This nonprovisional application claims priority under 35 U.S.C. § 119(a) to German Patent Application No. 10 2015 006 379.0, which was filed in Germany on May 18, 2015, and which is herein incorporated by reference.
Field of the Invention
The invention relates to a scalable voltage source.
Description of the Background Art
From U.S. Pat. Nos. 4,127,862, 6,239,354 B1, DE 10 2010 001 420 AI, from Nader M. Kalkhoran, et al, “Cobalt disilicide intercell ohmic contacts for multijunction photovoltaic energy converters”, Appl. Phys. Lett. 64, 1980 (1994) and from A. Bett et al, “III-V Solar cells under monochromatic illumination”, Photovoltaic Specialists Conference, 2008, PVSC '08. 33rd IEEE, pages 1-5, ISBN:978-1-4244-1640-0, scalable voltage sources or also solar cells made of III-V materials are known.
It is therefore an object of the invention to provide an apparatus that further develops the prior art.
According to an exemplary embodiment of the invention, a scalable voltage source having a number N of mutually series-connected partial voltage sources designed as semiconductor diodes is provided, wherein each of the partial voltage sources comprises a semiconductor diode with a p-n junction, and the semiconductor diode has a p-doped absorption layer, wherein the p-absorption layer is passivated by a p-doped passivation layer with a wider band gap than the band gap of the p-absorption layer and the semiconductor diode has an n-absorption layer, wherein the n-absorption layer is passivated by an n-doped passivation layer with a wider band gap than the band gap of the n-absorption layer, and the partial source voltages of the individual partial voltage sources deviate by less than 20%, and between in each case two consecutive partial voltage sources, a tunnel diode is arranged, wherein the tunnel diode has a plurality of semiconductor layers with a wider band gap than the band gap of the p/n absorption layers and the semiconductor layers with the wider band gap each formed of a material with changed stoichiometry and/or other element composition than the p/n-absorption layers of the semiconductor diode, and the partial voltage sources and the tunnel diodes are monolithically integrated together and jointly form a first stack with a top surface and a bottom surface, and the number N of the partial voltage sources is greater than or equal to three, and the light strikes the first stack on the top surface, and the size of the illuminated area on the stack top surface is substantially the size of the area of the first stack on the top surface, and the first stack has a total thickness less than 12 μm, and at 300 K, the first stack has a source voltage greater than 3 volts, provided that the first stack is illuminated with a photon flux, and wherein in the direction of light incidence from the top surface of the first stack to the bottom surface of the first stack, the total thickness of the p and n-absorption layers of a semiconductor diode increases from the topmost diode to the lowest diode and the voltage source near the bottom surface of the stacks has a circumferential, shoulder-like step.
The correlation of the comparison of the illuminated area at the top surface of the stack can be with the size of the surface of the first stack at the top side, and can be a difference in the surface in particular lesser than 20% or preferably lesser than 10% or most preferably the two surfaces are equal.
The light for the illumination of the top surface of the stack can have a spectrum of wave lengths in the absorption area of the absorption layers. A monochromatic light can have a specific, i.e., absorbent wave length, i.e., a wave length in the absorption area of the absorption layers.
The total top surface of the first stack, i.e. the entire or substantially the entire surface can be illuminated by the light of a particular wave length. It should be noted that detailed studies have surprisingly shown that as opposed to the prior art, using the present monolithic stack approach advantageously results in source voltages above 3V.
An advantage of the inventive apparatus is that by connecting in series a plurality of partial voltage sources of a voltage source with voltage values also above four or more volts, a simple and cost-effective as well as reliable voltage source can be produced by means of a monolithically integrated construction. A further advantage is that by means of the stacked arrangement as opposed to the hitherto lateral arrangement with silicon diodes, more space is saved. In particular, the transmitter diode or light source only needs to illuminate the substantially smaller receiving surface of the stack.
In an embodiment, the partial source voltages of the individual partial voltage sources can deviate less than 10%. The applicability as a scalable voltage source, in particular as a voltage reference source, is thereby greatly improved. The term “scalability” can refer to the level of the source voltage of the total stack.
In an embodiment, the semiconductor diodes each can be formed of the same semiconductor material, wherein the semiconductor material of the diodes hereby has the same crystalline composition and wherein preferably, the stoichiometry is nearly or preferably exactly the same. It is also advantageous to arrange the first stack on a substrate. In one embodiment, the semiconductor material and/or the substrate formed of III-V materials. It is particularly preferred that the substrate comprises germanium or gallium arsenide and/or that the semiconductor layers have arsenic and/or phosphorus on the substrate. In other words, the semiconductor layers have layers containing As and P, i.e. layers made of GaAs or AIGaAs or InGaAs as examples of arsenide layers, and InGaP as an example of a phosphide layer.
A second voltage terminal can be formed on the bottom surface of the first stack and in particular, that the second voltage terminal is formed by the substrate.
In another embodiment, the semiconductor diodes can be formed of the same material as the substrate. One advantage is that then in particular the expansion coefficients of the two parts are alike. It is advantageous if the semiconductor diodes is formed of a III-V material. It is particularly preferred to use GaAs.
In an embodiment, a first voltage terminal can be formed on the top surface of the first stack as a circumferential metal contact near the edge or as a single contact surface on the edge.
The first stack can have a bottom surface smaller than 2 mm2 or smaller than 1 mm2. Studies have shown that it is advantageous to shape the bottom surface quadrangular. The bottom surface of the stack is preferably square in shape.
To achieve particularly high voltages, it is advantageous to design a second stack and to connect the two stacks in series with one another so that the source voltage of the first stack and the source voltage of the second stack can be added. Preferably, the first stack and the second stack are arranged adjacent to one another on a common carrier.
In an embodiment, the source voltage of the first stack deviates less than 15% from the source voltage of the second stack.
A semiconductor mirror can be arranged below the lowest semiconductor diode of the stack. A plurality of stacks can be arranged adjacent to one another on a semiconductor wafer or a semiconductor substrate wafer by performing a so-called mesa etching after the full-surface, preferably epitaxial production of the layers. To this end, a resist mask is produced via a mask process and subsequently, preferably wet chemical etching is performed to produce mesa trenches. The mesa etching can stop in the substrate or on the substrate.
In an embodiment, an intrinsic layer can be formed between the p absorption layer and the n-absorption layer of the respective diode. An intrinsic layer can be a semiconductor layer with a doping below 1E16 1/cm2, preferably less than 5E15 1/cm2, most preferably less than 1.5 E15 1/cm2.
In an embodiment, each stack can have a circumferential, shoulder-shaped edge in the vicinity of the bottom surface, wherein at two immediately adjacent stacks, the circumferential edge is designed as a shared circumferential edge at the outer surfaces of the stack formation so that the voltage source has a circumferential edge.
The edge can be designed step-like or as a step. The edge or step surface hereby preferably mostly has a plane surface, wherein the normal of the edge or the step is designed to be parallel or nearly parallel to the normal of the surface of the first stack or to the normal of the surfaces of the respective stacks. It should be noted that the lateral surface of the edge or the step is designed to be mostly or exactly perpendicular to the surface of the edge or step.
The border of the edge or the step can be spaced at least 5 microns and maximally 500 microns apart in each case from each of the four lateral surfaces of the first stack or in each case from the lateral surfaces of multiple stacks. For example, the distance range of the border to the immediately adjoining lateral surface can be in each case between 10 microns and 300 microns. In particular, the distance range can be between 50 microns and 250 microns.
The lateral surfaces of the first stack and, for example, all lateral surfaces of the stack can be designed to be planar and in particular perpendicular or nearly perpendicular. In particular, the normals on lateral surfaces as compared to the normals of the adjoining edge surfaces or the normals of the top surfaces of the stack are at an angle range between 80° and 110°, i.e. the normal of a lateral surface and the edge surface immediately adjoining are substantially positioned orthogonally to one another. Preferably, the angle range is between 85° and 105°.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitive of the present invention, and wherein:
The drawing in
The first stack ST1 of the diodes D1 to D3 and the tunnel diodes TI and T2 is configured as a monolithically designed block, preferably made of the same semiconductor material.
In the drawing in
In another embodiment which is not shown, the two stacks ST1 and ST2 mutually have a different number of diodes each connected to one another in a series circuit. In another embodiment which is not shown, at least the first stack ST1 and/or the second stack ST2 have more than three diodes connected in a series circuit. In this way, the voltage level of the voltage source VQ can be scaled. Preferably, the number N is within a range between four and eight. In a further embodiment which is not shown, both stacks ST1 and ST2 are connected in parallel to each other.
In the drawing in
In the drawing in
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 006 379 | May 2015 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4127862 | Ilegems et al. | Nov 1978 | A |
4179702 | Lamorte | Dec 1979 | A |
4206002 | Sabnis | Jun 1980 | A |
4271328 | Hamakawa | Jun 1981 | A |
4598164 | Tiedje | Jul 1986 | A |
4631352 | Daud | Dec 1986 | A |
4667059 | Olson | May 1987 | A |
4688068 | Chaffin | Aug 1987 | A |
4926230 | Yamagishi | May 1990 | A |
5223043 | Olson | Jun 1993 | A |
5252142 | Matsuyama | Oct 1993 | A |
5298086 | Guha | Mar 1994 | A |
5407491 | Freundlich | Apr 1995 | A |
5800630 | Vilela | Sep 1998 | A |
6239354 | Wanlass | May 2001 | B1 |
6300558 | Takamoto | Oct 2001 | B1 |
6316715 | King | Nov 2001 | B1 |
6864414 | Sharps | Mar 2005 | B2 |
7488890 | Takamoto | Feb 2009 | B2 |
7696429 | Strobl | Apr 2010 | B2 |
8075723 | Farris, III | Dec 2011 | B1 |
8138410 | Hovel | Mar 2012 | B2 |
8299351 | Hsu | Oct 2012 | B2 |
8343794 | Frolov | Jan 2013 | B2 |
8404513 | Matsushita | Mar 2013 | B2 |
8580602 | Garnett | Nov 2013 | B2 |
8613984 | Aslami | Dec 2013 | B2 |
8624222 | Liu | Jan 2014 | B2 |
8697481 | Jones-Albertus | Apr 2014 | B2 |
8772623 | Wanlass | Jul 2014 | B2 |
8795854 | Goyal | Aug 2014 | B2 |
8852994 | Wojtczuk | Oct 2014 | B2 |
8912617 | Zhang | Dec 2014 | B2 |
8916769 | Hovel | Dec 2014 | B2 |
8933326 | Sasaki | Jan 2015 | B2 |
8951827 | Ahmari | Feb 2015 | B2 |
8962993 | Jones-Albertus et al. | Feb 2015 | B2 |
9048376 | Lin | Jun 2015 | B2 |
9054254 | Juso | Jun 2015 | B2 |
9231147 | Stan | Jan 2016 | B2 |
9249016 | Aria | Feb 2016 | B2 |
9263611 | Fidaner | Feb 2016 | B2 |
9306095 | Nobori | Apr 2016 | B2 |
9508890 | Li | Nov 2016 | B2 |
9530911 | King | Dec 2016 | B2 |
9666738 | Fuhrmann | May 2017 | B2 |
9947823 | King | Apr 2018 | B2 |
9985160 | King | May 2018 | B2 |
9997659 | King | Jun 2018 | B2 |
10109758 | Campesato | Oct 2018 | B2 |
20030136442 | Takamoto | Jul 2003 | A1 |
20060048811 | Krut et al. | Mar 2006 | A1 |
20080000523 | Hilgarth et al. | Jan 2008 | A1 |
20080163920 | Meusel et al. | Jul 2008 | A1 |
20100096001 | Sivananthan et al. | Apr 2010 | A1 |
20100122764 | Newman | May 2010 | A1 |
20100147381 | Haney | Jun 2010 | A1 |
20100229930 | Fetzer | Sep 2010 | A1 |
20110005570 | Jain | Jan 2011 | A1 |
20110220175 | Haney | Sep 2011 | A1 |
20110290312 | Agui | Dec 2011 | A1 |
20120125392 | Woo | May 2012 | A1 |
20120266803 | Zediker et al. | Oct 2012 | A1 |
20140076391 | King | Mar 2014 | A1 |
20150295114 | Meitl | Oct 2015 | A1 |
20150380591 | Bett | Dec 2015 | A1 |
20160294189 | Uno | Oct 2016 | A1 |
20170018675 | Meitl | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
102651416 | Aug 2012 | CN |
103403874 | Nov 2013 | CN |
103545389 | Jan 2014 | CN |
103594539 | Feb 2014 | CN |
10 2010 001 420 | Aug 2011 | DE |
1 936 700 | Jun 2008 | EP |
2007-537584 | Dec 2007 | JP |
2008-512860 | Apr 2008 | JP |
2008177212 | Jul 2008 | JP |
2015-505641 | Feb 2015 | JP |
WO 2015037663 | Mar 2015 | JP |
201327875 | Jul 2013 | TW |
WO 2013088621 | Jun 2013 | WO |
WO 2014096200 | Jun 2014 | WO |
WO 2014096200 | Jun 2014 | WO |
Entry |
---|
Cotal et al., “III-V multijunction solar cells for concentrating photovoltaics”, Energy Environmental Science 2 (2009) pp. 174-192. |
Jung et al., “AlGaAs/GaInP heterojunction tunnel diode for cascade solar cell application”, Journal of Applied Physics 74 (1993) pp. 2090-2093. |
Valdivia et al., “Five-volt vertically-stacked, single-cell GaAs photonic power converter,” Proc. of Spie, vol. 9358, pp. 93580E-1-93580E-8 (Mar. 16, 2015). |
Schubert et al., “High-Voltage GaAs Photovoltaic Laser Power Converters,” IEEE Trans. on Electron Devices, vol. 56, No. 2, pp. 170-175 (2009). |
Kalkhoran et al., “Cobalt disilicate intercell ohmic contaccts for multijunction photovoltaic energy converters,” Appl. Phys. Lett., vol. 64, No. 15, pp. 1980-1982 (Apr. 11, 1994). |
Bett et al., “III-V Solar cells Under Monochromatic Illumination,” 33rd IEEE Photovoltaic Specialists Conf. (PSVC '08), pp. 1-5 (2008). |
Number | Date | Country | |
---|---|---|---|
20160343704 A1 | Nov 2016 | US |