SELF-TRANSFORMING FLEXIBLE FILM AND METHOD FOR PREPARING SAME

Abstract
A self-transforming flexible film, according to an embodiment of the present invention, comprises: a substrate having flexible properties and a flexible electronic device attached thereon; shape memory alloys provided on one lateral side of the substrate; and photosensitizers for fixing the shape memory alloys to the substrate, wherein the shape memory alloys are arranged on the substrate in the form of a plurality of lines, the photosensitizers are disposed in plurality along the extension direction of each shape memory alloy, and the shape memory alloys can be fixed inside the photosensitizers and at a predetermined distance away from the substrate.
Description
TECHNICAL FIELD

The present invention relates to a self-transforming flexible film and a method for manufacturing the same, and more particularly, to a self-transforming flexible film and a method for manufacturing the same, which are capable of improving deformation characteristics of a flexible electronic device when connected to a flexible electronic device, such as a flexible display, a flexible solar cell, and a flexible touch panel.


BACKGROUND ART

Recently, as the convergence of different technologies such as nanotechnology, biotechnology, information and communication technology, and energy environment technology has accelerated, research and development of high-performance electronic devices, such as wearable computers, realistic displays, human-friendly head-mounted displays, electronic paper, and flexible displays, which are foldable and applicable to the human body, is rapidly in progress.


In particular, flexible electronic devices are recognized as one of technologies that can lead the electronics industry in line with social and cultural demands for new forms of technology and services that are capable of improving the quality of life for the future, such as healthcare, safety, energy, and environmental issues. The flexible electronic device is a future-oriented technology and can be regarded as a human-friendly technology that is capable of changing and developing straight technology into curve technology and two-dimensional technology into three-dimensional technology.


The conventional flexible electronic device cannot be deformed by itself, and its shape is deformed by applying an external force thereto. However, recently, flexible electronic devices capable of being self-transformed by connecting an actuator such as a shape memory alloy have been developed.


A self-transforming flexible film constituting a self-transforming flexible electronic device is manufactured by combining a flexible substrate and a shape memory alloy. When the film is bent inwardly from the substrate through external force, the shape memory alloy is also bent and strained at the same time. The shape memory alloy has a characteristic of being recovered to a memory shape at a specific temperature even after deformation has occurred.


At this time, since the recovering force becomes larger as the strain of the shape memory alloy becomes larger, it is important to manufacture the shape memory alloy to have a structure that can be deformed as much as possible, so as to manufacture excellent self-transforming flexible electronic devices.


DISCLOSURE OF THE INVENTION
Technical Problem

Embodiments provide a self-transforming flexible electronic device having excellent self-transforming flexible characteristics through a structure of a self-transforming flexible film capable of increasing strain of a shape memory alloy.


Technical Solution

In one embodiment, a self-transforming flexible film includes: a substrate having flexible properties and a flexible electronic device attached thereon; shape memory alloys provided on one surface of the substrate; and photosensitizers for fixing the shape memory alloys to the substrate, wherein the shape memory alloys are arranged on the substrate in the form of a plurality of lines, and the photosensitizers are arranged in plurality along an extending direction of the shape memory alloys, and the shape memory alloys are fixed in the photosensitizers while being spaced apart from the substrate by a predetermined distance.


The photosensitizer may have a hexahedron shape and may be patterned to form a matrix on the substrate. The photosensitizers may have the same width, length, and height, and may have the same spacing in horizontal and vertical directions.


The shape memory alloy may be partially inserted into the photosensitizer.


In another embodiment, a method for manufacturing a self-transforming flexible film includes: preparing a substrate having flexible properties; applying and patterning a first photosensitizer on the substrate; arranging a shape memory alloy on the patterned first photosensitizer; applying a second photosensitizer on the substrate to cover the shape memory alloy; and patterning the second photosensitizer in the same shape as the first photosensitizer provided thereunder.


The shape memory alloy may be fixed by one photosensitizer in a line shape, and the plurality of shape memory alloys may be arranged along a row direction or a column direction of the first photosensitizer.


Advantageous Effects

Since the self-transforming flexible film according to the present invention is formed in a structure in which deformation of the shape memory alloy occurs more largely than in the prior art, the force to be recovered to the original shape can be further improved.


Since the self-transforming flexible electronic device including the self-transforming flexible film, according to the present invention, is more greatly deformed (bent) by external force than the conventional self-transforming flexible electronic device, it can be designed in a structure that can be further unfolded (recovered) when recovered to the original shape.


In the method for manufacturing the self-transforming flexible film according to the present invention, since the photosensitizer which can be used semi-permanently is patterned through the photolithography process, it is possible to manufacture the flexible film having an improved strain by a relatively simple process.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram illustrating a self-transforming flexible film according to an embodiment.



FIG. 2 is a diagram illustrating deformation and recovery of a self-transforming flexible film according to an embodiment.



FIG. 3 is a diagram illustrating strains of self-transforming flexible films according to the related art and the embodiment.



FIG. 4 is a diagram illustrating a self-transforming flexible film according to an embodiment.



FIG. 5 is a diagram illustrating a self-transforming flexible electronic device according to an embodiment.



FIG. 6 is a diagram illustrating a method for preparing a self-transforming flexible film according to an embodiment.





MODE FOR CARRYING OUT THE INVENTION

Although embodiments are described in detail with reference to the accompanying drawings, the present invention is not limited to the embodiments. Moreover, detailed descriptions related to well-known functions or configurations will be ruled out in order not to unnecessarily obscure subject matters of the present invention.



FIG. 1 is a diagram illustrating a self-transforming flexible film according to an embodiment.


Referring to FIG. 1, the self-transforming flexible film 10 according to the embodiment is a combination of a substrate 11 and a shape memory alloy 13, and a photosensitizer 13 for fixing the shape memory alloy 13 may be provided on the substrate 11.


The shape memory alloy for deformation and recovery may be arranged and fixed on the substrate 11 provided in the self-transforming flexible film 10 of the embodiment. The shape memory alloy may be arranged in the form of a plurality of lines on the substrate 11. FIG. 1 illustrates a positional relationship with respect to one of the plurality of lines.


In the embodiment, a plurality of photosensitizers 12 may be arranged along the extending direction of the shape memory alloy 13, and the shape memory alloy 13 may be fixed in the photosensitizer 12 while being spaced apart from the substrate 11 by a predetermined distance d. The photosensitizers 12 are divided into a length sufficient to fix the shape memory alloy 13 and arranged on the substrate so that a part of the shape memory alloy 13 is exposed between the photosensitizers 12.


The self-transforming flexible film 10 is manufactured such that a specific portion is folded or bent by external force. To this end, members constituting the self-transforming flexible film may be all made of flexible materials.


In the embodiment, the substrate 11 is preferably made of polyimide (PI), polyethylene terephthalate (PET), or polyethylene naphthalate (PEN), which can be flexibly deformed and recovered by external force. Table 1 shows the Young's modulus for each material.













TABLE 1







PI
PET
PEN





















Young's Modulus
2.5 GPa
2 GPa to
5.0 GPa to





4 GPa
5.5 GPa










The Young's modulus is a unique characteristic of a material which indicates the degree of elongation of a material. The Young's modulus refers to the modulus of elasticity which indicates the degree of elongation and deformation of an object when the object is stretched from both sides. The Young's modulus of the PI, the PET, and the PEN is about 2 GPa to 5 GPa, which is suitable for use as a substrate of a flexible electronic device as in the embodiment.


In the embodiment, the photosensitizer 12 is a material that can be used semi-permanently, and SU-8, INTERVIA, or the like is preferably used. Table 2 shows the Young's moduli of SU-8 and INTERVIA.












TABLE 2







SU-8
INTERVIA




















Young's Modulus
2 GPa
4 GPa










The SU-8 and the INTERVIA have the Young's modulus of 2 GPa to 4 GPa, which is suitable for use as a material for bonding a substrate in a flexible electronic device as in the embodiment.


In the embodiment, nitinol, which is an alloy of nickel and titanium, may be used for the shape memory alloy, and the physical properties of nitinol are shown in Table 3.












TABLE 3









Maximum Recovery Force (MPa)
600



Maximum Deformation Ratio (%)
8



Young's Modulus (GPa)
28 (Martensite),




81 (Austenite)










As for the physical properties of nitinol, the Young's modulus of the shape memory alloy (martensite) at room temperature at which deformation occurs is 28 GPa, and the Young's modulus of the heated shape memory alloy (austenite) has a slightly high value of 81 GPa. The Young's modulus is the unique characteristic of the material and does not change according to the shape of the material. However, the shape memory alloy manufactured in the form of a thin wire as in the embodiment can be more easily deformed under the same condition.



FIG. 2 is a diagram illustrating deformation and recovery of a self-transforming flexible film according to an embodiment.



FIG. 2 illustrates a state in which deformation occurs when external force is applied to the self-transforming flexible film, and a state in which the self-transforming flexible film is recovered to an original shape at a specific temperature by the characteristics of the shape memory alloy.


When external force is applied to the self-transforming flexible film to allow the substrate to bend in a direction in which the substrate is positioned more inward than the shape memory alloy, the shape memory alloy is also bent and strained. When it is assumed that the shape memory alloy memorizes a flat shape, the deformed shape memory alloy is recovered to the memorized shape at a specific temperature and the entire self-transforming flexible film can be recovered to the original flat shape.


In the embodiment, as illustrated in FIG. 1, the degree of deformation may be larger at a portion where a part of the shape memory alloy is exposed between the photosensitizers, and the shape memory alloy is formed in a structure spaced apart from the substrate by a predetermined distance, thereby expecting that the strain at the exposed portion will become larger.


Since the photosensitizer used in the embodiment is a structure for partially fixing the shape memory alloy, it is necessary to consider the adhesion characteristic between the photosensitizer and the shape memory alloy. Table 4 shows the adhesion strengths of nickel, titanium, chromium, copper, and gold when the photosensitizer used in the embodiment was SU-8.















TABLE 4







Ti
Cr
Ni
Cu
Au





















Adhesion
77.83 kPa
76.79 kPa
44.86 kPa
46.97 kPa
70.99 kPa


strength









Referring to Table 4, the adhesion strengths of nickel, titanium, chromium, copper, and gold were in the range of 44.86 kPa to 77.83 kPa. The adhesion strength within the above range is a range in which the shape memory alloy can be fixed without detaching from the photosensitizer even by repeated deformation and recovery of the self-transforming flexible film. This was actually confirmed through several operations in the process of manufacturing the self-transforming flexible film.


Nitinol (an alloy of nickel and titanium) may be used as the shape memory alloy. As shown in Table 4, since the adhesion strength of nickel and titanium with respect to the photosensitizer exhibits an adhesion strength that is not released when the flexible element is deformed and recovered. It can be determined that the shape memory alloy provided in the self-transforming flexible film of the embodiment can be stably fixed to the photosensitizer.



FIG. 3 is a diagram illustrating strains of self-transforming flexible films according to the related art and the embodiment.


Referring to FIG. 3, the self-transforming flexible film 20 according to the related art is a structure in which a substrate and a shape memory alloy are directly contacted and fixed, and the self-transforming flexible film 10 according to the embodiment is a structure in which a substrate and a shape memory alloy are fixed at a predetermined interval by a photosensitizer.


In the case of comparing the strains of the shape memory alloys in a state in which the two structures are bent at a certain angle, when assuming that the substrate is in the same position, the shape memory alloy in the self-transforming flexible film according to the embodiment is positioned higher, and when the substrate is bent at the same angle, the strain of the shape memory alloy provided in the self-transforming flexible film according to the embodiment is larger.


As the strain of the shape memory alloy becomes larger, the recovering force in the process of recovering to the original shape becomes higher. Thus, it is possible to manufacture a self-transforming flexible electronic device having better properties. The structure of the self-transforming flexible film according to the embodiment is a structure for maximizing the strain of the shape memory alloy, and it can be schematically seen from FIG. 3 that the structure in which the shape memory alloy is spaced apart from the substrate has a greater strain than the structure in which the shape memory alloy is in close contact with the substrate. This means that it can be utilized as an excellent self-transforming flexible element because of higher recovering force thereof.



FIG. 4 is a perspective view illustrating a self-transforming flexible film according to an embodiment.


Referring to FIG. 4, four shape memory alloys in the form of a line (wire) are arranged on a substrate 11 at a predetermined interval, and four photosensitizers are arranged and fixed on the substrate while being spaced apart from each other by a predetermined distance along the extending direction of each shape memory alloy. Each of the photosensitizers surrounds the shape memory alloy at a predetermined height, and the shape memory alloy is entirely fixed to the substrate, with spaced apart at a predetermined distance from the substrate. In particular, it can be seen that the shape memory alloy and the substrate are spaced apart from each other by a predetermined distance through a region located between the respective photosensitizers.


The structure of the above-described self-transforming flexible film is merely an example, and the number of shape memory alloys and photosensitizers, the distance between the shape memory alloys, and the distance between the photosensitizers may be variously changed depending on the structure of the display to be applied.



FIG. 5 is a diagram illustrating a self-transforming flexible electronic device according to an embodiment.


Referring to FIG. 5, a self-transforming flexible electronic device is manufactured by bonding an element layer to the above-describing self-transforming flexible film. A self-transforming flexible film as in the embodiment is attached to one surface of the substrate, with the substrate 11 as a boundary, and a flexible electronic device such as a flexible display may be bonded to the other surface of the substrate.



FIG. 6 is a diagram illustrating a method for manufacturing a self-transforming flexible film according to an embodiment.


Referring to (a) of FIG. 6, a method for manufacturing a self-transforming flexible film according to an embodiment includes preparing a substrate 11 having flexibility so that a flexible film is stably bent when receiving external force. Then, a first photosensitizer in a liquid state is spin-coated on the substrate and photolithography process is performed to pattern the first photosensitizer into a plurality of hexahedrons having a constant height in a solid state as illustrated in (b) of FIG. 6. Each of the first photosensitizers may be patterned to have a predetermined number of rows and columns on the substrate, wherein the width, the length, and the height thereof are equal. The first photosensitizer may be patterned to be spaced apart by a predetermined distance to partially fix the shape memory alloy.


Referring to (c) of FIG. 6, the shape memory alloy having a line shape is arranged on the photosensitizer arranged as described above, and the shape memory alloy may include a photosensitizer in any one row or one row and may be positioned to pass through the center of each photosensitizer. After the shape memory alloy is arranged, both ends thereof are fixed with a bonding means for temporary fixing.


Referring to (d) of FIG. 6, a second photosensitizer is spin-coated on the substrate so that the currently exposed shape memory alloy is completely covered. As the second photosensitizer, the same photosensitizer as used in the process (b) may be used. Then, the second photosensitizer is patterned in the same manner as the hexahedron-shaped first photosensitizer formed in the process (b) through a photolithography process, and leaves in a solid state. At this time, a height of the first photosensitizer may be different from a height of the second photosensitizer.


When passing through the process (d), the line-shaped shape memory alloy is partly included in the photosensitizer, and the shape memory alloy and the substrate are spaced apart by a predetermined distance, thereby forming a fixed flexible film.


In order to confirm the strain of the self-transforming flexible film manufactured as described above, an experiment with other Comparative Examples was conducted. First, comparison was performed on Comparative Example 1 in which a shape memory alloy was disposed on a substrate and a photosensitizer was applied and fixed on the upper surface thereof, Comparative Example 2 in which a shape memory alloy was arranged on a substrate and a photosensitizer was applied on the upper surface thereof and then partially patterned, and Example in which a photosensitizer is applied on a substrate and then partially patterned, a shape memory alloy is arranged thereon, and photosensitizers having the same shape are patterned again.


As a result of attempting to bending deformation with the same radius of curvature (3 mm), the flexible film in Comparative Example 1 was stiff as a whole and unfolded again by a certain angle. Compared to Comparative Example 1, Comparative Example 2 exhibited a greater degree of bending. This shows that the shape memory alloy was partially fixed by the patterning of the photosensitizer, so that more deformation occurred at the exposed portion of the shape memory alloy.


Example exhibited a greater degree of bending than that of Comparative Example 2, and it can be determined that the structure of the flexible film according to Example can more effectively maintain the deformation of the substrate and the photosensitizer, that is, the more bent state, as compared with Comparative Examples. That is, the flexible film according to Example can maintain a greater deformation with respect to the same external force, as compared with Comparative Example. This means that the internal shape memory alloy is more deformed. It can be understood that the recovering force corresponding to the strain is also increased, so that the recovery to the original shape is also easy.


As described above, in the self-transforming flexible film and the self-transforming flexible electronic device using the same, according to the embodiments, the shape memory alloy have a greater degree of deformation (bending) by the external force than the conventional shape memory alloy. Thus, since it is designed in a structure that can be further unfolded (recovered) when recovered to the original shape, it is applicable to a device in which a solar cell or a flexible shape is to be implemented.


Additionally, although various embodiments of the present invention have been particularly shown and described, the present invention is not limited to the above-mentioned specific embodiments and it should be understood by those skilled in the art that various modified embodiments are possible without departing from the technical idea and outlook of the present invention.


INDUSTRIAL APPLICABILITY

In the method for manufacturing the self-transforming flexible film according to the present invention, the photosensitizer which can be used semi-permanently is patterned through the photolithography process, and thus it is possible to manufacture the flexible film having the improved strain by a relatively simple process. Therefore, the present invention is industrially applicable.

Claims
  • 1. A self-transforming flexible film comprising: a substrate having flexible properties and a flexible electronic device attached thereon;shape memory alloys provided on one surface of the substrate; andphotosensitizers for fixing the shape memory alloys to the substrate,wherein the shape memory alloys are arranged on the substrate in the form of a plurality of lines, andthe photosensitizers are arranged in plurality along an extending direction of the shape memory alloys, and the shape memory alloys are fixed in the photosensitizers while being spaced apart from the substrate by a predetermined distance.
  • 2. The self-transforming flexible film according to claim 1, wherein the photosensitizer has a hexahedron shape and is patterned to form a matrix on the substrate.
  • 3. The self-transforming flexible film according to claim 1, wherein the photosensitizers have the same width, length, and height, and have the same spacing in horizontal and vertical directions.
  • 4. The self-transforming flexible film according to claim 1, wherein the shape memory alloy is partially inserted into the photosensitizer.
  • 5. The self-transforming flexible film according to claim 1, wherein the substrate is selected from polyimide (PI), polyethylene terephthalate (PET), and polyethylene naphthalate (PEN).
  • 6. The self-transforming flexible film according to claim 1, wherein the photosensitizer is SU-8 or INTERVIA.
  • 7. The self-transforming flexible film according to claim 1, wherein the shape memory alloy is nitinol which is an alloy of nickel and titanium.
  • 8. A method for manufacturing a self-transforming flexible film, the method comprising: preparing a substrate having flexible properties;applying and patterning a first photosensitizer on the substrate;arranging a shape memory alloy on the patterned first photosensitizer;applying a second photosensitizer on the substrate to cover the shape memory alloy; andpatterning the second photosensitizer in the same shape as the first photosensitizer provided thereunder.
  • 9. The method according to claim 8, wherein the first photosensitizer has a hexahedron shape having a constant height on the substrate and is patterned into a plurality of photosensitizers in a predetermined number of rows and columns.
  • 10. The method according to claim 8, wherein the first photosensitizer is patterned to be spaced apart by a predetermined distance to partially fix the shape memory alloy.
  • 11. The method according to claim 8, wherein the first photosensitizer and the second photosensitizer are made of the same material.
  • 12. The method according to claim 9, wherein the shape memory alloy is fixed by one photosensitizer in a line shape, and the plurality of shape memory alloys are arranged along a row direction or a column direction of the first photosensitizer.
Priority Claims (1)
Number Date Country Kind
10-2015-0157417 Nov 2015 KR national
PCT Information
Filing Document Filing Date Country Kind
PCT/KR2016/012243 10/28/2016 WO 00