1. Field of the Invention
The present invention relates to regulating the temperature of a heat-generating device.
2. Description of the Related Art
Devices of many types have an optimum operating temperature range. For this reason, a great deal of design and engineering emphasis has been placed upon cooling, to prevent shortened component lives due to exposures to temperatures above a threshold temperature. Typically, the greatest danger to a device is overheating of components, resulting in degradation of lifespan, performance, and efficiency. However, there may also be undesirable effects of operating below threshold temperatures, such as a loss in efficiency, or damage due to repeated thermal cycling. In addition, devices must be designed to tolerate a greater range of operating temperatures when only the upper end of an operating temperature range is controlled.
Many cooling configurations employ a system involving the usage of cooling fins that carry heat away from the device. Fluid flow is then forced between the fins to remove heat from the cooling fins. This process is referred to as forced convection. Cooling fins are effective because they are efficient conductors of thermal energy and have a high degree of surface area that facilitates heat exchange with the fluid. Often the amount of cooling that a device will experience is controlled by mechanically adjusting the fluid flow rate of a cooling fluid passed between the cooling fins, such as by varying fan speeds or the angle of flow.
Controlling the temperature range in which a device operates will result in less stringent design requirements and specifications for the device. A carefully controlled environment and relaxed design requirements may also reduce manufacturing costs, as well as increase predictability of performance, reliability, and efficiency. It would be desirable to have a method for adjusting the rate at which a heat sink having cooling fins would transfer heat away from a heat-generating device. It would also be desirable if the method could control the temperature of multiple heat-generating devices on a device by device basis. It would be even more desirable to have a method of regulating the temperature of multiple heat-generating devices within their own unique temperature ranges using a common cooling fluid stream.
In one embodiment, the invention makes use of a shape memory material to regulate the temperature of a heat-generating device within a desired range. Cooling fins are disposed in thermal contact with a heat generating device. Heat is removed by fluid flowing between the cooling fins. The fluid may be air, liquid, or a combination of air and liquid. A shape memory material, which expands and contracts in response to a stimulus, is within the path the fluid flow. At a desired low operating temperature of the heat generating device, the shape memory material will expand in response to a stimulus to restrict fluid flow, and therefore reduce the amount of heat removed from the device. At a desired high operating temperature of the heat generating device, the shape memory material will contract in response to a stimulus to allow unrestricted fluid flow, and therefore not affect the amount of heat removed from the device. The stimulus may be the temperature of the heat-generating device, or a signal generated in response to the temperature of the heat-generating device. A plurality of shape memory materials may be utilized to achieve fine control of fluid flow, with each shape memory material responding to different stimuli, or different levels of stimuli.
In another embodiment, the invention makes use of shape memory materials to regulate the temperature of multiple heat-generating devices within ranges desirable to each heat-generating device. Cooling fins are disposed in thermal contact with the heat generating devices. Heat is removed by fluid flowing between the cooling fins. The fluid may be air, liquid, or a combination of air and liquid. Shape memory materials are selected to expand to restrict fluid flow at the desired low temperature and contract so as not to restrict floe at the desired high temperature of each heat-generating device. The shape memory material may expand and contract in response to each heat-generating device temperature, or a stimulus generated based upon the heat-generating device temperature. A plurality of shape memory materials may be utilized to achieve fine control of fluid flow, with each shape memory material responding to different stimuli, or different levels of stimuli.
The invention provides a method of regulating the temperature of a heat-generating device comprising. Conveying fluid through a passageway to cool a heat-generating device, regulating the amount of fluid conveyed through the passageway by utilizing a shape memory material, wherein the shape memory material expands to restrict fluid flow in response to a stimulus at a desired low device temperature, and contracts so as not to restrict flow in response to a stimulus at a desired high device temperature. A plurality of shape memory materials may be utilized to achieve fine control of fluid flow, with each shape memory material responding to different stimuli, or different levels of stimuli.
The present invention efficiently regulates temperature within a desired operating range by regulating fluid flow through the cooling fins of a heat sink disposed upon a heat-generating device. This is accomplished by utilizing shape memory materials to expand and contract within the path of fluid flow through the cooling fins. The amount of heat dissipated is directly related to the flow rate of fluid flow across cooling fins. When the temperature of the heat-generating device drops below the desired operating range, the shape memory material will expand to restrict fluid flow across cooling fins to lessen the amount of heat dissipated. Conversely, when the temperature of the heat-generating device elevates above the desired operating range, the shape memory material will contract to allow peak fluid flow across cooling fins to maximize the amount of heat dissipated. By adjusting the size of the opening available for fluid flow, the amount of heat dissipated from a heat-generating device is regulated.
Fluid typically flows through cooling fins in several ways. One method is to use a fan to push or blow air through the fins. Another method utilizes a fan to pull or draw air across the fine. Air might also be allowed to passively flow through the fins due to temperature variations in the environment of the cooling fin. When liquid cooling is utilized, a pump may be employed to force the fluid through, or draw the fluid through the cooling fins. Also, a gravity feed may be utilized to convey fluid through the cooling fins.
A shape memory material in the context of this specification is intended to encompass a shape memory polymer, a shape memory alloy, or any combination of the above materials. For example, one such shape memory polymer is copolymer of oligo(e-caprolactone)dimethacrylate and n-butyl acrylate, combined in varying amounts to form a cross-linked polymer network tailored for suitable mechanical strength and a suitable transition temperature. A suitable shape memory alloy is the nickel-titanium alloy known as Nitinol.
A shape memory alloy is a metal alloy that “remembers” its geometry. While “one-way” and “two-way” shape memory alloys exist, the any reference within this specification will refer to “two-way” shape memory alloys. A “two-way” shape memory alloy material remembers two different shapes. The shape memory alloy changes shape in response to external stimuli. For example, a “two-way” shape memory alloy that responds to changes in temperature would have two distinct shapes: one at low temperatures, and one at a higher temperature. In this manner, the desired configuration of the shape memory alloy can be determined by adjusting the ambient temperature.
A shape memory polymer is a polymer that “remembers” its geometry. Shape memory polymers have a defined shape and through stimuli this shape is easily transformed in a manner analogous to the shape memory alloy described above.
In a preferred embodiment, the shape memory material is disposed directly in contact with the cooling fin. The shape memory material is thereby placed at, or near the temperature of the device being protected. The shape memory material is selected to expand at the lowest desired operating temperature of the device to restrict fluid flow through the cooling fins. The shape memory material is also selected to contract at a higher, specified design temperature to allow peak fluid flow through the cooling fins. In this manner the shape memory material regulates the amount of heat dissipated from the device in response to the device's current temperature, thereby maintaining a desired range of operating temperature. By utilizing a shape memory material specifically coordinated to each device, many heat-generating devices can be regulated to differing temperatures utilizing a single cooling fluid stream.
In a second embodiment, two or more shape memory materials are disposed in thermal contact with the cooling fins, effectively realizing the same temperature as the heat-generating device being protected. The two or more shape memory materials are designed or selected to expand or contract at different temperatures. A first shape memory material may expand to partially restrict the fluid flow between the cooling fins at a first specified low temperature of the heat-generating device. A second shape memory material may expand at a second specified lower temperature of the heat-generating device to further restrict the fluid flow through the cooling fins. Conversely, the first and second shape memory materials will have differing temperatures of contraction at which they do not act to restrict the fluid flow through the cooling fins. Therefore, the amount of fluid flow restricted can be carefully and passively controlled.
The shape memory material can be disposed in contact with the cooling fins in various ways. The shape memory material may be coated upon the cooling fins, molded and inserted as a rigid structure, held in place by a clip, held in place by a slot or groove created upon the fin for this purpose, or any other method which will keep the material properly positioned in the fluid flow path and in thermal communication with the cooling fin.
In a third embodiment, a heat-generating device has cooling fins disposed in contact to dissipate heat. The shape memory polymers are disposed in a manner to restrict fluid flow through the cooling fins. The stimulus for the shape memory material to expand or contract is supplied from an external source. While commonly used stimuli are electrical, magnetic, or thermal, any stimulus activating the shape memory material can be applied. A preferred electrical stimulus is generated and sent to the shape memory material in response to the processor detecting that the temperature of the heat-generating device is out of the desired operating range or desired operating set point. The temperature sensor may be part of a chip set that includes the processor and the processor may be the heat-generating device itself. Other temperature control schemes using the shape memory materials can be readily envisioned.
The terms “comprising,” “including,” and “having,” as used in the claims and specification herein, shall be considered as indicating an open group that may include other elements not specified. The terms “a,” “an,” and the singular forms of words shall be taken to include the plural form of the same words, such that the terms mean that one or more of something is provided. The term “one” or “single” may be used to indicate that one and only one of something is intended. Similarly, other specific integer values, such as “two,” may be used when a specific number of things is intended. The terms “preferably,” “preferred,” “prefer,” “optionally,” “may,” and similar terms are used to indicate that an item, condition or step being referred to is an optional (not required) feature of the invention.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.