The present invention relates generally to fluid filling ports, and more particularly to an apparatus for automatically sealing a Diesel Exhaust Fluid Port after filling.
Tanks for Diesel Exhaust Fluid (DEF) are becoming the standard for heavy-duty diesel engines, particularly those found in trucks and other fleet vehicles. DEF is an Aqueous Urea Solution used in diesel emissions systems. DEF is sprayed directly into the exhaust stream to chemically neutralize harmful nitrogen oxide emissions. DEF is replenished using fill bottles or service station pumps by first removing the DEF service port caps and dispensing the agent in the DEF service port. Operators are required to manually remove and reseal DEF port caps after replenishing the DEF. Newer operators and service personnel often mistakenly forget to reseal the service port with the cap. Additionally, operators who remember to reseal the cap may fail to reseal it properly. This results in a loss of DEF or unwanted debris entering into the service port. Both of these results will prove harmful to the engines. Therefore, there remains a need for an automatic sealing port cap to eliminate the need for operators to replace the port cap. There is also a need for a multiple seal cap for eliminating the possibility of DEF being lost and debris entering the DEF service port.
An embodiment of the present invention comprises a sealing lid assembly for use with a service port. The sealing lid assembly includes a cap adapted to overlie the service port. The sealing lid assembly further includes a plug extending axially inward from the cap, the plug having a diameter corresponding to the service port such that the plug is at least partially received in the service port, wherein the plug tapers radially inwardly as it extends axially inwardly from the cap to form a frusto-conical wall terminating at an inward end. The cap extends radially outward of the plug to form an annular flange adapted to engage the outer extremity of the service port. The sealing lid assembly further includes a first seal having a circular shape attached to the annular flange and interposed between the flange and the outer extremity of the service port to create a sealing engagement between the cap and the service port. The plug defines an annular recess between the cap and the inward end. The sealing lid assembly also includes a second seal received within the annular recess and extending radially outward therefrom to sealingly engage the service port when the cap a in a closed position. The sealing lid assembly further includes a first and second arm extending outwardly from one end of the cap. The first and second arm each defining a pin receiver aligned along a common axis. The sealing lid assembly further includes a pin received in the pin receivers and supported adjacent the service port, wherein the cap pivots on the pin. The sealing lid assembly also includes a spring supported on the pin and contacting the cap to bias the cap towards the closed position.
A further embodiment of the present invention includes a sealing lid assembly used in connection with a service port of a diesel emissions fluid tank, the sealing lid assembly comprising a cap adapted to overlie the service port, a plug extending from an underside of said cap and adapted to be received at least partially within the service port, the cap extending radially outward of the plug to form an annular flange, and a first seal supported on the plug extending radially outward therefrom to sealingly engage the interior of the service port when the sealing lid is in a closed position.
a illustrates a sectional side elevation view as might be seen along line A-A of
The present invention relates to a tank T for holding a urea based Diesel Exhaust Fluid (DEF) for reducing oxides of nitrogen emissions in diesel fuel engines. DEF is poured into a DEF tank T or a DEF service port 600 that is in fluid communication with the tank T, then later dispensed into the engine's exhaust stream. The DEF service port 600 may be made from any material used to form containers including, but not limited to, polymers or stainless steel materials. The DEAF service port 600 typically includes a wall or rim that defines an opening into which a fill nozzle for dispensing the DEF is received, and a lid or cap for keeping the contents therein and contaminants out. The service port 600 may form part of the DEF tank or be located remotely from the tank T and connected by tubing or other suitable conduit for conveying the DEF to the tank T.
The sealing lid assembly of the DEF service port 600 keeps contaminants out of the service port 600 and maintains a fully functional and compliant emissions system. To that end, the present invention incorporates an automatic or self-sealing lid assembly for use with a service port 600 to effectively keep the DEF from escaping in the service port 600, and to prevent contaminants from entering.
An exemplary service port 600 having an automatic or self-sealing lid assembly, generally identified by reference numeral 10, is shown in the figures. The sealing lid assembly 10, as illustrated in
Cap 100 may include a plug 300 extending from an underside of the cap 100 and adapted to fit within the opening defined by service port 600. The plug 300 may be solid or hollow. With reference to
In the example shown, service port 600 defines a corresponding frusto-conical entrance. The plug 300 may further include an annular recess 425 (
A first seal 400 may be provided on cap 100 to engage the interior 610 of service port 600 and establish sealing contact between the cap 100 and service port 600. First seal 400 may be of any configuration, shape, or material suitable to form a seal between the cap 100 and service port 600. For example, first seal 400 may be an o-ring or other annular seal that fits over plug 300 and extends radially outward from plug 300 to engage the interior 610 of the service port 600. Plug 300 may include a seal receiver 305 within which first seal 400 may be seated to locate the first seal 400 and prevent it from slipping or becoming dislodged from plug 300. Seal receiver 305 may be formed by raised a projection on the surface of plug 300 that impedes movement of first seal 400. Alternatively, as shown, seal receiver 305 may include an annular notch defined within the surface of plug 300.
While in the example shown, first seal 400 is seated within seal receiver 305, as an alternative, first seal 400 may be attached to plug 300 as by an adhesive or other known fastener. In the example shown, first seal 400 is constructed of an elastic material and stretched to fit over plug 300 causing the elastic forces within first seal 400 to hold the first seal 400 within seal receiver 305.
To further seal the sealing lid assembly 10 and provide a redundant seal, sealing lid assembly 10 may be provided with a second seal 450. Second seal 450 may be provided at any location to provide an additional seal. In the example shown, second seal 450 is provided on cap 100 and is located radially outward of plug 300 to engage an exterior surface service port 600. To that end, second seal 450 may engage rim 605 of service port 600 when cap 100 is in the closed position. In this way, second seal 450 is compressed against rim 605 to form the seal.
With continued reference to
With continued reference to
In operation, when the sealing lid assembly 10 is in a closed position, as shown in
With continued reference to
With continued reference to
The spring 555 may be made from a material capable of creating the biasing force, for example, suitable metals, plastics or elastomeric materials. In operation, the spring 555 may engage at least a portion of cap 100 to facilitate moving the cap 100 from the open position to the closed position.
Spring 555 may include a biasing adapter 560, as shown in
In operation, the biasing assembly 550 urges the cap 100 and accordingly plug 300 toward the closed position, such that, when the user goes to fill or otherwise service the DEF tank T, the biasing force of biasing assembly 550 must be overcome to perform the service. Then when service is complete, biasing assembly 550 automatically closes the service port 600 by moving the cap 100 to the closed position. In the closed position, at least a portion of first seal 400, which resides on plug 300 will engage the interior 610 of service port 600 to seal tank T. In the embodiment shown, the biasing force provided by biasing assembly 550 is sufficient to cause second seal 450 to engage the rim 605 of service port 600 providing an additional seal for tank T.
With reference to
In some instances, thermal expansion of the fluid and the generation of positive or negative internal pressure within the DEF tank T is a concern. To that end, the sealing lid assembly 10′ may be vented. For example, as shown in
To prevent vacuum lock within the tank T caused by the withdrawal of fluid from the tank T, vent assembly 150 may also allow atmospheric air to be drawn into the tank T, as by an umbrella valve 159. A filter 158 may be provided as part of venting assembly 150 and generally lies upstream of umbrella valve 159 to reduce the likelihood of containments within the atmospheric air from being drawn into the tank T. Venting assembly 150 may further include additional seals, such as o-rings 161,162 shown, to prevent liquid from escaping through the venting assembly 150 in a roll over situation. In the example shown, venting assembly 150 further includes an umbrella valve 159 that regulates the flow of air into the tank T. As will be appreciated, the umbrella valve 159 is bias toward a closed position such that sufficient vacuum within the tank T must be present to open umbrella valve 159 allowing air drawn through the vent assembly 150 to enter that tank T from the atmosphere.
As demonstrated in the previous embodiment, sealing lid assembly may be used as part of a replacement tank such that the sealing lid assembly 10 is provided on the tank T. Also, in accordance with the concepts of the present invention, a sealing lid assembly may be retrofit to an existing system. To that end, the sealing lid assembly 10′ may include a service port adapter 700, which allows the self-closing cap 100 to be mounted on an existing service port. The service port adapter 700 may be configured to mount the cap 100 to tank T or service port 600 such that the sealing lid assembly 10′ is operable with service port 600. In the example shown in
Cap 100 is hingedly supported on service port adapter 700. For example, as best shown in
To accommodate magnetically actuated nozzles, which are used in the industry, service port adapter 700 may further include an insert generally indicated by the number 730 that extends downwardly from the base 731 of wall 612 and into the opening 732 defined by collar 710. The insert 730 is sized to be received within an existing service port (not shown) and defines an insert bore 735 that allows DEF fluid to pass through the insert 730 into tank T.
With continued reference to
While the invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.