Claims
- 1. A scanning ion microscope comprising an accelerator of ions which are more massive than helium; a series of electromagnetic ion-optical lenses comprising one or more stages of quadrupole lens doublets and suitable deflection means, which both direct the ions to a predetermined position on the specimen and focus the ions onto a microscopically small area of the specimen, thereby forming a directable, focused ion beam; a detector, such as a semiconductor detector or an electron multiplier, which detector is sensitive to the occurrence and to the time of occurrence of emissions consisting of individual X rays, individual soft X rays, or individual Auger electrons produced by the interaction of the positive ions of the beam with individual atoms in the specimen; and electronic means of sweeping the focused ion beam in a pattern across the specimen while recording (or displaying) the number of emissions occurring when the ion beam is at each point in the pattern.
- 2. A scanning ion microscope as described in claim 1 in which the energy of the ions is greater than one million electron volts.
- 3. A scanning ion microscope as described in claim 1 in which the detector is sensitive to the energy of an individual emission, and in which the number and energy of detected emissions is recorded when the ion beam is at each point in the pattern.
- 4. A scanning ion microscope as described in claim 1 or 3 in which the specimen is supported on a thin film of a material selected from the group consisting of boron, beryllium, or compounds containing only hydrogen, lithium, boron, and beryllium.
- 5. The microscope of claim 1 or 3 wherein the ions are hydrogen and helium in addition to ions heavier than helium, and in which the focus is less than one square micron in area.
- 6. The process of using a scanning ion microscope comprising use of an accelerator of ions which are more massive than helium; use of a series of electromagnetic ion-optical lenses comprising one or more stages of quadrupole doublets and suitable deflection means, which both direct the ions to a predetermined position on the specimen and focus the ions onto a microscopically small area of the specimen, thereby forming a directable, focused ion beam; use of a detector, such as a semiconductor detector or an electron multiplier, which detector is sensitive to the occurrence and to the time of occurrence of emissions consisting of individual X rays, individual soft X rays, or individual Auger electrons produced by the interaction of the positive ions of the beam with individual atoms in the specimen; and use of electronic means of sweeping the focused ion beam in a pattern across the specimen while recording the number of emissions occurring when the ion beam is at each point in the pattern.
- 7. A method of using a scanning ion microscope as set forth in claim 6, further comprising use of a detector sensitive to the energy of an individual emission and use of electronic means of recording the number and energy of detected emissions when the ion beam is at each point in the pattern.
- 8. The method of using a scanning ion microscope as set forth in claim 6 or 7 wherein the ions are hydrogen and helium in addition to ions heavier than helium, and in which the focus is less than one square micron in area.
Parent Case Info
This is a continuation of application Ser. No. 431,745 filed Jan. 8, 1974 abandoned.
US Referenced Citations (4)
Non-Patent Literature Citations (1)
| Entry |
| "Is a Scanning Ion Microscope Feasible?", Martin, Science, vol. 179, Jan. 1973, pp. 173-175. |
Continuations (1)
|
Number |
Date |
Country |
| Parent |
431745 |
Jan 1974 |
|