This application claims priority to Japanese Patent Application No. 2015-009289 filed on Jan. 21, 2015, the contents of which are hereby incorporated by reference into the present application.
The present application relates to a semiconductor device and a method for manufacturing a semiconductor device
A semiconductor device disclosed in Japanese Patent Application Publication No. 2006-128507 includes a semiconductor substrate, a trench extending from a front surface toward a rear surface side in the semiconductor substrate, and an insulator filled in the trench.
In a semiconductor device of Japanese Patent Application Publication No. 2006-128507, an insulator filled in a trench expands and contracts relative to a semiconductor substrate by a temperature change during operation. Further, heating process performed upon manufacturing the semiconductor device causes the insulator filled in the trench to expand and contract relative to the semiconductor substrate. When the insulator filled in the trench expands or contracts relative to the semiconductor substrate, thermal stress acts on the insulator and the semiconductor substrate, and a crack may be generated in the insulator and/or the semiconductor substrate. The present specification provides a technique that suppresses a generation of a crack in an insulator and/or a semiconductor substrate.
One aspect of a semiconductor device disclosed in the present specification comprises: a semiconductor substrate; a trench extending from a front surface toward a rear surface side of the semiconductor substrate; and an insulator filled in the trench. The semiconductor substrate comprises, in this order from the rear surface side toward the front surface, an n-type drift region, a p-type base region provided on a front surface side of the drift region, a p-type diffusion region provided on a front surface side of the base region and having a higher impurity concentration than an impurity concentration of the base region. The trench pierces the diffusion region and the base region, and reaches the drift region. A void is provided in a portion of the insulator that is filled between portions of the p-type diffusion region that are exposed on both side surfaces of the trench. The above semiconductor device can be realized by using a phenomenon that a void is formed within the portion of the insulator filled in between the portions of the diffusion region when the impurity concentration of the diffusion region is high.
According to the semiconductor device comprising the above configuration, the void provided within the insulator can relax the thermal stress generated due to the relative expansion or contraction of the insulator, even if the insulator filled in the trench expands or contracts relative to the semiconductor substrate by a temperature change during an operation of the semiconductor device. Due to this, the thermal stress acting on the insulator and the semiconductor substrate can be relaxed, and the generation of a crack in the insulator and/or the semiconductor substrate can be prevented.
The present specification further discloses a novel manufacturing method. A method of manufacturing a semiconductor device disclosed in the present specification comprises: forming a p-type diffusion region in an area of a semiconductor substrate exposed on a front surface of the semiconductor substrate; forming a trench extending from the front surface toward a rear surface side of the semiconductor substrate in the area where the p-type diffusion region is exposed; filling an insulator in the trench; and heating the semiconductor substrate after the filling of the insulator. In the forming of the p-type diffusion region, a void is formed in a portion of the insulator that is filled between portions of the p-type diffusion region that are exposed on both side surfaces of the trench. In so doing, the void is formed within the portion of the insulator filled in the filling thereof, and the thermal stress is relaxed by this void. The thermal stress is relaxed by the void upon when heating is carried out on the semiconductor substrate after the filling in the course of manufacture of the semiconductor device, as a result of which the generation of a crack in the insulator and/or the semiconductor substrate can be prevented.
As shown in
As shown in
As shown in
The front surface insulation film 7 is provided on the front surface of the semiconductor substrate 2 in the peripheral region 4. The front surface insulation film 7 covers the front surface 21 in the peripheral region 4. The front surface insulation film 7 is made for example of silicon oxide (SiO2). The silicon oxide is deposited on the front surface 21 of the peripheral region 4 of the semiconductor substrate 2.
The semiconductor substrate 2 comprises a plurality of gate trenches 30 and a plurality of terminal trenches 40. The gate trenches 30 are provided in the element regions 3. The terminal trenches 40 are provided in the peripheral region 4.
Further, the semiconductor substrate 2 comprises, in this order from a rear surface 22 side toward the front surface 21, a drain region 13, a drift region 15, and a base region 12. The drain region 13, the drift region 15, and the base region 12 are provided in common for all of the element regions 3 and the peripheral region 4. The semiconductor substrate 2 further comprises source regions 11, contact regions 14, a diffusion region 10, and floating regions 17. The source regions 11 and the contact regions 14 are provided in the element regions 3. The diffusion region 10 is provided in the peripheral region 4. The floating regions 17 are provided respectively in all of the element regions 3 and the peripheral region 4.
In each of the element regions 3, the drain region 13, the drift region 15, and the base region 12 are provided in this order from the rear surface 22 toward the front surface 21 of the semiconductor substrate 2, and the source regions 11 or the contact regions 14 are provided on a front surface side of the base region 12. In the peripheral region 4, the drain region 13, the drift region 15, the base region 12, and the diffusion region 10 are provided in this order from the rear surface 22 toward the front surface 21 of the semiconductor substrate 2.
Each of the gate trenches 30 extends from the front surface 21 toward the rear surface 22 side of the semiconductor substrate 2 (z direction). The gate trenches 30 extend from the front surface 21 of the semiconductor substrate 2 by penetrating the source regions 11 and the base region 12 to positions reaching the drift region 15.
A gate insulation film 31 is provided on an inner surface of each gate trench 30. The gate insulation films 31 are made for example of silicon oxide (SiO2). A gate electrode 32 is disposed within each gate trench 30. The gate electrodes 32 are filled inside the gate insulation films 31. The gate electrodes 32 are insulated from the semiconductor substrate 2 by the gate insulation films 31. The gate electrodes 32 are made for example of aluminum or polysilicon. An interlayer insulation film 33 is disposed on each gate electrode 32. The gate electrodes 32 and the front surface electrode 5 are insulated by the interlayer insulation films 33.
Each of the terminal trenches 40 extends from the front surface 21 toward the rear surface 22 side of the semiconductor substrate 2 (z direction). The terminal trenches 40 extend from the front surface 21 of the semiconductor substrate 2 by penetrating the diffusion region 10 and the base region 12 to positions reaching the drift region 15. The terminal trenches 40 and the gate trenches 30 have same shape. The terminal trenches 40 are provided at positions separated away from the gate trenches 30. An insulator 41 is filled in the terminal trenches 40. Only the insulator 41 is filled in the terminal trenches 40, and no gate electrode is filled therein.
Silicon dioxide (SiO2) can be used as the insulator 41. The insulator 41 is made of same material as the front surface insulation film 7 and the gate insulation films 31. The insulator 41 is integrated with the front surface insulation film 7. The insulator 41 makes tight contact with a side surface and a bottom surface of each terminal trench 40. The insulator 41 is filled in each terminal trench 40 from its bottom to an opening potion.
The drain region 13 is an n-type region. The drain region 13 has a high impurity concentration. The drain region 13 is provided on a rear surface side of the drift region 15. The drain region 13 is provided in an area exposed on the rear surface 22 of the semiconductor substrate 2. The drain region 13 makes ohmic contact with the rear surface electrode 6.
The drift region 15 is an n-type region. The drift region 15 has an impurity concentration that is lower than that of the drain region 13. The drift region 15 is provided on a front surface side of the drain region 13. The drift region 15 is provided between the base region 12 and the drain region 13.
The base region 12 is a p-type region. The base region 12 has a low impurity concentration. The p-type impurity concentration of the base region 12 is equal to or less than 1×1017 [cm−3]. The base region 12 is provided in an area on a front surface side of the drift region 15 and making contact with the gate insulation films 31. When a positive voltage is applied to the gate electrodes 32, the base region 12 inverts to an n-type at positions facing the gate electrodes 32 via the gate insulation films 31.
The source regions 11 are n-type regions. The source regions 11 have a high impurity concentration. The source regions 11 are provided in areas on a front surface side of the base region 12 and making contact with the gate insulation films 31. The source regions 11 are provided in island shapes in an area exposed on the front surface 21 of the semiconductor substrate 2. The source regions 11 make ohmic contact with the front surface electrode 5.
The contact regions 14 are p-type regions. The contact regions 14 have a high impurity concentration. The contact regions 14 are provided in areas on the front surface side of the base region 12 and between adjacent source regions 11. The p-type impurity concentration of the contact regions 14 is higher than the p-type impurity concentration of the base region 12. The contact regions 14 are provided next to the source regions 11. The contact regions 14 are provided in island shapes in an area exposed on the front surface 21 of the semiconductor substrate 2. The contact regions 14 make ohmic contact with the front surface electrode 5.
The floating regions 17 are p-type regions. The floating regions 17 have a high impurity concentration. The floating regions 17 are provided around bottoms of the gate trenches 30 and around bottoms of the terminal trenches 40. The floating regions 17 are surrounded by the drift region 15. The floating regions 17 are separated from the base region 12 by the drift region 15. The plurality of floating regions 17 is separated from each other by the drift region 15. Potentials of the floating regions 17 are in a floating state.
The diffusion region 10 is a p-type region. The diffusion region 10 has a high p-type impurity concentration. The p-type impurity concentration of the diffusion region 10 is equal to or less than 1×1019 [cm−3]. The diffusion region 10 is provided on the front surface side of the base region 12. The p-type impurity concentration of the diffusion region 10 is higher than the p-type impurity concentration of the base region 12. The diffusion region 10 is provided in an area that is exposed on the front surface 21 of the semiconductor substrate 2. A front surface and side surfaces of the diffusion region 10 are covered by the insulator 41. The diffusion region 10 is exposed to both side surfaces 43 of each terminal trench 40 as seen in a vertical cross section (
A void 42 is provided between the portions of the diffusion region 10 that are exposed on both side surfaces 43 of each terminal trench 40 when seen along the vertical cross section of the semiconductor substrate 2. Each void 42 is provided inside the insulator 41 filled in the corresponding terminal trench 40. The void 42 is formed inside a portion of the insulator 41 that is filled between the portions of the diffusion region that are facing each other when seen along the vertical cross section of the semiconductor substrate 2. The voids 42 are formed at positions in a vicinity of the front surface 21 of the semiconductor substrate 2. Each void 42 is formed at a center portion in a short direction (y direction) of the corresponding terminal trench 40. A width of each void 42 in the short direction (y direction) of the terminal trenches 40 is smaller than a width of the void 42 in a depth direction (z direction) of the terminal trenches 40. An upper end of each void 42 is positioned between the portions of the diffusion region 10 that are exposed on the both side surfaces 43 of the corresponding terminal trench 40 when seen along the vertical cross section of the semiconductor substrate 2. A lower end of each void 42 is positioned between portions of the base region 12 that are exposed on the both side surfaces 43 of the corresponding terminal trench 40 when seen along the vertical cross section of the semiconductor substrate 2. Each void 42 extends continuously in a depthwise direction of a sheet surface of
In using the semiconductor device 1 having the above configuration, a voltage with which the rear surface electrode 6 is to become positive is applied between the front surface electrode 5 and the rear surface electrode 6. Further, an on-potential (potential that is equal to or more than a potential required for channel formation) is applied to the gate electrodes 32. When the on-potential is applied to the gate electrodes 32, channels are generated in the base region 12 in areas making contact with the gate insulation films 31. Due to this, each MOSFET turns on. In so doing, electrons flow to the rear surface electrode 6 from the front surface electrode 5 via the source regions 11, the channels formed in the base region 12, the drift region 15, and the drain region 13. According to this, current flows from the rear surface electrode 6 to the front surface electrode 5.
As is apparent from the above description, in the aforementioned semiconductor device, the void 42 is formed inside each portion of the insulator 41 filled between the portions of the diffusion region 10 that are exposed on the both side surfaces 43 of the corresponding terminal trench 40 when seen along the vertical cross section of the semiconductor substrate 2. Due to this, even if the insulator 41 filled in the terminal trenches 40 expand or contract relative to the semiconductor substrate 2 by the temperature change during the operation of the semiconductor device 1, the voids 42 formed in the insulator 41 can relax the thermal stress generated by the relative expansion or contraction of the insulator 41. Due to this, the stress acting on the insulator 41 and/or the semiconductor substrate 2 can be mitigated, and the generation of a crack in the insulator 41 and/or the semiconductor substrate 2 can be prevented.
Next, a method of manufacturing a semiconductor device will be described. In manufacturing the aforementioned semiconductor device 1, firstly, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
In the filling step, upon when the insulator 41 is deposited in the terminal trenches 40, the voids 42 are formed in the insulator 41 as shown in
Next, as shown in
Next, the semiconductor substrate 2 having undergone the filling step is heated (heat treatment step). As shown in
Next, as shown in
Further, as shown in
Subsequently, the interlayer insulation films 33 are formed on the gate electrodes 32. Further, the front surface electrode 5 is formed on the front surface 21 of the semiconductor substrate 2, and the rear surface electrode 6 is formed on the rear surface 22 of the semiconductor substrate 2. According to the above, the semiconductor device 1 as shown in
According to the aforementioned method of manufacture, upon performing the heat treatment step after having performed the filling step, the voids 42 formed within the insulator 41 can relax the thermal stress generated due to the relative expansion or contraction of the insulator 41, even if the insulator 41 filled in the terminal trenches 40 expands or contracts relative to the semiconductor substrate 2 by the temperature change during the heat treatment step. Due to this, the generation of a crack in the insulator 41 and/or the semiconductor substrate 2 can be prevented.
An embodiment has been described above, however, the specific configuration is not limited to the aforementioned embodiment. For example, in the above embodiment, MOSFETs were described as the semiconductor elements formed in the element regions 3, however, no limitation is made to this configuration. In another embodiment, an IGBT (Insulated Gate Bipolar Transistor) may be used as the semiconductor element.
Specific examples of the present invention has been described in detail, however, these are mere exemplary indications and thus do not limit the scope of the claims The art described in the claims include modifications and variations of the specific examples presented above. Technical features described in the description and the drawings may technically be useful alone or in various combinations, and are not limited to the combinations as originally claimed. Further, the art described in the description and the drawings may concurrently achieve a plurality of aims, and technical significance thereof resides in achieving any one of such aims.
An example for the technical elements disclosed in the present specification will herein be explained It should be noted that the respective technical elements are independent of one another, and are useful solely or in combinations.
The semiconductor device may further comprise an front surface insulation film provided on the front surface of the semiconductor substrate, and the front surface insulation film may be integrated with the insulator. This allows for preventing the generation of a crack in the surface insulation film.
Number | Date | Country | Kind |
---|---|---|---|
2015-009289 | Jan 2015 | JP | national |