The present disclosure relates to a microelectromechanical system (MEMS) sensor for force sensing including an etch stop layer for precise membrane thickness control.
MEMS force sensors are typically designed with a membrane that deforms with the applied force. Deformation of the membrane mechanically amplifies the stress induced by the load. The sensitivity of the MEMS force sensor is mainly dominated the thickness of the membrane. Thinner membranes cause the sensitivity to increase, while thicker membranes cause the sensitivity to decrease. When membrane thickness is controlled through the etch process, there is still a large variation in sensitivity, e.g., in the range of 10% to 20%. On the other hand, other processes such as grinding and polishing of the membrane can produce much better tolerances, e.g., in the range of less than 5%.
In one implementation, the present disclosure pertains to an etch slop layer preformed before the cavity etch. The membrane thickness is precisely controlled by the thickness of the silicon layer during grinding/polishing, epi-growth or other deposition method. The etch stop layer then absorbs all the etch non-uniformity during the cavity etch due to the larger etch ratio between the silicon and the etch layer. The etch stop layer can later be selectively removed leaving only silicon as the
membrane material. Mesas can also be selectively formed on the membrane sealed inside the cavity for overload protection.
An example microelectromechanical system (MEMS) force sensor is described herein. The MEMS force sensor can include a sensor die configured to receive an applied force. The sensor die can include a first substrate and a second substrate, where a cavity is formed in the first substrate, and where at least a portion of the second substrate defines a deformable membrane. The MEMS force sensor can also include an etch stop layer arranged between the first substrate and the second substrate, and a sensing element arranged on a surface of the second substrate. The sensing element can be configured to convert a strain on the surface of the membrane substrate to an analog electrical signal that is proportional to the strain.
Additionally, the etch stop layer can be configured for precise thickness control of the deformable membrane of the membrane substrate. For example, an etch rate of the etch stop layer can be different than an etch rate of the first substrate. Optionally, an etch rate ratio between the etch rate of the first substrate and the etch rate of the etch stop layer can be between 50 and 150.
Alternatively or additionally, the MEMS force sensor can further include a protective layer arranged on the surface of the second substrate, and a conductive pad arranged on the protective layer. The sensing element can be electrically coupled to the conductive pad, where the protective layer at least partially covers one or more of the sensing element, the surface of the second substrate, and the conductive pad.
In some implementations, the MEMS force sensor can further include an under bump metal (UBM) layer and a solder bump, where the MEMS force sensor is mounted on a package substrate using the UBM layer and the solder bump. Optionally, the conductive pad, the UBM layer, and the solder bump can be overlapping fully with a mesa formed from the first substrate. Alternatively, the conductive pad, the UBM layer, and the solder bump cannot be overlapping with a mesa formed from the first substrate or the deformable membrane defined by the second substrate.
Alternatively or additionally, the conductive pad can be electrically coupled to the package substrate through the UBM layer and the solder bump.
Alternatively or additionally, the package substrate can be a printed circuit board (PCB) or a flexible printed circuit board (FPCB).
Alternatively or additionally, the MEMS force sensor can further include a mesa formed from the first substrate.
Alternatively or additionally, the etch stop layer can covers the deformable membrane of the membrane substrate.
Alternatively or additionally, the etch stop layer can be removed from the deformable membrane of the membrane substrate.
Alternatively or additionally, the etch stop layer can be composed of silicon dioxide, silicon nitride, or sapphire.
Alternatively or additionally, the MEMS force sensor can further include a plurality of sensing elements arranged on the surface of the second substrate.
Alternatively or additionally, the sensing element can be a piezoresistive or piezoelectric sensing element.
Alternatively or additionally, the MEMS force sensor can further include a cap substrate, wherein the cap substrate is bonded to the first substrate, and wherein the cavity is sealed between the cap substrate and the first substrate.
An example method of manufacturing a microelectromechanical system (MEMS) force sensor is also described herein. The method can include providing a first substrate, a second substrate, and an etch stop layer, where the etch stop layer is arranged between the first and second substrates, and where a sensing element is arranged on a surface of the second substrate. The method can also include etching the first substrate, where the etch process removes a portion of the first substrate to form a cavity in the first substrate.
Additionally, the etch process can remove a portion of the etch stop layer. Alternatively, the etch process does not remove a portion of the second substrate.
Alternatively or additionally, the etch stop layer can be configured for precise thickness control of the deformable membrane of the membrane substrate. For example, an etch rate of the etch stop layer can be different than an etch rate of the first substrate. Optionally, an etch rate ratio between the etch rate of the first substrate and the etch rate of the etch stop layer can be between 50 and 150.
Alternatively or additionally, the etch process can further form a mesa in the first substrate.
Alternatively or additionally, the method can further include bonding a cap substrate to the first substrate, where the cavity is sealed between the cap substrate and the first substrate.
Alternatively or additionally, the method can further include providing a protective layer arranged on the surface of the second substrate, and providing a conductive pad arranged on the protective layer, where the sensing element is electrically coupled to the conductive pad, and where the protective layer at least partially covers one or more of the sensing element, the surface of the second substrate, and the conductive pad.
Alternatively or additionally, the method can further include providing an under bump metal (UMB) layer and a solder bump, where the UBM layer is arranged on the conductive pad and the solder bump is arranged or the UBM layer.
Alternatively or additionally, the method can further include bonding MEMS force sensor to a package substrate, where the MEMS force sensor is mounted on the package substrate using the UBM layer and the solder bump. The package substrate can be a printed circuit board (PCB) or a flexible printed circuit board (FPCB).
Alternatively or additionally, the sensing element can be formed using an implant or deposition process.
Alternatively or additionally, the sensing element can be at least one of a piezoresistive or piezoelectric sensing element.
Other systems, methods, features and/or advantages be or may become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features and/or advantages be included within this description and be protected by the accompanying claims.
The components in the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding parts throughout the several views. These and other features of will become more apparent in the detailed description in which reference is made to the appended drawings wherein:
The present disclosure can be understood more readily by reference to the following detailed description, examples, drawings, and their previous and following description. However, before the present devices, systems, and/or methods are disclosed and described, it is to be understood that this disclosure is not limited to the specific devices, systems, and/or methods disclosed unless otherwise specified, and, as such, can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.
The following description is provided as an enabling teaching. To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made, while still obtaining beneficial results. It will also be apparent that some of the desired benefits can be obtained by selecting some of the features without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations may be possible and can even be desirable in certain circumstances, and are contemplated by this disclosure. Thus, the following description is provided as illustrative of the principles and not in limitation thereof.
As used throughout, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a sensing element” can include two or more such sensing elements unless the context indicates otherwise.
The term “comprising” and variations thereof as used herein is used synonymously with the term “including” and variations thereof and are open, non-limiting terms.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
The present disclosure relates to an etch stop layer for precise membrane thickness control and the package implementation for force sensor.
Referring now to
The thickness of the deformable membrane 113, which is formed from the membrane substrate 104, can therefore be precisely controlled. This thickness can be precisely controlled with the processes used to fabricate the membrane substrate 104, e.g., semiconductor deposition, epitaxial growth, and/or grinding/polishing, etc. The etch stop layer 103 can absorb any non-uniformity introduced by the etch process used to form the cavity 120 in the cavity substrate 102. As discussed above, the thickness of the deformable membrane 113 affects sensitivity of the MEMS force sensor 101. Thus, by precisely controlling deformable membrane thickness using the etch stop layer 103 to stop the etch process, it is possible to precisely control sensitivity of the MEMS force sensor 101. The membrane substrate 104 is not etched, so the thickness of the membrane substrate 104 is not effected by the etch process. This is in contrast to the case where the deformable membrane is formed from the same substrate from which the cavity and/or mesa is formed (e.g., etched). Example MEMS force sensors where the deformable membrane is formed by etching a sensor substrate are described in U.S. Pat. No. 9,487,388, issued Nov. 8, 2016 and entitled “Ruggedized MEMS Force Die;” U.S. Pat. No. 9,493,342, issued Nov. 15, 2016 and entitled “Wafer Level MEMS Force Dies;” U.S. Pat. No. 9,902,611, issued Feb. 27, 2018 and entitled “Miniaturized and ruggedized wafer level mems force sensors;” and U.S. Patent Application Publication No. 2016/0363490 to Campbell et al., filed Jun. 10, 2016, now U.S. Pat. No. 10,466,119, and entitled “Ruggedized wafer level mems force sensor with a tolerance trench,” the disclosures of which are incorporated by reference in their entireties. In other words, the deformable membrane 113 is formed from a different substrate (e.g., the membrane substrate 104) than the substrate etched to form the cavity (e.g., the cavity substrate 102).
The MEMS force sensor 101 can include a cap substrate 111. The cap substrate 111 can be formed of a glass (e.g., borosilicate glass) or a silicon. Although glass and silicon are provided as example materials, it should be understood that the cap substrate 111 can be made of other suitable material. The cap substrate 111 can be bonded to the cavity substrate 102 using techniques known in the art including, but not limited to, silicon fusion bonding, anodic bonding, glass frit, thermo-compression, and eutectic bonding. For example, as shown in
The MEMS force sensor 101 can also include a sensing element 109. As shown
As discussed above, the sensing element 109 can optionally be a piezoresistive transducer. The change in electrical characteristic can be measured as an analog electrical signal and optionally received at and processed by digital circuitry (e.g., CMOS circuitry). For example, as strain is induced in the deformable membrane 113 proportional to force “F” applied to the MEMS force sensor 101, a localized strain is produced on the piezoresistive transducer such that the piezoresistive transducer experiences compression or tension, depending on its specific orientation. As the piezoresistive transducer compresses and tenses, its resistivity changes in opposite fashion. Accordingly, a Wheatstone bridge circuit including a plurality (e.g., four) piezoresistive transducers (e.g., two of each orientation relative to strain) becomes unbalanced and produces a differential voltage across the positive signal terminal and the negative signal terminal. This differential voltage is directly proportional to the applied force “F” on the MEMS force sensor 101. Example MEMS force sensors using piezoresistive sensing elements are described in U.S. Pat. No. 9,487,388, issued Nov. 8, 2016 and entitled “Ruggedized MEMS Force Die;” U.S. Pat. No. 9,493,342, issued Nov. 15, 2016 and entitled “Wafer Level MEMS Force Dies;” U.S. Pat. No. 9,902,611, issued Feb. 27, 2018 and entitled “Miniaturized and ruggedized wafer level mems force sensors;” and U.S. Patent Application Publication No. 2016/0363490 to Campbell et al., filed Jun. 10, 2016, now U.S. Pat. No. 10,466,119, and entitled “Ruggedized wafer level mems force sensor with a tolerance trench,” the disclosures of which are incorporated by reference in their entireties.
The MEMS force sensor 101 can also include an electrical connection 108, a conductive via 107, and a conductive pad 106 for routing the analog electrical signal produced by the sensing element 109. In
Referring now to
The MEMS force sensor 201 can include the cap substrate 111. The cap substrate 111 can be bonded to the cavity substrate 102 using techniques known in the art including, but not limited to, silicon fusion bonding, anodic bonding, glass frit, thereto-compression, and eutectic bonding. For example, as shown in
The MEMS force sensor 201 can also include a sensing element 109. As shown in
The MEMS force sensor 201 can also include an electrical connection 108, a conductive via 107, and a conductive pad 106 for routing the analog electrical signal produced by the sensing element 109. In
Referring now to
As shown in
The MEMS force sensor 301 can include a cap substrate 111. The cap substrate 111 can be bonded to the cavity substrate 102 using techniques known in the art including, but not limited to, silicon fusion bonding, anodic bonding, glass frit, thermo-compression, and eutectic bonding. For example, as shown in
The MEMS force sensor 301 can also include a sensing element 109. As shown in
The MEMS force sensor 301 can also include an electrical connection 108, a conductive via 107, and a conductive pad 106 for routing the analog electrical signal produced by the sensing element 109. In
Referring now to
As shown in
Referring now to
As shown in
An example method of manufacturing the MEMS sensor is now described, it should be understood that the MEMS force sensor can be the MEMS force sensor described above with regard to
As described herein, the etch stop layer can be configured for precise thickness control of a deformable membrane (e.g., deformable membrane 113/313 in
In one implementation, the step of bonding the cap substrate (e.g., cap 111 in
In another implementation, the step of bonding the cap substrate (e.g., cap 111 in
Optionally, the method can further include providing a protective layer (e.g., protective layer 105 in
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
This application is a continuation of U.S. patent application Ser. No. 16/761,373, filed May 4, 2020, now U.S. Pat. No. 11,385,108, which is a national phase filing of a 371 of International Application No. PCT/US2018/058928, filed on Nov. 2, 2017, which claims the benefit of U.S. provisional patent application No. 62/580,530, filed on Nov. 2, 2017, the disclosures of which are expressly incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4594639 | Kuisma | Jun 1986 | A |
4658651 | Le | Apr 1987 | A |
4814856 | Kurtz et al. | Mar 1989 | A |
4849730 | Zumi et al. | Jul 1989 | A |
4914624 | Dunthorn | Apr 1990 | A |
4918262 | Flowers et al. | Apr 1990 | A |
4933660 | Wynne, Jr. | Jun 1990 | A |
4983786 | Stevens et al. | Jan 1991 | A |
5095401 | Zavracky et al. | Mar 1992 | A |
5159159 | Asher | Oct 1992 | A |
5237879 | Speeter | Aug 1993 | A |
5320705 | Fujii et al. | Jun 1994 | A |
5333505 | Takahashi et al. | Aug 1994 | A |
5343220 | Veasy et al. | Aug 1994 | A |
5349746 | Gruenwald et al. | Sep 1994 | A |
5351550 | Maurer | Oct 1994 | A |
5483994 | Maurer | Jan 1996 | A |
5510812 | O'Mara et al. | Apr 1996 | A |
5541372 | Baller et al. | Jul 1996 | A |
5543591 | Gillespie et al. | Aug 1996 | A |
5565657 | Merz | Oct 1996 | A |
5600074 | Marek et al. | Feb 1997 | A |
5673066 | Toda et al. | Sep 1997 | A |
5773728 | Tsukada et al. | Jun 1998 | A |
5889236 | Gillespie et al. | Mar 1999 | A |
5921896 | Boland | Jul 1999 | A |
5969591 | Fung | Oct 1999 | A |
6028271 | Gillespie et al. | Feb 2000 | A |
6159166 | Chesney et al. | Dec 2000 | A |
6243075 | Fishkin et al. | Jun 2001 | B1 |
6348663 | Schoos et al. | Feb 2002 | B1 |
6351205 | Armstrong | Feb 2002 | B1 |
6360598 | Calame et al. | Mar 2002 | B1 |
6437682 | Vance | Aug 2002 | B1 |
6555235 | Aufderheide et al. | Apr 2003 | B1 |
6556189 | Takahata et al. | Apr 2003 | B1 |
6569108 | Sarvazyan et al. | May 2003 | B2 |
6610936 | Gillespie et al. | Aug 2003 | B2 |
6620115 | Sarvazyan et al. | Sep 2003 | B2 |
6629343 | Chesney et al. | Oct 2003 | B1 |
6668230 | Mansky et al. | Dec 2003 | B2 |
6720712 | Scott et al. | Apr 2004 | B2 |
6788297 | Itoh et al. | Sep 2004 | B2 |
6801191 | Mukai et al. | Oct 2004 | B2 |
6809280 | Divigalpitiya et al. | Oct 2004 | B2 |
6812621 | Scott | Nov 2004 | B2 |
6822640 | Derocher | Nov 2004 | B2 |
6868731 | Gatesman | Mar 2005 | B1 |
6879318 | Chan et al. | Apr 2005 | B1 |
6888537 | Benson et al. | May 2005 | B2 |
6915702 | Omura et al. | Jul 2005 | B2 |
6931938 | Knirck et al. | Aug 2005 | B2 |
6995752 | Lu | Feb 2006 | B2 |
7138984 | Miles | Nov 2006 | B1 |
7173607 | Matsumoto et al. | Feb 2007 | B2 |
7190350 | Roberts | Mar 2007 | B2 |
7215329 | Yoshikawa et al. | May 2007 | B2 |
7218313 | Marcus et al. | May 2007 | B2 |
7224257 | Morikawa | May 2007 | B2 |
7245293 | Hoshino et al. | Jul 2007 | B2 |
7273979 | Christensen | Sep 2007 | B2 |
7280097 | Chen et al. | Oct 2007 | B2 |
7318349 | Vaganov et al. | Jan 2008 | B2 |
7324094 | Moilanen et al. | Jan 2008 | B2 |
7324095 | Sharma | Jan 2008 | B2 |
7336260 | Martin et al. | Feb 2008 | B2 |
7337085 | Soss | Feb 2008 | B2 |
7345680 | David | Mar 2008 | B2 |
7367232 | Vaganov et al. | May 2008 | B2 |
7406661 | Vaananen et al. | Jul 2008 | B2 |
7425749 | Hartzell et al. | Sep 2008 | B2 |
7426873 | Kholwadwala et al. | Sep 2008 | B1 |
7449758 | Axelrod et al. | Nov 2008 | B2 |
7460109 | Safai et al. | Dec 2008 | B2 |
7476952 | Vaganov et al. | Jan 2009 | B2 |
7499604 | Burns | Mar 2009 | B1 |
7508040 | Nikkel et al. | Mar 2009 | B2 |
7554167 | Vaganov | Jun 2009 | B2 |
7607111 | Vaananen et al. | Oct 2009 | B2 |
7620521 | Breed et al. | Nov 2009 | B2 |
7629969 | Kent | Dec 2009 | B2 |
7649522 | Chen et al. | Jan 2010 | B2 |
7663612 | Bladt | Feb 2010 | B2 |
7685538 | Fleck et al. | Mar 2010 | B2 |
7698084 | Soss | Apr 2010 | B2 |
7701445 | Inokawa et al. | Apr 2010 | B2 |
7719752 | Sampsell | May 2010 | B2 |
7746327 | Miyakoshi | Jun 2010 | B2 |
7791151 | Vaganov et al. | Sep 2010 | B2 |
7819998 | David | Oct 2010 | B2 |
7825911 | Sano et al. | Nov 2010 | B2 |
7903090 | Soss et al. | Mar 2011 | B2 |
7921725 | Silverbrook et al. | Apr 2011 | B2 |
7952566 | Poupyrev et al. | May 2011 | B2 |
7973772 | Gettemy et al. | Jul 2011 | B2 |
7973778 | Chen | Jul 2011 | B2 |
8004052 | Vaganov | Aug 2011 | B2 |
8004501 | Harrison | Aug 2011 | B2 |
8013843 | Pryor | Sep 2011 | B2 |
8026906 | Molne et al. | Sep 2011 | B2 |
8044929 | Baldo et al. | Oct 2011 | B2 |
8068100 | Pryor | Nov 2011 | B2 |
8072437 | Miller et al. | Dec 2011 | B2 |
8072440 | Pryor | Dec 2011 | B2 |
8113065 | Ohsato et al. | Feb 2012 | B2 |
8120586 | Hsu et al. | Feb 2012 | B2 |
8120588 | Klinghult | Feb 2012 | B2 |
8130207 | Nurmi et al. | Mar 2012 | B2 |
8134535 | Choi et al. | Mar 2012 | B2 |
8139038 | Chueh et al. | Mar 2012 | B2 |
8144133 | Wang et al. | Mar 2012 | B2 |
8149211 | Hayakawa et al. | Apr 2012 | B2 |
8154528 | Chen et al. | Apr 2012 | B2 |
8159473 | Cheng et al. | Apr 2012 | B2 |
8164573 | DaCosta et al. | Apr 2012 | B2 |
8183077 | Vaganov et al. | May 2012 | B2 |
8184093 | Tsuiki | May 2012 | B2 |
8188985 | Hillis et al. | May 2012 | B2 |
8199116 | Jeon et al. | Jun 2012 | B2 |
8212790 | Rimas Ribikauskas et al. | Jul 2012 | B2 |
8237537 | Kurtz | Aug 2012 | B2 |
8243035 | Abe et al. | Aug 2012 | B2 |
8250921 | Nasiri et al. | Aug 2012 | B2 |
8253699 | Son | Aug 2012 | B2 |
8260337 | Periyalwar et al. | Sep 2012 | B2 |
8269731 | Molne | Sep 2012 | B2 |
8289288 | Whytock et al. | Oct 2012 | B2 |
8289290 | Klinghult | Oct 2012 | B2 |
8297127 | Wade et al. | Oct 2012 | B2 |
8319739 | Chu et al. | Nov 2012 | B2 |
8325143 | Destura et al. | Dec 2012 | B2 |
8350345 | Vaganov | Jan 2013 | B2 |
8363020 | Li et al. | Jan 2013 | B2 |
8363022 | Tho et al. | Jan 2013 | B2 |
8378798 | Bells et al. | Feb 2013 | B2 |
8378991 | Jeon et al. | Feb 2013 | B2 |
8384677 | Mak-Fan et al. | Feb 2013 | B2 |
8387464 | McNeil et al. | Mar 2013 | B2 |
8405631 | Chu et al. | Mar 2013 | B2 |
8405632 | Chu et al. | Mar 2013 | B2 |
8421609 | Kim et al. | Apr 2013 | B2 |
8427441 | Paleczny et al. | Apr 2013 | B2 |
8436806 | Almalki et al. | May 2013 | B2 |
8436827 | Zhai et al. | May 2013 | B1 |
8451245 | Heubel et al. | May 2013 | B2 |
8456440 | Abe et al. | Jun 2013 | B2 |
8466889 | Tong et al. | Jun 2013 | B2 |
8477115 | Rekimoto | Jul 2013 | B2 |
8482372 | Kurtz et al. | Jul 2013 | B2 |
8493189 | Suzuki | Jul 2013 | B2 |
8497757 | Kurtz et al. | Jul 2013 | B2 |
8516906 | Umetsu et al. | Aug 2013 | B2 |
8802473 | Chu et al. | Aug 2014 | B1 |
8931347 | Donzier et al. | Jan 2015 | B2 |
8984951 | Landmann et al. | Mar 2015 | B2 |
9487388 | Brosh | Nov 2016 | B2 |
9493342 | Brosh | Nov 2016 | B2 |
10378985 | Kwa | Aug 2019 | B2 |
11385108 | Tsai | Jul 2022 | B2 |
20030067448 | Park | Apr 2003 | A1 |
20030119221 | Cunningham | Jun 2003 | A1 |
20030189552 | Chuang et al. | Oct 2003 | A1 |
20030197176 | Spallas et al. | Oct 2003 | A1 |
20040012572 | Sowden et al. | Jan 2004 | A1 |
20040140966 | Marggraff et al. | Jul 2004 | A1 |
20060028441 | Armstrong | Feb 2006 | A1 |
20060244733 | Geaghan | Nov 2006 | A1 |
20060272413 | Vaganov et al. | Dec 2006 | A1 |
20060284856 | Soss | Dec 2006 | A1 |
20070035525 | Yeh et al. | Feb 2007 | A1 |
20070046649 | Reiner | Mar 2007 | A1 |
20070070046 | Sheynblat et al. | Mar 2007 | A1 |
20070070053 | Lapstun et al. | Mar 2007 | A1 |
20070097095 | Kim et al. | May 2007 | A1 |
20070103449 | Laitinen et al. | May 2007 | A1 |
20070103452 | Wakai et al. | May 2007 | A1 |
20070115265 | Rainisto | May 2007 | A1 |
20070132717 | Wang et al. | Jun 2007 | A1 |
20070137901 | Chen | Jun 2007 | A1 |
20070139391 | Bischoff | Jun 2007 | A1 |
20070152959 | Peters | Jul 2007 | A1 |
20070156723 | Vaananen | Jul 2007 | A1 |
20070182864 | Stoneham et al. | Aug 2007 | A1 |
20070229478 | Rosenberg et al. | Oct 2007 | A1 |
20070235231 | Loomis et al. | Oct 2007 | A1 |
20070245836 | Vaganov | Oct 2007 | A1 |
20070262965 | Hirai et al. | Nov 2007 | A1 |
20070277616 | Nikkel et al. | Dec 2007 | A1 |
20070298883 | Feldman et al. | Dec 2007 | A1 |
20080001923 | Hall et al. | Jan 2008 | A1 |
20080007532 | Chen | Jan 2008 | A1 |
20080010616 | Algreatly | Jan 2008 | A1 |
20080024454 | Everest | Jan 2008 | A1 |
20080030482 | Elwell et al. | Feb 2008 | A1 |
20080036743 | Westerman et al. | Feb 2008 | A1 |
20080088600 | Prest et al. | Apr 2008 | A1 |
20080088602 | Hotelling | Apr 2008 | A1 |
20080094367 | Van De Ven et al. | Apr 2008 | A1 |
20080105057 | Wade | May 2008 | A1 |
20080105470 | Van De Ven et al. | May 2008 | A1 |
20080106523 | Conrad | May 2008 | A1 |
20080174852 | Hirai et al. | Jul 2008 | A1 |
20080180402 | Yoo et al. | Jul 2008 | A1 |
20080180405 | Han et al. | Jul 2008 | A1 |
20080180406 | Han et al. | Jul 2008 | A1 |
20080202249 | Yokura et al. | Aug 2008 | A1 |
20080204427 | Heesemans et al. | Aug 2008 | A1 |
20080211766 | Westerman et al. | Sep 2008 | A1 |
20080238446 | DeNatale et al. | Oct 2008 | A1 |
20080238884 | Harish | Oct 2008 | A1 |
20080259046 | Carsanaro | Oct 2008 | A1 |
20080279498 | Sampsell et al. | Nov 2008 | A1 |
20080284742 | Prest et al. | Nov 2008 | A1 |
20080303799 | Schwesig et al. | Dec 2008 | A1 |
20090027352 | Abele | Jan 2009 | A1 |
20090027353 | Im et al. | Jan 2009 | A1 |
20090046110 | Sadler et al. | Feb 2009 | A1 |
20090102805 | Meijer et al. | Apr 2009 | A1 |
20090140985 | Liu | Jun 2009 | A1 |
20090184921 | Scott et al. | Jul 2009 | A1 |
20090184936 | Algreatly | Jul 2009 | A1 |
20090213066 | Hardacker et al. | Aug 2009 | A1 |
20090237275 | Vaganov | Sep 2009 | A1 |
20090237374 | Li et al. | Sep 2009 | A1 |
20090242282 | Kim et al. | Oct 2009 | A1 |
20090243817 | Son | Oct 2009 | A1 |
20090243998 | Wang | Oct 2009 | A1 |
20090256807 | Nurmi | Oct 2009 | A1 |
20090256817 | Perlin et al. | Oct 2009 | A1 |
20090282930 | Cheng et al. | Nov 2009 | A1 |
20090303400 | Hou et al. | Dec 2009 | A1 |
20090309852 | Lin et al. | Dec 2009 | A1 |
20090314551 | Nakajima | Dec 2009 | A1 |
20100013785 | Murai et al. | Jan 2010 | A1 |
20100020030 | Kim et al. | Jan 2010 | A1 |
20100020039 | Ricks et al. | Jan 2010 | A1 |
20100039396 | Ho et al. | Feb 2010 | A1 |
20100053087 | Dai et al. | Mar 2010 | A1 |
20100053116 | Daverman et al. | Mar 2010 | A1 |
20100066686 | Joguet et al. | Mar 2010 | A1 |
20100066697 | Jacomet et al. | Mar 2010 | A1 |
20100079391 | Joung | Apr 2010 | A1 |
20100079395 | Kim et al. | Apr 2010 | A1 |
20100079398 | Shen et al. | Apr 2010 | A1 |
20100097347 | Lin | Apr 2010 | A1 |
20100117978 | Shirado | May 2010 | A1 |
20100123671 | Lee | May 2010 | A1 |
20100123686 | Klinghult et al. | May 2010 | A1 |
20100127140 | Smith | May 2010 | A1 |
20100128002 | Stacy et al. | May 2010 | A1 |
20100128337 | Tung | May 2010 | A1 |
20100153891 | Vaananen et al. | Jun 2010 | A1 |
20100164959 | Brown et al. | Jul 2010 | A1 |
20100220065 | Ma | Sep 2010 | A1 |
20100271325 | Conte et al. | Oct 2010 | A1 |
20100289807 | Yu et al. | Nov 2010 | A1 |
20100295807 | Xie et al. | Nov 2010 | A1 |
20100308844 | Day et al. | Dec 2010 | A1 |
20100309714 | Meade | Dec 2010 | A1 |
20100315373 | Steinhauser et al. | Dec 2010 | A1 |
20100321310 | Kim et al. | Dec 2010 | A1 |
20100321319 | Hefti | Dec 2010 | A1 |
20100323467 | Vaganov et al. | Dec 2010 | A1 |
20100328229 | Weber et al. | Dec 2010 | A1 |
20100328230 | Faubert et al. | Dec 2010 | A1 |
20110001723 | Fan | Jan 2011 | A1 |
20110006980 | Taniguchi et al. | Jan 2011 | A1 |
20110007008 | Algreatly | Jan 2011 | A1 |
20110012848 | Li et al. | Jan 2011 | A1 |
20110018820 | Huitema et al. | Jan 2011 | A1 |
20110032211 | Christofferson | Feb 2011 | A1 |
20110039602 | McNamara et al. | Feb 2011 | A1 |
20110050628 | Homma et al. | Mar 2011 | A1 |
20110050630 | Ikeda | Mar 2011 | A1 |
20110057899 | Sleeman et al. | Mar 2011 | A1 |
20110063248 | Yoon | Mar 2011 | A1 |
20110113881 | Suzuki | May 2011 | A1 |
20110128250 | Murphy et al. | Jun 2011 | A1 |
20110141052 | Bernstein et al. | Jun 2011 | A1 |
20110141053 | Bulea et al. | Jun 2011 | A1 |
20110187674 | Baker et al. | Aug 2011 | A1 |
20110209555 | Ahles et al. | Sep 2011 | A1 |
20110227836 | Li et al. | Sep 2011 | A1 |
20110242014 | Tsai et al. | Oct 2011 | A1 |
20110267181 | Kildal | Nov 2011 | A1 |
20110267294 | Kildal | Nov 2011 | A1 |
20110273396 | Chung | Nov 2011 | A1 |
20110291951 | Tong | Dec 2011 | A1 |
20110298705 | Vaganov | Dec 2011 | A1 |
20110308324 | Gamage et al. | Dec 2011 | A1 |
20120004169 | Sebti et al. | Jan 2012 | A1 |
20120032907 | Koizumi et al. | Feb 2012 | A1 |
20120032915 | Wittorf | Feb 2012 | A1 |
20120038579 | Sasaki | Feb 2012 | A1 |
20120050159 | Yu et al. | Mar 2012 | A1 |
20120050208 | Dietz | Mar 2012 | A1 |
20120056837 | Park et al. | Mar 2012 | A1 |
20120060605 | Wu et al. | Mar 2012 | A1 |
20120062603 | Mizunuma et al. | Mar 2012 | A1 |
20120068946 | Tang et al. | Mar 2012 | A1 |
20120068969 | Bogana et al. | Mar 2012 | A1 |
20120081327 | Heubel et al. | Apr 2012 | A1 |
20120086659 | Perlin et al. | Apr 2012 | A1 |
20120086764 | Golda | Apr 2012 | A1 |
20120092250 | Hadas et al. | Apr 2012 | A1 |
20120092279 | Martin | Apr 2012 | A1 |
20120092299 | Harada et al. | Apr 2012 | A1 |
20120092324 | Buchan et al. | Apr 2012 | A1 |
20120105358 | Momeyer et al. | May 2012 | A1 |
20120105367 | Son et al. | May 2012 | A1 |
20120113061 | Ikeda | May 2012 | A1 |
20120127088 | Pance et al. | May 2012 | A1 |
20120127107 | Miyashita et al. | May 2012 | A1 |
20120139864 | Sleeman et al. | Jun 2012 | A1 |
20120144921 | Bradley et al. | Jun 2012 | A1 |
20120146945 | Miyazawa et al. | Jun 2012 | A1 |
20120146946 | Wang et al. | Jun 2012 | A1 |
20120147052 | Homma et al. | Jun 2012 | A1 |
20120154315 | Aono | Jun 2012 | A1 |
20120154316 | Kono | Jun 2012 | A1 |
20120154317 | Aono | Jun 2012 | A1 |
20120154318 | Aono | Jun 2012 | A1 |
20120154328 | Kono | Jun 2012 | A1 |
20120154329 | Shinozaki | Jun 2012 | A1 |
20120154330 | Shimizu | Jun 2012 | A1 |
20120162122 | Geaghan | Jun 2012 | A1 |
20120169609 | Britton | Jul 2012 | A1 |
20120169617 | Maenpaa | Jul 2012 | A1 |
20120169635 | Liu | Jul 2012 | A1 |
20120169636 | Liu | Jul 2012 | A1 |
20120188181 | Ha et al. | Jul 2012 | A1 |
20120194460 | Kuwabara et al. | Aug 2012 | A1 |
20120194466 | Posamentier | Aug 2012 | A1 |
20120200526 | Lackey | Aug 2012 | A1 |
20120204653 | August et al. | Aug 2012 | A1 |
20120205165 | Strittmatter et al. | Aug 2012 | A1 |
20120218212 | Yu et al. | Aug 2012 | A1 |
20120286379 | Inoue | Nov 2012 | A1 |
20120319987 | Woo | Dec 2012 | A1 |
20120327025 | Huska et al. | Dec 2012 | A1 |
20130008263 | Kabasawa et al. | Jan 2013 | A1 |
20130038541 | Bakker | Feb 2013 | A1 |
20130093685 | Kalu et al. | Apr 2013 | A1 |
20130096849 | Campbell et al. | Apr 2013 | A1 |
20130140944 | Chen et al. | Jun 2013 | A1 |
20130341741 | Brosh | Dec 2013 | A1 |
20130341742 | Brosh | Dec 2013 | A1 |
20140007705 | Campbell et al. | Jan 2014 | A1 |
20140028575 | Parivar et al. | Jan 2014 | A1 |
20140055407 | Lee et al. | Feb 2014 | A1 |
20140367811 | Nakagawa et al. | Dec 2014 | A1 |
20160069927 | Hamamura | Mar 2016 | A1 |
20160332866 | Brosh et al. | Nov 2016 | A1 |
20160363490 | Campbell et al. | Dec 2016 | A1 |
20170003187 | Lim et al. | Jan 2017 | A1 |
20170234744 | Tung et al. | Aug 2017 | A1 |
20170343430 | Caltabiano et al. | Nov 2017 | A1 |
20210172813 | Tsai et al. | Jun 2021 | A1 |
20210407941 | Haba | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
201653605 | Nov 2010 | CN |
102998037 | Mar 2013 | CN |
102010012441 | Sep 2011 | DE |
2004156937 | Jun 2004 | JP |
2010147268 | Jul 2010 | JP |
2004113859 | Dec 2004 | WO |
2007139695 | Dec 2007 | WO |
2013067548 | May 2013 | WO |
Entry |
---|
Mei, et al., “Design and Fabrication of an Integrated Three-Dimensional Tactile Sensor for Space Robotic Applications,” International Conference on Micro Electro Mechanical Systems, Jan. 1999, Orlando, Florida, IEEE, pp. 112-117. |
Nesterov, V. , et al., “Modelling and investigation of the silicon twin design 3D micro probe,” Journal of Micromechanics and Microengineering , vol. 15, 2005, pp. 514-520. |
Non-Final Office Action for U.S. Appl. No. 16/761,373, dated Sep. 22, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/761,373, dated Feb. 25, 2022, 7 pages. |
PCT/US2018/058928, International Search Report and Written Opinion dated Jan. 7, 2019. |
Number | Date | Country | |
---|---|---|---|
20230016531 A1 | Jan 2023 | US |
Number | Date | Country | |
---|---|---|---|
62580530 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16761373 | US | |
Child | 17860941 | US |