The present invention relates to microelectronic packaging and elements thereof and more specifically to an assembly for electrically interconnecting a plurality of processing cores in a common wafer.
The performance of larger processors or high performance computing systems has a diminishing return as the number of processing cores increases. CPU cores and SRAM may compete for limited area on a monolithic die, conventional network grid topologies have a larger number of hops and a higher latency as the number of cores increases, and the resistive-capacitive delay of metal wiring may increase as the number of cores increases, requiring frequent re-timing.
Conventional design architectures limit connections between processor core nodes to orthogonal horizontal and vertical paths, known as Manhattan routes. A hierarchical mesh network topology may improve latency within a network, but such topology is still subject to Manhattan route limitations and increasingly longer routes as the number of cores increases, so such systems are generally limited to connections between neighboring nodes than propagating connections across several nodes. Therefore, despite the advances that have been made in multi-core network grid topologies, there is still a need for further improvements.
One aspect of the disclosure provides a microelectronic assembly that may include a semiconductor wafer having first and second opposite surfaces extending in first and second horizontal orthogonal directions, the semiconductor wafer having a grid of network nodes electrically connected to one another via local adjacent connections each extending in only one of the first and second horizontal orthogonal directions, and an interconnection structure comprising a low-loss dielectric material and having first and second opposite surfaces extending in third and fourth horizontal oblique directions that are each oriented at an oblique angle relative to the first and second directions, the interconnection structure having electrical connections including local oblique connections each extending in only one of the third and fourth horizontal oblique directions. The semiconductor wafer may be directly bonded to the interconnection structure such that each of the network nodes is electrically connected with at least one of the other network nodes. According to some examples, the electrical connection may be formed using direct dielectric bonding, non-adhesive techniques, such as a ZiBond® direct bonding technique, or a DBI® hybrid bonding technique, thermocompression bonding, or other techniques.
Another aspect of the disclosure provides a method including forming local adjacent connections on a surface of a semiconductor wafer, the surface extending in first and second horizontal orthogonal directions, the local adjacent connections electrically connecting a grid of network nodes to one another, the local adjacent connections each extending in only one of the first and second horizontal orthogonal directions. The method may also include forming local oblique connections on a surface of an interconnection structure comprising a low-loss dielectric material, the surface extending in third and fourth horizontal oblique directions that are each oriented at an oblique angle relative to the first and second directions, the local oblique connections each extending in only one of the third and fourth horizontal oblique directions. The method may further include directly bonding the semiconductor wafer to the interconnection structure such that each of the network nodes is electrically connected with at least one of the other network nodes, for example, using a direct bonding technique.
As used in this disclosure with reference to an element having a planar surface, a statement that an electrically conductive element is “at” a surface of a substrate indicates that, when the substrate is not assembled with any other element, the electrically conductive element is available for contact with a theoretical point moving in a direction perpendicular to the surface of the substrate toward the surface of the substrate from outside the substrate. Thus, a terminal or other conductive element which is at a surface of a substrate may project from such surface; may be flush with such surface; or may be recessed relative to such surface in a hole or depression in the substrate. In some embodiments, the conductive element may be attached to the surface or may be disposed in one or more layers of dielectric coating on the said surface.
In this disclosure, first and second orthogonal directions X and Y are referred to herein as “horizontal” or “lateral” directions, whereas the directions perpendicular to a plane defined by the X and Y directions, such as a third direction Z, are referred to herein as upward or downward directions and are also referred to herein as the “vertical” directions. The directions referred to herein are in the frame of reference of the structures referred to. Thus, these directions may lie at any orientation to the normal or gravitational frame of reference. A statement that one feature is disposed at a greater height “above a surface” than another feature means that the one feature is at a greater distance in the same orthogonal direction away from the surface than the other feature. Conversely, a statement that one feature is disposed at a lesser height “above a surface” than another feature means that the one feature is at a smaller distance in the same orthogonal direction away from the surface than the other feature.
As illustrated in
In contrast, as illustrated in
As illustrated in
Referring to
Referring to
In an example in which the adjacent nodes 64 are horizontally and vertically spaced apart from one another by 8 mm, each of the local oblique connections 76 will have a length of 11.3 mm, and each of the longer oblique connections 78 will have a length of 22.6 mm Therefore, the local oblique connections 76 of 11.3 mm are each 29.3% less than the 16 mm length of the local opposite connections 46 of
The oblique network layer 72 may extend within the interconnection structure 70 that is affixed to an active surface of the wafer 60. The interconnection structure 70 may comprise a low-loss directly-bonded interconnect layer or layers that permit the oblique routing of the local oblique connections 76 and the longer oblique connections 78. Suitable low-loss materials for the oblique network layer 72 may include glass, quartz, sapphire, or ZIF. The use of low-loss materials for the interconnection structure 70 that includes the oblique network layer 72 permits longer-distance connections to experience shorter latency than the same connections in semiconductor material.
The interconnection structure 70 may be bonded in a stacked arrangement with the wafer 60 using various bonding techniques, including using direct dielectric bonding, non-adhesive techniques, such as a ZiBond® direct bonding technique, or a DBI® hybrid bonding technique, both available from Invensas Bonding Technologies, Inc. (formerly Ziptronix, Inc.), a subsidiary of Xperi Corp. (see for example, U.S. Pat. Nos. 6,864,585 and 7,485,968, which are incorporated herein in their entirety). According to some examples, thermocompression bonding may be used. This process may enable the interconnection structure 70 to bond to the wafer 60 with adjacent electrical connections at an extremely fine pitch. For example, the connection may be at a pitch as low as approximately 1μ-10μ. In such a direct bonding example, a surface of the interconnection structure 70 may be laminated onto a confronting exposed front surface of the wafer 60, and heat and pressure may be used to bond the confronting surfaces to one another.
Referring to
Referring now to
The resulting connection patterns in the interconnection structure 70 relative to one of the reticles 52 are shown in
Accordingly, referring to
The core layer 90, the interposer 91, and the wafer 60 may each have electrical connections extending in the first set of orthogonal horizontal directions X and Y, and the interconnection structure 70 may have electrical interconnections extending in the second set of oblique horizontal directions V and W, similar to the connections described above with regard to the microelectronic assembly 50. Expansion wafers 92 similar to the base wafer 60 may be stacked above the base wafer 60. In the embodiment shown, the core layer 90, the base wafer 60, and the expansion wafers 92 may together function as a hierarchical mesh network.
The core layer 90 may be flip-chip mounted to a first surface 82 of the substrate 81 via conductive bumps 84, which may be spaced from one another at a 150μ pitch, for example. A second surface 83 of the substrate 81 may have conductive terminals 85 exposed thereat that are configured for electrical connection with a component external to the microelectronic package 80. Each of the core layer 90, the interposer 91, the interconnection structure 70, the base wafer 60, and the expansion wafers 92 may be directly bonded to one another in a vertical stack overlying the substrate 80, using any of the various bonding techniques described above with reference to the microelectronic assembly 50. Through-silicon vias, or TSVs (not shown), may be used for inter-wafer electrical interconnection among the aforementioned layers, wafers, and structures.
The microelectronic assemblies and microelectronic packages described above with reference to
In the exemplary system 100 shown, the system can include a circuit panel, motherboard, or riser panel 102 such as a flexible printed circuit board, and the circuit panel can include numerous conductors 104, of which only one is depicted in
In a particular embodiment, the system 100 can also include a processor such as the semiconductor chip 108, such that each module or component 106 can be configured to transfer a number N of data bits in parallel in a clock cycle, and the processor can be configured to transfer a number M of data bits in parallel in a clock cycle, M being greater than or equal to N.
In the example depicted in
Modules or components 106 and components 108 and 111 can be mounted in a common housing 101, schematically depicted in broken lines, and can be electrically interconnected with one another as necessary to form the desired circuit. The housing 101 is depicted as a portable housing of the type usable, for example, in a cellular telephone or personal digital assistant, and screen 110 can be exposed at the surface of the housing. In embodiments where a structure 106 includes a light-sensitive element such as an imaging chip, a lens 111 or other optical device also can be provided for routing light to the structure. Again, the simplified system shown in
It will be appreciated that the various dependent claims and the features set forth therein can be combined in different ways than presented in the initial claims. It will also be appreciated that the features described in connection with individual embodiments may be shared with others of the described embodiments. For example, the microelectronic package 80 shown in
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5753536 | Sugiyama et al. | May 1998 | A |
5771555 | Eda et al. | Jun 1998 | A |
6080640 | Gardner et al. | Jun 2000 | A |
6423640 | Lee et al. | Jul 2002 | B1 |
6465892 | Suga | Oct 2002 | B1 |
6760314 | Iwata | Jul 2004 | B1 |
6887769 | Kellar et al. | May 2005 | B2 |
6908027 | Tolchinsky et al. | Jun 2005 | B2 |
6910198 | Teig et al. | Jun 2005 | B2 |
7045453 | Canaperi et al. | May 2006 | B2 |
7105980 | Abbott et al. | Sep 2006 | B2 |
7117468 | Teig et al. | Oct 2006 | B1 |
7193423 | Dalton et al. | Mar 2007 | B1 |
7750488 | Patti et al. | Jul 2010 | B2 |
7803693 | Trezza | Sep 2010 | B2 |
8183127 | Patti et al. | May 2012 | B2 |
8349635 | Gan et al. | Jan 2013 | B1 |
8377798 | Peng et al. | Feb 2013 | B2 |
8441131 | Ryan | May 2013 | B2 |
8476165 | Trickett et al. | Jul 2013 | B2 |
8482132 | Yang et al. | Jul 2013 | B2 |
8501537 | Sadaka et al. | Aug 2013 | B2 |
8524533 | Tong et al. | Sep 2013 | B2 |
8620164 | Heck et al. | Dec 2013 | B2 |
8647987 | Yang et al. | Feb 2014 | B2 |
8697493 | Sadaka | Apr 2014 | B2 |
8716105 | Sadaka et al. | May 2014 | B2 |
8802538 | Liu | Aug 2014 | B1 |
8809123 | Liu et al. | Aug 2014 | B2 |
8841002 | Tong | Sep 2014 | B2 |
9093350 | Endo et al. | Jul 2015 | B2 |
9142517 | Liu et al. | Sep 2015 | B2 |
9171756 | Enquist et al. | Oct 2015 | B2 |
9184125 | Enquist et al. | Nov 2015 | B2 |
9224704 | Landru | Dec 2015 | B2 |
9230941 | Chen et al. | Jan 2016 | B2 |
9257399 | Kuang et al. | Feb 2016 | B2 |
9299736 | Chen et al. | Mar 2016 | B2 |
9312229 | Chen et al. | Apr 2016 | B2 |
9331149 | Tong et al. | May 2016 | B2 |
9337235 | Chen et al. | May 2016 | B2 |
9385024 | Tong et al. | Jul 2016 | B2 |
9394161 | Cheng et al. | Jul 2016 | B2 |
9431368 | Enquist et al. | Aug 2016 | B2 |
9437572 | Chen et al. | Sep 2016 | B2 |
9443796 | Chou et al. | Sep 2016 | B2 |
9461007 | Chun et al. | Oct 2016 | B2 |
9496239 | Edelstein et al. | Nov 2016 | B1 |
9536848 | England et al. | Jan 2017 | B2 |
9559081 | Lai et al. | Jan 2017 | B1 |
9620481 | Edelstein et al. | Apr 2017 | B2 |
9656852 | Cheng et al. | May 2017 | B2 |
9723716 | Meinhold | Aug 2017 | B2 |
9728521 | Tsai et al. | Aug 2017 | B2 |
9741620 | Uzoh et al. | Aug 2017 | B2 |
9799587 | Fujii et al. | Oct 2017 | B2 |
9852988 | Enquist et al. | Dec 2017 | B2 |
9893004 | Yazdani | Feb 2018 | B2 |
9899442 | Katkar | Feb 2018 | B2 |
9929050 | Lin | Mar 2018 | B2 |
9941241 | Edelstein et al. | Apr 2018 | B2 |
9941243 | Kim et al. | Apr 2018 | B2 |
9953941 | Enquist | Apr 2018 | B2 |
9960142 | Chen et al. | May 2018 | B2 |
10002844 | Wang et al. | Jun 2018 | B1 |
10026605 | Doub et al. | Jul 2018 | B2 |
10075657 | Fahim et al. | Sep 2018 | B2 |
10204893 | Uzoh et al. | Feb 2019 | B2 |
10269756 | Uzoh | Apr 2019 | B2 |
10276619 | Kao et al. | Apr 2019 | B2 |
10276909 | Huang et al. | Apr 2019 | B2 |
10418277 | Cheng et al. | Sep 2019 | B2 |
10446456 | Shen et al. | Oct 2019 | B2 |
10446487 | Huang et al. | Oct 2019 | B2 |
10446532 | Uzoh et al. | Oct 2019 | B2 |
10508030 | Katkar et al. | Dec 2019 | B2 |
10522499 | Enquist et al. | Dec 2019 | B2 |
10707087 | Uzoh et al. | Jul 2020 | B2 |
10784191 | Huang et al. | Sep 2020 | B2 |
10790262 | Uzoh et al. | Sep 2020 | B2 |
10840135 | Uzoh | Nov 2020 | B2 |
10840205 | Fountain, Jr. et al. | Nov 2020 | B2 |
10854578 | Morein | Dec 2020 | B2 |
10879212 | Uzoh et al. | Dec 2020 | B2 |
10886177 | DeLaCruz et al. | Jan 2021 | B2 |
10892246 | Uzoh | Jan 2021 | B2 |
10923408 | Huang et al. | Feb 2021 | B2 |
10923413 | DeLaCruz | Feb 2021 | B2 |
10950547 | Mohammed et al. | Mar 2021 | B2 |
10964664 | Mandalapu et al. | Mar 2021 | B2 |
10985133 | Uzoh | Apr 2021 | B2 |
10991804 | DeLaCruz et al. | Apr 2021 | B2 |
10998292 | Lee et al. | May 2021 | B2 |
11004757 | Katkar et al. | May 2021 | B2 |
11011494 | Gao et al. | May 2021 | B2 |
11011503 | Wang et al. | May 2021 | B2 |
11031285 | Katkar et al. | Jun 2021 | B2 |
11037919 | Uzoh et al. | Jun 2021 | B2 |
11056348 | Theil | Jul 2021 | B2 |
11069734 | Katkar | Jul 2021 | B2 |
11088099 | Katkar et al. | Aug 2021 | B2 |
11127738 | DeLaCruz et al. | Sep 2021 | B2 |
11158573 | Uzoh et al. | Oct 2021 | B2 |
11158606 | Gao et al. | Oct 2021 | B2 |
11169326 | Huang et al. | Nov 2021 | B2 |
11171117 | Gao et al. | Nov 2021 | B2 |
11176450 | Teig et al. | Nov 2021 | B2 |
11195748 | Uzoh et al. | Dec 2021 | B2 |
11205625 | DeLaCruz et al. | Dec 2021 | B2 |
11244920 | Uzoh | Feb 2022 | B2 |
11256004 | Haba et al. | Feb 2022 | B2 |
11264357 | DeLaCruz et al. | Mar 2022 | B1 |
11276676 | Enquist et al. | Mar 2022 | B2 |
11296044 | Gao et al. | Apr 2022 | B2 |
11296053 | Uzoh et al. | Apr 2022 | B2 |
11329034 | Tao et al. | May 2022 | B2 |
11348898 | DeLaCruz et al. | May 2022 | B2 |
11355404 | Gao et al. | Jun 2022 | B2 |
11355443 | Huang et al. | Jun 2022 | B2 |
11367652 | Uzoh et al. | Jun 2022 | B2 |
11373963 | DeLaCruz et al. | Jun 2022 | B2 |
11380597 | Katkar et al. | Jul 2022 | B2 |
11385278 | DeLaCruz et al. | Jul 2022 | B2 |
11387202 | Haba et al. | Jul 2022 | B2 |
11387214 | Wang et al. | Jul 2022 | B2 |
11393779 | Gao et al. | Jul 2022 | B2 |
11462419 | Haba | Oct 2022 | B2 |
11476213 | Haba et al. | Oct 2022 | B2 |
11515291 | DeLaCruz et al. | Nov 2022 | B2 |
20030005399 | Igarashi | Jan 2003 | A1 |
20030064553 | Oashi | Apr 2003 | A1 |
20040084414 | Sakai et al. | May 2004 | A1 |
20050044195 | Westfall | Feb 2005 | A1 |
20060057945 | Hsu et al. | Mar 2006 | A1 |
20060211153 | Farrar | Sep 2006 | A1 |
20070111386 | Kim et al. | May 2007 | A1 |
20100065846 | Satoh | Mar 2010 | A1 |
20140175655 | Chen et al. | Jun 2014 | A1 |
20150064498 | Tong | Mar 2015 | A1 |
20150126042 | Pasquale | May 2015 | A1 |
20150171132 | Chen | Jun 2015 | A1 |
20150358393 | Pande | Dec 2015 | A1 |
20160085706 | Deshpande | Mar 2016 | A1 |
20160343682 | Kawasaki | Nov 2016 | A1 |
20180175012 | Wu et al. | Jun 2018 | A1 |
20180182639 | Uzoh et al. | Jun 2018 | A1 |
20180182666 | Uzoh et al. | Jun 2018 | A1 |
20180190580 | Haba et al. | Jul 2018 | A1 |
20180190583 | DeLaCruz et al. | Jul 2018 | A1 |
20180219038 | Gambino et al. | Aug 2018 | A1 |
20180323177 | Yu et al. | Nov 2018 | A1 |
20180323227 | Zhang et al. | Nov 2018 | A1 |
20180331066 | Uzoh et al. | Nov 2018 | A1 |
20190115277 | Yu et al. | Apr 2019 | A1 |
20190131277 | Yang et al. | May 2019 | A1 |
20190221556 | Gomes | Jul 2019 | A1 |
20190333550 | Fisch | Oct 2019 | A1 |
20190385935 | Gao et al. | Dec 2019 | A1 |
20200013765 | Fountain, Jr. et al. | Jan 2020 | A1 |
20200035641 | Fountain, Jr. et al. | Jan 2020 | A1 |
20200058622 | Chen | Feb 2020 | A1 |
20200294908 | Haba et al. | Sep 2020 | A1 |
20200328162 | Haba et al. | Oct 2020 | A1 |
20200395321 | Katkar et al. | Dec 2020 | A1 |
20210098412 | Haba et al. | Apr 2021 | A1 |
20210118864 | DeLaCruz et al. | Apr 2021 | A1 |
20210143125 | DeLaCruz et al. | May 2021 | A1 |
20210181510 | Katkar et al. | Jun 2021 | A1 |
20210193603 | DeLaCruz et al. | Jun 2021 | A1 |
20210193624 | DeLaCruz et al. | Jun 2021 | A1 |
20210193625 | Katkar et al. | Jun 2021 | A1 |
20210242152 | Fountain, Jr. et al. | Aug 2021 | A1 |
20210296282 | Gao et al. | Sep 2021 | A1 |
20210305202 | Uzoh et al. | Sep 2021 | A1 |
20210366820 | Uzoh | Nov 2021 | A1 |
20210407941 | Haba | Dec 2021 | A1 |
20220077063 | Haba | Mar 2022 | A1 |
20220077087 | Haba | Mar 2022 | A1 |
20220139867 | Uzoh | May 2022 | A1 |
20220139869 | Gao et al. | May 2022 | A1 |
20220208650 | Gao et al. | Jun 2022 | A1 |
20220208702 | Uzoh | Jun 2022 | A1 |
20220208723 | Katkar et al. | Jun 2022 | A1 |
20220246497 | Fountain, Jr. et al. | Aug 2022 | A1 |
20220285303 | Mirkarimi et al. | Sep 2022 | A1 |
20220319901 | Suwito et al. | Oct 2022 | A1 |
20220320035 | Uzoh et al. | Oct 2022 | A1 |
20220320036 | Gao et al. | Oct 2022 | A1 |
20230005850 | Fountain, Jr. | Jan 2023 | A1 |
20230019869 | Mirkarimi et al. | Jan 2023 | A1 |
20230036441 | Haba et al. | Feb 2023 | A1 |
20230067677 | Lee et al. | Mar 2023 | A1 |
20230069183 | Haba | Mar 2023 | A1 |
20230100032 | Haba et al. | Mar 2023 | A1 |
20230115122 | Uzoh et al. | Apr 2023 | A1 |
20230122531 | Uzoh | Apr 2023 | A1 |
20230123423 | Gao et al. | Apr 2023 | A1 |
20230125395 | Gao et al. | Apr 2023 | A1 |
20230130259 | Haba et al. | Apr 2023 | A1 |
20230132632 | Katkar et al. | May 2023 | A1 |
20230140107 | Uzoh et al. | May 2023 | A1 |
20230142680 | Guevara et al. | May 2023 | A1 |
20230154816 | Haba et al. | May 2023 | A1 |
20230154828 | Haba et al. | May 2023 | A1 |
20230187264 | Uzoh et al. | Jun 2023 | A1 |
20230187317 | Uzoh | Jun 2023 | A1 |
20230187412 | Gao et al. | Jun 2023 | A1 |
Number | Date | Country |
---|---|---|
2013-033786 | Feb 2013 | JP |
2018-160519 | Oct 2018 | JP |
WO 2005043584 | May 2005 | WO |
WO 2014209433 | Dec 2014 | WO |
Entry |
---|
Ker, Ming-Dou et al., “Fully process-compatible layout design on bond pad to improve wire bond reliability in CMOS lcs,” IEEE Transactions on Components and Packaging Technologies, Jun. 2002, vol. 25, No. 2, pp. 309-316. |
Moriceau, H. et al., “Overview of recent direct wafer bonding advances and applications,” Advances in Natural Sciences—Nanoscience and Nanotechnology, 2010, 11 pages. |
Nakanishi, H. et al., “Studies on SiO2—SiO2 bonding with hydrofluoric acid. Room temperature and low stress bonding technique for MEMS,” Sensors and Actuators, 2000, vol. 79, pp. 237-244. |
Oberhammer, J. et al., “Sealing of adhesive bonded devices on wafer level,” Sensors and Actuators A, 2004, vol. 110, No. 1 -3, pp. 407-412, see pp. 407-412, and Figures 1(a)-1(I), 6 pages. |
Plobi, A. et al., “Wafer direct bonding: tailoring adhesion between brittle materials,” Materials Science and Engineering Review Journal, 1999, R25, 88 pages. |
Number | Date | Country | |
---|---|---|---|
20210143125 A1 | May 2021 | US |