Sealed force sensor with etch stop layer

Information

  • Patent Grant
  • 11965787
  • Patent Number
    11,965,787
  • Date Filed
    Friday, July 8, 2022
    a year ago
  • Date Issued
    Tuesday, April 23, 2024
    13 days ago
Abstract
An example microelectromechanical system (MEMS) force sensor is described herein. The MEMS force sensor can include a sensor die configured to receive an applied force. The sensor die can include a first substrate and a second substrate, where a cavity is formed in the first substrate, and where at least a portion of the second substrate defines a deformable membrane. The MEMS force sensor can also include an etch stop layer arranged between the first substrate and the second substrate, and a sensing element arranged on a surface of the second substrate. The sensing element can be configured to convert a strain on the surface of the membrane substrate to an analog electrical signal that is proportional to the strain.
Description
FIELD OF TECHNOLOGY

The present disclosure relates to a microelectromechanical system (MEMS) sensor for force sensing including an etch stop layer for precise membrane thickness control.


BACKGROUND

MEMS force sensors are typically designed with a membrane that deforms with the applied force. Deformation of the membrane mechanically amplifies the stress induced by the load. The sensitivity of the MEMS force sensor is mainly dominated the thickness of the membrane. Thinner membranes cause the sensitivity to increase, while thicker membranes cause the sensitivity to decrease. When membrane thickness is controlled through the etch process, there is still a large variation in sensitivity, e.g., in the range of 10% to 20%. On the other hand, other processes such as grinding and polishing of the membrane can produce much better tolerances, e.g., in the range of less than 5%.


SUMMARY

In one implementation, the present disclosure pertains to an etch slop layer preformed before the cavity etch. The membrane thickness is precisely controlled by the thickness of the silicon layer during grinding/polishing, epi-growth or other deposition method. The etch stop layer then absorbs all the etch non-uniformity during the cavity etch due to the larger etch ratio between the silicon and the etch layer. The etch stop layer can later be selectively removed leaving only silicon as the


membrane material. Mesas can also be selectively formed on the membrane sealed inside the cavity for overload protection.


An example microelectromechanical system (MEMS) force sensor is described herein. The MEMS force sensor can include a sensor die configured to receive an applied force. The sensor die can include a first substrate and a second substrate, where a cavity is formed in the first substrate, and where at least a portion of the second substrate defines a deformable membrane. The MEMS force sensor can also include an etch stop layer arranged between the first substrate and the second substrate, and a sensing element arranged on a surface of the second substrate. The sensing element can be configured to convert a strain on the surface of the membrane substrate to an analog electrical signal that is proportional to the strain.


Additionally, the etch stop layer can be configured for precise thickness control of the deformable membrane of the membrane substrate. For example, an etch rate of the etch stop layer can be different than an etch rate of the first substrate. Optionally, an etch rate ratio between the etch rate of the first substrate and the etch rate of the etch stop layer can be between 50 and 150.


Alternatively or additionally, the MEMS force sensor can further include a protective layer arranged on the surface of the second substrate, and a conductive pad arranged on the protective layer. The sensing element can be electrically coupled to the conductive pad, where the protective layer at least partially covers one or more of the sensing element, the surface of the second substrate, and the conductive pad.


In some implementations, the MEMS force sensor can further include an under bump metal (UBM) layer and a solder bump, where the MEMS force sensor is mounted on a package substrate using the UBM layer and the solder bump. Optionally, the conductive pad, the UBM layer, and the solder bump can be overlapping fully with a mesa formed from the first substrate. Alternatively, the conductive pad, the UBM layer, and the solder bump cannot be overlapping with a mesa formed from the first substrate or the deformable membrane defined by the second substrate.


Alternatively or additionally, the conductive pad can be electrically coupled to the package substrate through the UBM layer and the solder bump.


Alternatively or additionally, the package substrate can be a printed circuit board (PCB) or a flexible printed circuit board (FPCB).


Alternatively or additionally, the MEMS force sensor can further include a mesa formed from the first substrate.


Alternatively or additionally, the etch stop layer can covers the deformable membrane of the membrane substrate.


Alternatively or additionally, the etch stop layer can be removed from the deformable membrane of the membrane substrate.


Alternatively or additionally, the etch stop layer can be composed of silicon dioxide, silicon nitride, or sapphire.


Alternatively or additionally, the MEMS force sensor can further include a plurality of sensing elements arranged on the surface of the second substrate.


Alternatively or additionally, the sensing element can be a piezoresistive or piezoelectric sensing element.


Alternatively or additionally, the MEMS force sensor can further include a cap substrate, wherein the cap substrate is bonded to the first substrate, and wherein the cavity is sealed between the cap substrate and the first substrate.


An example method of manufacturing a microelectromechanical system (MEMS) force sensor is also described herein. The method can include providing a first substrate, a second substrate, and an etch stop layer, where the etch stop layer is arranged between the first and second substrates, and where a sensing element is arranged on a surface of the second substrate. The method can also include etching the first substrate, where the etch process removes a portion of the first substrate to form a cavity in the first substrate.


Additionally, the etch process can remove a portion of the etch stop layer. Alternatively, the etch process does not remove a portion of the second substrate.


Alternatively or additionally, the etch stop layer can be configured for precise thickness control of the deformable membrane of the membrane substrate. For example, an etch rate of the etch stop layer can be different than an etch rate of the first substrate. Optionally, an etch rate ratio between the etch rate of the first substrate and the etch rate of the etch stop layer can be between 50 and 150.


Alternatively or additionally, the etch process can further form a mesa in the first substrate.


Alternatively or additionally, the method can further include bonding a cap substrate to the first substrate, where the cavity is sealed between the cap substrate and the first substrate.


Alternatively or additionally, the method can further include providing a protective layer arranged on the surface of the second substrate, and providing a conductive pad arranged on the protective layer, where the sensing element is electrically coupled to the conductive pad, and where the protective layer at least partially covers one or more of the sensing element, the surface of the second substrate, and the conductive pad.


Alternatively or additionally, the method can further include providing an under bump metal (UMB) layer and a solder bump, where the UBM layer is arranged on the conductive pad and the solder bump is arranged or the UBM layer.


Alternatively or additionally, the method can further include bonding MEMS force sensor to a package substrate, where the MEMS force sensor is mounted on the package substrate using the UBM layer and the solder bump. The package substrate can be a printed circuit board (PCB) or a flexible printed circuit board (FPCB).


Alternatively or additionally, the sensing element can be formed using an implant or deposition process.


Alternatively or additionally, the sensing element can be at least one of a piezoresistive or piezoelectric sensing element.


Other systems, methods, features and/or advantages be or may become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features and/or advantages be included within this description and be protected by the accompanying claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The components in the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding parts throughout the several views. These and other features of will become more apparent in the detailed description in which reference is made to the appended drawings wherein:



FIG. 1 illustrates an example MEMS force sensor with a sealed cavity and an etch stop layer.



FIG. 2 illustrates another example MEMS force sensor with a sealed cavity, an etch stop layer, and a mesa sealed inside the cavity.



FIG. 3 illustrates another example MEMS force sensor with a sealed cavity, an etch stop layer, and a mesa sealed inside the cavity.



FIG. 4 illustrates an example MEMS force sensor mounted on a package substrate through solder bumps, where the solder bumps do not overlap with the membrane or the mesa of the MEMS force sensor.



FIG. 5 illustrates another example MEMS force sensor mounted on a package substrate through solder bumps, where the solder bumps fully overlap with the mesa of the MEMS force sensor.





DETAILED DESCRIPTION

The present disclosure can be understood more readily by reference to the following detailed description, examples, drawings, and their previous and following description. However, before the present devices, systems, and/or methods are disclosed and described, it is to be understood that this disclosure is not limited to the specific devices, systems, and/or methods disclosed unless otherwise specified, and, as such, can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.


The following description is provided as an enabling teaching. To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made, while still obtaining beneficial results. It will also be apparent that some of the desired benefits can be obtained by selecting some of the features without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations may be possible and can even be desirable in certain circumstances, and are contemplated by this disclosure. Thus, the following description is provided as illustrative of the principles and not in limitation thereof.


As used throughout, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a sensing element” can include two or more such sensing elements unless the context indicates otherwise.


The term “comprising” and variations thereof as used herein is used synonymously with the term “including” and variations thereof and are open, non-limiting terms.


Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.


As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.


The present disclosure relates to an etch stop layer for precise membrane thickness control and the package implementation for force sensor.


Referring now to FIG. 1, a MEMS force sensor 101 according to one example implementation is shown. The MEMS force sensor 101 can include a cavity substrate 102 (also referred to herein as a “first substrate”) bonded to a membrane substrate 104 (also referred to herein as a “second substrate”) through an etch stop layer 103. As described herein, at least a portion of the membrane substrate 104 forms a deformable membrane 113. A cavity 120 is etched from the cavity substrate 102. This disclosure contemplates using etching techniques known in the art to form the cavity. For example, etching processes including, but not limited to, silicon deep reactive etch (DRIE) or normal reactive etch (RIE) or wet chemical etching using potassium hydroxide (KOH) or tetramethylammonium hydroxide (TMAH) can be used to form the cavity. As shown in FIG. 1, the etch is stopped on the etch stop layer 103. The etch does not extend through the etch stop layer 103 and reach the membrane substrate 104. The etch process is well controlled by the etch rate ratio between the respective materials of the cavity substrate 102 (e.g., silicon) and the etch stop layer 103 (e.g., dioxide). For example, the etch rate ratio between an etch rate of the material of the cavity substrate 102 (e.g., silicon) and an etch rate of the material of the etch stop layer 103 can optionally be in the range from 50 to 150. In some implementations, the etch rate ratio is greater than or equal to 50. In some implementations, the etch rate ratio is greater than or equal to 60. In some implementations, the etch rate ratio is greater than or equal to 70. In some implementations, the etch rate ratio is greater than or equal to 80. In some implementations, the etch rate ratio is greater than or equal to 90. In some implementations, the etch rate ratio is greater than or equal to 100. In some implementations, the etch rate ratio is greater than or equal to 110. In some implementations, the etch rate ratio is greater than or equal to 120. In some implementations, the etch rate ratio is greater than or equal to 130. In some implementations, the etch rate ratio is greater than or equal to 140. In some implementations, the etch rate ratio is greater than or equal to 150. This disclosure contemplates using materials other than those provided as examples such as gallium arsenide (GaAs) or silicon carbide (SiC) for the cavity substrate 102 and/or silicon nitride or sapphire for the etch stop layer 103. It should be understood that the cavity substrate and etch stop layer materials above are only provided as examples and that other materials can be used.


The thickness of the deformable membrane 113, which is formed from the membrane substrate 104, can therefore be precisely controlled. This thickness can be precisely controlled with the processes used to fabricate the membrane substrate 104, e.g., semiconductor deposition, epitaxial growth, and/or grinding/polishing, etc. The etch stop layer 103 can absorb any non-uniformity introduced by the etch process used to form the cavity 120 in the cavity substrate 102. As discussed above, the thickness of the deformable membrane 113 affects sensitivity of the MEMS force sensor 101. Thus, by precisely controlling deformable membrane thickness using the etch stop layer 103 to stop the etch process, it is possible to precisely control sensitivity of the MEMS force sensor 101. The membrane substrate 104 is not etched, so the thickness of the membrane substrate 104 is not effected by the etch process. This is in contrast to the case where the deformable membrane is formed from the same substrate from which the cavity and/or mesa is formed (e.g., etched). Example MEMS force sensors where the deformable membrane is formed by etching a sensor substrate are described in U.S. Pat. No. 9,487,388, issued Nov. 8, 2016 and entitled “Ruggedized MEMS Force Die;” U.S. Pat. No. 9,493,342, issued Nov. 15, 2016 and entitled “Wafer Level MEMS Force Dies;” U.S. Pat. No. 9,902,611, issued Feb. 27, 2018 and entitled “Miniaturized and ruggedized wafer level mems force sensors;” and U.S. Patent Application Publication No. 2016/0363490 to Campbell et al., filed Jun. 10, 2016, now U.S. Pat. No. 10,466,119, and entitled “Ruggedized wafer level mems force sensor with a tolerance trench,” the disclosures of which are incorporated by reference in their entireties. In other words, the deformable membrane 113 is formed from a different substrate (e.g., the membrane substrate 104) than the substrate etched to form the cavity (e.g., the cavity substrate 102).


The MEMS force sensor 101 can include a cap substrate 111. The cap substrate 111 can be formed of a glass (e.g., borosilicate glass) or a silicon. Although glass and silicon are provided as example materials, it should be understood that the cap substrate 111 can be made of other suitable material. The cap substrate 111 can be bonded to the cavity substrate 102 using techniques known in the art including, but not limited to, silicon fusion bonding, anodic bonding, glass frit, thermo-compression, and eutectic bonding. For example, as shown in FIG. 1, the cavity substrate 102 is bonded to cap substrate 111 through a bond layer 110. This disclosure contemplates that the bond layer 110 can optionally be formed of a silicon oxide. As described below, the cavity 120 is sealed between the cavity substrate 102 and the cap substrate 111. Thus, a volume enclosed by the cap substrate 111 and the cavity substrate 102 is sealed from an environment external to the MEMS force sensor 101. The cavity 120 is formed by removing (e.g., by etch process) portions of the cavity substrate 102 and/or etch stop layer 103 and sealing the volume between the cap substrate 111 and the cavity substrate 102. Example MEMS force sensors having a sealed cavity are described in U.S. Pat. No. 9,902,611, issued Feb. 27, 2018 and entitled “Miniaturized and ruggedized wafer level mems force sensors;” and U.S. Patent Application Publication No. 2016/0363490 to Campbell et al., filed Jun. 10, 2016, now U.S. Pat. No. 10,466,119, and entitled “Ruggedized wafer level mems force sensor with a tolerance trench,” the disclosures of which are incorporated by reference in their entireties.


The MEMS force sensor 101 can also include a sensing element 109. As shown FIG. 1, the sensing element 109 can be disposed on a surface of the membrane substrate 104, e.g., on the deformable membrane 113. Optionally, in some implementations, the MEMS force sensor 101 can include a plurality of sensing elements 109 disposed on a surface of the membrane substrate 104. This disclosure contemplates that the sensing element(s) 109 can be diffused, deposited or implanted on a surface of the membrane substrate 104. The sensing element 109 can change an electrical characteristic (e.g., resistance, capacitance, charge, etc.) in response to deflection of the deformable membrane 113. In one implementation, the sensing element 109 can optionally be a piezoresistive transducer. Although piezoresistive transducers are provided as an example sensing element, this disclosure contemplates that the sensing element 109 can be any sensor element configured to change at least one electrical characteristic (e.g., resistance, charge, capacitance, etc.) based on an amount or magnitude of an applied force and can output a signal proportional to the amount or magnitude of the applied force. Other types of sensing elements include, but not limited to, piezoelectric or capacitive sensors.


As discussed above, the sensing element 109 can optionally be a piezoresistive transducer. The change in electrical characteristic can be measured as an analog electrical signal and optionally received at and processed by digital circuitry (e.g., CMOS circuitry). For example, as strain is induced in the deformable membrane 113 proportional to force “F” applied to the MEMS force sensor 101, a localized strain is produced on the piezoresistive transducer such that the piezoresistive transducer experiences compression or tension, depending on its specific orientation. As the piezoresistive transducer compresses and tenses, its resistivity changes in opposite fashion. Accordingly, a Wheatstone bridge circuit including a plurality (e.g., four) piezoresistive transducers (e.g., two of each orientation relative to strain) becomes unbalanced and produces a differential voltage across the positive signal terminal and the negative signal terminal. This differential voltage is directly proportional to the applied force “F” on the MEMS force sensor 101. Example MEMS force sensors using piezoresistive sensing elements are described in U.S. Pat. No. 9,487,388, issued Nov. 8, 2016 and entitled “Ruggedized MEMS Force Die;” U.S. Pat. No. 9,493,342, issued Nov. 15, 2016 and entitled “Wafer Level MEMS Force Dies;” U.S. Pat. No. 9,902,611, issued Feb. 27, 2018 and entitled “Miniaturized and ruggedized wafer level mems force sensors;” and U.S. Patent Application Publication No. 2016/0363490 to Campbell et al., filed Jun. 10, 2016, now U.S. Pat. No. 10,466,119, and entitled “Ruggedized wafer level mems force sensor with a tolerance trench,” the disclosures of which are incorporated by reference in their entireties.


The MEMS force sensor 101 can also include an electrical connection 108, a conductive via 107, and a conductive pad 106 for routing the analog electrical signal produced by the sensing element 109. In FIG. 1, two electrical connections, two conductive vias, and two conductive pads are shown for providing electrical connection to the sensing element 109. It should be understood that the number and/or arrangement of the electrical connection 108, the conductive via 107, and the conductive pad 106 in FIG. 1 are provided only as examples. As shown in FIG. 1, the electrical connection 108, the conductive via 107, and the conductive pad 106 can be provided on the membrane substrate 104. The electrical connection 108, the conductive via 107, and the conductive pad 106 can be made of any suitable conductive material, including but not limited to, aluminum, copper, or gold, for example. Additionally, the electrical connection 108, the conductive via 107, and the conductive pad 106 can be covered by a protective layer 105. The protective layer 105 can be made of any suitable dielectric material. As shown in FIG. 1, the protective layer 105 is provided on the surface of the membrane substrate 104, and the conductive pad 106 is provided on the protective layer 105. Additionally, the protective layer 105 can be partially opened on conductive pad 106. The electrical connection 108 and the conductive via 107 are used to electrically couple the sensing element 109 to the conductive pad 106. This facilitates the ability to mount the MEMS force sensor 101 to another circuit or substrate such as a package substrate.


Referring now to FIG. 2, a MEMS force sensor 201 according to another example implementation is shown. The MEMS force sensor 201 can include a cavity substrate 102 (also referred to herein as a “first substrate”) bonded to a membrane substrate 104 (also referred to herein as a “second substrate”) through an etch stop layer 103. As described herein, a least a portion of the membrane substrate 104 forms a deformable membrane 313. A cavity 120 is etched from the cavity substrate 102. Unlike the MEMS force sensor shown in FIG. 1, a mesa 212 is also formed during the etch process. The mesa 212 is used to transfer force applied to the MEMS force sensor 201 to the deformable membrane 313. Additionally, a gap 130 (e.g., a space) is disposed between the mesa 212 and a cap substrate 111. The gap 130 can be formed during the etch process discussed above. The mesa 212 and/or gap 130 provide overload protection for the MEMS force sensor 201. Example MEMS force sensors designed to provide overload protection are described in U.S. Pat. No. 9,487,388, issued Nov. 8, 2016 and entitled “Ruggedized MEMS Force Die;” U.S. Pat. No. 9,493,342, issued Nov. 15, 2016 and entitled “Wafer Level MEMS Force Dies;” U.S. Pat. No. 9,902,611, issued Feb. 27, 2018 and entitled “Miniaturized and ruggedized wafer level morns force sensors;” and U.S. Patent Application Publication No. 2015/0363490 to Campbell et al., filed Jun. 10, 2016, now U.S. Pat. No. 10,466,119, and entitled “Ruggedized wafer level mems force sensor with a tolerance trench,” the disclosures of which are incorporated by reference in their entireties. This disclosure contemplates using etching techniques known in the art to form the cavity, mesa, and/or gap. For example, etching processes including, but not limited to, silicon deep reactive etch (DRIE) or normal reactive etch (RIE) or wet chemical etching using potassium hydroxide (KOH) or tetramethylammonium hydroxide (TMAH) can be used to form the cavity, mesa, and/or gap. As shown in FIG. 2, the etch is stopped on an etch stop layer 103. The etch does not extend through the etch stop layer 103 and reach the membrane substrate 104. The etch process is well controlled by the etch rate ratio between the respective materials of the cavity substrate 102 (e.g., silicon) and the etch stop layer 103 (e.g., silicon dioxide). For example, the etch rate ratio between an etch rate of the material of the cavity substrate 102 (e.g., silicon) and an etch rate of the material of the etch stop layer 103 can optionally be in the range from 50 to 150. In some implementations, the etch rate ratio is greater than or equal to 50. In some implementations, the etch rate ratio is greater than or equal to 60. In some implementations, the etch rate ratio is greater than or equal to 70. In some implementations, the etch rate ratio is greater than or equal to 80. In some implementations, the etch rate ratio is greater than or equal to 90. In some implementations, the etch rate ratio is greater than or equal to 100. In some implementations, the etch rate ratio is greater than or equal to 110. In some implementations, the etch rate ratio is greater than or equal to 120. In some implementations, the etch rate ratio is greater than or equal to 130. In some implementations, the etch rate ratio is greater than or equal to 140. In some implementations, the etch rate ratio is greater than or equal to 150. This disclosure contemplates using materials other than those provided as examples such as gallium arsenide (GaAs) or silicon carbide (SiC) for the cavity substrate 102 and/or silicon nitride or sapphire for the etch stop layer 103. As discussed above, the thickness of the deformable membrane 313, which is formed from the membrane substrate 104, can therefore be precisely controlled particular, the thickness can be precisely controlled with the processes used to fabricate the membrane substrate 104, and the etch stop layer 103 can absorb any non-uniformity introduced by the etch process used to form the cavity, mesa, and/or gap from the cavity substrate 102. And, by precisely controlling deformable membrane thickness using the etch stop layer 103 to stop the etch process, it is possible to precisely control sensitivity of the MEMS force sensor 201.


The MEMS force sensor 201 can include the cap substrate 111. The cap substrate 111 can be bonded to the cavity substrate 102 using techniques known in the art including, but not limited to, silicon fusion bonding, anodic bonding, glass frit, thereto-compression, and eutectic bonding. For example, as shown in FIG. 2, the cavity substrate 102 is bonded to cap substrate 111 through a bond layer 110. This disclosure contemplates that the bond layer 110 can optionally be formed of a silicon oxide. The cavity 120 is sealed between the cavity substrate 102 and the cap substrate 111 as described herein. Thus, a volume enclosed by the cap substrate 111 and the cavity substrate 102 is sealed from an environment external to the MEMS force sensor 201.


The MEMS force sensor 201 can also include a sensing element 109. As shown in FIG. 2, the sensing element 109 can be disposed on a surface of the membrane substrate 104. Optionally, in some implementations, the MEMS force sensor 201 can include a plurality of sensing elements 109 disposed on a surface of the membrane substrate 104. This disclosure contemplates that the sensing element(s) 109 can be diffused, deposited, or implanted on a surface of the membrane substrate 104. The sensing element 109 can change an electrical characteristic (e.g., resistance, capacitance, charge, etc.) in response to deflection of the deformable membrane 313. In one implementation, the sensing element 109 can optionally be a piezoresistive transducer. Although piezoresistive transducers are provided as an example sensing element, this disclosure contemplates that the sensing element 109 can be any sensor element configured to change at least one electrical characteristic (e.g., resistance, charge, capacitance, etc.) based on an amount or magnitude of an applied force and can output a signal proportional to the amount or magnitude of the applied force. Other types of sensing elements include, but not limited to, piezoelectric or capacitive sensors.


The MEMS force sensor 201 can also include an electrical connection 108, a conductive via 107, and a conductive pad 106 for routing the analog electrical signal produced by the sensing element 109. In FIG. 2, two electrical connections, two conductive vias, and two conductive pads are shown for providing electrical connection to the sensing element 109. It should be understood that the number and/or arrangement of the electrical connection 108, the conductive via 107, and the conductive pad 105 in FIG. 2 are provided only as examples. As shown in FIG. 2, the electrical connection 108, the conductive via 107, and the conductive pad 106 can be provided on the membrane substrate 104. The electrical connection 108, the conductive via 107, and the conductive pad 106 can be made of any suitable conductive material, including but not limited to, aluminum, copper, or gold, for example. Additionally, the electrical connection 108, the conductive via 107, and the conductive pad 106 can be covered by a protective layer 105. The protective layer 105 can be made of any suitable dielectric material. As shown in FIG. 2, the protective layer 105 is provided on the surface of the membrane substrate 104, and the conductive pad 106 is provided on the protective layer 105. Additionally, the protective layer 105 can be partially opened on conductive pad 106. The electrical connection 108 and the conductive via 107 are used to electrically couple the sensing element 109 to the conductive pad 106. This facilitates the ability to mount the MEMS force sensor 201 to another circuit or substrate such as a package substrate.


Referring now to FIG. 3, a MEMS force sensor 301 according to yet another example implementation is shown. The MEMS force sensor 301 can include a cavity substrate 102 (also referred to herein as a “first substrate”) bonded to a membrane substrate 104 (also referred to herein as a “second substrate”) through an etch stop layer 103. As described herein, at least a portion of the membrane substrate 104 forms a deformable membrane 313. A cavity 120 is etched from the cavity substrate 102. Unlike the MEMS force sensor shown in FIG. 1, a mesa 212 is also formed during the etch process. The mesa 212 is used to transfer force applied to the MEMS force sensor 301 to the deformable membrane 313. Additionally, a gap 130 (e.g., a space) is disposed between the mesa 212 and cap substrate 111. The gap 130 can be formed during the etch process discussed above. The mesa 212 and/or gap 130 provide overload protection for the MEMS force sensor 301. This disclosure contemplates using etching techniques known in the art to form the cavity, mesa, and/or gap. For example, etching processes including, but not limited to, silicon deep reactive etch (DRIE) or normal reactive etch (RIE) or wet chemical etching using potassium hydroxide (KOH) or tetramethylammonium hydroxide (TMAH) can be used to form the cavity, mesa, and/or gap. Similarly to FIGS. 1 and 2, the etch can be stopped on an etch stop layer 103. The etch does not extend through the etch stop layer 103 and reach the membrane substrate 104. The etch process is well controlled by the etch rate ratio between the respective materials of the cavity substrate 102 (e.g., silicon) and the etch stop layer 103 (e.g., silicon dioxide). For example, the etch rate ratio between an etch rate of the material of the cavity substrate 102 (e.g., silicon) and an etch rate of the material of the etch stop layer 103 can optionally be in the range from 50 to 150. In some implementations, the etch rate ratio is greater than or equal to 60. In some implementations, the etch rate ratio is greater than or equal to 70. In some implementations, the etch rate ratio is greater than or equal to 80. In some implementations, the etch rate ratio is greater than or equal to 90. In some implementations, the etch rate ratio is greater than or equal to 100. In some implementations, the etch rate ratio is greater than or equal to 110. In some implementations, the etch rate ratio is greater than or equal to 120. In some implementations, the etch rate ratio is greater than or equal to 130. In some implementations, the etch rate ratio is greater than or equal to 140. In some implementations, the etch rate ratio is greater than or equal to 150. This disclosure contemplates using materials other than those provided as examples such as gallium arsenide (GaAs) or silicon carbide (SiC) for the cavity substrate 102 and/or silicon nitride or sapphire for the etch stop layer 103. As discussed above, the thickness of the deformable membrane 313, which is formed from the membrane substrate 104, can therefore be precisely controlled. In particular, the thickness can be precisely controlled with the processes used to fabricate the membrane substrate 104, and the etch stop layer 103 can absorb any non-uniformity introduced by the etch process used to form the cavity, mesa, and/or gap from the cavity substrate 102. And, by precisely controlling deformable membrane thickness using the etch stop layer 103 to stop the etch process, it is possible to precisely control sensitivity of the MEMS force sensor 301.


As shown in FIG. 3, portions of the etch stop layer 103 covering the deformable membrane 313 can be removed after forming the cavity, mesa, and/or gap. In FIG. 3, these portions correspond to regions of the membrane substrate 104 disposed about the mesa 212. This disclosure contemplates removing portions of the etch stop layer 103 using an etch process. By removing portions of the etch stop layer 103, the thickness of the deformable membrane 313 can be further precisely controlled. In other words, the deformable membrane 313 is the only material left in the regions where the etch stop layer 103 has been removed. As discussed above, thickness of the deformable membrane effects sensitivity of the MEMS force sensor 301, so removing portions of the etch stop layer 103, which adds material and thickness, facilitates controlling sensitivity.


The MEMS force sensor 301 can include a cap substrate 111. The cap substrate 111 can be bonded to the cavity substrate 102 using techniques known in the art including, but not limited to, silicon fusion bonding, anodic bonding, glass frit, thermo-compression, and eutectic bonding. For example, as shown in FIG. 3, the cavity substrate 102 is bonded to cap substrate 111 through a bond layer 110. This disclosure contemplates that the bond layer 110 can optionally be formed of a silicon oxide. The cavity 120 is sealed between the cavity substrate 102 and the cap substrate 111 as described herein. Thus, a volume enclosed by the cap substrate 111 and the cavity substrate 102 is sealed from an environment external to the MEMS force sensor 301.


The MEMS force sensor 301 can also include a sensing element 109. As shown in FIG. 3, the sensing element 109 can be disposed on a surface of the membrane substrate 104. Optionally, in some implementations, the MEMS force sensor 301 can include a plurality of sensing elements 109 disposed on a surface of the membrane substrate 104. This disclosure contemplates that the sensing element(s) 109 can be diffused, deposited, or implanted on a surface of the membrane substrate 104. The sensing element 109 can change an electrical characteristic (e.g., resistance, capacitance, charge, etc.) in response to deflection of the deformable membrane 313. In one implementation, the sensing element 109 can optionally be a piezoresistive transducer. Although piezoresistive transducers are provided as an example sensing element, this disclosure contemplates that the sensing element 109 can be any sensor element configured to change at least one electrical characteristic (e.g., resistance, charge, capacitance, etc.) based on an amount or magnitude of an applied force and can output a signal proportional to the amount or magnitude of the applied force. Other types of sensing elements include, but not limited to, piezoelectric or capacitive sensors.


The MEMS force sensor 301 can also include an electrical connection 108, a conductive via 107, and a conductive pad 106 for routing the analog electrical signal produced by the sensing element 109. In FIG. 3, two electrical connections, two conductive vias, and two conductive pads are shown for providing electrical connection to the sensing element 109. It should be understood that the number and/or arrangement of the electrical connection 108, the conductive via 107, and the conductive pad 106 in FIG. 3 are provided only as examples. As shown in FIG. 3, the electrical connection 108, the conductive via 107, and the conductive pad 106 can be provided on the membrane substrate 104. The electrical connection 108, the conductive via 107, and the conductive pad 106 can be made of any suitable conductive material, including but not limited to, aluminum, copper, or gold, for example. Additionally, the electrical connection 108, the conductive via 107, and the conductive pad 106 can be covered by a protective layer 105. The protective layer 105 can be made of any suitable dielectric material. As shown in FIG. 2, the protective layer 105 is provided on the surface of the membrane substrate 104, and the conductive pad 106 is provided on the protective layer 105. Additionally, the protective layer 105 can be partially opened on conductive pad 106. The electrical connection 108 and the conductive via 107 are used to electrically couple the sensing element 109 to the conductive pad 106. This facilitates the ability to mount the MEMS force sensor 301 to another circuit or substrate such as a package substrate.


Referring now to FIG. 4, an example MEMS sensor 301 mounted on a package substrate 416 through solder bumps, where the solder bumps do not overlap with the membrane or the mesa of the MEMS force sensor 301 is shown. The MEMS force sensor 301 is described in detail above with reference to FIG. 3. It should be understood that the MEMS force sensors shown in FIGS. 1 and 2 can be mounted on a package substrate as described herein. In other words, the MEMS force sensor 301 is used only as an example in FIG. 4.


As shown in FIG. 4, an under bump metal (UBM) layer 414 can be formed on each of the conductive pads 106. This disclosure contemplates that the UBM layer 414 can be made of any suitable conductive material, including but not limited to, aluminum, copper, or gold, for example. The UBM layer 414 is formed in the opening of the protective layer 105 that exposes the conductive pads 106. Additionally, the bumps 415 (e.g., solder bumps) are formed on the UBM layer 414. The MEMS force sensor 301 can then be mechanically and electrically coupled to the package substrate 416 via the bumps 415. Although bumps 415 are provided as an example, this disclosure contemplates that copper pillars or other component capable of electrically connecting the MEMS force sensor 301 to the package substrate 416 can be used. The package substrate 416 can optionally be a printed circuit board (PCB) or flexible printed circuit board (FPCB). PCBs and FPCBs such as those used in electronics systems as a carrier substrate to electrically and mechanically integrate a functional system together are known in the art and therefore not described in further detail herein. As shown in FIG. 4, the conductive pad 106, the UBM layer 414, and the bumps 415 are arranged on the membrane substrate 104 and do not overlap with either the deformable membrane 313 or the mesa 212 of the MEMS force sensor 301.


Referring now to FIG. 5, an example MEMS sensor 301 mounted on a package substrate 516 through solder bumps, where the solder bumps fully overlap with the mesa of the MEMS force sensor 301 is shown. The MEMS force sensor 301 is described in detail above with reference to FIG. 3. It should be understood that the MEMS force sensors shown in FIGS. 1 and 2 can be mounted on a package substrate as described herein. In other words, the M EMS force sensor 301 is used only as an example in FIG. 5.


As shown in FIG. 5, an under bump metal (UBM) layer 514 can be formed on each of the conductive pads 106. This disclosure contemplates that the UBM layer 514 can be made of any suitable conductive material, including but not limited to, aluminum, copper, or gold, for example. The UBM layer 514 is formed in the opening of the protective layer 105 that exposes the conductive pads 106. Additionally, the bumps 515 (e.g., solder bumps) are formed on the UBM layer 514. The MEMS force sensor 301 can then be mechanically and electrically coupled to the package substrate 516 via the bumps 515. Although bumps 515 are provided as an example, this disclosure contemplates that copper pillars or other component capable of electrically connecting the MEMS force sensor 301 to the package substrate 516 can be used. The package substrate 516 can optionally be a printed circuit board (PCB) or flexible printed circuit board (FPCB). PCBs and FPCBs such as those used in electronics systems as a carrier substrate to electrically and mechanically integrate a functional system together are known in the art and therefore not described in further detail herein. As shown in FIG. 5, the conductive pad 106, the UBM layer 514, and the bumps 515 are arranged on the membrane substrate 104 and overlap with the mesa 212 of the MEMS force sensor 301.


An example method of manufacturing the MEMS sensor is now described, it should be understood that the MEMS force sensor can be the MEMS force sensor described above with regard to FIGS. 1-3. The method can include providing a first substrate (e.g. cavity substrate 102 in FIGS. 1-3), a second substrate (e.g. membrane substrate 104 in FIGS. 1-3), and an etch stop layer (e.g., etch stop layer 103 in FIGS. 1-3). As described herein, the etch stop layer can be arranged between the cavity and membrane substrates, and a sensing element (e.g., sensing element 109 in FIGS. 1-3) can be arranged on a surface of the membrane substrate. The sensing element (e.g., piezoresistive or piezoelectric sensing element) can optionally be formed using an implant or deposition process. Formation of sensing elements is known in the art. For example, formation of sensing elements described in WO2018/148503 to Foughi et al., filed Feb. 9, 2018 and entitled “Integrated Digital Force Sensors and Related Methods of Manufacture,” the disclosure of which is incorporated by reference in its entirety. The method can further include etching the cavity substrate, where the etch process removes a portion of the first substrate to form a cavity (e.g., cavity 120 in FIGS. 1-3) and optionally a mesa and gap (e.g., mesa 212 and gap 130 in FIGS. 2 and 3). This disclosure contemplates using etching techniques known in the art. For example, etching processes including, but not limited to, silicon deep reactive etch (DRIE) or normal reactive etch (RIE) or wet chemical etching using potassium hydroxide (KOH) or tetramethylammonium hydroxide (TMAH) can be used to form the cavity, mesa, and/or gap. In some implementations, the etch process can optionally remove a portion of the etch stop layer. For example, the etch stop layer can optionally be completely removed and expose a portion of the membrane substrate (e.g., as shown in FIG. 3). In this implementation, the etch process does not remove a portion of the membrane substrate.


As described herein, the etch stop layer can be configured for precise thickness control of a deformable membrane (e.g., deformable membrane 113/313 in FIGS. 1-3) defined by at least a portion of the membrane substrate. For example, an etch rate of the etch stop layer can be different than an etch rate of the cavity substrate. For example, the etch rate ratio between an etch rate of the material of the cavity substrate and an etch rate of the material of the etch stop layer can optionally be in the range from 50 to 150. In some implementations, the etch rate ratio is greater than or equal to 50. In some implementations, the etch rate ratio is greater than or equal to 60. In some implementations, the etch rate ratio is greater than or equal to 70. In some implementations, the etch rate ratio is greater than or equal to 80. In some implementations, the etch rate ratio is greater than or equal to 90. In some implementations, the etch rate ratio is greater than or equal to 100. In some implementations, the etch rate ratio is greater than or equal to 110. In some implementations, the etch rate ratio is greater than or equal to 120. In some implementations, the etch rate ratio is greater than or equal to 130. In some implementations, the etch rate ratio is greater than or equal to 140. In some implementations, the etch rate ratio is greater than or equal to 150. This allows the etch stop layer to absorb any non-uniformity introduced by the etch process used to form the cavity, mesa, and/or gap from the cavity substrate. In some implementations, the method can further include bonding a cap substrate (e.g., cap 111 in FIGS. 1-3) to the cavity substrate such that the cavity is sealed between the cap substrate and the cavity substrate.


In one implementation, the step of bonding the cap substrate (e.g., cap 111 in FIGS. 1-3) is performed before the step of forming the sensing element (e.g., sensing element 109 in FIGS. 1-3). In this implementation, the etch stop layer (e.g., etch stop layer 103 in FIGS. 1-3), which is optionally formed of SiO2 or SiC, is provided on the second substrate (e.g., membrane substrate 104 in FIGS. 1-3). The membrane substrate has a precisely controlled thickness as described herein. The first substrate (e.g. cavity substrate 102 in FIGS. 1-3) is then provided on the etch stop layer. Thereafter, the etching steps are performed, e.g., to form a cavity (e.g., cavity 120 in FIGS. 1-3) and optionally a mesa and gap (e.g., mesa 212 and gap 130 in FIGS. 2 and 3). The cap substrate is then bonded to the cavity substrate such that the cavity is sealed there between. After this bonding, the sensing element can be formed as described herein.


In another implementation, the step of bonding the cap substrate (e.g., cap 111 in FIGS. 1-3) is performed after the step of forming the sensing element (e.g., sensing element 109 in FIGS. 1-3). In this implementation, a transfer wafer is used. The sensing element is formed on the second substrate (e.g. membrane substrate 104 in FIGS. 1-3), which has a precisely controlled thickness as described herein. The membrane substrate is bonded to the transfer wafer. The etch stop layer (e.g., etch stop layer 103 in FIGS. 1-3), which is optionally formed of SiO2 or SiC, is then provided on the membrane substrate. The first substrate (e.g. cavity substrate 102 in FIGS. 1-3) is then provided on the etch stop layer. Thereafter, the etching steps are performed, e.g., to form a cavity (e.g., cavity 120 in FIGS. 1-3) and optionally a mesa and gap (e.g., mesa 212 and gap 130 in FIGS. 2 and 3). Using the transfer wafer, the cavity and membrane substrates are carried to the cap substrate for bonding. The cap substrate is then bonded to the cavity substrate such that the cavity is sealed there between. After this bonding, the transfer wafer is removed.


Optionally, the method can further include providing a protective layer (e.g., protective layer 105 in FIGS. 1-3) arranged on the surface of the membrane substrate, and providing a conductive pad (e.g., conductive pad 106 in FIGS. 1-3) arranged on the protective layer. The sensing element can be electrically coupled to the conductive pad, and the protective layer can at least partially cover one or more of the sensing element, the surface of the second substrate, and the conductive pad. In some implementations, the method can further include providing a UBM layer (e.g., UBM layers 414 or 514 in FIGS. 4 and 5) and a solder bump (e.g., solder bumps 415 or 515 in FIGS. 4 and 5) or copper pillar arranged on the conductive pad. This disclosure contemplates that the UBM layer and solder hump or copper pillar can be provided after formation of the sensor die has been completed. Optionally, the method can include bonding the MEMS force sensor to a package substrate (e.g., package substrates 416 or 516 in FIGS. 4 and 5). As described herein, the package substrate can be a PCB or an FPCB. The MEMS force sensor can be mounted on the package substrate using the UBM layer and the solder bump or copper pillar.


Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims
  • 1. A microelectromechanical system (MEMS) device, comprising: a substrate; anda MEMS force sensor mounted on the substrate, the MEMS force sensor comprising: a sensor die configured to receive an applied force, the sensor die comprising a first substrate and a second substrate, wherein at least a portion of the second substrate defines a deformable membrane;a cavity formed in the first substrate;a sensing element on a surface of the second substrate, the sensing element operable to convert a strain on the surface of the second substrate to an analog electrical signal that is proportional to the strain;a protective layer at least partially covering the surface of the second substrate; anda conductive pad on the protective layer and electrically coupled to the sensing element, wherein: the MEMS force sensor is mounted on the substrate using an under bump metal (UBM) layer that is on the conductive pad and an electrical connector that is between the UBM layer and the substrate; andthe conductive pad is electrically coupled to the substrate through the UBM layer and the electrical connector.
  • 2. The MEMS device of claim 1, further comprising an etch stop layer between the first substrate and the second substrate.
  • 3. The MEMS device of claim 1, wherein the substrate comprises a package substrate.
  • 4. The MEMS device of claim 1, wherein the substrate comprises one of a printed circuit board or a flexible printed circuit board.
  • 5. The MEMS device of claim 1, wherein the protective layer at least partially covers the sensing element or the conductive pad.
  • 6. The MEMS device of claim 1, further comprising a mesa in the cavity and formed from the first substrate.
  • 7. The MEMS device of claim 6, further comprising an etch stop layer at least partially covering the deformable membrane of the second substrate.
  • 8. The MEMS device of claim 1, wherein the conductive pad, the UBM layer, and the electrical connector overlap fully with a mesa in the cavity.
  • 9. The MEMS device of claim 1, further comprising a mesa in the cavity and over the deformable membrane, wherein the conductive pad, the UBM layer, and the electrical connector do not overlap with the mesa and the deformable membrane.
  • 10. The MEMS device of claim 1, wherein the sensing element is a piezoresistive or piezoelectric sensing element.
  • 11. The MEMS device of claim 1, further comprising a cap substrate, wherein: the cap substrate is bonded to the first substrate; andthe cavity is sealed between the cap substrate and the first substrate.
  • 12. A method of manufacturing a microelectromechanical system (MEMS) device, the method comprising: providing an etch stop layer between a first substrate and a deformable membrane of a second substrate;etching the first substrate to remove a portion of the first substrate to form a cavity in the first substrate;providing a sensing element on a surface of the deformable membrane;providing a conductive pad over the surface of the second substrate and electrically coupling the conductive pad to the sensing element;providing an under bump metal (UBM) layer on the conductive pad;providing an electrical connector on the UBM layer; andmounting a substrate on the electrical connector, wherein the conductive pad is electrically coupled to the substrate through the UBM layer and the electrical connector.
  • 13. The method of claim 12, further comprising providing a protective layer over the surface to at least partially cover the surface of the second substrate, wherein the conductive pad is on the protective layer.
  • 14. The method of claim 13, wherein the protective layer at least partially covers the sensing element or the conductive pad.
  • 15. The method of claim 12, wherein: an etch rate of the etch stop layer is different than an etch rate of the first substrate; andan etch rate ratio between the etch rate of the first substrate and the etch rate of the etch stop layer is between 50 and 150.
  • 16. A microelectromechanical system (MEMS) force sensor, comprising: a sensor die configured to receive an applied force, the sensor die comprising a first substrate bonded to a second substrate, wherein at least a portion of the second substrate defines a deformable membrane;a cavity in the first substrate;an etch stop layer between the first substrate and the second substrate, wherein the etch stop layer at least partially covers the deformable membrane of the second substrate;a sensing element on a surface of the second substrate, the sensing element operable to convert a strain on the surface of the second substrate to an analog electrical signal that is proportional to the strain;a protective layer at least partially over the surface of the second substrate; anda conductive pad on the protective layer and electrically coupled to the sensing element.
  • 17. The MEMS force sensor of claim 16, further comprising a cap substrate bonded to the first substrate, wherein the cavity is sealed between the cap substrate and the first substrate.
  • 18. The MEMS force sensor of claim 17, further comprising: a mesa in the cavity and formed from the first substrate; anda gap between the mesa and the cap substrate.
  • 19. The MEMS force sensor of claim 16, further comprising: an under bump metal (UBM) layer over the conductive pad;an electrical connector over the UBM layer, wherein the MEMS force sensor is mounted to a substrate using the UBM layer and the electrical connector.
  • 20. The MEMS force sensor of claim 16, wherein the electrical connector is one of a solder bump or a copper pillar.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/761,373, filed May 4, 2020, now U.S. Pat. No. 11,385,108, which is a national phase filing of a 371 of International Application No. PCT/US2018/058928, filed on Nov. 2, 2017, which claims the benefit of U.S. provisional patent application No. 62/580,530, filed on Nov. 2, 2017, the disclosures of which are expressly incorporated herein by reference in their entireties.

US Referenced Citations (359)
Number Name Date Kind
4594639 Kuisma Jun 1986 A
4658651 Le Apr 1987 A
4814856 Kurtz et al. Mar 1989 A
4849730 Zumi et al. Jul 1989 A
4914624 Dunthorn Apr 1990 A
4918262 Flowers et al. Apr 1990 A
4933660 Wynne, Jr. Jun 1990 A
4983786 Stevens et al. Jan 1991 A
5095401 Zavracky et al. Mar 1992 A
5159159 Asher Oct 1992 A
5237879 Speeter Aug 1993 A
5320705 Fujii et al. Jun 1994 A
5333505 Takahashi et al. Aug 1994 A
5343220 Veasy et al. Aug 1994 A
5349746 Gruenwald et al. Sep 1994 A
5351550 Maurer Oct 1994 A
5483994 Maurer Jan 1996 A
5510812 O'Mara et al. Apr 1996 A
5541372 Baller et al. Jul 1996 A
5543591 Gillespie et al. Aug 1996 A
5565657 Merz Oct 1996 A
5600074 Marek et al. Feb 1997 A
5673066 Toda et al. Sep 1997 A
5773728 Tsukada et al. Jun 1998 A
5889236 Gillespie et al. Mar 1999 A
5921896 Boland Jul 1999 A
5969591 Fung Oct 1999 A
6028271 Gillespie et al. Feb 2000 A
6159166 Chesney et al. Dec 2000 A
6243075 Fishkin et al. Jun 2001 B1
6348663 Schoos et al. Feb 2002 B1
6351205 Armstrong Feb 2002 B1
6360598 Calame et al. Mar 2002 B1
6437682 Vance Aug 2002 B1
6555235 Aufderheide et al. Apr 2003 B1
6556189 Takahata et al. Apr 2003 B1
6569108 Sarvazyan et al. May 2003 B2
6610936 Gillespie et al. Aug 2003 B2
6620115 Sarvazyan et al. Sep 2003 B2
6629343 Chesney et al. Oct 2003 B1
6668230 Mansky et al. Dec 2003 B2
6720712 Scott et al. Apr 2004 B2
6788297 Itoh et al. Sep 2004 B2
6801191 Mukai et al. Oct 2004 B2
6809280 Divigalpitiya et al. Oct 2004 B2
6812621 Scott Nov 2004 B2
6822640 Derocher Nov 2004 B2
6868731 Gatesman Mar 2005 B1
6879318 Chan et al. Apr 2005 B1
6888537 Benson et al. May 2005 B2
6915702 Omura et al. Jul 2005 B2
6931938 Knirck et al. Aug 2005 B2
6995752 Lu Feb 2006 B2
7138984 Miles Nov 2006 B1
7173607 Matsumoto et al. Feb 2007 B2
7190350 Roberts Mar 2007 B2
7215329 Yoshikawa et al. May 2007 B2
7218313 Marcus et al. May 2007 B2
7224257 Morikawa May 2007 B2
7245293 Hoshino et al. Jul 2007 B2
7273979 Christensen Sep 2007 B2
7280097 Chen et al. Oct 2007 B2
7318349 Vaganov et al. Jan 2008 B2
7324094 Moilanen et al. Jan 2008 B2
7324095 Sharma Jan 2008 B2
7336260 Martin et al. Feb 2008 B2
7337085 Soss Feb 2008 B2
7345680 David Mar 2008 B2
7367232 Vaganov et al. May 2008 B2
7406661 Vaananen et al. Jul 2008 B2
7425749 Hartzell et al. Sep 2008 B2
7426873 Kholwadwala et al. Sep 2008 B1
7449758 Axelrod et al. Nov 2008 B2
7460109 Safai et al. Dec 2008 B2
7476952 Vaganov et al. Jan 2009 B2
7499604 Burns Mar 2009 B1
7508040 Nikkel et al. Mar 2009 B2
7554167 Vaganov Jun 2009 B2
7607111 Vaananen et al. Oct 2009 B2
7620521 Breed et al. Nov 2009 B2
7629969 Kent Dec 2009 B2
7649522 Chen et al. Jan 2010 B2
7663612 Bladt Feb 2010 B2
7685538 Fleck et al. Mar 2010 B2
7698084 Soss Apr 2010 B2
7701445 Inokawa et al. Apr 2010 B2
7719752 Sampsell May 2010 B2
7746327 Miyakoshi Jun 2010 B2
7791151 Vaganov et al. Sep 2010 B2
7819998 David Oct 2010 B2
7825911 Sano et al. Nov 2010 B2
7903090 Soss et al. Mar 2011 B2
7921725 Silverbrook et al. Apr 2011 B2
7952566 Poupyrev et al. May 2011 B2
7973772 Gettemy et al. Jul 2011 B2
7973778 Chen Jul 2011 B2
8004052 Vaganov Aug 2011 B2
8004501 Harrison Aug 2011 B2
8013843 Pryor Sep 2011 B2
8026906 Molne et al. Sep 2011 B2
8044929 Baldo et al. Oct 2011 B2
8068100 Pryor Nov 2011 B2
8072437 Miller et al. Dec 2011 B2
8072440 Pryor Dec 2011 B2
8113065 Ohsato et al. Feb 2012 B2
8120586 Hsu et al. Feb 2012 B2
8120588 Klinghult Feb 2012 B2
8130207 Nurmi et al. Mar 2012 B2
8134535 Choi et al. Mar 2012 B2
8139038 Chueh et al. Mar 2012 B2
8144133 Wang et al. Mar 2012 B2
8149211 Hayakawa et al. Apr 2012 B2
8154528 Chen et al. Apr 2012 B2
8159473 Cheng et al. Apr 2012 B2
8164573 DaCosta et al. Apr 2012 B2
8183077 Vaganov et al. May 2012 B2
8184093 Tsuiki May 2012 B2
8188985 Hillis et al. May 2012 B2
8199116 Jeon et al. Jun 2012 B2
8212790 Rimas Ribikauskas et al. Jul 2012 B2
8237537 Kurtz Aug 2012 B2
8243035 Abe et al. Aug 2012 B2
8250921 Nasiri et al. Aug 2012 B2
8253699 Son Aug 2012 B2
8260337 Periyalwar et al. Sep 2012 B2
8269731 Molne Sep 2012 B2
8289288 Whytock et al. Oct 2012 B2
8289290 Klinghult Oct 2012 B2
8297127 Wade et al. Oct 2012 B2
8319739 Chu et al. Nov 2012 B2
8325143 Destura et al. Dec 2012 B2
8350345 Vaganov Jan 2013 B2
8363020 Li et al. Jan 2013 B2
8363022 Tho et al. Jan 2013 B2
8378798 Bells et al. Feb 2013 B2
8378991 Jeon et al. Feb 2013 B2
8384677 Mak-Fan et al. Feb 2013 B2
8387464 McNeil et al. Mar 2013 B2
8405631 Chu et al. Mar 2013 B2
8405632 Chu et al. Mar 2013 B2
8421609 Kim et al. Apr 2013 B2
8427441 Paleczny et al. Apr 2013 B2
8436806 Almalki et al. May 2013 B2
8436827 Zhai et al. May 2013 B1
8451245 Heubel et al. May 2013 B2
8456440 Abe et al. Jun 2013 B2
8466889 Tong et al. Jun 2013 B2
8477115 Rekimoto Jul 2013 B2
8482372 Kurtz et al. Jul 2013 B2
8493189 Suzuki Jul 2013 B2
8497757 Kurtz et al. Jul 2013 B2
8516906 Umetsu et al. Aug 2013 B2
8802473 Chu et al. Aug 2014 B1
8931347 Donzier et al. Jan 2015 B2
8984951 Landmann et al. Mar 2015 B2
9487388 Brosh Nov 2016 B2
9493342 Brosh Nov 2016 B2
10378985 Kwa Aug 2019 B2
11385108 Tsai Jul 2022 B2
20030067448 Park Apr 2003 A1
20030119221 Cunningham Jun 2003 A1
20030189552 Chuang et al. Oct 2003 A1
20030197176 Spallas et al. Oct 2003 A1
20040012572 Sowden et al. Jan 2004 A1
20040140966 Marggraff et al. Jul 2004 A1
20060028441 Armstrong Feb 2006 A1
20060244733 Geaghan Nov 2006 A1
20060272413 Vaganov et al. Dec 2006 A1
20060284856 Soss Dec 2006 A1
20070035525 Yeh et al. Feb 2007 A1
20070046649 Reiner Mar 2007 A1
20070070046 Sheynblat et al. Mar 2007 A1
20070070053 Lapstun et al. Mar 2007 A1
20070097095 Kim et al. May 2007 A1
20070103449 Laitinen et al. May 2007 A1
20070103452 Wakai et al. May 2007 A1
20070115265 Rainisto May 2007 A1
20070132717 Wang et al. Jun 2007 A1
20070137901 Chen Jun 2007 A1
20070139391 Bischoff Jun 2007 A1
20070152959 Peters Jul 2007 A1
20070156723 Vaananen Jul 2007 A1
20070182864 Stoneham et al. Aug 2007 A1
20070229478 Rosenberg et al. Oct 2007 A1
20070235231 Loomis et al. Oct 2007 A1
20070245836 Vaganov Oct 2007 A1
20070262965 Hirai et al. Nov 2007 A1
20070277616 Nikkel et al. Dec 2007 A1
20070298883 Feldman et al. Dec 2007 A1
20080001923 Hall et al. Jan 2008 A1
20080007532 Chen Jan 2008 A1
20080010616 Algreatly Jan 2008 A1
20080024454 Everest Jan 2008 A1
20080030482 Elwell et al. Feb 2008 A1
20080036743 Westerman et al. Feb 2008 A1
20080088600 Prest et al. Apr 2008 A1
20080088602 Hotelling Apr 2008 A1
20080094367 Van De Ven et al. Apr 2008 A1
20080105057 Wade May 2008 A1
20080105470 Van De Ven et al. May 2008 A1
20080106523 Conrad May 2008 A1
20080174852 Hirai et al. Jul 2008 A1
20080180402 Yoo et al. Jul 2008 A1
20080180405 Han et al. Jul 2008 A1
20080180406 Han et al. Jul 2008 A1
20080202249 Yokura et al. Aug 2008 A1
20080204427 Heesemans et al. Aug 2008 A1
20080211766 Westerman et al. Sep 2008 A1
20080238446 DeNatale et al. Oct 2008 A1
20080238884 Harish Oct 2008 A1
20080259046 Carsanaro Oct 2008 A1
20080279498 Sampsell et al. Nov 2008 A1
20080284742 Prest et al. Nov 2008 A1
20080303799 Schwesig et al. Dec 2008 A1
20090027352 Abele Jan 2009 A1
20090027353 Im et al. Jan 2009 A1
20090046110 Sadler et al. Feb 2009 A1
20090102805 Meijer et al. Apr 2009 A1
20090140985 Liu Jun 2009 A1
20090184921 Scott et al. Jul 2009 A1
20090184936 Algreatly Jul 2009 A1
20090213066 Hardacker et al. Aug 2009 A1
20090237275 Vaganov Sep 2009 A1
20090237374 Li et al. Sep 2009 A1
20090242282 Kim et al. Oct 2009 A1
20090243817 Son Oct 2009 A1
20090243998 Wang Oct 2009 A1
20090256807 Nurmi Oct 2009 A1
20090256817 Perlin et al. Oct 2009 A1
20090282930 Cheng et al. Nov 2009 A1
20090303400 Hou et al. Dec 2009 A1
20090309852 Lin et al. Dec 2009 A1
20090314551 Nakajima Dec 2009 A1
20100013785 Murai et al. Jan 2010 A1
20100020030 Kim et al. Jan 2010 A1
20100020039 Ricks et al. Jan 2010 A1
20100039396 Ho et al. Feb 2010 A1
20100053087 Dai et al. Mar 2010 A1
20100053116 Daverman et al. Mar 2010 A1
20100066686 Joguet et al. Mar 2010 A1
20100066697 Jacomet et al. Mar 2010 A1
20100079391 Joung Apr 2010 A1
20100079395 Kim et al. Apr 2010 A1
20100079398 Shen et al. Apr 2010 A1
20100097347 Lin Apr 2010 A1
20100117978 Shirado May 2010 A1
20100123671 Lee May 2010 A1
20100123686 Klinghult et al. May 2010 A1
20100127140 Smith May 2010 A1
20100128002 Stacy et al. May 2010 A1
20100128337 Tung May 2010 A1
20100153891 Vaananen et al. Jun 2010 A1
20100164959 Brown et al. Jul 2010 A1
20100220065 Ma Sep 2010 A1
20100271325 Conte et al. Oct 2010 A1
20100289807 Yu et al. Nov 2010 A1
20100295807 Xie et al. Nov 2010 A1
20100308844 Day et al. Dec 2010 A1
20100309714 Meade Dec 2010 A1
20100315373 Steinhauser et al. Dec 2010 A1
20100321310 Kim et al. Dec 2010 A1
20100321319 Hefti Dec 2010 A1
20100323467 Vaganov et al. Dec 2010 A1
20100328229 Weber et al. Dec 2010 A1
20100328230 Faubert et al. Dec 2010 A1
20110001723 Fan Jan 2011 A1
20110006980 Taniguchi et al. Jan 2011 A1
20110007008 Algreatly Jan 2011 A1
20110012848 Li et al. Jan 2011 A1
20110018820 Huitema et al. Jan 2011 A1
20110032211 Christofferson Feb 2011 A1
20110039602 McNamara et al. Feb 2011 A1
20110050628 Homma et al. Mar 2011 A1
20110050630 Ikeda Mar 2011 A1
20110057899 Sleeman et al. Mar 2011 A1
20110063248 Yoon Mar 2011 A1
20110113881 Suzuki May 2011 A1
20110128250 Murphy et al. Jun 2011 A1
20110141052 Bernstein et al. Jun 2011 A1
20110141053 Bulea et al. Jun 2011 A1
20110187674 Baker et al. Aug 2011 A1
20110209555 Ahles et al. Sep 2011 A1
20110227836 Li et al. Sep 2011 A1
20110242014 Tsai et al. Oct 2011 A1
20110267181 Kildal Nov 2011 A1
20110267294 Kildal Nov 2011 A1
20110273396 Chung Nov 2011 A1
20110291951 Tong Dec 2011 A1
20110298705 Vaganov Dec 2011 A1
20110308324 Gamage et al. Dec 2011 A1
20120004169 Sebti et al. Jan 2012 A1
20120032907 Koizumi et al. Feb 2012 A1
20120032915 Wittorf Feb 2012 A1
20120038579 Sasaki Feb 2012 A1
20120050159 Yu et al. Mar 2012 A1
20120050208 Dietz Mar 2012 A1
20120056837 Park et al. Mar 2012 A1
20120060605 Wu et al. Mar 2012 A1
20120062603 Mizunuma et al. Mar 2012 A1
20120068946 Tang et al. Mar 2012 A1
20120068969 Bogana et al. Mar 2012 A1
20120081327 Heubel et al. Apr 2012 A1
20120086659 Perlin et al. Apr 2012 A1
20120086764 Golda Apr 2012 A1
20120092250 Hadas et al. Apr 2012 A1
20120092279 Martin Apr 2012 A1
20120092299 Harada et al. Apr 2012 A1
20120092324 Buchan et al. Apr 2012 A1
20120105358 Momeyer et al. May 2012 A1
20120105367 Son et al. May 2012 A1
20120113061 Ikeda May 2012 A1
20120127088 Pance et al. May 2012 A1
20120127107 Miyashita et al. May 2012 A1
20120139864 Sleeman et al. Jun 2012 A1
20120144921 Bradley et al. Jun 2012 A1
20120146945 Miyazawa et al. Jun 2012 A1
20120146946 Wang et al. Jun 2012 A1
20120147052 Homma et al. Jun 2012 A1
20120154315 Aono Jun 2012 A1
20120154316 Kono Jun 2012 A1
20120154317 Aono Jun 2012 A1
20120154318 Aono Jun 2012 A1
20120154328 Kono Jun 2012 A1
20120154329 Shinozaki Jun 2012 A1
20120154330 Shimizu Jun 2012 A1
20120162122 Geaghan Jun 2012 A1
20120169609 Britton Jul 2012 A1
20120169617 Maenpaa Jul 2012 A1
20120169635 Liu Jul 2012 A1
20120169636 Liu Jul 2012 A1
20120188181 Ha et al. Jul 2012 A1
20120194460 Kuwabara et al. Aug 2012 A1
20120194466 Posamentier Aug 2012 A1
20120200526 Lackey Aug 2012 A1
20120204653 August et al. Aug 2012 A1
20120205165 Strittmatter et al. Aug 2012 A1
20120218212 Yu et al. Aug 2012 A1
20120286379 Inoue Nov 2012 A1
20120319987 Woo Dec 2012 A1
20120327025 Huska et al. Dec 2012 A1
20130008263 Kabasawa et al. Jan 2013 A1
20130038541 Bakker Feb 2013 A1
20130093685 Kalu et al. Apr 2013 A1
20130096849 Campbell et al. Apr 2013 A1
20130140944 Chen et al. Jun 2013 A1
20130341741 Brosh Dec 2013 A1
20130341742 Brosh Dec 2013 A1
20140007705 Campbell et al. Jan 2014 A1
20140028575 Parivar et al. Jan 2014 A1
20140055407 Lee et al. Feb 2014 A1
20140367811 Nakagawa et al. Dec 2014 A1
20160069927 Hamamura Mar 2016 A1
20160332866 Brosh et al. Nov 2016 A1
20160363490 Campbell et al. Dec 2016 A1
20170003187 Lim et al. Jan 2017 A1
20170234744 Tung et al. Aug 2017 A1
20170343430 Caltabiano et al. Nov 2017 A1
20210172813 Tsai et al. Jun 2021 A1
20210407941 Haba Dec 2021 A1
Foreign Referenced Citations (8)
Number Date Country
201653605 Nov 2010 CN
102998037 Mar 2013 CN
102010012441 Sep 2011 DE
2004156937 Jun 2004 JP
2010147268 Jul 2010 JP
2004113859 Dec 2004 WO
2007139695 Dec 2007 WO
2013067548 May 2013 WO
Non-Patent Literature Citations (5)
Entry
Mei, et al., “Design and Fabrication of an Integrated Three-Dimensional Tactile Sensor for Space Robotic Applications,” International Conference on Micro Electro Mechanical Systems, Jan. 1999, Orlando, Florida, IEEE, pp. 112-117.
Nesterov, V. , et al., “Modelling and investigation of the silicon twin design 3D micro probe,” Journal of Micromechanics and Microengineering , vol. 15, 2005, pp. 514-520.
Non-Final Office Action for U.S. Appl. No. 16/761,373, dated Sep. 22, 2021, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/761,373, dated Feb. 25, 2022, 7 pages.
PCT/US2018/058928, International Search Report and Written Opinion dated Jan. 7, 2019.
Related Publications (1)
Number Date Country
20230016531 A1 Jan 2023 US
Provisional Applications (1)
Number Date Country
62580530 Nov 2017 US
Continuations (1)
Number Date Country
Parent 16761373 US
Child 17860941 US