Segmented data storage

Abstract
A method for data storage includes assigning in a memory that includes one or more storage devices a first storage area for storage of user data, and a second storage area, which is separate from the first storage area, for storage of redundancy information related to the user data. Input data is processed to produce redundancy data, and the input data is stored in the first storage area using at least one first write command. The redundancy data is stored in the second storage area using at least one second write command, separate from the first write command.
Description
FIELD OF THE INVENTION

The present invention relates generally to data storage, and particularly to segmented storage of data and redundancy information.


BACKGROUND OF THE INVENTION

Several types of memory devices, such as Flash memories, use arrays of analog memory cells for storing data. Each analog memory cell stores a quantity of an analog value, also referred to as a storage value, such as an electrical charge or voltage. This analog value represents the information stored in the cell. In Flash memories, for example, each analog memory cell holds a certain amount of electrical charge. The range of possible analog values is typically divided into intervals, each interval corresponding to one or more data bit values. Data is written to an analog memory cell by writing a nominal analog value that corresponds to the desired bit or bits. Some memory devices, commonly referred to as Single-Level Cell (SLC) devices, store a single bit of information in each memory cell, i.e., each memory cell can be programmed to assume either of two possible programming levels. Higher-density devices, often referred to as Multi-Level Cell (MLC) devices, store two or more bits per memory cell, i.e., can be programmed to assume more than two possible programming levels.


Data that is stored in memory is sometimes encoded with an Error Correction Code (ECC) in order to reduce the likelihood of read errors. For example, Goodman and Sayano describe a number of on-chip coding techniques for the protection of Random Access Memory (RAM) devices, which use multi-level storage cells, in “On-Chip ECC for Multi-Level Random Access Memories,” Proceedings of the 1989 IEEE/CAM Information Theory Workshop, Jun. 25-29, 1989, Ithaca, N.Y., which is incorporated herein by reference. As another example, U.S. Pat. No. 6,212,654, whose disclosure is incorporated herein by reference, describes methods for storing data in an analog memory device using coded modulation techniques. Other ECC schemes for multilevel memory devices are described in U.S. Pat. No. 6,469,931, whose disclosure is incorporated herein by reference.


U.S. Patent Application Publication 2004/0083333, whose disclosure is incorporated herein by reference, describes techniques for using different ECC algorithms to encode and to decode contents of blocks within a non-volatile memory. U.S. Patent Application Publication 2004/0083334, whose disclosure is incorporated herein by reference, describes techniques for encoding data associated with a page by dividing the page into segments and separately encoding the segments using extended ECC calculations.


SUMMARY OF THE INVENTION

An embodiment of the present invention provides a method for data storage, including:


in a memory that includes one or more storage devices, assigning a first storage area for storage of user data, and a second storage area, which is separate from the first storage area, for storage of redundancy information related to the user data;


processing input data to produce redundancy data;


storing the input data in the first storage area using at least one first write command; and


storing the redundancy data in the second storage area using at least one second write command, separate from the first write command.


In some embodiments, the method includes evaluating a criterion with respect to the stored input data, and, responsively to the criterion, selecting to perform one of:


reconstructing the input data irrespective of the redundancy data stored in the second storage area by reading the input data from the first storage area; and


reading the redundancy data from the second storage area and reconstructing the input data responsively to the read redundancy data.


In a disclosed embodiment, the criterion includes a success of an attempt to reconstruct the input data by reading the input data from the first storage area irrespective of the redundancy data stored in the second storage area. In an embodiment, processing the input data includes encoding the input data with an Error Correction Code (ECC) to produce parity bits, storing the redundancy data includes storing the parity bits in the second storage area, and reconstructing the input data responsively to the redundancy data includes decoding the ECC.


In another embodiment, processing the input data includes encoding the input data using first and second Error Correction Codes (ECC) to produce respective first and second sets of parity bits, storing the input data includes storing the first set of the parity bits in the first storage area, and storing the redundancy data includes storing the second set of the parity bits in the second storage area. In an embodiment, reconstructing the input data irrespective of the redundancy data includes reading the first set of the redundancy bits from the first storage area and decoding the first ECC, and reconstructing the input data responsively to the read redundancy data includes reading the second set of the redundancy bits from the second storage area and decoding the second ECC.


In another embodiment, evaluating the criterion includes assessing a time period that elapsed since the input data was stored. Additionally or alternatively, evaluating the criterion includes assessing a wear level of memory cells holding the input data. In an embodiment, reading the input data includes accessing the first storage area using at least one first read command, and reading the redundancy data includes accessing the second storage area using at least one second read command, different from the first read command. In yet another embodiment, the memory includes multi-level analog memory cells, each storing at least first and second bits, and reading the redundancy data includes reading the first bits using one or more first read thresholds and reading the second bits using one or more second read thresholds, such that at least a common read threshold is common to the first and second read thresholds, and correcting at least one error in reading the second bits with respect to the common read threshold based on the read first bits.


In some embodiments, assigning the second storage area includes evaluating a criterion with respect to the memory, and modifying a size of the second storage area responsively to the criterion. Evaluating the criterion may include assessing a storage reliability of memory cells in the first storage area. In an embodiment, the method includes storing the redundancy data in the second storage area responsively to detecting that shut-off of electrical power to the memory is imminent. In another embodiment, the memory includes at least first and second storage devices implemented using first and second different storage media types, the first storage area is assigned in the first storage device, and the second storage area is assigned in the second storage device.


There is additionally provided, in accordance with an embodiment of the present invention, apparatus for data storage, including:


an interface, which is coupled to communicate with a memory that includes one or more storage devices; and


circuitry, which is configured to assign in the memory a first storage area for storage of user data, to assign in the memory a second storage area, which is separate from the first storage area, for storage of redundancy information related to the user data, to process input data to produce redundancy data, to store the input data in the first storage area using at least one first write command, and to store the redundancy data in the second storage area using at least one second write command, separate from the first write command.


There is also provided, in accordance with an embodiment of the present invention, apparatus for data storage, including:


a memory including one or more storage devices; and


circuitry, which is configured to assign in the memory a first storage area for storage of user data, to assign in the memory a second storage area, which is separate from the first storage area, for storage of redundancy information related to the user data, to process input data to produce redundancy data, to store the input data in the first storage area using at least one first write command, and to store the redundancy data in the second storage area using at least one second write command, separate from the first write command.


The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram that schematically illustrates a memory system, in accordance with an embodiment of the present invention;



FIG. 2 is a block diagram that schematically illustrates a Solid-State Disk (SSD) system, in accordance with an embodiment of the present invention.



FIGS. 3 and 4 are flow charts that schematically illustrate methods for data storage and retrieval, in accordance with embodiments of the present invention;



FIG. 5 is a diagram showing memories partitioned into data storage, redundancy storage and over-provisioning areas, in accordance with an embodiment of the present invention;



FIG. 6 is a flow chart that schematically illustrates a method for allocating redundancy storage space, in accordance with an embodiment of the present invention;



FIG. 7 is a flow chart that schematically illustrates a method for data storage in the presence of power shut-down, in accordance with an embodiment of the present invention; and



FIG. 8 is a graph showing threshold voltage distributions in groups of analog memory cells, in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION OF EMBODIMENTS
Overview

Embodiments of the present invention that are described hereinbelow provide methods and systems for improving the reliability, latency, cost-effectiveness and operational flexibility of data storage and retrieval. These embodiments refer mainly to Solid-State Disk (SSD) systems, but the disclosed techniques are similarly applicable to various other memory systems and applications.


In some embodiments, a memory is partitioned into a data storage area and a redundancy storage area, separate from one another. The data storage area is used for storing user data, while the redundancy storage area is used for storing redundancy information (e.g., ECC parity bits) related to the user data. Typically, the data storage area and the redundancy storage area are located in different regions of the memory, typically in different physical pages or blocks, or even on different memory devices. In particular, the data storage area and the redundancy storage area are accessed by separate memory access commands (such as read, write and erase commands). When input data is accepted for storage in the memory, the input data is processed to produce redundancy data. The input data is stored in the data storage area and the redundancy data is stored in the redundancy storage area, typically using separate write commands.


Typically, when the input data is to be retrieved from the memory, an attempt is first made to reconstruct the data from the contents of the data storage area, without reading or using the redundancy data stored in the redundancy storage area. If the initial attempt fails, the redundancy data is read from the redundancy storage area. The input data is then reconstructed using both the data read from the data storage area and the redundancy data read from the redundancy storage area. The initial attempt to reconstruct the data without reading the redundancy data may be skipped, for example, if it is known that the memory cells that store the user data are heavily-cycled or have not been refreshed for a long period of time.


In some embodiments, some redundancy bits are stored in the data storage area in addition to the input data. Other redundancy bits are stored, as described above, in the redundancy storage area. For example, the input data may be encoded with two different ECCs, with the parity bits of the first ECC stored in the data storage area, and the parity bits of the second ECC (which is typically stronger) stored in the redundancy storage area. In these embodiments, an attempt is initially made to decode the first ECC (whose parity bits are read together with the input data from the data storage area). If this first decoding attempt fails, the parity bits of the second ECC are read from the redundancy storage area and the second ECC is decoded.


When using the methods and systems described herein, the vast majority of user data is usually read successfully using only the information stored in the data storage area. The additional redundancy information is reverted to only on the rare occasion that the information in the data storage area is severely distorted. The higher latency and computational power associated with reading and decoding the redundancy information is incurred only when actually needed. Thus, the methods and systems described herein enable data readout at low latency without compromising data storage reliability.


System Description


FIG. 1 is a block diagram that schematically illustrates a memory system 20, in accordance with an embodiment of the present invention. System 20 stores data in a memory 24, which comprises one or more storage devices. In the embodiments described herein, memory 24 comprises one or more non-volatile Flash memory devices. In alternative embodiments, however, the storage devices of memory 24 may comprise any other suitable type of memory device, such as NOR and Charge Trap Flash (CTF) Flash cells, phase change RAM (PRAM, also referred to as Phase Change Memory—PCM), Nitride Read Only Memory (NROM), Ferroelectric RAM (FRAM), magnetic RAM (MRAM) and/or Dynamic RAM (DRAM) cells. Additionally or alternatively to non-volatile solid-state memory devices, the storage devices of memory 24 may comprise volatile memory devices such as various types of Random Access Memory (RAM), as well as magnetic storage devices such as Hard Disk Drives (HDD). The different types of storage devices are also referred to herein as different storage media. Generally, memory 24 may comprise one or more storage devices, which may be of the same storage medium or of different media types.


System 20 comprises a memory controller 28, which accepts data from a host 32 and stores it in memory 24, and retrieves data from the memory and provides it to the host. Memory controller 28 comprises a host interface 36 for communicating with host 32, a memory interface 40 for communicating with memory 24, and a processor 44 that processes the stored and retrieved data. In some embodiments, controller 28 encodes the stored data with an Error Correction Code (ECC). In these embodiments, controller 28 comprises an ECC unit 48, which encodes the data before stored in memory 24 and decodes the ECC of data retrieved from the memory. Any suitable type of ECC, such as Bose-Chaudhuri-Hocquenghem (BCH) or Reed-Solomon (RS) codes can be used.


Memory controller 28 assigns a data storage area 52 and a redundancy storage area 56 in memory 24. Data storage area 52 is used for storing user data 60, i.e., data that is accepted for storage from host 32. Redundancy storage area 56, on the other hand, is used for storing redundancy information 64 that is related to the user data. The term “redundancy information” is used to describe any kind of information, which increases the likelihood of successfully reconstructing the stored user data. Redundancy information may comprise, for example, ECC parity bits that are produced by ECC unit 48. Alternatively, the redundancy information may comprise a Cyclic Redundancy Check (CRC), checksum or any other suitable type of redundancy information. (In some embodiments, some redundancy information is also stored in data storage area 52 along with the user data, as will be explained further below.)


The data storage area and the redundancy storage area are typically assigned in separate locations in memory 24, i.e., in different memory pages or blocks of a given storage device, or in different storage devices. In some embodiments, the data storage area can be assigned in a storage device of a given storage medium, and the redundancy storage area in a storage device of a different storage medium. For example, the data storage area may be assigned in a storage medium that is optimized for speed, such as fast MLC memory. The redundancy storage area may be assigned in a storage medium that is optimized for reliability such as SLC memory, or in a storage medium that is optimized for low cost such as MLC memory. In an example implementation, the data storage area may reside in Flash memory while the redundancy storage area resides in a DRAM device or in a RAM drive. Each of the data storage area and the redundancy storage area may comprise a single contiguous storage region, or it may be divided into multiple non-contiguous regions in one or more of the storage devices of memory 24.


Typically, the data storage area and the redundancy storage area are accessed (read, written and/or erased) using separate memory access commands. The commands may differ in form (e.g., when the data storage and redundancy storage areas are assigned in different storage media), or only in address values (e.g., when the data storage and redundancy storage areas are assigned in different regions of the same memory device).


In the description that follows, system 20 comprises a Solid-State Disk (SSD) system that stores data for a host computer. In alternative embodiments, however, system 20 may be used in any other suitable application and with any other suitable host, such as in computing devices, cellular phones or other communication terminals, removable memory modules such as Disk-On-Key (DOK) devices, Secure Digital (SD) cards, Multi-Media Cards (MMC) and embedded MMC (eMMC), digital cameras, music and other media players and/or any other system or device in which data is stored and retrieved.



FIG. 2 is a block diagram that schematically illustrates an SSD system 70, in accordance with an embodiment of the present invention. System 70 can be viewed as an example implementation of system 20 of FIG. 1 above. System 70 accepts data for storage from a host 74 and stores it in memory, and retrieves data from memory and provides it to the host. System 70 comprises multiple memory devices 78, each comprising multiple analog memory cells. In the present example, devices 78 comprise non-volatile NAND Flash devices, although any other suitable memory type, such as the memory types described above, can also be used. Each memory device 78 may comprise a packaged device or an unpackaged semiconductor chip or die. A typical SSD may comprise on the order of thirty-two devices, each providing a storage space of 4096 MB. Alternatively, however, system 70 may comprise any suitable number of memory devices of any desired type and size. Although the system configuration of FIG. 2 comprises multiple memory devices, the methods and systems described herein can also be used in systems having only a single memory device.


System 70 comprises an SSD controller 82, which accepts data from host 74 and stores it in memory devices 78, and retrieves data from the memory devices and provides it to the host. SSD controller 82 comprises a host interface 86 for communicating with host 74, a memory interface 90 for communicating with memory devices 78, and a processor 94 that processes the stored and retrieved data. In particular, processor 94 assigns a data storage area and a redundancy storage area in memory devices 78, and carries out the data storage methods described herein using these separate areas. In some embodiments, controller 94 encodes the stored data with an ECC. In these embodiments, controller 82 comprises an ECC unit 98, which encodes the data before stored in devices 78 and decodes the ECC of data retrieved from devices 78.


Each memory device 78 comprises a memory cell array 106. The memory array comprises multiple analog memory cells 110. In the context of the present patent application and in the claims, the term “analog memory cell” is used to describe any memory cell that holds a continuous, analog value of a physical parameter, such as an electrical voltage or charge. Any suitable type of analog memory cells, such as the types listed above, can be used. In the present example, each memory device 78 comprises a non-volatile memory of NAND Flash cells.


The charge levels stored in the cells and/or the analog voltages or currents written into and read out of the cells are referred to herein collectively as analog values or storage values. Although the embodiments described herein mainly address threshold voltages (i.e., as is well-known in the art, the gate voltage at which the memory cell begins to conduct), the methods and systems described herein may be used with any other suitable kind of storage values.


System 70 stores data in the analog memory cells by programming the cells to assume respective memory states, which are also referred to as programming levels. The programming levels are selected from a finite set of possible levels, and each level corresponds to a certain nominal storage value. For example, a 2 bit/cell MLC can be programmed to assume one of four possible programming levels by writing one of four possible nominal storage values into the cell.


Each memory device 78 comprises a reading/writing (R/W) unit 102, which accepts data for storage from SSD controller 82, converts the data into analog storage values and writes them into memory cells 110 of that memory device. When reading data out of array 106, R/W unit 102 typically converts the storage values of memory cells 110 into digital samples having a resolution of one or more bits, and provides the digital samples to controller 82. Data is typically written to and read from the memory cells in groups that are referred to as pages. In some embodiments, the R/W unit can erase a group of cells 110 by applying one or more negative erasure pulses to the cells.


Memory controller 28 in FIG. 1 and/or SSD controller 82 in FIG. 2, and in particular processors 44 and/or 94, may be implemented in hardware. Alternatively, controller and/or 82 may comprise a microprocessor that runs suitable software, or a combination of hardware and software elements. In some embodiments, processor 44 and/or 94 comprises a general-purpose processor, which is programmed in software to carry out the functions described herein. The software may be downloaded to the processor in electronic form, over a network, for example, or it may, alternatively or additionally, be provided and/or stored on tangible media, such as magnetic, optical, or electronic memory.


The configurations of FIGS. 1 and 2 are exemplary system configurations, which are shown purely for the sake of conceptual clarity. Any other suitable memory system configuration can also be used. Elements that are not necessary for understanding the principles of the present invention, such as various interfaces, addressing circuits, timing and sequencing circuits and debugging circuits, have been omitted from the figures for clarity.


In the exemplary system configuration shown in FIG. 2, memory devices 78 and SSD controller 82 are implemented as separate Integrated Circuits (ICs). In alternative embodiments, however, the memory and the controller (memory 24 and controller 28, or memory devices 78 and controller 82) may be integrated on separate semiconductor dies in a single Multi-Chip


Package (MCP) or System on Chip (SoC), and may be interconnected by an internal bus. Further alternatively, some or all of the controller circuitry may reside on the same die on which one or more of the memory devices are disposed. Further alternatively, some or all of the functionality of the controller can be implemented in software and carried out by a processor or other element of the host system. In some embodiments, the host and the controller may be fabricated on the same die, or on separate dies in the same device package.


In an example configuration, memory cells 110 in a given array 106 are arranged in multiple rows and columns. The memory cells in each row are connected by word lines, and the memory cells in each column are connected by bit lines. The memory array is typically divided into multiple pages, i.e., groups of memory cells that are programmed and read simultaneously. Pages are sometimes sub-divided into sectors. In some embodiments, each page comprises an entire row of the array. In alternative embodiments, each row (word line) can be divided into two or more pages. For example, in some devices each row is divided into two pages, one comprising the odd-order cells and the other comprising the even-order cells. In a typical implementation, a two-bit-per-cell memory device may have four pages per row, a three-bit-per-cell memory device may have six pages per row, and a four-bit-per-cell memory device may have eight pages per row.


Erasing of cells is usually carried out in blocks that contain multiple pages. Typical memory devices may comprise several thousand erasure blocks. In a typical two-bit-per-cell MLC device, each erasure block is on the order of thirty-two word lines, each comprising several thousand cells. Each word line of such a device is often partitioned into four pages (odd/even order cells, least/most significant bit of the cells). Three-bit-per cell devices having thirty-two word lines per erasure block would have 192 pages per erasure block, and four-bit-per-cell devices would have 256 pages per block. Alternatively, other block sizes and configurations can also be used. Some memory devices comprise two or more separate memory cell arrays, often referred to as planes. Since each plane has a certain “busy” period between successive write operations, data can be written alternately to the different planes in order to increase programming speed.


Data Storage and Retrieval in Data Storage Area and Redundancy Storage Area

Storing user data in one area and redundancy data in another area is advantageous for several reasons. For example, in many cases the user data can be reconstructed successfully without fetching or using the redundancy information at all. When the user data and redundancy information are stored separately and read by separate read commands, it is often sufficient to read only the data storage area in order to retrieve the user data. The average number of read commands is thus reduced considerably, along with the latency and computational complexity associated with reading and decoding the redundancy information. An example method that uses this principle is shown in FIG. 3 below.


Moreover, separate storage of user data and redundancy information may be advantageous even if the redundancy information is read and used unconditionally. For example, the data structure in some memory devices (e.g., page size) limits the ability to encode the user data with high-redundancy (e.g., low-rate) ECC. Since most memory devices have a fixed page size, the efficiency of using variable-rate ECC is often limited. Storing the redundancy information in a separate area enables the use of high-redundancy ECC and efficient utilization of memory space. In some cases, storage of user data and redundancy information has different performance requirements, which are better met by different storage media. Separated storage enables storing each of the user data and the redundancy information in a storage medium that best matches its specific requirements.



FIG. 3 is a flow chart that schematically illustrates a method for data storage and retrieval, in accordance with an embodiment of the present invention. Although the method description refers to system 20 of FIG. 1 above, the method may be applied to any other suitable system configuration, such as SSD system 70 of FIG. 2.


The method of FIG. 3 begins with memory controller 28 assigning data storage area 52 and redundancy storage area 56 in memory 24, at a partitioning step 120. At some point in time, memory controller 28 accepts certain input data for storage, at an input step 124. The input data comprises data bits. The memory controller encodes the data bits of the input data with an ECC, using ECC unit 48, at an encoding step 128. The ECC encoding operation produces parity bits, also referred to as redundancy bits. The memory controller stores the data bits in data storage area 52, and the redundancy bits in redundancy storage area 56, at a storage step 132. The controller typically stores the data bits using one or more write commands that address the data storage area, and the redundancy bits using one or more other write commands that address the redundancy storage area.


At a certain point in time, memory controller 28 accepts from host 32 a request to retrieve the input data, at a retrieval request step 136. In response to the request, the memory controller reads the data bits of the input data from data storage area 52, and the corresponding redundancy bits from redundancy storage area 56, at a readout step 140. The controller typically reads the data bits using one or more read commands that address the data storage area, and the redundancy bits using one or more other read commands that address the redundancy storage area.


ECC unit 48 of memory controller 28 processes the retrieved data bits and redundancy bits so as to decode the ECC, at an ECC decoding step 144. The decoding operation reconstructs the input data. The memory controller outputs the reconstructed data to the host, at an output step 148.



FIG. 4 is a flow chart that schematically illustrates another method for data storage and retrieval, in accordance with an alternative embodiment of the present invention. Although the method description refers to system 20 of FIG. 1 above, the method may be applied to any other suitable system configuration, such as SSD system 70 of FIG. 2.


The method of FIG. 4 begins with ECC unit 48 of memory controller 28 encoding the data bits of certain input data with two alternative ECCs denoted ECC1 and ECC2, at a dual encoding step 150. Typically, ECC2 is stronger (e.g., has a lower code rate) than ECC1, and as a result produces a larger number of redundancy bits for a given set of data bits.


The memory controller stores the data bits and the redundancy bits of ECC1 in data storage area 52, at a first storage step 154. The memory controller stores the redundancy bits of ECC2 in redundancy storage area 56, at a second storage step 158. Typically, the memory controller carries out step 154 using one or more write commands that address the data storage area, and step 158 using one or more other write commands that address the redundancy storage area.


The memory controller accepts a request to retrieve the data in question, at a readout request step 162. In response to the request, the memory controller first attempts to reconstruct the data using only the information stored in the data storage area (i.e., based on ECC1). The memory controller reads the data bits and the redundancy bits of ECC1 from the data storage area, at a first readout step 166. ECC unit 48 attempts to decode ECC1, at an ECC1 decoding step 170. If the attempt to decode ECC1 is successful, the memory controller outputs the reconstructed data to the host, at a data output step 176, and the method terminates.


Otherwise, i.e., if the attempt to decode ECC1 fails, the memory controller reads the redundancy bits of ECC2 from redundancy storage area 56, at a second readout step 178. ECC unit 48 then decodes ECC2, at an ECC2 decoding step 182. Since ECC2 is stronger than ECC1, ECC2 decoding is likely to succeed even though ECC1 decoding (step 170) has failed. Memory controller 28 then outputs the reconstructed data to the host, at step 176.


In the method of FIG. 4, the memory controller accesses the redundancy storage area selectively, only when the data cannot be reconstructed based on the information stored in the data storage area. This feature, as explained above, significantly reduces the average number of read operations carried out by the memory controller. As a result, the average read latency is considerably lower. Since ECC2 typically comprises a low-rate code, its decoding is often a computationally-intensive and time-consuming task, and therefore the reduction in read latency achieved by the method of FIG. 4 is particularly important.


Another feature of the method of FIG. 4 is that some redundancy information is stored in the data storage area in addition to the data bits. This technique increases the likelihood of succeeding to reconstruct the data in the initial attempt (i.e., without reverting to the redundancy storage area). On the other hand, this technique increases the average read latency, because ECC1 is decoded in any readout operation. Since ECC1 is typically selected to be a relatively high-rate code (which produces a relatively small number of parity bits), the latency increase is usually tolerable.


Note that in some embodiments, the redundancy storage area can be accessed selectively (i.e., only upon failure to reconstruct the data using the data storage area) even if no redundancy information is stored in the data storage area.


Alternatively to using ECC1, the memory controller may store other forms of redundancy information in the data storage area. For example, the memory controller may compute an error detection code (e.g., a Cyclic Redundancy Check (CRC) or checksum) over the data bits, and store the result in the data storage area. When reading the data, the memory controller may evaluate the error detection code in order to decide whether or not to revert to the redundancy storage area.


The example of FIG. 4 describes two levels of redundancy, namely ECC1 and ECC2. Alternatively, however, the memory controller may apply three or more levels of redundancy, each stored and retrieved separately. In these embodiments, the memory controller gradually increases the level of redundancy if the previous attempt fails.


In the description above, the second decoding attempt (step 182) uses the redundancy bits stored in the redundancy storage area, and not the redundancy bits stored in the data storage area. In alternative embodiments, however, the second decoding attempt may consider the redundancy bits stored both in the redundancy storage area and in the data storage area. This technique is sometimes referred to as incremental encoding. Some aspects of incremental encoding are addressed in U.S. Patent Application Publication 2008/0282106, which is assigned to the assignee of the present patent application and whose disclosure is incorporated herein by reference.


Variable-Size Redundancy Storage Area

In some embodiments, memory controller 28 modifies the size of the redundancy storage area dynamically over the lifetime of memory 24. The memory controller may adjust the size of the redundancy storage area based on any suitable criterion related to the memory, such as based on the estimated storage reliability of the memory cells in the data storage area. The memory controller may estimate the storage reliability, for example, depending on the number of programming and erasure cycles the cells have gone through. This estimate is based on the assumption that fresh memory cells have higher storage reliability than heavily-cycled memory cells.


As another example, when the system is subject to long power shut-off periods, memory controller 28 may increase the size of the redundancy storage area and apply sufficient redundancy to maintain data reliably during power shut-off. When power shut-off periods are not anticipated, a smaller redundancy storage area may be sufficient. The size of the redundancy storage area can also be adjusted depending on whether advance notification of power shut-off is available. As yet another example, the storage reliability in memory 24 may be user-configurable or otherwise pre-specified. In such cases, the memory controller may adjust the size of the redundancy storage area (and the amount of redundancy) to match the specified reliability level, thus effectively trading memory space for reliability. Additionally or alternatively, any other suitable criteria can be used to set the size of the redundancy storage area.



FIG. 5 is a diagram showing memory arrays partitioned into data storage, redundancy storage and Over-Provisioning (OP) areas, in accordance with an embodiment of the present invention. In the example of FIG. 5, a memory 180A is partitioned (statically or dynamically) into a data storage area 184A, a redundancy storage area 188A and an OP area 192A. A memory 180B is partitioned into a data storage area 184B, a redundancy storage area 188B and an OP area 192B. Memory 180A represents a situation in which the memory cells are relatively fresh, i.e., have gone through a relatively small number of programming and erasure cycles. Memory 180B represents a situation in which the memory cells are heavily cycled, i.e., have gone through a relatively large number of programming and erasure cycles. Memories 180A and 180B may correspond to different groups of memory cells. Alternatively, Memory 180B may correspond to the same group of memory cells as memory 180A, but at a later point in time.


The functions of the data storage areas (184A and 184B) and the redundancy storage areas (188A and 188B) have been described above. The OP areas (192A and 192B) are typically used as dynamic cache memories, for performing random (i.e., non-sequential) write operations more efficiently.


When the memory cells are relatively fresh, reliable storage can be achieved using a modest amount of redundancy information. The memory controller thus sets the size of redundancy storage area 188A accordingly. When the memory cells become heavily-cycled, their storage reliability deteriorates, and additional redundancy may be needed in order to maintain reliable storage. Therefore, the memory controller sets the size of redundancy storage area 188B to be larger than the size of area 188A. In the present example, increasing the size of the redundancy storage area comes at the expense of reducing the size of the OP area, i.e., at the expense of degraded random write performance.



FIG. 6 is a flow chart that schematically illustrates a method for allocating redundancy storage space, in accordance with an embodiment of the present invention. The method begins with memory controller 28 estimating the storage reliability of a group of memory cells, at a reliability estimation step 200. For example, the memory controller may estimate the storage reliability based on the number of programming and erasure cycles applied to the memory cells. The memory controller sets the ECC redundancy (e.g., the ECC code rate) based on the estimated storage reliability, at a redundancy setting step 204. The memory controller then sets the size of the redundancy storage area based on the ECC redundancy level, at a redundancy area setting step 208.


Some aspects of estimating the storage reliability of memory cells and of using variable redundancy levels are addressed in U.S. patent application Ser. No. 12/063,544, entitled “Memory Device with Adaptive Capacity,” which is assigned to the assignee of the present patent application and whose disclosure is incorporated herein by reference.


Data Storage in the Presence of Power Shut-Off Events

In some data storage applications, system 20 experiences power shut-off events. Power shut-offs are common, for example, in removable storage devices that accept electrical power from a host, such as SSD systems (e.g., system 70 in FIG. 2), Disk-On-Keys (DOK) and removable memory cards. A device of this sort experiences power shut-off whenever it is disconnected from the host. Power shut-off periods have a detrimental effect on the storage reliability of analog memory cells, because the storage values of some memory cells may undergo considerable distortion by the time electrical power is restored. This distortion may cause significant performance degradation.


In some embodiments of the present invention, system 20 identifies that power shut-off is imminent, such as by accepting an indication from the host. Upon detecting that power shut-down is imminent, the memory controller re-programs at least some of the data in the memory using a different storage configuration, which is more robust to long retention periods. For example, the robust storage configuration may use an ECC having higher redundancy than the ECC used for normal storage. Some aspects of data storage in the presence of power shut-down events are addressed in detail in U.S. patent application Ser. No. 12/551,567, entitled “Reliable Data Storage in Analog Memory Cells Subjected to Long Retention Periods,” filed Sep. 1, 2009, which is assigned to the assignee of the present patent application and whose disclosure is incorporated herein by reference.


In some embodiments, the memory controller stores the redundancy bits of the ECC, which is used in the normal storage configuration, in the data storage area. The redundancy bits of the higher-redundancy ECC, which is used in the robust storage configuration, are stored in the redundancy storage area. Using this technique, the normal storage configuration has relatively low read latency.



FIG. 7 is a flow chart that schematically illustrates a method for data storage in the presence of power shut-down, in accordance with an embodiment of the present invention. The method begins with the memory controller storing data in the memory using the normal storage configuration, at a normal storage step 210. The memory controller checks whether power shut-down is imminent, at a checking step 214. If no power shut-down is expected, the method loops back to step 210 above.


Otherwise, i.e., upon detecting that power shut-down is imminent, the memory controller re-programs at least some of the data using the robust storage configuration, at a robust re-programming step 218. The robust storage configuration uses an ECC whose code rate is lower than the ECC used in the normal storage configuration. When re-programming the data, the memory controller stores the redundancy bits of the lower-rate ECC in the redundancy storage area.


Segmented Data Storage in Memory Devices Having Binary Bit Mapping

As explained above, analog memory cell devices (e.g., Flash devices) store data in analog memory cells by writing analog storage values into the cells. The range of storage values (e.g., charge levels or threshold voltages) is divided into intervals that represent possible data values. Each such interval is referred to as a programming state or programming level. R/W unit 102 (FIG. 2) programs a given memory cell to store a certain data value by writing a storage value that falls in the range corresponding to that data value. The R/W unit typically reads a given memory cell by comparing its storage value to one or more read thresholds, which are usually positioned in the boundary regions between adjacent programming levels.


In multi-level memory cell devices, each memory cell stores two or more data bits, and each programming level corresponds to a particular value combination of these two or more bits. When using four-level memory cells, for example, each memory cell stores two data bits. The bits are commonly referred to as a Least Significant Bit (LSB) and a Most Significant Bit (MSB), although this terminology is arbitrary and any other suitable terminology can also be used. In some embodiments, the memory controller stores multiple memory pages in a group of multi-level memory cells (e.g., the cells in a given word line), such that different bits store different pages. In four-level cells, for example, the memory controller may store a certain memory page in the cell LSBs and another page in the cell MSBs. Each bit (page) is read using a respective set of one or more read thresholds.


Multi-level memory devices may differ from one another in the way bit values are mapped to programming levels. Two common mapping schemes are Gray mapping and binary mapping. In Gray mapping, adjacent programming levels differ from one another by only one bit value. Since most read errors occur between adjacent programming levels, Gray mapping ensures that each error event affects only a single bit, and therefore reduces the overall error probability. In binary mapping, bit values are mapped to programming levels in an ascending or descending binary order. As a result, some error events between adjacent programming levels affect more than a single bit. Thus, binary mapping is usually inferior to Gray mapping in terms of read error performance.



FIG. 8 is a graph showing Gray mapping and binary mapping of bit values to programming levels, in accordance with an embodiment of the present invention. The example of FIG. 8 refers to four-level MLC, each storing two data bits. A graph 220 at the top of the figure shows the threshold voltage distribution in a group of memory cells that are programmed using Gray mapping. A graph 224 at the bottom of the figure shows the threshold voltage distribution in a group of memory cells that are programmed using binary mapping.


When using Gray mapping (graph 220), four programming levels 228A . . . 228D represent the bit value combinations “11”, “10”, “00” and “01”, respectively. (In this example, the left-hand-side bit denotes the LSB and the right-hand-side bit denotes the MSB.) As can be seen in the figure, adjacent programming levels differ from one another by only one bit value. In order to read the LSBs of these cells, R/W unit uses an LSB read threshold 232, positioned between levels 228B and 228C. The MSBs are read using two MSB read thresholds 236, positioned between levels 228A and 228B and between levels 228C and 228D. Note that in Gray mapping, no read threshold is common to the LSB and MSB.


When using binary mapping (graph 224), four programming levels 240A . . . 240D represent the bit value combinations “11”, “10”, “01” and “00”, respectively. In this scheme, the R/W unit reads the LSB using an LSB read threshold positioned between levels 240B and 240C. The MSB is read using three MSB read thresholds 236, positioned between levels 240A and 240B, between levels 240B and 240C, and between levels 240C and 240D. In the binary mapping scheme, error events between programming levels 240B and 240C (i.e., erroneously deciding that a cell that was programmed to level 240B belongs to level 240C, or vice versa) causes both an LSB error and an MSB error. Therefore, the error performance of this scheme is inferior to the Gray mapping scheme. Note also that in the binary scheme there is some commonality between the LSB and MSB read threshold. In the example of graph 224, the read threshold between programming levels 240B and 240C (referred to as “the middle read threshold”) is common to both LSB and MSB readout.


In some embodiments, when using memory devices that use binary mapping, the memory controller compensates for the inferior error performance by re-using information from the readout of one bit (page) in the readout of another bit (page). Information re-use across different bits (pages) is possible because of the commonality between read thresholds.


Consider, for example, the binary mapping scheme of graph 224. Assume that the LSB page was decoded successfully (after error correction). Typically, some of the read LSB values were erroneous but were corrected by the ECC. Erroneous LSB readout is caused by a storage value falling on the wrong side of the middle read threshold (i.e., by a cell that belongs to level 240C but whose threshold voltage fell below the middle read threshold, or by a cell that belongs to level 240B but whose threshold voltage fell above the middle read threshold). The memory controller can identify the memory cells in which the LSB was read incorrectly, since these errors were corrected by the ECC.


Since the middle read threshold is common to both LSB and MSB readout, a memory cell in which the LSB was read incorrectly also corresponds to an MSB error. Therefore, in some embodiments, the memory controller identifies the memory cells in which the LSB was read incorrectly, and flips (reverses) the MSB value of these memory cells. Assuming the MSB errors are distributed uniformly among the three MSB read thresholds, this flipping operation corrects approximately a third of the MSB errors.


As can be appreciated, the re-using information from one page in the readout of another page involves additional computations and incurs additional latency. In some embodiments, the memory controller may invoke this re-use mechanism only when reverting to the redundancy storage area, i.e., only if an initial attempt to reconstruct the data based on the data storage area (without re-use across different pages) fails.


The example embodiments shown in FIG. 8 correspond to four-level memory cells. In alternative embodiments, however, the disclosed technique can be applied in memory cells storing any other suitable number of programming levels, such as eight-level or sixteen-level memory cells.


Conditional Use of the Redundancy Storage Area Based on Cell Refreshing Ad Other Criteria

In some embodiments, the memory controller refreshes the data in the memory cells, on a periodic basis or otherwise. Refreshing a group of memory cells (e.g., a block) typically involves copying the data stored in the memory cells to another storage location (e.g., to another block). Occasional cell refreshing avoids long retention periods, in which the cell storage values may drift considerably and cause read errors. Refreshing schemes for analog memory cells are described, for example, in U.S. Pat. Nos. 6,731,557 and 7,397,697, whose disclosures are incorporated herein by reference.


In some embodiments, the memory controller may hold information as to the refreshing status of different memory cells or cell groups (e.g., blocks). The memory controller may use this information to decide whether or not to access and use the redundancy information stored in the redundancy storage area. For example, the memory controller may decide to reconstruct certain user data based on both the data storage area and the redundancy storage area if the memory cells that store this data (in the data storage area) have not been refreshed for longer than a predefined time period.


In particular, if the memory controller concludes that the memory cells that store certain data were not refreshed for a long time period (i.e., that a long time period has elapsed since the data was stored or re-programmed), it may decide to skip any initial attempt to reconstruct the data based on only the data storage area. This feature assumes that such an initial attempt is likely to fail because the memory cells in question are not sufficiently fresh.


Additionally or alternatively, the memory controller may decide whether or not to fetch and use the redundancy information stored in the redundancy storage area based on any other suitable criterion, such as based on the estimated cell wear level (e.g., the number of programming and erasure cycles that the cells have gone through).


It will be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and sub-combinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.

Claims
  • 1. A method for data storage, comprising: estimating reliability of one or more multi-level memory cells in a memory, wherein the estimating the reliability includes determining a number of program and erase cycles that have been performed on the one or more multi-level memory cells;partitioning the memory into a first storage area and a second storage area dependent upon the estimated reliability;processing input data to produce first redundancy data and second redundancy data, wherein the second redundancy data incudes a larger number of redundancy bits than the first redundancy data;storing the input data and the first redundancy data in the first storage area, wherein storing the input data includes mapping bit values of the input data to programming levels in a binary order;storing the second redundancy data in the second storage area; andevaluating a criterion with respect to the stored input data, and, responsively to the criterion, selecting to perform one of: reconstructing the input data irrespective of the second redundancy data stored in the second storage area by reading the input data from the first storage area; andreading the second redundancy data from the second storage area and reconstructing the input data responsively to the second redundancy data;wherein reconstructing the input data responsively to the second redundancy data comprises reusing readout data from a first page of the stored input data in a reading of a second page of the stored input data.
  • 2. The method according to claim 1, wherein the criterion comprises a success of an attempt to reconstruct the input data by reading the input data and the first redundancy data from the first storage area irrespective of the second redundancy data stored in the second storage area.
  • 3. The method according to claim 1, wherein processing the input data to produce the first redundancy data and the second redundancy data comprises encoding the input data using first and second Error Correction Codes (ECC) to produce respective first and second sets of parity bits, wherein storing the input data and the first redundancy data comprises storing the first set of the parity bits in the first storage area, and wherein storing the second redundancy data comprises storing the second set of the parity bits in the second storage area.
  • 4. The method according to claim 3, wherein reconstructing the input data irrespective of the second redundancy data comprises reading the first set of the parity bits from the first storage area and decoding the first ECC, and wherein reconstructing the input data responsively to the second redundancy data comprises reading the second set of the parity bits from the second storage area and decoding the second ECC.
  • 5. The method according to claim 1, wherein evaluating the criterion comprises assessing a time period that elapsed since the input data was stored.
  • 6. The method according to claim 1, wherein evaluating the criterion comprises assessing a wear level of memory cells holding the input data.
  • 7. The method according to claim 1, wherein reading the input data and the first redundancy data comprises accessing the first storage area, and wherein reading the second redundancy data comprises accessing the second storage area.
  • 8. The method according to claim 1, wherein each multi-level memory cell is configured to store at least a first bit and a second bit, and wherein reading the first redundancy data comprises reading the first bit using one or more first read thresholds and reading the second bit using one or more second read thresholds, such that at least a common read threshold is common to the first and second read thresholds, and correcting at least one error in reading the second bit with respect to the common read threshold based on the read first bit.
  • 9. The method according to claim 1, wherein storing the input data and the first redundancy data in the first storage area comprises programming at least one multi-level memory cell included in the first storage area dependent upon the input data and the first redundancy data using a first storage configuration; and wherein storing the second redundancy data in the second storage area comprises programming at least one multi-level analog memory cell included in the second storage area dependent upon the second redundancy data using the first storage configuration; and the method further comprising detecting that shut-off of electrical power to the memory is imminent, and re-programming the at least one multi-level memory cell included in the first storage area and the at least one multi-level memory cell included in the second storage area using a second storage configuration.
  • 10. The method according to claim 1, wherein the memory includes at least first and second storage devices implemented using first and second different storage media types, wherein the first storage area is assigned in the first storage device, and wherein the second storage area is assigned in the second storage device.
  • 11. An apparatus for data storage, comprising: an interface, which is coupled to communicate with a memory; andcircuitry coupled to the memory, wherein the circuitry is configured to:estimate reliability of one or more multi-level memory cells in the memory, wherein to estimate the reliability of the one or more multi-level memory cells in the memory, the circuitry is further configured to determine a number of program and erase cycles that have been performed on the one or more multi-level memory cells;partitioning the memory into a first storage area and a second storage area dependent upon the estimated reliability;process input data to produce first redundancy data and second redundancy data, wherein the second redundancy data includes a larger number of redundancy bits than the first redundancy data;store the input data and the first redundancy data in the first storage area;wherein to store the input data the circuitry is further configured to map bit values of the input data to programming levels in a binary order;store the second redundancy data in the second storage area; andevaluate a criterion with respect to the stored input data, and, responsively to the criterion, selecting to perform one of: reconstruct the input data irrespective of the second redundancy data stored in the second storage area by reading the input data from the first storage area; andread the second redundancy data from the second storage area and reconstructing the input data responsively to the second redundancy data;wherein to reconstruct the input data responsively to the read second redundancy data the circuitry is further configured to reuse readout data from a first page of the stored input data in a reading of a second page of the stored input data.
  • 12. The apparatus according to claim 11, wherein the criterion comprises a success of an attempt to reconstruct the input data by reading the input data and the first redundancy data from the first storage area irrespective of the second redundancy data stored in the second storage area.
  • 13. The apparatus according to claim 11, wherein to process the input data to produce the first redundancy data and the second redundancy data, the circuitry is further configured to encode the input data using first and second Error Correction Codes (ECC) to produce respective first and second sets of parity bits, and to store the first set of the parity bits in the first storage area and to store the second set of the parity bits in the second storage area.
  • 14. The apparatus according to claim 13, wherein the circuitry is further configured to reconstruct the input data irrespective of the second redundancy data by reading the first set of the parity bits from the first storage area and decoding the first ECC, and to reconstruct the input data responsively to the second redundancy data by reading the second set of the parity bits from the second storage area and decoding the second ECC.
  • 15. The apparatus according to claim 11, wherein the circuitry is further configured to evaluate the criterion by assessing a time period that elapsed since the input data was stored.
  • 16. The apparatus according to claim 11, wherein the circuitry is further configured to evaluate the criterion by assessing a wear level of the one or more multi-level memory cells holding the input data.
  • 17. The apparatus according to claim 11, wherein to store the input data in the first storage area the circuitry is further configured to store the input data and the first redundancy data in the first storage area using at least one first write command, and wherein to store the second redundancy data in the second storage area the circuitry is further configured to store the second redundancy data in the second storage area using at least one second write command, different from the first write command.
  • 18. The apparatus according to claim 11, wherein each multi-level memory cell is configured to store at least a first bit and a second bit, and wherein the circuitry is configured to read the first bit using one or more first read thresholds, to read the second bit using one or more second read thresholds such that at least a common read threshold is common to the first and second read thresholds, and to correct at least one error in reading the second bit with respect to the common read threshold based on the read first bit.
  • 19. The apparatus according to claim 11, wherein to store the input data and the first redundancy data in the first storage area, the circuitry is further configured to program at least one multi-level memory cell included in the first storage area dependent on the input data and the first redundancy data using a first storage configuration; and wherein to store the second redundancy data in the second storage area, the circuitry is further configured to program at least one multi-level memory included in the second storage area dependent upon the second redundancy data using the first storage configuration; and wherein the circuitry is further configured to detect that shut-off of electrical power to the memory is imminent, and to re-program the at least one multi-level memory cell of the first storage area and the at least one multi-level memory cell of the second storage area using a second storage configuration responsive to the detection of the shut-off.
  • 20. The apparatus according to claim 11, wherein the memory includes at least first and second storage devices implemented using first and second different storage media types, and wherein the circuitry is configured to assign the first storage area in the first storage device and to assign the second storage area in the second storage device.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application 61/093,613, filed Sep. 2, 2008, U.S. Provisional Patent Application 61/105,819, filed Oct. 16, 2008, U.S. Provisional Patent Application 61/120,968, filed Dec. 9, 2008, and U.S. Provisional Patent Application 61/141,866, filed Dec. 31, 2008, whose disclosures are incorporated herein by reference.

US Referenced Citations (577)
Number Name Date Kind
3668631 Griffith et al. Jun 1972 A
3668632 Oldham Jun 1972 A
4058851 Scheuneman Nov 1977 A
4112502 Scheuneman Sep 1978 A
4394763 Nagano et al. Jul 1983 A
4413339 Riggle et al. Nov 1983 A
4556961 Iwahashi et al. Dec 1985 A
4558431 Satoh Dec 1985 A
4608687 Dutton Aug 1986 A
4654847 Dutton Mar 1987 A
4661929 Aoki et al. Apr 1987 A
4768171 Tada Aug 1988 A
4811285 Walker et al. Mar 1989 A
4899342 Potter et al. Feb 1990 A
4910706 Hyatt Mar 1990 A
4993029 Galbraith et al. Feb 1991 A
5056089 Furuta et al. Oct 1991 A
5077722 Geist et al. Dec 1991 A
5126808 Montalvo et al. Jun 1992 A
5163021 Mehrotra et al. Nov 1992 A
5172338 Mehrotra et al. Dec 1992 A
5182558 Mayo Jan 1993 A
5182752 DeRoo et al. Jan 1993 A
5191584 Anderson Mar 1993 A
5200959 Gross et al. Apr 1993 A
5237535 Mielke et al. Aug 1993 A
5272669 Samachisa et al. Dec 1993 A
5276649 Hoshita et al. Jan 1994 A
5287469 Tsuboi Feb 1994 A
5365484 Cleveland et al. Nov 1994 A
5388064 Khan Feb 1995 A
5416646 Shirai May 1995 A
5416782 Wells et al. May 1995 A
5446854 Khalidi et al. Aug 1995 A
5450424 Okugaki et al. Sep 1995 A
5469444 Endoh et al. Nov 1995 A
5473753 Wells et al. Dec 1995 A
5479170 Cauwenberghs et al. Dec 1995 A
5508958 Fazio et al. Apr 1996 A
5519831 Holzhammer May 1996 A
5532962 Auclair et al. Jul 1996 A
5533190 Binford et al. Jul 1996 A
5541886 Hasbun Jul 1996 A
5600677 Citta et al. Feb 1997 A
5638320 Wong et al. Jun 1997 A
5657332 Auclair et al. Aug 1997 A
5675540 Roohparvar Oct 1997 A
5682352 Wong et al. Oct 1997 A
5687114 Khan Nov 1997 A
5696717 Koh Dec 1997 A
5726649 Tamaru et al. Mar 1998 A
5726934 Tran et al. Mar 1998 A
5742752 De Koening Apr 1998 A
5748533 Dunlap et al. May 1998 A
5748534 Dunlap et al. May 1998 A
5751637 Chen et al. May 1998 A
5761402 Kaneda et al. Jun 1998 A
5781472 Sweha et al. Jul 1998 A
5798966 Keeney Aug 1998 A
5799200 Brant et al. Aug 1998 A
5801985 Roohparvar et al. Sep 1998 A
5838832 Barnsley Nov 1998 A
5860106 Domen et al. Jan 1999 A
5867114 Barbir Feb 1999 A
5867428 Ishii et al. Feb 1999 A
5867429 Chen et al. Feb 1999 A
5877986 Harari et al. Mar 1999 A
5889937 Tamagawa Mar 1999 A
5901089 Korsh et al. May 1999 A
5909449 So et al. Jun 1999 A
5912906 Wu et al. Jun 1999 A
5930167 Lee et al. Jul 1999 A
5937424 Leak et al. Aug 1999 A
5942004 Cappelletti Aug 1999 A
5946716 Karp et al. Aug 1999 A
5969986 Wong et al. Oct 1999 A
5982668 Ishii et al. Nov 1999 A
5991517 Harari et al. Nov 1999 A
5995417 Chen et al. Nov 1999 A
6009014 Hollmer et al. Dec 1999 A
6009016 Ishii et al. Dec 1999 A
6023425 Ishii et al. Feb 2000 A
6034891 Norman Mar 2000 A
6040993 Chen et al. Mar 2000 A
6041430 Yamauchi Mar 2000 A
6073204 Lakhani et al. Jun 2000 A
6101614 Gonzales et al. Aug 2000 A
6128237 Shirley et al. Oct 2000 A
6134140 Tanaka et al. Oct 2000 A
6134143 Norman Oct 2000 A
6134631 Jennings Oct 2000 A
6141261 Patti Oct 2000 A
6151246 So et al. Nov 2000 A
6157573 Ishii et al. Dec 2000 A
6166962 Chen et al. Dec 2000 A
6169691 Pasotti et al. Jan 2001 B1
6178466 Gilbertson et al. Jan 2001 B1
6185134 Tanaka Feb 2001 B1
6209113 Roohparvar Mar 2001 B1
6212654 Lou et al. Apr 2001 B1
6219276 Parker Apr 2001 B1
6219447 Lee et al. Apr 2001 B1
6222762 Guterman et al. Apr 2001 B1
6230233 Lofgren et al. May 2001 B1
6240458 Gilbertson May 2001 B1
6259627 Wong Jul 2001 B1
6275419 Guterman et al. Aug 2001 B1
6278632 Chevallier Aug 2001 B1
6279069 Robinson et al. Aug 2001 B1
6288944 Kawamura Sep 2001 B1
6292394 Cohen et al. Sep 2001 B1
6301151 Engh et al. Oct 2001 B1
6304486 Yano Oct 2001 B1
6307776 So et al. Oct 2001 B1
6314044 Sasaki et al. Nov 2001 B1
6317363 Guterman et al. Nov 2001 B1
6317364 Guterman et al. Nov 2001 B1
6345004 Omura et al. Feb 2002 B1
6360346 Miyauchi et al. Mar 2002 B1
6363008 Wong Mar 2002 B1
6363454 Lakhani et al. Mar 2002 B1
6366496 Torelli et al. Apr 2002 B1
6385092 Ishii et al. May 2002 B1
6392932 Ishii et al. May 2002 B1
6396742 Korsh et al. May 2002 B1
6397364 Barkan May 2002 B1
6405323 Lin et al. Jun 2002 B1
6405342 Lee Jun 2002 B1
6418060 Yang et al. Jul 2002 B1
6442083 Hotaka Aug 2002 B2
6442585 Dean et al. Aug 2002 B1
6445602 Kokudo et al. Sep 2002 B1
6452838 Ishii et al. Sep 2002 B1
6456528 Chen Sep 2002 B1
6466476 Wong et al. Oct 2002 B1
6467062 Barkan Oct 2002 B1
6469931 Ban et al. Oct 2002 B1
6480948 Virajpet et al. Nov 2002 B1
6490236 Fukuda et al. Dec 2002 B1
6522580 Chen et al. Feb 2003 B2
6525952 Araki et al. Feb 2003 B2
6532556 Wong et al. Mar 2003 B1
6538922 Khalid et al. Mar 2003 B1
6549464 Tanaka et al. Apr 2003 B2
6553510 Pekny Apr 2003 B1
6558967 Wong May 2003 B1
6560152 Cernea May 2003 B1
6567311 Ishii et al. May 2003 B2
6577539 Iwahashi Jun 2003 B2
6584012 Banks Jun 2003 B2
6615307 Roohparvar Sep 2003 B1
6618299 Sohn et al. Sep 2003 B2
6621739 Gonzalez et al. Sep 2003 B2
6640326 Buckingham et al. Oct 2003 B1
6643169 Rudelic et al. Nov 2003 B2
6646913 Micheloni et al. Nov 2003 B2
6662333 Zhang et al. Dec 2003 B1
6678192 Gongwer et al. Jan 2004 B2
6683811 Ishii et al. Jan 2004 B2
6687155 Nagasue Feb 2004 B2
6707748 Lin et al. Mar 2004 B2
6708257 Bao Mar 2004 B2
6714449 Khalid Mar 2004 B2
6717847 Chen Apr 2004 B2
6731557 Beretta May 2004 B2
6732250 Durrant May 2004 B2
6738293 Iwahashi May 2004 B1
6751766 Guterman et al. Jun 2004 B2
6757193 Chen et al. Jun 2004 B2
6774808 Hibbs et al. Aug 2004 B1
6781877 Cernea et al. Aug 2004 B2
6804805 Rub Oct 2004 B2
6807095 Chen et al. Oct 2004 B2
6807101 Ooishi et al. Oct 2004 B2
6809964 Moschopoulos et al. Oct 2004 B2
6819592 Noguchi et al. Nov 2004 B2
6829167 Tu et al. Dec 2004 B2
6845052 Ho et al. Jan 2005 B1
6851018 Wyatt et al. Feb 2005 B2
6851081 Yamamoto Feb 2005 B2
6856546 Guterman et al. Feb 2005 B2
6862218 Guterman et al. Mar 2005 B2
6870767 Rudelic et al. Mar 2005 B2
6870773 Noguchi et al. Mar 2005 B2
6873552 Ishii et al. Mar 2005 B2
6879520 Hosono et al. Apr 2005 B2
6882567 Wong Apr 2005 B1
6894926 Guterman et al. May 2005 B2
6907497 Hosono et al. Jun 2005 B2
6925009 Noguchi et al. Aug 2005 B2
6930925 Guo et al. Aug 2005 B2
6934188 Roohparvar Aug 2005 B2
6937511 Hsu et al. Aug 2005 B2
6958938 Noguchi et al. Oct 2005 B2
6963505 Cohen Nov 2005 B2
6972993 Conley et al. Dec 2005 B2
6988175 Lasser Jan 2006 B2
6992932 Cohen Jan 2006 B2
6999344 Hosono et al. Feb 2006 B2
7002843 Guterman et al. Feb 2006 B2
7006379 Noguchi et al. Feb 2006 B2
7012835 Gonzalez et al. Mar 2006 B2
7020017 Chen et al. Mar 2006 B2
7023735 Ban et al. Apr 2006 B2
7031210 Park et al. Apr 2006 B2
7031214 Tran Apr 2006 B2
7031216 You Apr 2006 B2
7039846 Hewitt et al. May 2006 B2
7042766 Wang et al. May 2006 B1
7054193 Wong May 2006 B1
7054199 Lee et al. May 2006 B2
7057958 So et al. Jun 2006 B2
7065147 Ophir et al. Jun 2006 B2
7068539 Guterman et al. Jun 2006 B2
7071849 Zhang Jul 2006 B2
7072222 Ishii et al. Jul 2006 B2
7079555 Baydar et al. Jul 2006 B2
7088615 Guterman et al. Aug 2006 B2
7099194 Tu et al. Aug 2006 B2
7102924 Chen et al. Sep 2006 B2
7113432 Mokhlesi Sep 2006 B2
7117421 Danilak Oct 2006 B1
7130210 Bathul et al. Oct 2006 B2
7139192 Wong Nov 2006 B1
7139198 Guterman et al. Nov 2006 B2
7145805 Ishii et al. Dec 2006 B2
7151692 Wu Dec 2006 B2
7158058 Yu Jan 2007 B1
7170781 So et al. Jan 2007 B2
7170802 Cernea et al. Jan 2007 B2
7173859 Hemink Feb 2007 B2
7177184 Chen Feb 2007 B2
7177195 Gonzalez et al. Feb 2007 B2
7177199 Chen et al. Feb 2007 B2
7177200 Ronen et al. Feb 2007 B2
7184338 Nakagawa et al. Feb 2007 B2
7187195 Kim Mar 2007 B2
7187592 Guterman et al. Mar 2007 B2
7190614 Wu Mar 2007 B2
7193898 Cernea Mar 2007 B2
7193921 Choi et al. Mar 2007 B2
7196644 Anderson et al. Mar 2007 B1
7196928 Chen Mar 2007 B2
7196933 Shibata Mar 2007 B2
7197594 Raz et al. Mar 2007 B2
7200062 Kinsely et al. Apr 2007 B2
7210077 Brandenberger et al. Apr 2007 B2
7221592 Nazarian May 2007 B2
7224613 Chen et al. May 2007 B2
7231474 Helms et al. Jun 2007 B1
7231562 Ohlhoff et al. Jun 2007 B2
7243275 Gongwer et al. Jul 2007 B2
7254690 Rao Aug 2007 B2
7254763 Aadsen et al. Aug 2007 B2
7257027 Park Aug 2007 B2
7259987 Chen et al. Aug 2007 B2
7266026 Gongwer et al. Sep 2007 B2
7266069 Chu Sep 2007 B2
7269066 Nguyen et al. Sep 2007 B2
7272757 Stocken Sep 2007 B2
7274611 Roohparvar Sep 2007 B2
7277355 Tanzawa Oct 2007 B2
7280398 Lee et al. Oct 2007 B1
7280409 Misumi et al. Oct 2007 B2
7280415 Hwang et al. Oct 2007 B2
7283399 Ishii et al. Oct 2007 B2
7289344 Chen Oct 2007 B2
7301807 Khalid et al. Nov 2007 B2
7301817 Li et al. Nov 2007 B2
7308525 Lasser et al. Dec 2007 B2
7310255 Chan Dec 2007 B2
7310269 Shibata Dec 2007 B2
7310271 Lee Dec 2007 B2
7310272 Mokhlesi et al. Dec 2007 B1
7310347 Lasser Dec 2007 B2
7312727 Feng et al. Dec 2007 B1
7321509 Chen et al. Jan 2008 B2
7328384 Kulkarni et al. Feb 2008 B1
7342831 Mokhlesi et al. Mar 2008 B2
7343330 Boesjes et al. Mar 2008 B1
7345924 Nguyen et al. Mar 2008 B2
7345928 Li Mar 2008 B2
7349263 Kim et al. Mar 2008 B2
7356755 Fackenthal Apr 2008 B2
7363420 Lin et al. Apr 2008 B2
7365671 Anderson Apr 2008 B1
7373562 Poechmueller May 2008 B2
7388781 Litsyn et al. Jun 2008 B2
7397697 So et al. Jul 2008 B2
7404137 Lin et al. Jul 2008 B2
7405974 Yaoi et al. Jul 2008 B2
7405979 Ishii et al. Jul 2008 B2
7408804 Hemink et al. Aug 2008 B2
7408810 Aritome et al. Aug 2008 B2
7409473 Conley et al. Aug 2008 B2
7409623 Baker et al. Aug 2008 B2
7420847 Li Sep 2008 B2
7433231 Aritome Oct 2008 B2
7433697 Karaoguz et al. Oct 2008 B2
7434111 Sugiura et al. Oct 2008 B2
7437498 Ronen Oct 2008 B2
7440324 Mokhlesi Oct 2008 B2
7440331 Hemink Oct 2008 B2
7441067 Gorobets et al. Oct 2008 B2
7447970 Wu et al. Nov 2008 B2
7450421 Mokhlesi et al. Nov 2008 B2
7453737 Ha Nov 2008 B2
7457163 Hemink Nov 2008 B2
7457897 Lee et al. Nov 2008 B1
7460410 Nagai et al. Dec 2008 B2
7460412 Lee et al. Dec 2008 B2
7466592 Mitani et al. Dec 2008 B2
7468907 Kang et al. Dec 2008 B2
7468911 Lutze et al. Dec 2008 B2
7469049 Feng Dec 2008 B1
7471581 Tran et al. Dec 2008 B2
7483319 Brown Jan 2009 B2
7487329 Hepkin et al. Feb 2009 B2
7487394 Forhan et al. Feb 2009 B2
7492641 Hosono et al. Feb 2009 B2
7508710 Mokhlesi Mar 2009 B2
7526711 Orio Apr 2009 B2
7539061 Lee May 2009 B2
7539062 Doyle May 2009 B2
7551492 Kim Jun 2009 B2
7558109 Brandman et al. Jul 2009 B2
7558839 McGovern Jul 2009 B1
7568135 Cornwell et al. Jul 2009 B2
7570520 Kamei et al. Aug 2009 B2
7574555 Porat et al. Aug 2009 B2
7590002 Mokhlesi et al. Sep 2009 B2
7593259 Kim Sep 2009 B2
7594093 Kancherla Sep 2009 B1
7596707 Vemula Sep 2009 B1
7609787 Jahan et al. Oct 2009 B2
7613043 Cornwell et al. Nov 2009 B2
7616498 Mokhlesi et al. Nov 2009 B2
7619918 Aritome Nov 2009 B2
7631245 Lasser Dec 2009 B2
7633798 Sarin et al. Dec 2009 B2
7633802 Mokhlesi Dec 2009 B2
7639532 Roohparvar et al. Dec 2009 B2
7644347 Alexander et al. Jan 2010 B2
7656734 Thorp et al. Feb 2010 B2
7660158 Aritome Feb 2010 B2
7660183 Ware et al. Feb 2010 B2
7661000 Ueda et al. Feb 2010 B2
7661054 Huffman et al. Feb 2010 B2
7665007 Yang et al. Feb 2010 B2
7676730 Haugan et al. Mar 2010 B2
7680987 Clark et al. Mar 2010 B1
7733712 Walston et al. Jun 2010 B1
7742351 Inoue et al. Jun 2010 B2
7761624 Karamcheti et al. Jul 2010 B2
7797609 Neuman Sep 2010 B2
7810017 Radke Oct 2010 B2
7848149 Gonzalez et al. Dec 2010 B2
7869273 Lee et al. Jan 2011 B2
7885119 Li Feb 2011 B2
7904783 Brandman et al. Mar 2011 B2
7928497 Yaegashi Apr 2011 B2
7929549 Talbot Apr 2011 B1
7930515 Gupta et al. Apr 2011 B2
7945825 Cohen et al. May 2011 B2
7975205 Thayer Jul 2011 B2
7978516 Olbrich et al. Jul 2011 B2
8014094 Jin Sep 2011 B1
8037380 Cagno et al. Oct 2011 B2
8040744 Gorobets et al. Oct 2011 B2
8065583 Radke Nov 2011 B2
8185801 Dell et al. May 2012 B2
20010002172 Tanaka et al. May 2001 A1
20010006479 Ikehashi et al. Jul 2001 A1
20020029315 Williams et al. Mar 2002 A1
20020038440 Barkan Mar 2002 A1
20020056064 Kidorf et al. May 2002 A1
20020118574 Gongwer et al. Aug 2002 A1
20020133684 Anderson Sep 2002 A1
20020166091 Kidorf et al. Nov 2002 A1
20020174295 Ulrich et al. Nov 2002 A1
20020196510 Hietala et al. Dec 2002 A1
20030002348 Chen et al. Jan 2003 A1
20030037299 Smith Feb 2003 A1
20030103400 Van Tran Jun 2003 A1
20030161183 Tran Aug 2003 A1
20030189856 Cho et al. Oct 2003 A1
20040057265 Mirabel et al. Mar 2004 A1
20040057285 Cernea et al. Mar 2004 A1
20040083333 Chang et al. Apr 2004 A1
20040083334 Chang et al. Apr 2004 A1
20040105311 Cernea et al. Jun 2004 A1
20040114437 Li Jun 2004 A1
20040160842 Fukiage Aug 2004 A1
20040223371 Roohparvar Nov 2004 A1
20050007802 Gerpheide Jan 2005 A1
20050013165 Ban Jan 2005 A1
20050024941 Lasser et al. Feb 2005 A1
20050024978 Ronen Feb 2005 A1
20050030788 Parkinson et al. Feb 2005 A1
20050086574 Fackenthal Apr 2005 A1
20050121436 Kamitani et al. Jun 2005 A1
20050144361 Gonzalez et al. Jun 2005 A1
20050157555 Ono et al. Jul 2005 A1
20050162913 Chen Jul 2005 A1
20050169051 Khalid et al. Aug 2005 A1
20050189649 Maruyama et al. Sep 2005 A1
20050213393 Lasser Sep 2005 A1
20050224853 Ohkawa Oct 2005 A1
20050240745 Iyer et al. Oct 2005 A1
20050243626 Ronen Nov 2005 A1
20060004952 Lasser Jan 2006 A1
20060026347 Hung Feb 2006 A1
20060028875 Avraham et al. Feb 2006 A1
20060028877 Meir Feb 2006 A1
20060059406 Micheloni et al. Mar 2006 A1
20060101193 Murin May 2006 A1
20060106972 Gorobets et al. May 2006 A1
20060107136 Gongwer et al. May 2006 A1
20060129750 Lee et al. Jun 2006 A1
20060133141 Gorobets Jun 2006 A1
20060156189 Tomlin Jul 2006 A1
20060179334 Brittain et al. Aug 2006 A1
20060190699 Lee Aug 2006 A1
20060203546 Lasser Sep 2006 A1
20060218359 Sanders et al. Sep 2006 A1
20060221692 Chen Oct 2006 A1
20060221705 Hemink et al. Oct 2006 A1
20060221714 Li et al. Oct 2006 A1
20060239077 Park et al. Oct 2006 A1
20060239081 Roohparvar Oct 2006 A1
20060256620 Nguyen et al. Nov 2006 A1
20060256626 Werner et al. Nov 2006 A1
20060256891 Yuan et al. Nov 2006 A1
20060271748 Jain et al. Nov 2006 A1
20060285392 Incarnati et al. Dec 2006 A1
20060285396 Ha Dec 2006 A1
20070006013 Moshayedi et al. Jan 2007 A1
20070019481 Park Jan 2007 A1
20070033581 Tomlin et al. Feb 2007 A1
20070047314 Goda et al. Mar 2007 A1
20070047326 Nguyen et al. Mar 2007 A1
20070050536 Kolokowsky Mar 2007 A1
20070058446 Hwang et al. Mar 2007 A1
20070061502 Lasser et al. Mar 2007 A1
20070067667 Ikeuchi et al. Mar 2007 A1
20070074093 Lasser Mar 2007 A1
20070086239 Litsyn et al. Apr 2007 A1
20070086260 Sinclair Apr 2007 A1
20070089034 Litsyn et al. Apr 2007 A1
20070091677 Lasser et al. Apr 2007 A1
20070091694 Lee et al. Apr 2007 A1
20070103978 Conley et al. May 2007 A1
20070103986 Chen May 2007 A1
20070104211 Opsasnick May 2007 A1
20070109845 Chen May 2007 A1
20070109849 Chen May 2007 A1
20070115726 Cohen et al. May 2007 A1
20070118713 Guterman et al. May 2007 A1
20070143378 Gorobets Jun 2007 A1
20070143531 Atri Jun 2007 A1
20070159889 Kang et al. Jul 2007 A1
20070159892 Kang et al. Jul 2007 A1
20070159907 Kwak Jul 2007 A1
20070168837 Murin Jul 2007 A1
20070171714 Wu et al. Jul 2007 A1
20070183210 Choi et al. Aug 2007 A1
20070189073 Aritome Aug 2007 A1
20070195602 Fong et al. Aug 2007 A1
20070206426 Mokhlesi Sep 2007 A1
20070208904 Hsieh et al. Sep 2007 A1
20070226599 Motwani Sep 2007 A1
20070236990 Aritome Oct 2007 A1
20070253249 Kang et al. Nov 2007 A1
20070256620 Viggiano et al. Nov 2007 A1
20070263455 Cornwell et al. Nov 2007 A1
20070266232 Rodgers et al. Nov 2007 A1
20070271424 Lee et al. Nov 2007 A1
20070280000 Fujiu et al. Dec 2007 A1
20070291571 Balasundaram Dec 2007 A1
20070297234 Cernea et al. Dec 2007 A1
20080010395 Mylly et al. Jan 2008 A1
20080025121 Tanzawa Jan 2008 A1
20080043535 Roohparvar Feb 2008 A1
20080049504 Kasahara et al. Feb 2008 A1
20080049506 Guterman Feb 2008 A1
20080052446 Lasser et al. Feb 2008 A1
20080055993 Lee Mar 2008 A1
20080080243 Edahiro et al. Apr 2008 A1
20080082730 Kim et al. Apr 2008 A1
20080089123 Chae et al. Apr 2008 A1
20080104309 Cheon et al. May 2008 A1
20080104312 Lasser May 2008 A1
20080109590 Jung et al. May 2008 A1
20080115017 Jacobson May 2008 A1
20080123420 Brandman et al. May 2008 A1
20080123426 Lutze et al. May 2008 A1
20080126686 Sokolov et al. May 2008 A1
20080130341 Shalvi et al. Jun 2008 A1
20080148115 Sokolov et al. Jun 2008 A1
20080151618 Sharon et al. Jun 2008 A1
20080151667 Miu et al. Jun 2008 A1
20080158958 Sokolov et al. Jul 2008 A1
20080181001 Shalvi Jul 2008 A1
20080198650 Shalvi et al. Aug 2008 A1
20080198654 Toda Aug 2008 A1
20080209116 Caulkins Aug 2008 A1
20080209304 Winarski et al. Aug 2008 A1
20080215798 Sharon et al. Sep 2008 A1
20080219050 Shalvi et al. Sep 2008 A1
20080239093 Easwar et al. Oct 2008 A1
20080239812 Abiko et al. Oct 2008 A1
20080253188 Aritome Oct 2008 A1
20080263262 Sokolov et al. Oct 2008 A1
20080263676 Mo et al. Oct 2008 A1
20080270730 Lasser et al. Oct 2008 A1
20080282106 Shalvi et al. Nov 2008 A1
20080288714 Salomon et al. Nov 2008 A1
20090013233 Radke Jan 2009 A1
20090024905 Shalvi et al. Jan 2009 A1
20090034337 Aritome Feb 2009 A1
20090043831 Antonopoulos et al. Feb 2009 A1
20090043951 Shalvi et al. Feb 2009 A1
20090049234 Oh et al. Feb 2009 A1
20090073762 Lee et al. Mar 2009 A1
20090086542 Lee et al. Apr 2009 A1
20090089484 Chu Apr 2009 A1
20090091979 Shalvi Apr 2009 A1
20090094930 Schwoerer Apr 2009 A1
20090106485 Anholt Apr 2009 A1
20090112949 Ergan et al. Apr 2009 A1
20090132755 Radke May 2009 A1
20090144598 Yoon et al. Jun 2009 A1
20090144600 Perlmutter et al. Jun 2009 A1
20090150894 Huang et al. Jun 2009 A1
20090157950 Selinger Jun 2009 A1
20090157964 Kasorla et al. Jun 2009 A1
20090158126 Perlmutter et al. Jun 2009 A1
20090164704 Kanade et al. Jun 2009 A1
20090168524 Golov et al. Jul 2009 A1
20090172257 Prins et al. Jul 2009 A1
20090172261 Prins et al. Jul 2009 A1
20090193184 Yu et al. Jul 2009 A1
20090199074 Sommer et al. Aug 2009 A1
20090204824 Lin et al. Aug 2009 A1
20090204872 Yu et al. Aug 2009 A1
20090213653 Perlmutter et al. Aug 2009 A1
20090213654 Perlmutter et al. Aug 2009 A1
20090225595 Kim Sep 2009 A1
20090228761 Perlmutter et al. Sep 2009 A1
20090240872 Perlmutter et al. Sep 2009 A1
20090265509 Klein Oct 2009 A1
20090300227 Nochimowski et al. Dec 2009 A1
20090323412 Mokhlesi et al. Dec 2009 A1
20090327608 Eschmann Dec 2009 A1
20100017650 Chin et al. Jan 2010 A1
20100034022 Dutta et al. Feb 2010 A1
20100057976 Lasser Mar 2010 A1
20100061151 Miwa et al. Mar 2010 A1
20100082883 Chen et al. Apr 2010 A1
20100083247 Kanevsky et al. Apr 2010 A1
20100110580 Takashima May 2010 A1
20100131697 Alrod et al. May 2010 A1
20100142268 Aritome Jun 2010 A1
20100142277 Yang et al. Jun 2010 A1
20100169547 Ou Jul 2010 A1
20100169743 Vogan et al. Jul 2010 A1
20100174847 Paley et al. Jul 2010 A1
20100211803 Lablans Aug 2010 A1
20100287217 Borchers et al. Nov 2010 A1
20110010489 Yeh Jan 2011 A1
20110060969 Ramamoorthy et al. Mar 2011 A1
20110066793 Burd Mar 2011 A1
20110075482 Shepard et al. Mar 2011 A1
20110107049 Kwon et al. May 2011 A1
20110149657 Haratsch et al. Jun 2011 A1
20110199823 Bar-Or et al. Aug 2011 A1
20110302354 Miller Dec 2011 A1
Foreign Referenced Citations (43)
Number Date Country
0783754 Jul 1997 EP
1434236 Jun 2004 EP
1605509 Dec 2005 EP
9610256 Apr 1996 WO
9828745 Jul 1998 WO
02100112 Dec 2002 WO
03100791 Dec 2003 WO
2007046084 Apr 2007 WO
2007132452 Nov 2007 WO
2007132453 Nov 2007 WO
2007132456 Nov 2007 WO
2007132457 Nov 2007 WO
2007132458 Nov 2007 WO
2007146010 Dec 2007 WO
2008026203 Mar 2008 WO
2008053472 May 2008 WO
2008053473 May 2008 WO
2008068747 Jun 2008 WO
2008077284 Jul 2008 WO
2008083131 Jul 2008 WO
2008099958 Aug 2008 WO
2008111058 Sep 2008 WO
2008124760 Oct 2008 WO
2008139441 Nov 2008 WO
2009037691 Mar 2009 WO
2009037697 Mar 2009 WO
2009038961 Mar 2009 WO
2009050703 Apr 2009 WO
2009053961 Apr 2009 WO
2009053962 Apr 2009 WO
2009053963 Apr 2009 WO
2009063450 May 2009 WO
2009072100 Jun 2009 WO
2009072101 Jun 2009 WO
2009072102 Jun 2009 WO
2009072103 Jun 2009 WO
2009072104 Jun 2009 WO
2009072105 Jun 2009 WO
2009074978 Jun 2009 WO
2009074979 Jun 2009 WO
2009078006 Jun 2009 WO
2009095902 Aug 2009 WO
2011024015 Mar 2011 WO
Non-Patent Literature Citations (146)
Entry
Hong et al., “NAND Flash-based Disk Cache Using SLC/MLC Combined Flash Memory”, 2010 International Workshop on Storage Network Architecture and Parallel I/Os, pp. 21-30, USA, May 3, 2010.
U.S. Appl. No. 11/945,575 Official Action dated Aug. 24, 2010.
U.S. Appl. No. 12/045,520 Official Action dated Nov. 16, 2010.
U.S. Appl. No. 12/323,544 Official Action dated Mar. 9, 2012.
Chinese Patent Application # 200780026181.3 Official Action dated Mar. 7, 2012.
Chinese Patent Application # 200780026094.8 Official Action dated Feb. 2, 2012.
U.S. Appl. No. 12/332,370 Official Action dated Mar. 8, 2012.
U.S. Appl. No. 12/579,432 Official Action dated Feb. 29, 2012.
U.S. Appl. No. 12/522,175 Official Action dated Mar. 27, 2012.
U.S. Appl. No. 12/607,085 Official Action dated Mar. 28, 2012.
Budilovsky et al., “Prototyping a High-Performance Low-Cost Solid-State Disk”, SYSTOR—The 4th Annual International Systems and Storage Conference, Haifa, Israel, May 30-Jun. 1, 2011.
NVM Express Protocol, “NVM Express”, Revision 1.0b, Jul. 12, 2011.
SCSI Protocol, “Information Technology—SCSI Architecture Model-5 (SAM-5)”, INCITS document T10/2104-D, revision 01, Jan. 28, 2009.
SAS Protocol, “Information Technology—Serial Attached SCSI-2 (SAS-2)”, INCITS document T10/1760-D, revision 15a, Feb. 22, 2009.
U.S. Appl. No. 12/534,898 Official Action dated Mar. 23, 2011.
U.S. Appl. No. 13/047,822, filed Mar. 15, 2011.
U.S. Appl. No. 13/069,406, filed Mar. 23, 2011.
U.S. Appl. No. 13/088,361, filed Apr. 17, 2011.
Ankolekar et al., “Multibit Error-Correction Methods for Latency-Constrained Flash Memory Systems”, IEEE Transactions on Device and Materials Reliability, vol. 10, No. 1, pp. 33-39, Mar. 2010.
U.S. Appl. No. 12/344,233 Official Action dated Jun. 24, 2011.
U.S. Appl. No. 11/995,813 Official Action dated Jun. 16, 2011.
Berman et al., “Mitigating Inter-Cell Coupling Effects in MLC NAND Flash via Constrained Coding”, Flash Memory Summit, Santa Clara, USA, Aug. 19, 2010.
U.S. Appl. No. 12/178,318 Official Action dated May 31, 2011.
CN Patent Application # 200780026181.3 Official Action dated Apr. 8, 2011.
US 7,161,836, 1/2007, Wan et al. (withdrawn).
U.S. Appl. No. 12/880,101 “Reuse of Host Hibernation Storage Space by Memory Controller”, filed Sep. 12, 2010.
U.S. Appl. No. 12/890,724 “Error Correction Coding Over Multiple Memory Pages”, filed Sep. 27, 2010.
U.S. Appl. No. 12/171,797 Official Action dated Aug. 25, 2010.
U.S. Appl. No. 12/497,707 Official Action dated Sep. 15, 2010.
U.S. Appl. No. 11/995,801 Official Action dated Oct. 15, 2010.
Numonyx, “M25PE16: 16-Mbit, page-erasable serial flash memory with byte-alterability, 75 MHz SPI bus, standard pinout”, Apr. 2008.
U.S. Appl. No. 11/995,814 Official Action dated Dec. 17, 2010.
U.S. Appl. No. 12/388,528 Official Action dated Nov. 29, 2010.
U.S. Appl. No. 12/251,471 Official Action dated Jan. 3, 2011.
Engineering Windows 7, “Support and Q&A for Solid-State Drives”, e7blog, May 5, 2009.
Micron Technology Inc., “Memory Management in NAND Flash Arrays”, Technical Note, year 2005.
Kang et al., “A Superblock-based Flash Translation Layer for NAND Flash Memory”, Proceedings of the 6th ACM & IEEE International Conference on Embedded Software, pp. 161-170, Seoul, Korea, Oct. 22-26, 2006.
Park et al., “Sub-Grouped Superblock Management for High-Performance Flash Storages”, IEICE Electronics Express, vol. 6, No. 6, pp. 297-303, Mar. 25, 2009.
“How to Resolve “Bad Super Block: Magic Number Wrong” in BSD”, Free Online Articles Director Article Base, posted Sep. 5, 2009.
UBUNTU Forums, “Memory Stick Failed IO Superblock”, posted Nov. 11, 2009.
Super User Forums, “SD Card Failure, can't read superblock”, posted Aug. 8, 2010.
U.S. Appl. No. 12/987,174, filed Jan. 10, 2011.
U.S. Appl. No. 12/987,175, filed Jan. 10, 2011.
U.S. Appl. No. 12/963,649, filed Dec. 9, 2010.
U.S. Appl. No. 13/021,754, filed Feb. 6, 2011.
Huffman, A., “Non-Volatile Memory Host Controller Interface (NVMHCI)”, Specification 1.0, Apr. 14, 2008.
Panchbhai et al., “Improving Reliability of NAND Based Flash Memory Using Hybrid SLC/MLC Device”, Project Proposal for CSci 8980—Advanced Storage Systems, University of Minnesota, USA, Spring 2009.
U.S. Appl. No. 11/957,970 Official Action dated May 20, 2010.
Shalvi et al., U.S. Appl. No. 12/822,207 “Adaptive Over-Provisioning in Memory Systems” filed Jun. 24, 2010.
Wei, L., “Trellis-Coded Modulation With Multidimensional Constellations”, IEEE Transactions on Information Theory, vol. IT-33, No. 4, pp. 483-501, Jul. 1987.
U.S. Appl. No. 13/114,049 Official Action dated Sep. 12, 2011.
U.S. Appl. No. 12/405,275 Official Action dated Jul. 29, 2011.
Conway et al., “Sphere Packings, Lattices and Groups”, 3rd edition, chapter 4, pp. 94-135, Springer, New York, USA 1998.
Chinese Patent Application # 200780040493.X Official Action dated Jun. 15, 2011.
U.S. Appl. No. 12/037,487 Official Action dated Oct. 3, 2011.
U.S. Appl. No. 12/649,360 Official Action dated Aug. 9, 2011.
U.S. Appl. No. 13/192,504, filed Jul. 28, 2011.
U.S. Appl. No. 13/192,852, filed Aug. 2, 2011.
U.S. Appl. No. 13/231,963, filed Sep. 14, 2011.
U.S. Appl. No. 13/239,408, filed Sep. 22, 2011.
U.S. Appl. No. 13/239,411, filed Sep. 22, 2011.
U.S. Appl. No. 13/214,257, filed Aug. 22, 2011.
U.S. Appl. No. 13/192,501, filed Jul. 28, 2011.
U.S. Appl. No. 13/192,495, filed Jul. 28, 2011.
Agrell et al., “Closest Point Search in Lattices”, IEEE Transactions on Information Theory, vol. 48, No. 8, pp. 2201-2214, Aug. 2002.
Bez et al., “Introduction to Flash memory”, Proceedings of the IEEE, vol. 91, No. 4, pp. 489-502, Apr. 2003.
Blahut, R.E., “Theory and Practice of Error Control Codes,” Addison-Wesley, May 1984, section 3.2, pp. 47-48.
Chang, L., “Hybrid Solid State Disks: Combining Heterogeneous NAND Flash in Large SSDs”, ASPDAC, Jan. 2008.
Cho et al., “Multi-Level NAND Flash Memory with Non-Uniform Threshold Voltage Distribution,” IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, Feb. 5-7, 2001, pp. 28-29 and 424.
Databahn™, “Flash memory controller IP”, Denali Software, Inc., 1994 https://www.denali.com/en/products/databahn—flash.jsp.
Datalight, Inc., “FlashFX Pro 3.1 High Performance Flash Manager for Rapid Development of Reliable Products”, Nov. 16, 2006.
Duann, N., Silicon Motion Presentation “SLC & MLC Hybrid”, Flash Memory Summit, Santa Clara, USA, Aug. 2008.
Eitan et al., “Can NROM, a 2-bit, Trapping Storage NVM Cell, Give a Real Challenge to Floating Gate Cells?”, Proceedings of the 1999 International Conference on Solid State Devices and Materials (SSDM), pp. 522-524, Tokyo, Japan 1999.
Eitan et al., “Multilevel Flash Cells and their Trade-Offs”, Proceedings of the 1996 IEEE International Electron Devices Meeting (IEDM), pp. 169-172, New York, USA 1996.
Engh et al., “A self adaptive programming method with 5 mV accuracy for multi-level storage in Flash”, pp. 115-118, Proceedings of the IEEE 2002 Custom Integrated Circuits Conference, May 12-15, 2002.
Goodman et al., “On-Chip ECC for Multi-Level Random Access Memories,” Proceedings of the IEEE/CAM Information Theory Workshop, Ithaca, USA, Jun. 25-29, 1989.
Han et al., “An Intelligent Garbage Collection Algorithm for Flash Memory Storages”, Computational Science and Its Applications—ICCSA 2006, vol. 3980/2006, pp. 1019-1027, Springer Berlin / Heidelberg, Germany, May 11, 2006.
Han et al., “CATA: A Garbage Collection Scheme for Flash Memory File Systems”, Ubiquitous Intelligence and Computing, vol. 4159/2006, pp. 103-112, Springer Berlin / Heidelberg, Aug. 25, 2006.
Horstein, “On the Design of Signals for Sequential and Nonsequential Detection Systems with Feedback,” IEEE Transactions on Information Theory IT-12:4 (Oct. 1966), pp. 448-455.
Jung et al., in “A 117 mm.sup.2 3.3V Only 128 Mb Multilevel NAND Flash Memory for Mass Storage Applications,” IEEE Journal of Solid State Circuits, (11:31), Nov. 1996, pp. 1575-1583.
Kawaguchi et al. 1995. A flash-memory based file system. In Proceedings of the USENIX 1995 Technical Conference , New Orleans, Louisiana. 155-164.
Kim et al., “Future Memory Technology including Emerging New Memories”, Proceedings of the 24th International Conference on Microelectronics (MIEL), vol. 1, pp. 377-384, Nis, Serbia and Montenegro, May 16-19, 2004.
Lee et al., “Effects of Floating Gate Interference on NAND Flash Memory Cell Operation”, IEEE Electron Device Letters, vol. 23, No. 5, pp. 264-266, May 2002.
Maayan et al., “A 512 Mb NROM Flash Data Storage Memory with 8 Mb/s Data Rate”, Proceedings of the 2002 IEEE International Solid-State circuits Conference (ISSCC 2002), pp. 100-101, San Francisco, USA, Feb. 3-7, 2002.
Mielke et al., “Recovery Effects in the Distributed Cycling of Flash Memories”, IEEE 44th Annual International Reliability Physics Symposium, pp. 29-35, San Jose, USA, Mar. 2006.
Onfi, “Open NAND Flash Interface Specification,” revision 1.0, Dec. 28, 2006.
Phison Electronics Corporation, “PS8000 Controller Specification (for SD Card)”, revision 1.2, Document No. S-07018, Mar. 28, 2007.
Shalvi, et al., “Signal Codes,” Proceedings of the 2003 IEEE Information Theory Workshop (ITW'2003), Paris, France, Mar. 31-Apr. 4, 2003.
Shiozaki, A., “Adaptive Type-II Hybrid Broadcast ARQ System”, IEEE Transactions on Communications, vol. 44, Issue 4, pp. 420-422, Apr. 1996.
Suh et al., “A 3.3V 32Mb NAND Flash Memory with Incremental Step Pulse Programming Scheme”, IEEE Journal of Solid-State Circuits, vol. 30, No. 11, pp. 1149-1156, Nov. 1995.
ST Microelectronics, “Bad Block Management in NAND Flash Memories”, Application note AN-1819, Geneva, Switzerland, May 2004.
ST Microelectronics, “Wear Leveling in Single Level Cell NAND Flash Memories,” Application note AN-1822 Geneva, Switzerland, Feb. 2007.
Takeuchi et al., “A Double Level Vth Select Gate Array Architecture for Multi-Level NAND Flash Memories”, Digest of Technical Papers, 1995 Symposium on VLSI Circuits, pp. 69-70, Jun. 8-10, 1995.
Wu et al., “eNVy: A non-Volatile, Main Memory Storage System”, Proceedings of the 6th International Conference on Architectural support for programming languages and operating systems, pp. 86-87, San Jose, USA, 1994.
International Application PCT/IL2007/000575 Patentability report dated Mar. 26, 2009.
International Application PCT/IL2007/000575 Search Report dated May 30, 2008.
International Application PCT/IL2007/000576 Patentability Report dated Mar. 19, 2009.
International Application PCT/IL2007/000576 Search Report dated Jul. 7, 2008.
International Application PCT/IL2007/000579 Patentability report dated Mar. 10, 2009.
International Application PCT/IL2007/000579 Search report dated Jul 3, 2008.
International Application PCT/IL2007/000580 Patentability Report dated Mar. 10, 2009.
International Application PCT/IL2007/000580 Search Report dated Sep. 11, 2008.
International Application PCT/IL2007/000581 Patentability Report dated Mar. 26, 2009.
International Application PCT/IL2007/000581 Search Report dated Aug. 25, 2008.
International Application PCT/IL2007/001059 Patentability report dated Apr. 19, 2009.
International Application PCT/IL2007/001059 Search report dated Aug. 7, 2008.
International Application PCT/IL2007/001315 search report dated Aug. 7, 2008.
International Application PCT/IL2007/001315 Patentability Report dated May 5, 2009.
International Application PCT/IL2007/001316 Search report dated Jul. 22, 2008.
International Application PCT/IL2007/001316 Patentability Report dated May 5, 2009.
International Application PCT/IL2007/001488 Search report dated Jun. 20, 2008.
International Application PCT/IL2008/000329 Search report dated Nov. 25, 2008.
International Application PCT/IL2008/000519 Search report dated Nov. 20, 2008.
International Application PCT/IL2008/001188 Search Report dated Jan. 28, 2009.
International Application PCT/IL2008/001356 Search Report dated Feb. 3, 2009.
International Application PCT/IL2008/001446 Search report dated Feb. 20, 2009.
U.S. Appl. No. 11/949,135 Official Action dated Oct. 2, 2009.
Sommer, N., U.S. Appl. No. 12/171,797 “Memory Device with Non-Uniform Programming Levels” filed Jul. 11, 2008.
Shalvi et al., U.S. Appl. No. 12/251,471 “Compensation for Voltage Drifts in Analog Memory Cells” filed Oct. 15, 2008.
Sommer et al., U.S. Appl. No. 12/497,707 “Data Storage in Analog Memory Cells with Protection Against Programming Interruption” filed Jul. 6, 2009.
Winter et al., U.S. Appl. No. 12/534,898 “Data Storage Using Modified Voltages” filed Aug. 4, 2009.
Winter et al., U.S. Appl. No. 12/534,893 “Improved Data Storage in Analog Memory Cells Using Modified Pass Voltages” filed Aug. 4, 2009.
Shalvi et al., U.S. Appl. No. 12/551,567 “Reliable Data Storage in Analog Memory Cells Subjected to Long Retention Periods” filed Sep. 1, 2009.
U.S. Appl. No. 12/323,544 Office Action dated Dec. 13, 2011.
U.S. Appl. No. 12/332,368 Office Action dated Nov. 10, 2011.
U.S. Appl. No. 12/063,544 Office Action dated Dec. 14, 2011.
U.S. Appl. No. 12/186,867 Office Action dated Jan. 17, 2012.
U.S. Appl. No. 12/119,069 Office Action dated Nov. 14, 2011.
U.S. Appl. No. 12/037,487 Office Action dated Jan. 3, 2012.
U.S. Appl. No. 11/995,812 Office Action dated Oct. 28, 2011.
U.S. Appl. No. 12/551,567 Office Action dated Oct. 27, 2011.
U.S. Appl. No. 12/618,732 Office Action dated Nov. 4, 2011.
U.S. Appl. No. 12/649,382 Office Action dated Jan. 6, 2012.
U.S. Appl. No. 13/284,909, filed Oct. 30, 2011.
U.S. Appl. No. 13/284,913, filed Oct. 30, 2011.
U.S. Appl. No. 13/338,335, filed Dec. 28, 2011.
U.S. Appl. No. 131355,536, filed Jan. 22, 2012.
Kim et al., “Multi-bit Error Tolerant Caches Using Two-Dimensional Error Coding”, Proceedings of the 40th Annual ACM/IEEE International Symposium on Microarchitecture (MICRO-40), Chicago, USA, Dec. 1-5, 2007.
U.S. Appl. No. 12/019,011 Official Action dated Nov. 20, 2009.
Takeuchi et al., “A Multipage Cell Architecture for High-Speed Programming Multilevel NAND Flash Memories”, IEEE Journal of Solid State Circuits, vol. 33, No. 8, Aug. 1998.
JEDEC Standard JESD84-C44, “Embedded MultiMediaCard (e•MMC) Mechanical Standard, with Optional Reset Signal”, Jedec Solid State Technology Association, USA, Jul. 2009.
JEDEC, “UFS Specification”, version 0.1, Nov. 11, 2009.
SD Group and SD Card Association, “SD Specifications Part 1 Physical Layer Specification”, version 3.01, draft 1.00, Nov. 9, 2009.
Compaq et al., “Universal Serial Bus Specification”, revision 2.0, Apr. 27, 2000.
Serial ATA International Organization, “Serial ATA Revision 3.0 Specification”, Jun. 2, 2009.
Gotou, H., “An Experimental Confirmation of Automatic Threshold Voltage Convergence in a Flash Memory Using Alternating Word-Line Voltage Pulses”, IEEE Electron Device Letters, vol. 18, No. 10, pp. 503-505, Oct. 1997.
Provisional Applications (4)
Number Date Country
61093613 Sep 2008 US
61105819 Oct 2008 US
61120968 Dec 2008 US
61141866 Dec 2008 US