1. Technical Field
This disclosure relates generally to magnetic devices that utilize thin film magnetic layers with perpendicular magnetic anisotropy (PMA), and more specifically, to seed layers for enhancing the PMA properties of such devices.
2. Description of the Related Art
Many present day magnetic devices utilize thin film depositions in which magnetic thin films may have in-plane (plane of deposition) magnetization directions, out-of-plane (i.e., perpendicular to the film plane) magnetization directions, which is often referred to as perpendicular magnetic anisotropy (PMA) or even components in both of such directions. Such devices include, but are not limited to:
PMA layers are used in these devices for a variety of reasons. In spin-torque MRAMs, for example, the PMA layers, among other advantages, provide better functionality, better thermal stability and a reduction of switching currents.
The source of the PMA can either come from the bulk properties of the chosen materials or it can originate in the interface between the layers. To achieve better control of the PMA, multilayers that include at least one ferromagnetic material are commonly used.
One of these multilayers is the Co/Ni multilayer system. The PMA in this system arises from electronic band matching at the FCC (face centered cubic) (111)-oriented Co/Ni interface (see Daalderop et al., Phys. Rev. Lett., 68, 682 (1992)). Buffer layers and/or seed layers are typically needed to promote a smooth and better FCC(111)-oriented growth in the Co/Ni multilayers. In this regard,
a) shows schematically a FCC (111)-oriented PMA layer grown on a buffer layer and a seed layer.
In this disclosure, a buffer layer (as in
Specifically, the methods of this disclosure are intended to address a problem confronting material combinations used in current multilayer constructions for tunneling magnetoresistive (TMR) devices that include thin MgO tunnel barrier layers interfaced with Fe containing ferromagnetic layers. The problem referred to, is that such constructions are limited in the thickness ranges within which the PMA condition can be maintained because the PMA originates at a single interface. As the magnetic layer becomes thicker, the perpendicular anisotropy field will decrease and will eventually be overcome by the demagnetizing field (see equ. (1) below). This, in turn, will result in the magnetization moving within the plane of the film. Therefore it becomes difficult to maintain good thermal stability of the magnetization direction using only the MgO interface as the source of the magnetic anisotropy. Prior arts, such as those taught by Girt et al. (U.S. Pat. No. 7,666,529) and Wang et al. (U.S. Publ. Pat. Appl. 2012/0141836), discuss aspects of interfaces between different crystalline structures, but do not treat the problem to be addressed herein.
A first object of the present disclosure is to provide a method of maintaining perpendicular to the plane magnetic anisotropy (PMA) throughout a sequence of layers, when that perpendicular to the plane magnetic anisotropy originates at interlayer interfaces.
A second object of the present disclosure is to provide such a method that is specifically exemplified by its advantageous application to interfaces between MgO and Fe-containing ferromagnetic materials, but which is also applicable to other interlayer interfaces.
A third object of the present disclosure is to provide such a method that is applicable to an MgO interface with a Fe-containing ferromagnetic layer which is part of a PMA multilayer system such as Co/Ni layered systems.
A fourth object of the present disclosure is to provide such a method that is applicable to an MgO interface with a Fe-containing ferromagnetic layer which is part of a PMA multilayer system such as (Co,Fe)/Pt, (Co, Fe)/Pd, Co/Ru, Co/Ni/Pt, and Co/Ni/Fe/Pt layered systems.
A fifth object of the present disclosure is to fulfill the previous objects by means of providing advantageous coupling between layers having BCC and FCC crystal symmetry.
A sixth object of the present disclosure is to provide a method of inducing a crystal structure in a previously amorphous layer by means of a capping overlayer that acts as a template for crystal formation during an annealing process.
These objects will be met by growing PMA layers using combinations of the methods shown schematically in
Unfortunately, it is challenging to find materials that can create a smooth crystalline transition from BCC to FCC crystal symmetry. Commonly used materials to achieve this purpose are Cr and its alloys. But these materials are known to deteriorate the tunnel magnetoresistance (TMR) as they diffuse into or within the vicinity of the MgO tunneling barrier layer. Therefore, in the present disclosure, it is proposed to use Mo, as well as Nb and V, to form a transition layer between BCC and FCC crystal symmetry materials. Examples of this approach are given by the following three blanket film configurations:
These three configurations, differing as shown in the thickness of the Mo transition layer, are annealed for 30 minutes at 400° C. following deposition and then measured in a polar Kerr magnetometer with the applied magnetic field perpendicular to the plane of the layers. The results indicate that the objects set forth above have been met and the details will now be discussed below.
a)-1(c) are three schematic illustrations showing different methods of producing crystalline symmetry when growing PMA layers.
a) and 5(b) are schematic illustrations showing the application of an Mo capping layer as a template.
The present disclosure provides a method for providing enhanced PMA within a layered construction when the PMA originates at an interface between a layer of MgO and an Fe-containing ferromagnetic layer and where smooth transitions between BCC and FCC crystalline symmetries are promoted by a transition layer, such as a layer of Mo.
A recent advance in the development of MRAM (magnetic random access memory) devices is the use of the high interfacial PMA originating at the interface of MgO and Fe or Fe alloy, including FeCoB, FeB, etc., used as ferromagnetic layers (see
Unfortunately, as was mentioned briefly above, this material combination has a limitation in the thickness range within which the PMA property can be maintained, given that it arises at a single interface. As the magnetic layer becomes thicker, the PMA field will decrease and eventually be exceeded by the demagnetizing field (see equation (1) below). This will cause the magnetization of the layer to move from perpendicularity to the plane of the layer, to be within the plane of the layer. Therefore it is difficult to achieve stable perpendicularity and thermal stability using only the MgO interface as the source of the PMA. It would be desirable if the PMA and the total magnetic moment could be separately controlled to allow the thermal stability to be improved as well as other properties.
H
k
=K
s
/M
s
t−DM
s (1)
Where Hk is the anisotropy field, Ks is the interfacial anisotropy energy at the MgO/Fe interface, D is the demagnetization factor, Ms is the magnetic moment at saturation per unit volume and t is the thickness of the magnetic layer.
A solution to the problem of maintaining good PMA that originates at a single interface is to combine the growth structures of
Consequently, as mentioned in the summary above, we propose the use of Mo (or Nb or V), rather than Cr, as a transition layer between BCC and FCC crystal symmetry. To establish the properties of Mo, and by extension, of Nb and/or V as well, we have analyzed three multilayered film depositions of the types described below, in which the Co/Ni multilayer is formed as a six-fold repetitive Co/Ni structure, where the Co is approximately 0.23 nm in thickness and the Ni is approximately 0.46 nm in thickness, although a range of Co thickness could be between 0.5 A and 5 A and the Ni thickness could range between 2 A and 10 A:
Referring to
The transition layers of Mo as formed within the above multi-layered structures can be formed within ferromagnetic free layers or pinned layers of, for example, MTJ sensor fabrications or MRAM elements (with appropriate MgO thicknesses), where their crystal-structure transition properties would produce enhancements of sensor performance.
These three configurations, differing as shown in the thickness of the Mo transition layer, are annealed for 30 minutes at 400° C. following deposition and then measured in a polar Kerr magnetometer with the applied magnetic field perpendicular to the plane of the layers. The results are shown in
The low field loops and the high field loops (see inset) indicate that there are only perpendicular magnetized components in these samples. With the thicker Mo layer (t>=1.2 nm), the Co/Ni multilayer (here, 6 bilayers of Co/Ni) and the FeCoB layer have a separate switching field. It is found that the FeCoB switches at a lower field and the Co/Ni multilayer switches at a higher field. This may indicate that the magnetic coupling between them, most likely RKKY, becomes weaker with thicker Mo. This would imply that the PMA in the Co/Ni multilayer does not originate from the underlying PMA structure of the FeCoB via the long range RKKY coupling, but rather originates from its own interfacial PMA as a result of the adjacent Mo seed layer. With thinner Mo layers (t<=1.0 nm), the Co/Ni multilayer and the FeCoB layer switch together. These results indicate the role of the Mo layer and, therefore, show that that the Mo layer is a good seed layer for promoting PMA in Co/Ni multilayers. We conclude that the Mo provides a good template for the FCC(111) growth of the Co/Ni multilayers in spite of the presumable BCC(001) orientation of the underlying FeCoB. It should be noted that without the Mo transition layer, the same structure would not be PMA.
Referring now to
In summary, an important aspect of this disclosure relates to the crystal structure of the Mo layer. The crystal symmetry of Mo is known to be BCC at room temperature. Therefore, it naturally matches with the BCC structure of FeCoB in this study. On the other hand, Mo is reported to have a relatively good lattice matching with Ni and Co with the orientation relationship of Mo(110)/Ni(111) and Mo(110)/FCC-Co(111) (see F. Martin et al., Appl. Surf. Sci., 188, 90 (2002)). It is our belief, based on these results and the theory, that these crystal properties help to facilitate the BCC to FCC transition and, therefore, to promote the good PMA characteristics in the Co/Ni multilayer obtained in this experiment. Based on known similar properties of Nb and Vanadium (V), it is expected that those elements will provide good seed layer candidates as well.
Finally, referring to
As is finally understood by a person skilled in the art, the detailed description given above is illustrative of the present disclosure rather than limiting of the present disclosure. Revisions and modifications may be made to methods, materials, structures and dimensions employed in forming and providing a multilayer structure of differing crystal symmetries connected by a transition layer and, thereby, capable of maintaining PMA properties originating in an interface, while still forming and providing such a structure in accord with the spirit and scope of the present disclosure as defined by the appended claims.