Selective titanium nitride etching

Information

  • Patent Grant
  • 9449845
  • Patent Number
    9,449,845
  • Date Filed
    Monday, December 29, 2014
    10 years ago
  • Date Issued
    Tuesday, September 20, 2016
    8 years ago
Abstract
Methods of etching exposed titanium nitride with respect to other materials on patterned heterogeneous structures are described, and may include a remote plasma etch formed from a fluorine-containing precursor. Precursor combinations including plasma effluents from the remote plasma are flowed into a substrate processing region to etch the patterned structures with high titanium nitride selectivity under a variety of operating conditions. The methods may be used to remove titanium nitride at faster rates than a variety of metal, nitride, and oxide compounds.
Description
TECHNICAL FIELD

The present technology relates to semiconductor processes and equipment. More specifically, the present technology relates to selective etching of materials on semiconductor substrates.


BACKGROUND

Integrated circuits are made possible by processes which produce intricately patterned material layers on substrate surfaces. Producing patterned material on a substrate requires controlled methods for removal of exposed material. Chemical etching is used for a variety of purposes including transferring a pattern in photoresist into underlying layers, thinning layers, or thinning lateral dimensions of features already present on the surface. Often it is desirable to have an etch process that etches one material faster than another facilitating, for example, a pattern transfer process. Such an etch process is said to be selective to the first material. As a result of the diversity of materials, circuits, and processes, etch processes have been developed with a selectivity towards a variety of materials.


A wet HF etch preferentially removes silicon oxide over other dielectrics and semiconductors. However, wet processes are unable to penetrate some constrained trenches and sometimes deform the remaining material. Dry etches produced in local plasmas formed within the substrate processing region can penetrate more constrained trenches and exhibit less deformation of delicate remaining structures. However, local plasmas can damage the substrate through the production of electric arcs as they discharge.


Thus, there is a need for improved methods and systems for selectively etching materials and structures on semiconductor substrates. These and other needs are addressed by the present technology.


SUMMARY

Methods of etching exposed titanium nitride with respect to other materials on patterned heterogeneous structures are described, and may include a remote plasma etch formed from a fluorine-containing precursor. Precursor combinations including plasma effluents from the remote plasma are flowed into a substrate processing region to etch the patterned structures with high titanium nitride selectivity under a variety of operating conditions. The methods may be used to remove titanium nitride at faster rates than a variety of metal, nitride, and oxide compounds.


The at least one additional precursor may include one or more precursors selected from the group consisting of helium, argon, and molecular hydrogen (H2). The fluorine-containing precursor may include one or more precursors selected from the group consisting of atomic fluorine, diatomic fluorine, nitrogen trifluoride, carbon tetrafluoride, hydrogen fluoride, and xenon difluoride. The methods may be performed such that the processing region in which the semiconductor substrate resides is plasma-free during the etching process.


The methods may include having the additional precursor consist of one or both of helium and argon. The precursor combination delivered into the processing region may be substantially devoid of hydrogen. The exposed second material may include silicon oxide and/or silicon nitride, and the selectivity of the etching operation (exposed titanium nitride region:exposed silicon oxide region) may be greater than or about 5:1, and in disclosed embodiments may be greater than or about 10:1. The substrate temperature may be maintained below or about 50° C. during the etch process, and in disclosed embodiments may be maintained at or below about 10° C. during the etch process.


The methods can include that the at least one additional precursor comprises hydrogen, and may additionally include one or more carrier gases including helium or argon. The exposed second material may include tungsten, and the selectivity of the etching operation (exposed titanium nitride region:exposed tungsten region) may be greater than or about 50:1, and in disclosed embodiments may be greater than or about 100:1. The patterned substrate may further include additional exposed regions or materials, and in disclosed embodiments the substrate further comprises an exposed silicon nitride region. The selectivity of the etching operation (exposed titanium nitride region:exposed silicon nitride region) may be greater than or about 10:1. The patterned substrate may further include an exposed silicon oxide region, and the selectivity of the etching operation (exposed titanium nitride region:exposed silicon oxide region) may be greater than or about 5:1. The patterned substrate may further include an exposed tantalum nitride region, and the selectivity of the etching operation (exposed titanium nitride region:exposed tantalum nitride region) may be greater than or about 10:1. The substrate temperature may be maintained at or above about 50° C. during the etch process, and in disclosed embodiments may be maintained at or above about 200° C. during the etch process. The method may include flowing the hydrogen into the substrate processing region without its being excited by any remote plasma prior to entering the processing region. The plasma utilized in the methods in the remote plasma region may be a capacitively-coupled plasma.


Such technology may provide numerous benefits over conventional techniques. For example, process throughput may be increased based on the improved selectivity. Additionally, less protection of exposed materials may be required with the improved selective etching with respect to multiple materials. These and other embodiments, along with many of their advantages and features, are described in more detail in conjunction with the below description and attached figures.





BRIEF DESCRIPTION OF THE DRAWINGS

A further understanding of the nature and advantages of the disclosed technology may be realized by reference to the remaining portions of the specification and the drawings.



FIG. 1 shows a flow chart of a titanium nitride selective etch process according to disclosed embodiments.



FIG. 2A shows a schematic cross-sectional view of a substrate processing chamber according to the disclosed technology.



FIG. 2B shows a schematic cross-sectional view of a portion of a substrate processing chamber according to the disclosed technology.



FIG. 2C shows a bottom plan view of a showerhead according to the disclosed technology.



FIG. 3 shows a top plan view of an exemplary substrate processing system according to the disclosed technology.





In the appended figures, similar components and/or features may have the same numerical reference label. Further, various components of the same type may be distinguished by following the reference label by a letter that distinguishes among the similar components and/or features. If only the first numerical reference label is used in the specification, the description is applicable to any one of the similar components and/or features having the same first numerical reference label irrespective of the letter suffix.


DETAILED DESCRIPTION

The present technology includes improved processes and chemistry profiles for removing titanium nitride on patterned semiconductor substrates with respect to other materials. While conventional processes may remove titanium nitride at slower or equal rates than other materials, the presently described technology allows for improved rates of titanium nitride removal. In so doing, substrate throughput may be improved in a variety of ways. For example, the rate at which compositions are etched may be increased. Additionally, less material may be required as initially deposited or located in, on, or as part of the patterned substrate with respect to the titanium nitride to be removed. If additional material located on the substrate with titanium nitride is to be maintained, but etches at the same rate as titanium nitride, for example, additional material would generally need to be initially deposited or located beyond what is to be maintained that is proportional to the etch rate with respect to the amount of titanium nitride to be removed. Accordingly, process times may increase. However, if the selectivity to titanium nitride can be increased, less of the second material will be removed, and less additional material would need to have been initially deposited or located on the substrate. Accordingly, process times can be reduced.


Methods of etching exposed titanium nitride with respect to other materials on patterned heterogeneous structures are described, and may include a remote plasma etch formed from a fluorine-containing precursor. Precursor combinations including plasma effluents from the remote plasma are flowed into a substrate processing region to etch the patterned structures with high titanium nitride selectivity under a variety of operating conditions. The methods may be used to remove titanium nitride at faster rates than a variety of metal, nitride, and oxide compounds.


Selective dry etch processes may be used to remove one material with respect to another material on patterned semiconductor substrates. However, depending on the exposed materials, process gases and process conditions may not provide adequate etch rates of one material without damaging exposed features of another material. The presence of certain precursor chemicals may directly affect the etch rates and selectivities of a variety of materials. The inventors have advantageously determined that the selectivity of titanium nitride over a variety of materials can be enhanced by exciting a fluorine-containing precursor in a remote plasma, and limiting the additional precursors that are used in conjunction with the fluorine-containing precursor based on the material that is to be maintained.


In order to better understand and appreciate the invention, reference is now made to FIG. 1, which shows a flow chart of a titanium nitride selective etch process according to disclosed embodiments. Prior to the first operation, the substrate may be patterned leaving exposed regions of titanium nitride and exposed regions of a second material that may include one or more of tantalum nitride, tungsten, silicon nitride, silicon oxide, etc. Various front end processing may have been performed including the formation of gates, vias, and other structures. The patterned substrate may then be delivered to a substrate processing region at operation 110. In disclosed embodiments, the substrate may already be located in the processing region if a previous operation was performed in the same chamber in which the etch process is to occur. Nitrogen trifluoride (NF3) may be flowed into a plasma region that is separate from, but fluidly coupled with, the processing region at operation 120. Other sources of fluorine may be used in conjunction with or as replacements for the nitrogen trifluoride. In general, a fluorine-containing precursor is flowed into the plasma region and the fluorine-containing precursor comprises at least one precursor selected from the group consisting of atomic fluorine, diatomic fluorine, nitrogen trifluoride, carbon tetrafluoride, hydrogen fluoride, and xenon difluoride.


The separate plasma region may be referred to as a remote plasma region herein and may be within a distinct module from the processing chamber, or as a compartment within the processing chamber. A plasma may be formed within the remote plasma region thereby generating plasma effluents from the fluorine-containing precursor. At operation 130, one or more additional precursors may be flowed that are either additionally flowed into the plasma region, or directed to bypass the plasma region to flow unexcited into the processing region. The additional precursors may include carrier gases, such as for example helium or argon, and may additionally include a hydrogen source, including molecular hydrogen (H2) in disclosed embodiments. The combination of precursors including the plasma effluents is directed to flow into the processing region at operation 140. As previously stated, the precursors may have been pre-mixed in the remote plasma region, or the precursors may be fluidly isolated from one another until they are separately delivered into the processing region.


The patterned substrate may be selectively etched with the precursor combination including plasma effluents at operation 150, such that the exposed titanium nitride region is removed at a higher rate than the exposed second material on the patterned substrate. The reactive chemical species may be removed from the substrate processing region, and then the substrate may be removed from the processing region at operation 160. Using the gas phase dry etch processes described herein, the inventors have established that etch selectivities of over 5:1 with regard to the titanium nitride etch rate as compared to the etch rate of other materials are possible. Achievable selectivities using the methods described herein are additionally capable of etching titanium nitride at rates faster than a second material that typically etches faster than titanium nitride, such as tungsten, as will be described in greater detail below. The titanium nitride etch rate may exceed the exposed second material etch rate by a multiplicative factor of up to or about 5 or more, about 10 or more, about 15 or more, about 20 or more, about 50 or more, about 75 or more, about 100 or more, etc. or greater in embodiments of the technology.


Depending on the additional precursor or precursors used in the exemplary processes, the rates of titanium nitride etching with respect to the exposed second material may by affected. For example, in disclosed embodiments the additional precursor may be one or more precursors selected from the group consisting of helium, argon, and molecular hydrogen (H2). In other embodiments, other hydrogen-containing precursors may be used including ammonia, for example. Depending on what additional materials are exposed, these gases may be used in combination to adjust etch characteristics.


When the exposed materials include titanium nitride and certain other materials including silicon nitride or silicon oxide, the one or more additional precursors may include only carrier gases, such as helium and/or argon. In one embodiment, the additional precursors consist exclusively of helium and/or argon. Put another way, the precursor combination including plasma effluents delivered to the processing region may be completely or substantially devoid of any hydrogen or hydrogen-containing precursors. The additional precursors may be flowed with the fluorine-containing precursor into the plasma region to produce plasma effluents. When these precursor combinations including plasma effluents are delivered into the processing region, the selectivity of the etching operation of an exposed titanium nitride region to an exposed silicon oxide region may be up to, greater than, or about 2:1. The etching selectivity may also be up to, greater than, or about 5:1, 10:1, 15:1, 17:1, 20:1, etc. or more. In terms of material etched, in one minute of processing time about 100 Angstrom or more of titanium nitride may be etched while less than or about 20 Angstrom of silicon oxide may be removed. In other embodiments less than or about 15 Angstrom, 12, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, or 0 Angstrom of silicon oxide may be removed, the last case indicating that the silicon oxide is maintained during the etching of titanium nitride.


During the etching process, the substrate may be maintained at or below about 400° C., and may be maintained at or below about 300° C., 200° C., 100° C., 80° C., 75° C., 50° C., 25° C., 10° C., 0° C., or less. The processing chamber may be maintained at or below about 100 Torr during the processes, and may be maintained at or below about 50 Torr, 25 Torr, 15 Torr, 5 Torr, 1 Torr, 0.1 Torr, etc., or between about 0.1 mTorr and about 10 Torr. By maintaining the substrate temperature at lower temperatures, such as about 10° C. or less, and maintaining the process chamber at a pressure below about 10 Torr, the inventors have determined that the amount of oxide removal can be further limited during the removal of titanium nitride.


Certain materials may typically etch at a faster rate than titanium nitride, including other metals such as tungsten. For example, if the above-described etch process is performed, any exposed tungsten may etch faster than the exposed titanium nitride. If a region of titanium nitride is to be removed, but an exposed region of tungsten is to be maintained, these etching processes may be difficult to control and may damage the tungsten features. To address the selectivity of tungsten to titanium nitride, the inventors have determined that by including hydrogen as one of the additional precursors, the rate at which tungsten etches may be slowed significantly such that the selectivity to titanium nitride reverses, and in disclosed embodiments the rate at which tungsten is etched can be reduced to about zero.


In embodiments, the precursors may include molecular hydrogen with the fluorine-containing radical, or alternatively a hydrogen-containing precursor. The hydrogen may be included with the fluorine-containing radical and carrier gas or gases discussed above that are delivered into the remote plasma region where the plasma effluents are developed. Alternatively, the hydrogen may be delivered separately from the fluorine-containing precursor such that it bypasses the remote plasma region. For example, when a dual-channel showerhead such as that discussed below is utilized, the hydrogen may be delivered into the volume defined by the showerhead plates. Accordingly, the hydrogen may be delivered to the processing region without being excited by any remote plasma, and it may not come into contact with the plasma effluents until it enters the processing region.


When these precursor combinations including hydrogen and containing plasma effluents are delivered into the processing region, the selectivity of the etching operation of an exposed titanium nitride region to an exposed tungsten region may be up to, greater than, or about 10:1. The etching selectivity may also be up to, greater than, or about 20:1, 50:1, 100:1, 500:1, 1000:1, etc. or more, up to the point at which the process is fully selective to titanium nitride and no tungsten is removed. In terms of material etched, in one minute of processing time up to or about 3 Angstrom or more, 6 Angstrom or more, or 10 Angstrom or more of titanium nitride may be etched while less than or about 1 Angstrom of tungsten may be removed. In other embodiments less than or about 0.5 Angstrom, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0001, or 0 Angstrom of tungsten may be removed, that last case of which indicates that the exposed tungsten region is completely maintained.


This process may additionally remove titanium nitride with respect to other materials as well. For example, when titanium nitride is used in gate applications as an interface layer, or as a hard mask for patterning low-k stacks, additionally exposed materials may include one or more materials such as metals including tungsten, and materials including silicon nitride, silicon oxide, and tantalum nitride. In many applications, these layers are to be maintained as much as possible during the titanium nitride removal. Utilizing the processes encompassed by this technology, titanium nitride may be etched with respect to all of these materials, and the selectivity to titanium nitride with respect to each material may be at least or about 5:1. In disclosed embodiments, titanium nitride may be etched with respect to silicon oxide, and the selectivity of the etching operation may be greater than or about 2:1, or greater than or about 5:1. Titanium nitride may be etched with respect to silicon nitride, and the selectivity of the etching operation may be greater than or about 5:1, or greater than or about 10:1. Titanium nitride may also be etched with respect to tantalum nitride, and the selectivity of the etching operation may be greater than or about 5:1, or greater than or about 10:1.


By utilizing the hydrogen precursor, the plasma density with respect to the fluorine-containing precursor may be reduced, which may reduce the etch rate of the materials. This in turn may reduce the substrate throughput for these processes. Etch rate may often be increased by increasing the substrate temperature, but this may also increase the rate at which materials to be maintained are etched. However, the inventors have determined that the process chemistries utilizing hydrogen described in this technology may act synergistically when the temperatures are raised, such that the rate at which titanium nitride is removed may increase faster than the etch rate of other materials to be maintained. Accordingly, the processes may allow the substrate to be maintained at or above about 0° C. or between about 0° C. and about 400° C., but may also be maintained at or above about 10° C., 25° C., 50° C., 75° C., 80° C., 100° C., 200° C., 300° C., 400° C., or more. The processing chamber may be maintained at or below about 100 Torr, and may be maintained at or below about 50 Torr, 25 Torr, 15 Torr, 5 Torr, 1 Torr, 0.1 Torr, etc., or between about 0.1 mTorr and about 10 Torr.


The described processes may also be used in conjunction with one another for a variety of operations in which tungsten and titanium nitride may be both located and exposed on patterned substrates. For example, in gate structures including NAND or 3D NAND devices, both tungsten and titanium nitride may be located on the substrate as gate metal and barrier material respectively. During processing, the exposed gate metal may need to be recessed while maintaining a portion of titanium nitride, or otherwise etching the titanium nitride at a slower rate. Accordingly, the described chemistry devoid of hydrogen may be utilized at a lower substrate temperature, which may remove tungsten at a rate faster than titanium nitride.


The recessing operation may expose regions or additional regions of titanium nitride, and may additionally expose regions of tantalum nitride, silicon nitride, and silicon oxide, for example. Once the tungsten has been recessed but otherwise maintained, further etching of the titanium nitride and or other exposed materials may be needed without further etching, or with minimal further etching, of the remaining tungsten. Accordingly, the described process synergistically utilizing hydrogen as a precursor with increased temperature may be performed. For example, the substrate temperature may be increased while hydrogen is incorporated with the precursor fluids. Consequently, further etching of the tungsten may be minimized while exposed titanium nitride may be removed. In this way, by combining these etching processes, etching of titanium nitride with respect to tungsten may be modified tuned in situ. By utilizing the combined processes, tungsten may be etched faster than titanium nitride, titanium nitride may be etched faster than tungsten, or the two materials may be etched at substantially similar or directly equivalent rates by adjusting the hydrogen concentration and/or certain of the processing conditions such as temperature. As would be understood, additional modifications to chamber pressure and plasma power may be used to further tune the etching processes as may be required. Advantageously, tuning these processes may be performed without the need to break vacuum conditions or move the substrate to an additional chamber. This may reduce overall processing times and save costs over conventional techniques. Additional examples of etch process parameters, chemistries, and components are disclosed in the course of describing an exemplary processing chamber and system below.


Exemplary Processing System



FIG. 2A shows a cross-sectional view of an exemplary process chamber section 200 with partitioned plasma generation regions within the processing chamber. During film etching, e.g., titanium nitride, tantalum nitride, tungsten, silicon, polysilicon, silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, etc., a process gas may be flowed into the first plasma region 215 through a gas inlet assembly 205. A remote plasma system (RPS) 201 may optionally be included in the system, and may process a first gas which then travels through gas inlet assembly 205. The inlet assembly 205 may include two or more distinct gas supply channels where the second channel (not shown) may bypass the RPS 201, if included. Accordingly, in disclosed embodiments the precursor gases may be delivered to the processing chamber in an unexcited state. In another example, the first channel provided through the RPS may be used for the process gas and the second channel bypassing the RPS may be used for a treatment gas in disclosed embodiments. The process gas may be excited within the RPS 201 prior to entering the first plasma region 215. Accordingly, the fluorine-containing precursor as discussed above, for example, may pass through RPS 201 or bypass the RPS unit in disclosed embodiments. Various other examples encompassed by this arrangement will be similarly understood.


A cooling plate 203, faceplate 217, ion suppressor 223, showerhead 225, and a substrate support 265, having a substrate 255 disposed thereon, are shown and may each be included according to disclosed embodiments. The pedestal 265 may have a heat exchange channel through which a heat exchange fluid flows to control the temperature of the substrate. This configuration may allow the substrate 255 temperature to be cooled or heated to maintain relatively low temperatures, such as between about −20° C. to about 200° C., or therebetween. The heat exchange fluid may comprise ethylene glycol and/or water. The wafer support platter of the pedestal 265, which may comprise aluminum, ceramic, or a combination thereof, may also be resistively heated in order to achieve relatively high temperatures, such as from up to or about 100° C. to above or about 1100° C., using an embedded resistive heater element. The heating element may be formed within the pedestal as one or more loops, and an outer portion of the heater element may run adjacent to a perimeter of the support platter, while an inner portion runs on the path of a concentric circle having a smaller radius. The wiring to the heater element may pass through the stem of the pedestal 265, which may be further configured to rotate.


The faceplate 217 may be pyramidal, conical, or of another similar structure with a narrow top portion expanding to a wide bottom portion. The faceplate 217 may additionally be flat as shown and include a plurality of through-channels used to distribute process gases. Plasma generating gases and/or plasma excited species, depending on use of the RPS 201, may pass through a plurality of holes, shown in FIG. 2B, in faceplate 217 for a more uniform delivery into the first plasma region 215.


Exemplary configurations may include having the gas inlet assembly 205 open into a gas supply region 258 partitioned from the first plasma region 215 by faceplate 217 so that the gases/species flow through the holes in the faceplate 217 into the first plasma region 215. Structural and operational features may be selected to prevent significant backflow of plasma from the first plasma region 215 back into the supply region 258, gas inlet assembly 205, and fluid supply system 210. The structural features may include the selection of dimensions and cross-sectional geometries of the apertures in faceplate 217 to deactivate back-streaming plasma. The operational features may include maintaining a pressure difference between the gas supply region 258 and first plasma region 215 that maintains a unidirectional flow of plasma through the showerhead 225. The faceplate 217, or a conductive top portion of the chamber, and showerhead 225 are shown with an insulating ring 220 located between the features, which allows an AC potential to be applied to the faceplate 217 relative to showerhead 225 and/or ion suppressor 223. The insulating ring 220 may be positioned between the faceplate 217 and the showerhead 225 and/or ion suppressor 223 enabling a capacitively coupled plasma (CCP) to be formed in the first plasma region. A baffle (not shown) may additionally be located in the first plasma region 215, or otherwise coupled with gas inlet assembly 205, to affect the flow of fluid into the region through gas inlet assembly 205.


The ion suppressor 223 may comprise a plate or other geometry that defines a plurality of apertures throughout the structure that are configured to suppress the migration of ionically-charged species out of the plasma excitation region 215 while allowing uncharged neutral or radical species to pass through the ion suppressor 223 into an activated gas delivery region between the suppressor and the showerhead. In disclosed embodiments, the ion suppressor 223 may comprise a perforated plate with a variety of aperture configurations. These uncharged species may include highly reactive species that are transported with less reactive carrier gas through the apertures. As noted above, the migration of ionic species through the holes may be reduced, and in some instances completely suppressed. Controlling the amount of ionic species passing through the ion suppressor 223 may provide increased control over the gas mixture brought into contact with the underlying wafer substrate, which in turn may increase control of the deposition and/or etch characteristics of the gas mixture. For example, adjustments in the ion concentration of the gas mixture can significantly alter its etch selectivity, e.g., TiNx:SiOx etch ratios, TiN:W etch ratios, etc. In alternative embodiments in which deposition is performed, it can also shift the balance of conformal-to-flowable style depositions for dielectric materials.


The plurality of holes in the ion suppressor 223 may be configured to control the passage of the activated gas, i.e., the ionic, radical, and/or neutral species, through the ion suppressor 223. For example, the aspect ratio of the holes, or the hole diameter to length, and/or the geometry of the holes may be controlled so that the flow of ionically-charged species in the activated gas passing through the ion suppressor 223 is reduced. The holes in the ion suppressor 223 may include a tapered portion that faces the plasma excitation region 215, and a cylindrical portion that faces the showerhead 225. The cylindrical portion may be shaped and dimensioned to control the flow of ionic species passing to the showerhead 225. An adjustable electrical bias may also be applied to the ion suppressor 223 as an additional means to control the flow of ionic species through the suppressor.


The ion suppression element 223 may function to reduce or eliminate the amount of ionically charged species traveling from the plasma generation region to the substrate. Uncharged neutral and radical species may still pass through the openings in the ion suppressor to react with the substrate. It should be noted that the complete elimination of ionically charged species in the reaction region surrounding the substrate is not always the desired goal. In many instances, ionic species are required to reach the substrate in order to perform the etch and/or deposition process. In these instances, the ion suppressor may help to control the concentration of ionic species in the reaction region at a level that assists the process.


Showerhead 225 in combination with ion suppressor 223 may allow a plasma present in chamber plasma region 215 to avoid directly exciting gases in substrate processing region 233, while still allowing excited species to travel from chamber plasma region 215 into substrate processing region 233. In this way, the chamber may be configured to prevent the plasma from contacting a substrate 255 being etched. This may advantageously protect a variety of intricate structures and films patterned on the substrate, which may be damaged, dislocated, or otherwise warped if directly contacted by a generated plasma. Additionally, when plasma is allowed to contact the substrate or approach the substrate level, the rate at which oxide species etch may increase. Accordingly, if the exposed second material is oxide, this material may be further protected by maintaining the plasma remotely from the substrate.


The processing system may further include a power supply 240 electrically coupled with the processing chamber to provide electric power to the faceplate 217, ion suppressor 223, showerhead 225, and/or pedestal 265 to generate a plasma in the first plasma region 215 or processing region 233. The power supply may be configured to deliver an adjustable amount of power to the chamber depending on the process performed. Such a configuration may allow for a tunable plasma to be used in the processes being performed. Unlike a remote plasma unit, which is often presented with on or off functionality, a tunable plasma may be configured to deliver a specific amount of power to the plasma region 215. This in turn may allow development of particular plasma characteristics such that precursors may be dissociated in specific ways to enhance the etching profiles produced by these precursors.


A plasma may be ignited either in chamber plasma region 215 above showerhead 225 or substrate processing region 233 below showerhead 225. A plasma may be present in chamber plasma region 215 to produce the radical-fluorine precursors from an inflow of the fluorine-containing precursor. An AC voltage typically in the radio frequency (RF) range may be applied between the conductive top portion of the processing chamber, such as faceplate 217, and showerhead 225 and/or ion suppressor 223 to ignite a plasma in chamber plasma region 215 during deposition. An RF power supply may generate a high RF frequency of 13.56 MHz but may also generate other frequencies alone or in combination with the 13.56 MHz frequency.


Plasma power can be of a variety of frequencies or a combination of multiple frequencies. In the exemplary processing system the plasma may be provided by RF power delivered to faceplate 217 relative to ion suppressor 223 and/or showerhead 225. The RF power may be between about 10 watts and about 2000 watts, between about 100 watts and about 2000 watts, between about 200 watts and about 1500 watts, or between about 200 watts and about 1000 watts in different embodiments. The RF frequency applied in the exemplary processing system may be low RF frequencies less than about 200 kHz, high RF frequencies between about 10 MHz and about 15 MHz, or microwave frequencies greater than or about 1 GHz in different embodiments. The plasma power may be capacitively-coupled (CCP) or inductively-coupled (ICP) into the remote plasma region.


The top plasma region 215 may be left at low or no power when a bottom plasma in the substrate processing region 233 is turned on to, for example, cure a film or clean the interior surfaces bordering substrate processing region 233. A plasma in substrate processing region 233 may be ignited by applying an AC voltage between showerhead 255 and the pedestal 265 or bottom of the chamber. A cleaning gas may be introduced into substrate processing region 233 while the plasma is present.


A fluid, such as a precursor, for example a fluorine-containing precursor, may be flowed into the processing region 233 by embodiments of the showerhead described herein. Excited species derived from the process gas in the plasma region 215 may travel through apertures in the ion suppressor 223, and/or showerhead 225 and react with an additional precursor flowing into the processing region 233 from a separate portion of the showerhead. Alternatively, if all precursor species are being excited in plasma region 215, no additional precursors may be flowed through the separate portion of the showerhead. Little or no plasma may be present in the processing region 233. Excited derivatives of the precursors may combine in the region above the substrate and, on occasion, on the substrate to etch structures or remove species on the substrate in disclosed applications.


Exciting the fluids in the first plasma region 215 directly, or exciting the fluids in the RPS units 201, may provide several benefits. The concentration of the excited species derived from the fluids may be increased within the processing region 233 due to the plasma in the first plasma region 215. This increase may result from the location of the plasma in the first plasma region 215. The processing region 233 may be located closer to the first plasma region 215 than the remote plasma system (RPS) 201, leaving less time for the excited species to leave excited states through collisions with other gas molecules, walls of the chamber, and surfaces of the showerhead.


The uniformity of the concentration of the excited species derived from the process gas may also be increased within the processing region 233. This may result from the shape of the first plasma region 215, which may be more similar to the shape of the processing region 233. Excited species created in the RPS 201 may travel greater distances in order to pass through apertures near the edges of the showerhead 225 relative to species that pass through apertures near the center of the showerhead 225. The greater distance may result in a reduced excitation of the excited species and, for example, may result in a slower growth rate near the edge of a substrate. Exciting the fluids in the first plasma region 215 may mitigate this variation for the fluid flowed through RPS 201, or alternatively bypassed around the RPS unit.


The processing gases may be excited in first plasma region 215 and may be passed through the showerhead 225 to the processing region 233 in the excited state. While a plasma may be generated in the processing region 233, a plasma may alternatively not be generated in the processing region. In one example, the only excitation of the processing gas or precursors may be from exciting the processing gases in plasma region 215 to react with one another in the processing region 233. As previously discussed, this may be to protect the structures patterned on the substrate 255.


In addition to the fluid precursors, there may be other gases introduced at varied times for varied purposes, including carrier gases to aid delivery. A treatment gas may be introduced to remove unwanted species from the chamber walls, the substrate, the deposited film and/or the film during deposition. A treatment gas may be excited in a plasma and then used to reduce or remove residual content inside the chamber. In other disclosed embodiments the treatment gas may be used without a plasma. When the treatment gas includes water vapor, the delivery may be achieved using a mass flow meter (MFM), an injection valve, or by commercially available water vapor generators. The treatment gas may be introduced to the processing region 233, either through the RPS unit or bypassing the RPS unit, and may further be excited in the first plasma region.



FIG. 2B shows a detailed view of the features affecting the processing gas distribution through faceplate 217. As shown in FIGS. 2A and 2B, faceplate 217, cooling plate 203, and gas inlet assembly 205 intersect to define a gas supply region 258 into which process gases may be delivered from gas inlet 205. The gases may fill the gas supply region 258 and flow to first plasma region 215 through apertures 259 in faceplate 217. The apertures 259 may be configured to direct flow in a substantially unidirectional manner such that process gases may flow into processing region 233, but may be partially or fully prevented from backflow into the gas supply region 258 after traversing the faceplate 217.


The gas distribution assemblies such as showerhead 225 for use in the processing chamber section 200 may be referred to as dual channel showerheads (DCSH) and are additionally detailed in the embodiments described in FIG. 2A as well as FIG. 2C herein. The dual channel showerhead may provide for etching processes that allow for separation of etchants outside of the processing region 233 to provide limited interaction with chamber components and each other prior to being delivered into the processing region.


The showerhead 225 may comprise an upper plate 214 and a lower plate 216. The plates may be coupled with one another to define a volume 218 between the plates. The coupling of the plates may be so as to provide first fluid channels 219 through the upper and lower plates, and second fluid channels 221 through the lower plate 216. The formed channels may be configured to provide fluid access from the volume 218 through the lower plate 216 via second fluid channels 221 alone, and the first fluid channels 219 may be fluidly isolated from the volume 218 between the plates and the second fluid channels 221. The volume 218 may be fluidly accessible through a side of the gas distribution assembly 225. Although the exemplary system of FIG. 2 includes a dual-channel showerhead, it is understood that alternative distribution assemblies may be utilized that maintain first and second precursors fluidly isolated prior to the processing region 233. For example, a perforated plate and tubes underneath the plate may be utilized, although other configurations may operate with reduced efficiency or not provide as uniform processing as the dual-channel showerhead as described.


In the embodiment shown, showerhead 225 may distribute via first fluid channels 219 process gases which contain plasma effluents upon excitation by a plasma in chamber plasma region 215. In embodiments, the process gas introduced into the RPS 201 and/or chamber plasma region 215 may contain fluorine, e.g., CF4, NF3 or XeF2. The process gas may also include a carrier gas such as helium, argon, nitrogen (N2), etc. Plasma effluents may include ionized or neutral derivatives of the process gas and may also be referred to herein as a radical-fluorine precursor referring to the atomic constituent of the process gas introduced.



FIG. 2C is a bottom view of a showerhead 225 for use with a processing chamber according to disclosed embodiments. Showerhead 225 corresponds with the showerhead shown in FIG. 2A. Through-holes 231, which show a view of first fluid channels 219, may have a plurality of shapes and configurations in order to control and affect the flow of precursors through the showerhead 225. Small holes 227, which show a view of second fluid channels 221, may be distributed substantially evenly over the surface of the showerhead, even amongst the through-holes 231, which may help to provide more even mixing of the precursors as they exit the showerhead than other configurations.


An additional dual channel showerhead, as well as this processing system and chamber, are more fully described in patent application Ser. No. 13/251,714 filed on Oct. 3, 2011, which is hereby incorporated by reference for all purposes to the extent not inconsistent with the claimed features and description herein.


The chamber plasma region 215 or a region in an RPS may be referred to as a remote plasma region. In embodiments, the radical precursor, e.g., a radical-fluorine precursor, is created in the remote plasma region and travels into the substrate processing region where it may or may not combine with additional precursors. In embodiments, the additional precursors are excited only by the radical-fluorine precursor. Plasma power may essentially be applied only to the remote plasma region in embodiments to ensure that the radical-fluorine precursor provides the dominant excitation. Nitrogen trifluoride or another fluorine-containing precursor may be flowed into chamber plasma region 215 at rates between about 25 sccm and about 500 sccm, between about 50 sccm and about 150 sccm, or between about 75 sccm and about 125 sccm in different embodiments.


Combined flow rates of precursors into the chamber may account for 0.05% to about 20% by volume of the overall gas mixture; the remainder being carrier gases. The fluorine-containing precursor may be flowed into the remote plasma region, but the plasma effluents may have the same volumetric flow ratio in embodiments. In the case of the fluorine-containing precursor, a purge or carrier gas may be first initiated into the remote plasma region before the fluorine-containing gas to stabilize the pressure within the remote plasma region.


Substrate processing region 233 can be maintained at a variety of pressures during the flow of precursors, any carrier gases, and plasma effluents into substrate processing region 233. The pressure may be maintained between about 0.1 mTorr and about 100 Torr, between about 1 Torr and about 20 Torr or between about 1 Torr and about 5 Torr in different embodiments.


Embodiments of the deposition systems may be incorporated into larger fabrication systems for producing integrated circuit chips. FIG. 3 shows one such system 300 of deposition, etching, baking, and curing chambers according to disclosed embodiments. In the figure, a pair of front opening unified pods (FOUPs) 302 supply substrates of a variety of sizes that are received by robotic arms 304 and placed into a low pressure holding area 306 before being placed into one of the substrate processing chambers 308a-f. A second robotic arm 310 may be used to transport the substrate wafers from the holding area 306 to the substrate processing chambers 308a-f and back. Each substrate processing chamber 308a-f, can be outfitted to perform a number of substrate processing operations including the dry etch processes described herein in addition to cyclical layer deposition (CLD), atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), etch, pre-clean, degas, orientation, and other substrate processes.


The substrate processing chambers 308a-f may include one or more system components for depositing, annealing, curing and/or etching a dielectric film on the substrate wafer. In one configuration, two pairs of the processing chamber, e.g., 308c-d and 308e-f, may be used to deposit dielectric material on the substrate, and the third pair of processing chambers, e.g., 308a-b, may be used to etch the deposited dielectric. In another configuration, all three pairs of chambers, e.g., 308a-f, may be configured to etch a dielectric film on the substrate. Any one or more of the processes described may be carried out in chamber(s) separated from the fabrication system shown in different embodiments.


In the preceding description, for the purposes of explanation, numerous details have been set forth in order to provide an understanding of various embodiments of the present invention. It will be apparent to one skilled in the art, however, that certain embodiments may be practiced without some of these details, or with additional details.


Having disclosed several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the disclosed embodiments. Additionally, a number of well-known processes and elements have not been described in order to avoid unnecessarily obscuring the present invention. Accordingly, the above description should not be taken as limiting the scope of the invention.


Where a range of values is provided, it is understood that each intervening value, to the smallest fraction of the unit of the lower limit, unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of those smaller ranges may independently be included or excluded in the range, and each range where either, neither, or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.


As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, reference to “an aperture” includes a plurality of such apertures, and reference to “the plate” includes reference to one or more plates and equivalents thereof known to those skilled in the art, and so forth.


Also, the words “comprise(s)”, “comprising”, “contain(s)”, “containing”, “include(s)”, and “including”, when used in this specification and in the following claims, are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, acts, or groups.

Claims
  • 1. A method of etching a patterned substrate in a substrate processing region of a substrate processing chamber, wherein the patterned substrate includes an exposed titanium nitride region and a region comprising an exposed second material, the method comprising: flowing a fluorine-containing precursor into a remote plasma region fluidly coupled with the substrate processing region while forming a plasma in the remote plasma region to produce plasma effluents;flowing the plasma effluents through a showerhead positioned between the remote plasma region and the substrate processing region;flowing at least one additional precursor into the substrate processing region; andetching the exposed titanium nitride region with the precursor combination including the plasma effluents, wherein the titanium nitride is etched at a faster rate than the exposed second material, wherein the substrate processing region is plasma-free during the etching process, and wherein the exposed second material comprises at least one of silicon oxide, silicon nitride, and tungsten.
  • 2. The method of claim 1, wherein the at least one additional precursor is selected from the group consisting of helium, argon, and molecular hydrogen (H2).
  • 3. The method of claim 1, wherein the fluorine-containing precursor comprises a precursor selected from the group consisting of atomic fluorine, diatomic fluorine, nitrogen trifluoride, carbon tetrafluoride, hydrogen fluoride, and xenon difluoride.
  • 4. The method of claim 1, wherein the plasma in the remote plasma region is a capacitively-coupled plasma.
  • 5. The method of claim 1, wherein the at least one additional precursor consists of either or both of helium and argon.
  • 6. The method of claim 5, wherein the precursor combination including plasma effluents is substantially devoid of hydrogen.
  • 7. The method of claim 5, wherein the exposed second material comprises silicon oxide and the selectivity of the etching operation (exposed titanium nitride region:exposed silicon oxide region) is greater than or about 5:1.
  • 8. The method of claim 5, wherein the substrate temperature is maintained at or below about 50° C. during the etch process.
  • 9. The method of claim 8, wherein the substrate temperature is maintained at or below about 10° C. during the etch process.
  • 10. The method of claim 1, wherein the at least one additional precursor comprises hydrogen.
  • 11. The method of claim 10, wherein the exposed second material comprises tungsten and the selectivity of the etching operation (exposed titanium nitride region:exposed tungsten region) is greater than or about 50:1.
  • 12. The method of claim 11, wherein the selectivity of the etching operation (exposed titanium nitride region:exposed tungsten region) is greater than or about 100:1.
  • 13. The method of claim 11, wherein the patterned substrate further comprises an exposed silicon nitride region and the selectivity of the etching operation (exposed titanium nitride region:exposed silicon nitride region) is greater than or about 10:1.
  • 14. The method of claim 11, wherein the patterned substrate further comprises an exposed silicon oxide region and the selectivity of the etching operation (exposed titanium nitride region:exposed silicon oxide region) is greater than or about 5:1.
  • 15. The method of claim 11, wherein the patterned substrate further comprises an exposed tantalum nitride region and the selectivity of the etching operation (exposed titanium nitride region:exposed tantalum nitride region) is greater than or about 10:1.
  • 16. The method of claim 10, wherein the substrate temperature is maintained at or above about 50° C. during the etch process.
  • 17. The method of claim 16, wherein the substrate temperature is maintained at or above about 200° C. during the etch process.
  • 18. The method of claim 10, wherein the hydrogen is flowed into the substrate processing region without being first excited in a remote plasma.
  • 19. A method of etching a patterned substrate in a substrate processing region of a substrate processing chamber, wherein the patterned substrate includes an exposed titanium nitride region and a region comprising an exposed second material, the method comprising: flowing a fluorine-containing precursor into a remote plasma region fluidly coupled with the substrate processing region while forming a plasma in the remote plasma region to produce plasma effluents;flowing the plasma effluents through a showerhead positioned between the remote plasma region and the substrate processing region;flowing molecular hydrogen (H2) into the substrate processing region; andetching the exposed titanium nitride region with the precursor combination including the plasma effluents, wherein the titanium nitride is etched at a faster rate than the exposed second material.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/791,125, filed Mar. 8, 2013, entitled “Selective Titanium Nitride Etching” which claims the benefit of U.S. Provisional Application No. 61/740,587, filed Dec. 21, 2012, entitled “Selective Titanium Nitride Etching.” The entire disclosure of which is incorporated herein by reference for all purposes.

US Referenced Citations (1261)
Number Name Date Kind
2369620 Sullivan et al. Feb 1945 A
3451840 Hough Jun 1969 A
3537474 Rohrer Nov 1970 A
3937857 Brummett et al. Feb 1976 A
3969077 Hill Jul 1976 A
4006047 Brummett et al. Feb 1977 A
4209357 Gorin et al. Jun 1980 A
4214946 Forget et al. Jul 1980 A
4232060 Mallory, Jr. Nov 1980 A
4234628 DuRose Nov 1980 A
4265943 Goldstein et al. May 1981 A
4361418 Tscheppe Nov 1982 A
4364803 Nidola et al. Dec 1982 A
4368223 Kobayashi et al. Jan 1983 A
4374698 Sanders et al. Feb 1983 A
4381441 Tylko Apr 1983 A
4397812 Mallory, Jr. Aug 1983 A
4468413 Bachmann Aug 1984 A
4565601 Kakehi et al. Jan 1986 A
4571819 Rogers et al. Feb 1986 A
4579618 Celestino et al. Apr 1986 A
4585920 Hoog et al. Apr 1986 A
4625678 Shloya et al. Dec 1986 A
4632857 Mallory, Jr. Dec 1986 A
4656052 Satou et al. Apr 1987 A
4690746 McInerney et al. Sep 1987 A
4714520 Gwozdz Dec 1987 A
4715937 Moslehi et al. Dec 1987 A
4749440 Blackwood et al. Jun 1988 A
4753898 Parrillo et al. Jun 1988 A
4786360 Cote et al. Nov 1988 A
4793897 Dunfield et al. Dec 1988 A
4807016 Douglas Feb 1989 A
4810520 Wu Mar 1989 A
4816638 Ukai et al. Mar 1989 A
4820377 Davis et al. Apr 1989 A
4828649 Davis May 1989 A
4838990 Jucha et al. Jun 1989 A
4851370 Doklan et al. Jul 1989 A
4857140 Loewenstein Aug 1989 A
4865685 Palmour Sep 1989 A
4868071 Walsh et al. Sep 1989 A
4872947 Wang et al. Oct 1989 A
4878994 Jucha et al. Nov 1989 A
4886570 Davis et al. Dec 1989 A
4892753 Wang et al. Jan 1990 A
4894352 Lane et al. Jan 1990 A
4904341 Blaugher et al. Feb 1990 A
4904621 Loewenstein et al. Feb 1990 A
4913929 Moslehi et al. Apr 1990 A
4946903 Gardella et al. Aug 1990 A
4951601 Maydan et al. Aug 1990 A
4960488 Law et al. Oct 1990 A
4980018 Mu et al. Dec 1990 A
4981551 Palmour Jan 1991 A
4985372 Narita et al. Jan 1991 A
4991542 Kohmura et al. Feb 1991 A
4992136 Tachi et al. Feb 1991 A
4994404 Sheng et al. Feb 1991 A
5000113 Wang et al. Mar 1991 A
5006192 Deguchi Apr 1991 A
5013691 Lory et al. May 1991 A
5028565 Chang Jul 1991 A
5030319 Nishino et al. Jul 1991 A
5061838 Lane et al. Oct 1991 A
5083030 Stavov Jan 1992 A
5089441 Moslehi Feb 1992 A
5089442 Olmer Feb 1992 A
5147692 Bengston Sep 1992 A
5156881 Okano et al. Oct 1992 A
5180435 Markunas et al. Jan 1993 A
5186718 Tepman et al. Feb 1993 A
5188706 Hori et al. Feb 1993 A
5198034 deBoer et al. Mar 1993 A
5203911 Sricharoenchalkit et al. Apr 1993 A
5215787 Homma Jun 1993 A
5228501 Tepman et al. Jul 1993 A
5231690 Soma et al. Jul 1993 A
5235139 Bengston et al. Aug 1993 A
5238499 van de Ven et al. Aug 1993 A
5240497 Shacham et al. Aug 1993 A
5248371 Maher et al. Sep 1993 A
5248527 Uchida et al. Sep 1993 A
5252178 Moslehi Oct 1993 A
5266157 Kadomura Nov 1993 A
5269881 Sekiya Dec 1993 A
5270125 America et al. Dec 1993 A
5271972 Kwok et al. Dec 1993 A
5275977 Otsubo et al. Jan 1994 A
5279669 Lee Jan 1994 A
5279865 Chebi et al. Jan 1994 A
5288518 Homma Feb 1994 A
5290382 Zarowin et al. Mar 1994 A
5292370 Tsai et al. Mar 1994 A
5300463 Cathey et al. Apr 1994 A
5302233 Kim et al. Apr 1994 A
5306530 Strongin et al. Apr 1994 A
5314724 Tsukune et al. May 1994 A
5316804 Tomikawa et al. May 1994 A
5319247 Matsuura Jun 1994 A
5326427 Jerbic Jul 1994 A
5328558 Kawamura Jul 1994 A
5328810 Lowrey et al. Jul 1994 A
5334552 Homma Aug 1994 A
5345999 Hosokawa Sep 1994 A
5352636 Beinglass Oct 1994 A
5356478 Chen et al. Oct 1994 A
5362526 Wang et al. Nov 1994 A
5368897 Kurihara et al. Nov 1994 A
5380560 Kaja et al. Jan 1995 A
5382311 Ishikawa et al. Jan 1995 A
5384284 Doan et al. Jan 1995 A
5385763 Okano et al. Jan 1995 A
5399237 Keswick et al. Mar 1995 A
5399529 Homma Mar 1995 A
5403434 Moslehi Apr 1995 A
5413670 Langan et al. May 1995 A
5413967 Matsuda et al. May 1995 A
5415890 Kloiber et al. May 1995 A
5416048 Blalock et al. May 1995 A
5420075 Homma et al. May 1995 A
5429995 Nishiyama et al. Jul 1995 A
5439553 Grant et al. Aug 1995 A
5451259 Krogh Sep 1995 A
5464499 Moslehi Nov 1995 A
5468342 Nulty et al. Nov 1995 A
5474589 Ohga et al. Dec 1995 A
5478403 Shinagawa et al. Dec 1995 A
5478462 Walsh Dec 1995 A
5483920 Pryor Jan 1996 A
5500249 Telford et al. Mar 1996 A
5505816 Barnes et al. Apr 1996 A
5510216 Calabrese et al. Apr 1996 A
5516367 Lei et al. May 1996 A
5518962 Murao May 1996 A
5531835 Fodor et al. Jul 1996 A
5534070 Okamura et al. Jul 1996 A
5536360 Nguyen et al. Jul 1996 A
5549780 Koinuma et al. Aug 1996 A
5558717 Zhao et al. Sep 1996 A
5560779 Knowles et al. Oct 1996 A
5563105 Dobuzinsky et al. Oct 1996 A
5567243 Foster et al. Oct 1996 A
5571576 Qian et al. Nov 1996 A
5578130 Hayashi et al. Nov 1996 A
5578161 Auda Nov 1996 A
5580421 Hiatt et al. Dec 1996 A
5591269 Arami et al. Jan 1997 A
5599740 Jang et al. Feb 1997 A
5614055 Fairbairn et al. Mar 1997 A
5616518 Foo et al. Apr 1997 A
5624582 Cain Apr 1997 A
5626922 Miyanaga et al. May 1997 A
5628829 Foster et al. May 1997 A
5635086 Warren, Jr. Jun 1997 A
5645645 Zhang et al. Jul 1997 A
5648125 Cane Jul 1997 A
5648175 Russell et al. Jul 1997 A
5656093 Burkhart et al. Aug 1997 A
5661093 Ravi et al. Aug 1997 A
5674787 Zhao et al. Oct 1997 A
5676758 Hasegawa et al. Oct 1997 A
5679606 Wang et al. Oct 1997 A
5685946 Fathauer et al. Nov 1997 A
5688331 Aruga et al. Nov 1997 A
5695810 Dubin et al. Dec 1997 A
5712185 Tsai et al. Jan 1998 A
5716500 Bardos et al. Feb 1998 A
5716506 Maclay et al. Feb 1998 A
5719085 Moon et al. Feb 1998 A
5733816 Iyer et al. Mar 1998 A
5747373 Yu May 1998 A
5753886 Iwamura et al. May 1998 A
5755859 Brusic et al. May 1998 A
5756400 Ye et al. May 1998 A
5756402 Jimbo et al. May 1998 A
5772770 Suda et al. Jun 1998 A
5781693 Ballance et al. Jul 1998 A
5786276 Brooks et al. Jul 1998 A
5789300 Fulford Aug 1998 A
5800686 Littau et al. Sep 1998 A
5804259 Robles Sep 1998 A
5812403 Fong et al. Sep 1998 A
5814365 Mahawili Sep 1998 A
5820723 Benjamin et al. Oct 1998 A
5824599 Schacham-Diamand et al. Oct 1998 A
5830805 Schacham-Diamand et al. Nov 1998 A
5838055 Kleinhenz et al. Nov 1998 A
5843538 Ehrsam et al. Dec 1998 A
5843847 Pu et al. Dec 1998 A
5844195 Fairbairn et al. Dec 1998 A
5846332 Zhao et al. Dec 1998 A
5846375 Gilchrist et al. Dec 1998 A
5846598 Semkow et al. Dec 1998 A
5849639 Molloy et al. Dec 1998 A
5850105 Dawson et al. Dec 1998 A
5855681 Maydan et al. Jan 1999 A
5856240 Sinha et al. Jan 1999 A
5858876 Chew Jan 1999 A
5865896 Nowak Feb 1999 A
5866483 Shiau et al. Feb 1999 A
5872052 Iyer Feb 1999 A
5872058 Van Cleemput et al. Feb 1999 A
5882424 Taylor et al. Mar 1999 A
5882786 Nassau et al. Mar 1999 A
5883012 Chiou Mar 1999 A
5885404 Kim et al. Mar 1999 A
5885749 Huggins et al. Mar 1999 A
5888906 Sandhu et al. Mar 1999 A
5891349 Tobe et al. Apr 1999 A
5891513 Dubin et al. Apr 1999 A
5897751 Makowiecki et al. Apr 1999 A
5899752 Hey et al. May 1999 A
5904827 Reynolds May 1999 A
5907790 Kellam May 1999 A
5910340 Uchida et al. Jun 1999 A
5913140 Roche et al. Jun 1999 A
5913147 Dubin et al. Jun 1999 A
5915190 Pirkle Jun 1999 A
5918116 Chittipeddi Jun 1999 A
5920792 Lin Jul 1999 A
5926737 Ameen et al. Jul 1999 A
5932077 Reynolds Aug 1999 A
5933757 Yoshikawa et al. Aug 1999 A
5935334 Fong et al. Aug 1999 A
5937323 Orczyk et al. Aug 1999 A
5939831 Fong et al. Aug 1999 A
5942075 Nagahata et al. Aug 1999 A
5944049 Beyer et al. Aug 1999 A
5944902 Redeker et al. Aug 1999 A
5948702 Rotondaro Sep 1999 A
5951601 Lesinski et al. Sep 1999 A
5951776 Selyutin et al. Sep 1999 A
5951896 Mahawili Sep 1999 A
5953591 Ishihara et al. Sep 1999 A
5953635 Andideh Sep 1999 A
5968610 Liu et al. Oct 1999 A
5969422 Ting et al. Oct 1999 A
5976327 Tanaka Nov 1999 A
5990000 Hong et al. Nov 1999 A
5990013 Berenguer et al. Nov 1999 A
5993916 Zhao et al. Nov 1999 A
6004884 Abraham Dec 1999 A
6007635 Mahawili Dec 1999 A
6007785 Liou Dec 1999 A
6010962 Liu et al. Jan 2000 A
6013191 Nasser-Faili et al. Jan 2000 A
6013584 M'Saad Jan 2000 A
6015724 Yamazaki Jan 2000 A
6015747 Lopatin et al. Jan 2000 A
6020271 Yanagida Feb 2000 A
6030666 Lam et al. Feb 2000 A
6030881 Papasouliotis et al. Feb 2000 A
6035101 Sajoto et al. Mar 2000 A
6037018 Jang et al. Mar 2000 A
6037266 Tao et al. Mar 2000 A
6039851 Iyer Mar 2000 A
6053982 Halpin et al. Apr 2000 A
6059643 Hu et al. May 2000 A
6063683 Wu et al. May 2000 A
6063712 Gilton et al. May 2000 A
6065424 Shacham-Diamand et al. May 2000 A
6072147 Koshiishi Jun 2000 A
6072227 Yau et al. Jun 2000 A
6074512 Collins et al. Jun 2000 A
6077780 Dubin Jun 2000 A
6080529 Ye et al. Jun 2000 A
6083344 Hanawa et al. Jul 2000 A
6083844 Bui-Le et al. Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6087278 Kim et al. Jul 2000 A
6090212 Mahawili Jul 2000 A
6093457 Okumura Jul 2000 A
6093594 Yeap et al. Jul 2000 A
6099697 Hausmann Aug 2000 A
6107199 Allen et al. Aug 2000 A
6110530 Chen et al. Aug 2000 A
6110836 Cohen et al. Aug 2000 A
6110838 Loewenstein Aug 2000 A
6113771 Landau et al. Sep 2000 A
6117245 Mandrekar et al. Sep 2000 A
6120640 Shih et al. Sep 2000 A
6136163 Cheung et al. Oct 2000 A
6136685 Narwankar et al. Oct 2000 A
6136693 Chan et al. Oct 2000 A
6140234 Uzoh et al. Oct 2000 A
6144099 Lopatin et al. Nov 2000 A
6147009 Grill et al. Nov 2000 A
6149828 Vaartstra Nov 2000 A
6150628 Smith et al. Nov 2000 A
6153935 Edelstein et al. Nov 2000 A
6161576 Maher et al. Dec 2000 A
6165912 McConnell et al. Dec 2000 A
6167834 Wang et al. Jan 2001 B1
6169021 Akram et al. Jan 2001 B1
6170428 Redeker et al. Jan 2001 B1
6171661 Zheng et al. Jan 2001 B1
6174450 Patrick et al. Jan 2001 B1
6174812 Hsiung et al. Jan 2001 B1
6176198 Kao et al. Jan 2001 B1
6176667 Fairbairn Jan 2001 B1
6177245 Ward et al. Jan 2001 B1
6179924 Zhao et al. Jan 2001 B1
6180523 Lee et al. Jan 2001 B1
6182602 Redeker et al. Feb 2001 B1
6184121 Buchwalter et al. Feb 2001 B1
6189483 Ishikawa et al. Feb 2001 B1
6190233 Hong et al. Feb 2001 B1
6191026 Rana et al. Feb 2001 B1
6194038 Rossman Feb 2001 B1
6197181 Chen Mar 2001 B1
6197364 Paunovic et al. Mar 2001 B1
6197680 Lin et al. Mar 2001 B1
6197688 Simpson Mar 2001 B1
6197705 Vassiliev Mar 2001 B1
6203863 Liu et al. Mar 2001 B1
6204200 Shieh et al. Mar 2001 B1
6210486 Mizukami et al. Apr 2001 B1
6217658 Orczyk et al. Apr 2001 B1
6220201 Nowak Apr 2001 B1
6228233 Lakshmikanthan et al. May 2001 B1
6228751 Yamazaki et al. May 2001 B1
6228758 Pellerin et al. May 2001 B1
6235643 Mui et al. May 2001 B1
6237527 Kellerman et al. May 2001 B1
6238513 Arnold et al. May 2001 B1
6238582 Williams et al. May 2001 B1
6241845 Gadgil et al. Jun 2001 B1
6242349 Nogami et al. Jun 2001 B1
6244211 Nishikawa et al. Jun 2001 B1
6245396 Nogami Jun 2001 B1
6245670 Cheung et al. Jun 2001 B1
6251236 Stevens Jun 2001 B1
6251802 Moore et al. Jun 2001 B1
6258220 Dordi et al. Jul 2001 B1
6258223 Cheung et al. Jul 2001 B1
6258270 Hilgendorff et al. Jul 2001 B1
6261637 Oberle Jul 2001 B1
6277733 Smith Aug 2001 B1
6277752 Chen Aug 2001 B1
6277763 Kugimiya et al. Aug 2001 B1
6281072 Li et al. Aug 2001 B1
6281135 Han et al. Aug 2001 B1
6291282 Wilk et al. Sep 2001 B1
6291348 Lopatin et al. Sep 2001 B1
6303044 Koemtzopoulos Oct 2001 B1
6303418 Cha et al. Oct 2001 B1
6306772 Lin Oct 2001 B1
6312554 Ye Nov 2001 B1
6312995 Yu Nov 2001 B1
6313035 Sandhu et al. Nov 2001 B1
6319387 Krishnamoorthy et al. Nov 2001 B1
6321587 Laush Nov 2001 B1
6322716 Qiao et al. Nov 2001 B1
6323128 Sambucetti et al. Nov 2001 B1
6335261 Natzle et al. Jan 2002 B1
6335288 Kwan et al. Jan 2002 B1
6340435 Bjorkman et al. Jan 2002 B1
6342733 Hu et al. Jan 2002 B1
RE37546 Mahawili Feb 2002 E
6344410 Lopatin et al. Feb 2002 B1
6348407 Gupta et al. Feb 2002 B1
6350320 Sherstinsky et al. Feb 2002 B1
6350697 Richardson et al. Feb 2002 B1
6351013 Luning et al. Feb 2002 B1
6352081 Lu et al. Mar 2002 B1
6355573 Okumura et al. Mar 2002 B1
6364949 Or et al. Apr 2002 B1
6364954 Umotoy et al. Apr 2002 B2
6364957 Schneider et al. Apr 2002 B1
6372657 Hineman et al. Apr 2002 B1
6375748 Yudovsky et al. Apr 2002 B1
6376386 Oshima Apr 2002 B1
6379575 Yin et al. Apr 2002 B1
6383951 Li May 2002 B1
6387207 Janakiraman et al. May 2002 B1
6391753 Yu May 2002 B1
6395150 Van Cleemput et al. May 2002 B1
6403491 Liu et al. Jun 2002 B1
6415736 Hao et al. Jul 2002 B1
6416647 Dordi et al. Jul 2002 B1
6416874 Cox et al. Jul 2002 B1
6423284 Arno Jul 2002 B1
6427623 Ko Aug 2002 B2
6432819 Pavate et al. Aug 2002 B1
6432831 Dhindsa et al. Aug 2002 B2
6436193 Kasai et al. Aug 2002 B1
6436816 Lee et al. Aug 2002 B1
6440863 Tsai et al. Aug 2002 B1
6441492 Cunningham Aug 2002 B1
6446572 Brcka Sep 2002 B1
6448537 Nering Sep 2002 B1
6458718 Todd Oct 2002 B1
6461974 Ni et al. Oct 2002 B1
6462371 Weimer et al. Oct 2002 B1
6465051 Sahin et al. Oct 2002 B1
6465366 Nemani et al. Oct 2002 B1
6477980 White et al. Nov 2002 B1
6479373 Dreybrodt et al. Nov 2002 B2
6488984 Wada et al. Dec 2002 B1
6494959 Carlson et al. Dec 2002 B1
6499425 Sandhu et al. Dec 2002 B1
6500728 Wang Dec 2002 B1
6503843 Xia et al. Jan 2003 B1
6506291 Tsai et al. Jan 2003 B2
6509623 Zhao Jan 2003 B2
6516815 Stevens et al. Feb 2003 B1
6518548 Kaneko et al. Feb 2003 B2
6527968 Wang et al. Mar 2003 B1
6528409 Lopatin et al. Mar 2003 B1
6531377 Knorr et al. Mar 2003 B2
6537733 Nemani et al. Mar 2003 B2
6541397 Bencher Apr 2003 B1
6541671 Martinez et al. Apr 2003 B1
6544340 Yudovsky Apr 2003 B2
6547977 Yan et al. Apr 2003 B1
6551924 Dalton et al. Apr 2003 B1
6558564 Loewenhardt May 2003 B1
6565729 Chen et al. May 2003 B2
6569773 Gellrich et al. May 2003 B1
6573030 Fairbairn et al. Jun 2003 B1
6573606 Sambucetti et al. Jun 2003 B2
6585851 Ohmi et al. Jul 2003 B1
6586163 Okabe et al. Jul 2003 B1
6596599 Guo Jul 2003 B1
6596602 Iizuka et al. Jul 2003 B2
6596654 Bayman et al. Jul 2003 B1
6602434 Hung et al. Aug 2003 B1
6603269 Vo et al. Aug 2003 B1
6605874 Leu et al. Aug 2003 B2
6616967 Test Sep 2003 B1
6627532 Gaillard et al. Sep 2003 B1
6635578 Xu et al. Oct 2003 B1
6638810 Bakli et al. Oct 2003 B2
6645301 Sainty et al. Nov 2003 B2
6645550 Cheung et al. Nov 2003 B1
6656831 Lee et al. Dec 2003 B1
6656837 Xu et al. Dec 2003 B2
6663715 Yuda et al. Dec 2003 B1
6677242 Liu et al. Jan 2004 B1
6677247 Yuan et al. Jan 2004 B2
6679981 Pan et al. Jan 2004 B1
6688375 Turner Feb 2004 B1
6713356 Skotnicki et al. Mar 2004 B1
6713835 Horak et al. Mar 2004 B1
6717189 Inoue et al. Apr 2004 B2
6720213 Gambino et al. Apr 2004 B1
6740585 Yoon et al. May 2004 B2
6740977 Ahn et al. May 2004 B2
6743473 Parkhe et al. Jun 2004 B1
6743732 Lin et al. Jun 2004 B1
6756235 Liu et al. Jun 2004 B1
6759261 Shimokohbe et al. Jul 2004 B2
6762127 Boiteux et al. Jul 2004 B2
6762435 Towle Jul 2004 B2
6764958 Sugiarto et al. Jul 2004 B1
6765273 Chau et al. Jul 2004 B1
6767834 Chung et al. Jul 2004 B2
6770166 Fischer Aug 2004 B1
6772827 Keller et al. Aug 2004 B2
6792889 Nakano et al. Sep 2004 B2
6794290 Papasouliotis et al. Sep 2004 B1
6794311 Huang et al. Sep 2004 B2
6796314 Graff Sep 2004 B1
6797189 Hung et al. Sep 2004 B2
6800336 Fornsel et al. Oct 2004 B1
6800830 Mahawili Oct 2004 B2
6802944 Ahmad et al. Oct 2004 B2
6808564 Dietze Oct 2004 B2
6808748 Kapoor et al. Oct 2004 B2
6821571 Huang Nov 2004 B2
6823589 White et al. Nov 2004 B2
6830624 Janakiraman et al. Dec 2004 B2
6835995 Li Dec 2004 B2
6846745 Papasouliotis et al. Jan 2005 B1
6852550 Tuttle et al. Feb 2005 B2
6858153 Bjorkman et al. Feb 2005 B2
6861097 Goosey et al. Mar 2005 B1
6861332 Park et al. Mar 2005 B2
6867141 Jung et al. Mar 2005 B2
6869880 Krishnaraj et al. Mar 2005 B2
6875280 Ikeda et al. Apr 2005 B2
6878206 Tzu et al. Apr 2005 B2
6879981 Rothschild et al. Apr 2005 B2
6886491 Kim et al. May 2005 B2
6892669 Xu et al. May 2005 B2
6893967 Wright et al. May 2005 B1
6897532 Schwarz et al. May 2005 B1
6900596 Yang et al. May 2005 B2
6903031 Karim et al. Jun 2005 B2
6903511 Chistyakov Jun 2005 B2
6908862 Li et al. Jun 2005 B2
6911112 An Jun 2005 B2
6911401 Khandan et al. Jun 2005 B2
6921556 Shimizu et al. Jul 2005 B2
6924191 Liu et al. Aug 2005 B2
6930047 Yamazaki et al. Aug 2005 B2
6935269 Lee et al. Aug 2005 B2
6942753 Choi et al. Sep 2005 B2
6946033 Tsuei et al. Sep 2005 B2
6951821 Hamelin et al. Oct 2005 B2
6958175 Sakamoto et al. Oct 2005 B2
6958286 Chen et al. Oct 2005 B2
6974780 Schuegraf Dec 2005 B2
6995073 Liou Feb 2006 B2
7017269 White et al. Mar 2006 B2
7018941 Cui et al. Mar 2006 B2
7030034 Fucsko et al. Apr 2006 B2
7049200 Arghavani et al. May 2006 B2
7071532 Geffken et al. Jul 2006 B2
7078312 Sutanto et al. Jul 2006 B1
7081414 Zhang et al. Jul 2006 B2
7084070 Lee et al. Aug 2006 B1
7115525 Abatchev et al. Oct 2006 B2
7122949 Strikovski Oct 2006 B2
7145725 Hasei et al. Dec 2006 B2
7148155 Tarafdar et al. Dec 2006 B1
7166233 Johnson et al. Jan 2007 B2
7183214 Nam et al. Feb 2007 B2
7196342 Ershov et al. Mar 2007 B2
7205240 Karim et al. Apr 2007 B2
7223701 Min et al. May 2007 B2
7226805 Hallin et al. Jun 2007 B2
7235137 Kitayama et al. Jun 2007 B2
7244474 Hanawa et al. Jul 2007 B2
7252716 Kim et al. Aug 2007 B2
7253123 Arghavani et al. Aug 2007 B2
7256370 Guiver Aug 2007 B2
7288482 Panda et al. Oct 2007 B2
7291360 Hanawa et al. Nov 2007 B2
7316761 Doan et al. Jan 2008 B2
7329608 Babayan et al. Feb 2008 B2
7341633 Lubomirsky et al. Mar 2008 B2
7344912 Okoronyanwu Mar 2008 B1
7358192 Merry et al. Apr 2008 B2
7364956 Saito Apr 2008 B2
7365016 Ouellet et al. Apr 2008 B2
7390710 Derderian et al. Jun 2008 B2
7396480 Kao et al. Jul 2008 B2
7416989 Liu et al. Aug 2008 B1
7465358 Weidman et al. Dec 2008 B2
7468319 Lee Dec 2008 B2
7484473 Keller et al. Feb 2009 B2
7488688 Chung et al. Feb 2009 B2
7494545 Lam et al. Feb 2009 B2
7500445 Zhao et al. Mar 2009 B2
7553756 Hayashi et al. Jun 2009 B2
7575007 Tang et al. Aug 2009 B2
7581511 Mardian et al. Sep 2009 B2
7604708 Wood et al. Oct 2009 B2
7628897 Mungekar et al. Dec 2009 B2
7682518 Chandrachood et al. Mar 2010 B2
7695590 Hanawa et al. Apr 2010 B2
7708859 Huang et al. May 2010 B2
7709396 Bencher et al. May 2010 B2
7722925 White et al. May 2010 B2
7723221 Hayashi May 2010 B2
7749326 Kim et al. Jul 2010 B2
7785672 Choi et al. Aug 2010 B2
7790634 Munro et al. Sep 2010 B2
7806078 Yoshida Oct 2010 B2
7807578 Bencher et al. Oct 2010 B2
7825038 Ingle et al. Nov 2010 B2
7837828 Ikeda et al. Nov 2010 B2
7845309 Condrashoff et al. Dec 2010 B2
7871926 Xia et al. Jan 2011 B2
7910491 Soo Kwon et al. Mar 2011 B2
7915139 Lang et al. Mar 2011 B1
7932181 Singh et al. Apr 2011 B2
7939422 Ingle et al. May 2011 B2
7968441 Xu Jun 2011 B2
7976631 Burrows Jul 2011 B2
7981806 Jung Jul 2011 B2
7989365 Park et al. Aug 2011 B2
8008166 Sanchez et al. Aug 2011 B2
8048811 Feustel et al. Nov 2011 B2
8058179 Draeger et al. Nov 2011 B1
8071482 Kawada Dec 2011 B2
8074599 Choi et al. Dec 2011 B2
8076198 Lee et al. Dec 2011 B2
8083853 Choi et al. Dec 2011 B2
8114245 Ohmi et al. Feb 2012 B2
8119530 Hori et al. Feb 2012 B2
8133349 Panagopoulos Mar 2012 B1
8183134 Wu May 2012 B2
8187486 Liu et al. May 2012 B1
8211808 Sapre et al. Jul 2012 B2
8272346 Bettencourt et al. Sep 2012 B2
8298627 Minami et al. Oct 2012 B2
8309440 Sanchez et al. Nov 2012 B2
8312839 Baek Nov 2012 B2
8313610 Dhindsa Nov 2012 B2
8328939 Choi et al. Dec 2012 B2
8357435 Lubomirsky Jan 2013 B2
8368308 Banna et al. Feb 2013 B2
8427067 Espiau et al. Apr 2013 B2
8435902 Tang et al. May 2013 B2
8475674 Thadani et al. Jul 2013 B2
8480850 Tyler et al. Jul 2013 B2
8491805 Kushibiki et al. Jul 2013 B2
8501629 Tang et al. Aug 2013 B2
8506713 Takagi Aug 2013 B2
8512509 Bera et al. Aug 2013 B2
8540844 Hudson et al. Sep 2013 B2
8573152 De La Llera Nov 2013 B2
8622021 Taylor et al. Jan 2014 B2
8623148 Mitchell et al. Jan 2014 B2
8623471 Tyler et al. Jan 2014 B2
8642481 Wang et al. Feb 2014 B2
8652298 Dhindsa et al. Feb 2014 B2
8679982 Wang et al. Mar 2014 B2
8679983 Wang et al. Mar 2014 B2
8702902 Blom et al. Apr 2014 B2
8741778 Yang et al. Jun 2014 B2
8747680 Deshpande Jun 2014 B1
8765574 Zhang et al. Jul 2014 B2
8771536 Zhang et al. Jul 2014 B2
8771539 Zhang et al. Jul 2014 B2
8772888 Jung et al. Jul 2014 B2
8778079 Begarney et al. Jul 2014 B2
8801952 Wang et al. Aug 2014 B1
8808563 Wang et al. Aug 2014 B2
8846163 Kao et al. Sep 2014 B2
8869742 Dhindsa Oct 2014 B2
8895449 Zhu et al. Nov 2014 B1
8900364 Wright Dec 2014 B2
8921234 Liu et al. Dec 2014 B2
8927390 Sapre et al. Jan 2015 B2
8951429 Liu et al. Feb 2015 B1
8956980 Chen et al. Feb 2015 B1
8969212 Ren et al. Mar 2015 B2
8980005 Carlson et al. Mar 2015 B2
8980758 Ling et al. Mar 2015 B1
8980763 Wang et al. Mar 2015 B2
8992733 Uehara et al. Mar 2015 B2
8999656 Jirstrom et al. Apr 2015 B2
8999839 Su et al. Apr 2015 B2
8999856 Zhang Apr 2015 B2
9012302 Sapre et al. Apr 2015 B2
9017481 Pettinger et al. Apr 2015 B1
9023732 Wang et al. May 2015 B2
9023734 Chen et al. May 2015 B2
9034770 Park et al. May 2015 B2
9040422 Wang et al. May 2015 B2
9064815 Zhang et al. Jun 2015 B2
9064816 Kim et al. Jun 2015 B2
9072158 Ikeda et al. Jun 2015 B2
9093371 Wang et al. Jul 2015 B2
9093390 Wang et al. Jul 2015 B2
9111877 Chen et al. Aug 2015 B2
9111907 Kamineni Aug 2015 B2
9114438 Hoinkis et al. Aug 2015 B2
9117855 Cho et al. Aug 2015 B2
9132436 Liang et al. Sep 2015 B2
9136273 Purayath et al. Sep 2015 B1
9144147 Yang et al. Sep 2015 B2
9153442 Wang et al. Oct 2015 B2
9159606 Purayath et al. Oct 2015 B1
9165786 Purayath et al. Oct 2015 B1
9184055 Wang et al. Nov 2015 B2
9190293 Wang et al. Nov 2015 B2
9190302 Ni Nov 2015 B2
9209012 Chen et al. Dec 2015 B2
9236265 Korolik et al. Jan 2016 B2
9236266 Zhang et al. Jan 2016 B2
9245762 Zhang et al. Jan 2016 B2
9263278 Purayath et al. Feb 2016 B2
9269590 Luere et al. Feb 2016 B2
9275834 Park et al. Mar 2016 B1
9287095 Nguyen et al. Mar 2016 B2
9287134 Wang et al. Mar 2016 B2
9293568 Ko Mar 2016 B2
9299537 Kobayashi et al. Mar 2016 B2
9299538 Kobayashi et al. Mar 2016 B2
9299575 Park et al. Mar 2016 B2
9299582 Ingle et al. Mar 2016 B2
9299583 Wang et al. Mar 2016 B1
20010008803 Takamatsu et al. Jul 2001 A1
20010015261 Kobayashi et al. Aug 2001 A1
20010028093 Yamazaki et al. Oct 2001 A1
20010028922 Sandhu Oct 2001 A1
20010030366 Nakano et al. Oct 2001 A1
20010034106 Moise et al. Oct 2001 A1
20010034121 Fu et al. Oct 2001 A1
20010036706 Kitamura Nov 2001 A1
20010037856 Park Nov 2001 A1
20010037941 Thompson Nov 2001 A1
20010041444 Shields et al. Nov 2001 A1
20010047760 Moslehi Dec 2001 A1
20010053585 Kikuchi et al. Dec 2001 A1
20010053610 Athavale Dec 2001 A1
20010054381 Umotoy et al. Dec 2001 A1
20010055842 Uh et al. Dec 2001 A1
20020000202 Yuda et al. Jan 2002 A1
20020011210 Satoh et al. Jan 2002 A1
20020016080 Khan et al. Feb 2002 A1
20020016085 Huang et al. Feb 2002 A1
20020028582 Nallan et al. Mar 2002 A1
20020028585 Chung et al. Mar 2002 A1
20020029747 Powell et al. Mar 2002 A1
20020033233 Savas Mar 2002 A1
20020036143 Segawa et al. Mar 2002 A1
20020040764 Kwan et al. Apr 2002 A1
20020040766 Takahashi Apr 2002 A1
20020045966 Lee et al. Apr 2002 A1
20020054962 Huang May 2002 A1
20020069820 Yudovsky Jun 2002 A1
20020070414 Drescher et al. Jun 2002 A1
20020074573 Takeuchi et al. Jun 2002 A1
20020090781 Skotnicki et al. Jul 2002 A1
20020090835 Chakravarti et al. Jul 2002 A1
20020094378 O-Donnell Jul 2002 A1
20020096493 Hattori Jul 2002 A1
20020098681 Hu et al. Jul 2002 A1
20020106845 Chao et al. Aug 2002 A1
20020112819 Kamarehi et al. Aug 2002 A1
20020124867 Kim et al. Sep 2002 A1
20020129769 Kim et al. Sep 2002 A1
20020129902 Babayan et al. Sep 2002 A1
20020153808 Skotnicki et al. Oct 2002 A1
20020164885 Lill et al. Nov 2002 A1
20020177322 Li et al. Nov 2002 A1
20020187280 Johnson et al. Dec 2002 A1
20020187655 Tan et al. Dec 2002 A1
20020197823 Yoo et al. Dec 2002 A1
20030003757 Nallan et al. Jan 2003 A1
20030007910 Lazarovich et al. Jan 2003 A1
20030010645 Ting et al. Jan 2003 A1
20030019428 Ku et al. Jan 2003 A1
20030019580 Strang Jan 2003 A1
20030026060 Hiramatsu et al. Feb 2003 A1
20030029566 Roth Feb 2003 A1
20030029567 Dhindsa et al. Feb 2003 A1
20030029715 Yu et al. Feb 2003 A1
20030032284 Enomoto et al. Feb 2003 A1
20030038127 Liu et al. Feb 2003 A1
20030038305 Wasshuber Feb 2003 A1
20030054608 Tseng et al. Mar 2003 A1
20030072639 White et al. Apr 2003 A1
20030075808 Inoue et al. Apr 2003 A1
20030077909 Jiwari Apr 2003 A1
20030079686 Chen et al. May 2003 A1
20030087531 Kang et al. May 2003 A1
20030091938 Fairbairn et al. May 2003 A1
20030098125 An May 2003 A1
20030109143 Hsieh et al. Jun 2003 A1
20030116087 Nguyen et al. Jun 2003 A1
20030116439 Seo et al. Jun 2003 A1
20030121608 Chen et al. Jul 2003 A1
20030121609 Ohmi et al. Jul 2003 A1
20030124465 Lee et al. Jul 2003 A1
20030124842 Hytros et al. Jul 2003 A1
20030127740 Hsu et al. Jul 2003 A1
20030129106 Sorensen et al. Jul 2003 A1
20030129827 Lee et al. Jul 2003 A1
20030132319 Hytros et al. Jul 2003 A1
20030140844 Maa et al. Jul 2003 A1
20030143328 Chen et al. Jul 2003 A1
20030148035 Lingampalli Aug 2003 A1
20030152691 Baude Aug 2003 A1
20030159307 Sago et al. Aug 2003 A1
20030170945 Igeta et al. Sep 2003 A1
20030173333 Wang et al. Sep 2003 A1
20030173347 Guiver Sep 2003 A1
20030173675 Watanabe et al. Sep 2003 A1
20030181040 Ivanov et al. Sep 2003 A1
20030183244 Rossman Oct 2003 A1
20030190426 Padhi et al. Oct 2003 A1
20030199170 Li Oct 2003 A1
20030200929 Otsuki Oct 2003 A1
20030205329 Gujer et al. Nov 2003 A1
20030215963 AmRhein et al. Nov 2003 A1
20030216044 Lin et al. Nov 2003 A1
20030221780 Lei et al. Dec 2003 A1
20030224217 Byun et al. Dec 2003 A1
20030224617 Baek et al. Dec 2003 A1
20040005726 Huang Jan 2004 A1
20040020801 Zhao et al. Feb 2004 A1
20040026371 Nguyen et al. Feb 2004 A1
20040033678 Arghavani et al. Feb 2004 A1
20040033684 Li Feb 2004 A1
20040050328 Kumagai et al. Mar 2004 A1
20040058293 Nguyen et al. Mar 2004 A1
20040069225 Fairbairn et al. Apr 2004 A1
20040070346 Choi Apr 2004 A1
20040072446 Liu et al. Apr 2004 A1
20040076529 Gnauck et al. Apr 2004 A1
20040087139 Yeh et al. May 2004 A1
20040092063 Okumura May 2004 A1
20040099378 Kim et al. May 2004 A1
20040101667 O'Loughlin et al. May 2004 A1
20040108068 Senzaki et al. Jun 2004 A1
20040110354 Natzle et al. Jun 2004 A1
20040115876 Goundar et al. Jun 2004 A1
20040129224 Yamazaki Jul 2004 A1
20040129671 Ji et al. Jul 2004 A1
20040137161 Segawa et al. Jul 2004 A1
20040144490 Zhao et al. Jul 2004 A1
20040147126 Yamashita et al. Jul 2004 A1
20040149394 Doan et al. Aug 2004 A1
20040152342 Li Aug 2004 A1
20040154535 Chen et al. Aug 2004 A1
20040157444 Chiu Aug 2004 A1
20040175929 Schmitt et al. Sep 2004 A1
20040182315 Laflamme et al. Sep 2004 A1
20040192032 Ohmori et al. Sep 2004 A1
20040194799 Kim et al. Oct 2004 A1
20040200499 Harvey Oct 2004 A1
20040211357 Gadgil et al. Oct 2004 A1
20040219737 Quon Nov 2004 A1
20040219789 Wood et al. Nov 2004 A1
20040245091 Karim et al. Dec 2004 A1
20040263827 Xu Dec 2004 A1
20050001276 Gao et al. Jan 2005 A1
20050003676 Ho et al. Jan 2005 A1
20050009340 Saijo et al. Jan 2005 A1
20050009358 Choi et al. Jan 2005 A1
20050026430 Kim et al. Feb 2005 A1
20050026431 Kazumi et al. Feb 2005 A1
20050035455 Hu et al. Feb 2005 A1
20050048801 Karim et al. Mar 2005 A1
20050051094 Schaepkens et al. Mar 2005 A1
20050073051 Yamamoto et al. Apr 2005 A1
20050079706 Kumar et al. Apr 2005 A1
20050090120 Hasegawa et al. Apr 2005 A1
20050098111 Shimizu et al. May 2005 A1
20050105991 Hofmeister et al. May 2005 A1
20050112876 Wu May 2005 A1
20050112901 Ji et al. May 2005 A1
20050121750 Chan et al. Jun 2005 A1
20050164479 Perng et al. Jul 2005 A1
20050167394 Liu et al. Aug 2005 A1
20050181588 Kim Aug 2005 A1
20050196967 Savas et al. Sep 2005 A1
20050199489 Stevens et al. Sep 2005 A1
20050205110 Kao et al. Sep 2005 A1
20050205862 Koemtzopoulos et al. Sep 2005 A1
20050208215 Eguchi et al. Sep 2005 A1
20050214477 Hanawa et al. Sep 2005 A1
20050218507 Kao et al. Oct 2005 A1
20050221552 Kao et al. Oct 2005 A1
20050230350 Kao et al. Oct 2005 A1
20050236694 Wu et al. Oct 2005 A1
20050239282 Chen et al. Oct 2005 A1
20050251990 Choi et al. Nov 2005 A1
20050266622 Arghavani et al. Dec 2005 A1
20050266691 Gu et al. Dec 2005 A1
20050269030 Kent et al. Dec 2005 A1
20050279454 Snijders Dec 2005 A1
20050287755 Bachmann Dec 2005 A1
20050287771 Seamons et al. Dec 2005 A1
20060000802 Kumar et al. Jan 2006 A1
20060000805 Todorow et al. Jan 2006 A1
20060005856 Sun et al. Jan 2006 A1
20060006057 Laermer Jan 2006 A1
20060011298 Lim et al. Jan 2006 A1
20060011299 Condrashoff et al. Jan 2006 A1
20060016783 Wu et al. Jan 2006 A1
20060019456 Bu et al. Jan 2006 A1
20060019486 Yu et al. Jan 2006 A1
20060021574 Armour et al. Feb 2006 A1
20060024954 Wu et al. Feb 2006 A1
20060024956 Zhijian et al. Feb 2006 A1
20060033678 Lubomirsky et al. Feb 2006 A1
20060040055 Nguyen et al. Feb 2006 A1
20060043066 Kamp Mar 2006 A1
20060046412 Nguyen et al. Mar 2006 A1
20060046419 Sandhu et al. Mar 2006 A1
20060046470 Becknell Mar 2006 A1
20060046484 Abatchev et al. Mar 2006 A1
20060051966 Or et al. Mar 2006 A1
20060051968 Joshi et al. Mar 2006 A1
20060054184 Mozetic et al. Mar 2006 A1
20060060942 Minixhofer et al. Mar 2006 A1
20060093756 Rajagopalan et al. May 2006 A1
20060097397 Russell May 2006 A1
20060102076 Smith et al. May 2006 A1
20060102587 Kimura May 2006 A1
20060118178 Desbiolles et al. Jun 2006 A1
20060121724 Duofeng et al. Jun 2006 A1
20060124242 Kanarik et al. Jun 2006 A1
20060130971 Chang et al. Jun 2006 A1
20060157449 Takahashi et al. Jul 2006 A1
20060162661 Jung et al. Jul 2006 A1
20060166107 Chen et al. Jul 2006 A1
20060166515 Karim et al. Jul 2006 A1
20060169327 Shajii et al. Aug 2006 A1
20060178008 Yeh et al. Aug 2006 A1
20060185592 Matsuura Aug 2006 A1
20060191479 Mizukami et al. Aug 2006 A1
20060191637 Zajac et al. Aug 2006 A1
20060207504 Hasebe et al. Sep 2006 A1
20060207595 Ohmi et al. Sep 2006 A1
20060210723 Ishizaka Sep 2006 A1
20060211260 Tran et al. Sep 2006 A1
20060216878 Lee Sep 2006 A1
20060216923 Tran et al. Sep 2006 A1
20060222481 Foree Oct 2006 A1
20060226121 Aoi Oct 2006 A1
20060228889 Edelberg et al. Oct 2006 A1
20060240661 Annapragada et al. Oct 2006 A1
20060244107 Sugihara Nov 2006 A1
20060246717 Weidman et al. Nov 2006 A1
20060251800 Weidman et al. Nov 2006 A1
20060251801 Weidman et al. Nov 2006 A1
20060252252 Zhu et al. Nov 2006 A1
20060252265 Jin et al. Nov 2006 A1
20060254716 Mosden et al. Nov 2006 A1
20060260750 Rueger Nov 2006 A1
20060261490 Su et al. Nov 2006 A1
20060264003 Eun Nov 2006 A1
20060264043 Stewart et al. Nov 2006 A1
20060266288 Choi Nov 2006 A1
20070025907 Rezeq Feb 2007 A1
20070048977 Lee et al. Mar 2007 A1
20070056925 Liu et al. Mar 2007 A1
20070062453 Ishikawa Mar 2007 A1
20070071888 Shanmugasundram et al. Mar 2007 A1
20070072408 Enomoto et al. Mar 2007 A1
20070090325 Hwang et al. Apr 2007 A1
20070099428 Shamiryan et al. May 2007 A1
20070099431 Li May 2007 A1
20070099438 Ye et al. May 2007 A1
20070107750 Sawin et al. May 2007 A1
20070108404 Stewart et al. May 2007 A1
20070111519 Lubomirsky et al. May 2007 A1
20070117396 Wu et al. May 2007 A1
20070119370 Ma et al. May 2007 A1
20070119371 Ma et al. May 2007 A1
20070123051 Arghavani et al. May 2007 A1
20070131274 Stollwerck et al. Jun 2007 A1
20070154838 Lee Jul 2007 A1
20070163440 Kim et al. Jul 2007 A1
20070175861 Hwang et al. Aug 2007 A1
20070181057 Lam et al. Aug 2007 A1
20070193515 Jeon et al. Aug 2007 A1
20070197028 Byun et al. Aug 2007 A1
20070207275 Nowak et al. Sep 2007 A1
20070212288 Holst Sep 2007 A1
20070227554 Satoh et al. Oct 2007 A1
20070231109 Pak et al. Oct 2007 A1
20070232071 Balseanu et al. Oct 2007 A1
20070235134 Iimuro Oct 2007 A1
20070238199 Yamashita Oct 2007 A1
20070238321 Futase et al. Oct 2007 A1
20070243685 Jiang et al. Oct 2007 A1
20070259467 Tweet et al. Nov 2007 A1
20070264820 Liu Nov 2007 A1
20070266946 Choi Nov 2007 A1
20070269976 Futase et al. Nov 2007 A1
20070277734 Lubomirsky et al. Dec 2007 A1
20070281106 Lubomirsky et al. Dec 2007 A1
20070287292 Li et al. Dec 2007 A1
20080020570 Naik Jan 2008 A1
20080044990 Lee Feb 2008 A1
20080063810 Park et al. Mar 2008 A1
20080075668 Goldstein Mar 2008 A1
20080081483 Wu Apr 2008 A1
20080085604 Hoshino et al. Apr 2008 A1
20080099147 Myo et al. May 2008 A1
20080099431 Kumar et al. May 2008 A1
20080099876 Seto May 2008 A1
20080102570 Fischer et al. May 2008 A1
20080102640 Hassan et al. May 2008 A1
20080115726 Ingle et al. May 2008 A1
20080121970 Aritome May 2008 A1
20080124919 Huang et al. May 2008 A1
20080124937 Xu et al. May 2008 A1
20080142483 Hua et al. Jun 2008 A1
20080142831 Hua et al. Jun 2008 A1
20080153306 Cho et al. Jun 2008 A1
20080156771 Jeon et al. Jul 2008 A1
20080157225 Datta et al. Jul 2008 A1
20080160210 Yang et al. Jul 2008 A1
20080162781 Haller et al. Jul 2008 A1
20080171407 Nakabayashi et al. Jul 2008 A1
20080173906 Zhu Jul 2008 A1
20080182381 Kiyotoshi Jul 2008 A1
20080182382 Ingle et al. Jul 2008 A1
20080182383 Lee et al. Jul 2008 A1
20080202892 Smith et al. Aug 2008 A1
20080230519 Takahashi Sep 2008 A1
20080233709 Conti et al. Sep 2008 A1
20080236751 Aramaki et al. Oct 2008 A1
20080254635 Benzel et al. Oct 2008 A1
20080261404 Kozuka et al. Oct 2008 A1
20080268645 Kao et al. Oct 2008 A1
20080292798 Huh et al. Nov 2008 A1
20080293248 Park et al. Nov 2008 A1
20090001480 Cheng Jan 2009 A1
20090004849 Eun Jan 2009 A1
20090017227 Fu et al. Jan 2009 A1
20090045167 Maruyama Feb 2009 A1
20090072401 Arnold et al. Mar 2009 A1
20090081878 Dhindsa Mar 2009 A1
20090084317 Wu et al. Apr 2009 A1
20090087960 Cho et al. Apr 2009 A1
20090087979 Raghuram Apr 2009 A1
20090095621 Kao et al. Apr 2009 A1
20090098706 Kim et al. Apr 2009 A1
20090104738 Ring et al. Apr 2009 A1
20090104764 Xia et al. Apr 2009 A1
20090104782 Lu et al. Apr 2009 A1
20090111280 Kao et al. Apr 2009 A1
20090120464 Rasheed et al. May 2009 A1
20090170221 Jacques et al. Jul 2009 A1
20090170331 Cheng et al. Jul 2009 A1
20090179300 Arai Jul 2009 A1
20090189246 Wu et al. Jul 2009 A1
20090194810 Kiyotoshi et al. Aug 2009 A1
20090197418 Sago Aug 2009 A1
20090202721 Nogami et al. Aug 2009 A1
20090255902 Satoh et al. Oct 2009 A1
20090258162 Furuta et al. Oct 2009 A1
20090269934 Kao et al. Oct 2009 A1
20090275146 Takano et al. Nov 2009 A1
20090275205 Kiehlbauch et al. Nov 2009 A1
20090275206 Katz et al. Nov 2009 A1
20090277587 Lubomirsky et al. Nov 2009 A1
20090277874 Rui et al. Nov 2009 A1
20090280650 Lubomirsky et al. Nov 2009 A1
20090286400 Heo et al. Nov 2009 A1
20090294898 Feustel et al. Dec 2009 A1
20100003824 Kadkhodayan et al. Jan 2010 A1
20100022030 Ditizio Jan 2010 A1
20100047080 Bruce Feb 2010 A1
20100048027 Cheng et al. Feb 2010 A1
20100055408 Lee et al. Mar 2010 A1
20100055917 Kim Mar 2010 A1
20100059889 Gosset et al. Mar 2010 A1
20100062603 Ganguly et al. Mar 2010 A1
20100075503 Bencher et al. Mar 2010 A1
20100093151 Arghavani et al. Apr 2010 A1
20100093168 Naik Apr 2010 A1
20100098884 Balseanu et al. Apr 2010 A1
20100099236 Kwon et al. Apr 2010 A1
20100099263 Kao et al. Apr 2010 A1
20100101727 Ji Apr 2010 A1
20100105209 Winniczek et al. Apr 2010 A1
20100130001 Noguchi May 2010 A1
20100144140 Chandrashekar et al. Jun 2010 A1
20100164422 Shu et al. Jul 2010 A1
20100173499 Tao et al. Jul 2010 A1
20100178748 Subramanian Jul 2010 A1
20100178755 Lee et al. Jul 2010 A1
20100180819 Hatanaka et al. Jul 2010 A1
20100183825 Becker et al. Jul 2010 A1
20100187534 Nishi et al. Jul 2010 A1
20100187588 Gil-Sub et al. Jul 2010 A1
20100187694 Yu et al. Jul 2010 A1
20100190352 Jaiswal Jul 2010 A1
20100197143 Nishimura Aug 2010 A1
20100203739 Becker et al. Aug 2010 A1
20100207205 Grebs et al. Aug 2010 A1
20100240205 Son Sep 2010 A1
20100294199 Tran et al. Nov 2010 A1
20100330814 Yokota et al. Dec 2010 A1
20110005607 Desbiolles et al. Jan 2011 A1
20110008950 Xu Jan 2011 A1
20110011338 Chuc et al. Jan 2011 A1
20110034035 Liang et al. Feb 2011 A1
20110039407 Nishizuka Feb 2011 A1
20110045676 Park Feb 2011 A1
20110053380 Sapre et al. Mar 2011 A1
20110061810 Ganguly et al. Mar 2011 A1
20110061812 Ganguly et al. Mar 2011 A1
20110065276 Ganguly et al. Mar 2011 A1
20110081782 Liang et al. Apr 2011 A1
20110100489 Orito May 2011 A1
20110111596 Kanakasabapathy May 2011 A1
20110114601 Lubomirsky et al. May 2011 A1
20110115378 Lubomirsky et al. May 2011 A1
20110124144 Schlemm et al. May 2011 A1
20110127156 Foad et al. Jun 2011 A1
20110143542 Feurprier et al. Jun 2011 A1
20110151674 Tang et al. Jun 2011 A1
20110151676 Ingle et al. Jun 2011 A1
20110151677 Wang et al. Jun 2011 A1
20110151678 Ashtiani et al. Jun 2011 A1
20110155181 Inatomi Jun 2011 A1
20110159690 Chandrashekar et al. Jun 2011 A1
20110165771 Ring et al. Jul 2011 A1
20110180847 Ikeda et al. Jul 2011 A1
20110195575 Wang Aug 2011 A1
20110217851 Liang et al. Sep 2011 A1
20110226734 Sumiya et al. Sep 2011 A1
20110227028 Sekar et al. Sep 2011 A1
20110230052 Tang et al. Sep 2011 A1
20110232737 Ruletzki et al. Sep 2011 A1
20110266252 Thadani et al. Nov 2011 A1
20110266682 Edelstein et al. Nov 2011 A1
20110294300 Zhang et al. Dec 2011 A1
20110298061 Siddiqui et al. Dec 2011 A1
20120003782 Byun et al. Jan 2012 A1
20120009796 Cui et al. Jan 2012 A1
20120025289 Liang et al. Feb 2012 A1
20120031559 Dhindsa et al. Feb 2012 A1
20120034786 Dhindsa et al. Feb 2012 A1
20120052683 Kim et al. Mar 2012 A1
20120068242 Shin et al. Mar 2012 A1
20120103518 Kakimoto et al. May 2012 A1
20120104564 Won et al. May 2012 A1
20120129354 Luong May 2012 A1
20120135576 Lee et al. May 2012 A1
20120161405 Mohn et al. Jun 2012 A1
20120164839 Nishimura Jun 2012 A1
20120180954 Yang et al. Jul 2012 A1
20120181599 Lung Jul 2012 A1
20120196447 Yang et al. Aug 2012 A1
20120202408 Shajii et al. Aug 2012 A1
20120211462 Zhang et al. Aug 2012 A1
20120223048 Paranjpe et al. Sep 2012 A1
20120225557 Serry et al. Sep 2012 A1
20120228642 Aube et al. Sep 2012 A1
20120238102 Zhang et al. Sep 2012 A1
20120238103 Zhang et al. Sep 2012 A1
20120247390 Sawada et al. Oct 2012 A1
20120247670 Dobashi et al. Oct 2012 A1
20120247671 Sugawara Oct 2012 A1
20120267346 Kao et al. Oct 2012 A1
20120285621 Tan Nov 2012 A1
20120292664 Kanike Nov 2012 A1
20120309204 Kang et al. Dec 2012 A1
20130005103 Liu et al. Jan 2013 A1
20130005140 Jeng et al. Jan 2013 A1
20130012032 Liu et al. Jan 2013 A1
20130032574 Liu et al. Feb 2013 A1
20130034666 Liang et al. Feb 2013 A1
20130034968 Zhang et al. Feb 2013 A1
20130045605 Wang et al. Feb 2013 A1
20130052827 Wang et al. Feb 2013 A1
20130052833 Ranjan et al. Feb 2013 A1
20130059440 Wang et al. Mar 2013 A1
20130065398 Ohsawa et al. Mar 2013 A1
20130082197 Yang et al. Apr 2013 A1
20130089988 Wang et al. Apr 2013 A1
20130098868 Nishimura et al. Apr 2013 A1
20130119016 Kagoshima May 2013 A1
20130119457 Lue et al. May 2013 A1
20130119483 Alptekin et al. May 2013 A1
20130130507 Wang et al. May 2013 A1
20130187220 Surthi Jul 2013 A1
20130193108 Zheng Aug 2013 A1
20130217243 Underwood et al. Aug 2013 A1
20130224960 Payyapilly et al. Aug 2013 A1
20130260533 Sapre et al. Oct 2013 A1
20130260564 Sapre et al. Oct 2013 A1
20130284369 Kobayashi et al. Oct 2013 A1
20130284370 Kobayashi et al. Oct 2013 A1
20130298942 Ren et al. Nov 2013 A1
20130302980 Chandrashekar et al. Nov 2013 A1
20130337655 Lee et al. Dec 2013 A1
20140004708 Thedjoisworo Jan 2014 A1
20140020708 Kim et al. Jan 2014 A1
20140021673 Chen et al. Jan 2014 A1
20140057447 Yang et al. Feb 2014 A1
20140065842 Anthis et al. Mar 2014 A1
20140080308 Chen et al. Mar 2014 A1
20140080309 Park Mar 2014 A1
20140080310 Chen et al. Mar 2014 A1
20140083362 Lubomirsky et al. Mar 2014 A1
20140087488 Nam et al. Mar 2014 A1
20140097270 Liang et al. Apr 2014 A1
20140099794 Ingle et al. Apr 2014 A1
20140134847 Seya May 2014 A1
20140141621 Ren et al. May 2014 A1
20140166617 Chen Jun 2014 A1
20140166618 Tadigadapa et al. Jun 2014 A1
20140190410 Kim Jul 2014 A1
20140199851 Nemani et al. Jul 2014 A1
20140225504 Kaneko et al. Aug 2014 A1
20140227881 Lubomirsky et al. Aug 2014 A1
20140234466 Gao et al. Aug 2014 A1
20140248780 Ingle et al. Sep 2014 A1
20140256131 Wang et al. Sep 2014 A1
20140262031 Belostotskiy et al. Sep 2014 A1
20140262038 Wang et al. Sep 2014 A1
20140263272 Duan et al. Sep 2014 A1
20140264533 Simsek-Ege Sep 2014 A1
20140271097 Wang et al. Sep 2014 A1
20140273373 Makala et al. Sep 2014 A1
20140273406 Wang et al. Sep 2014 A1
20140273451 Wang et al. Sep 2014 A1
20140273462 Simsek-Ege et al. Sep 2014 A1
20140273489 Wang et al. Sep 2014 A1
20140273491 Zhang et al. Sep 2014 A1
20140273492 Anthis et al. Sep 2014 A1
20140273496 Kao Sep 2014 A1
20140288528 Py et al. Sep 2014 A1
20140302678 Paterson et al. Oct 2014 A1
20140302680 Singh Oct 2014 A1
20140308758 Nemani et al. Oct 2014 A1
20140308816 Wang et al. Oct 2014 A1
20140311581 Belostotskiy et al. Oct 2014 A1
20140342532 Zhu Nov 2014 A1
20140342569 Zhu et al. Nov 2014 A1
20140349477 Chandrashekar et al. Nov 2014 A1
20150011096 Chandrasekharan et al. Jan 2015 A1
20150014152 Hoinkis et al. Jan 2015 A1
20150031211 Sapre et al. Jan 2015 A1
20150037980 Rha Feb 2015 A1
20150060265 Cho et al. Mar 2015 A1
20150076110 Wu et al. Mar 2015 A1
20150079797 Chen et al. Mar 2015 A1
20150118858 Takaba Apr 2015 A1
20150126035 Diao et al. May 2015 A1
20150126039 Korolik et al. May 2015 A1
20150126040 Korolik et al. May 2015 A1
20150129541 Wang et al. May 2015 A1
20150129545 Ingle et al. May 2015 A1
20150129546 Ingle et al. May 2015 A1
20150132953 Nowling May 2015 A1
20150132968 Ren et al. May 2015 A1
20150155177 Zhang et al. Jun 2015 A1
20150170879 Nguyen et al. Jun 2015 A1
20150170920 Purayath et al. Jun 2015 A1
20150170924 Nguyen et al. Jun 2015 A1
20150170926 Michalak Jun 2015 A1
20150170935 Wang et al. Jun 2015 A1
20150170943 Nguyen et al. Jun 2015 A1
20150171008 Luo Jun 2015 A1
20150179464 Wang et al. Jun 2015 A1
20150206764 Wang et al. Jul 2015 A1
20150214066 Luere et al. Jul 2015 A1
20150214067 Zhang et al. Jul 2015 A1
20150214092 Purayath et al. Jul 2015 A1
20150214337 Ko et al. Jul 2015 A1
20150221541 Nemani et al. Aug 2015 A1
20150235809 Ito et al. Aug 2015 A1
20150235863 Chen Aug 2015 A1
20150235865 Wang et al. Aug 2015 A1
20150235867 Nishizuka Aug 2015 A1
20150247231 Nguyen et al. Sep 2015 A1
20150249018 Park et al. Sep 2015 A1
20150270140 Gupta et al. Sep 2015 A1
20150275361 Lubomirsky et al. Oct 2015 A1
20150275375 Kim et al. Oct 2015 A1
20150294980 Lee et al. Oct 2015 A1
20150332930 Wang et al. Nov 2015 A1
20150340225 Kim et al. Nov 2015 A1
20150357201 Chen et al. Dec 2015 A1
20150357205 Wang et al. Dec 2015 A1
20150371861 Li et al. Dec 2015 A1
20150371864 Hsu et al. Dec 2015 A1
20150371865 Chen et al. Dec 2015 A1
20150371866 Chen et al. Dec 2015 A1
20160005572 Liang et al. Jan 2016 A1
20160005833 Collins et al. Jan 2016 A1
20160027654 Kim et al. Jan 2016 A1
20160027673 Wang et al. Jan 2016 A1
20160035586 Purayath et al. Feb 2016 A1
20160035614 Purayath et al. Feb 2016 A1
20160042968 Purayath et al. Feb 2016 A1
20160056167 Wang et al. Feb 2016 A1
20160064233 Wang et al. Mar 2016 A1
20160079072 Wang et al. Mar 2016 A1
20160086807 Park et al. Mar 2016 A1
20160086808 Zhang et al. Mar 2016 A1
20160086815 Pandit et al. Mar 2016 A1
20160086816 Wang et al. Mar 2016 A1
20160093505 Chen et al. Mar 2016 A1
Foreign Referenced Citations (32)
Number Date Country
1375575 Oct 2002 CN
1412861 Apr 2003 CN
101465386 Jun 2009 CN
0329406 Aug 1989 EP
0376252 Jul 1990 EP
0475567 Mar 1992 EP
0 496 543 Jul 1992 EP
0 658 928 Jun 1995 EP
0697467 Feb 1996 EP
0913498 May 1999 EP
1099776 May 2001 EP
1107288 Jun 2001 EP
1496542 Jan 2005 EP
1568797 Aug 2005 EP
2285174 Jun 1995 GB
2058836 Feb 1990 JP
02256235 Oct 1990 JP
7297543 Nov 1995 JP
09153481 Jun 1997 JP
09-205140 Aug 1997 JP
11124682 May 1999 JP
04-239723 Aug 2004 JP
1020000008278 Feb 2000 KR
10-2001-0058774 Jul 2001 KR
1020030096140 Dec 2003 KR
10-2004-0096365 Nov 2004 KR
1020050042701 May 2005 KR
1020080063988 Jul 2008 KR
10-2010-0074508 Jul 2010 KR
1020110126675 Nov 2011 KR
1020120082640 Jul 2012 KR
9926277 May 1999 WO
Non-Patent Literature Citations (82)
Entry
Abe et al., “Developments of plasma etching technology for fabricating semiconductor devices,” Jpn. J. Appl. Phys., vol. 47, No. 3R, Mar. 2008, 21 pgs.
Cho et al., “Dual Discharge Modes Operation of an Argon Plasma Generated by Commercial Electronic Ballast for Remote Plasma Removal Process,” IEEE Transactions on Plasma Science, vol. 42, No. 6, , Jun. 2014, 4 pages.
Cho et al., “Dielectric-barrier microdischarge structure for effic ient positive-column plasma using a thick-film ceramic sheet,” IEEE Trans. Plasma Sci., vol. 37, No. 8, Aug. 2009, 4 pgs.
Cho et al., “Three-dimensional spatiotemporal behaviors of light emission from discharge plasma of alternating current plasma display panels,” Appl. Phys. Lett. , vol. 92, No. 22, Jun. 2008, 3pgs.
Cho et al., “Analysis of address discharge modes by using a three-dimensional plasma display panel,” IEEE Trans. Plasma Sci., vol. 36, Oct. 2008, 4 pgs.
C.K. Hu, et al. “Reduced Electromigration of Cu Wires by Surface Coating” Applied Physics Letters, vol. 81, No. 10, Sep. 2, 2002—pp. 1782-1784.
Derwent 2006-065772, Formation of multilayer enscapulating film over substrate, e.g. displace device, comprising delivering mixture precursors and hydrogen gas into substrate processing system, 2006.
European Search Report dated May 23, 2006 for EP Application No. 05251143.3.
European Examination Report dated Nov. 13, 2007 for EP Application No. 05251143.3.
EP Partial Search Report, Application No. 08150111.601235/1944796, dated Aug. 22, 2008.
Eze, F. C., “Electroless deposition of CoO thin films,” J. Phys. D: Appl. Phys. 32 (1999), pp. 533-540.
Galiano et al. “Stress-Temperature Behavior of Oxide Films Used for Intermetal Dielectric Applications”, VMIC Conference, Jun. 9-10, 1992, pp. 100-106.
Goebels, F.J. et al. “Arbitrary Polarization from Annular Slot Planar Antennas.” Ire Transactions on Antennas and Propagation, Jul. 1961, 8 pgs.
Iijima, et al., “Highly Selective SiO2 Etch Employing Inductively Coupled Hydro-Fluorocarbon Plasma Chemistry for Self Aligned Contact Etch”, Jpn. J. Appl. Phys., Sep. 1997, pp. 5498-5501, vol. 36, Part 1, No. 9A.
International Search Report of PCT/US2009/059743 mailed on Apr. 26, 2010, 4 pages.
International Search Report of PCT/US2012/061726 mailed on May 16, 2013, 3 pages.
International Search Report of PCT/2013/052039 mailed on Nov. 8, 2013, 9 pages.
International Search Report of PCT/2013/037202 mailed on Aug. 23, 2013, 11 pages.
Kim et al., “Pendulum electrons in micro hollow cathode di scharges,” IEEE Trans. Plasma Sci. , vol. 36, No. 4, pp. Aug. 2008, 2 pgs.
Lin, et al., “Manufacturing of Cu Electroless Nickel/Sn—Pb Flip Chip Solder Bumps”, IEEE Transactions on Advanced Packaging, vol. 22, No. 4 (Nov. 1999), pp. 575-579.
Lopatin, et al., “Thin Electroless barrier for copper films”, Part of the SPIE Conference of Multilevel Interconnect technology II, SPIE vol. 3508 (1998), pp. 65-77.
Musaka, “Single Step Gap Filling Technology fo Subhalf Micron Metal Spacings on Plasma Enhanced TEOS/O2 Chemical Vapor Deposition System,” Extended Abstracts of the 1993 International Conference on Solid State Devices and Materials pages, 1993, 510-512.
Pearlstein, Fred. “Electroless Plating,” J. Res. Natl. Bur. Stan., Ch. 31 (1974), pp. 710-747.
Redolfi et al., “Bulk FinFET fabrication with new approaches for oxide topography control using dry removal techniques,” Solid-State Electron., vol. 71, May 2012, 7 pgs.
Saito, et al., “Electroless deposition of Ni—B, Co—B and Ni—Co—B alloys using dimethylamineborane as a reducing agent,” Journal of Applied Electrochemistry 28 (1998), pp. 559-563.
Schacham-Diamond, et al., “Electrochemically deposited thin film alloys for ULSI and MEMS applications,” Microelectronic Engineering 50 (2000), pp. 525-531.
Schacham-Diamond, et al. “Material properties of electroless 100-200 nm thick CoWP films,” Electrochemical Society Proceedings, vol. 99-34, pp. 102-110.
Schoenbach et al.,“High-pressure hollow cathode di scharges,” Plasma Sources Sci. Te chnol.,vol. 6, No. 4, Nov. 1997, 10 pgs.
Smayling, et al., “APF® Pitch-Halving for 2nm Logic Cells using Gridded Design Rules”, proceedings of the SPIE, 2008, 8 pages.
Vassiliev, et al., “Trends in void-free pre-metal CVD dielectrics,” Solid State Technology, Mar. 2001, pp. 129-136.
Weston, et al., “Ammonium Compounds,” Kirk-Othmer Encyclopedia of Chemical Technology, 2003,30 pages see pp. 717-718, John Wiley & Sons, Inc.
Yosi Shacham-Diamond, et al. “High Aspect Ratio Quarter-Micron Electroless Copper Integrated Technology”, Microelectronic Engineering 37/38 (1997) pp. 77-88.
Li, D. et al., “HDP-CVD dep/etch/dep Process for Improved Deposition into High Aspect Ratio Features,” U.S. Pat. No. 6,908,862 published Jun. 21, 2005.
Abraham, “Reactive Facet Tapering of Plasma Oxide for Multilevel Interconnect Applications”, IEEE, V-MIC Conference, Jun. 15-16, 1987, pp. 115-121.
Applied Materials, Inc., “Applied Siconi™ Preclean,” printed on Aug. 7, 2009, 8 pages.
Carlson, et al., “A Negative Spacer Lithography Process for Sub-100nm Contact Holes and Vias”, University of California at Berkeley, Jun. 19, 2007, 4 pp.
Chang et al. “Frequency Effects and Properties of Plasma Deposited Fluorinated Silicon Nitride”, J. Vac Sci Technol B 6(2), Mar./Apr. 1988, pp. 524-532.
Cheng, et al., “New Test Structure to Identify Step Coverage Mechanisms in Chemical Vapor Deposition of Silicon Dioxide,” Appl. Phys. Lett., 58 (19), May 13, 1991, p. 2147-2149.
Examination Report dated Jun. 28, 2010 for European Patent Application No. 05251143.3. I (APPM/008802 EPC E).
Fukada et al., “Preparation of SiOF Films with Low Dielectric Constant by ECR Plasma CVD,” ISMIC, DUMIC Conference, Feb. 21-22, 1995, pp. 43-49.
Hashim et al., “Characterization of thin oxide removal by RTA Treatment,” ICSE 1998 Proc. Nov. 1998, Rangi, Malaysia, pp. 213-216.
Hausmann, et al., “Rapid Vapor Deposition of Highly Conformal Silica Nanolaminates,” Science, Oct. 11, 2002, p. 402-406, vol. 298.
Hayasaka, N. et al. “High Quality Low Dielectric Constant SiO2 CVD Using High Density Plasma,” Proceedings of the Dry Process Symposium, 1993, pp. 163-168.
Hwang et al., “Smallest Bit-Line Contact of 76nm pitch on NAND Flash Cell by using Reversal PR (Photo Resist) and SADP (Self-Align Double Patterning) Process,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 2007, 3 pages.
International Search Report and Written Opinion of the International Searching Authority mailed Jul. 3, 2008 (PCT/US05/46226; APPM8802PCO2).
International Search Report and Written Opinion for PCT Application No. PCT/US2011/027221, mailed on Nov. 1, 2011, 8 pages.
International Search Report and Written Opinion of PCT/US2010/057676 mailed on Jun. 27, 2011, 9 pages.
International Search Report and Written Opinion of PCT/US2011/030582 mailed Dec. 7, 2011, 9 pages.
International Search Report and Written Opinion of PCT/US2011/064724 mailed on Oct. 12, 2012, 8 pages.
International Search Report and Written Opinion of PCT/US2012/028952 mailed on Oct. 29, 2012, 9 pages.
International Search Report and Written Opinion of PCT/US2012/048842 mailed on Nov. 28, 2012, 10 pages.
International Search Report and Written Opinion of PCT/US2012/053329 mailed on Feb. 15, 2013, 8 pages.
International Search Report and Written Opinion of PCT/US2012/057294 mailed on Mar. 18, 2013, 12 pages.
International Search Report and Written Opinion of PCT/US2012/057358 mailed on Mar. 25, 2013, 10 pages.
International Search Report and Written Opinion of PCT/US2012/058818 mailed on Apr. 1, 2013, 9 pages.
International Search Report and Written Opinion of the International Searching Authority for PCT Application No. PCT/US2012/028957, mailed on Oct. 18, 2012, 9 pages.
International Search report and Written Opinion of PCT/CN2010/000932 dated Mar. 31, 2011, 8 pages.
Japanese Patent Office, Official Action for Application No. 2007-317207 mailed on Dec. 21, 2011, 2 pages.
International Search Report and Written Opinion of PCT/US2013/076217 mailed on Apr. 28, 2014, 11 pages.
Jung, et al., “Patterning with amorphous carbon spacer for expanding the resolution limit of current lithography tool”, Proc. SPIE , 2007, 9 pages, vol. 6520, 65201C.
Laxman, “Low ε Dielectrics: CVD Fluorinated Silicon Dioxides”, Semiconductor International, May 1995, pp. 71-74.
Lee, et al., “Dielectric Planarization Techniques for Narrow Pitch Multilevel Interconnects,” IEEE, V-MIC Conference Jun. 15-16, 1987, pp. 85-92 (1987).
Matsuda, et al. “Dual Frequency Plasma CVD Fluorosilicate Glass Deposition for 0.25 um Interlevel Dielectrics”, ISMIC, DUMIC Conference Feb. 21-22, 1995, pp. 22-28.
Meeks, Ellen et al., “Modeling of SiO2 deposition in high density plasma reactors and comparisons of model predictions with experimental measurements,” J. Vac. Sci. Technol. A, Mar./Apr. 1998, pp. 544-563, vol. 16(2).
Mukai, et al., “A Study of CD Budget in Spacer Patterning Process”, Toshiba, SPIE 2008, Feb. 26, 2008, 12 pages.
Nishino, et al.; Damage-Free Selective Etching of Si Native Oxides Using NH3/NF3 and SF6/H20 Down-Flow Etching, The Japanese Society of Applied Physics, vol. 74, No. 2, pp. 1345-1348, XP-002491959, Jul. 15, 1993.
Ogawa, et al., “Dry Cleaning Technology for Removal of Silicon Native Oxide Employing Hot NH3/NF3 Exposure”, Japanese Journal of Applied Physics, pp. 5349-5358, Aug. 2002, vol. 41 Part 1, No. 8.
Ota, et al., “Stress Controlled Shallow Trench Isolation Technology to Suppress the Novel Anti-Isotropic Impurity Diffusion for 45nm-Node High Performance CMOSFETs,” Symposium on VLSI Technology Digest of Technical Papers, 2005, pp. 138-139.
Qian, et al., “High Density Plasma Deposition and Deep Submicron Gap Fill with Low Dielectric Constant SiOF Films,” ISMIC, DUMIC Conference Feb. 21-22, 1995, 1995, pp. 50-56.
Robles, et al. “Effects of RF Frequency and Deposition Rates on the Moisture Resistance of PECVD TEOS-Based Oxide Films”, ECS Extended Abstracts, Abstract No. 129, May 1992, pp. 215-216, vol. 92-1.
S.M. Sze, VLSI Technology, McGraw-Hill Book Company, pp. 107, 108.
C.C. Tang and D. W. Hess, Tungsten Etching in CF4 and SF6 Discharges, J. Electrochem. Soc., 1984, 131 (1984) p. 115-120.
Usami, et al., “Low Dielectric Constant Interlayer Using Fluorine-Doped Silicon Oxide”, Jpn. J. Appl. Phys., Jan. 19, 1994. pp. 408-412, vol. 33 Part 1, No. 1B.
Wang et al.; Ultra High-selectivity silicon nitride etch process using an inductively coupled plasma source; J. Vac. Sci. Techno!. A 16(3),May/Jun. 1998, pp. 1582-1587.
Wolf et al.; Silicon Processing for the VLSI Era; vol. 1; 1986; Lattice Press, pp. 546, 547, 618, 619.
Yang, R., “Advanced in situ pre-Ni silicide (Siconi) cleaning at 65 nm to resolve defects in NiSix modules,” J. Vac. Sci., Technol. B, Microelectron. Nanometer Struct., vol. 28, No. 1, Jan. 2010, 6 pgs.
Yasaka, Y. et al. “Planar microwave discharges with active control of plasma uniformity”. Physics of Plasmas, vol. 9 No. 3, Mar. 2002, 7 pgs.
Yasuda et al., “Dual-function remote plasma etching/cleaning system applied to selective etching of Si02 and removal of polymeric residues,” J. Vac. Sci. Technol., A, vol. 11, No. 5, 1993, 12 pgs.
Yu, et al., “Step Coverage Study of Peteos Deposition for Intermetal Dielectric Applications,” abstract, VMIC conference, Jun. 12-13, 1990, 7 pages, No. 82.
Yutaka, et al., “Selective Etching of Silicon Native Oxide with Remote-Plasma-Excited Anhydrous Hydrogen Fluoride,” Japanese Journal of Applied Physics, 1998, vol. 37, pp. L536-L538.
International Preliminary Report on Patentability for PCT-US2013-071417 issued Jul. 2, 2015, 8 pages.
Manual No. TQMA72E1. “Bayard-Alpert Pirani Gauge FRG-730: Short Operating Instructions” Mar. 2012. Agilent Technologies, Lexington, MA 02421, USA. pp. 1-45.
Related Publications (1)
Number Date Country
20150118857 A1 Apr 2015 US
Provisional Applications (1)
Number Date Country
61740587 Dec 2012 US
Continuations (1)
Number Date Country
Parent 13791125 Mar 2013 US
Child 14584099 US