et al. Dec 2012 A1
20130004416 Wu et al. Jan 2013 A1
20130004537 Curtiss et al. Jan 2013 A1
20130004998 Subbian et al. Jan 2013 A1
20130004999 Reth et al. Jan 2013 A1
20130011409 Shipp et al. Jan 2013 A1
20130011874 Campbell et al. Jan 2013 A1
20130017173 Nataro et al. Jan 2013 A1
20130022539 Pilkington et al. Jan 2013 A1
20130022578 Newman et al. Jan 2013 A1
20130023472 Bristow Jan 2013 A1
20130028901 Colonna et al. Jan 2013 A1
20130028924 Ertl et al. Jan 2013 A1
20130045184 Teitelbaum Feb 2013 A1
20130052227 Gerke et al. Feb 2013 A1
20130059318 Kaneko et al. Mar 2013 A1
20130065274 Gerngross et al. Mar 2013 A1
20130066035 Burgard et al. Mar 2013 A1
20130071893 Lynch et al. Mar 2013 A1
20130078254 Bakaletz et al. Mar 2013 A1
20130078275 Tao Mar 2013 A1
20130084304 Hargis et al. Apr 2013 A1
20130089906 Beck et al. Apr 2013 A1
20130095566 Oltvai et al. Apr 2013 A1
20130101577 Wei et al. Apr 2013 A9
20130102017 Pfaendler et al. Apr 2013 A1
20130122043 Guimaraes et al. May 2013 A1
20130122541 Lynch et al. May 2013 A1
20130122553 Maertens et al. May 2013 A1
20130122565 Pierce et al. May 2013 A1
20130129713 Rescigno et al. May 2013 A1
20130129737 Adderson et al. May 2013 A1
20130129761 Garcia-Sastre et al. May 2013 A1
20130130292 Szalay et al. May 2013 A1
20130142937 Bathe et al. Jun 2013 A1
20130149313 Gu et al. Jun 2013 A1
20130150559 Colonna et al. Jun 2013 A1
20130164307 Markham Jun 2013 A1
20130164317 Yousef et al. Jun 2013 A1
20130164329 Rossomando et al. Jun 2013 A1
20130164380 Durum et al. Jun 2013 A1
20130164808 Mcauliffe et al. Jun 2013 A1
20130164809 Chotani et al. Jun 2013 A1
20130171096 Hsieh et al. Jul 2013 A1
20130171109 Helmerhorst et al. Jul 2013 A1
20130171182 Whelan et al. Jul 2013 A1
20130171190 Curtiss, III et al. Jul 2013 A1
20130177555 Wilkinson et al. Jul 2013 A1
20130183728 Botes et al. Jul 2013 A1
20130189753 Pearlman et al. Jul 2013 A1
20130190241 Wong et al. Jul 2013 A1
20130190255 Wong et al. Jul 2013 A1
20130196432 Poehlmann et al. Aug 2013 A1
20130197194 Kaplan et al. Aug 2013 A1
20130197203 Michon et al. Aug 2013 A1
20130202557 Li et al. Aug 2013 A1
20130202623 Chomont et al. Aug 2013 A1
20130203130 Wittmann et al. Aug 2013 A1
20130203164 Rosen et al. Aug 2013 A1
20130205416 Nash et al. Aug 2013 A1
20130209405 Curtiss et al. Aug 2013 A1
20130209407 Hamer Aug 2013 A1
20130209499 Garcia-Sastre et al. Aug 2013 A1
20130210073 Kwon et al. Aug 2013 A1
20130210077 Brzezinski et al. Aug 2013 A1
20130210121 Giacalone et al. Aug 2013 A1
20130210149 Li Aug 2013 A1
20130210747 Hamm-Alvarez et al. Aug 2013 A1
20130211170 Amano et al. Aug 2013 A1
20130216555 Nitsch et al. Aug 2013 A1
20130216568 Maione et al. Aug 2013 A1
20130217068 Parkot et al. Aug 2013 A1
20130217145 Yoshimura et al. Aug 2013 A1
20130224804 Knight Aug 2013 A1
20130227741 Gray et al. Aug 2013 A1
20130243747 Fima et al. Sep 2013 A1
20130266585 Nitsch et al. Oct 2013 A1
20130269057 Fosu-Nyarko et al. Oct 2013 A1
20130273613 Devroe et al. Oct 2013 A1
20130274187 Mogelsvang et al. Oct 2013 A1
20130276168 Romaine et al. Oct 2013 A1
20130280774 Blake et al. Oct 2013 A1
20130287810 Mohamadzadeh et al. Oct 2013 A1
20130295054 Huang et al. Nov 2013 A1
20130295072 Fima et al. Nov 2013 A1
20130295127 Prescott et al. Nov 2013 A1
20130295616 Muramatsu et al. Nov 2013 A1
20130310458 Eggeling et al. Nov 2013 A1
20130316397 Airen et al. Nov 2013 A1
20130316426 Burk et al. Nov 2013 A1
20130318640 Oldenburg et al. Nov 2013 A1
20130323801 Chilton et al. Dec 2013 A1
20130330350 Dimasi Dec 2013 A1
20130330709 Beatty et al. Dec 2013 A1
20130330796 Beck et al. Dec 2013 A1
20130330824 Li Dec 2013 A1
20130337516 Herrema Dec 2013 A1
20130337545 Sabbadini et al. Dec 2013 A1
20130344033 Vergnolle et al. Dec 2013 A1
20130345114 Williams et al. Dec 2013 A1
20140004598 Picataggio et al. Jan 2014 A1
20140005108 Bristow Jan 2014 A1
20140010811 Ferrone et al. Jan 2014 A1
20140010829 Bigner et al. Jan 2014 A1
20140017765 Subbian et al. Jan 2014 A1
20140024050 Yoshimura et al. Jan 2014 A1
20140024820 Parkot et al. Jan 2014 A1
20140031541 Heidtman et al. Jan 2014 A1
20140044748 Lee Feb 2014 A1
20140045231 Lynch et al. Feb 2014 A1
20140045261 Wang et al. Feb 2014 A1
20140050693 Skerra et al. Feb 2014 A1
20140051132 Samsonova et al. Feb 2014 A1
20140051136 Liao et al. Feb 2014 A1
20140056841 Vachon Feb 2014 A1
20140057940 Mankowski et al. Feb 2014 A1
20140072595 Benghezal et al. Mar 2014 A1
20140073683 Han et al. Mar 2014 A1
20140079701 Miller et al. Mar 2014 A1
20140080201 Merighi et al. Mar 2014 A1
20140086950 Pascual et al. Mar 2014 A1
20140093521 Benatuil et al. Apr 2014 A1
20140093528 Berkower Apr 2014 A1
20140093534 Bottje et al. Apr 2014 A1
20140093540 Wright et al. Apr 2014 A1
20140093885 Hua et al. Apr 2014 A1
20140093925 Guettler et al. Apr 2014 A1
20140094404 Villaverde Corrales et al. Apr 2014 A1
20140099670 Kostenuik et al. Apr 2014 A1
20140099671 Wu et al. Apr 2014 A1
20140105863 Vanden-Broucke et al. Apr 2014 A1
20140112951 Tang et al. Apr 2014 A1
20140113376 Sorek et al. Apr 2014 A1
20140127216 Balraj et al. May 2014 A1
20140127221 Bakaletz et al. May 2014 A1
20140127765 Osterhout et al. May 2014 A1
20140127780 Zhang et al. May 2014 A1
20140134171 Ghayur et al. May 2014 A1
20140134682 Wittmann et al. May 2014 A1
20140134690 Yan et al. May 2014 A1
20140141482 Pearlman et al. May 2014 A1
20140148582 Gallo et al. May 2014 A1
20140150134 Li et al. May 2014 A1
20140154250 Thompson et al. Jun 2014 A1
20140154252 Thompson et al. Jun 2014 A1
20140154256 Wu et al. Jun 2014 A1
20140154762 Duehring et al. Jun 2014 A1
20140155343 Brahmbhatt et al. Jun 2014 A1
20140155581 Gao et al. Jun 2014 A1
20140161767 Leuschner et al. Jun 2014 A1
20140161800 Blankenship et al. Jun 2014 A1
20140162279 Ramseier et al. Jun 2014 A1
20140162337 Chotani et al. Jun 2014 A1
20140162952 Katagiri et al. Jun 2014 A1
20140173774 Pareddy et al. Jun 2014 A1
20140173780 Pareddy et al. Jun 2014 A1
20140178341 Zhao et al. Jun 2014 A1
20140186377 Gu et al. Jul 2014 A1
20140186401 Diamond et al. Jul 2014 A1
20140186884 Nunn, Jr. et al. Jul 2014 A1
20140186902 Botes et al. Jul 2014 A1
20140186904 Botes et al. Jul 2014 A1
20140186913 Botes et al. Jul 2014 A1
20140187491 Wilmen et al. Jul 2014 A1
20140189896 Zhang et al. Jul 2014 A1
20140193861 Botes et al. Jul 2014 A1
20140193865 Botes et al. Jul 2014 A1
20140194346 Aebi et al. Jul 2014 A1
20140199306 Ghosh et al. Jul 2014 A1
20140199737 Botes et al. Jul 2014 A1
20140199742 Shibamoto Jul 2014 A1
20140205538 Wei et al. Jul 2014 A1
20140206064 Bayer et al. Jul 2014 A1
20140206068 Claes et al. Jul 2014 A1
20140206599 Baumann et al. Jul 2014 A1
20140212396 Newman Jul 2014 A1
20140212454 Pasmans et al. Jul 2014 A1
20140212925 Wu et al. Jul 2014 A1
20140219912 Ghayur et al. Aug 2014 A1
20140220019 Ghayur et al. Aug 2014 A1
20140220661 Bermudes Aug 2014 A1
20140227286 Jaffee et al. Aug 2014 A1
20140227291 Barghorn et al. Aug 2014 A1
20140227294 Anderson et al. Aug 2014 A1
20140227750 Picataggio et al. Aug 2014 A1
20140234208 Ghayur et al. Aug 2014 A1
20140234310 Shapiro Aug 2014 A1
20140234363 Masignani et al. Aug 2014 A1
20140242674 Subbian et al. Aug 2014 A1
20140242704 Zelder et al. Aug 2014 A1
20140248309 Kopecko et al. Sep 2014 A1
20140248669 Marliere Sep 2014 A1
20140248673 Botes et al. Sep 2014 A1
20140255345 Grabstein et al. Sep 2014 A1
20140256922 David et al. Sep 2014 A1
20140256960 Takagi et al. Sep 2014 A1
20140271640 Bowdish et al. Sep 2014 A1
20140273164 Liao et al. Sep 2014 A1
20140273165 Liao et al. Sep 2014 A1
20140287419 Althoff et al. Sep 2014 A1
20140289906 Althoff et al. Sep 2014 A1
20140294891 Szalay et al. Oct 2014 A1
20140296480 Sanchez Garcia et al. Oct 2014 A1
20140298499 Gray et al. Oct 2014 A1
20140302078 Masignani et al. Oct 2014 A1
20140302094 Titball et al. Oct 2014 A1
20140308286 Ghayur et al. Oct 2014 A1
20140322779 Burgard et al. Oct 2014 A1
20140322790 Sebastian et al. Oct 2014 A1
20140328794 Rosen et al. Nov 2014 A1
20140328849 Reif et al. Nov 2014 A1
20140328875 Garcia-Sastre et al. Nov 2014 A1
20140330032 Lynch et al. Nov 2014 A1
20140335014 Ghayur et al. Nov 2014 A1
20140335087 Buechler et al. Nov 2014 A1
20140335564 Hsieh et al. Nov 2014 A1
20140341943 Rikihisa Nov 2014 A1
20140342405 Rosen et al. Nov 2014 A1
20140342451 Kwon et al. Nov 2014 A1
20140343267 Hsieh et al. Nov 2014 A1
20140348817 Jiang et al. Nov 2014 A1
20140356389 Masignani et al. Dec 2014 A1
20140356916 Wittmann et al. Dec 2014 A1
20140363847 Fujii et al. Dec 2014 A1
20140369986 Padmanabhan et al. Dec 2014 A1
20140370036 Shapiro Dec 2014 A1
20140371194 Seed et al. Dec 2014 A1
20140377752 Lee et al. Dec 2014 A1
20140377858 Wu et al. Dec 2014 A1
20140377860 Wu et al. Dec 2014 A1
20140378372 Mogelsvang et al. Dec 2014 A1
20150004665 Chotani et al. Jan 2015 A1
20150004705 Lu et al. Jan 2015 A1
20150010592 Wacker et al. Jan 2015 A1
20150017095 Ghayur et al. Jan 2015 A1
20150017138 Fruehauf et al. Jan 2015 A1
20150017204 Bermudes Jan 2015 A1
20150018522 Qasba et al. Jan 2015 A1
20150030573 Fruehauf et al. Jan 2015 A1
20150030584 Rummel Jan 2015 A1
20150030624 Armstrong et al. Jan 2015 A1
20150031658 Seed et al. Jan 2015 A1
20150037860 Botes et al. Feb 2015 A1
20150037861 Beck et al. Feb 2015 A1
20150044243 Wisniewski et al. Feb 2015 A1
20150044256 Dattwyler et al. Feb 2015 A1
20150044722 Tremblay et al. Feb 2015 A1
20150044755 Yocum et al. Feb 2015 A1
20150045535 Berka et al. Feb 2015 A1
20150050215 Novak et al. Feb 2015 A1
20150050308 van der Hoek Feb 2015 A1
20150056232 Curtiss Feb 2015 A1
20150056651 Lynch et al. Feb 2015 A1
20150056666 Reth et al. Feb 2015 A1
20150056684 Lipscomb et al. Feb 2015 A1
20150057191 Tissot et al. Feb 2015 A1
20150071904 Collins et al. Mar 2015 A1
20150071957 Kelly et al. Mar 2015 A1
20150072384 Lynch et al. Mar 2015 A1
20150079063 Fima et al. Mar 2015 A1
20150079654 Botes et al. Mar 2015 A1
20150087035 Picataggio et al. Mar 2015 A1
20150093358 Fares et al. Apr 2015 A1
20150093387 Wu et al. Apr 2015 A1
20150098900 Ebens et al. Apr 2015 A1
20150099707 Pastan et al. Apr 2015 A1
20150104452 Ghayur et al. Apr 2015 A1
20150104514 Kaplan et al. Apr 2015 A1
20150110720 Markiv et al. Apr 2015 A1
20150110836 Glanville Apr 2015 A1
20150111262 Botes et al. Apr 2015 A1
20150112652 Palsson Apr 2015 A1
20150119354 Kahne et al. Apr 2015 A1
20150125849 Yeh et al. May 2015 A1
20150126445 Fares et al. May 2015 A1
20150132218 Asundi et al. May 2015 A1
20150132330 Garcia-Sastre et al. May 2015 A1
20150132368 Muro Galindo et al. May 2015 A1
20150133375 Mogelsvang et al. May 2015 A1
20150139940 Bermudez Humaran et al. May 2015 A1
20150140614 Reth et al. May 2015 A1
20150141331 Fares et al. May 2015 A1
20150141622 Alitalo et al. May 2015 A1
20150147343 Nitsch et al. May 2015 A1
20150148291 Fima et al. May 2015 A1
20150150959 Watnick Jun 2015 A1
20150152161 Reiter et al. Jun 2015 A1
20150153358 Ayuso et al. Jun 2015 A1
20150166594 Kahne et al. Jun 2015 A1
20150166661 Chen et al. Jun 2015 A1
20150166975 Prakash et al. Jun 2015 A1
20150183867 Ghayur et al. Jul 2015 A1
20150184220 Sebastian et al. Jul 2015 A1
20150190496 Hargis et al. Jul 2015 A1
20150191691 Bisanz et al. Jul 2015 A1
20150197748 Liu et al. Jul 2015 A1
20150197775 Iida et al. Jul 2015 A1
20150202284 Dimitrov Jul 2015 A1
20150203578 Bebbington et al. Jul 2015 A1
20150203835 Nunn, Jr. et al. Jul 2015 A1
20150203854 Williams et al. Jul 2015 A1
20150211031 Lee et al. Jul 2015 A1
20150216954 Bottje et al. Aug 2015 A1
20150216965 Diamond et al. Aug 2015 A1
20150218231 Bakaletz et al. Aug 2015 A1
20150218254 Sabbadini et al. Aug 2015 A1
20150218261 Barghorn et al. Aug 2015 A1
20150218544 Jiang et al. Aug 2015 A9
20150218590 Mcauliffe et al. Aug 2015 A1
20150225692 Bhatia et al. Aug 2015 A1
20150225732 Williams et al. Aug 2015 A1
20150225744 Beck et al. Aug 2015 A1
20150231207 Kaspar Aug 2015 A1
20150232550 Ghayur et al. Aug 2015 A1
20150232557 Tan et al. Aug 2015 A1
20150232861 Delisa et al. Aug 2015 A1
20150232903 Hlidesaki et al. Aug 2015 A1
20150240226 Mathur et al. Aug 2015 A1
20150246137 Guo et al. Sep 2015 A1
20150247172 Herrema Sep 2015 A1
20150252097 Camphausen et al. Sep 2015 A1
20150258209 Benz et al. Sep 2015 A1
20150259389 Berka et al. Sep 2015 A9
20150259418 Barth et al. Sep 2015 A1
20150266939 Vogan et al. Sep 2015 A1
20150266977 Hsieh et al. Sep 2015 A1
20150267211 Botes et al. Sep 2015 A1
20150273045 Kolander et al. Oct 2015 A1
20150273048 Kang et al. Oct 2015 A1
20150275241 Herrema Oct 2015 A1
20150275242 Osterhout et al. Oct 2015 A1
20150284467 Lipp et al. Oct 2015 A1
20150284760 Schendzielorz et al. Oct 2015 A1
20150291667 Dirtenzo Oct 2015 A1
20150307560 DeLisa et al. Oct 2015 A1
20150307576 Bowdish et al. Oct 2015 A1
20150307854 Botes et al. Oct 2015 A1
20150315283 Ghayur et al. Nov 2015 A1
20150329619 Rosen et al. Nov 2015 A1
20150329644 Shi et al. Nov 2015 A1
20150329882 Lee et al. Nov 2015 A1
20150335729 Garcia-Sastre et al. Nov 2015 A1
20150337053 McCarthy et al. Nov 2015 A1
20150337320 Devroe et al. Nov 2015 A1
20150337321 Mach et al. Nov 2015 A1
20150337340 Alvizo et al. Nov 2015 A1
20150344529 Yonemura et al. Dec 2015 A1
20150344838 Campbell et al. Dec 2015 A1
20150344862 Schellenberger et al. Dec 2015 A1
20150344894 Giacalone et al. Dec 2015 A1
20150344916 Lynch et al. Dec 2015 A1
20150351390 Castle et al. Dec 2015 A1
20150353911 Salas et al. Dec 2015 A1
20150355172 Kraus et al. Dec 2015 A1
20150361141 Buttigieg et al. Dec 2015 A1
20150361458 Botes et al. Dec 2015 A1
20150361459 Botes et al. Dec 2015 A1
20150361460 Botes et al. Dec 2015 A1
20150361462 Botes et al. Dec 2015 A1
20150361463 Botes et al. Dec 2015 A1
20150361464 Botes et al. Dec 2015 A1
20150361465 Botes et al. Dec 2015 A1
20150361466 Botes et al. Dec 2015 A1
20150361467 Botes et al. Dec 2015 A1
20150361468 Botes et al. Dec 2015 A1
20150366889 Brynildsen et al. Dec 2015 A1
20150368630 Fima et al. Dec 2015 A9
20160002672 Beck et al. Jan 2016 A1
20160010132 Subbian et al. Jan 2016 A1
20160017310 Nunn, Jr. et al. Jan 2016 A1
20160017339 Liao et al. Jan 2016 A1
20160024157 Masignani et al. Jan 2016 A1
20160032323 Beck et al. Feb 2016 A1
20160038581 Bielke et al. Feb 2016 A1
20160040139 Zhang et al. Feb 2016 A1
20160046675 Kwong et al. Feb 2016 A1
20160060635 Liao et al. Mar 2016 A1
20160060663 Grammann et al. Mar 2016 A1
20160068831 Beck et al. Mar 2016 A1
20160068882 Zhang et al. Mar 2016 A1
20160097064 Zhang et al. Apr 2016 A1
20160101168 Husseiny Elsayed et al. Apr 2016 A1
20160114025 Bottje et al. Apr 2016 A1
20160130618 Hara et al. May 2016 A1
20160138052 Mordaka May 2016 A1
20160145657 Botes et al. May 2016 A1
20160152957 Botes et al. Jun 2016 A1
20160153012 Marliere Jun 2016 A1
20160160245 Yocum et al. Jun 2016 A1
20160160255 Botes et al. Jun 2016 A1
20160168610 Conradie et al. Jun 2016 A1
20160199328 Collins et al. Jul 2016 A1
20160201097 Botes et al. Jul 2016 A1
20160222393 Bermudes Aug 2016 A1
20160222420 Botes et al. Aug 2016 A1
20160222425 Botes et al. Aug 2016 A1
20160244489 Masignani et al. Aug 2016 A1
20160244769 Xia et al. Aug 2016 A1
20160251633 Muramatsu et al. Sep 2016 A1
20160257975 Lynch et al. Sep 2016 A1
20160272950 Corthals et al. Sep 2016 A1
20160289278 Bakaletz et al. Oct 2016 A1
20160289632 Gerke et al. Oct 2016 A1
20160289776 Eggeling et al. Oct 2016 A1
20170051260 Bermudes Feb 2017 A1
20170157239 Bermudes Jun 2017 A1
Foreign Referenced Citations (184)
Number Date Country
2007216854 Oct 2007 AU
2002225265 Dec 2007 AU
9609016 Jul 1999 BR
9812079 Sep 2000 BR
0014491 Mar 2004 BR
2224075 Dec 1996 CA
2302866 Mar 1999 CA
2386465 Apr 2001 CA
2388045 Apr 2001 CA
2456055 Feb 2003 CA
2652538 Nov 2007 CA
1555268 Dec 2004 CN
1668644 Sep 2005 CN
96196140 Sep 2005 CN
98811030 Sep 2005 CN
00816714 Nov 2007 CN
101132813 Feb 2008 CN
101151272 Mar 2008 CN
101203247 Jun 2008 CN
102317303 Jan 2012 CN
102405053 Apr 2012 CN
103732222 Apr 2014 CN
0285152 Oct 1988 EP
0322237 Jun 1989 EP
0338679 Oct 1989 EP
0357208 Mar 1990 EP
0400958 Dec 1990 EP
0564121 Oct 1993 EP
0833660 Apr 1998 EP
0973911 Jan 2000 EP
1012232 Jun 2000 EP
1068339 Jan 2001 EP
L261369 Dec 2002 EP
L270730 Jan 2003 EP
L402036 Mar 2004 EP
L407052 Apr 2004 EP
1513924 Mar 2005 EP
00195672 Sep 2005 EP
1644048 Apr 2006 EP
1655370 May 2006 EP
1689432 Dec 2009 EP
1786838 Apr 2010 EP
0873363 Oct 2010 EP
2611823 Jul 2013 EP
2143437 Aug 2013 EP
2370107 Aug 2017 EP
1017253 Jul 2004 HK
1033956 Nov 2006 HK
2001514889 Sep 2001 JP
2002524024 Aug 2002 JP
2002535258 Oct 2002 JP
2003520808 Jul 2003 JP
2003530836 Oct 2003 JP
2004520810 Jul 2004 JP
2004536020 Dec 2004 JP
2006500009 Jan 2006 JP
2006510735 Mar 2006 JP
2006516089 Jun 2006 JP
2006516192 Jun 2006 JP
2006517972 Aug 2006 JP
2007526907 Sep 2007 JP
2007530560 Nov 2007 JP
2008500949 Jan 2008 JP
2008137989 Jun 2008 JP
2009017883 Jan 2009 JP
2009269922 Nov 2009 JP
4454152 Apr 2010 JP
2010131015 Jun 2010 JP
2010248255 Jun 2010 JP
4703567 Jun 2011 JP
4981229 Jul 2012 JP
2013022091 Feb 2013 JP
5478285 Apr 2014 JP
5727361 Jun 2015 JP
3482213 Oct 2016 JP
2016533174 Oct 2016 JP
20030029847 Apr 2003 KR
20040014392 Feb 2004 KR
20050004914 Jan 2005 KR
20050042082 May 2005 KR
20050103314 Oct 2005 KR
20060130038 Dec 2006 KR
101092730 Dec 2011 KR
20140089341 Jul 2014 KR
2319709 Jul 2014 RU
201708536 Mar 2017 TW
WO1991000014 Jan 1991 WO
WO1991006317 May 1991 WO
WO1992011361 Jul 1992 WO
WO1992015689 Sep 1992 WO
WO1995002048 Jan 1995 WO
WO1995005832 Mar 1995 WO
WO1995005835 Mar 1995 WO
WO1995009655 Apr 1995 WO
WO1996011277 Apr 1996 WO
WO1996014087 May 1996 WO
WO1996034631 Nov 1996 WO
WO1996038159 Dec 1996 WO
WO1996040238 Dec 1996 WO
WO1996400238 Dec 1996 WO
WO1997008955 Mar 1997 WO
WO1997014782 Apr 1997 WO
WO1997018225 May 1997 WO
WO1997018837 May 1997 WO
WO1997019688 Jun 1997 WO
WO1997025061 Jul 1997 WO
WO1998033923 Aug 1998 WO
WO1998053854 Dec 1998 WO
WO1999010014 Mar 1999 WO
WO1999010485 Mar 1999 WO
WO1999013003 Mar 1999 WO
WO1999013053 Mar 1999 WO
WO1999052563 Oct 1999 WO
WO0004919 Feb 2000 WO
WO2000004919 Feb 2000 WO
WO2000009733 Feb 2000 WO
WO2000022110 Feb 2000 WO
WO0047222 Aug 2000 WO
WO2000047222 Aug 2000 WO
WO2001014579 Mar 2001 WO
WO0125397 Apr 2001 WO
WO2001025397 Apr 2001 WO
WO2001025399 Apr 2001 WO
WO2002020809 Mar 2002 WO
WO2002061113 Aug 2002 WO
WO02067983 Sep 2002 WO
WO02070645 Sep 2002 WO
WO2002067983 Sep 2002 WO
WO2002070645 Sep 2002 WO
WO2002074336 Sep 2002 WO
WO2002083149 Oct 2002 WO
WO2002083214 Oct 2002 WO
WO2002087494 Nov 2002 WO
WO2002832149 Nov 2002 WO
WO03014380 Feb 2003 WO
WO2003014380 Feb 2003 WO
WO2003063593 Feb 2003 WO
WO03018611 Mar 2003 WO
WO2003072125 Sep 2003 WO
WO2003102168 Dec 2003 WO
WO2004016281 Feb 2004 WO
WO2004043232 May 2004 WO
WO2004076484 Sep 2004 WO
WO2004103404 Dec 2004 WO
WO2005005630 Jan 2005 WO
WO2005014618 Feb 2005 WO
WO2005018332 Mar 2005 WO
WO2005054477 Jun 2005 WO
WO2005065418 Jul 2005 WO
WO2005071088 Aug 2005 WO
WO2006010070 Jan 2006 WO
WO2006013441 Feb 2006 WO
WO2006017929 Feb 2006 WO
WO2006048344 May 2006 WO
WO2006073970 Jul 2006 WO
WO2006116545 Nov 2006 WO
WO2007016185 Feb 2007 WO
WO2007048022 Apr 2007 WO
WO2007083193 Jul 2007 WO
WO2008073148 Jun 2008 WO
WO2008089132 Jul 2008 WO
WO2008091375 Jul 2008 WO
WO2008156702 Dec 2008 WO
WO2009006450 Jan 2009 WO
WO2009006453 Jan 2009 WO
WO2009014650 Jan 2009 WO
WO2009021548 Feb 2009 WO
WO2009086116 Jul 2009 WO
WO2009111177 Sep 2009 WO
WO2009126189 Oct 2009 WO
WO2009139985 Nov 2009 WO
WO2009145956 Dec 2009 WO
WO2009150433 Dec 2009 WO
WO2009152480 Dec 2009 WO
WO2010027423 Mar 2010 WO
WO2010036391 Apr 2010 WO
WO2010057009 May 2010 WO
WO2010091294 Aug 2010 WO
WO2011017137 Feb 2011 WO
WO2011086172 Jul 2011 WO
WO2012072806 Jun 2012 WO
WO2012104025 Aug 2012 WO
WO2012150269 Nov 2012 WO
WO2013067185 May 2013 WO
Non-Patent Literature Citations (8)
Entry
Lazar et al. Mol. Cellular Biol. 8: 1247-1252, 1988.
U.S. Appl. No. 10/087,451, filed Oct. 2, 2018, Bermudes.
U.S. Appl. No. 10/125,328, filed Nov. 13, 2018, Eizenga et al.
U.S. Appl. No. 10/188,722, filed Jan. 29, 2019, Bermudes.
U.S. Appl. No. 10/286,051, filed May 14, 2019, Bermudes.
U.S. Appl. No. 10/364,435, filed Jul. 30, 2019, Bermudes.
U.S. Appl. No. 10/449,237, filed Oct. 22, 2019, Bermudes.
U.S. Appl. No. 10/501,746, filed Dec. 10, 2019, Bermudes.
Provisional Applications (1)
Number Date Country
62431208 Dec 2016 US