Scalable high power fiber laser

Abstract
A modular and scalable high-power fiber laser system is configurable to generate 1 kW or more of laser output, and includes one or more separable pump modules separately disposed from each other, each pump module including a plurality of fiber-coupled component pump sources optically combined by one or more fiber-based pump module pump combiners, each pump module providing one or more pump module fiber outputs, and a gain module separately disposed from the one or more separable pump modules and including one or more gain module pump fiber inputs optically coupled to corresponding ones of the pump module fiber outputs, and including a gain fiber optically coupled to the one or more gain module pump fiber inputs, the gain fiber configured to generate a gain module fiber output power scalable in relation to the number and power of said pump module fiber outputs coupled to the gain fiber.
Description
FIELD

Generally, the field of the present invention is high power fiber lasers. More particularly, the present invention relates to scalable high power continuous-wave and quasi-continuous-wave fiber lasers.


BACKGROUND

Conventional multi-kilowatt industrial fiber laser systems typically employ a non-scalable architecture consisting of multiple component fiber lasers whose outputs are combined with a fused-fiber signal combiner. The total fiber laser system output power is typically in the range of 2 to 6 kW, and the individual component fiber lasers typically have a power in the range of 0.4 to 1.0 kW. Thus, in order to reach total powers in excess of 1 kW, the outputs from multiple fiber lasers (typically two to ten) must be combined.


Such conventional approaches for achieving a high power fiber laser output have several drawbacks made apparent in light of the present disclosure. For example, by combining the multiple individual fiber laser systems significant redundancy is required in optical, electrical, and mechanical components, thereby increasing the system cost, size, and complexity. In addition, fiber laser component systems generally have limited field serviceability, often requiring replacement of the entire fiber laser component system if an optical component thereof fails. Such entire replacement occurs even when the optical component failure is localized to only a portion of the fiber component system, such as a broken fiber. Requiring the replacement of entire fiber laser component systems increases cost for repair of the complete multi-kilowatt system. Field replacement of a fiber laser component system typically requires highly specialized equipment and clean-room conditions, which are not readily available in factory environments, making service costly and disruptive.


The fused-fiber signal combiner causes optical loss and diminishes the beam quality of the individual fiber laser outputs received. This loss negatively impacts efficiency, which determines power consumption and waste-heat generation, and beam quality degradation can reduce the speed in metal-cutting applications. Furthermore, the signal combiner is expensive, requiring costly equipment and considerable process development and control for fabrication, and it can experience unpredictable variation impacting reproducibility and reliability. Fused-fiber signal combiners are also subject to operational damage, including from optical feedback from the work piece, thereby decreasing system reliability.


Utilizing a signal combiner to achieve up to a few kilowatts of power also limits the ability for laser power of the fiber laser system to be upgraded in the field. For example, a fused signal combiner may include empty ports for receiving additional component fiber lasers. However, the beam quality of output beam is degraded whether or not the extra ports are populated with additional component fiber laser system outputs. Also, if the signal combiner has fully populated input ports, upgrading system output power requires the replacement of one or more of the component fiber lasers with a component fiber laser of higher power. Replacing component fiber lasers is expensive, particularly since there is attendant with it limited or no re-use of the replaced component fiber laser, subsystems, or components.


Conventional system designs are also limited with respect to how technological advances can be accommodated or incorporated since many key components are integrated into each component fiber laser. For example, pump diode technology is advancing rapidly, providing increased power, brightness, and efficiency and reduced cost. Active fibers have also experienced significant technological gains in recent years. Incorporating these advances into an existing fiber laser can be difficult or impossible if the pump diodes, fibers, and electronics are all integrated into a single laser module. For example, the interconnections among components within a single laser module would likely be inaccessible or not easily changeable, and changes to critical components would entail significant design ripple, requiring corresponding changes in the other components. Similarly, the mechanical or thermal designs could be impacted by changing a critical component. Thus, conventional high power fiber laser architectures often must either forgo upgrades based on technological advances or commit to costly and time consuming redesign.


A need therefore exists for a multi-kilowatt fiber laser architecture that minimizes cost by eliminating component redundancy, minimizes or eliminates the drawbacks of signal combiners, is easily and cost-effectively serviceable in the field, enables field upgradability, and is sufficiently flexible to accommodate technological advances without significant cost or design ripple.


SUMMARY

According to one aspect of the present invention, a modular and scalable high power fiber laser system configurable to generate 1 kW or more of laser output includes one or more separable pump modules separately disposed from each other, each pump module including a plurality of fiber-coupled component pump sources optically combined by one or more fiber-based pump module pump combiners, each pump module providing one or more pump module fiber outputs, and a gain module separately disposed from the one or more separable pump modules and including one or more gain module pump fiber inputs optically coupled to corresponding ones of the pump module fiber outputs, and including a gain fiber optically coupled to the one or more gain module pump fiber inputs, the gain fiber configured to generate a gain module fiber output power scalable in relation to the number and power of the pump module fiber outputs coupled to the gain fiber.


According to another aspect of the present invention, a high-power fiber laser system includes a gain module configured to generate an output beam of 1 kW or greater at an output beam wavelength, and one or more pump modules optically coupled to the gain module and configured to generate light at a pump wavelength for optically pumping the gain module, wherein the gain module is configured to receive pump light from the one or more pump modules such that the power of the output beam is scalable in accordance with the number and power of pump modules coupled to the gain module.


The foregoing and other objects, features, and advantages will become apparent from the following detailed description, which proceeds with reference to the accompanying figures which are not necessarily to scale.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a perspective view of a fiber laser system in accordance with an aspect of the present invention.



FIG. 1B is a connectivity diagram of the fiber laser system depicted in FIG. 1A in accordance with an aspect of the present invention.



FIG. 2 is a plan view schematic of a fiber laser system in accordance with an aspect of the present invention.



FIG. 3A is a schematic of a pump module of a fiber laser system in accordance with an aspect of the present invention.



FIG. 3B is a schematic of a pump module of a fiber laser system in accordance with an aspect of the present invention.



FIG. 4 is a schematic of another pump module of a fiber laser system in accordance with an aspect of the present invention.



FIG. 5 is a schematic of another pump module of a fiber laser system in accordance with an aspect of the present invention.



FIG. 6 is a schematic of a gain module of a fiber laser system in accordance with an aspect of the present invention.



FIG. 7 is a schematic of another gain module of a fiber laser system in accordance with an aspect of the present invention.



FIG. 8 is a schematic of another gain module of a fiber laser system in accordance with an aspect of the present invention.



FIG. 9 is a schematic of another gain module of a fiber laser system in accordance with an aspect of the present invention.



FIG. 10 is a schematic of another gain module of a fiber laser system in accordance with an aspect of the present invention.



FIG. 11 is a rear view of a gain module combiner of a fiber laser system in accordance with an aspect of the present invention.



FIG. 12 is a rear view of another gain module combiner of a fiber laser system in accordance with an aspect of the present invention.



FIG. 13 is a schematic of another gain module of a fiber laser system in accordance with an aspect of the present invention.



FIG. 14 is a schematic of a combiner stage in accordance with an aspect of the present invention.



FIG. 15 is a schematic of another gain module of a fiber laser system in accordance with an aspect of the present invention.





DETAILED DESCRIPTION

A perspective view of a first embodiment of a highly configurable, modular, and scalable continuous-wave or quasi-continuous-wave high-power fiber laser system 1000 is shown in FIG. 1A. The fiber laser system 1000 includes several bays 1001 which modularly receive different system modules, including system pump modules 1002 and system gain modules 1003, each which can be configured to be separable from the fiber laser system 1000. Additional modules, such as a control module 1004 or a power supply module, also can be modularly disposed in relation to the other system modules of the system 1000. The scalable multi-kilowatt fiber laser system 1000 is depicted in an optional mobile configuration, with a plurality of system modules disposed in a vertical rack arrangement mounted atop a plurality of casters 1005 for convenient movement in an industrial environment. Pump modules 1002 provide one or more pump module fiber outputs 1006 which are optically coupled to one or more gain modules 1003. Fiber laser system 1000 includes a system output 1007 providing about 1 kW or more of output power for various industrial applications and which can be provided by the one or more gain modules 1003. Output power of the system can be scaled by adding additional pump modules 1002 in available system bays 1001 or by upgrading installed pump modules 1002 by swapping old with new.


The modularity and scalability of embodiments herein present numerous manufacturing advantages. For example, many different power levels can be selected without requiring significant redesign between the selected power level configurations. A configuration with a single pump module 1002 and a single gain module 1003 can provide a particular system output power which can be upgraded by installing an additional pump module 1002 (see pump module 1002 shown in dashed lines in FIG. 1) and splicing the pump module output 1006 to the gain module 1003. Due to the modularity, size and weight can be divided between pump and gain modules such that a single person in the field or factory can carry, implement, or service each pump and gain module of the system. This advantage can be particularly significant as the power from a single fiber laser is increased, which has been a consistent trend in the industry; this power scaling trend can continue without resulting in prohibitively large or heavy modules because the pump modules and gain modules do not have to be housed in a single module. The form factor of the laser system can also be configured to support different deployment scenarios. For example, system modules can be mounted in a rack vertically as shown in FIG. 1, horizontally, or in another orientation, or combination thereof. Modules can be physically separated from each other to facilitate integration into a desired space.


In FIG. 1B a schematic is shown for an embodiment of a system 1010 similar to that shown in perspective view in FIG. 1A. The system 1010 includes a plurality of pump modules 1011 providing pump energy to a gain module 1012 which is configured to generate a laser system output 1013. The system 1010 can include one or more expansion slots 1014 to provide configuration changes to the system 1010, such as additional pump or gain modules. A cooling system 1015 is coupled to the pump and gain modules to provide thermal stability therein and to the system 1010 as a whole. The system 1010 is controlled by a controller 1015 configured to monitor and adjust outputs and other properties of the pump modules, gain modules and cooling system.


Referring now to FIG. 2, an embodiment of a high power fiber laser system 20 is shown, in accordance with another aspect of the present invention. The fiber laser system 20 is highly configurable and modular such that the system 20 can be manufactured ab initio for operation at a pre-selected range of output powers, such as between 1 kW or less and multiple KWs, and for upgrade to higher output powers or different performance criteria. The fiber laser system 20 includes one or more component pump modules 22 each separately disposed from the other and modularly separable from the system 20. Each component pump module 22 provides one or more component pump module outputs 24. The fiber laser system 20 also includes one or more gain modules 26 separately disposed from each other and modularly separable from the system 20. The one or more gain modules 26 are optically coupled to the one or more component pump module outputs 24, such that a fiber laser system output beam 28 is produced at a predetermined output power. In the example shown in FIG. 2, a single gain module 26 provides the system output beam 28 by utilizing the pump power of three pump modules 22 coupled to the gain module 26. Slots for additional modularly separable pump modules 22 are shown with spots 23 while corresponding additional pump module outputs for coupling to the gain module 26 are shown with dashed lines 27.


Gain module 26 includes a gain fiber incorporated into a laser oscillator 30 providing laser oscillation between opposite fiber Bragg gratings 31. In some examples, the gain fiber of the gain module 26 includes optical fiber sized to accommodate a predetermined highest output power for the fiber laser system 20. For example, in some embodiments selected maximum operating output powers are in the kW range, such as 1 kW, 2 kW, 3 kW, 4 kW, 5 kW, or higher. The maximum output power of the fiber laser system 20 is determined by the number and output power of pump modules 22 capable of being spliced to the gain module 26. Thus, the fiber laser output beam 28 can be produced without using a plurality of redundant oscillator or amplifier systems, without redundant supporting mechanical and electrical components, and without using a signal combiner to combine a plurality of redundant component fiber laser outputs.


The separate and modular nature of the pump and gain modules 22, 26 allows each to be serviced separately. For example, if a fiber failure occurs in the gain module 26, the gain module 26 can be replaced while each of the installed pump modules remains intact without any or substantial modification. Similarly, if a pump module 22 fails in some fashion, the pump module 22 can be replaced, leaving each other pump module 22 and the gain module 26 in place without any or substantial modification thereof. Systems herein provide robustness advantages as potential failures are more likely to be isolated to particular system modules, which can be interchanged and upgraded without replacing an entire system.


In preferred examples, a pump module 22 includes one or more semiconductor diode laser modules 34 each including one or more semiconductor diode lasers providing one or more diode laser output beams combined and coupled to a diode laser module output optical fiber 36. A plurality of output optical fibers 36 are optically coupled to a pump module pump combiner 38 to combine the diode laser module pump light into a pump module output 24. Pump module pump combiners 38 are configured to transmit low-brightness multimode pump light in a large core, as opposed to signal combiners, which transmit high-brightness signal light in a small core. Pump combiners are often manufactured at less cost than signal combiners since the performance requirements, such as beam quality at the combiner output and optical insertion loss, are typically less demanding.


Combined pump light is coupled out of the pump module 22 through one or more pump module outputs 24. The pump module outputs 24 are optically coupled (e.g., by fiber splicing) to the gain module 26 onto a fiber combiner 40 thereof. The fiber combiner 40 can be the similar in design to the pump module pump combiner 38 associated with each pump module 22. However, in preferred examples, the combiner in the gain module can be a pump-signal combiner, which transmits both signal and pump light. As will be described further hereinafter, pump-signal combiners can be used at a back end of the gain module gain fiber, at a front end of the gain fiber to launch counter-propagating pump light, within or between gain stages (e.g., between an oscillator and an amplifier or between amplifiers), or some combination thereof. In various examples herein, since the performance requirements of the fiber splices between the pump and gain modules are often lower than those for splices that must transmit signal light (e.g., between a component fiber laser and a signal combiner in conventional designs), splicing requirements are relaxed concomitantly, allowing for in situ splicing of the pump module outputs 24 to selected gain module inputs of the fiber combiner 40 under less than clean-room conditions using commercially available equipment. Alignment sensitivity and cleave-angle requirements are lower for splicing outputs 24 to fiber combiner 40 as compared to the splicing of fibers to signal combiners, also contributing to the accessibility of splicing fibers to the fiber combiner 40 in a factory or other field environment. For glass-clad fibers, splicing of the pump module outputs 24 to the fiber combiner 40 is insensitive to contamination and consequently suitable for use in field and factory environments. In some examples, pump module outputs 24 are coupled to gain module 26 via connectors pluggable into the pump module or the gain module or both, eliminating the need for splicing and further enhancing modularity of the fiber laser system.


In addition to enhancing the field serviceability of the fiber laser system 20, the modular separation of the pump modules and gain module allows for field upgradability of the system 20 to higher allowable output powers. For example, additional pump modules 22 can be spliced to open pump fiber inputs of the fiber combiner 40 of the gain module. Additional pump modules 22 can be identical to or different from existing modules 22 spliced to the gain module 26 such that laser output 28 of the system 20 can be selectably scaled to higher powers. Similar to servicing an existing system 20, the procedure for splicing the pump module outputs 24 of the additional pump modules 22 to the fiber inputs of the fiber combiner 40 is relatively simple and can be performed in a factory or other field environment. The modular separation between pump modules and gain module also allows for scalable power output of the system 20 because the physical separation between pump modules and between the gain module and pump modules reduces or eliminates thermal crosstalk between modules. Each module can be provided with independent water-cooling ports such that modules can be cooled separately or cooled together in parallel or in series. In one example high power fiber laser system built in accordance with aspects of the present invention a 3 kW fiber laser output power can be generated with three 1.5 kW pump modules being spliced to the gain module. In another example, building or upgrading the fiber laser system to have three 2.0 kW pump modules can provide a 4 kW fiber laser output power. In some examples, one or more backup pump modules can be provided in the fiber laser system 20 for use in the event of the failure of another pump module. The system 20 can be configured to switch over to the backup pump modules immediately upon failure, or slowly as one or more other active pump modules degrade over a period of time. The separable nature of the pump modules further allows for failed modules to be replaced in situ with new pump modules without affecting the operation of the backup pump modules or fiber laser system.


In addition to field serviceability and field power expandability, the modularity of system 20 provides for adaptability to various technology improvements, ensuring compatibility of the system 20 and its existing modules with the pace of innovation in the laser industry. For example, improvements in pump diode technology could provide for an upgraded pump module 22. The upgraded pump module can be substituted for an existing pump module 22 or can be used in addition to existing pump modules 22, providing improved system performance, efficiency, cost, or any combination thereof, without requiring significant design changes or replacement of components that have not been upgraded. Similarly, improvements in gain module technology such as oscillator or amplifier architecture might provide for an upgraded gain module 26. The upgraded gain module can be substituted for the existing gain module 26 without requiring replacement or modification of the pump modules. The various substitutions can again be performed in the field or factory environment.


In many industrial applications for kW fiber lasers, single-mode output beam quality is not required. Accordingly, conventional architectures typically combine the outputs of fiber lasers producing single-mode signal beams using a signal combiner to produce a multimode output beam. In some examples of fiber laser system 20, the gain module 26 does not produce single-mode output since such output is not required for many applications. Because the desired output is multimode, systems 20 can achieve such output without the need for the complexity of single-mode combination. Also, because single-mode operation of the gain module 26 is not required, the ability to scale the power of the gain module 26 to multiple kW outputs is more accessible. Allowing the gain fiber of the gain module 26 to be multimode facilitates power scaling in a more practical manner than by maximizing the single-mode output power of an individual fiber laser since the single-mode power limit is lower than the multimode power limit. Single-mode fiber lasers are typically limited to a power level of around 1-2 kW, resulting in the requirement that multiple fiber lasers be combined in order to reach multiple kW power levels; approaches to scaling the single-mode power beyond this level typically entail cost, complexity, and/or inefficiency that are undesirable for an industrial laser system.


In other embodiments, a single-mode system output may be desirable, and gain module 26 can be configured for single-mode output. A single-mode gain module 26 is typically rated at a lower output power than counterpart systems with multimode outputs. However, the modularity of the architecture of the system 20 allows a multimode gain module to be swapped with a single-mode gain module. In one example, a single-mode gain module can be rated for an output of 1 kW while a multi-mode gain module can be rated for an output of 3 or 4 kW.


In typical examples of gain module 26, beam quality of the output beam 28 is generally dependent upon the maximum power rating of the gain module such that higher power ratings for gain module 26 generally correspond with a lower beam quality for output beam 28. Some particular examples of gain modules 26 can be rated at a maximum power rating higher than other particular examples of gain modules 26, and for the same output level the higher rated module will provide an output beam 28 of lower beam quality than the output beam 28 with the lower power rated module. However, in fiber laser system examples herein that do not utilize fused signal combiners such that undesirable beam quality degradation in the output beam 28 is correspondingly avoided, a higher power rated gain module 26, configured to receive multiple pump module outputs 24, is made possible. Thus, provision for receiving a plurality of pump module outputs 24 in the gain module 26 does not represent a significant beam quality compromise for system 20 configured for multiple kW power output and may provide better beam quality than a system with similar output power based on combining the outputs of single-mode fiber lasers.


Conventional kW fiber laser systems for industrial materials processing applications typically provide a beam parameter product (BPP, a standard measure of beam quality) of 2.3-3.0 mm-mrad at a power level of 2-4 kW, and the BPP is generally larger (i.e., worse beam quality) at higher powers. By eliminating the signal combiner according to various aspects of the present invention, an output with a higher beam quality is possible. For example, with presently available pump diodes, a beam quality of less than about 1 mm-mrad is possible at 2 to 3 kW and less than about 2 mm-mrad is possible at 4 to 5 kW.


Modular pump modules can be provided in a variety of selectable configurations. With reference to FIG. 3A, a pump module 42 is shown that includes a plurality of semiconductor diode laser modules 44. Diode laser modules 44 are fiber-coupled such that the diode laser light generated in the laser module 44 is directed into an output optical fiber 46. The plurality of output optical fibers 46 are combined with a fused-fiber pump combiner 48. Combiners are typically made of glass and are tapered or fused to collapse multiple optical fiber inputs to fewer or one optical fiber output. The light coupled into the combiner 48 is combined and directed into a pump module output 50. Different types of diode laser modules 44 may be used, which can provide different levels of laser beam brightness or irradiance, as well as power output. Consequently, in some examples, fewer of a particular type, more of a particular type, or different types of diode laser modules 44 may be used to achieve the same desired power output of the pump module 42. With combiner 48 the plurality of output optical fibers 46 is combined in a single stage to provide a pump module output 50, which can be polymer-clad or glass-clad or both, for subsequent optical coupling to a gain module (not shown). In FIG. 3B, a pump module 43 is shown that includes a single semiconductor diode laser module 45. Diode laser module 45 provides a sufficient amount of optical pumping power for coupling into a pump module output 50 without requiring the use of a pump combiner to combine multiple diode laser modules in the pump module.


Referring to FIG. 4, another example is shown for a pump module 52 employing a plurality of diode laser modules 54 in a multi-stage combiner configuration. The diode modules provide fiber-coupled outputs 56 which are combined with first-stage pump fiber combiners 58. The combiners 58 provide first-stage combiner outputs 60 which are then coupled in a second-stage pump combiner 62. Second-stage pump combiner 62 may be the same or similar to first-stage combiner 58 depending on the brightness, power, or other requirements and characteristics of the multi-stage pump module 52. The light coupled into the second-stage combiner 62 is combined and provided as a pump module output 64, which can be polymer-clad or glass-clad or both, for subsequent optical coupling to a gain module (not shown).


In FIG. 5 another embodiment of a pump module 66 is shown providing a plurality of pump module outputs. Pump module 66 includes a plurality of diode laser modules 68 providing laser pump light to respective fiber-coupled output optical fibers 70. A first set of output optical fibers 72 is coupled into a first pump combiner 74. The pump light is combined with the pump combiner 74 and directed to a glass-clad or polymer-clad (or both) first pump module output 76. A second set of output optical fibers 78 is coupled into a second pump combiner 80. The second combiner 80 combines the received pump light and directs the light to a second glass-clad or polymer-clad (or both) pump module output 82. In other embodiments, pump module 66 has more than two pump module outputs. As shown, pump outputs 76, 82 include pluggable connectors 83 at a boundary of the pump module 66. Connectors 83 can facilitate the modularity of the pump modules herein by allowing separate patch cables to be used to connect pump modules and gain modules or by simplifying connection between pump modules and gain modules. However, optical splices can also be used to connect outputs of pump module 66 to gain modules herein.


In FIG. 6 an alternative embodiment of a gain module 84 is shown. Gain module 84 includes a plurality of polymer-clad, glass-clad, or both glass and polymer-clad pump inputs 86 which may be received from or may be the same as pump module outputs (not shown). As shown, pump inputs 86 are coupled into the gain module 84 via pluggable connectors 87, though optical splices may also be used. The pump inputs 86 are optically coupled to a gain module fused pump or pump-signal combiner 88 which combines received pump light and couples the light into gain module combiner output 90. The combined pump light of the combiner output 90 is coupled or spliced into a fiber laser oscillator 94 which converts incident pump power to a gain module output 96. The gain module output 96 can be used as a system output or it can be combined further with an additional module. The fiber laser oscillator 94 generally includes an optical gain fiber 98 in which the pump light is coupled and in which the gain module output 96 is generated, a high reflector 100 configured to reflect the laser energy to produce the output 96 and to transmit incoming pump light, and a partial reflector 102 configured to transmit at least a portion of the laser energy for output 96. The high and partial reflectors can be fiber Bragg gratings or other suitable reflective optical components.


In FIG. 7 another alternative embodiment of a gain module 104 is shown for a master oscillator power amplifier (MOPA) configuration. Gain module 104 includes a plurality of polymer-clad and/or glass-clad pump inputs 106 coupled to a gain module fused pump-signal or pump combiner 108. The combiner 108 receives pump light through the pump inputs 106 and combines and couples the beams into a combiner output fiber portion 110. The combined pump light of the combiner output 110 is coupled or spliced into a fiber laser oscillator 112 which converts a first portion of incident pump energy to signal energy for gain module output 116. The fiber laser oscillator 112 can include an optical gain fiber 114 in which the pump light is coupled and in which the signal energy of the gain module output 116 is generated, a high reflector 118 configured to reflect signal energy and to transmit incoming pump energy, and a partial reflector 120 configured to transmit at least a percentage of the signal energy. A first amplifier 124 receives the signal light and amplifies the power thereof with pump light energy. In other embodiments, one or more additional amplifiers can be added in sequence after first amplifier 124 to vary the maximum power rating and beam quality of the gain module output 116.


In another embodiment of a gain module 144, shown in FIG. 9, the output fibers 146 from one or more pump modules are coupled into a gain fiber 148 using one or more pump-signal combiners 150 at one or more positions along the gain fiber 148 to provide side-pumping therein in order to produce a gain module signal output 152. The one or more pump-signal combiners 150 can be used in connection with gain fiber 148 in an oscillator configuration, such as the oscillator shown in FIG. 6, or a MOPA configuration as shown in FIG. 7. The combiners 150 can be used to couple light into the gain fiber 148 at various positions, including between the high reflector and the oscillator fiber, between the oscillator and amplifier fibers, between amplification stages, or some combination thereof. Moreover, pump light can be launched in the direction of the signal beam in a co-propagating manner, in the direction opposite the signal beam, i.e., in a counter-propagating manner, or both. In some examples providing side-pumping, a plurality of gain fibers 148 are disposed in the gain module in parallel so as to produce more than one gain module output 152. Similarly, it will be appreciated that for other various gain module embodiments herein a plurality of gain fibers can also be disposed therein in parallel so as to produce a plurality of gain module outputs.


In another embodiment of a gain module 154, shown in FIG. 10, an oscillator 156 is bi-directionally pumped to produce a gain module output 158. Pump light from one or more pump modules is launched via gain module input fibers 160 in the co-propagating direction using a combiner 158 such as a pump or pump-signal type before a high reflector 162 of the oscillator or a combiner 159 such as a pump-signal type between the high reflector 162 and the oscillator. In addition, pump light from one or more pump modules is launched in the counter-propagating direction using a pump-signal combiner 164 such as between the oscillator and a partial reflector 166 thereof or after the partial reflector.


In FIG. 8 there is shown an embodiment of a gain module 126 that includes a plurality of polymer-clad and/or glass-clad pump inputs 128, a gain module combiner 130 optically coupled to the inputs 128 so as to receive the pump light therefrom, and one or more gain fiber gain stages 132, such as oscillator and amplifier stages, coupled to the gain module combiner 130. The gain stages 132 receive the pump light and are operable to generate and amplify a signal beam to be provided at an output 136 of the gain module 126. As shown, an even or odd number of pump inputs 128 (in this case an even number of six inputs forming a 7×1 combiner) are coupled to the inputs 138 of the gain module combiner 130. A central polymer-clad and/or glass-clad input 140 is coupled to the combiner input 138. The central input 140 is optically coupled to an aiming laser 142, which directs a beam through the combiner 130, gain stages 132, and output 136 to provide an aiming beam that can be used to indicate the direction of a beam emitted from the output 136 of the gain module; the aiming beam is typically visible to the unaided eye, such as a red or a green wavelength.



FIGS. 11 and 12 illustrate example arrangements of pump inputs received by various gain modules and coupled to combiners therein. FIG. 11 shows the arrangement on the combiner depicted in FIG. 8 where an even number of six pump inputs 128 are coupled to the input 138 around a central input 140 which can be an aiming laser input or another pump input. In FIG. 12 an arrangement of nineteen inputs 168 is shown, including a central input 170, coupled to a combiner 172. The central input 170 can be used for pumping or an aiming beam. In other examples, such as pump-signal combiner examples described herein, the central inputs can be dedicated to signal propagation. In various combiner examples herein, unused gain module combiner inputs can be paired and conveniently spliced together in the gain module for storage and future use and splicing of additional pump modules or after removal of pump modules. The spliced inputs can also recirculate pump light and signal light back through the gain module, potentially increasing gain module efficiency. Through recirculation, light that should otherwise be managed and heat sunk at the termination of the unused pump input can be redirected to designed heat sinking locations, for example, via one or more cladding light strippers, where supporting thermo-mechanical systems are configured to handle and remove the heat load.


In FIG. 13 another exemplary embodiment of a gain module 180 is shown that includes a plurality of pump inputs 182, a gain module combiner 184 optically coupled to the inputs 182, and one or more gain stages 186 coupled to the gain module combiner 184 and which produce a gain module output 188. A central polymer-clad and/or glass-clad fiber input 190 is coupled to a central location of an input 192 of the combiner. An aiming laser 194 is coupled to the central pump input 190 directly or with a beam-splitter 196. A beam dump 198 is also coupled to the central pump input 190 and is configured to receive, monitor, and heat sink or otherwise dispose of undesirable backward-propagating light from the gain module gain fiber. For example, light reflected at a target can become back-coupled into the gain module 180 through the output 188 thereof and cause damage to the one or more gain stages 186 or other components such as upstream pump modules.


Thus, it will be appreciated that some examples herein provide particular advantages over conventional approaches to configuring high power continuous-wave or quasi-continuous-wave fiber lasers in industrial settings. Herein, fiber laser power levels of 1 kW or more are achievable in a scalable and modular way such that multiple kilowatt output power can be selectably obtained. Pump sources become separated from the gain fiber and corresponding gain stages, improving serviceability, manufacturability, and field upgradeability and to take advantage of future advances in various component technologies. Variable pump module populations and ease of adjusting population enhances system flexibility and upgradeability in system output power.


In further examples, with reference FIG. 14, a gain module 200 and a combining module 202 are shown. The gain module includes two or more sets of pump inputs 204, each set coupled to a corresponding gain module combiner 206, and each combiner coupled to a corresponding one or more gain fiber gain stages 208. The separate sets of components can be configured to produce a plurality of gain module outputs 210 each with kW to multi-kW output levels. The separate multiple gain module outputs 210 can be used for various direct applications, or they can be coupled to combining module 202. The combining module utilizes a signal combiner 212 that can be modularized to be separate from gain module 200 or the signal combiner 212 thereof can be included instead as part of the gain module 200. The internal or external signal combiner 212 can be used to combine the various single-mode or multimode outputs 210 from the gain module 200 to produce a combined fiber output 214 capable of providing a very high power output beam in the multiple kW regime. For example, average power outputs of 4 kW, 6 kW, 8 kW, 10 kW, 12 kW or even higher can be achieved. In additional examples, separate gain modules can provide single gain module outputs that can be combined in combining stage 202 internal or external to gain module 200.


In further examples, with reference to FIG. 15, a gain module 220 is shown that includes a pair of gain fibers 222 end-pumped by a plurality of pump inputs 224 coupled to the respective gain fibers 222 with combiners 226. High-power multimode or single-mode gain fiber outputs 228 are coupled into a signal combiner 230 that combines the high-power gain fiber outputs 228 into a single high-power output 232 of the gain module 220. In one example, gain fiber outputs provides optical powers of 4 kW respectively that are combined with the signal combiner 230 to provide a gain module output of about 8 kW. It will be appreciated that various output powers or ranges of output powers can be provided for gain module 220 by varying the number and type of scalable pump modules and pump inputs thereof coupled to the gain module 220 and also by varying the architecture of the gain module in accordance with the various embodiments and teachings herein. It is thought that the present invention and many of the attendant advantages thereof will be understood from the foregoing description, and it will be apparent that various changes may be made in the parts thereof without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the forms hereinbefore described being merely exemplary embodiments thereof.

Claims
  • 1. A fiber laser, comprising: a combiner including a plurality of peripheral input fibers and a central fiber, the combiner optically coupled to an output fiber comprising a first central core;one or more gain stages coupled to the output fiber; anda beam dump optically coupled to the central fiber;wherein an aiming laser is coupled to the central fiber.
  • 2. The fiber laser of claim 1, wherein the aiming laser is coupled to the central fiber via a beam-splitter disposed between the beam dump and the aiming laser.
  • 3. The fiber laser of claim 1, wherein the beam dump is configured to receive and monitor, heat sink or a combination thereof, backward-propagating light.
  • 4. The fiber laser of claim 1, wherein the central fiber is glass-clad.
  • 5. The fiber laser of claim 1, wherein the central fiber is polymer-clad.
  • 6. The fiber laser of claim 1, wherein the plurality of peripheral input fibers are glass-clad.
  • 7. The fiber laser of claim 1, wherein the plurality of peripheral input fibers are polymer-clad.
  • 8. The fiber laser of claim 1, wherein the combiner is a pump-signal combiner.
  • 9. The fiber laser of claim 8, wherein the central fiber includes a second central core.
  • 10. The fiber laser of claim 9, wherein the beam dump is configured to receive light guided by the first central core and the second central core.
  • 11. The fiber laser of claim 1, wherein the combiner is upstream of the gain stages.
  • 12. A fiber laser, comprising: a combiner including a plurality of peripheral input fibers and a central fiber, the combiner optically coupled to an output fiber comprising a first central core;one or more gain stages coupled to the output fiber; anda beam dump optically coupled to the central fiber;wherein one or more pairs of peripheral input fibers are spliced together so as to recirculate back-reflected light back through the output fiber.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 14/293,941, filed Jun. 2, 2014, which incorporated by reference herein in its entirety.

US Referenced Citations (385)
Number Name Date Kind
3388461 Lins Jun 1968 A
4138190 Bryngdahl Feb 1979 A
4252403 Salisbury Feb 1981 A
4266851 Salisbury May 1981 A
4475027 Pressley Oct 1984 A
4475789 Kahn Oct 1984 A
4713518 Yamazaki et al. Dec 1987 A
4863538 Deckard Sep 1989 A
4953947 Bhagavatula Sep 1990 A
4998797 van den Bergh et al. Mar 1991 A
5008555 Mundy Apr 1991 A
5082349 Cordova-Plaza et al. Jan 1992 A
5153773 Muraki et al. Oct 1992 A
5231464 Ichimura et al. Jul 1993 A
5237150 Karube Aug 1993 A
5252991 Storlie et al. Oct 1993 A
5319195 Jones et al. Jun 1994 A
5463497 Muraki et al. Oct 1995 A
5475415 Noethen Dec 1995 A
5475704 Lomashevich Dec 1995 A
5566196 Scifres Oct 1996 A
5684642 Zumoto et al. Nov 1997 A
5745284 Goldberg et al. Apr 1998 A
5748824 Smith May 1998 A
5761234 Craig et al. Jun 1998 A
5818630 Fermann et al. Oct 1998 A
5864430 Dickey et al. Jan 1999 A
5903696 Krivoshlykov May 1999 A
5909306 Goldberg et al. Jun 1999 A
5986807 Fork Nov 1999 A
5999548 Mori et al. Dec 1999 A
6072184 Okino et al. Jun 2000 A
6132104 Bliss et al. Oct 2000 A
6265710 Miller et al. Jul 2001 B1
6275630 Yang et al. Aug 2001 B1
6310995 Saini et al. Oct 2001 B1
6330382 Harshbarger et al. Dec 2001 B1
RE37585 Mourou et al. Mar 2002 E
6353203 Hokodate et al. Mar 2002 B1
6417963 Ohishi et al. Jul 2002 B1
6426840 Partanen et al. Jul 2002 B1
6433301 Dunsky et al. Aug 2002 B1
6434177 Jurgensen Aug 2002 B1
6434302 Fidric et al. Aug 2002 B1
6483973 Mazzarese et al. Nov 2002 B1
6490376 Au et al. Dec 2002 B1
6496301 Koplow et al. Dec 2002 B1
6542665 Reed et al. Apr 2003 B2
6556340 Wysocki et al. Apr 2003 B1
6569382 Edman et al. May 2003 B1
6639177 Ehrmann et al. Oct 2003 B2
6671293 Kopp et al. Dec 2003 B2
6711918 Kliner et al. Mar 2004 B1
6724528 Koplow et al. Apr 2004 B2
6772611 Kliner et al. Aug 2004 B2
6777645 Ehrmann et al. Aug 2004 B2
6779364 Tankala et al. Aug 2004 B2
6801550 Snell et al. Oct 2004 B1
6819815 Corbalis et al. Nov 2004 B1
6825974 Kliner et al. Nov 2004 B2
6839163 Jakobson et al. Jan 2005 B1
6882786 Kliner et al. Apr 2005 B1
6895154 Johnson et al. May 2005 B2
6917742 Po Jul 2005 B2
6941053 Lauzon et al. Sep 2005 B2
6963062 Cyr et al. Nov 2005 B2
6989508 Ehrmann et al. Jan 2006 B2
7068900 Croteau et al. Jun 2006 B2
7079566 Kido et al. Jul 2006 B2
7099533 Chenard Aug 2006 B1
7099535 Bhagavatula et al. Aug 2006 B2
7116887 Farroni et al. Oct 2006 B2
7146073 Wan Dec 2006 B2
7148447 Ehrmann et al. Dec 2006 B2
7151787 Kulp et al. Dec 2006 B2
7151788 Imakado et al. Dec 2006 B2
7157661 Amako Jan 2007 B2
7170913 Araujo et al. Jan 2007 B2
7174078 Libori et al. Feb 2007 B2
7184630 Kwon et al. Feb 2007 B2
7193771 Smith et al. Mar 2007 B1
7196339 Namba et al. Mar 2007 B2
7218440 Green May 2007 B2
7235150 Bischel et al. Jun 2007 B2
7257293 Fini et al. Aug 2007 B1
7317857 Manyam et al. Jan 2008 B2
7318450 Nobili Jan 2008 B2
7349123 Clarke et al. Mar 2008 B2
7359604 Po Apr 2008 B2
7373070 Wetter et al. May 2008 B2
7382389 Cordingley et al. Jun 2008 B2
7394476 Cordingley et al. Jul 2008 B2
7421175 Varnham Sep 2008 B2
7463805 Li et al. Dec 2008 B2
7526166 Bookbinder et al. Apr 2009 B2
7527977 Fruetel et al. May 2009 B1
7537395 Savage-Leuchs May 2009 B2
7592568 Varnham et al. Sep 2009 B2
7593435 Gapontsev et al. Sep 2009 B2
7622710 Gluckstad Nov 2009 B2
7628865 Singh Dec 2009 B2
7748913 Oba Jul 2010 B2
7764854 Fini Jul 2010 B2
7781778 Moon et al. Aug 2010 B2
7783149 Fini Aug 2010 B2
7835608 Minelly et al. Nov 2010 B2
7839901 Meleshkevich et al. Nov 2010 B2
7876495 Minelly Jan 2011 B1
7880961 Feve et al. Feb 2011 B1
7920767 Fini Apr 2011 B2
7924500 Minelly Apr 2011 B1
7925125 Cyr et al. Apr 2011 B2
7955905 Cordingley et al. Jun 2011 B2
7955906 Cordingley et al. Jun 2011 B2
8027555 Kliner et al. Sep 2011 B1
8184363 Rothenberg May 2012 B2
8217304 Cordingley et al. Jul 2012 B2
8243764 Tucker et al. Aug 2012 B2
8251475 Murray et al. Aug 2012 B2
8269108 Kunishi et al. Sep 2012 B2
8270441 Rogers et al. Sep 2012 B2
8270445 Morasse et al. Sep 2012 B2
8278591 Chouf et al. Oct 2012 B2
8288679 Unrath Oct 2012 B2
8288683 Jennings et al. Oct 2012 B2
8310009 Saran et al. Nov 2012 B2
8317413 Fisher et al. Nov 2012 B2
8362391 Partlo et al. Jan 2013 B2
8395084 Tanaka Mar 2013 B2
8404998 Unrath et al. Mar 2013 B2
8411710 Tamaoki Apr 2013 B2
8415613 Heyn et al. Apr 2013 B2
8433161 Langseth et al. Apr 2013 B2
8509577 Liu Aug 2013 B2
8526110 Honea et al. Sep 2013 B1
8537871 Saracco Sep 2013 B2
8542145 Galati Sep 2013 B2
8542971 Chatigny Sep 2013 B2
8593725 Kliner et al. Nov 2013 B2
8711471 Liu et al. Apr 2014 B2
8728591 Inada et al. May 2014 B2
8755649 Yilmaz et al. Jun 2014 B2
8755660 Minelly Jun 2014 B1
8774237 Maryashin et al. Jul 2014 B2
8781269 Huber et al. Jul 2014 B2
8809734 Cordingley et al. Aug 2014 B2
8835804 Farmer et al. Sep 2014 B2
8861910 Yun Oct 2014 B2
8873134 Price et al. Oct 2014 B2
8903211 Fini Dec 2014 B2
8934742 Voss et al. Jan 2015 B2
8947768 Kliner et al. Feb 2015 B2
8948218 Gapontsev et al. Feb 2015 B2
8953914 Genier Feb 2015 B2
9014220 Minelly et al. Apr 2015 B2
9136663 Taya Sep 2015 B2
9140873 Minelly Sep 2015 B2
9158066 Fini et al. Oct 2015 B2
9170359 Van Bommel et al. Oct 2015 B2
9170367 Messerly et al. Oct 2015 B2
9207395 Fini et al. Dec 2015 B2
9217825 Ye et al. Dec 2015 B2
9250390 Muendel et al. Feb 2016 B2
9310560 Chann et al. Apr 2016 B2
9322989 Fini et al. Apr 2016 B2
9325151 Fini et al. Apr 2016 B1
9339890 Woods et al. May 2016 B2
9366887 Tayebati et al. Jun 2016 B2
9397466 McComb et al. Jul 2016 B2
9431786 Savage-Leuchs Aug 2016 B2
9442252 Genier Sep 2016 B2
9482821 Huber et al. Nov 2016 B2
9496683 Kanskar Nov 2016 B1
9507084 Fini et al. Nov 2016 B2
9547121 Hou et al. Jan 2017 B2
9634462 Kliner et al. Apr 2017 B2
9823422 Muendel et al. Nov 2017 B2
9837783 Kliner et al. Dec 2017 B2
10048661 Arthur et al. Aug 2018 B2
10112262 Cheverton et al. Oct 2018 B2
10207489 Dave et al. Feb 2019 B2
10295845 Kliner et al. May 2019 B2
10310201 Kliner et al. Jun 2019 B2
10423015 Kliner et al. Sep 2019 B2
20020097963 Ukechi et al. Jul 2002 A1
20020146202 Reed et al. Oct 2002 A1
20020147394 Ellingsen Oct 2002 A1
20020158052 Ehrmann et al. Oct 2002 A1
20020159685 Cormack Oct 2002 A1
20020168139 Clarkson et al. Nov 2002 A1
20020176676 Johnson et al. Nov 2002 A1
20020181512 Wang et al. Dec 2002 A1
20030031407 Weisberg et al. Feb 2003 A1
20030032204 Walt et al. Feb 2003 A1
20030043384 Hill Mar 2003 A1
20030059184 Tankala et al. Mar 2003 A1
20030095578 Kopp et al. May 2003 A1
20030118305 Reed et al. Jun 2003 A1
20030152342 Wang et al. Aug 2003 A1
20030174387 Eggleton et al. Sep 2003 A1
20030213998 Hsu et al. Nov 2003 A1
20030219208 Kwon et al. Nov 2003 A1
20040013379 Johnson et al. Jan 2004 A1
20040086245 Farroni et al. May 2004 A1
20040112634 Tanaka et al. Jun 2004 A1
20040126059 Bhagavatula et al. Jul 2004 A1
20040208464 Po Oct 2004 A1
20050002607 Neuhaus et al. Jan 2005 A1
20050017156 Ehrmann Jan 2005 A1
20050027288 Oyagi et al. Feb 2005 A1
20050041697 Seifert et al. Feb 2005 A1
20050105854 Dong May 2005 A1
20050185892 Kwon et al. Aug 2005 A1
20050191017 Croteau et al. Sep 2005 A1
20050233557 Tanaka et al. Oct 2005 A1
20050259944 Anderson et al. Nov 2005 A1
20050265678 Manyam et al. Dec 2005 A1
20050271340 Weisberg et al. Dec 2005 A1
20060013532 Wan Jan 2006 A1
20060024001 Kobayashi Feb 2006 A1
20060054606 Amako Mar 2006 A1
20060067632 Broeng et al. Mar 2006 A1
20060219673 Varnham et al. Oct 2006 A1
20060291788 Po Dec 2006 A1
20070026676 Li et al. Feb 2007 A1
20070041083 Di Teodoro et al. Feb 2007 A1
20070047066 Green Mar 2007 A1
20070075060 Shedlov et al. Apr 2007 A1
20070104436 Li et al. May 2007 A1
20070104438 Varnham May 2007 A1
20070147751 Fini Jun 2007 A1
20070178674 Imai et al. Aug 2007 A1
20070195850 Schluter et al. Aug 2007 A1
20070215820 Cordingley et al. Sep 2007 A1
20070251543 Singh Nov 2007 A1
20070280597 Nakai Dec 2007 A1
20080037604 Savage-Leuchs Feb 2008 A1
20080124022 Ivtsenkov May 2008 A1
20080141724 Fuflyigin Jun 2008 A1
20080154249 Cao Jun 2008 A1
20080181567 Bookbinder et al. Jul 2008 A1
20080231939 Gluckstad Sep 2008 A1
20090034059 Fini Feb 2009 A1
20090052849 Lee et al. Feb 2009 A1
20090059353 Fini Mar 2009 A1
20090080472 Yao et al. Mar 2009 A1
20090080835 Frith Mar 2009 A1
20090122377 Wagner May 2009 A1
20090127477 Tanaka et al. May 2009 A1
20090129237 Chen et al. May 2009 A1
20090152247 Jennings et al. Jun 2009 A1
20090154512 Simons et al. Jun 2009 A1
20090175301 Li et al. Jul 2009 A1
20090297108 Ushiwata et al. Dec 2009 A1
20090297140 Heismann et al. Dec 2009 A1
20090324233 Samartsev et al. Dec 2009 A1
20100067013 Howieson et al. Mar 2010 A1
20100067555 Austin et al. Mar 2010 A1
20100067860 Ikeda et al. Mar 2010 A1
20100116794 Taido et al. May 2010 A1
20100129029 Westbrook May 2010 A1
20100150186 Mizuuchi Jun 2010 A1
20100163537 Furuta et al. Jul 2010 A1
20100187409 Cristiani et al. Jul 2010 A1
20100230665 Verschuren et al. Sep 2010 A1
20100251437 Heyn et al. Sep 2010 A1
20100303419 Benjamin et al. Dec 2010 A1
20110032602 Rothenberg Feb 2011 A1
20110058250 Liu et al. Mar 2011 A1
20110091155 Yilmaz Apr 2011 A1
20110134512 Ahn Jun 2011 A1
20110163077 Partlo et al. Jul 2011 A1
20110243161 Tucker et al. Oct 2011 A1
20110248005 Briand et al. Oct 2011 A1
20110253668 Winoto et al. Oct 2011 A1
20110278277 Stork Genannt Wersborg Nov 2011 A1
20110297229 Gu et al. Dec 2011 A1
20110305249 Gapontsev et al. Dec 2011 A1
20110305256 Chann Dec 2011 A1
20110316029 Maruyama et al. Dec 2011 A1
20120002919 Liu Jan 2012 A1
20120051084 Yalin et al. Mar 2012 A1
20120051692 Seo Mar 2012 A1
20120082410 Peng et al. Apr 2012 A1
20120093461 Ramachandran Apr 2012 A1
20120127097 Gaynor et al. May 2012 A1
20120127563 Farmer et al. May 2012 A1
20120128294 Voss et al. May 2012 A1
20120148823 Chu Jun 2012 A1
20120156458 Chu Jun 2012 A1
20120168411 Farmer et al. Jul 2012 A1
20120219026 Saracco et al. Aug 2012 A1
20120262781 Price et al. Oct 2012 A1
20120267345 Clark et al. Oct 2012 A1
20120301733 Eckert et al. Nov 2012 A1
20120301737 Labelle et al. Nov 2012 A1
20120321262 Goell et al. Dec 2012 A1
20120329974 Inada et al. Dec 2012 A1
20130023086 Chikama et al. Jan 2013 A1
20130027648 Moriwaki Jan 2013 A1
20130038923 Jespersen et al. Feb 2013 A1
20130044768 Ter-Mikirtychev Feb 2013 A1
20130087694 Creeden et al. Apr 2013 A1
20130095260 Bovatsek et al. Apr 2013 A1
20130134637 Wiesner et al. May 2013 A1
20130146569 Woods et al. Jun 2013 A1
20130148925 Muendel et al. Jun 2013 A1
20130182725 Karlsen et al. Jul 2013 A1
20130202264 Messerly et al. Aug 2013 A1
20130223792 Huber et al. Aug 2013 A1
20130228442 Mohaptatra et al. Sep 2013 A1
20130251324 Fini et al. Sep 2013 A1
20130272657 Salokatve Oct 2013 A1
20130299468 Unrath et al. Nov 2013 A1
20130301300 Duerksen et al. Nov 2013 A1
20130308661 Nishimura et al. Nov 2013 A1
20130343703 Genier Dec 2013 A1
20140044143 Clarkson et al. Feb 2014 A1
20140086526 Starodubov et al. Mar 2014 A1
20140177038 Rrataj et al. Jun 2014 A1
20140178023 Oh et al. Jun 2014 A1
20140205236 Noguchi et al. Jul 2014 A1
20140233900 Hugonnot et al. Aug 2014 A1
20140241385 Fomin Aug 2014 A1
20140259589 Xu et al. Sep 2014 A1
20140263209 Burris et al. Sep 2014 A1
20140268310 Ye et al. Sep 2014 A1
20140271328 Burris et al. Sep 2014 A1
20140313513 Liao Oct 2014 A1
20140319381 Gross Oct 2014 A1
20140334788 Fini et al. Nov 2014 A1
20150049987 Grasso et al. Feb 2015 A1
20150096963 Bruck et al. Apr 2015 A1
20150104139 Brunet et al. Apr 2015 A1
20150125114 Genier May 2015 A1
20150125115 Genier May 2015 A1
20150138630 Honea et al. May 2015 A1
20150165556 Jones et al. Jun 2015 A1
20150217402 Hesse et al. Aug 2015 A1
20150241632 Chann et al. Aug 2015 A1
20150270089 Ghanea-Hercock Sep 2015 A1
20150283613 Backlund et al. Oct 2015 A1
20150293300 Fini et al. Oct 2015 A1
20150293306 Huber et al. Oct 2015 A1
20150314612 Balasini et al. Nov 2015 A1
20150316716 Fini et al. Nov 2015 A1
20150325977 Gu et al. Nov 2015 A1
20150331205 Tayebati et al. Nov 2015 A1
20150349481 Kliner Dec 2015 A1
20150372445 Harter Dec 2015 A1
20150378184 Tayebati et al. Dec 2015 A1
20160013607 McComb et al. Jan 2016 A1
20160052162 Colin et al. Feb 2016 A1
20160059354 Sercel et al. Mar 2016 A1
20160097903 Li et al. Apr 2016 A1
20160104995 Savage-Leuchs Apr 2016 A1
20160114431 Cheverton et al. Apr 2016 A1
20160116679 Muendel et al. Apr 2016 A1
20160158889 Carter et al. Jun 2016 A1
20160179064 Arthur et al. Jun 2016 A1
20160207111 Robrecht et al. Jul 2016 A1
20160218476 Kliner et al. Jul 2016 A1
20160285227 Farrow et al. Sep 2016 A1
20160294150 Johnson Oct 2016 A1
20160320565 Brown et al. Nov 2016 A1
20160320685 Tayebati et al. Nov 2016 A1
20160369332 Rothberg et al. Dec 2016 A1
20170003461 Tayebati et al. Jan 2017 A1
20170090119 Logan et al. Mar 2017 A1
20170090462 Dave et al. Mar 2017 A1
20170110845 Hou et al. Apr 2017 A1
20170120537 DeMuth et al. May 2017 A1
20170162999 Saracco et al. Jun 2017 A1
20170271837 Hemenway et al. Sep 2017 A1
20170293084 Zhou et al. Oct 2017 A1
20170336580 Tayebati et al. Nov 2017 A1
20170363810 Holland et al. Dec 2017 A1
20180059343 Kliner Mar 2018 A1
20180088343 Kliner et al. Mar 2018 A1
20180088357 Kliner et al. Mar 2018 A1
20180088358 Kliner et al. Mar 2018 A1
20180154484 Hall Jun 2018 A1
20180203185 Farrow et al. Jul 2018 A1
20180215650 Brown et al. Aug 2018 A1
20190258091 Kliner et al. Aug 2019 A1
Foreign Referenced Citations (88)
Number Date Country
12235 Aug 2009 BY
2637535 Aug 2007 CA
1212056 Mar 1999 CN
1584644 Feb 2005 CN
1617003 May 2005 CN
1327254 Jul 2007 CN
101435918 May 2009 CN
101907742 Dec 2010 CN
102007653 Apr 2011 CN
102481664 May 2012 CN
101907742 Jul 2012 CN
102621628 Aug 2012 CN
102782540 Nov 2012 CN
102844942 Dec 2012 CN
103056513 Apr 2013 CN
103097931 May 2013 CN
103173760 Jun 2013 CN
103262367 Aug 2013 CN
103490273 Jan 2014 CN
103521920 Jan 2014 CN
103606803 Feb 2014 CN
103999302 Aug 2014 CN
104136952 Nov 2014 CN
104169763 Nov 2014 CN
104999670 Oct 2015 CN
105383060 Mar 2016 CN
3833992 Apr 1990 DE
4200587 Apr 1993 DE
203 20 269 Apr 2004 DE
10321102 Dec 2004 DE
60312826 Jan 2008 DE
102009026526 Dec 2010 DE
102013205029 Sep 2014 DE
102013215362 Feb 2015 DE
102013017792 Apr 2015 DE
202016004237 Aug 2016 DE
102015103127 Sep 2016 DE
0366856 May 1990 EP
0731743 Sep 1996 EP
1681542 Jul 2006 EP
1800700 Jun 2007 EP
1266259 May 2011 EP
2587564 May 2013 EP
2642246 Sep 2013 EP
2886226 Jun 2015 EP
H02220314 Sep 1990 JP
H06-297168 Oct 1994 JP
H11780 Jan 1999 JP
H11-287922 Oct 1999 JP
H11-344636 Dec 1999 JP
2003-129862 May 2003 JP
2003200286 Jul 2003 JP
2004291031 Oct 2004 JP
2005070608 Mar 2005 JP
2006-45584 Feb 2006 JP
2006-098085 Apr 2006 JP
2009-142866 Jul 2009 JP
2009-248157 Oct 2009 JP
2012-059920 Mar 2012 JP
2012-528011 Nov 2012 JP
2016-201558 Dec 2016 JP
2008742 Feb 1994 RU
2021881 Oct 1994 RU
68715 Nov 2007 RU
2365476 Aug 2009 RU
2528287 Sep 2014 RU
2015112812 Oct 2016 RU
WO 1995011100 Apr 1995 WO
WO 1995011101 Apr 1995 WO
WO 2003044914 May 2003 WO
WO 2004027477 Apr 2004 WO
WO 2008053915 May 2008 WO
WO 2009155536 Dec 2009 WO
WO 2010029243 Mar 2010 WO
WO 2011124671 Oct 2011 WO
WO 2011146407 Nov 2011 WO
WO 2012165389 May 2012 WO
WO 2012102655 Aug 2012 WO
WO 2013090236 Jun 2013 WO
WO 2014074947 May 2014 WO
WO 2014154901 Oct 2014 WO
WO 2014179345 Nov 2014 WO
WO 2014180870 Nov 2014 WO
WO 2015156281 Oct 2015 WO
WO 2015189883 Dec 2015 WO
WO 2016061657 Apr 2016 WO
WO 2017008022 Jan 2017 WO
WO 2017136831 Aug 2017 WO
Non-Patent Literature Citations (345)
Entry
Argyros et al., “Bend loss in highly multimode fibres,” Optics Express, 16:18590-18598 (Nov. 10, 2008).
Andreasch et al., “Two concentric fiber diameters in one laser light cable,” Optical Components, No. 1, pp. 38-41 (Jan. 2011).
Bai et al., “Effect of Bimodal Powder Mixture on Powder Packing Density and Sintered Density in Binder Jetting of Metals,” 26th Annual International Solid Freeform Fabrication Symposium, 14 pages (Aug. 10-12, 2015).
Balazic, “Additive Manufacturing and 3D Printing LENS Technology,” Additive Manufacturing of Metal Components Conference at IK4-Lortek, 52 pages (Nov. 27, 2013).
“Bending Machine,” CBC Alta Technologia Italiana, General Catalog, pp. 96-97 (2011).
Brown et al., “Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification,” Chapter 4, Laser Precision Microfabrication, pp. 91-120 (2010).
“Business Unit Laser Ablation and Cutting: Laser Beam Fusion Cutting with Dynamic Beam Shaping,” Fraunhofer IWS Annual Report 2015, pp. 86-87 (2015).
Dorrington et al., “A simple microcontroller based digital lock-in amplifier for the detection of low level optical signals,” Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications (DELTA '02), 3 pages (2002).
Duflou et al., “Development of a Real Time Monitoring and Adaptive Control System for Laser Flame Cutting,” ICALEO 2009, 527, 10 pages published online Sep. 27, 2018.
“Enhanced LENS Thermal Imaging Capabilities Introduced by Optomec,” Optomec, 4 pages (Jan. 8, 2013).
Examiner-Initiated Interview Summary from U.S. Appl. No. 15/607,410, dated Jan. 31, 2019, 2 pages.
Fini, “Bend distortion in large-mode-area amplifier fiber design,” Proc. of SPIE, 6781:67810E-1-67810E-11 (Nov. 21, 2007).
Goppold et al., “Dynamic Beam Shaping Improves Laser Cutting of Thick Steel Plates,” Industrial Photonics, 4:18-19 (Jul. 2017).
Heider et al., “Process Stabilization at welding Copper by Laser Power Modulation,” Physics Procedia, 12:81-87 (2011).
Herwig et al., “Possibilities of power modulation and dynamic beam shaping,” Fraunhofer IWS presentation, 6 pages, retrieved on Mar. 16, 2018.
Ivanov et al., “Fiber-Optic Bend Sensor Based on Double Cladding Fiber,” Journal of Sensors, 2015, 6 pages (2015).
Ivanov et al., “Fiber structure based on a depressed inner cladding fiber for bend, refractive index and temperature sensing,” Meas. Sci. Technol., 25:1-8 (2014).
Jacobs, “Suggested Guidelines for the Handling of Optical Fiber,” White Paper, Corning Incorporated, pp. 1-8 (Dec. 2001).
Jollivet, “Specialty Fiber Lasers and Novel Fiber Devices,” Doctoral Dissertation, University of Central Florida, 213 pages (2014).
Jollivet et al., “Advances in Multi-Core Fiber Lasers,” Latin America Optics and Photonics Conference, OSA Technical, 4 pages (Nov. 2014).
Khairallah et al, “Laser power-bed fusion additive manufacturing: Effects of main physical processes on dynamical melt flow and pore formation from mesoscopic powder simulation,” Lawrence Livermore National Laboratory, 26 pages (Aug. 20, 2015).
Martins et al., “Modeling of Bend Losses in Single-Mode Optical Fibers,” 7th Conference on Telecommunications, 4 pages (Jan. 2009).
Messerly et al., “Field-flattened, ring-like propagation modes,” Optics Express, 21:12683-12698 (May 16, 2013).
Messerly et al., “Patterned flattened modes,” Optics Letters, 38:3329-3332 (Sep. 1, 2013).
Nazemosadat et al., “Saturable absorption in multicore fiber couplers,” J. Opt. Soc. Am. B, 30:2787-2790 (Nov. 2013).
Neilson et al., “Free-space optical relay for the interconnection of multimode fibers,” Applied Optics, 38:2291-2296 (Apr. 10, 1999).
Neilson et al., “Plastic modules for free-space optical interconnects,” Applied Optics, 37:2944-2952 (May 10, 1998).
Salceda-Delgado et al., “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Optics Letters, 40:1468-1471 (Apr. 1, 2015).
Sateesh et al., “Effect of Process Parameters on Surface Roughness of Laser Processed Inconel Superalloy,” International Journal of Scientific & Engineering Research, 5:232-236 (Aug. 2014).
Tam et al., “An imaging fiber-based optical tweezer array for microparticle array assembly,” Appl. Phys. Lett., 84:4289-4291 (May 7, 2004).
“UNI 42 A,” Curvatubi elettrica digitale, 5 pages (2016).
“UNI 60 COMBI 2,” Frame-Grab of YouTube Video, 1 page (Sep. 26, 2011).
Villatoro et al., “Ultrasensitive vector bending sensor based on multicore optical fiber,” Optics Letters, 41:832-835 (Feb. 15, 2016).
Wang et al., “Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties,” Materials & Design, 117(5):121-130 (Mar. 5, 2017).
Zhang et al., “Switchable multiwavelength fiber laser by using a compact in-fiber Mach-Zehnder interferometer,” J. Opt., 14:1-5 (2012).
Zlodeev et al., “Transmission spectra of a double-clad fibre structure under bending,” Quantum Electronics, 48:535-541 (2013).
Eichenholz, “Photonic-crystal fibers have many uses,” Optoelectronics World, 4 pages (Aug. 2004).
Final Office action from U.S. Appl. No. 15/607,399, dated May 3, 2018, 31 pages.
Final Office action from U.S. Appl. No. 15/607,410, dated May 11, 2018, 29 pages.
First Office Action for related Chinese Application No. 201610051671.X, dated Jun. 4, 2018, 25 pages (w/ English translation).
Injeyan et al., “Introduction to Optical Fiber Lasers,” High-Power Laser Handbook, pp. 436-439 (2011).
“Lasers & Fibers,” NKT Photonics, available at: https://www.nktphotonics.com/lasers-fibers/technology/photonic-crystal-fibers/, 4 pages, retrieved Feb. 13, 2018.
Russell, “Photonic-Crystal Fibers,” IEEE JLT, 24:4729-4749 (Dec. 2006).
Saleh et al., “Chapter 9.4 Holey and Photonic-Crystal Fibers,” Fundamentals of Photonics, Second Edition, pp. 359-362 (2007).
Wetter et al., “High power cladding light strippers,” Proc. of SPIE, 6873:687327-1-687327-8 (Jan. 21, 2008).
Advisory Action from U.S. Appl. No. 15/607,410, dated Sep. 24, 2018, 6 pages.
AlMangour et al., “Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites,” Journal of Alloys and Compounds, 728:424-435 (Aug. 5, 2017).
Anastasiadi et al., “Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation,” Optics Express, 26:3557-3567 (Feb. 5, 2018).
Applicant-Initiated Interview Summary from U.S. Appl. No. 15/607,399, dated May 25, 2018, 3 pages.
Applicant-Initiated Interview Summary from U.S. Appl. No. 15/607,399, dated Jul. 27, 2018, 9 pages.
Applicant-Initiated Interview Summary from U.S. Appl. No. 15/607,410, dated May 25, 2018, 3 pages.
Applicant-Initiated Interview Summary from U.S. Appl. No. 15/607,410, dated Jul. 24, 2018, 9 pages.
Applicant-Initiated Interview Summary from U.S. Appl. No. 15/607,411, dated Jan. 17, 2018, 2 pages.
Applicant-Initiated Interview Summary from U.S. Appl. No. 15/607,411, dated Sep. 12, 2018, 17 pages.
Applicant-Initiated Interview Summary from U.S. Appl. No. 15/607,399, dated Dec. 26, 2018, 7 pages.
Ayoola, “Study of Fundamental Laser Material Interaction Parameters in Solid and Powder Melting,” Ph.D. Thesis, Cranfield University, 192 pages (May 2016).
Barron et al., “Dual-beam interference from a lensed multicore fiber and its application to optical trapping,” Optics Express, 20:23156-23161 (Oct. 8, 2012).
Barron et al., “Optical Trapping using a Lensed Multicore Fiber,” Workshop on Specialty Optical Fibers and their Applications, OSA 2013, 2 pages (2013).
Bergmann et al., “Effects of diode laser superposition on pulsed laser welding of aluminum,” Physics Procedia, 41:180-189 (2013).
Bertoli et al., “On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting,” Materials and Design, 113:331-340 (Oct. 19, 2016).
Birks et al., “The photonic lantern,” Advances in Optics and Photonics, 7:107-167 (2015).
Burger et al., “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt., 17:1-7, (2015).
“Canunda, Application Note,” CAILabs, available at: www.cailabs.com, 16 pages (Jun. 10, 2015).
“Canunda, Application Note: Flexible high-power laser beam shaping,” CAILabs, available at: www.cailabs.com, 22 pages, date unknown (cited by the Examiner in a related U.S. Appl. No. 15/607,399).
Caprio, “Investigation of emission modes in the SLM of AISI 316L: modelling and process diagnosis,” Ph.D. Thesis, Polytechnic University of Milan, 3 pages (Apr. 28, 2017).—Abstract only.
Chen et al., “Improving additive manufacturing processability of hard-to-process overhanging structure by selective laser melting,” Journal of Materials Processing Tech., 250:99-108 (Jul. 1, 2017).
Chung, “Solution-Processed Flexible Transparent Conductors Composed of Silver Nanowire Networks Embedded in Indium Tin Oxide Nanoparticle Matrices,” Nano Research, 10 pages (Sep. 24, 2012).
Cloots et al., “Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles,” Materials and Design, 89:770-784 (2016).
DebRoy et al., “Additive manufacturing of metallic components—Process, structure and properties,” Progress in Materials Science, 92:112-224 (2018).
Decombe et al., “Single and dual fiber nano-tip optical tweezers: trapping and analysis,” Optics Express, 21:30521-30531 (Dec. 4, 2013).
Dehoff et al., “Site specific control of crystallographic grain orientation through electron beam additive manufacturing,” Materials Science and Technology, 31:931-938 (2015).
Demir et al., “From pulsed to continuous wave emission in SLM with contemporary fiber laser sources: effect of temporal and spatial pulse overlap in part quality,” Int. J. Adv. Manuf. Technol., 91:2701-2714 (Jan. 10, 2017).
Deng et al., “Annular arrayed-waveguide fiber for autofocusing Airy-like beams,” Optics Letters, 41:824-827 (Feb. 15, 2016).
Dezfoli et al., “Determination and controlling of grain structure of metals after laser incidence: Theoretical approach,” Scientific Reports, 7:1-11 (Jan. 30, 2017).
Drobczynski et al., “Real-time force measurement in double wavelength optical tweezers,” Journal of the Optical Society of America B, 34:38-43 (Jan. 2017).
Duocastella et al., “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6, pp. 607-621 (2012).
European Search Report for related Application No. 18173438.5, 3 pages, dated Oct. 5, 2018.
Faidel et al., “Improvement of selective laser melting by beam shaping and minimized thermally induced effects in optical systems,” 9th International Conference on Photonic Technologies LANE 2016, pp. 1-4 (2016).
Farley et al., “Optical fiber designs for beam shaping,” Proc. of SPIE, Fiber Lasers XI: Technology, Systems, and Applications, 8961:89612U-1-89612U-10 (2014).
Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Optics Letters, 23:52-54 (Jan. 1, 1998).
Fey, “3D Printing and International Security,” PRIF Report No. 144, 47 pages (2017).
First Office Action for related Chinese Application No. 201510468218.4, dated Dec. 4, 2018, 14 pages (with English translation).
Florentin et al., “Shaping the light amplified in a multimode fiber,” Official Journal of the CIOMP, Light: Science & Applications, 6:1-9 (Feb. 24, 2017).
Francis, “The Effects of Laser and Electron Beam Spot Size in Additive Manufacturing Processes,” Ph.D. Thesis, Carnegie Mellon University, 191 pages (May 2017).
Fuchs et al., “Beam shaping concepts with aspheric surfaces,” Proc. of SPIE, 9581:95810L-1-95810L-7 (Aug. 25, 2015).
Fuse, “Beam Shaping for Advanced Laser Materials Processing,” Laser Technik Journal, pp. 19-22 (Feb. 2015).
Garcia et al., “Fast adaptive laser shaping based on multiple laser incoherent combining,” Proc. of SPIE, 10097:1009705-1-1009705-15 (Feb. 22, 2017).
Gardner, “Precision Photolithography on Flexible Substrates,” http://azorescorp.com/downloads/Articles/AZORESFlexSubstrate.pdf (prior to Jan. 30, 2013).
Ghouse et al., “The influence of laser parameters and scanning strategies on the mechanical properties of a stochastic porous material,” Materials and Design, 131:498-508 (2017).
Gissibl et al., “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nature Communications, 7:1-9 (Jun. 24, 2016).
Gockel et al., “Integrated melt pool and microstructure control for Ti-6Al-4V thin wall additive manufacturing,” Materials Science and Technology, 31:912-916 (Nov. 3, 2014).
Grigoriyants et al., “Tekhnologicheskie protsessy lazernoy obrabotki,” Moscow, izdatelstvo MGTU im. N.E. Baumana, p. 334 (2006).
Gris-Sanchez et al., “The Airy fiber: an optical fiber that guides light diffracted by a circular aperture,” Optica, 3:270-276 (Mar. 2016).
Gunenthiram et al., “Analysis of laser-melt pool-powder bed interaction during the selective laser melting of a stainless steel,” Journal of Laser Applications, 29:022303-1-022303-8 (May 2017).
Gupta, “A Review on Layer Formation Studies in Selective Laser Melting of Steel Powders and Thin Wall Parts Using Pulse Shaping,” International Journal of Manufacturing and Material Processing, 3:9-15 (2017).
Hafner et al., “Tailored laser beam shaping for efficient and accurate microstructuring,” Applied Physics A, 124:111-1-111-9 (Jan. 10, 2018).
Han et al., “Selective laser melting of advanced Al—Al2O3, nanocomposites: Simulation, microstructure and mechanical properties,” Materials Science & Engineering A, 698:162-173, (May 17, 2017).
Hansen et al., “Beam shaping to control of weldpool size in width and depth,” Physics Procedia, 56:467-476 (2014).
Hauschild, “Application Specific Beam Profiles—New Surface and Thin-Film Refinement Processes using Beam Shaping Technologies,” Proc. of SPIE, 10085:100850J-1-100850J-9 (Feb. 22, 2017).
Hebert, “Viewpoint: metallurgical aspects of powder bed metal additive manufacturing,” J. Mater. Sci., 51:1165-1175 (Nov. 18, 2015).
Heck, “Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics, 6:93-107 (2017).
Hengesbach et al., “Brightness and average power as driver for advancements in diode lasers and their applications,” Proc. SPIE, 9348, 18 pages (2015).
Hester et al., “Tunable optical tweezers for wavelength-dependent measurements,” Review of Scientific Instruments, 83:043114-1-043114-8 (2012).
Huang et al., “3D printing optical engine for controlling material microstructure,” Physics Procedia, 83:847-853 (2016).
Huang et al., “All-fiber mode-group-selective photonic lantern using graded-index multimode fibers,” Optics Express, 23:224-234 (Jan. 6, 2015).
International Search Report and Written Opinion for International Application No. PCT/US2016/063086, 6 pages, dated Mar. 23, 2017.
International Search Report and Written Opinion from International Application No. PCT/US2018/015768, dated Jun. 11, 2018, 15 pages.
International Search Report and Written Opinion from International Application No. PCT/US2018/016305, dated Jun. 11, 2018, 10 pages.
International Search Report and Written Opinion from International Application No. PCT/US2018/016288, dated Jun. 11, 2018, 10 pages.
International Search Report and Written Opinion from International Application No. PCT/US2018/024145, dated Jun. 21, 2018, 5 pages.
International Search Report and Written Opinion from International Application No. PCT/US2018/015710, dated Jun. 25, 2018, 17 pages.
International Search Report and Written Opinion from International Application No. PCT/US2018/024548, dated Jun. 28, 2018, 6 pages.
International Search Report and Written Opinion for International Application No. PCT/US2018/015895, dated Jul. 10, 2018, 10 pages.
International Search Report and Written Opinion from International Application No. PCT/US2018/024510, dated Jul. 12, 2018, 6 pages.
International Search Report and Written Opinion for International Application No. PCT/US2018/024944, dated Jul. 12, 2018, 8 pages.
International Search Report and Written Opinion from International Application No. PCT/US2018/024974, dated Jul. 12, 2018, 6 pages.
International Search Report and Written Opinion from International Application No. PCT/US2018/024908, dated Jul. 19, 2018, 8 pages.
International Search Report and Written Opinion from International Application No. PCT/US2018/022629, dated Jul. 26, 2018, 11 pages.
International Search Report and Written Opinion for International Application No. PCT/US2018/023944, dated Aug. 2, 2018, 7 pages.
International Search Report and Written Opinion for International Application No. PCT/US2018/026110, 12 pages, dated Aug. 8, 2018.
International Search Report and Written Opinion from International Application No. PCT/US2018/023012, dated Aug. 9, 2018, 7 pages.
International Search Report and Written Opinion for International Application No. PCT/US2018/023963, dated Aug. 9, 2018, 7 pages.
International Search Report and Written Opinion for International Application No. PCT/US2018/024899, dated Aug. 9, 2018, 7 pages.
International Search Report and Written Opinion for International Application No. PCT/US2018/024955, dated Aug. 9, 2018, 8 pages.
International Search Report and Written Opinion for International Application No. PCT/US2018/024953, dated Aug. 16, 2018, 8 pages.
International Search Report and Written Opinion from International Application No. PCT/US2018/024954, dated Aug. 23, 2018, 7 pages.
International Search Report and Written Opinion from International Application No. PCT/US2018/024958, dated Aug. 23, 2018, 6 pages.
International Search Report and Written Opinion from International Application No. PCT/US2018/024227, dated Aug. 30, 2018, 7 pages.
International Search Report and Written Opinion from International Application No. PCT/US2018/024904, dated Aug. 30, 2018, 5 pages.
International Search Report and Written Opinion from International Application No. PCT/US2018/024971, dated Aug. 30, 2018, 8 pages.
International Search Report and Written Opinion from International Application No. PCT/US2018/024907, dated Sep. 27, 2018, 6 pages.
Jain et al., “Multi-element fiber technology for space-division multiplexing applications,” Optics Express, 22:3787-3796 (Feb. 11, 2014).
Ji et al., “Meta-q-plate for complex beam shaping,” Scientific Reports, 6:1-7 (May 6, 2016).
Jin et al., “Mode Coupling Effects in Ring-Core Fibers for Space-Division Multiplexing Systems,” Journal of Lightwave Technology, 34:3365-3372 (Jul. 15, 2016).
Kaden et al., “Selective laser melting of copper using ultrashort laser pulses,” Lasers in Manufacturing Conference 2017, pp. 1-5 (2017).
Kaden et al., “Selective laser melting of copper using ultrashort laser pulses,” Applied Physics A, 123:596-1-596-6 (Aug. 24, 2017).
Keicher et al., “Advanced 3D Printing of Metals and Electronics using Computational Fluid Dynamics,” Solid Freeform Fabrication Symposium, 32 pages (Aug. 2015).
Khijwania et al., “Propagation characteristics of single-mode graded-index elliptical core linear and nonlinear fiber using super-Gaussian approximation,” Applied Optics, 48:G156-G162 (Nov. 1, 2009).
King et al., “Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing,” Journal of Materials Processing Technology, 214:2915-2925 (2014).
Klerks et al., “Flexible beam shaping system for the next generation of process development in laser micromachining,” 9th International Conference on Photonic Technologies LANE 2016, pp. 1-8 (2016).
Kosolapov et al., “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electronics, 46:267-270 (2016).
Krupa et al., “Spatial beam self-cleaning in multimode fiber,” available at: https://arxiv.org/abs/1603.02972v1, 8 pages (Mar. 9, 2016).
Kruth et al., “On-line monitoring and process control in selective laser melting and laser cutting,” Proceedings of the 5th Lane Conference, laser Assisted Net Shape Engineering, vol. 1, 14 pages, (Sep. 1, 2007).
Laskin et al., “Applying of refractive spatial beam shapers with scanning optics,” ICALEO, Paper M604, pp. 941-947 (2011).
Laskin et al., “Beam shaping to generate uniform “Laser Light Sheet” and Linear Laser Spots,” Proc. of SPIE, The International Society for Optical Engineering, 13 pages (Sep. 2013).
Lee et al., “FEM Simulations to Study the Effects of Laser Power and Scan Speed on Molten Pool Size in Additive Manufacturing,” International Journal of Mechanical and Mechatronics Engineering, 11:1291-1295 (2017).
Lee et al., “Use of the Coaxial-Core Profile in the Erbium-Doped Fiber Amplifier for Self-Regulation of Gain Spectrum,” IEICE Trans. Commun., E82-B:1273-1282 (Aug. 1999).
Li et al., “High-quality near-field beam achieved in a high-power laser based on SLM adaptive beam-shaping system,” Optics Express, 23:681-689 (Jan. 12, 2015).
Li et al., “Melt-pool motion, temperature variation and dendritic morphology of Inconel 718 during pulsed—and continuous-wave laser additive manufacturing: A comparative study,” Materials and Design, 119:351-360 (Jan. 23, 2017).
Litvin et al., “Beam shaping laser with controllable gain,” Appl. Phys. B, 123:174-1-174-5 (May 24, 2017).
Liu et al., “Femtosecond laser additive manufacturing of YSZ,” Appl. Phys. A, 123:293-1-293-8 (Apr. 1, 2017).
Malinauskas et al., “Ultrafast laser processing of materials: from science to industry,” Official Journal of the CIOMP, Light: Science & Applications, 5:1-14 (2016).
Masoomi et al., “Quality part production via multi-laser additive manufacturing,” Manufacturing Letters, 13:15-20 (May 27, 2017).
Matthews et al., “Diode-based additive manufacturing of metals using an optically-addressable light valve,” Optics Express, 25:11788-11800 (May 15, 2017).
Meier et al., “Thermophysical Phenomena in Metal Additive Manufacturing by Selective Laser Melting: Fundamentals, Modeling, Simulation and Experimentation,” available at: http://arxiv.org/pdf/1709.09510v1, pp. 1-59 (Sep. 4, 2017).
Morales-Delgado et al., “Three-dimensional microfabrication through a multimode optical fiber,” available at: http://arxiv.org, 20 pages (2016).
Morales-Delgado et al., “Three-dimensional microfabrication through a multimode optical fiber,” Optics Express, 25:7031-7045 (Mar. 20, 2017).
Mumtaz et al., “Selective Laser Melting of thin wall parts using pulse shaping,” Journal of Materials Processing Technology, 210:279-287 (2010).
Naidoo et al., “Improving the laser brightness of a commercial laser system,” Proc. of SPIE, 10036:100360V-1-100360V-8 (Feb. 3, 2017).
Ngcobo et al., “A digital laser for on-demand laser modes,” Nature Communications, 4:1-6 (Aug. 2, 2013).
Ngcobo et al., “The digital laser,” available at: http://arxiv.org, pp. 1-9 (2013).
Notice of Allowance and Examiner-Initiated Interview Summary from U.S. Appl. No. 15/607,411, dated Jan. 7, 2019, 14 pages.
Office action from U.S. Appl. No. 15/074,838, dated May 19, 2017, 12 pages.
Office action from U.S. Appl. No. 15/607,411, dated Jun. 12, 2018, 19 pages.
Office action from U.S. Appl. No. 15/607,399, dated Sep. 14, 2018, 19 pages.
Office action and Applicant-Initiated Interview Summary from U.S. Appl. No. 15/607,410, dated Dec. 31, 2018, 63 pages.
Office action from U.S. Appl. No. 15/938,959, dated Jul. 18, 2018, 6 pages.
Office action from U.S. Appl. No. 15/939,064, dated Jul. 27, 2018, 7 pages.
Office action from U.S. Appl. No. 15/939,064, dated Oct. 5, 2018, 22 pages.
Office action from U.S. Appl. No. 15/938,959, dated Oct. 5, 2018, 22 pages.
Okunkova et al., “Development of laser beam modulation assets for the process productivity improvement of selective laser melting,” Procedia IUTAM, 23:177-186 (2017).
Okunkova et al., “Experimental approbation of selective laser melting of powders by the use of non-Gaussian power density distributions,” Physics Procedia, 56:48-57 (2014). (2017).
Okunkova et al., “Study of laser beam modulation influence on structure of materials produced by additive manufacturing,” Adv. Mater. Lett., 7:111-115 (2016).
Olsen, “Laser metal cutting with tailored beam patterns,” available at: https://www.industrial-lasers.com/articles/print/volume-26/issue-5/features/laser-metal-cutting-with-tailored-beam-patterns.html, 8 pages (Sep. 1, 2011).
“Optical Tweezers & Micromanipulation: Applications Hamamatsu Photonics,” available at: http://www.hamamatsu.com/jp/en/community/lcos/aplications/optical.html, archived: Mar. 27, 2015, 3 pages.
Pinkerton, “Lasers in Additive Manufacturing,” Optics & Laser Technology, 78:25-32 (2016).
Prashanth et al., “Is the energy density a reliable parameter for materials synthesis by selective laser melting?” Mater. Res. Lett., 5:386-390 (2017).
Purtonen, et al., “Monitoring and Adaptive Control of Laser Processes,” Physics Procedia, Elsevier, Amsterdam, NL, 56(9):1218-1231 (Sep. 9, 2014).
Putsch et al., “Active optical system for advanced 3D surface structuring by laser remelting,” Proc. of SPIE, 9356:93560U-1-93560U-10 (Mar. 9, 2015).
Putsch et al., “Active optical system for laser structuring of 3D surfaces by remelting,” Proc. of SPIE, 8843:88430D-1-88430D-8 (Sep. 28, 2013).
Putsch et al., “Integrated optical design for highly dynamic laser beam shaping with membrane deformable mirrors,” Proc. of SPIE, 10090:1009010-1-1009010-8 (Feb. 20, 2017).
Raghavan et al., “Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing,” Acta Materialia, 140:375-387 (Aug. 30, 2017).
Rashid et al., “Effect of scan strategy on density and metallurgical properties of 17-4PH parts printed by Selective Laser Melting (SLM),” Journal of Materials Processing Tech., 249:502-511 (Jun. 19, 2017).
Ren et al., “Resonant coupling in trenched bend-insensitive optical fiber,” Optics Letters, 38:781-783 (Mar. 1, 2013).
Roehling et al., “Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing,” Acta Materialia, 128:197-206 (2017).
Rosales-Guzman et al., “Multiplexing 200 modes on a single digital hologram,” available at: http://arxiv.org/pdf/1706.06129v1, pp. 1-14 (Jun. 19, 2017).
Saint-Pierre et al., “Fast uniform micro structuring of DLC surfaces using multiple ultrashort laser spots through spatial beam shaping,” Physics Procedia, 83:1178-1183 (2016).
Sames et al., “The metallurgy and processing science of metal additive manufacturing,” International Materials Reviews, pp. 1-46 (2016).
Schulze et al., “Mode Coupling in Few-Mode Fibers Induced by Mechanical Stress,” Journal of Lightwave Technology, 33:4488-4496 (Nov. 1, 2015).
SeGall et al., “Simultaneous laser mode conversion and beam combining using multiplexed volume phase elements,” Advanced Solid-State Lasers Congress Technical Digest, Optical Society of America, paper AW2A.9, 3 pages (Oct. 27-Nov. 1, 2013).
Shusteff et al., “One-step volumetric additive manufacturing of complex polymer structures,” Sci. Adv., 3:1-7 (Dec. 8, 2017).
Skutnik et al., “Optical Fibers for Improved Low Loss Coupling of Optical Components,” Proc. of SPIE, Photon Processing in Microelectronics and Photnics III, 6 pages (Jul. 15, 2004).
Smith et al., “Tailoring the thermal conductivity of the powder bed in Electron Beam Melting (EBM) Additive Manufacturing,” Scientific Reports, 7:1-8 (Sep. 5, 2017).
Spears et al., “In-process sensing in selective laser melting (SLM) additive manufacturing,” Integrating Materials and Manufacturing Innovation, 5:2-25 (2016).
Sundqvist et al., “Analytical heat conduction modelling for shaped laser beams,” Journal of Materials Processing Tech., 247:48-54 (Apr. 18, 2017).
Thiel et al., “Reliable Beam Positioning for Metal-based Additive Manufacturing by Means of Focal Shift Reduction,” Lasers in Manufacturing Conference 2015, 8 pages (2015).
Tofail et al., “Additive manufacturing: scientific and technological challenges, market uptake and opportunities,” Materials Today, pp. 1-16 (2017).
Trapp et al., “In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing,” Applied Materials Today, 9:341-349 (2017).
Ulmanen, “The Effect of High Power Adjustable Ring Mode Fiber Laser for Material Cutting,” M.S. Thesis, Tampere University of Technology, 114 pages (May 2017).
Van Newkirk et al., “Bending sensor combining multicore fiber with a mode-selective photonic lantern,” Optics Letters, 40:5188-5191 (Nov. 15, 2015).
Valdez et al., “Induced porosity in Super Alloy 718 through the laser additive manufacturing process: Microstructure and mechanical properties,” Journal of Alloys and Compounds, 725:757-764 (Jul. 22, 2017).
Wang et al., “Selective laser melting of W—Ni—Cu composite powder: Densification, microstructure evolution and nano-crystalline formation,” International Journal of Refractory Metals & Hard Materials, 70:9-18 (Sep. 9, 2017).
Website describing 3-Axis Laser Scanning Systems at http://www.camtech.com/index.php?option=com_content&view=article&id=131&Itemid=181, 4 pages, accessed Dec. 31, 2014.
Wilson-Heid et al., “Quantitative relationship between anisotropic strain to failure and grain morphology in additively manufactured Ti—6Al—4V,” Materials Science & Engineering A, 706:287-294 (Sep. 6, 2017).
Wischeropp et al., “Simulation of the effect of different laser beam intensity profiles on heat distribution in selective laser melting,” Laser in Manufacturing Conference 2015, 10 pages (2015).
Xiao et al., “Effects of laser modes on Nb segregation and Laves phase formation during laser additive manufacturing of nickel-based superalloy,” Materials Letters, 188:260-262 (Nov. 1, 2016).
Xu et al, “The Influence of Exposure Time on Energy Consumption and Mechanical Properties of SLM-fabricated Parts,” 2017 Annual International Solid Freeform Fabrication Symposium, 7 pages (2017)—Abstract only.
Yan et al., “Formation mechanism and process optimization of nano Al2O3—ZrO2 eutectic ceramic via laser engineered net shaping (LENS),” Ceramics International, 43:1-6 (2017).
Ye et al., “Mold-free fs laser shock micro forming and its plastic deformation mechanism,” Optics and Lasers in Engineering, 67:74-82 (2015).
Yu, “Laser Diode Beam Spatial Combining,” Ph.D. Thesis, Politecnico di Torino, 106 pages (Jun. 6, 2017).
Yu et al., “Development of a 300 W 105/0.15 fiber pigtailed diode module for additive manufacturing applications,” Proc. of SPIE, 10086:100860A-1-100860A-5 (Feb. 22, 2017).
Yu et al., “Laser material processing based on non-conventional beam focusing strategies,” 9th International Conference on Photonic Technologies LANE 2016, pp. 1-10 (2016).
Yusuf et al., “Influence of energy density on metallurgy and properties in metal additive manufacturing,” Materials Science and Technology, 33:1269-1289 (Feb. 15, 2017).
Zavala-Arredondo et al., “Diode area melting single-layer parametric analysis of 316L stainless steel powder,” Int. J. Adv. Manuf. Technol., 94:2563-2576 (Sep. 14, 2017).
Zavala-Arredondo et al., “Laser diode area melting for high speed additive manufacturing of metallic components,” Materials and Design, 117:305-315 (Jan. 3, 2017).
Zheng et al., “Bending losses of trench-assisted few-mode optical fibers,” Applied Optics, 55:2639-2648 (Apr. 1, 2016).
Zhirnov et al., “Laser beam profiling: experimental study of its influence on single-track formation by selective laser melting,” Mechanics & Industry, 16:709-1-709-6 (2015).
Zhu et al., “Effect of processing parameters on microstructure of laser solid forming Inconel 718 superalloy,” Optics and Laser Technology, 98:409-415 (Sep. 5, 2017).
Zhu et al., “Gaussian beam shaping based on multimode interference,” Proc. of SPIE, Laser Resonators and Beam Control XII, 7579:75790M-1-75790M-11 (2010).
Zou et al., “Adaptive laser shock micro-forming for MEMS device applications,” Optics Express, 25:3875-3883 (Feb. 20, 2017).
Adelman et al., “Measurement of Relative State-to-State Rate Constants for the Reaction D+H2(v, j)→HD(v ′, j′)+H,” J. Chem. Phys., 97:7323-7341 (Nov. 15, 1992).
Alfano et al., “Photodissociation and Recombination Dynamics of I2−in Solution,” Ultrafast Phenomena VIII, (Springer-Verlag, New York), pp. 653-655 (Jan. 1993).
“ARM,” Coherent, available at: http://www.corelase.fi/products/arm/, 6 pages, retrieved May 26, 2017.
Bernasconi et al., “Kinetics of Ionization of Nitromethane and Phenylnitromethane by Amines and Carboxylate Ions in Me2SO-Water Mixtures. Evidence of Ammonium Ion-Nitronate Ion Hydrogen Bonded Complex Formation in Me2SO-Rich Solvent Mixtures,” J. Org. Chem., 53:3342-3351 (Jul. 1988).
Blake et al., “The H+D2 Reaction: HD(v=1, J) and HD(v=2, J) Distributions at a Collision Energy of 1.3 eV,” Chem. Phys. Lett., 153:365-370 (Dec. 23, 1988).
Daniel et al., “Novel technique for mode selection in a large-mode-area fiber laser,” Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America), paper CWC5, 2 pages (Jan. 2010).
Daniel et al., “Novel technique for mode selection in a multimode fiber laser,” Optics Express, 19:12434-12439 (Jun. 20, 2011).
Di Teodoro et al., “Diffraction-Limited, 300-kW Peak-Power Pulses from a Coiled Multimode Fiber Amplifier,” Optics Letters, 27:518-520 (May 2002).
Di Teodoro et al., “Diffraction-limited, 300-kW-peak-power Pulses from a Yb-doped Fiber Amplifier,” Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, Washington, DC), p. 592-593 (May 22-24, 2002).
Di Teodoro et al., “High-peak-power pulsed fiber sources,” Proc. of SPIE, 5448:561-571 (Sep. 20, 2004).
“Efficient and Simple Precision, Laser Processing Head PDT-B,” HIGHYAG, 6 pages, (Jan. 2010).
“ENSIS Series,” Amada America, Inc., available at: http://www.amada.com/america/ensis-3015-aj, 2 pages, retrieved May 26, 2017.
“EX-F Series,” MC Machinery Systems, Inc., available at: https://www.mcmachinery.com/products-and-solutions/ex-f-series/, 2 pages, retrieved May 26, 2017.
Farrow et al., “Bend-Loss Filtered, Large-Mode-Area Fiber Amplifiers: Experiments and Modeling,” Proceedings of the Solid State and Diode Laser Technology Review (Directed Energy Professional Society), P-9, 5 pages (2006).
Farrow et al., “Compact Fiber Lasers for Efficient High-Power Generation,” Proc. of SPIE, 6287:62870C-1-62870C-6 (Sep. 1, 2006).
Farrow et al., “Design of Refractive-Index and Rare-Earth-Dopant Distributions for Large-Mode-Area Fibers Used in Coiled High-Power Amplifiers,” Proc. of SPIE, 6453:645310-1-64531C-11 (Feb. 2, 2007).
Farrow et al., “High-Peak-Power (>1.2 MW) Pulsed Fiber Amplifier,” Proc. of the SPIE, 6102:61020L-1-61020L-11 (Mar. 2006).
Farrow et al., “Numerical Modeling of Self-Focusing Beams in Fiber Amplifiers,” Proc. of the SPIE, 6453:645309-1-645309-9 (2007).
Farrow et al., “Peak-Power Limits on Pulsed Fiber Amplifiers Imposed by Self-Focusing,” Optics Lett., 31:3423-3425 (Dec. 1, 2006).
Fève et al., “Four-wave mixing in nanosecond pulsed fiber amplifiers,” Optics Express, 15:4647-4662 (Apr. 16, 2007).
Feve et al., “Limiting Effects of Four-Wave Mixing in High-Power Pulsed Fiber Amplifiers,” Proc. of the SPIE, 6453:64531P-1-64531P-11 (Feb. 22, 2007).
Final Office action from U.S. Appl. No. 15/607,411, dated Feb. 1, 2018, 27 pages.
Fini, “Bend-compensated design of large-mode-area fibers,” Optics Letters, 31:1963-1965 (Jul. 1, 2006).
Fini, “Large mode area fibers with asymmetric bend compensation,” Optics Express, 19:21868-21873 (Oct. 24, 2011).
Fini et al., “Bend-compensated large-mode-area fibers: achieving robust single-modedness with transformation optics,” Optics Express, 21:19173-19179 (Aug. 12, 2013).
Fox et al., “Effect of low-earth orbit space on radiation-induced absorption in rare-earth-doped optical fibers,” J. Non-Cryst. Solids, 378:79-88 (Oct. 15, 2013).
Fox et al., “Gamma Radiation Effects in Yb-Doped Optical Fiber,” Proc. of the SPIE, 6453:645328-1-645328-9 (Feb. 23, 2007).
Fox et al., “Gamma-Radiation-Induced Photodarkening in Unpumped Optical Fibers Doped with Rare-Earth Constituents,” IEEE Trans. on Nuclear Science, 57:1618-1625 (Jun. 2010).
Fox et al., “Investigation of radiation-induced photodarkening in passive erbium-, ytterbium-, and Yb/Er co-doped optical fibers,” Proc. of the SPIE, 6713:67130R-167130R-9 (Sep. 26, 2007).
Fox et al., “Radiation damage effects in doped fiber materials,” Proc. of the SPIE, 6873:68731F-1-68731F-9 (Feb. 22, 2008).
Fox et al., “Spectrally Resolved Transmission Loss in Gamma Irradiated Yb-Doped Optical Fibers,” IEEE J. Quant. Electron., 44:581-586 (Jun. 2008).
Fox et al., “Temperature and Dose-Rate Effects in Gamma Irradiated Rare-Earth Doped Fibers,” Proc. of SPIE, 7095:70950B-1-70950B-8 (Aug. 26, 2008).
Ghasemi et al., “Beam shaping design for coupling high power diode laser stack to fiber,” Applied Optics, 50:2927-2930 (Jun. 20, 2011).
Ghatak et al., “Design of Waveguide Refractive Index Profile to Obtain Flat Model Field,” SPIE, 3666:40-44 (Apr. 1999).
Goers et al., “Development of a Compact Gas Imaging Sensor Employing cw Fiber-Amp-Pumped PPLN OPO,” Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, Washington, DC), p. 521 (May 11, 2001).
Goldberg et al., “Deep UV Generation by Frequency Tripling and Quadrupling of a High-Power Modelocked Semiconductor Laser,” Proceedings of the Quantum Electronics and Laser Science Conference, QPD18-2 (Baltimore) 2 pages (May 1995).
Goldberg et al., “Deep UV Generation by Frequency Quadrupling of a High-Power GaAlAs Semiconductor Laser,” Optics Lett., 20:1145-1147 (May 15, 1995).
Goldberg et al., “High Efficiency 3 W Side-Pumped Yb Fiber Amplifier and Laser,” Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, Washington, DC), p. 11-12 (May 24, 1999).
Goldberg et al., “Highly Efficient 4-W Yb-Doped Fiber Amplifier Pumped by a Broad-Stripe Laser Diode,” Optics Lett., 24:673-675 (May 15, 1999).
Goldberg et al., “High-Power Superfluorescent Source with a Side-Pumped Yb-Doped Double-Cladding Fiber,” Optics Letters, 23:1037-1039 (Jul. 1, 1998).
Goldberg et al., “Tunable UV Generation at 286 nm by Frequency Tripling of a High-Power Modelocked Semiconductor Laser,” Optics Lett., 20:1640-1642 (Aug. 1, 1995).
Golub, “Laser Beam Splitting by Diffractive Optics,” Optics and Photonics News, 6 pages (Feb. 2004).
Han et al., “Reshaping collimated laser beams with Gaussian profile to uniform profiles,” Applied Optics, 22:3644-3647 (Nov. 15, 1983).
Headrick et al., “Application of laser photofragmentation-resonance enhanced multiphoton ionization to ion mobility spectrometry,” Applied Optics, 49:2204-2214 (Apr. 10, 2010).
Hemenway et al., “Advances in high-brightness fiber-coupled laser modules for pumping multi-kW CW fiber lasers,” Proceedings of SPIE, 10086:1008605-1-1008605-7 (Feb. 22, 2017).
Hemenway et al., “High-brightness, fiber-coupled pump modules in fiber laser applications,” Proc. of SPIE, 8961:89611V-1-89611V-12 (Mar. 7, 2014).
Hoops et al., “Detection of mercuric chloride by photofragment emission using a frequency-converted fiber amplifier,” Applied Optics, 46:4008-4014 (Jul. 1, 2007).
Hotoleanu et al., “High Order Mode Suppression in Large Mode Area Active Fibers by Controlling the Radial Distribution of the Rare Earth Dopant,” Proc. of the SPIE, 6102:61021T-1-61021T-8 (Feb. 23, 2006).
“How to Select a Beamsplitter,” IDEX—Optics & Photonics Marketplace, available at: https://www.cvilaseroptics.com/file/general/beamSplitters.pdf, 5 pages (Jan. 8, 2014).
Huang et al., “Double-cutting beam shaping technique for high-power diode laser area light source,” Optical Engineering, 52:106108-1-106108-6 (Oct. 2013).
International Search Report and Written Opinion for related International Application No. PCT/US2016/041526, 6 pages, dated Oct. 20, 2016.
International Search Report and Written Opinion from International Application No. PCT/US2017/034848, dated Nov. 28, 2017, 15 pages.
International Search Report and Written Opinion for related International Application No. PCT/US2016/053807, 6 pages, dated Jan. 19, 2017.
Ishiguro et al., “High Efficiency 4-kW Fiber Laser Cutting Machine,” Rev. Laser Eng., 39:680-684 (May 21, 2011).
Johnson et al., “Experimental and Theoretical Study of Inhomogeneous Electron Transfer in Betaine: Comparisons of Measured and Predicted Spectral Dynamics,” Chem. Phys., 176:555-574 (Oct. 15, 1993).
Johnson et al., “Ultrafast Experiments on the Role of Vibrational Modes in Electron Transfer,” Pure and Applied Chem., 64:1219-1224 (May 1992).
Kliner, “Novel, High-Brightness, Fibre Laser Platform for kW Materials Processing Applications,” 2015 European Conference on Lasers and Electro-Optics—European Quantum Electronics Conference (Optical Society of America, 2015), paper CJ_11_2, 1 page (Jun. 21-25, 2015).
Kliner et al., “4-kW fiber laser for metal cutting and welding,” Proc. of SPIE, 7914:791418-791418-8 (Feb. 22, 2011).
Kliner et al., “Comparison of Experimental and Theoretical Absolute Rates for Intervalence Electron Transfer,” J. Am. Chem. Soc., 114:8323-8325 (Oct. 7, 1992).
Kliner et al., “Comparison of Experimental and Theoretical Integral Cross Sections for D+H2(v=1, j=1)>HD(v′=1, j′)+H,” J. Chem. Phys., 95:1648-1662 (Aug. 1, 1991).
Kliner et al., “D+H2(v=1, J=1): Rovibronic State to Rovibronic State Reaction Dynamics,” J. Chem. Phys., 92:2107-2109 (Feb. 1, 1990).
Kliner et al. “Effect of Indistinguishable Nuclei on Product Rotational Distributions: H+HI>H2+I reactiona),” J. Chem. Phys., 90:4625-4327 (Apr. 15, 1989).
Kliner et al., “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Optics Communications, 210:393-398 (Sep. 15, 2002).
Kliner et al., “Efficient UV and Visible Generation Using a Pulsed Yb-Doped Fiber Amplifier,” Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, Washington, DC), p. CPDC10-1-CPDC10-3 (May 19-22, 2002).
Kliner et al., “Efficient visible and UV generation by frequency conversion of a mode-filtered fiber amplifier,” Proc. of SPIE, 4974:230-235 (Jul. 3, 2003).
Kliner et al., “Fiber laser allows processing of highly reflective materials,” Industrial Laser Solutions, 31:1-9 (Mar. 16, 2016).
Kliner et al., “High-Power Fiber Lasers,” Photonics & Imaging Technology, pp. 2-5 (Mar. 2017).
Kliner et al., “Laboratory Investigation of the Catalytic Reduction Technique for Detection of Atmospheric NOy,” J. Geophys. Res., 102:10759-10776 (May 20, 1997).
Kliner et al., “Laser Reflections: How fiber laser users are successfully processing highly reflective metals,” Shop Floor Lasers, available at: http://www.shopfloorlasers.com/laser-cutting/fiber/354-laser-reflections, 9 pages (Jan./Feb. 2017).
Kliner et al., “Measurements of Ground-State OH Rotational Energy-Transfer Rates,” J. Chem. Phys., 110:412-422 (Jan. 1, 1999).
Kliner et al., “Mode-Filtered Fiber Amplifier,” Sandia National Laboratories—Brochure, 44 pages (Sep. 13, 2007).
Kliner et al., “Narrow-Band, Tunable, Semiconductor-Laser-Based Source for Deep-UV Absorption Spectroscopy,” Optics Letters, 22:1418-1420 (Sep. 15, 1997).
Kliner et al., “Overview of Sandia's fiber laser program,” Proceedings of SPIE—The International Society for Optical Engineering, 6952:695202-1-695202-12 (Apr. 14, 2008).
Kliner et al., “Photodissociation and Vibrational Relaxation of I2−in Ethanol,” J. Chem. Phys., 98:5375-5389 (Apr. 1, 1993).
Kliner et al., “Photodissociation Dynamics of I2−in Solution,” Ultrafast Reaction Dynamics and Solvent Effects, (American Institute of Physics, New York), pp. 16-35 (Feb. 1994).
Kliner et al., “Polarization-Maintaining Amplifier Employing Double-Clad, Bow-Tie Fiber,” Optics Lett., 26:184-186 (Feb. 15, 2001).
Kliner et al., “Power Scaling of Diffraction-Limited Fiber Sources,” Proc. of SPIE, 5647:550-556 (Feb. 21, 2005).
Kliner et al., “Power Scaling of Rare-Earth-Doped Fiber Sources,” Proc. of SPIE, 5653:257-261 (Jan. 12, 2005).
Kliner et al., “Product Internal-State Distribution for the Reaction H+HI>H2+I,” J. Chem. Phys., 95:1663-1670 (Aug. 1, 1991).
Kliner et al., “The D+H2 Reaction: Comparison of Experiment with Quantum-Mechanical and Quasiclassical Calculations,” Chem. Phys. Lett., 166:107-111 (Feb. 16, 1990).
Kliner et al., “The H+para-H2 reaction: Influence of dynamical resonances on H2(v′=1, j′=1 and 3) Integral Cross Sections,” J. Chem. Phys., 94:1069-1080 (Jan. 15, 1991).
Koplow et al., “A New Method for Side Pumping of Double-Clad Fiber Sources,” J. Quantum Electronics, 39:529-540 (Apr. 4, 2003).
Koplow et al., “Compact 1-W Yb-Doped Double-Cladding Fiber Amplifier Using V-Groove Side-Pumping,” IEEE Photonics Technol. Lett., 10:793-795 (Jun. 1998).
Koplow et al., “Development of a Narrowband, Tunable, Frequency-Quadrupled Diode Laser for UV Absorption Spectroscopy,” Appl. Optics, 37:3954-3960 (Jun. 20, 1998).
Koplow et al., “Diode-Bar Side-Pumping of Double-Clad Fibers,” Proc. of SPIE, 5709:284-300 (Apr. 22, 2005).
Koplow et al., “High Power PM Fiber Amplifier and Broadband Source,” Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, Washington, DC), p. 12-13 (Mar. 7-10, 2000).
Koplow et al., “Polarization-Maintaining, Double-Clad Fiber Amplifier Employing Externally Applied Stress-Induced Birefringence,” Optics Lett., 25:387-389 (Mar. 15, 2000).
Koplow et al., “Single-mode operation of a coiled multimode fiber amplifier,” Optics Letters, 25:442-444 (Apr. 1, 2000).
Koplow et al., “Use of Bend Loss to Obtain Single-Transverse-Mode Operation of a Multimode Fiber Amplifier,” Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, Washington, DC), p. 286-287 (May 7-12, 2000).
Koplow et al., “UV Generation by Frequency Quadrupling of a Yb-Doped Fiber Amplifier,” IEEE Photonics Technol. Lett., 10:75-77 (Jan. 1998).
Koponen et al., “Photodarkening Measurements in Large-Mode-Area Fibers,” Proc. of SPIE, 6453:64531E-1-64531E-12 (Feb. 2007).
Kotlyar et al., “Asymmetric Bessel-Gauss beams,” J. Opt. Soc. Am. A, 31:1977-1983 (Sep. 2014).
Kulp et al., “The application of quasi-phase-matched parametric light sources to practical infrared chemical sensing systems,” Appl. Phys. B, 75:317-327 (Jun. 6, 2002).
“Laser cutting machines,” TRUMPF, available at: http://www.us.trumpf.com/en/products/machine-tools/products/2d-laser-cutting/innovative-technology/brightline.html, 9 pages, retrieved May 26, 2017.
Longhi et al., “Self-focusing and nonlinear periodic beams in parabolic index optical fibres,” J. Opt. B: Quantum Semiclass. Opt., 6:S303-S308 (May 2004).
Maechling et al., “Sum Frequency Spectra in the C—H Stretch Region of Adsorbates on Iron,” Appl. Spectrosc., 47:167-172 (Feb. 1, 1993).
McComb et al., “Pulsed Yb:fiber system capable of >250 kW peak power with tunable pulses in the 50 ps to 1.5 ns range,” Proc. of SPIE, 8601:86012T-1-86012T-11 (Mar. 23, 2013).
Moore et al., “Diode-bar side pumping of double-clad fibers,” Proc. of SPIE, 6453:64530K-1-64530K-9 (Feb. 20, 2007).
Neuhauser et al., “State-to-State Rates for the D+H2(v=1, j=1)>HD(v′, j′)+H Reaction: Predictions and Measurements,” Science, 257:519-522 (Jul. 24, 1992).
Office action from U.S. Appl. No. 15/607,399, dated Sep. 20, 2017, 25 pages.
Office action from U.S. Appl. No. 15/607,411, dated Sep. 26, 2017, 15 pages.
Office action from U.S. Appl. No. 15/607,410, dated Oct. 3, 2017, 32 pages.
Price et al., “High-brightness fiber-coupled pump laser development,” Proc. of SPIE, 7583:758308-1-758308-7 (Feb. 2010).
Rinnen et al., “Construction of a Shuttered Time-of-Flight Mass Spectrometer for Selective Ion Detection,” Rev. Sci. Instrum., 60:717-719 (Apr. 1989).
Rinnen et al., “Effect of Indistinguishable Nuclei on Product Rotational Distributions: D+DI>D2+I,” Chem. Phys. Lett., 169:365-371 (Jun. 15, 1990).
Rinnen et al. “Quantitative Determination of HD Internal State Distributions via (2+1) REMPI,” Isr. J. Chem., 29:369-382 (Mar. 7, 1989).
Rinnen et al., “Quantitative determination of H2, HD, and D2 internal state distributions via (2+1) resonance-enhanced multiphoton ionization,” J. Chem. Phys., 95:214-225 (Jul. 1, 1991).
Rinnen et al., “The H+D2 Reaction: “Prompt” HD Distributions at High Collision Energies,” Chem. Phys. Lett., 153:371-375 (Dec. 23, 1988).
Rinnen et al., “The H+D2 Reaction: Quantum State Distributions at Collision Energies of 1.3 and 0.55 eV,” J. Chem. Phys., 91:7514-7529 (Dec. 15, 1989).
Romero et al., “Lossless laser beam shaping,” J. Opt. Soc. Am. A, 13:751-760 (Apr. 1996).
Sanchez-Rubio et al., “Wavelength Beam Combining for Power and Brightness Scaling of Laser Systems,” Lincoln Laboratory Journal, 20:52-66 (Aug. 2014).
Saracco et al., “Compact, 17 W average power, 100 kW peak power, nanosecond fiber laser system,” Proc. of SPIE, 8601:86012U-1-86012U-13 (Mar. 22, 2013).
Schrader et al., “Fiber-Based Laser with Tunable Repetition Rate, Fixed Pulse Duration, and Multiple Wavelength Output,” Proc. of the SPIE, 6453:64530D-1-64530D-9 (Feb. 20, 2007).
Schrader et al., “High-Power Fiber Amplifier with Widely Tunable Repetition Rate, Fixed Pulse Duration, and Multiple Output Wavelengths,” Optics Express, 14:11528-11538 (Nov. 27, 2006).
Schrader et al., “Power scaling of fiber-based amplifiers seeded with microchip lasers,” Proc. of the SPIE, 6871:68710T-1-68710T-11 (Feb. 2008).
Sheehan et al., “Faserlaser zur Bearbeitung hochreflektierender Materialien (Fiber laser processing of highly reflective materials),” Laser, 3:92-94 (Jun. 2017).
Sheehan et al. “High-brightness fiber laser advances remote laser processing,” Industrial Laser Solutions, 31:1-9 (Nov. 2, 2016).
Sun et al., “Optical Surface Transformation: Changing the optical surface by homogeneous optic-null medium at will,” Scientific Reports, 5:16032-1-16032-20 (Oct. 30, 2015).
Tominaga et al., “Femtosecond Experiments and Absolute Rate Calculations on Intervalence Electron Transfer in Mixed-Valence Compounds,” J. Chem. Phys., 98:1228-1243 (Jan. 15, 1993).
Tominaga et al., “Ultrafast Studies of Intervalence Charge Transfer,” Ultrafast Phenomena VIII, (Springer-Verlag, New York), pp. 582-584 (1993).
“Triple Clad Ytterbium-Doped Polarization Maintaining Fibers,” nuFERN Driven to Light Specifications, 1 page (Jan. 2006).
Varshney et al., “Design of a flat field fiber with very small dispersion slope,” Optical Fiber Technology, 9(3):189-198 (Oct. 2003).
Xiao et al., “Fiber coupler for mode selection and high-efficiency pump coupling,” Optics Letters, 38:1170-1172 (Apr. 1, 2013).
Yaney et al., “Distributed-Feedback Dye Laser for Picosecond UV and Visible Spectroscopy,” Rev. Sci. Instrum, 71:1296-1305 (Mar. 2000).
Yu et al., “1.2-kW single-mode fiber laser based on 100-W high-brightness pump diodes,” Proc. of SPIE, 8237:82370G-1-82370G-7 (Feb. 16, 2012).
Related Publications (1)
Number Date Country
20180198252 A1 Jul 2018 US
Continuations (1)
Number Date Country
Parent 14293941 Jun 2014 US
Child 15912034 US