1. Field
The present application relates to optical metrology, and more particularly to optical metrology model optimization for repeating structures.
2. Related Art
Optical metrology involves directing an incident beam at a structure, measuring the resulting diffracted beam, and analyzing the diffracted beam to determine various characteristics, such as the profile of the structure. In semiconductor manufacturing, optical metrology is typically used for quality assurance. For example, after fabricating a periodic grating structure in proximity to a semiconductor chip on a semiconductor wafer, an optical metrology system is used to determine the profile of the periodic grating. By determining the profile of the periodic grating structure, the quality of the fabrication process utilized to form the periodic grating structure, and by extension the semiconductor chip proximate the periodic grating structure, can be evaluated.
In optical metrology, an optical metrology model is typically developed to measure a structure. The optical metrology model can be expressed using metrology model variables. In general, the greater the number of metrology model variables that are allowed to float in developing the optical metrology model, the greater the accuracy of the measurements obtained using the optical metrology model. However, increasing the number of metrology model variables allowed to float also increases the amount of time needed to develop the optical metrology model. Additionally, in some cases, allowing too many metrology model variables can produce erroneous measurements.
In one exemplary embodiment, a plurality of unit cell configurations are defined for a repeating structure. Each unit cell configuration is defined by one or more unit cell parameters. Each unit cell of the plurality of unit cell configurations differs from one another in at least one unit cell parameter. One or more selection criteria are used to select one of the plurality of unit cell configurations. The selected unit cell configuration can then be used to characterize the top-view profile of the repeating structure.
The present application can be best understood by reference to the following description taken in conjunction with the accompanying drawing figures, in which like parts may be referred to by like numerals:
The following description sets forth numerous specific configurations, parameters, and the like. It should be recognized, however, that such description is not intended as a limitation on the scope of the present invention, but is instead provided as a description of exemplary embodiments.
1. Optical Metrology
With reference to
As depicted in
To determine the profile of periodic grating 102, optical metrology system 100 includes a processing module 114 configured to receive the measured diffraction signal and analyze the measured diffraction signal. As described below, the profile of periodic grating 102 can then be determined using a library-based process or a regression-based process. Additionally, other linear or non-linear profile extraction techniques are contemplated.
2. Library-based Process of Determining Profile of Structure
In a library-based process of determining the profile of a structure, the measured diffraction signal is compared to a library of simulated diffraction signals. More specifically, each simulated diffraction signal in the library is associated with a hypothetical profile of the structure. When a match is made between the measured diffraction signal and one of the simulated diffraction signals in the library or when the difference of the measured diffraction signal and one of the simulated diffraction signals is within a preset or matching criterion, the hypothetical profile associated with the matching simulated diffraction signal is presumed to represent the actual profile of the structure. The matching simulated diffraction signal and/or hypothetical profile can then be utilized to determine whether the structure has been fabricated according to specifications.
Thus, with reference again to
The set of hypothetical profiles stored in library 116 can be generated by characterizing a hypothetical profile using a set of parameters, then varying the set of parameters to generate hypothetical profiles of varying shapes and dimensions. The process of characterizing a profile using a set of parameters can be referred to as parameterizing.
For example, as depicted in
As described above, the set of hypothetical profiles stored in library 116 (
With reference again to
For a more detailed description of a library-based process, see U.S. patent application Ser. No. 09/907,488, titled GENERATION OF A LIBRARY OF PERIODIC GRATING DIFFRACTION SIGNALS, filed on Jul. 16, 2001, which is incorporated herein by reference in its entirety.
3. Regression-based Process of Determining Profile of Structure
In a regression-based process of determining the profile of a structure, the measured diffraction signal is compared to a simulated diffraction signal (i.e., a trial diffraction signal). The simulated diffraction signal is generated prior to the comparison using a set of parameters (i.e., trial parameters) for a hypothetical profile. If the measured diffraction signal and the simulated diffraction signal do not match or when the difference of the measured diffraction signal and one of the simulated diffraction signals is not within a preset or matching criterion, another simulated diffraction signal is generated using another set of parameters for another hypothetical profile, then the measured diffraction signal and the newly generated simulated diffraction signal are compared. When the measured diffraction signal and the simulated diffraction signal match or when the difference of the measured diffraction signal and one of the simulated diffraction signals is within a preset or matching criterion, the hypothetical profile associated with the matching simulated diffraction signal is presumed to represent the actual profile of the structure. The matching simulated diffraction signal and/or hypothetical profile can then be utilized to determine whether the structure has been fabricated according to specifications.
Thus, with reference again to
In one exemplary embodiment, the simulated diffraction signals and hypothetical profiles can be stored in a library 116 (i.e., a dynamic library). The simulated diffraction signals and hypothetical profiles stored in library 116 can then be subsequently used in matching the measured diffraction signal.
For a more detailed description of a regression-based process, see U.S. patent application Ser. No. 09/923,578, titled METHOD AND SYSTEM OF DYNAMIC LEARNING THROUGH A REGRESSION-BASED LIBRARY GENERATION PROCESS, filed on Aug. 6, 2001, which is incorporated herein by reference in its entirety.
4. Algorithm for Determining Simulated Diffraction Signal
As described above, simulated diffraction signals are generated to be compared to measured diffraction signals. As will be described below, in one exemplary embodiment, simulated diffraction signals can be generated by applying Maxwell's equations and using a numerical analysis technique to solve Maxwell's equations. More particularly, in the exemplary embodiment described below, rigorous coupled-wave analysis (RCWA) is used. It should be noted, however, that various numerical analysis techniques, including variations of RCWA, modal analysis, integral method, Green's functions, Fresnel method, finite element and the like can be used.
In general, RCWA involves dividing a profile into a number of sections, slices, or slabs (hereafter simply referred to as sections). For each section of the profile, a system of coupled differential equations generated using a Fourier expansion of Maxwell's equations (i.e., the features of the electromagnetic field and permittivity (ε)). The system of differential equations is then solved using a diagonalization procedure that involves eigenvalue and eigenvector decomposition (i.e., Eigen-decomposition) of the characteristic matrix of the related differential equation system. Finally, the solutions for each section of the profile are coupled using a recursive-coupling schema, such as a scattering matrix approach. For a description of a scattering matrix approach, see Lifeng Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A13, pp 1024-1035 (1996), which is incorporated herein by reference in its entirety. Specifically for a more detail description of RCWA, see U.S. patent application Ser. No. 09/770,997, titled CACHING OF INTRA-LAYER CALCULATIONS FOR RAPID RIGOROUS COUPLED-WAVE ANALYSES, filed on Jan. 25, 2001, which is incorporated herein by reference in its entirety.
5. Machine Learning Systems
In one exemplary embodiment, simulated diffraction signals can be generated using a machine learning system (MLS) employing a machine learning algorithm, such as back-propagation, radial basis function, support vector, kernel regression, and the like. For a more detailed description of machine learning systems and algorithms, see “Neural Networks” by Simon Haykin, Prentice Hall, 1999, which is incorporated herein by reference in its entirety. See also U.S. patent application Ser. No. 10/608,300, titled OPTICAL METROLOGY OF STRUCTURES FORMED ON SEMICONDUCTOR WAFERS USING MACHINE LEARNING SYSTEMS, filed on Jun. 27, 2003, which is incorporated herein by reference in its entirety.
6. Repeating Structure
As described above, optical metrology has been traditionally performed on lines and spaces of periodic gratings with profiles that vary only in one dimension. In particular, with reference again to
As depicted in
As depicted in
It should be recognized that a unit cell may have one or more features and the features may have different shapes. For example, a unit cell may have compound features such as a hole with an island inside the hole.
As mentioned above, it should be recognized that the features in a unit cell may be islands, posts, holes, vias, trenches, or combinations of the above. Furthermore, the features may have a variety of shapes and may be concave or convex features or a combination of concave and convex features.
With reference to
With reference to
With reference to
In the present example, the x-pitch 312 of the repeating structure is the distance between the centers of two of the adjacent sub-features 368 and 370. For illustration purposes, a dotted vertical line 364 is drawn through the center of sub-feature 368 and another dotted vertical line 366 is drawn through the center of sub-feature 370. The x-pitch 312 is the distance, typically in nanometers, nm, between the dotted vertical line 364 through sub-feature 368 and the dotted vertical line 366 through sub-feature 370.
Feature 320, including sub-features 368 and 370, are divided into layers, starting with layer 0, layer 1, layer 2, and so on. Assume layer 0 is air, layer 1 is material 1, layer 2 is material 3, etc. Layer 0 has an n and k of air, layer 1 has the n and k of material 1, etc. The distance 316 between the sub-features 368 and 370 is the same as the major axis 316 of the top of the feature 320,in
The profile parameters of the top-view profile and the cross-sectional view profile are integrated into an optical metrology model. In integrating the profile parameters, any redundant profile parameters are removed. For example, as described above, the profile parameters of the top-view profile includes x-pitch 312, y-pitch 314, major axis 316, and major axis 318. The profile parameters of the cross-sectional view profile includes x-pitch 312, major axis 316, major axis 318, n and k values for the layers, and slope of the feature. Thus, in this example, the profile parameters of the optical metrology model includes x-pitch 312, y-pitch 312, major axis 316, major axis 318, n and k values for the layers, and slope of the feature. See also, patent application Ser. No. 10/274,252, titled GENERATING SIMULATED DIFFRACTION SIGNALS FOR TWO-DIMENSIONAL STRUCTURES, filed on Oct. 17, 2002, which is incorporated herein by reference in its entirety.
As mentioned above, unit cells in a repeating structure may be orthogonal and non-orthogonal.
Other profile parameters associated with repeating structures is the position of the feature in the unit cell.
In addition to the parameters for repeating structures discussed above, other parameters included in the characterization of the repeating structures are width ratio and rectangularity of the features in a unit cell. The width ratio parameter defines the amount of sharpness of the corners of the hole or island in the unit cell. As shown in
Rectangularity defines the amount of sharpness of a feature such as a hole, post, or island in a unit cell. In
Another method of characterizing a feature of a unit cell is by utilizing a mathematical model of the feature. For example, the outer boundaries of a feature in a unit cell of a repeating structure such as a contact hole or a post can be described using one or more equations. In this modeling construct, a hole is a structure made of air, with a specific N and K much like an island is a structure with a different N and K. Therefore, a characterization of the boundaries of the features in a unit cell, such a hole, includes description of the shape and slope of the feature, as shown in cross-sectional view profile in
The top-view shape of the feature in the unit cell can be described mathematically by modifying the typical equation of an ellipse for a more general definition and by introducing exponents m and n:
x=a·cosm(φ+φx) and y=b·sinn(φ+φy) 1.00
where x and y are the lateral coordinates of the shape in a section plane z that is constant, φ is the azimuthal angle, φx and φy are the azimuthal angle in the X and Y-axes, respectively, and φ=0 . . . 2π. If m=2/M and n=2/N, M and N correspond to the exponents in the “standard” formula for a super-ellipse:
A more comprehensive parameter function is possible by using a universal representation that is achieved with a Fourier synthesis:
where x0 and y0 are the de-centering or lateral offset. Consecutive layers of the unit cell can be adjusted to each other by these de-centering parameters. In this way, complex repeating structures can be built by successively describing the layers of the structure.
The next step is to assign a slope (the third dimension) to the feature in the unit cell. This can be done using the parameter expression where the slope s is a function of t, or φ, respectively. The complete description of the feature can be expressed with the following equations:
x=f(t); y=g(t); and s=h(t) 2.00
where f, g, and h are different functional characterization of the variable t and t may be the azimuthal angle φ or some other variable of the shape.
For instance, a feature shaped like an elliptical hole with ascending slopes on two opposite sides and re-entrant slopes on the two perpendicular sides may be given by:
x=a·cos φ; y=b·sin φ; and s=92°−c·arcsin(d·|sin φ|) 2.10
with φ=0 . . . 2π, c=2°, d=0.07, the slope is 92° (i.e., slightly overhanging) along the x-axis, and about 88° (i.e., almost normal) along the y-axis, and the slope will change gradually between these extreme values. In this way, only linear slopes, both ascending and re-entrant can be covered. Non-linear slope forms can be addressed by assembling the feature with more than two non-uniform and non-scaling shapes. In order to describe non-linear shapes, an additional parameter z is introduced, resulting in the following equations:
x=f(t,z); y=g(t,z); and s=h(t,z). 2.20
where z is an expression that characterizes the non-linearity of the shapes.
Composite repeating structures where the unit cells that are formed by more than one material and where the features include more that one shape, are deconstructed into its building blocks and then treated as described above. It is understood that other mathematical representation of shapes in addition to those described above may be used to characterize the profile of features in a unit cell of repeating structure.
In one exemplary embodiment, profile data is also used to characterize features in a unit cell.
An alternative embodiment involves the measurement of profiles of repeating structures using one or more metrology devices, as in step 610,
In step 630 of
An illustration of successive shape approximation technique shall be discussed in conjunction with
Assume further that after analyzing the variability of the top-view shape of the feature 802, it was determined that two ellipses (Ellipsoid 1 and Ellipsoid 2) and two polygons (Polygon 1 and Polygon 2) were found to fully characterize the feature 802. In turn, parameters needed to characterize the two ellipses and two polygons comprise nine parameters as follows: T1 and T2 for Ellipsoid 1; T3, T4, and θ1 for Polygon 1; T4, T5, and θ2 for Polygon 2; and T6 and T7 for Ellipsoid 2. Many other combinations of shapes could be used to characterize the top-view of the feature 802 in unit cell 800.
The mathematical approach utilizes a mathematical formula to describe a shape of the feature of the in the unit cell. Starting with the top-view of the unit cell, a formula is selected that can best express the shape of feature. If the top-view profile of the feature is close to an ellipse, a general ellipse formula may be used such as equation 1.10 or a Fourier synthesis of the general ellipse formula such as equation 1.20. Alternatively, a set of equations may be used that characterizes the variability of the collected profiles of the repeating structure, such as the set of equations in 2.10 and 2.20. Regardless of the shape, if one or more mathematical formulae or expressions adequately characterize the variability of the top-view profiles, these equations can be used to characterize the top-view of the features in a unit cell. With respect to
Other embodiments may employ classic geometric shapes such as ellipses but altered by using automated drafting techniques to change the axis or center of rotation. For example, an ellipse may be configured to look more like a peanut-shaped profile using such techniques. Even arbitrary shapes made possible using automated techniques, use of software that utilize multiple axes of rotations and centers, could be used to characterize the view of the structure that is under investigation.
With reference to
For example, with reference to
With reference to
In step 740 of
In step 750 of
Referring to
In step 770, measured diffraction signals are matched against the simulated diffraction signals created using the sets of profile parameters derived from the optimized metrology model to determine the best match.
In step 780, using the measured and the best match simulated diffraction signal, the one or more matching criteria are calculated. Goodness of fit, cost function, SSE, and the like may be used as matching criteria. If the matching criteria are not met, then the characterization of the features in the unit cell and/or the selection of top-view profile parameters may be altered, as in step 790.
For example, assume one or more measured diffraction signals off a repeating structure with a unit cell similar to unit cell 800 depicted in
Otherwise, in step 790, characterization of the top-view profile of the structure and/or selection of top-view profile parameters of the repeating structure are revised. Revision of characterization of the top-view profile may include using three instead of two polygons to characterize the middle portion of feature 802 in
If successive exclusion of profile parameters is used, then the matching criteria are set up accordingly. For example, the preset matching criteria may include goodness of fit of not more than 94% and a cost function of not less than 2.30. If the calculated matching criteria show a goodness of fit of 96% and a cost function of 1.90, then the matching criteria are not met and processing proceeds to step 790. In step 790, characterization of the top-view profile of the structure and/or selection of top-view profile parameters of the repeating structure are revised. Revision of characterization of the top-view profile may include using three instead of two polygons to characterize the middle portion of feature 802 in
The cross-sectional view profile parameters of the repeating structure are processed in a similar manner, changing the type of shapes used to approximate the cross-sectional view profile and progressively fixing more parameters until the matching criteria are met. For a more detailed discussion of cross-sectional view profile shape and profile parameter selection, refer to U.S. patent application Ser. No. 10/206,491, titled MODEL AND PARAMETER SELECTION FOR OPTICAL METROLOGY, filed on Jul. 25, 2002, which is incorporated herein by reference in its entirety.
In either technique, once the matching criteria are met, in step 800 of
The same concepts and principles apply to a repeating structure where the unit cell has more than one structure feature as in
As discussed above, when the progressive inclusion technique is used, depending on the variability of top-view profile data collected, only the major axes of the larger of two ellipsoids may be selected to model features in unit cell 260. Specifically, parameters H14, H24, H34, and H44 may be specified as the selected top-view profile parameters for optimization. If the matching criteria are not met, then successive iterations of the optimization may include the other top-view profile parameters of the features of the unit cell 260.
When the successive exclusion technique is used, initially, all the axes of all the ellipsoids may be used to model the features in unit cell 260. Specifically, parameters H11 to H14, H21 to H24, H31 to H34, and H41 to H44 may be specified as the selected top-view profile parameters for optimization. If the matching criteria are not met, then successive iterations of the optimization may exclude the other top-view profile parameters of the features of the unit cell 260.
As discussed above, a unit cell may include a combination of holes, trenches, vias or other concave shapes. A unit cell may also include a combination of posts, islands or other convex shapes or a combination of convex-type or concave-type shapes.
7. Selecting Unit Cell Configuration
In one exemplary embodiment, a plurality of unit cell configurations are defined for a repeating structure. Each unit cell configuration is defined by one or more unit cell parameters. Each unit cell of the plurality of unit cell configurations differs from one another in at least one unit cell parameter. In the present exemplary embodiment, the one or more unit cell parameters can include pitch, area, and pitch angle. One or more selection criteria are used to select one of the plurality of unit cell configurations. The selected unit cell configuration can then be used to characterize the top-view profile of one or more portions of one or more features enclosed within the unit cell configuration.
For example,
Unit cell configurations 1008(A), 1008(B), and 1008(C) also have varying pitches. In particular, unit cell configuration 1008(A) (depicted with solid lines in
For example,
As described above, in one exemplary embodiment, after defining a plurality of unit cell configurations for a repeating structure, one or more selection criteria can be used to select one of the plurality of unit cell configurations. Empirical data has shown that a high level of accuracy can be achieved with faster processing time in optical metrology when the pitch and unit cell area are minimized and the pitch angle is closest to 90 degrees. Thus, in the present exemplary embodiment, a unit cell configuration is selected with a minimum pitch, minimum unit cell area, and/or minimum difference of pitch angle from 90 degrees.
In particular, the X and Y pitches of all unit cell configurations are compared, and the unit cell configuration with the minimum pitch is selected. To select the unit cell configuration with the minimum pitch, the X-pitch is determined separately from the Y-pitch. The unit cell configuration that encloses the minimum number of features or portions of features (e.g., in the case of unit cell configurations that enclose entire features, the minimum number of features is only one feature, such as a contact hole or post) generally has the minimum pitch. Conversely, a unit cell configuration with more than the minimum number of repeating features has a larger pitch.
If multiple unit cell configurations have the same minimum pitch, then the areas of these unit cell configurations are compared. The unit cell configuration with the minimum area is selected. With reference to
Area=Dx1*Dy1*Cos(pitch angle 1106(A)) (3.10)
The areas of unit cell configurations with the minimum pitch selected above are compared and the unit cell configuration with the minimum area is selected.
If multiple unit cell configurations have the same minimum pitch and the same minimum area, then the pitch angles of these unit cell configurations are compared. The unit cell configuration with the minimum difference of pitch angle from 90 degrees is selected. If multiple unit cell configurations have the same pitch angle closest to 90 degrees, any one of these unit cell configurations may be selected.
As noted above, the criteria used in the above example was determined based on empirical data. It should be recognized, however, that various criteria can be used to select between multiple unit cell configurations depending on the particular application, need, and user preference.
In step 705, metrology device variables, such as the azimuthal angle of incidence, the angle of incidence, wavelength range, and/or metrology device variables, are optimized for signal sensitivity using simulation of the diffraction signal. As discussed above, φ is the azimuthal angle of incidence of the incident beam 302 relative to the X-axis as depicted in
For example, optimization for signal sensitivity can be done by varying the azimuthal angle of incidence, angle of incidence of the incoming beam, wavelength range, and/or metrology device variables while holding the other variables constant. Alternatively, each of the listed variables may be optimized individually or in combination with one or more of the other variables in the list above in order to get the highest level of diffraction signal sensitivity.
Examples of other metrology device variables are device settings that can be varied prior to the measurement of the diffraction signal off the repeating structure. For example, if the metrology device is an ellipsometer, the polarizer and analyzer settings can be optimized. Reflectance coefficients α and β of the device can be optimized for signal sensitivity for a given unit cell configuration selected for the application. The four components of the diffraction signal include rss, rsp, rps, and rpp. Typically, instead of measuring all four components, two entities that are combinations of the four components are measured in order to speed up the diffraction signal measurement.
For example, the following may be measured:
(α1rss+β1rsp) and (α2rPP+β2rps) (3.20)
where (α1, β1) and (α2, β2) are constants and are determined by the instrument setup. As mentioned above, the reflectance coefficients α and β of the device can be optimized for signal sensitivity individually or in combination with the other listed variables using simulation.
In step 710, the top-view profile of the structure is characterized using the selected unit cell configuration either by fitting one or more geometric shapes, i.e., successive shape approximation or by utilizing the mathematical approach. In step 720, profile parameters are selected to represent variations in the top-view profile of the structure. Selection of parameters may be based on historical data and/or progressive inclusion of select parameters or successive exclusion of select parameters.
In step 730, profile parameters associated with the cross-sectional view profile of the structure are selected. Cross-sectional view profile parameters include the polar angle of incidence of the incident beam, the azimuthal angle of incidence of the incident beam, the polarization angle of the incident, X-pitch, Y-pitch, pitch angle, width of the various layers, N and K of the various layers or N and K of the various features of the repeating structure within the unit cell, height of the feature, width of the feature at various points, sidewall angle, footing or top rounding of the feature, and the like. Similar to the process used in selecting the top-view profile parameters, selection of parameters associated with the cross-sectional view profile may be based on historical data and/or successively making select parameters fixed instead of variable.
In step 740, the selected top-view and cross-sectional view profile parameters are integrated into the optical metrology model. Integration of top-view and cross-sectional view profile parameters is explained in detail in U.S. patent application Ser. No. 10/274,252, titled GENERATING SIMULATED DIFFRACTION SIGNALS FOR TWO-DIMENSIONAL STRUCTURES, filed on Oct. 17, 2002, which is incorporated herein by reference in its entirety.
In step 750, the optical metrology model is optimized. Optimization of metrology models typically involves a regression-based process. The output of this step is an optimized metrology model based on the selected profile parameters and one or more termination criteria. Examples of termination criteria include goodness of fit, cost function, sum squared error (SSE), and the like. For a detailed description of regression-based processes, see U.S. patent application Ser. No. 09/923,578, titled METHOD AND SYSTEM OF DYNAMIC LEARNING THROUGH A REGRESSION-BASED LIBRARY GENERATION PROCESS, filed on Aug. 6, 2001, which is incorporated herein by reference in its entirety.
In step 760, sets of profile parameters and corresponding diffraction signals are created using the optimized metrology model. A profile parameter set includes the profile parameters selected in step 720 and 730. The corresponding diffraction signal is created by simulating the diffraction off the repeating structure using a profile parameter set. For example, a library can be generated using the ranges of the selected profile parameters and appropriate resolutions for each profile parameter. A machine learning system (MLS) may be trained with a subset of the library created. A combination of regression and library generation techniques may be used to generate either a library or a trained MLS capable of creating new diffraction signals from an input set of profile parameters or extracting a set of profile parameters for an input measured diffraction signal.
In step 770, measured diffraction signals are matched against the simulated diffraction signals created using the sets of profile parameters derived from the optimized metrology model to determine the best match.
In step 780, using the measured and the best match simulated diffraction signal, the one or more matching criteria are calculated. Goodness of fit, cost function, SSE, and the like may be used as matching criteria. If the matching criteria are met, model optimization is complete. Otherwise, in step 790, characterization of the top-view profile of the structure and/or selection of top-view profile parameters of the repeating structure are revised.
The same concepts and principles apply to a repeating structure where the unit cell has more than one structure feature. Furthermore, the unit cell configuration of the repeating structure may include a combination of holes, trenches, vias or other concave shapes. It can also include a combination of posts, islands or other convex shapes or a combination of convex-type or concave-type shapes. For further detail on metrology model optimization of repetitive structures, refer to U.S. patent application Ser. No. 11/061,303, titled OPTICAL METROLOGY OPTIMIZATION FOR REPETITIVE STRUCTURES, filed on Feb. 18, 2005, which is incorporated herein by reference in its entirety.
The signal sensitivity optimizer 914 optimizes the azimuthal angle of incidence, the angle of incidence, wavelength range, and/or metrology device variables for signal sensitivity using simulation of the diffraction signal. Each of the previously listed variables may be optimized individually or in combination with one or more of the other variables in the list in order to get the highest level of diffraction signal sensitivity. As discussed above, examples of metrology device variables are polarizer and analyzer settings, and reflectance coefficients α and β of the device. The signal sensitivity optimizer 914 transmits the selected unit cell configuration and optimized values of the azimuthal angle of incidence, the angle of incidence, wavelength range, and/or metrology device variables 924 to the profile pre-processor 900 and the optimized values of the azimuthal angle of incidence, the angle of incidence, wavelength range, and/or metrology device variables 922 to the metrology device 926.
The profile pre-processor 900 selects specific top-view profile parameters and cross-sectional parameters based on information obtained from empirical measurements, historical data, and simulation data, transmitting the selected top-view profile parameters and cross-sectional parameters together with the optimized azimuthal angle of incidence, the angle of incidence, wavelength range, and/or metrology device variables 966 to the metrology model analyzer 930.
The metrology model optimizer 930 processes the input measured diffraction signals 964 from the metrology device 926 and the selected profile parameters 966 to optimize the metrology model and extract the best match simulated diffraction signal 956. The metrological model optimizer 930 communicates the best match simulated diffraction signal 956 to a comparator 908. The metrology model optimizer 930 may optionally use data from a library or data store comprising pairs of diffraction signals and profile parameters, or a machine leaming systems trained to determine simulated diffraction signals from profile parameters or profile parameters from simulated diffraction signals.
The comparator 908 calculates the values of the matching criteria and compares the calculated values with previously set matching criteria 960. If the calculated values are not within the matching criteria, the comparator 908 communicates a signal 954 to the model adjuster 904 to determine an adjustment 952 to the optical metrology model. The model adjuster 904 communicates the adjustment or revisions 952 to the profile pre-processor 900 and iterates the cycle.
If the calculated values are within the matching criteria, the comparator 908 terminates the optimization process and communicates the extracted profile parameter values, corresponding diffraction signals, and the optimized model 958 to the post optimization processor 910. The post optimization processor 910 transmits the optimized model or signal/parameter pair 960 to at least one of the library generator 940, MLS builder 942, and/or the real time profiler 944.
Although exemplary embodiments have been described, various modifications can be made without departing from the spirit and/or scope of the present invention. For example, a first iteration may be run with a high number of profile parameters and other metrology variables allowed to float. After the first iteration, variables that do not produce significant changes to the diffraction response may be set to fixed values. Alternatively, variables initially considered constant due to previous empirical data may be allowed to float after further analyses. For example, the X-offset and Y-offset or the pitch angle may be initially held constant but may be allowed to float in successive iterations due to additional profile data obtained. Furthermore, instead of ellipses and polygons, other shapes may be utilized or the roughness of the shapes may be taken into account to provide a better or faster termination of the optimization process. Therefore, the present invention should not be construed as being limited to the specific forms shown in the drawings and described above but based on the claims below.
The present application is a continuation-in-part application of U.S. application Ser. No. 11/061,303, titled OPTICAL METROLOGY OPTIMIZATION FOR REPETITIVE STRUCTURES, filed on Feb. 18, 2005, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11061303 | Feb 2005 | US |
Child | 11218884 | Sep 2005 | US |