The present invention relates to dividing a silicon wafer into chips, and more specifically, to structures and methods that divide a silicon wafer into chips by using openings (through silicon vias) along borders of the chip.
Integrated circuit structures are sometimes manufactured in mass on silicon wafers to achieve manufacturing efficiencies. Once the integrated circuit structures are complete, the wafers are divided into segments that are commonly referred to as chips.
There are many different methods used to separate the wafers into such chips. For example, the wafers can be cut (using a diamond saw, etc.) or the wafers can be etched and cracked. However, such methods can damage the chips, decreasing the yield.
In order to address such issues, one method embodiment of the present invention simultaneously forms first openings and second openings in a substrate. The first openings are formed smaller than the second openings. The method also simultaneously forms a first material in the first openings and the second openings. The first material fills the first openings, and the first material lines the second openings. The method forms a second material different than the first material in the remainder of second openings. The second material fills the second openings. The method forms a plurality of integrated circuit structures over the first material and the second material within the second openings. A variety of techniques can be implemented to induce the final desired “break”’ along the line of first openings. This could be temperature differences, heat/cold, or mechanical stresses, tension/shear/complex stresses, such as vacuum on a spherical chuck, concave surface pressure/vacuum, etc.
An alternative method embodiment herein simultaneously forms first openings and second openings in a silicon substrate. The first openings are formed smaller than the second openings. The method simultaneously forms a first material in the first openings and the second openings. The first material fills the first openings, and the first material lines the second openings. The method forms a second material different than the first material in the second openings. The second material fills the second openings. The method forms a plurality of integrated circuit structures over the first material and the second material within the second openings. The method removes a portion of the silicon substrate to expose the first openings and the second openings and causes the silicon substrate to split along the first openings.
An additional method embodiment herein simultaneously forms first openings and second openings in a silicon substrate. The first openings are formed smaller than the second openings. The method simultaneously forms a first material in the first openings and the second openings. The first material fills the first openings, and the first material lines the second openings. The method forms a second material different than the first material in the second openings. The second material fills the second openings. The method forms a plurality of integrated circuit structures over the first material and the second material within the second openings. The method also forms a packaging material over the integrated circuit structures and applies an adhesive layer to the packaging material. The method removes a portion of the silicon substrate to expose the first openings and the second openings and causes the silicon substrate to split along the first openings. The method then removes the diced integrated circuit structures from the adhesive layer.
An integrated circuit chip embodiment herein includes a chip silicon substrate having a border, an integrated circuit structure on the chip silicon substrate, and a packaging material over the integrated circuit structure. First through silicon vias extend along the border of the chip silicon substrate. The first through silicon vias are filled with a first material. Second through silicon vias extend into the chip silicon substrate from the integrated circuit structure. The second through silicon vias are filled with the first material and a second material, different than the first material.
The embodiments of the invention will be better understood from the following detailed description with reference to the drawings, which are not necessarily drawing to scale and in which:
As mentioned above, some methods of dicing a wafer apply mechanical stress to the wafer in order to separate the wafer into chips. However, this can cause the wafer to crack in undesirable areas. In one example, the areas where through silicon vias (TSV) are formed within the substrate, weakens the substrate. Therefore, undesirable cracks are sometimes found extending into the substrate from the through silicon vias.
In order to address such undesirable splitting or cracking, the embodiments herein form patterns of openings (TSVs) around the area to be separated (in the dicing channel) on the substrate. These openings facilitate dicing of integrated circuit (IC) chips formed upon the substrate.
With embodiments herein, the dicing through silicon via structures (in the dicing channel) are different than the electrical through silicon vias structures (connected to the integrated circuit structures). The dicing vias are narrower, closer together, more linear, etc., than the electrical vias, and the dicing vias are filled with a different mixture of materials (e.g., oxide ands polysilicon) than the electrical vias (e.g., filled with metal) so that a strength of the dicing vias is lower than the strength of the electrical chip vias. In some cases and designs, the strength of electrical vias may actually be stronger than dicing vias. However, through placement in regards to crystalline structure, or sheer number of dicing vias in a particular area, the net overall effect of the dicing vias will be of weakness when compared to electrical vias.
Therefore, the embodiments herein form special types of through silicon vias in the dicing channel that are weaker, smaller, and patterned closer together than the normal through silicon vias that form electrical connections to the integrated circuits of the chip. When physical stress is applied to the wafer, the special dicing through silicon vias structurally fail before the electrical through silicon vias fail, thereby helping to promote a split along the dicing channel, and preventing splits from occurring near the electrical through silicon vias. The embodiments herein can form the dicing through silicon vias to define shapes that are larger than conventional integrated circuit chips (such as stitched arrays) and the size and pattern of the perforations formed by the first openings is essentially unlimited, and can be used to accomplish any desired division patterns (even potentially allowing an array of elements to be formed to the edge of a chip).
More specifically, as shown in
As shown in
In addition, the openings 120, 122 can be formed simultaneously using a single mask, or can be formed sequentially using multiple masks, as would be understood by those ordinarily skilled in the art.
When patterning any material herein, the material to be patterned can be grown or deposited in any known manner and a patterning layer (such as an organic photoresist) can be formed over the material. The patterning layer (resist) can be exposed to some form of light radiation (e.g., patterned exposure, laser exposure, etc.) provided in a light exposure pattern, and then the resist is developed using a chemical agent. This process changes the characteristic of the portion of the resist that was exposed to the light. Then one portion of the resist can be rinsed off, leaving the other portion of the resist to protect the material to be patterned. A material removal process is then performed (e.g., plasma etching, etc.) to remove the unprotected portions of the material to be patterned. The resist is subsequently removed to leave the underlying material patterned according to the light exposure pattern.
As shown in
Additionally, as shown in
The embodiments herein then form a second material 144 different than the first material 142 in the remainder of the second openings 122, as shown in
The method forms a plurality of integrated circuit structures 110 over the first material 142 and the second material 144 within the second openings 122, within insulator layer 102 (as shown in
The method can also form a packaging material 104 (such as an insulator, hard material (oxide, nitride, etc.)) over the integrated circuit structures 110 to protect the integrated circuit structures 110, as shown in
As shown in
Next, the embodiments herein cause the silicon substrate 100 to split along the first openings 120. The mechanical stress can be applied using many different processes, including: using a vacuum chucking wafer on any type surface (concave most likely, mechanical shock induced dicing); using a rolling pin on different type of surfaces (mechanical shock induced dicing, possibly less uniform vs. vacuum chucking); utilizing surface geometries (concave, or other); relying upon coefficient of thermal expansion differences during heating or cooling cycles, above or below room temperature, to induce a physical force on differing materials thus leading to breakage initialization. These cracks or splits 150 caused by the application of mechanical stress are illustrated in
As mentioned above, the first openings 120 can be formed in a linear pattern, (similar to perforations) and the silicon substrate 100 splits along the linear pattern of first openings during the application of the mechanical stress. The method then removes the diced integrated circuit structures 110 from the adhesive layer 106, resulting in individual integrated circuit chips 112, as illustrated in
Thus, as illustrated in
As would be understood by those ordinarily skilled in the art, while a limited number of integrated circuit chips are illustrated in the drawings, actual wafers would include much larger numbers of chips and the drawings are simplified in order to illustrate the operation of the embodiments herein. For example,
Thus, the patterning of the first openings 120 can be used to leverage smaller dicing spacing and sizing (smaller kerf areas) which allows greater square area for devices, relative to traditional dicing spaces. Further, the first openings 120 allow for an improved location and geometry of where and how dicing can be implemented, thereby potentially allowing the array to go completely to the edge of the chip.
The resulting integrated circuit chips can be distributed by the fabricator in raw wafer form (that is, as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged form. In the latter case the chip is mounted in a single chip package (such as a plastic carrier, with leads that are affixed to a motherboard or other higher level carrier) or in a multichip package (such as a ceramic carrier that has either or both surface interconnections or buried interconnections). In any case, the chip is then integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either (a) an intermediate product, such as a motherboard, or (b) an end product. The end product can be any product that includes integrated circuit chips, ranging from toys and other low-end applications to advanced computer products having a display, a keyboard or other input device, and a central processor.
While only one or a limited number of transistors are illustrated in the drawings, those ordinarily skilled in the art would understand that many different types transistor could be simultaneously formed with the embodiment herein and the drawings are intended to show simultaneous formation of multiple different types of transistors; however, the drawings have been simplified to only show a limited number of transistors for clarity and to allow the reader to more easily recognize the different features illustrated. This is not intended to limit the invention because, as would be understood by those ordinarily skilled in the art, the invention is applicable to structures that include many of each type of transistor shown in the drawings.
In addition, terms such as “right”, “left”, “vertical”, “horizontal”, “top”, “bottom”, “upper”, “lower”, “under”, “below”, “underlying”, “over”, “overlying”, “parallel”, “perpendicular”, etc., used herein are understood to be relative locations as they are oriented and illustrated in the drawings (unless otherwise indicated). Terms such as “touching”, “on”, “in direct contact”, “abutting”, “directly adjacent to”, etc., mean that at least one element physically contacts another element (without other elements separating the described elements).
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiments were chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Number | Name | Date | Kind |
---|---|---|---|
3997964 | Holbrook et al. | Dec 1976 | A |
4138304 | Gantley | Feb 1979 | A |
4236296 | Woolhouse et al. | Dec 1980 | A |
4285433 | Garrett, Sr. et al. | Aug 1981 | A |
5426058 | Nakai et al. | Jun 1995 | A |
5824595 | Igel et al. | Oct 1998 | A |
6107164 | Ohuchi | Aug 2000 | A |
6316328 | Komuro | Nov 2001 | B1 |
6521485 | Su et al. | Feb 2003 | B2 |
6528393 | Tao | Mar 2003 | B2 |
6693361 | Siniaguine et al. | Feb 2004 | B1 |
7112470 | Daubenspeck et al. | Sep 2006 | B2 |
7129114 | Akram | Oct 2006 | B2 |
7199449 | Lake | Apr 2007 | B2 |
7316940 | Daubenspeck et al. | Jan 2008 | B2 |
7569421 | Do et al. | Aug 2009 | B2 |
7585750 | Do et al. | Sep 2009 | B2 |
7622365 | Parekh | Nov 2009 | B2 |
7648900 | Kirby | Jan 2010 | B2 |
7741156 | Pagaila et al. | Jun 2010 | B2 |
20010001215 | Siniaguine et al. | May 2001 | A1 |
20020013061 | Siniaguine et al. | Jan 2002 | A1 |
20040259329 | Boyle et al. | Dec 2004 | A1 |
20070221613 | Gutsche et al. | Sep 2007 | A1 |
20070264753 | Tomita et al. | Nov 2007 | A1 |
20070275541 | Harris et al. | Nov 2007 | A1 |
20090061595 | Weber et al. | Mar 2009 | A1 |
20100261335 | Andry et al. | Oct 2010 | A1 |